WO2022194148A1 - 一种仿生鱼推进装置及其控制方法 - Google Patents

一种仿生鱼推进装置及其控制方法 Download PDF

Info

Publication number
WO2022194148A1
WO2022194148A1 PCT/CN2022/080928 CN2022080928W WO2022194148A1 WO 2022194148 A1 WO2022194148 A1 WO 2022194148A1 CN 2022080928 W CN2022080928 W CN 2022080928W WO 2022194148 A1 WO2022194148 A1 WO 2022194148A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
connecting rod
propulsion device
bionic fish
drive motor
Prior art date
Application number
PCT/CN2022/080928
Other languages
English (en)
French (fr)
Inventor
唐文献
左新龙
杨鑫
张建
崔维成
王芳
苏世杰
杨亚辉
刘畅
徐文星
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Publication of WO2022194148A1 publication Critical patent/WO2022194148A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/30Propulsive elements directly acting on water of non-rotary type
    • B63H1/36Propulsive elements directly acting on water of non-rotary type swinging sideways, e.g. fishtail type

Definitions

  • the invention relates to a bionic fish propulsion device and a control method thereof, belonging to the technical field of bionic robots.
  • the existing bionic fish propulsion structure design mostly adopts hydraulic transmission, steering gear twist and other methods to achieve propulsion.
  • the invention patent with the application number CN201822034238.2 introduces a bionic fish tail electro-hydraulic propulsion device.
  • the hydraulic motor drives the front half of the bionic fish tail fin to reciprocate, so as to realize the periodic swing of the bionic fish tail fin.
  • the flap-shaped tail fin can swing, which cannot well imitate the elastic deformation and swing of the fish tail, and it is difficult to better reflect the excellent hydrodynamic characteristics.
  • the swing is a periodic symmetrical motion, and it is difficult to achieve flexible steering.
  • the invention patent with application number CN202010531496.0 introduces a bionic fishtail structure driven by artificial muscles based on PVC gel. By changing the voltage, the memory alloy can be controlled to stretch or stretch to achieve swing and steering.
  • the invention has a complex structure and costs It is higher and cannot provide a sufficiently large and stable propulsion force, so it is difficult to promote the propulsion of underwater operation equipment
  • the purpose of the present invention is to solve the problems in the above-mentioned prior art that the fish tail swing cannot be well simulated, and the propulsion efficiency is poor, and to provide a kind of fish tail swing that can better simulate the fish tail cycle, reflect better hydrodynamic characteristics, and improve the propulsion efficiency. Efficient bionic fish propulsion device.
  • the present invention adopts the following technical solutions to achieve.
  • a bionic fish propulsion device comprising a bottom plate, a first V-shaped elastic support plate, a second V-shaped elastic support plate, an imitation fish tail elastic plate, an imitation tail fin trapezoidal elastic plate, a concave clamping rod, a push rod, and an electric cylinder,
  • the second link, the first link, the guide plate, the concave guide rail block, the slider, the drive motor, the drive shaft and the support column, the bottom plate is provided with the arc-shaped guide at the front part of the propulsion direction
  • the bottom plate is located downstream of the deflector in the advancing direction and is symmetrically provided with two supporting columns, the top of each supporting column is provided with the concave guide rail block, and the upper edge of the concave guide rail block is
  • a sliding slot is provided in the advancing direction, the sliding block is provided on the concave clamping rod, and the two concave clamping rods are slidably installed on the two concave guide rail blocks through the sliding block.
  • the two concave clamping rods are symmetrically installed with the imitation fishtail elastic plates on the downstream side of the pushing direction, the tails of the two imitation fishtail elastic plates are connected and the imitation fishtail elastic plates are connected at their tails.
  • the tail fin trapezoidal elastic plate, the first V-shaped elastic support plate and the second V-shaped elastic support plate are arranged between the two imitation fishtail elastic plates, and the bottom plate is located on the downstream inner side of the deflector and is symmetrically installed with two elastic plates.
  • a driving device includes the driving motor, the output shaft of the driving motor is drivingly connected with the driving shaft, the driving shaft is drivingly connected with the first connecting rod, and the first connecting rod is drivingly connected.
  • the other end of the rod is hinged with the second connecting rod, the other end of the second connecting rod is hinged with the push rod and the electric cylinder at the same time, and the other end of the electric cylinder is fixedly connected with the drive shaft,
  • the push rods of the two driving devices are hinged with the corresponding concave clamping rods.
  • a clamping groove is provided on the concave clamping rod, and the imitation fishtail elastic plate is inserted into the clamping groove.
  • an installation hole is provided on the drive shaft, and one end of the electric cylinder passes through the installation hole and is locked and fixed by two nuts.
  • the drive shaft and the output shaft of the drive motor are connected in a transmission through a coupling.
  • the drive shaft and the first connecting rod are connected by a flat key transmission.
  • the bionic fish propulsion device further includes a fixing bolt, a connecting plate and a support shaft, the connecting plate is mounted on the bottom plate through the fixing bolt, and the support shaft is provided on the connecting plate.
  • the drive motor is a waterproof servo motor
  • the electric cylinder is a waterproof electric cylinder
  • the control method of a bionic fish propulsion device of the present invention is specifically: controlling the rotation of the driving motor, and then driving the
  • the imitation fish tail elastic plate and the tail fin trapezoidal elastic plate at the tail can achieve propulsion by imitating the periodic swing of the fish tail, and the swing frequency can be realized by controlling the rotational speed of the driving motor.
  • stepless steering is realized by controlling the extension and retraction of the electric cylinder on one side or both sides to change the swinging amplitude of the fishtail-like elastic plate.
  • the passive staggered propulsion and deformation of the intersecting imitation fishtail elastic plates is used to achieve a swimming posture similar to the fishtail, which can show excellent hydrodynamic characteristics; the V-shaped elastic plate is used to supplement the internal support, and the V-shaped elastic plate is stressed It can be deformed, which can effectively avoid the small deformation of the fishtail-like elastic plate caused by the internal support constraints, and at the same time, it can avoid the excessive deformation of the fishtail-like elastic plate.
  • the staggered propulsion distance of the imitation fishtail elastic plate can be changed arbitrarily, and the bending deformation degree of the imitation fishtail elastic plate can be adjusted effectively, and multi-frequency propulsion and stepless steering can be realized; using a small waterproof electric cylinder Telescopically adjust the propulsion range of one end of the imitation fishtail elastic plate, change the swing range of the tail, and realize large-range propulsion speed, small-angle steering, and flexibility.
  • FIG. 1 is a schematic diagram of an embodiment of the present invention installed in water operation equipment
  • Fig. 2 is a partial enlarged schematic diagram at 1 place in Fig. 1;
  • FIG. 3 is a schematic structural diagram of an embodiment of the present invention.
  • Figure 5 is a transverse cross-sectional view of an embodiment of the present invention.
  • Fig. 6 is a partial enlarged view at II in Fig. 3;
  • Fig. 7 is a partial enlarged view of III in Fig. 4;
  • FIG. 8 is a schematic diagram of the structure of a bottom plate in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the structure of a concave clamping rod in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a 1/2 cycle propulsion attitude in an embodiment of the method of the present invention.
  • Fig. 11 is a control flow chart in a method embodiment of the present invention.
  • a bionic fish propulsion device of the present invention comprises a bottom plate 2, a first V-shaped elastic support plate 3, a second V-shaped elastic support plate 4, Imitation fish tail elastic plate 5, imitation tail fin trapezoidal elastic plate 6, concave clamping rod 10, push rod 11, electric cylinder 13, second connecting rod 14, first connecting rod 15, deflector 16, concave guide rail block 17.
  • the slider 19, the drive motor 21, the drive shaft 24 and the support column 26, the bottom plate 2 is provided with the arc-shaped deflector 16 at the front in the propulsion direction, and the deflector 16 can Always divide the flow to reduce water resistance.
  • the bottom plate 2 is symmetrically provided with two supporting columns 26 downstream of the deflector 16 in the advancing direction, and the top of each supporting column 26 is provided with the concave guide rail block 17 , the concave guide block 17 is provided with a chute 27 along the advancing direction, as shown in FIG. 10 is slidably installed in the sliding grooves 27 of the two concave guide rail blocks 17 through the sliding block 19, and the two concave clamping rods 10 are symmetrically installed with the imitation fish on the downstream side of the pushing direction.
  • Tail elastic plate 5, the tails of the two imitation fishtail elastic plates 5 are connected with the tail fin trapezoidal elastic plate 6, and the V-shaped elastic plate 5 is arranged between the two imitation fishtail elastic plates 5.
  • the elastic support plate 3 and the second V-shaped elastic support plate 4, the bottom plate 2 is located on the downstream inner side of the deflector 16 and symmetrically installed with two drive devices
  • the drive devices include the drive motor 21, the drive motor
  • the output shaft of 21 is connected with the drive shaft 24,
  • the first connecting rod 15 is connected with the drive shaft 24,
  • the second connecting rod 14 is hinged on the other end of the first connecting rod 15.
  • the other end of the second connecting rod 14 is hinged with the push rod 11 and the electric cylinder 13 at the same time
  • the other end of the electric cylinder 13 is fixedly connected with the driving shaft 24, and all the two driving devices
  • the push rod 11 is hinged with the corresponding concave clamping rod 10 .
  • the concave clamping rod 10 is provided with a clamping groove, and the fishtail-like elastic plate 5 is inserted into the clamping groove.
  • the concave clamping rod 10 and the push rod 11 are hinged through a second rotating pin 18 .
  • the drive shaft 24 is provided with a mounting hole, one end of the electric cylinder 13 passes through the mounting hole, and is locked and fixed by two nuts 20 .
  • the first link 15 and the second link 14 are hinged through a third rotation pin 22 , and the second link 14 , the electric cylinder 13 and the push rod 11 are connected by a first rotation Pin 12 is hinged.
  • the drive shaft 24 and the output shaft of the drive motor 21 are in a transmission connection through a coupling 23 .
  • the drive shaft 24 and the first connecting rod 15 are in a transmission connection through a flat key 25 .
  • a bionic fish propulsion device of the present invention further includes a fixing bolt 7 , a connecting plate 8 and a supporting shaft 9 , and the connecting plate 8 is installed on the bottom plate 2 through the fixing bolt 7 .
  • the connecting plate 8 is provided with the supporting shaft 9 .
  • the bionic fish propulsion device is installed on the underwater operation equipment 1 through the support shaft 9, wherein the underwater operation equipment 1 may be a hull, a shell, or the like.
  • the above-mentioned driving motor 21 is a waterproof servo motor, and the electric cylinder 13 is a waterproof electric cylinder.
  • a control method of a bionic fish propulsion device of the present invention controls the rotation of the driving motor 21, and then drives all the on both sides through the first connecting rod 14, the second connecting rod 14 and the push rod 11.
  • the imitation fishtail elastic plate 5 and the tail fin trapezoidal elastic plate 6 at the tail can achieve propulsion by imitating the action of the periodic swing of the fishtail, and the frequency of the swing can be realized by controlling the rotational speed of the driving motor 21 .
  • the drive motors 21 are symmetrically arranged on both sides.
  • the drive motor 21 on one side stops rotating and the drive motor 21 on the other side rotates by 1, a 1/2-cycle propulsion attitude can be achieved.
  • the figure shows different swing attitudes, and H is the swing amplitude.
  • the swinging amplitude of the fishtail-like elastic plate 5 can be changed to realize stepless steering.
  • the two sets of the driving motors 21 in the bionic fish propulsion device of the present invention are the power source of the structure of the present invention.
  • the drive motor 21 on one side is activated, and the drive shaft 24 drives the first connecting rod 15 , the second connecting rod 14 , and the push rod 11 in sequence, and then drives the concave support rod 10 to slide. , thereby driving the imitation fishtail elastic plate 5 on this side to be deformed by force, and by controlling the start, stop and frequency of the drive motor 21 and the telescopic change of the electric cylinder 13 to change the stroke, the propulsion speed, swing frequency, swing frequency can be realized. Amplitude changes, so as to control the bionic fish propulsion device to imitate the flexibility of the real fish tail.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Toys (AREA)

Abstract

一种仿生鱼推进装置及其控制方法,推进装置包括底板(1),底板(1)设有导流板(16)和支撑柱(26),支撑柱(26)的顶部设有凹形导轨块(17),凹形导轨块(17)设有滑槽(27),凹形夹持杆(10)通过滑块(19)可滑动的安装在凹形导轨块(17)的滑槽(27)中,凹形夹持杆(10)安装有仿鱼尾弹性板(5),两仿鱼尾弹性板(5)的尾部连接并在其尾部连接有仿尾鳍梯形弹性板(6)。该仿生鱼推进装置及其控制方法可实现多频率推进、无级转向。

Description

一种仿生鱼推进装置及其控制方法 技术领域
本发明涉及一种仿生鱼推进装置及其控制方法,属于仿生机器人技术领域。
背景技术
鱼类利用身体和鱼尾的往复摆动,形成向前的推动力,推进效率高,转向灵活,具有较好的水下推进应用前景。
现有仿生鱼推进结构设计多采用液压传动,舵机扭动等方式来实现推进。申请号CN201822034238.2的发明专利,介绍了一种仿生鱼尾电液推进装置,液压马达驱动仿生鱼尾鳍的前半连接部往复运动,实现仿生鱼尾鳍周期摆动,但是该发明仅仅通过摆动马达带动单片状的尾鳍实现摆动,无法较好模仿鱼尾弹性变形摆动的姿态,难以较好体现优异的水动力学特性,且摆动为周期对称运动,难以实现灵活转向。申请号CN202010531496.0的发明专利,介绍了一种基于PVC凝胶人工肌肉驱动的仿生鱼尾结构,通过改变电压来控制记忆合金伸缩或拉长,实现摆动和转向,但是该发明结构复杂,成本更高且无法提供足够大、稳定性高的推进力,难以推广用于水中作业装备推进。
发明内容
本发明的目的是为解决上述现有技术中存在的不能较好模拟鱼尾摆动,推进效率差的问题,而提供一种能较好模拟鱼尾周期摆动,体现较好水动力学特性,推进效率高的仿生鱼推进装置。
为达到上述目的,本发明采用如下技术方案予以实现。
一种仿生鱼推进装置,包括底板、第一V形弹性支撑板、第二V形弹性支撑板、仿鱼尾弹性板、仿尾鳍梯形弹性板、凹形夹持杆、推杆、电动缸,第二连杆、第一连杆、导流板、凹形导轨块、滑块、驱动电机、驱动轴和支撑柱,所述底板在推进方向的前部设有呈弧形状的所述导流板,所述底板在推进方向上位于所述导流板的下游对称设有两支撑柱,每个所述支撑柱的顶部均设有所述凹形导轨块,所述凹形导轨块上沿推进方向开设有滑槽,所述凹形夹持杆上设有所述滑块,两个所述凹形夹持杆通过所述滑块可滑动的安装在两所述凹形导轨块的所述滑槽中,两所述凹形夹持杆在推行方向的下游侧对称安装有所述仿鱼尾弹性板,两所述仿鱼尾弹性板的尾部连接并在其尾部连接有所述仿尾鳍梯形弹性板,两所述仿鱼尾弹性板之间设有所述第一V形弹性支撑板和第二V形弹性支撑板,所述底板位于所述导流板下游内侧对称安装有两个驱动装置,所述驱动装置包括所述驱动电机,所述驱动电机的输出轴上传动连接有所述驱动轴,所述驱动轴上传动连接有所述第一连杆,所述第一连杆的另一端铰接有所述第二连杆,所述第二连杆的另一端同时铰接有所述推杆和所述电动缸,所述电动缸的另一端与所述驱动轴固定连接,两所述驱动装置的所述推杆和与其对应的所述所述凹形夹持杆铰接。
进一步优选,所述凹形夹持杆上设有夹槽,所述仿鱼尾弹性板插装在所述夹槽中。
进一步优选,所述驱动轴上设有安装孔,所述电动缸的一端穿过所述安装孔,并通 过两螺母锁紧固定。
进一步优选,所述驱动轴与所述驱动电机的输出轴之间通过联轴器传动连接。
进一步优选,所述驱动轴与所述第一连杆之间通过平键传动连接。
进一步优选,所述仿生鱼推进装置还包括固定螺栓、连接板和支撑轴,所述连接板通过所述固定螺栓安装在所述底板上,所述连接板上设所述支撑轴。
进一步优选,所述驱动电机为防水伺服电机,所述电动缸为防水电动缸。
本发明的一种仿生鱼推进装置的控制方法,具体是:控制所述驱动电机的转动,进而通过所述第一连杆、所述第二连杆以及所述推杆带动两侧的所述仿鱼尾弹性板和尾部的所述仿尾鳍梯形弹性板实现模仿鱼尾周期摆动的动作实现推进,通过控制所述驱动电机的转速可以实现摆动的频率。
进一步优选,对称安装的所述驱动电机,当一侧的所述驱动电机停止转动同时另外一侧的所述驱动电机转动实现1/2周期推进姿态。
进一步优选,通过控制单侧或双侧所述电动缸的伸缩,改变所述仿鱼尾弹性板摆动的幅度,实现无级转向。
本发明具有以下优点和有益效果:
(1)利用相交仿鱼尾弹性板的被动交错推进变形,实现近似鱼尾游动姿态,能表现出优异的水动力学特性;采用V形弹性板辅以内部支撑,V形弹性板受力可变形,有效避免内部支撑约束导致的仿鱼尾弹性板变形较小,同时可避免仿鱼尾弹性板受力变形过大。
(2)通过双仿水伺服电机驱动,可任意改变仿鱼尾弹性板交错推进距离,有效调整仿鱼尾弹性板的弯曲变形程度,可实现多频率推进、无级转向;利用小型防水电缸伸缩调节仿鱼尾弹性板一端的推进量程,改变尾部摆动幅度,实现大量程推进速度、小角度转向,灵活机动。
附图说明
图1为本发明实施例安装于水中作业装备的示意图;
图2为图1中I处局部放大示意图;
图3为本发明实施例的构造示意图;
图4为本发明实施例的纵向剖面图;
图5为本发明实施例的横向剖面图;
图6为图3中II处局部放大图;
图7为图4中III局部放大图;
图8为本发明实施例中底板构造示意图;
图9为本发明实施例中凹形夹持杆构造示意图;
图10为本发明方法实施例中1/2周期推进姿态示意图;
图11为本发明方法实施例中控制流程图;
其中,1、水中作业装备;2、底板;3、第一V形弹性支撑板;4、第二V形弹性支撑板;5、仿鱼尾弹性板;6、仿尾鳍梯形弹性板;7、固定螺栓;8、连接板;9、支撑轴;10、凹形夹持杆;11、推杆;12、第一转动销;13、电推缸;14、第二连接杆;15、第一连接杆;16、导流板;17、凹形导轨块;18、第二转动销;19、滑块;20、螺母;21、驱动电机;22、第三转动销;23、联轴器;24、 驱动轴;25、平键、26为支撑杆;27、滑槽。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“前”、“后”“内”、“外”等指示的方位或者位置关系均为基于附图所示的方位或者位置关系,仅是为了便于描述本发明和简化描述,而不是指示或者暗示所指的装置或者元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。
如图3、图4、图5、图6和图7所示,本发明的一种仿生鱼推进装置,包括底板2、第一V形弹性支撑板3、第二V形弹性支撑板4、仿鱼尾弹性板5、仿尾鳍梯形弹性板6、凹形夹持杆10、推杆11、电动缸13,第二连杆14、第一连杆15、导流板16、凹形导轨块17、滑块19、驱动电机21、驱动轴24和支撑柱26,所述底板2在推进方向的前部设有呈弧形状的所述导流板16,所述导流板16可将正向来流分割,降低水阻力。如图8所示,所述底板2在推进方向上位于所述导流板16的下游对称设有两支撑柱26,每个所述支撑柱26的顶部均设有所述凹形导轨块17,所述凹形导轨块17上沿推进方向开设有滑槽27,如图9所示,所述凹形夹持杆10上设有所述滑块19,两个所述凹形夹持杆10通过所述滑块19可滑动的安装在两所述凹形导轨块17的所述滑槽27中,两所述凹形夹持杆10在推行方向的下游侧对称安装有所述仿鱼尾弹性板5,两所述仿鱼尾弹性板5的尾部连接并在其尾部连接有所述仿尾鳍梯形弹性板6,两所述仿鱼尾弹性板5之间设有所述一V形弹性支撑板3和第二V形弹性支撑板4,所述底板2位于所述导流板16下游内侧对称安装有两个驱动装置,所述驱动装置包括所述驱动电机21,所述驱动电机21的输出轴上传动连接有所述驱动轴24,所述驱动轴24上传动连接有所述第一连杆15,所述第一连杆15的另一端铰接有所述第二连杆14,所述第二连杆14的另一端同时铰接有所述推杆11和所述电动缸13,所述电动缸13的另一端与所述驱动轴24固定连接,两所述驱动装置的所述推杆11和与其对应的所述所述凹形夹持杆10铰接。
如图3、图5和图9所示,所述凹形夹持杆10上设有夹槽,所述仿鱼尾弹性板5插装在所述夹槽中。所述凹形夹持杆10和所述推杆11之间通过第二转动销18铰接。
如图6和图7所示,所述驱动轴24上设有安装孔,所述电动缸13的一端穿过所述安装孔,并通过两螺母20锁紧固定。所述第一连杆15与所述第二连杆14之间通过第三转动销22铰接,所述第二连杆14、所述电动缸13和所述推杆11之间通过第一转动销12铰接。
如图6所示,所述驱动轴24与所述驱动电机21的输出轴之间通过联轴器23传动连接。所述驱动轴24与所述第一连杆15之间通过平键25传动连接。
如图1和图2所示,本发明的一种仿生鱼推进装置,还包括固定螺栓7、连接板8和支撑轴9,所述连接板8通过所述固定螺栓7安装在所述底板2上,所述连接板8上设所述支撑轴9。使用时,仿生鱼推进装置通过所述支撑轴9安装于水中作业装备1上,其中水中作业装备1可为船体、壳体等。
上述所述驱动电机21为防水伺服电机,所述电动缸13为防水电动缸。
本发明的一种仿生鱼推进装置的控制方法,控制所述驱动电机21的转动,进而通过所述第一连杆14、所述第二连杆14以及所述推杆11带动两侧的所述仿鱼尾弹性板5和尾部的所述仿尾鳍梯形弹性板6实现模仿鱼尾周期摆动的动作实现推进,通过控制所述驱动电机21的转速可以实现摆动的频率。
如图10所示,所述驱动电机21为双侧对称设置,当一侧的所述驱动电机21停止转动同时另外一侧的所述驱动电机21转动1可以实现1/2周期推进姿态。图中显示了不同的摆动姿态,H为摆动幅度。
通过控制单侧或双侧所述电动缸13的伸缩,可以改变所述仿鱼尾弹性板5摆动的幅度,实现无级转向。
如图11所示,本发明的仿生鱼推进装置中的两组所述驱动电机21是本发明结构的动力源。一侧所述驱动电机21启动,通过所述驱动轴24依次带动所述第一连接杆15、所述第二连杆14、所述推杆11,继而带动所述凹形加持杆10滑移,从而带动本侧所述仿鱼尾弹性板5受力变形,通过控制所述驱动电机21的启动、停止和频率以及所述电动缸13的伸缩改变行程,可以实现推进速度、摆动频率、摆动幅度的变化,从而控制仿生鱼推进装置模仿真实鱼尾灵活机动。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种仿生鱼推进装置,其特征在于:包括底板(2)、第一V形弹性支撑板(3)、第二V形弹性支撑板(4)、仿鱼尾弹性板(5)、仿尾鳍梯形弹性板(6)、凹形夹持杆(10)、推杆(11)、电动缸(13),第二连杆(14)、第一连杆(15)、导流板(16)、凹形导轨块(17)、滑块(19)、驱动电机(21)、驱动轴(24)和支撑柱(26),所述底板(2)在推进方向的前部设有呈弧形状的所述导流板(16),所述底板(2)在推进方向上位于所述导流板(16)的下游对称设有两支撑柱(26),每个所述支撑柱(26)的顶部均设有所述凹形导轨块(17),所述凹形导轨块(17)上沿推进方向开设有滑槽(27),所述凹形夹持杆(10)上设有所述滑块(19),两个所述凹形夹持杆(10)通过所述滑块(19)可滑动的安装在两所述凹形导轨块(17)的所述滑槽(27)中,两所述凹形夹持杆(10)在推行方向的下游侧对称安装有所述仿鱼尾弹性板(5),两所述仿鱼尾弹性板(5)的尾部连接并在其尾部连接有所述仿尾鳍梯形弹性板(6),两所述仿鱼尾弹性板(5)之间设有所述第一V形弹性支撑板(3)和第二V形弹性支撑板(4),所述底板(2)位于所述导流板(16)下游内侧对称安装有两个驱动装置,所述驱动装置包括所述驱动电机(21),所述驱动电机(21)的输出轴上传动连接有所述驱动轴(24),所述驱动轴(24)上传动连接有所述第一连杆(15),所述第一连杆(15)的另一端铰接有所述第二连杆(14),所述第二连杆(14)的另一端同时铰接有所述推杆(11)和所述电动缸(13),所述电动缸(13)的另一端与所述驱动轴(24)固定连接,两所述驱动装置的所述推杆(11)和与其对应的所述所述凹形夹持杆(10)铰接。
  2. 如权利要求1所述的一种仿生鱼推进装置,其特征在于:所述凹形夹持杆(10)上设有夹槽,所述仿鱼尾弹性板(5)插装在所述夹槽中。
  3. 如权利要求1所述的一种仿生鱼推进装置,其特征在于:所述驱动轴(24)上设有安装孔,所述电动缸(13)的一端穿过所述安装孔,并通过两螺母(20)锁紧固定。
  4. 如权利要求1所述的一种仿生鱼推进装置,其特征在于:所述驱动轴(24)与所述驱动电机(21)的输出轴之间通过联轴器(23)传动连接。
  5. 如权利要求1所述的一种仿生鱼推进装置,其特征在于:所述驱动轴(24)与所述第一连杆(15)之间通过平键(25)传动连接。
  6. 如权利要求1所述的一种仿生鱼推进装置,其特征在于:还包括固定螺栓(7)、连接板(8)和支撑轴(9),所述连接板(8)通过所述固定螺栓(7)安装在所述底板(2)上,所述连接板(8)上设所述支撑轴(9)。
  7. 如权利要求1所述的一种仿生鱼推进装置,其特征在于:所述驱动电机(21)为防水伺服电机,所述电动缸(13)为防水电动缸。
  8. 如权利要求1至7任意一项所述的一种仿生鱼推进装置的控制方法,其特征在于:控制所述驱动电机(21)的转动,进而通过所述第一连杆(15)、所述第二连杆(14)以及所述推杆(11)带动两侧的所述仿鱼尾弹性板(5)和尾部的所述仿尾鳍梯形弹性板(6)实现模仿鱼尾周期摆动的动作实现推进,通过控制所述驱动电机(21)的转速实现摆动的频率。
  9. 如权利要求8所示的一种仿生鱼推进装置的控制方法,其特征在于:对称安装的所述驱动电机(21),当一侧的所述驱动电机(21)停止转动同时另外一侧的所述驱动电机(21)转动实现1/2周期推进姿态。
  10. 如权利要求8所述的一种仿生鱼推进装置的控制方法,其特征在于:通过控制单侧或双侧所述电动缸(13)的伸缩,改变所述仿鱼尾弹性板(5)摆动的幅度,实现无级转向。
PCT/CN2022/080928 2021-03-15 2022-03-15 一种仿生鱼推进装置及其控制方法 WO2022194148A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110275049.8A CN113104188B (zh) 2021-03-15 2021-03-15 一种仿生鱼推进装置及其控制方法
CN202110275049.8 2021-03-15

Publications (1)

Publication Number Publication Date
WO2022194148A1 true WO2022194148A1 (zh) 2022-09-22

Family

ID=76711421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080928 WO2022194148A1 (zh) 2021-03-15 2022-03-15 一种仿生鱼推进装置及其控制方法

Country Status (2)

Country Link
CN (1) CN113104188B (zh)
WO (1) WO2022194148A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115892415A (zh) * 2022-11-09 2023-04-04 中国科学院自动化研究所 基于阻尼弹性复合机理的仿生鱼尾推进器
CN115892415B (zh) * 2022-11-09 2024-05-28 中国科学院自动化研究所 基于阻尼弹性复合机理的仿生鱼尾推进器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113104188B (zh) * 2021-03-15 2022-04-15 江苏科技大学 一种仿生鱼推进装置及其控制方法
CN113959678B (zh) * 2021-09-27 2024-02-27 江苏科技大学 适用于仿生鱼水动力性能测量的试验装置
CN114408043A (zh) * 2022-01-27 2022-04-29 吉林大学 一种仿生弧形跳跃装置及其跳跃方法
CN115230925B (zh) * 2022-05-30 2023-12-12 黄兴中 数控可变波形的多关节柔性水下仿生推进器及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1586990A (zh) * 2004-08-12 2005-03-02 上海交通大学 仿生机器鱼的柔性推进机构
CN101033000A (zh) * 2007-04-28 2007-09-12 哈尔滨工程大学 多关节波动推进鱼形机器人
CN101157381A (zh) * 2007-10-26 2008-04-09 哈尔滨工程大学 双体机器鱼
US20100151751A1 (en) * 2007-04-04 2010-06-17 Thomas Jemt Propulsion Device For Propelling A Floating Watercraft, A Conversion Kit For Replacing A Propeller Where The Kit Comprises Such A Propulsion Device, A Watercraft Comprising Such A Propulsion Device And A Method For Increasing The Efficiency By Using Such A Conversion Kit
CN205819522U (zh) * 2016-08-02 2016-12-21 刘钰 基于连杆机构的交叉式全柔性仿生鱼尾推进机构
CN107839863A (zh) * 2017-09-26 2018-03-27 北京航空航天大学 一种仿鱼尾的二自由度摆动柔性并联机构
CN111846165A (zh) * 2020-07-27 2020-10-30 厦门大学 一种串联式柔性驱动的仿生机器鱼
CN113104188A (zh) * 2021-03-15 2021-07-13 江苏科技大学 一种仿生鱼推进装置及其控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2811163Y (zh) * 2005-04-08 2006-08-30 哈尔滨工程大学 一种仿鱼尾推进系统的机械传动装置
CN104149955B (zh) * 2014-07-28 2016-05-11 江苏科技大学 基于行星轮系的仿胸鳍推进装置
CN104590519B (zh) * 2015-02-02 2017-03-08 中国科学技术大学 一种形状可控的水下仿生推进装置
CN208616179U (zh) * 2018-05-04 2019-03-19 内蒙古天航科技有限责任公司 一种仿生箱鲀推进机构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1586990A (zh) * 2004-08-12 2005-03-02 上海交通大学 仿生机器鱼的柔性推进机构
US20100151751A1 (en) * 2007-04-04 2010-06-17 Thomas Jemt Propulsion Device For Propelling A Floating Watercraft, A Conversion Kit For Replacing A Propeller Where The Kit Comprises Such A Propulsion Device, A Watercraft Comprising Such A Propulsion Device And A Method For Increasing The Efficiency By Using Such A Conversion Kit
CN101033000A (zh) * 2007-04-28 2007-09-12 哈尔滨工程大学 多关节波动推进鱼形机器人
CN101157381A (zh) * 2007-10-26 2008-04-09 哈尔滨工程大学 双体机器鱼
CN205819522U (zh) * 2016-08-02 2016-12-21 刘钰 基于连杆机构的交叉式全柔性仿生鱼尾推进机构
CN107839863A (zh) * 2017-09-26 2018-03-27 北京航空航天大学 一种仿鱼尾的二自由度摆动柔性并联机构
CN111846165A (zh) * 2020-07-27 2020-10-30 厦门大学 一种串联式柔性驱动的仿生机器鱼
CN113104188A (zh) * 2021-03-15 2021-07-13 江苏科技大学 一种仿生鱼推进装置及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115892415A (zh) * 2022-11-09 2023-04-04 中国科学院自动化研究所 基于阻尼弹性复合机理的仿生鱼尾推进器
CN115892415B (zh) * 2022-11-09 2024-05-28 中国科学院自动化研究所 基于阻尼弹性复合机理的仿生鱼尾推进器

Also Published As

Publication number Publication date
CN113104188A (zh) 2021-07-13
CN113104188B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2022194148A1 (zh) 一种仿生鱼推进装置及其控制方法
CN209956198U (zh) 一种同步升潜串联舵机仿生机器鱼
CN100569585C (zh) 一种水下仿水翼推进装置
CN101323365B (zh) 液压驱动身体尾鳍方式仿生水下推进器
CN201807186U (zh) 一种机器鱼复合转弯装置
CN110077566B (zh) 多关节连杆式尾部机构及采用其推进的仿生机器鱼
CN112793742B (zh) 一种仿皮皮虾水下机器人
CN1974320A (zh) 基于柔性扑翼推进的仿生水下机器人
CN113086134B (zh) 一种基于液态电介质驱动器的仿蝠鲼水下软体机器人
CN104309789A (zh) 驱动关节内嵌式的柔性多运动模式仿生尾鳍
CN109334932B (zh) 用于水下仿生推进系统的混联驱动机构
CN106585935B (zh) 一种仿生机构驱动的海上航行器
CN205059974U (zh) 一种仿生机构驱动的海上航行器
CN112109868B (zh) 一种仿河狸后肢的脚蹼推进装置
CN104260864B (zh) 一种仿尾鳍推进装置
CN114655405A (zh) 一种仿生乌贼的水下多自由度运动机构
CN201254280Y (zh) 液压驱动身体尾鳍方式仿生水下推进器
CN111173911B (zh) 一种齿轮齿圈传动的连杆式仿生鱼尾
CN109911155B (zh) 可实现椭圆轨迹的仿生鳍单元及采用其推进的水下机器人
CN110901867B (zh) 一种基于齿轮连杆机构的仿生鱼尾
CN112339958A (zh) 一种基于sma丝驱动的仿生蝠鲼
CN112498633A (zh) 一种仿生水下机器人及其驱动方法
CN113428330B (zh) 一种柔性仿生机器鱼
CN113184153B (zh) 一种可转弯快速游动软体机械鱼
CA2245286A1 (en) Wave propulsion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770501

Country of ref document: EP

Kind code of ref document: A1