WO2022193846A1 - 一种周年高效生产的产能大跨度可变空间日光温室优化设计方法 - Google Patents

一种周年高效生产的产能大跨度可变空间日光温室优化设计方法 Download PDF

Info

Publication number
WO2022193846A1
WO2022193846A1 PCT/CN2022/074254 CN2022074254W WO2022193846A1 WO 2022193846 A1 WO2022193846 A1 WO 2022193846A1 CN 2022074254 W CN2022074254 W CN 2022074254W WO 2022193846 A1 WO2022193846 A1 WO 2022193846A1
Authority
WO
WIPO (PCT)
Prior art keywords
greenhouse
solar
span
wall
heat
Prior art date
Application number
PCT/CN2022/074254
Other languages
English (en)
French (fr)
Inventor
陈超
韩枫涛
牛笑晨
刘燕燕
宓雪
付浩祺
李恭丞
焦勇翔
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2022193846A1 publication Critical patent/WO2022193846A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Definitions

  • the invention relates to an optimization design method for a large-span variable space solar greenhouse building that can realize annual high-efficiency production and can produce production capacity based on the theory and method of active and passive building design and utilizes photovoltaic + electric heating + phase-change heat storage technology, which belongs to facilities Agricultural building energy-saving design field and renewable energy application field.
  • the solar greenhouse is a facility agricultural building with a large body shape factor. It uses solar energy as the main resource and uses the greenhouse effect to improve the winter vegetable growing environment. Its building space consists of walls (north, east and west walls), rear roof, front roof, ground and other enclosure structures. The winter is cold. From the perspective of ensuring the necessary thermal environment for the overwintering production of warm fruits and vegetables and reducing heating energy consumption, a small space (or small span) solar greenhouse is beneficial; after spring, the climate warms up and gradually increases, and natural climatic conditions Normal production can be achieved. At this time, it is more desirable to have a large-space (or large-span) solar greenhouse, which is conducive to mechanized operations and improves large-scale production efficiency. This big and small seasonal contradiction presents a great challenge to the efficient production of solar greenhouses.
  • the present invention proposes an optimized design method for a solar greenhouse with large-span variable space for annual high-efficiency production, which combines solar photovoltaic technology, electrothermal film technology, phase-change heat storage technology, and building wall construction technology with the solar greenhouse.
  • the architectural space design and its thermal environment creation method are organically integrated: in winter, through the phase change heat storage wall, the solar energy location and time are transferred in the form of "solar light-electricity-heat” + “solar light-heat”, which is a solar greenhouse Provides a heat source for warmth at night; in other non-heating seasons, it provides power for ventilation and cooling in solar greenhouses, as well as agricultural machinery and equipment. Realize the efficient production of solar greenhouses throughout the year, the efficient utilization of solar photovoltaic modules throughout the year, and the greening of ventilation equipment and agricultural machinery and equipment.
  • the invention proposes an optimization design method for a solar greenhouse with large-span variable space for annual high-efficiency production.
  • the solar greenhouse can achieve high-efficiency production throughout the year.
  • the solar greenhouse is divided into "hot zone” and "cold zone” along the span direction by plastic film, except that the solar energy projected on the wall surface through the plastic film of the roof in front of the solar greenhouse is passively stored in the wall,
  • the direct current generated by the solar photovoltaic modules is also transmitted to the electric heating film laid on the middle layer of the solar greenhouse solar "quadruple” structure phase change heat storage wall system, and the phase change material plate is laid on the outside of the electric heating film, as shown in Figure 3
  • an air channel is set in the wall without electric heating film, and the air with higher indoor temperature in the solar greenhouse is pumped into the air channel of the "triple” structure phase change heat storage wall by the fan, as shown in Figure 1.
  • the solar energy is stored in the wall in a heat-conducting manner through light-electricity-heat conversion and light-heat conversion, respectively, and provides a heat source for the creation of a "hot zone" thermal environment in the solar greenhouse at night; 2) In other non-heating seasons, remove the plastic film , the "hot area” and “cold area” are combined into one large area, and the electricity generated by photovoltaic modules can either directly provide power for ventilation and cooling in the greenhouse, or provide power for other agricultural machinery and equipment, so as to realize the generation of solar photovoltaic modules.
  • the electrical energy is "fire-and-go". Provide new application methods and approaches for the flexible and efficient application of solar photovoltaic and photothermal technology in modern facility agricultural production throughout the year.
  • the present invention adopts following technical scheme:
  • the invention relates to a design and calculation method for the spatial form characteristic parameters of a large-span variable space solar greenhouse building.
  • the method of the present invention can be used to calculate the solar greenhouse under the corresponding span conditions.
  • the optimal design values of the architectural spatial morphological parameters of the solar greenhouse such as the height-span ratio, the projected length of the rear roof, and the height of the north wall.
  • Step 1 According to the formulas (1), ( 2), (3), the suitable height-span ratio ⁇ of the project site can be calculated, where ⁇ is the ratio of the greenhouse ridge height to the span, and the corresponding solar greenhouse rear roof projection length C, north wall height H w and ridge under different span conditions With high H, the greenhouse structure parameters are shown in Fig. 1a).
  • the local average outdoor temperature during the critical period for winter vegetable crop production °C
  • h s is the sun altitude angle at noon on the local hot day, °
  • h c is the local sun altitude angle at noon on the cold day, °
  • L p is the height of the plant, m
  • P is the width of the greenhouse aisle, m
  • L is the span of the greenhouse, m.
  • Step 2 According to the calculation results of the spatial morphological parameters of the solar greenhouse of the project site obtained in step 1, that is, the ratio ⁇ of the greenhouse ridge height to the span, the projected length C of the rear roof of the solar greenhouse, the north wall height H w and the ridge height H, in SketchUp
  • the greenhouse geometric model is established in the software, and the constraints such as thermal physical property parameters of the greenhouse envelope, work and rest time, and simulation period are input, and the solar greenhouse building heat load Q iL corresponding to different span conditions is calculated. This belongs to the prior art.
  • Step 3 Calculate the heat supply Q gL that can be provided by the north wall of solar phase change thermal storage corresponding to the solar greenhouse.
  • Step 4 According to the greenhouse heat load Q iL and the wall heat supply Q gL calculated in steps 2 and 3, a coupled analysis is performed on the greenhouse heat load and the wall heat supply.
  • Q gL /Q iL
  • is the ratio of the heat supply of the wall to the heat load of the greenhouse
  • analyze the variation law of ⁇ take the span L N corresponding to the optimal ⁇
  • the optimal LN determination principle is when ⁇ is Change no more than 2%, choose the smallest span;
  • the rule is used as the basis for determining the optimal ridge height H of the solar greenhouse of the project site according to the height-span ratio of step 1; further, the optimized rear roof projection length C and north wall height H w of the solar greenhouse of the project site can be calculated according to step 1.
  • Step 5 The span LN determined in step 4 is taken as the suitable span for overwintering production of the solar greenhouse on the project site, and the present invention proposes to take LN + L X as the optimal total span L* of the solar greenhouse on the project site.
  • high light - transmitting plastic films are arranged along the length of the greenhouse at the boundary between the large area corresponding to the LN span and the small area corresponding to the LX span.
  • warm fruits and vegetables can be planted in large areas, and cold-resistant leafy vegetables can be planted in small areas; in the spring warming season, the high light-transmitting plastic film can be removed, and the entire span L* can be used as the planting area for seasons other than winter.
  • FIG. 1a Sectional view of solar greenhouse
  • FIG. 2 One of the computing logic frame diagrams of the present invention
  • Ningxia Wuzhong area is 106.27°, 38.47° north latitude; the key period of vegetable production that needs to be guaranteed is from December 1st to January 31st; check the local average outdoor air temperature during the corresponding period is -5.7°C, and the daily average total solar radiation is 12.7°C MJ/(m 2 ⁇ day).
  • step 1 it can be calculated that the suitable height-span ratio of the project site is 0.52, and further calculate the corresponding solar greenhouse rear roof projection length C, north wall height H w and ridge height H under different span conditions.
  • the specific results are shown in Table 1. Show.
  • step 2 the heat load Q iL of the solar greenhouse to maintain indoor 8°C under the span conditions corresponding to Table 1 can be calculated and obtained, and the results are shown in Table 2.
  • step 3 calculate the specific heat supply Q gL corresponding to the solar active-passive phase change heat storage and ventilation north wall of the solar greenhouse with different spans or the solar photovoltaic "quadruple" structure phase change heat storage wall system, The results are shown in Table 3 below. The calculation results of the solar photovoltaic "quadruple" structure phase change heat storage wall are similar, and do not affect the results of the subsequent step 4, so this case will not be repeated.
  • step 4 calculate ⁇ as in Table 4, and analyze the variation law with the span of the greenhouse.
  • reaches about 65%, and the growth rate of ⁇ is only 1% when the span changes from 10 meters to 14 meters.
  • the span of the greenhouse is more than 10 meters, the heat load of the greenhouse gradually increases, because ⁇ is basically unchanged, and the additional heat required by the greenhouse also gradually increases. Therefore, considering the factors of heat load and heat supply in the greenhouse in winter, as well as the additional heat supply required by the greenhouse, the span of 10 meters is optimal, so the L N is determined to be 10 meters.
  • step 5 when the LN span is determined to be 10 meters, to meet the necessary ambient temperature (5° C ) for the growth of cold-resistant leafy vegetables in winter as a constraint, the LX span size can be changed from 1m to 4m, which can be simulated according to energy consumption.
  • the software calculates the heat load corresponding to the LX area as shown in Table 5.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Greenhouses (AREA)

Abstract

一种可适于周年近零能耗高效生产的大跨度可变空间日光温室优化设计方法,将太阳能光伏技术、电热膜技术、相变蓄热技术、以及建筑墙体构筑技术,与日光温室建筑空间设计及其热环境营造方法有机融合,冬季通过相变蓄热墙体,以"太阳能光-电-热"+"太阳能光-热"的形式实现太阳能地点与时间转移,为日光温室夜晚提供保暖热源;其它非供暖季节,为日光温室通风换气与降温、以及农机设备提供动力电源。当建设工程场地的地理纬度、温室需要确保的蔬菜生产关键时期确定后,查阅对应时期当地的室外空气平均温度和日平均太阳辐射总量,计算得到对应跨度条件下日光温室的高跨比、后屋面投影长度,以及北墙高度等日光温室建筑空间形态特征参数的优化设计值。如此设置实现日光温室全年高效生产、太阳能光伏组件全年高效利用、通风设备以及农机设备用能绿色化。

Description

一种周年高效生产的产能大跨度可变空间日光温室优化设计方法 技术领域
本发明涉及一种基于主被动式建筑设计理论与方法、利用光伏+电热+相变蓄热技术,形成的可实现周年高效生产且可产能的大跨度可变空间日光温室建筑优化设计方法,属于设施农业建筑节能设计领域与可再生能源应用领域。
背景技术
日光温室是一个体形系数很大的设施农业建筑,以太阳能为主要资源,利用温室效应改善冬季蔬菜种植环境。其建筑空间由墙体(北、东、西墙体)、后屋面、前屋面、地面等围护结构构成。冬季寒冷,从保障喜温果菜越冬生产必要的热环境、减低供暖能耗的角度,小空间(或小跨度)的日光温室,是有利的;春季以后,气候回暖且逐渐升高,自然气候条件即可实现正常生产,此时更希望大空间(或大跨度)的日光温室,有利于机械化作业、提高规模化生产效率。这一大一小的季节矛盾,给日光温室周年高效生产提出了很大的挑战。
为此,本发明提出了一种周年高效生产的产能大跨度可变空间日光温室优化设计方法,将太阳能光伏技术、电热膜技术、相变蓄热技术、以及建筑墙体构筑技术,与日光温室建筑空间设计及其热环境营造方法有机融合:冬季,通过相变蓄热墙体,以“太阳能光-电-热”+“太阳能光-热”的形式实现太阳能地点与时间转移,为日光温室夜晚提供保暖热源;其它非供暖季节,为日光温室通风换气与降温、以及农机设备提供动力电源。实现日光温室全年高效生产、太阳能光伏组件全年高效利用、通风设备以及农机设备用能绿色化。
发明内容
本发明提出了一种周年高效生产的产能大跨度可变空间日光温室优化设计方法,其核心思想,将太阳能光伏技术引入到日光温室建筑中,将电热膜技术与太阳能相变蓄热墙体融为一体,实现日光温室全年高效生产。1)冬季,利用塑料薄膜将日光温室沿跨度方向分为“热区”和“冷区”,除了透过日光温室前屋面塑料薄膜投射在墙体表面的太阳能以被动方式蓄存在墙体内,还将太阳能光伏 组件产生的直流电输送给敷设在日光温室太阳能“四重”结构相变蓄热墙体体系中间层的电热膜,将相变材料板敷设在电热膜的外侧,如图3所示;与此同时,在未铺设电热膜的墙体中设置空气通道,利用风机将日光温室白天室内温度较高的空气抽到“三重”结构相变蓄热墙体空气通道中,如图1所示,分别通过光-电-热转换、光-热转换以导热方式将太阳能储存至墙体中,夜间为日光温室“热区”热环境营造提供热源;2)其它非供暖季节,拆除塑料薄膜,“热区”和“冷区”合并为一个大区,光伏组件产生的电能或是直接为温室通风换气与降温提供通风机供电、或是为其他农机设备供电,实现太阳能光伏组件系统产生的电能“即发即用”。为太阳能光电、光热技术在现代设施农业生产中的全年灵活、高效应用,提供新的应用方法与途径。
本发明采用了如下技术方案:
本发明涉及一种大跨度可变空间日光温室建筑空间形态特征参数的设计计算方法。当建设工程场地的地理纬度、温室需要确保的蔬菜生产关键时期确定,查阅对应时期当地的室外空气平均温度和日平均太阳辐射总量,即可根据本发明方法计算得到对应跨度条件下日光温室的高跨比、后屋面投影长度,以及北墙高度等日光温室建筑空间形态特征参数的优化设计值。其基本设计计算步骤如下:
步骤1:根据发明专利1(“一种日光温室建筑空间形态特征参数简化设计计算方法”(ZL201710677429.8,授权公告日:2020年8月7日))中已得到的公式(1)、(2)、(3),可以计算得到工程场地适宜高跨比λ,λ为温室脊高与跨度的比值,以及不同跨度条件下对应的日光温室后屋面投影长度C、北墙高度H w和脊高H,温室结构参数如图1a)所示。
Figure PCTCN2022074254-appb-000001
Figure PCTCN2022074254-appb-000002
Figure PCTCN2022074254-appb-000003
式中,
Figure PCTCN2022074254-appb-000004
为冬季蔬菜作物生产关键时期的当地室外平均温度,℃;
Figure PCTCN2022074254-appb-000005
为冬季 蔬菜作物生产关键时期的当地日平均太阳辐射量,MJ/(m 2·day);h s为当地大暑日正午太阳高度角,°;h c为当地大寒日正午太阳高度角,°;L p为植株高度,m;P为温室走道宽度,m;L为温室跨度,m。
步骤2:根据步骤1得到的工程场地日光温室建筑空间形态特征参数计算结果,即温室脊高与跨度的比值λ、日光温室后屋面投影长度C、北墙高度H w和脊高H,在SketchUp软件中建立温室几何模型,并且输入温室围护结构热物性参数、作息时间、模拟时段这些限制条件,计算得到相应不同跨度条件对应的日光温室建筑热负荷Q iL。这个属于现有技术。
步骤3:计算对应日光温室太阳能相变蓄热北墙体可以提供的供热量Q gL
1)对于日光温室太阳能主-被动式“三重”结构相变蓄热墙体体系(图1b),根据发明专利2(“日光温室太阳能主-被动式“三重”结构蓄热墙体体系”(ZL201310328662.7,授权公告日:2015年1月7日),采用研究团队提出的双集热管多曲面槽式空气集热器数学传热模型 [1]及主-被动式相变蓄热通风北墙体数学传热模型 [2],根据图2中所示计算逻辑框架图,可计算得出该墙体表面向温室内的散热量Q gL
2)对于日光温室太阳能光伏“四重”结构相变蓄热墙体体系(图3b),根据光伏组件与电热膜的光-电-热转换关联关系以及主-被动式相变蓄热通风北墙体数学传热模型 [2],并结合图4中所示计算逻辑框架图,可计算得出该墙体表面向温室内的散热量QgL。,
步骤4:根据步骤2和步骤3计算出来的温室热负荷Q iL和墙体供热量Q gL,对温室热负荷和墙体供热量进行耦合分析。令η=Q gL/Q iL,η为墙体供热量与温室热负荷的比值,分析η的变化规律,取最优η对应的跨度L N,最优化的L N确定原则为当η的变化不超过2%,选择最小的那个跨度;
规律作为根据步骤1的高跨比确定该工程场地日光温室最优脊高H的依据;进而,可根据步骤1计算该工程场地日光温室优化后的后屋面投影长度C和北墙高度H w
步骤5:将步骤4确定的跨度L N作为该工程场地日光温室越冬生产的可适宜跨度,本发明提出将L N+L X作为该工程场地日光温室最优总跨度L*。
关于L X跨度的确定原则:L N跨度一定时,变化L X跨度尺寸,以满足冬季耐寒叶菜生长必要的环境温度为约束条件,以根据能耗模拟软件计算得到的小区 域热负荷接近为零为目标函数,相应的L X跨度即为该工程场地日光温室对应最优跨度L*=L N+L X中的L X跨度。
越冬生产时,在对应L N跨度的大区域与对应L X跨度的小区域分界处沿温室长度方向设置高透光塑料薄膜。在冬季喜温果蔬菜可在大区域种植,耐寒叶菜可在小区域种植;进入春季升温季节,可将设置的高透光塑料薄膜拆除,整个跨度L*作为冬季以外季节的种植区。
附图说明
图1日光温室太阳能主-被动式“三重”结构相变蓄热墙体体系
图1a)日光温室剖面图
图1b)“三重”墙体构造示意图
图2本发明计算逻辑框架图之一
图3日光温室太阳能光伏“四重”结构相变蓄热墙体体系
图3a)系统原理图
图3b)“四重”墙体构造示意图
图4本发明计算逻辑框架图之二
1、太阳能主-被动式“三重”结构相变蓄热通风北墙体 2、双集热管多曲面槽式空气集热器 3、后屋面 4、前屋面透明薄膜 5、保温被 6、可变空间塑料隔断,7、太阳能光伏系统,8、家用或农用电器,9、蓄电池,10、主电网端。
具体实施方式
下面通过实例进一步说明本发明。
以宁夏吴忠地区为例,对在日光温室中采用日光温室太阳能主-被动式“三重”结构相变蓄热墙体体系及太阳能光伏“四重”结构相变蓄热墙体体系的具体计算与实施步骤如下。宁夏吴忠地区106.27°、北纬38.47°;需要确保的蔬菜生产关键时期为12月1日至1月31日;查阅对应时期当地的室外空气平均温度为-5.7℃、日平均太阳辐射总量为12.7MJ/(m 2·day)。
1.根据步骤1,可以计算得到工程场地适宜高跨比为0.52,进一步计算不同跨 度条件下对应的日光温室后屋面投影长度C、北墙高度H w和脊高H,具体结果如表1所示。
表1
Figure PCTCN2022074254-appb-000006
2.根据步骤2,可以计算得到与表1相应跨度条件下维持室内8℃的日光温室热负荷Q iL,结果见表2。
表2
Figure PCTCN2022074254-appb-000007
3.根据步骤3,计算对应不同跨度日光温室太阳能主-被动式相变蓄热通风北墙体或太阳能光伏“四重”结构相变蓄热墙体体系的具体可提供的供热量Q gL,结果如下表3所示。太阳能光伏“四重”结构相变蓄热墙体计算结果相近,不影响后续步骤4结果,故本案例不再赘述。
表3
Figure PCTCN2022074254-appb-000008
4.根据步骤4,计算η如表4,并分析随温室跨度的变化规律。当温室跨度大于10米时,η达到65%左右,且跨度从10米至14米变化时η的增长率只有1%。当温室跨度大于10米时,温室的热负荷逐渐增大,因为η基本不变,温室所需要额外补充的热量也逐渐增大。因此,考虑温室冬季热负荷与供热量的因素,以及温室需要额外补充的供热量,跨度取10米为最优,因此确定L N为10米。
表4
Figure PCTCN2022074254-appb-000009
5.根据步骤5,当确定L N跨度为10米时,以满足冬季耐寒叶菜生长必要的环境温度(5℃)为约束条件,从1m至4m变化L X跨度尺寸,可根据能耗模拟软件计算得到对应L X区域热负荷如表5。图示结果表明,L X区域热负荷随着L X的增大而增大,且增大速率也随之增加。综合考虑环境温度、土地利用率等影响因素,取L X=2m,即该工程场地日光温室最优跨度取L*=L N+L X=12m。
表5
Figure PCTCN2022074254-appb-000010
在Surface Construction Elements模块中根据温室实际参数对温室围护结构中材料尺寸和热物性参数进行设置,具体参数如下表6。
表6 温室围护结构材料热物性参数
Figure PCTCN2022074254-appb-000011

Claims (1)

  1. 一种周年高效生产的产能大跨度可变空间日光温室优化设计方法,其特征在于,包括以下步骤:
    步骤1:根据公式(1)、(2)、(3),计算得到工程场地适宜高跨比λ,λ为温室脊高与跨度的比值,以及不同跨度条件下对应的日光温室后屋面投影长度C、北墙高度H w和脊高H;
    Figure PCTCN2022074254-appb-100001
    Figure PCTCN2022074254-appb-100002
    Figure PCTCN2022074254-appb-100003
    式中,
    Figure PCTCN2022074254-appb-100004
    为冬季蔬菜作物生产关键时期的当地室外平均温度,℃;
    Figure PCTCN2022074254-appb-100005
    为冬季蔬菜作物生产关键时期的当地日平均太阳辐射量,MJ/(m 2·day);h s为当地大暑日正午太阳高度角,°;h c为当地大寒日正午太阳高度角,°;L p为植株高度,m;P为温室走道宽度,m;L为温室跨度,m;
    步骤2:根据步骤1得到的工程场地日光温室建筑空间形态特征参数计算结果,即温室脊高与跨度的比值λ、日光温室后屋面投影长度C、北墙高度H w和脊高H,在SketchUp软件中建立温室几何模型,并且输入温室围护结构热物性参数、作息时间、模拟时段这些限制条件,计算得到相应不同跨度条件对应的日光温室建筑热负荷Q iL
    步骤3:计算对应日光温室太阳能相变蓄热北墙体提供的供热量Q gL
    1)当日光温室太阳能相变蓄热墙体体系为太阳能主-被动式“三重”结构时,采用双集热管多曲面槽式空气集热器数学传热模型及主-被动式相变蓄热通风北墙体数学传热模型,计算得出该墙体表面向温室内的散热量Q gL
    2)当日光温室太阳能相变蓄热墙体体系为太阳能光伏“四重”结构时,根据光伏组件与电热膜的光-电-热转换关联关系以及主-被动式相变蓄热通风北墙体数学传热模型,计算得出该墙体表面向温室内的散热量Q gL
    步骤4:根据步骤2和步骤3计算出来的温室热负荷Q iL和墙体供热量Q gL,对温室热负荷和墙体供热量进行耦合分析;令η=Q gL/Q iL,η为墙体供 热量与温室热负荷的比值,分析η的变化规律,取最优η对应的跨度L N,最优化的L N确定原则为当η的变化不超过2%,选择最小的那个跨度;
    步骤5:将步骤4确定的跨度L N作为该工程场地日光温室越冬生产的可适宜跨度,将L N+L X作为该工程场地日光温室最优总跨度L*;
    关于L X跨度的确定原则:L N跨度一定时,变化L X跨度尺寸,以满足冬季耐寒叶菜生长必要的环境温度为约束条件,以根据能耗模拟软件计算得到的区域热负荷接近为零为目标函数,相应的L X跨度即为该工程场地日光温室对应最优跨度L*=L N+L X中的L X跨度。
PCT/CN2022/074254 2021-03-19 2022-01-27 一种周年高效生产的产能大跨度可变空间日光温室优化设计方法 WO2022193846A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110298389.2 2021-03-19
CN202110298389.2A CN113079881B (zh) 2021-03-19 2021-03-19 一种可适于周年近零能耗高效生产的大跨度可变空间日光温室优化设计方法

Publications (1)

Publication Number Publication Date
WO2022193846A1 true WO2022193846A1 (zh) 2022-09-22

Family

ID=76668538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074254 WO2022193846A1 (zh) 2021-03-19 2022-01-27 一种周年高效生产的产能大跨度可变空间日光温室优化设计方法

Country Status (2)

Country Link
CN (1) CN113079881B (zh)
WO (1) WO2022193846A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113079881B (zh) * 2021-03-19 2022-08-02 北京工业大学 一种可适于周年近零能耗高效生产的大跨度可变空间日光温室优化设计方法
CN113609695A (zh) * 2021-08-16 2021-11-05 国网河北省电力有限公司电力科学研究院 能源系统分析方法、装置、终端及存储介质
CN114097496A (zh) * 2021-11-22 2022-03-01 温州理工学院 一种适用于温室的太阳能主被动式相变蓄热通风墙体热泵系统
CN114916356B (zh) * 2022-06-02 2023-06-30 北京工业大学 日光温室太阳能光伏“四重”结构相变蓄热墙体构筑体系

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3636624A1 (de) * 1986-10-28 1988-05-11 Loh Kg Hailo Werk Raeumliches gebilde, insbesondere gewaechshaus
CN102805014A (zh) * 2012-08-29 2012-12-05 马桂莲 一种高效节能连栋日光温室
CN107506539A (zh) * 2017-08-09 2017-12-22 北京工业大学 一种日光温室建筑空间形态特征参数简化设计计算方法
CA3011582A1 (en) * 2018-07-17 2018-12-27 Christie M. Chaplin Modular heat-storing and venting mini greenhouse
CN113079881A (zh) * 2021-03-19 2021-07-09 北京工业大学 一种可适于周年近零能耗高效生产的大跨度可变空间日光温室优化设计方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103404391B (zh) * 2013-07-31 2015-01-07 北京工业大学 日光温室太阳能主-被动蓄热“三重”结构墙体构筑体系
CN107480449B (zh) * 2017-08-14 2020-11-06 北京工业大学 一种日光温室建筑朝向简化设计方法
CN109695909A (zh) * 2017-10-20 2019-04-30 吴良柏 跨季节高效太阳能蓄热供热供暖制冷发电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3636624A1 (de) * 1986-10-28 1988-05-11 Loh Kg Hailo Werk Raeumliches gebilde, insbesondere gewaechshaus
CN102805014A (zh) * 2012-08-29 2012-12-05 马桂莲 一种高效节能连栋日光温室
CN107506539A (zh) * 2017-08-09 2017-12-22 北京工业大学 一种日光温室建筑空间形态特征参数简化设计计算方法
CA3011582A1 (en) * 2018-07-17 2018-12-27 Christie M. Chaplin Modular heat-storing and venting mini greenhouse
CN113079881A (zh) * 2021-03-19 2021-07-09 北京工业大学 一种可适于周年近零能耗高效生产的大跨度可变空间日光温室优化设计方法

Also Published As

Publication number Publication date
CN113079881B (zh) 2022-08-02
CN113079881A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022193846A1 (zh) 一种周年高效生产的产能大跨度可变空间日光温室优化设计方法
Hassanien et al. The evacuated tube solar collector assisted heat pump for heating greenhouses
Gorjian et al. A review on opportunities for implementation of solar energy technologies in agricultural greenhouses
Cuce et al. Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review
Cao et al. Renewable and sustainable strategies for improving the thermal environment of Chinese solar greenhouses
Xu et al. Performance of a water-circulating solar heat collection and release system for greenhouse heating using an indoor collector constructed of hollow polycarbonate sheets
CN102823458B (zh) 太阳能光伏电热变功率蓄能农业大棚
CN203492467U (zh) 一种基于阴阳棚一体化的光伏日光温室大棚
CN110268882A (zh) 新型农业温室系统与太阳能蓄能供能系统
Boccalatte et al. Modeling, design and construction of a zero-energy PV greenhouse for applications in mediterranean climates
CN206061687U (zh) 一种主动调控土壤空气温湿度的温室
Sun et al. Greenhouse heating by energy transfer between greenhouses: System design and implementation
Li et al. Comparative study on shading performance of MHP-PV/T inside and outside Chinese greenhouse in winter
Wang et al. New insights into the scientific configuration of a sheet heating system applied in Chinese solar greenhouse
Xia et al. Performance study of an active solar water curtain heating system for Chinese solar greenhouse heating in high latitudes regions
Zhao et al. Experimental and numerical study on the performance of innovative bifacial photovoltaic wall system
Jiang et al. Net-zero energy optimization of solar greenhouses in severe cold climate using passive insulation and photovoltaic
Bambara Experimental study of a facade-integrated photovoltaic/thermal system with unglazed transpired collector
Kilkis Lessons learned from labyrinth type of air preconditioning in exergy-aware solar greenhouses
Tian et al. A multifunctional curved CIGS photovoltaic/thermal roof system: A numerical and experimental investigation
Rocamora et al. Aspects of PV/T solar system application for ventilation needs in greenhouses
CN103798083B (zh) 基于自然能源跷跷板式温、湿度保护的温室系统
TWM623373U (zh) 植物生長環結構
Caplow et al. Building-integrated greenhouse systems for low energy cooling
CN202759896U (zh) 太阳能光伏电热变功率蓄能农业大棚

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770206

Country of ref document: EP

Kind code of ref document: A1