WO2022193780A1 - 一种无介质投影系统 - Google Patents

一种无介质投影系统 Download PDF

Info

Publication number
WO2022193780A1
WO2022193780A1 PCT/CN2021/142562 CN2021142562W WO2022193780A1 WO 2022193780 A1 WO2022193780 A1 WO 2022193780A1 CN 2021142562 W CN2021142562 W CN 2021142562W WO 2022193780 A1 WO2022193780 A1 WO 2022193780A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection system
light
mediumless
display screen
liquid crystal
Prior art date
Application number
PCT/CN2021/142562
Other languages
English (en)
French (fr)
Inventor
林晓露
马红虎
刘风雷
Original Assignee
浙江水晶光电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江水晶光电科技股份有限公司 filed Critical 浙江水晶光电科技股份有限公司
Priority to JP2023513258A priority Critical patent/JP2023539486A/ja
Priority to US18/034,043 priority patent/US20230393414A1/en
Publication of WO2022193780A1 publication Critical patent/WO2022193780A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0816Catadioptric systems using two curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images

Definitions

  • the present application relates to the field of optical technology, in particular, to a mediumless projection system.
  • medium-free projection technology With the rapid development of science and technology, medium-free projection technology has gradually matured, which means that images can be seen without a medium screen. Since medium-free projection technology does not require any medium, it can image in the air, so it is also widely used in human-computer interaction systems in automobiles.
  • the medium-free projection system of the related art forms an image in a target area, the brightness and uniformity of the image are low, and it is difficult to meet the actual use requirements.
  • the present application provides a mediumless projection system to solve the problem of poor image brightness and brightness uniformity during imaging in the prior mediumless projection system, thereby at least overcoming the above-mentioned deficiencies of the related art.
  • Embodiments of the present application provide a medium-free projection system, which may include: a light source, a light-homing rod arranged in sequence along a light-emitting direction, a first Fresnel lens, a thin-film crystal liquid crystal display screen, and collimating optics Components and imaging optical components; the diverging beam emitted from the light source is collimated and homogenized by the homogenizing rod and the first Fresnel lens as the incident light of the thin film crystal liquid crystal display screen, and the beam emitted from the thin film crystal liquid crystal display screen is collimated and homogenized.
  • the straight optical element is focused on the target area by the imaging optical component for imaging so that each point beam on the image plane fills the eye box.
  • the thin film crystal liquid crystal display screen may be a display panel with transmission function.
  • the light source may be an LED light source.
  • the imaging optical assembly may include a first reflection mirror and a second reflection mirror arranged in sequence along the light exit direction, and the light beams emitted from the collimating optical element are sequentially collected by the first reflection mirror and the second reflection mirror to image the target area.
  • the surface shape of the first reflector and the surface shape of the second reflector may both be free-form surfaces.
  • a diffusion film may be provided on the light incident side of the TFT LCD.
  • the optical axis of the LED light source and the optical axis of the thin film crystal liquid crystal display screen may form a certain angle.
  • the homogenizing rod can be a hollow square cone rod, the inner wall of the hollow square cone rod is coated with a reflective film, the top surface of the hollow square cone rod is the light incident side, the bottom surface of the hollow square cone rod is the light exit side, and the hollow square cone rod is the light exit side.
  • the area of the top surface of the rod is smaller than the area of the bottom surface of the hollow square cone rod.
  • the collimating optical element may be an imaging lens.
  • the imaging lens may be a spherical lens, an aspherical lens or a second Fresnel lens.
  • the collimating optical element may be a third reflecting mirror, and the surface type of the third reflecting mirror may be a spherical surface, an aspherical surface or a free-form surface.
  • the mediumless projection system may further include a foldback optical assembly for folding the optical path.
  • the folding optical component may be one or more mirrors, and the optical path is folded by the mirrors.
  • the application provides a medium-free projection system, which includes: a light source, a light-homing rod arranged in sequence along a light-emitting direction, a first Fresnel lens, a thin-film crystal liquid crystal display screen, a collimating optical element, and an imaging optical assembly ;
  • the divergent beam emitted from the light source is collimated and homogenized by the homogenizing rod and the first Fresnel lens as the incident light of the TFT LCD, and the beam emitted from the TFT LCD is imaged by the collimating optical element.
  • the optical components are focused on the target area for imaging, so that the light beams from each point on the image plane fill the eye box, and the real image can be observed with the naked eye within the scope of the eye box, realizing medium-free imaging.
  • a homogenizing rod and a first Fresnel lens between the light source and the thin film crystal liquid crystal display screen, the light beam emitted by the light source can be collimated and homogenized for the first time, thereby improving the brightness and uniformity of the image in the image source stage.
  • a collimating optical element is arranged on the light-emitting side of the TFT-LCD, and the principal rays of each field of view beam emitted by the TFT-LCD screen are corrected again by the collimating optical element, so that each viewing angle of the beam used for the imaging part is corrected.
  • the principal rays of the field are nearly parallel, thereby further improving the brightness and brightness uniformity of imaging in the target area, thereby realizing a clearer image display in the target area, improving the imaging quality of the final image and the user experience.
  • the manufacturing cost can be reduced.
  • FIG. 1 is one of the schematic structural diagrams of a medium-less projection system provided by an embodiment of the present application
  • FIG. 2 is a second schematic structural diagram of a medium-less projection system provided by an embodiment of the present application.
  • FIG. 3 is a third schematic structural diagram of a medium-less projection system provided by an embodiment of the present application.
  • FIG. 4 is a fourth schematic structural diagram of a medium-less projection system provided by an embodiment of the present application.
  • FIG. 5 is a fifth schematic structural diagram of a medium-less projection system provided by an embodiment of the present application.
  • Icon 1-image generation unit; 11-light source; 111-beam; 12-evening rod; 13-first Fresnel lens; 14-diffusion film; 15-thin film crystal liquid crystal display screen; 2-collimating optical element ; 21-imaging lens; 22-third mirror; 3-first mirror; 4-second mirror; 5-imaging surface position; 6-eye box.
  • the medium-free projection system includes: a light source 11 , a uniform light rod 12 arranged in sequence along the light exit direction, and a first Fresnel lens 13.
  • Thin film crystal liquid crystal display screen 15 collimating optical element 2 and imaging optical assembly; the divergent light beam 111 emitted from the light source 11 is collimated and homogenized by the homogenizing rod 12 and the first Fresnel lens 13 as a thin film crystal liquid crystal
  • the light beam 111 emitted from the thin film crystal liquid crystal display screen 15 passes through the collimating optical element 2 and is condensed on the target area by the imaging optical assembly for imaging, so that each point beam on the imaging surface fills the eye box.
  • the medium-free projection system includes a light source 11, a uniform light rod 12, a first Fresnel lens 13, a thin film crystal liquid crystal display screen 15, a collimating optical element 2 and an imaging optical assembly, Among them, the homogenizing rod 12 , the first Fresnel lens 13 , the thin film crystal liquid crystal display screen 15 , the collimating optical element 2 and the imaging optical assembly are arranged in sequence along the light exit direction, and the light source 11 is located on the light incident side of the homogenizing rod 12 . .
  • the light source 11 emits a diverging beam 111 , and the diverging beam 111 enters the homogenizing rod 12 through the light incident side of the homogenizing rod 12 , and exits from the light-emitting side of the homogenizing rod 12 after the collimation and homogenization of the homogenizing rod 12 , the light beam 111 is incident from the light incident side of the first Fresnel lens 13 after the initial collimation and homogenization of the homogenizing rod 12 , and is emitted from the first Fresnel lens 13 under the homogenizing action of the first Fresnel lens 13
  • the light is emitted from the light-emitting side, and then passes through the thin-film crystal liquid crystal display screen 15, and is incident from the light-incident side of the collimating optical element 2, and the principal ray of each field of view beam is corrected through the collimating optical element 2, so that the light used for the imaging part is The principal rays of each field of view of the light beam are nearly parallel, and then
  • the light beam 111 emitted by the light source 11 can be collimated and homogenized for the first time, thereby improving the image in the image source stage.
  • a collimating optical element 2 is set on the light-emitting side of the TFT LCD 15, and the main light rays of each field of view beam 111 emitted from the TFT LCD 15 are corrected again by the collimating optical element 2.
  • the cost of the mediumless projection system of the present application is relatively low, which is convenient for mass production.
  • the scope of the eye box 6 can also be in the position shown in Figures 1 and 3, so that it can make The user observes with naked eyes and observes the image suspended in the air within the scope of the eye box 6 .
  • the eye box in this application is a virtual body, which only represents a spatial range.
  • the image generation unit 1 of the medium-free projection system can be formed by the light source 11, the homogenizing rod 12, the first Fresnel lens 13 and the thin film crystal liquid crystal display screen 15.
  • the image generation unit 1 can be a miniature projection module, a miniature projection module.
  • the group includes a projection part and a receiving projection screen, and the projection part may include a laser MEMS projection module, a DLP projection module, an LCOS projection module, and the like.
  • the thin film crystal liquid crystal display 15 may be a display panel having a transmissive function.
  • the collimating optical element 2 can be an imaging lens 21 or a third mirror 22, which can participate in imaging.
  • imaging lens 21 or a third mirror 22, which can participate in imaging.
  • it can be reasonably selected according to actual needs, such as the object to be used, the installation space, etc., for the convenience of Description, the following will take the imaging lens 21 and the third reflecting mirror 22 as examples for description:
  • the collimating optical element 2 is an imaging lens 21 , that is, the light beam 111 is incident from one side of the imaging lens 21 and exits from the opposite side, so that each of the light beams 111 exiting through the imaging lens 21 is The chief rays of the field of view are nearly parallel.
  • the imaging lens 21 may be one of a spherical lens, an aspherical lens, and a second Fresnel lens.
  • the homogenizing rod 12 disposed between the light source 11 and the first Fresnel lens 13 may be a hollow square cone rod, and the inner wall of the hollow square cone rod is coated with a reflective film.
  • the top surface of the rod is the light-incident side, and the bottom surface of the hollow square cone rod is the light-emitting side.
  • the light source 11 is arranged on the light incident side of the hollow square cone rod, and the hollow square cone rod is located on the optical axis of the light source 11, and the first Fresnel lens 13 is attached to the bottom surface of the hollow square cone rod, wherein the hollow square cone rod is The area of the top surface of the cone rod is smaller than the area of the bottom surface of the hollow square cone rod, so the large-angle light beam emitted by the light source 11 can be collimated into a small-angle light beam 111 and uniformly incident from the first Fresnel lens 13 At the same time, the light beam 111 emitted by the homogenizing rod 12 can be further converged and homogenized by the first Fresnel lens 13 .
  • a diffusing film 14 may be disposed on the light incident side of the TFT LCD 15, and the light beam 111 incident on the TFT LCD 15 can be further homogenized by the diffusing film 14, thereby improving the uniformity.
  • the light source 11 can be an LED light source 11.
  • the optical axis of the LED light source 11 and the optical axis of the thin film crystal liquid crystal display screen 15 can form a certain angle. That is, as shown in FIG. 1 and FIG. 2 , the TFT LCD 15 is inclined to a certain angle relative to the optical axis of the LED light source 11 , so that the angle of the light beam 111 used for imaging the target area is greater than the angle required for imaging the target area. Improves the brightness uniformity of the image.
  • the imaging optical assembly may include a first reflecting mirror 3 and a second reflecting mirror 4 arranged in sequence along the light-emitting direction, and the light beam 111 emitted from the imaging lens 21 passes through the first reflecting mirror 3 and the second reflecting mirror in sequence.
  • the two mirrors 4 converge on the target area for imaging.
  • the surface shapes of the first reflecting mirror 3 and the second reflecting mirror 4 may be free-form surfaces.
  • the surface shapes of the first reflecting mirror 3 and the second reflecting mirror 4 may also be aspherical, spherical or flat.
  • a fold-back optical component can also be provided, for example, one or more mirrors can be provided, and the optical path can be folded by the mirror to reduce the volume of the system, so that the device size of the final medium-free projection system can be flexibly adjusted and its application range can be improved.
  • the surface shape of the imaging lens 21 is a spherical surface
  • the surface shape of the first reflector 3 is a free-form surface
  • the surface shape of the second reflector 4 is a free-form surface as an example for description:
  • the focal length of the spherical imaging lens 21 may be greater than 100mm, the angle of the first Fresnel lens 13 may be greater than 40mm, and the surface formulas of the first reflector 3 and the second reflector 4 may be:
  • z is the vector height
  • c is the curvature
  • k is the conic coefficient
  • a i is the xy polynomial coefficient of the i-th term
  • N is the number of xy terms.
  • N 19 and other parameters are shown in Table 1.
  • N is 30, and other parameters are shown in Table 2.
  • the angle difference of each chief ray can be controlled within a range of less than 4 degrees, so that the image brightness and uniformity within the range of the eye box 6 are higher than 70%.
  • the collimating optical element 2 is the third reflecting mirror 22 , that is, the light beam 111 is incident on the same side and exiting from the same side of the third reflecting mirror 22 , so that The principal rays of each field of view of the light beam 111 emitted by the third reflecting mirror 22 are nearly parallel, the smaller the angle difference of the principal rays of each field of view, the larger the exit pupil, the larger the numerical aperture of the light beam 111, and the higher the brightness.
  • the surface type of the third reflecting mirror 22 may be one of spherical surface, aspherical surface, plane surface and free-form surface.
  • the homogenizing rod 12 disposed between the light source 11 and the first Fresnel lens 13 can be a hollow square cone
  • the inner wall of the hollow square cone rod is coated with a reflective film
  • the top surface of the hollow square cone rod is the light incident side
  • the bottom surface of the hollow square cone rod is the light exit side.
  • the light source 11 is arranged on the light incident side of the hollow square cone rod, and the hollow square cone rod is located on the optical axis of the light source 11, and the first Fresnel lens 13 is attached to the bottom surface of the hollow square cone rod, wherein the hollow square cone rod is The area of the top surface of the cone rod is smaller than the area of the bottom surface of the hollow square cone rod, so the large-angle light beam emitted by the light source 11 can be collimated into a small-angle light beam 111 and uniformly incident from the first Fresnel lens 13 At the same time, the light beam 111 emitted by the homogenizing rod 12 can be further converged and homogenized by the first Fresnel lens 13 .
  • a diffusing film 14 may be disposed on the light incident side of the TFT LCD 15, and the light beam 111 incident on the TFT LCD 15 can be further homogenized by the diffusing film 14, thereby improving the uniformity.
  • the light source 11 can also refer to the above-mentioned embodiment, that is, the light source 11 can be the LED light source 11.
  • the optical axis of the LED light source 11 and the thin film crystal liquid crystal display screen can be set.
  • the optical axis of the screen 15 forms a certain angle, that is, as shown in FIG. 4 , the thin film crystal liquid crystal display screen 15 is set at a certain angle relative to the optical axis of the LED light source 11, so that the angle of the light beam 111 used for imaging the target area can be made Greater than the angle required to image the target area. Improve the brightness uniformity of the image.
  • the imaging optical assembly may include a first reflection mirror 3 and a second reflection mirror 4 arranged in sequence along the light exit direction, and the light beam 111 emitted from the third reflection mirror 22 passes through the first reflection mirror 3 and the second reflection mirror in sequence.
  • the mirror 4 is focused on the target area for imaging.
  • the surface shapes of the first reflecting mirror 3 and the second reflecting mirror 4 may be free-form surfaces.
  • the surface shapes of the first reflecting mirror 3 and the second reflecting mirror 4 may also be aspherical, spherical or flat.
  • a fold-back optical component can also be provided, for example, one or more mirrors can be provided, and the optical path can be folded by the mirror to reduce the volume of the system, so that the device size of the final medium-free projection system can be flexibly adjusted and its application range can be improved.
  • the surface shape of the third reflector 22 is a spherical surface
  • the surface shape of the first reflector 3 is a free-form surface
  • the surface shape of the second reflector 4 is a free-form surface as an example to illustrate:
  • the angle of the first Fresnel lens 13 is greater than 40mm; the focal length of the third reflector 22 can be greater than 100mm; the y-direction focal length of the first reflector 3 can be greater than 200mm, and the surface is a free-form surface; the y of the second reflector 4 When the focal length is greater than 100mm, the surface type liquid level free-form surface; the surface type formulas of the first mirror 3 and the second mirror 4 can be:
  • z is the vector height
  • c is the curvature
  • k is the conic coefficient
  • a i is the xy polynomial coefficient of the i-th term
  • N is the number of xy terms.
  • N 20
  • other parameters are shown in Table 3.
  • N is 30, and other parameters are shown in Table 4.
  • the present application provides a medium-free projection system
  • the medium-free projection system includes: a diverging light beam emitted from a light source is collimated and homogenized by a homogenizing rod and a first Fresnel lens as the incident light of the thin film crystal liquid crystal display screen , the light beam emitted from the thin film crystal liquid crystal display screen passes through the collimating optical element and is then converged by the imaging optical component in the target area for imaging, so that each point beam on the image surface fills the eye box, which can be viewed with the naked eye and suspended in the air within the scope of the eye box. , realizing medium-free projection.
  • each field of view of the light beam used for the imaging part is The main light rays are nearly parallel, thereby further improving the brightness and brightness uniformity of imaging in the target area, thereby realizing a clearer image display in the target area, improving the imaging quality of the final image and the user experience.
  • the medialess projection system of the present application is reproducible and can be used in a variety of industrial applications.
  • the mediumless projection system of the present application can be used in the field of optical technology.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Lenses (AREA)
  • Instrument Panels (AREA)

Abstract

本申请提供一种无介质投影系统,涉及光学技术领域,包括:从光源出射的发散光束经匀光棒和第一菲涅尔透镜的准直匀光后作为薄膜晶体液晶显示屏的入射光,从薄膜晶体液晶显示屏出射的光束经准直光学元件后由成像光学组件汇聚在目标区域成像,使得像面上各点光束充满眼盒,即可在眼盒范围内裸眼观看悬浮在空气中的像,实现无介质投影。通过在光源和薄膜晶体液晶显示屏之间设置匀光棒和第一菲涅尔透镜、在薄膜晶体液晶显示屏的出光侧设置准直光学元件,使得用于成像部分的光束的各视场的主光线接近平行,从而进一步的提高目标区域成像的亮度及亮度均匀性,进而在目标区域实现更加清晰的图像显示,提高最终图像的成像质量以及用户的使用体验。

Description

一种无介质投影系统
相关申请的交叉引用
本申请要求于2021年03月17日提交中国国家知识产权局的申请号为202110288295.7、名称为“一种无介质投影系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学技术领域,具体而言,涉及无介质投影系统。
背景技术
随着科技的快速发展,无介质投影技术逐渐成熟,其指不需要介质屏幕即可看到图像。由于无介质投影技术不需要任何介质,就可以在空中成像,因此,其也被广泛应用于汽车中的人机交互系统。
相关技术的无介质投影系统在目标区域成像时,图像的亮度和均匀性较低,难以满足实际的使用需求。
发明内容
本申请提供了一种无介质投影系统,以解决现有无介质投影系统成像时图像亮度和亮度均匀性差的问题,从而至少克服了上述相关技术的不足。
本申请的实施例提供了一种无介质投影系统,该无介质投影系统可以包括:光源、沿出光方向依次设置的匀光棒、第一菲涅尔透镜、薄膜晶体液晶显示屏、准直光学元件以及成像光学组件;从光源出射的发散光束经匀光棒和第一菲涅尔透镜的准直匀光后作为薄膜晶体液晶显示屏的入射光,从薄膜晶体液晶显示屏出射的光束经准直光学元件由成像光学组件汇聚在目标区域成像以使像面各点光束充满眼盒。
可选地,所述薄膜晶体液晶显示屏可以是具有透射功能的显示面板。
可选地,所述光源可以是LED光源。
可选地,成像光学组件可以包括沿出光方向依次设置的第一反射镜和第二反射镜,从准直光学元件出射的光束依次经第一反射镜和第二反射镜汇聚在目标区域成像。
可选地,第一反射镜的面型和第二反射镜的面型可以均为自由曲面。
可选地,在薄膜晶体液晶显示屏的入光侧可以设置有扩散膜。
可选地,所述LED光源的光轴和所述薄膜晶体液晶显示屏的光轴可以形成一定的夹角。
可选地,匀光棒可以为空心方锥棒,在空心方锥棒内壁镀有反射膜,空心方锥棒的顶面为入光侧,空心方锥棒的底面为出光侧,空心方锥棒的顶面的面积小于空心方锥棒的底面的面积。
可选地,准直光学元件可以为成像透镜。
可选地,成像透镜可以为球面透镜、非球面透镜或第二菲涅尔透镜。
可选地,准直光学元件可以为第三反射镜,第三反射镜的面型可以为球面、非球面或自由曲面。
可选地,无介质投影系统还可以包括折返光学组件,折返光学组件用于折叠光路。
可选地,所述折返光学组件可以为一个或多个反射镜,通过所述反射镜来对光路进行折叠。
本申请的有益效果至少包括:
本申请提供了一种无介质投影系统,无介质投影系统包括:光源、沿出光方向依次设置的匀光棒、第一菲涅尔透镜、薄膜晶体液晶显示屏、准直光学元件以及成像光学组件;从光源出射的发散光束经匀光棒和第一菲涅尔透镜的准直匀光后作为薄膜晶体液晶显示屏的入射光,从薄膜晶体液晶显示屏出射的光束经准直光学元件由成像光学组件汇聚在目标区域成像,使得像面上各点的光束充满眼盒,可以在眼盒范围内裸眼观测到实像,实现无介质成像。通过在光源和薄膜晶体液晶显示屏之间设置匀光棒和第一菲涅尔透镜从而能够对光源出射的光束进行初次的准直匀光,从而在图像源阶段提升图像的亮度和均匀性,然后在薄膜晶体液晶显示屏的出光侧设置准直光学元件,通过准直光学元件再次对薄膜晶体液晶显示屏出射的各视场光束的主光线进行修正,使得用于成像部分的光束的各视场的主光线接近平行,从而进一步的提高在目标区域成像的亮度和亮度均匀性,进而在目标区域实现更加清晰的图像显示,提高最终图像的成像质量以及用户的使用体验,同时,通过上述器件在实现无介质投影的同时,能够降低制造成本。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的一种无介质投影系统的结构示意图之一;
图2为本申请实施例提供的一种无介质投影系统的结构示意图之二;
图3为本申请实施例提供的一种无介质投影系统的结构示意图之三;
图4为本申请实施例提供的一种无介质投影系统的结构示意图之四;
图5为本申请实施例提供的一种无介质投影系统的结构示意图之五。
图标:1-图像生成单元;11-光源;111-光束;12-匀光棒;13-第一菲涅尔透镜;14-扩散膜;15-薄膜晶体液晶显示屏;2-准直光学元件;21-成像透镜;22-第三反射镜;3-第一反射镜;4-第二反射镜;5-成像面位置;6-眼盒。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。需要说明的是,在不冲突的情况下,本申请的实施例中的各个特征可以相互结合,结合后的实施例依然在本申请的保护范围内。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
本申请一些实施例提供了一种无介质投影系统,如图1和图3所示,该无介质投影系统包括:光源11、沿出光方向依次设置的匀光棒12、第一菲涅尔透镜13、薄膜晶体液晶显示屏15、准直光学元件2以及成像光学组件;从光源11出射的发散光束111经匀光棒12和第一菲涅尔透镜13的准直匀光后作为薄膜晶体液晶显示屏15的入射光,从薄膜晶体液晶显示屏15出射的光束111经准直光学元件2后由成像光学组件汇聚在目标区域成像以使成像面上的各点光束充满眼盒。
示例的,如图1和图3所示,无介质投影系统包括光源11、匀光棒12、第一菲涅尔透镜13、薄膜晶体液晶显示屏15、准直光学元件2和成像光学组件,其中,匀光棒12、第一菲涅尔透镜13、薄膜晶体液晶显示屏15、准直光学元件2和成像光学组件沿着出光的方向依次设置,光源11位于匀光棒12的入光侧。在工作时,光源11出射发散光束111,发散光束111经匀光棒12的入光侧入射匀光棒12,在匀光棒12的准直匀光作用后从匀光棒12的出光侧出射,经过匀光棒12的初次准直匀光后光束111从第一菲涅尔透镜13的入光侧入射,在第一菲涅尔透镜13的匀光作用下从第一菲涅尔透镜13的出光侧出射,然后经过薄膜晶体液晶显示屏15后,从准直光学元件2的入光侧入射,经过准直光学元件2对各视场光束的主光线进行修正,使得用于成像部分的光束的各视场的主光线接近平行,然后朝向成像光学组件出射,最终在成像光学组件的汇聚作用下使得光束111在目标区域的空气中成像,使得像面上各点的光束充满眼盒,可以在眼盒范围内裸眼观测到实像,实现无介质成像。通过在光源11和薄膜晶体液晶显示屏15之间设置匀光棒12和第一菲涅尔透镜13从而能够对光源11出射的光束111进行初次的准直匀光,从而在图像源阶段提升图像的亮度和均匀性,然后在薄膜晶体液晶显示屏15的出光侧设置准直光学元件2,通过准直光 学元件2再次对薄膜晶体液晶显示屏15出射的各视场光束111的主光线进行修正,使得用于成像部分的光束111的各视场的主光线接近平行,从而进一步提高最终在目标区域成像的亮度和亮度均匀性,进而在目标区域实现更加清晰的图像显示,提高最终图像的成像质量以及用户的使用体验。此外,本申请的无介质投影系统的成本较低,便于批量生产制造。
如图1和图3所示,在目标区域成像,即在成像面位置5汇聚成像,在实际使用时,还可以使眼盒6范围处于图1和图3中的位置,如此,便可以使得用户在眼盒6范围裸眼观测及观察到悬浮于空气中的图像。需要说明的是,本申请中的眼盒为虚体,其仅代表一个空间范围。
由光源11、匀光棒12、第一菲涅尔透镜13和薄膜晶体液晶显示屏15等可以形成无介质投影系统的图像生成单元1,图像生成单元1可以是微型投影模组,微型投影模组包括投影部分和接收投影屏幕,投影部分可以包括激光MEMS投影模组、DLP投影模组和LCOS投影模组等等。薄膜晶体液晶显示屏15可以是具有透射功能的显示面板。
准直光学元件2可以是成像透镜21,也可以是第三反射镜22,其可以参与成像,在设置时,可以根据实际需求,例如使用的对象、安装的空间等等进行合理选择,为便于描述,以下将分别以成像透镜21和第三反射镜22为实施例进行说明:
在一些实施例中:
如图1和图2所示,准直光学元件2为成像透镜21,即光束111从成像透镜21的一侧入射、从相对的另一侧出射,使得经成像透镜21出射的光束111的各视场的主光线接近平行。成像透镜21可以是球面透镜、非球面透镜和第二菲涅尔透镜中的一种。
如图1和图2所示,在光源11和第一菲涅尔透镜13之间设置的匀光棒12可以是空心方锥棒,且在空心方锥棒内壁镀有反射膜,空心方锥棒的顶面为入光侧,空心方锥棒的底面为出光侧。即将光源11设置于空心方锥棒的入光侧,并且使得空心方锥棒位于光源11的光轴上,将第一菲涅尔透镜13贴附于空心方锥棒的底面,其中,空心方锥棒的顶面的面积小于空心方锥棒的底面的面积,如此设置,可以使得光源11发出的大角度光束被准直成小角度光束111,并且均匀的从第一菲涅尔透镜13入射,同时,还可以通过第一菲涅尔透镜13对匀光棒12出射的光束111进行进一步的汇聚、匀光。此外,还可以在薄膜晶体液晶显示屏15的入光侧设置有扩散膜14,通过扩散膜14对入射薄膜晶体液晶显示屏15的光束111进一步的进行匀光,从而提高均匀性。
光源11可以是LED光源11,在对LED光源11和薄膜晶体液晶显示屏15进行位置的设置时,可以使得LED光源11的光轴和薄膜晶体液晶显示屏15的光轴形成一定的夹角,即如图1和图2所示,将薄膜晶体液晶显示屏15相对LED光源11的光轴倾斜一定角度设置,如此,能够使得用于目标区域成像的光束111角度大于目标区域成像所需角度。提高 图像的亮度均匀性。
如图1和图2所示,成像光学组件则可以包括沿出光方向依次设置的第一反射镜3和第二反射镜4,从成像透镜21出射的光束111依次经第一反射镜3和第二反射镜4汇聚在目标区域成像。第一反射镜3和第二反射镜4的面型可以是自由曲面,当然,在其它实施例中,第一反射镜3和第二反射镜4的面型还可以是非球面、球面或者平面。此外,还可以设置折返光学组件,例如设置一个或多个反射镜,通过反射镜来对光路进行折叠,缩减系统体积,从而使得最终的无介质投影系统器件尺寸能够灵活调整,提高其适用范围。
在该实施例中以成像透镜21的面型为球面、第一反射镜3的面型为自由曲面、第二反射镜4的面型为自由曲面为例进行说明:
球面成像透镜21的焦距可以大于100mm,第一菲涅尔透镜13的角度大于40mm,第一反射镜3和第二反射镜4的面型公式可以是:
Figure PCTCN2021142562-appb-000001
式中,z为矢高,c为曲率,k为圆锥系数,A i为第i项的xy多项式系数,N为xy项数。
在第一反射镜3的面型中N为19,其它参数如表格1所示。
表格1
c 0.009931 x 3 -12.226 xy 3 -4.007
k -2.089 x y -0.049 y 4 -4.67
x 2.22E+01 xy 2 12.759 x 5 -31.059
y 0.205 y 3 1.48 x 4y -0.586
x 2 -38.389 x 4 46.789 x 3y 2 5.22
xy -0.693 x 3y 0.575 x 2y 3 3.795
y 2 -45.76 x 2y 2 9.643 xy 4 50.772
在第二反射镜4的面型中N为30,其它参数如表格2所示。
表格2
c 0.002267 x y -0.0087 x 5 -0.212 x 4y 2 -0.337
k -2.571 xy 2 0.655 x 4y -0.011 x 3y 3 5.60E-03
x 4.663 y 3 7.91E-03 x 3y 2 -0.028 x 2y 4 -0.038
y 0.121 x 4 -0.313 x 2y 3 7.29E-04 xy 5 8.12E-03
x 2 -0.995 x 3y -3.40E-04 xy 4 0.051 y 6 -0.157
xy -0.074 x 2y 2 -0.564 y 5 -0.014 x 7 0.647
y 2 -2.076 xy 3 -0.012 x 6 0.133 x 6y 7.11E-03
x 3 0.624 y 4 -0.228 x 5y -0.027 x 5y 2 0.046
如此,便可以把各主光线的角度差异控制在小于4度的范围内,使得眼盒6范围内的图像亮度、均匀性高于70%。
在另一些实施例中:
如图3、图4和图5所示,与上一实施例的区别在于准直光学元件2为第三反射镜22,即光束111从第三反射镜22的同侧入射同侧出射,从而使得经第三反射镜22出射的光束111的各视场的主光线接近平行,各视场主光线角度差异越小,出瞳越大,光束111的数值孔径较大,亮度越高。第三反射镜22的面型可以是球面、非球面、平面和自由曲面中的一种。
如图4所示,在对匀光棒12进行设置时,可以参考上述实施例中的形式,例如在光源11和第一菲涅尔透镜13之间设置的匀光棒12可以是空心方锥棒,且在空心方锥棒内壁镀有反射膜,空心方锥棒的顶面为入光侧,空心方锥棒的底面为出光侧。即将光源11设置于空心方锥棒的入光侧,并且使得空心方锥棒位于光源11的光轴上,将第一菲涅尔透镜13贴附于空心方锥棒的底面,其中,空心方锥棒的顶面的面积小于空心方锥棒的底面的面积,如此设置,可以使得光源11发出的大角度光束被准直成小角度光束111,并且均匀的从第一菲涅尔透镜13入射,同时,还可以通过第一菲涅尔透镜13对匀光棒12出射的光束111进行进一步的汇聚、匀光。此外,还可以在薄膜晶体液晶显示屏15的入光侧设置有扩散膜14,通过扩散膜14对入射薄膜晶体液晶显示屏15的光束111进一步的进行匀光,从而提高均匀性。
当然光源11也可以参考上述实施例,即光源11可以是LED光源11,在对LED光源11和薄膜晶体液晶显示屏15进行位置的设置时,可以使得LED光源11的光轴和薄膜晶体液晶显示屏15的光轴形成一定的夹角,即如图4所示,将薄膜晶体液晶显示屏15相对LED光源11的光轴倾斜一定角度设置,如此,能够使得用于目标区域成像的光束111角度大于目标区域成像所需角度。提高图像的亮度均匀性。
如图4所示,成像光学组件则可以包括沿出光方向依次设置的第一反射镜3和第二反射镜4,从第三反射镜22出射的光束111依次经第一反射镜3和第二反射镜4汇聚在目标区域成像。第一反射镜3和第二反射镜4的面型可以是自由曲面,当然,在其它实施例中,第一反射镜3和第二反射镜4的面型还可以是非球面、球面或者平面。此外,还可以设置折返光学组件,例如设置一个或多个反射镜,通过反射镜来对光路进行折叠,缩减系统体积,从而使得最终的无介质投影系统器件尺寸能够灵活调整,提高其适用范围。
在该实施例中以第三反射镜22的面型为球面、第一反射镜3的面型为自由曲面、第二反射镜4的面型为自由曲面为例进行说明:
第一菲涅尔透镜13的角度大于40mm;第三反射镜22的焦距可以大于100mm;第一反射镜3的y向焦距可以是大于200mm,面型为自由曲面;第二反射镜4的y向焦距大于100mm,面型液位自由曲面;第一反射镜3和第二反射镜4的面型公式可以是:
Figure PCTCN2021142562-appb-000002
式中,z为矢高,c为曲率,k为圆锥系数,A i为第i项的xy多项式系数,N为xy项数。
在第一反射镜3的面型中N为20,其它参数如表格3所示。
表格3
c 0.001294 x y -0.011 x 5 -0.285
k -1 xy 2 -0.268 x 4y -0.022
x -0.271 y 3 -2.00E-02 x 3y 2 -1.968
y -0.764 x 4 0.281 x 2y 3 1.50E-02
x 2 -5.077 x 3y -3.64E-01 xy 4 -0.405
xy 0.037 x 2y 2 -0.03 y 5 0.059
y 2 -2.708 xy 3 -0.061    
x 3 -1.071 y 4 -0.555    
在第二反射镜4的面型中N为30,其它参数如表格4所示。
表格4
c -0.0021 x y -2.761 x 5 -0.270 x 4y 2 -0.129
k -0.746 xy 2 0.193 x 4y -3.64E-03 x 3y 3 7.68E-03
x -0.498 y 3 6.21E-03 x 3y 2 -0.381 x 2y 4 -2.90E-02
y -0.233 x 4 -0.074 x 2y 3 -5.34E-03 xy 5 -1.03E-03
x 2 2.65 x 3y 3.13E-03 xy 4 4.37E-02 y 6 -0.012
xy 0.013 x 2y 2 0.017 y 5 1.63E-04 x 7 0.033
y 2 3.61 xy 3 -8.28E-03 x 6 5.439E-01 x 6y 6.43E-03
x 3 -0.115 y 4 -1.07E-01 x 5y 1.91E-03 x 5y 2 3.69E-02
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人 员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请提供了一种无介质投影系统,该无介质投影系统包括:从光源出射的发散光束经匀光棒和第一菲涅尔透镜的准直匀光后作为薄膜晶体液晶显示屏的入射光,从薄膜晶体液晶显示屏出射的光束经准直光学元件后由成像光学组件汇聚在目标区域成像,使得像面上各点光束充满眼盒,即可在眼盒范围内裸眼观看悬浮在空气中的像,实现无介质投影。通过在光源和薄膜晶体液晶显示屏之间设置匀光棒和第一菲涅尔透镜、在薄膜晶体液晶显示屏的出光侧设置准直光学元件,使得用于成像部分的光束的各视场的主光线接近平行,从而进一步的提高目标区域成像的亮度及亮度均匀性,进而在目标区域实现更加清晰的图像显示,提高最终图像的成像质量以及用户的使用体验。
此外,可以理解的是,本申请的无介质投影系统是可以重现的,并且可以用在多种工业应用中。例如,本申请的无介质投影系统可以用于光学技术领域。

Claims (13)

  1. 一种无介质投影系统,其特征在于,包括:光源、沿出光方向依次设置的匀光棒、第一菲涅尔透镜、薄膜晶体液晶显示屏、准直光学元件以及成像光学组件;从所述光源出射的发散光束经所述匀光棒和所述第一菲涅尔透镜的准直匀光后作为所述薄膜晶体液晶显示屏的入射光,从所述薄膜晶体液晶显示屏出射的光束经所述准直光学元件后由所述成像光学组件汇聚在目标区域成像以使像面各点光束充满眼盒。
  2. 根据权利要求1所述的无介质投影系统,其特征在于,所述薄膜晶体液晶显示屏是具有透射功能的显示面板。
  3. 根据权利要求1或2所述的无介质投影系统,其特征在于,所述光源是LED光源。
  4. 根据权利要求1至3中任一项所述的无介质投影系统,其特征在于,所述成像光学组件包括沿出光方向依次设置的第一反射镜和第二反射镜,从所述准直光学元件出射的光束依次经所述第一反射镜和所述第二反射镜汇聚在目标区域成像。
  5. 根据权利要求4所述的无介质投影系统,其特征在于,所述第一反射镜的面型和所述第二反射镜的面型均为自由曲面。
  6. 根据权利要求1至5中的任一项所述的无介质投影系统,其特征在于,在所述薄膜晶体液晶显示屏的入光侧设置有扩散膜。
  7. 根据权利要求3所述的无介质投影系统,其特征在于,所述LED光源的光轴和所述薄膜晶体液晶显示屏的光轴形成一定的夹角。
  8. 根据权利要求1至7中的任一项所述的无介质投影系统,其特征在于,所述匀光棒为空心方锥棒,在所述空心方锥棒内壁镀有反射膜,所述空心方锥棒的顶面为入光侧,所述空心方锥棒的底面为出光侧,所述空心方锥棒的顶面的面积小于所述空心方锥棒的底面的面积。
  9. 根据权利要求1至8中的任一项所述的无介质投影系统,其特征在于,所述准直光学元件为成像透镜。
  10. 根据权利要求9所述的无介质投影系统,其特征在于,所述成像透镜为球面透镜、非球面透镜或第二菲涅尔透镜。
  11. 根据权利要求1至8中的任一项所述的无介质投影系统,其特征在于,所述准直光学元件为第三反射镜,所述第三反射镜的面型为球面、非球面或自由曲面。
  12. 根据权利要求1至11中的任一项所述的无介质投影系统,其特征在于,还包括折返光学组件,所述折返光学组件用于折叠光路。
  13. 根据权利要求12所述的无介质投影系统,其特征在于,所述折返光学组件为一个或多个反射镜,通过所述反射镜来对光路进行折叠。
PCT/CN2021/142562 2021-03-17 2021-12-29 一种无介质投影系统 WO2022193780A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023513258A JP2023539486A (ja) 2021-03-17 2021-12-29 無媒体投影システム
US18/034,043 US20230393414A1 (en) 2021-03-17 2021-12-29 Medium-free projection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110288295.7 2021-03-17
CN202110288295.7A CN112835199A (zh) 2021-03-17 2021-03-17 一种无介质投影系统

Publications (1)

Publication Number Publication Date
WO2022193780A1 true WO2022193780A1 (zh) 2022-09-22

Family

ID=75930195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142562 WO2022193780A1 (zh) 2021-03-17 2021-12-29 一种无介质投影系统

Country Status (4)

Country Link
US (1) US20230393414A1 (zh)
JP (1) JP2023539486A (zh)
CN (1) CN112835199A (zh)
WO (1) WO2022193780A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112835199A (zh) * 2021-03-17 2021-05-25 浙江水晶光电科技股份有限公司 一种无介质投影系统
WO2023274255A1 (zh) * 2021-06-28 2023-01-05 安徽省东超科技有限公司 空中成像系统及基于空中成像的人机交互系统
WO2024070714A1 (ja) * 2022-09-29 2024-04-04 京セラ株式会社 空中像表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107543082A (zh) * 2017-10-18 2018-01-05 广东工业大学 一种用于超高亮度背光系统的菲涅尔透镜
WO2019238540A1 (fr) * 2018-06-13 2019-12-19 Valeo Comfort And Driving Assistance Appareil de projection et système de vision tête haute associé
CN111948817A (zh) * 2019-05-17 2020-11-17 未来(北京)黑科技有限公司 显示装置、抬头显示器和机动车
CN112835199A (zh) * 2021-03-17 2021-05-25 浙江水晶光电科技股份有限公司 一种无介质投影系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107543082A (zh) * 2017-10-18 2018-01-05 广东工业大学 一种用于超高亮度背光系统的菲涅尔透镜
WO2019238540A1 (fr) * 2018-06-13 2019-12-19 Valeo Comfort And Driving Assistance Appareil de projection et système de vision tête haute associé
CN111948817A (zh) * 2019-05-17 2020-11-17 未来(北京)黑科技有限公司 显示装置、抬头显示器和机动车
CN111948818A (zh) * 2019-05-17 2020-11-17 未来(北京)黑科技有限公司 一种抬头显示装置及机动车
CN112835199A (zh) * 2021-03-17 2021-05-25 浙江水晶光电科技股份有限公司 一种无介质投影系统

Also Published As

Publication number Publication date
US20230393414A1 (en) 2023-12-07
CN112835199A (zh) 2021-05-25
JP2023539486A (ja) 2023-09-14

Similar Documents

Publication Publication Date Title
WO2022193780A1 (zh) 一种无介质投影系统
US9983394B2 (en) Projection optical system and image display apparatus
US8313199B2 (en) Projection display system including lens group and reflecting mirror
CN103837971B (zh) 投影光学系统与图像投影装置
JP4329863B2 (ja) 投影光学系及び画像投影装置
JP4967247B2 (ja) 画像表示装置及びそれに用いるスクリーン
WO2016079927A1 (ja) ヘッドアップディスプレイ及び車両
US10180575B2 (en) Image display apparatus
JP5648616B2 (ja) 画像表示装置
CN115268082A (zh) 头戴式显示装置
JP7109367B2 (ja) 拡散板、投写式画像表示装置、及び拡散板の設計方法
JP6937839B2 (ja) 反射式広角レンズユニット
JP3542963B2 (ja) リアプロジェクションテレビジョン
JP5055765B2 (ja) 画像表示装置、及び、それに用いるフレネルレンズシート並びにスクリーン
JP5168386B2 (ja) 画像表示装置及びそれに用いるスクリーン
JP5059272B2 (ja) 2段階光学拡大および画像修正装置
CN210485581U (zh) 动态投影灯及车辆
CN106569383B (zh) 一种背投影显示系统
JP5975089B2 (ja) 投射光学系および画像表示装置
JP2016139152A (ja) ヘッドアップディスプレイ
WO2023145112A1 (ja) 画像表示装置、画像表示システム、及び投射光学系
JP2014059446A (ja) 画像表示装置
JP2016186659A (ja) 投射光学系および画像表示装置
CN218767586U (zh) 一种成像装置、抬头显示器和交通工具
JP7494349B2 (ja) 投影光強度を増加させるためのプロジェクタおよび方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023513258

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18034043

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931352

Country of ref document: EP

Kind code of ref document: A1