WO2022193688A1 - 显示方法、显示装置及计算机可读存储介质 - Google Patents

显示方法、显示装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2022193688A1
WO2022193688A1 PCT/CN2021/129975 CN2021129975W WO2022193688A1 WO 2022193688 A1 WO2022193688 A1 WO 2022193688A1 CN 2021129975 W CN2021129975 W CN 2021129975W WO 2022193688 A1 WO2022193688 A1 WO 2022193688A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
display
pixel
display area
gray
Prior art date
Application number
PCT/CN2021/129975
Other languages
English (en)
French (fr)
Inventor
王雨
林奕呈
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2022193688A1 publication Critical patent/WO2022193688A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel
    • G09G2360/148Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel the light being detected by light detection means within each pixel

Definitions

  • This document relates to, but is not limited to, the field of display technology, especially a display method, a display device, and a computer-readable storage medium.
  • the pixel circuit of the electroluminescent display panel includes a thin film transistor (TFT, Thin Film Transistor) and a storage capacitor (Capacitance).
  • TFT thin film transistor
  • Capacitance Capacitance
  • the TFT is controlled by a fixed scanning waveform, and the voltage corresponding to the display data is charged to the storage capacitor.
  • the display unit (for example, an organic light emitting diode (OLED, Organic Light-Emitting Diode) device) is controlled by the magnitude of the voltage, thereby adjusting the luminous brightness of the display unit.
  • OLED organic light emitting diode
  • Embodiments of the present disclosure provide a display method, a display device, and a computer-readable storage medium.
  • an embodiment of the present disclosure provides a display method, comprising: determining, by using at least one photosensitive device disposed in a display area, a grayscale compensation parameter of a target sub-pixel in at least one sub-display area of the display area; using The gray-scale compensation parameter of the target sub-pixel and the gray-scale value to be output in the display stage determine the gray-scale voltage of the target sub-pixel in the display stage; according to the gray-scale voltage of the target sub-pixel in the display stage step voltage, to determine the gray-scale voltages of the remaining sub-pixels in the sub-display area in the display stage.
  • the gray-scale compensation parameters include: a turn-on voltage of the target sub-pixel, and a voltage at which the target sub-pixel achieves an ideal brightness for displaying a target gray-scale value.
  • the determining the gray-scale voltage of the target sub-pixel in the display stage by using the gray-scale compensation parameter of the target sub-pixel and the gray-scale value to be output in the display stage includes: determining the target according to the following formula The gray-scale voltage of the sub-pixel in the display stage:
  • Vt is the turn-on voltage of the target sub-pixel
  • Vt1 is the voltage at which the target sub-pixel reaches the ideal brightness of the target gray-scale value GL1
  • GL2 is the gray-scale output of the target sub-pixel in the display stage order value.
  • the determining, according to the gray-scale voltages of the target sub-pixels in the display stage, the gray-scale voltages of the remaining sub-pixels in the sub-display region in the display stage includes: according to the phase The gray-scale voltages of the target sub-pixels in the adjacent sub-display regions in the display stage are determined by linear interpolation to determine the gray-scale voltages of the remaining sub-pixels in the adjacent sub-display regions in the display stage.
  • the gray-scale voltage includes: according to the gray-scale voltage of the target sub-pixel in the adjacent sub-display area in the display stage, performing linear interpolation along the first direction and the second direction respectively, and determining that the remaining sub-pixels in the adjacent sub-display area are at The grayscale voltage in the display stage, wherein the first direction intersects the second direction.
  • the target sub-pixel in the sub-display area is located at the center of the sub-display area.
  • the target sub-pixels in the sub-display area include: a first target sub-pixel and a second target sub-pixel.
  • the display method further includes: for at least one sub-display area, comparing the first target sub-pixel in the sub-display area The gray-scale compensation parameter of the pixel and the gray-scale compensation parameter of the first target sub-pixel in the adjacent sub-display area are obtained to obtain a first comparison result; according to the first comparison result, the first target in the sub-display area is determined Whether the sub-pixel is abnormal; when the first target sub-pixel in the sub-display area is abnormal, determine the sub-display area according to the gray-scale voltage of the second target sub-pixel in the sub-display area during the display stage The gray-scale voltages of the remaining sub-pixels in the display stage.
  • the first target sub-pixel and the second target sub-pixel in the sub-display area are located at different angular positions of the sub-display area.
  • the display method further includes: for at least one sub-display area, using the sub-display area
  • the grayscale compensation parameter of the target subpixel in the display area and the grayscale compensation parameter of the target subpixel in the adjacent sub-display area determine whether the sub-display area has a first edge area and the position of the first edge area.
  • the target sub-pixels in the sub-display area include: a first target sub-pixel and at least one third target sub-pixel, and the first target sub-pixel and the third target sub-pixel are located in different rows and different columns.
  • the existence of the first edge area and the position of the first edge area includes: for at least one sub-display area, comparing the gray level of the first target sub-pixel in the sub-display area and the first target sub-pixel in the adjacent sub-display area order compensation parameters to obtain a second comparison result; according to the second comparison result, determine whether there is a first edge area in the sub-display area; when it is determined that there is a first edge area in the sub-display area, compare the sub-display area
  • the determining the gray-scale voltages of the remaining sub-pixels in the sub-display region in the display stage according to the gray-scale voltages of the target sub-pixels in the display stage includes: The first edge area identified by the sub-display area, using the gray-scale voltage of the target sub-pixel in the first edge area in the display stage, determines the remaining sub-pixels in the first edge area by linear interpolation The gray-scale voltage of the stage; for the region other than the first edge region in the sub-display region, the gray-scale voltage of the target sub-pixel in the display stage in the region other than the first edge region is used to linearly interpolate The gray-scale voltages of the remaining sub-pixels in the display stage are determined in a manner other than the first edge region.
  • the at least one sub-display area is provided with a plurality of sub-pixels arranged in a 3*3 array, or a plurality of sub-pixels arranged in a 4*4 array.
  • the sub-pixels in the sub-display area correspond to the photosensitive devices one-to-one.
  • the display method further includes: determining the theoretical brightness of the sub-display area according to the grayscale values of a plurality of sub-pixels in the sub-display area; When each sub-pixel displays the corresponding grayscale value, the sensed brightness of the sub-display area is obtained through the photosensitive device corresponding to the target sub-pixel in the sub-display area; the theoretical brightness and the sensed brightness of the sub-display area are obtained through the sub-display area. Judging whether the compensation condition is satisfied; when the number of times the compensation condition is satisfied is greater than the number of times threshold, execute the grayscale compensation of the target sub-pixel in at least one sub-display area of the display area through at least one photosensitive device arranged in the display area parameter steps.
  • an embodiment of the present disclosure provides a display device including: a plurality of photosensitive devices and a processor.
  • a plurality of photosensitive devices are located in the display area of the display panel, and are arranged corresponding to at least one sub-pixel in at least one sub-display area of the display area.
  • the processor is connected to the plurality of photosensitive devices, and is configured to determine the grayscale compensation parameters of the target sub-pixels in the sub-display area through the photo-sensitive devices in the sub-display area, and use the target sub-pixels in the sub-display area
  • the grayscale compensation parameter and the grayscale value to be output in the display stage determine the grayscale voltage of the target subpixel in the display stage, and determine the grayscale voltage of the target subpixel in the display stage according to the grayscale voltage of the target subpixel in the display stage.
  • the gray-scale voltage of the remaining sub-pixels in the sub-display area in the display stage is connected to the plurality of photosensitive devices, and is configured to determine the grayscale compensation parameters of the target sub-pixels in the sub-display area through the photo-sensitive devices in the sub-display area, and use the target sub-pixels in the sub-display area
  • the grayscale compensation parameter and the grayscale value to be output in the display stage determine the grayscale voltage of the target subpixel in the display stage,
  • an embodiment of the present disclosure provides a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the above-mentioned display method is implemented.
  • FIG. 1 is a schematic flowchart of a display method according to at least one embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a display area of a display panel according to at least one embodiment of the disclosure
  • FIG. 3 is an exemplary diagram of a sensing circuit connected to a photosensitive device according to at least one embodiment of the disclosure
  • FIG. 4 is a schematic diagram of a sub-display area of at least one embodiment of the present disclosure.
  • 5A is another schematic diagram of a sub-display area of at least one embodiment of the disclosure.
  • 5B to 5D are schematic diagrams of linear interpolation sequences of sub-display areas according to at least one embodiment of the present disclosure
  • FIG. 6 is another schematic diagram of a sub-display area of at least one embodiment of the present disclosure.
  • FIG. 7 is another schematic diagram of a sub-display area of at least one embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a first edge area of a sub-display area according to at least one embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a display device according to at least one embodiment of the disclosure.
  • ordinal numbers such as “first”, “second” and “third” are set to avoid confusion of constituent elements, rather than to limit the quantity.
  • "Plurality” in this disclosure means a quantity of two or more.
  • the terms “installed”, “connected” and “connected” should be construed broadly unless otherwise expressly specified and limited. For example, it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two elements.
  • installed should be construed broadly unless otherwise expressly specified and limited. For example, it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two elements.
  • the process stability of the transistor is the main factor affecting the display screen.
  • a display device eg, an OLED device
  • the current compensation method cannot provide comprehensive and effective compensation, which leads to a decrease in the uniformity of the display panel as the usage time increases, and display problems such as afterimages may occur.
  • FIG. 1 is a schematic flowchart of a display method according to at least one embodiment of the present disclosure. As shown in FIG. 1 , the display method of this embodiment includes the following steps S1 to S3.
  • Step S1 determining a grayscale compensation parameter of a target sub-pixel in at least one sub-display area of the display area by at least one photosensitive device disposed in the display area;
  • Step S2 using the gray-scale compensation parameter of the target sub-pixel and the gray-scale value to be output in the display stage, to determine the gray-scale voltage of the target sub-pixel in the display stage;
  • Step S3 Determine the gray-scale voltages of the remaining sub-pixels in the sub-display region in the display stage according to the gray-scale voltages of the target sub-pixels in the display stage.
  • the display method of this embodiment can compensate the brightness of the display panel, thereby improving the display uniformity of the display panel. Moreover, by sharing the gray-scale compensation parameters in the sub-display area, a better compensation effect can be achieved under the condition of using a smaller amount of data.
  • the display panel may be an OLED display panel. However, this embodiment does not limit this.
  • the gray-scale compensation parameters include: a turn-on voltage of the target sub-pixel, and a voltage at which the target sub-pixel achieves an ideal brightness for displaying the target gray-scale value.
  • the display effect of the sub-display area is compensated by using the voltage data of the target sub-pixel under ideal brightness, which can improve the display problem caused by the aging of the display device in the display area, thereby improving the display effect of the display panel.
  • FIG. 2 is a schematic structural diagram of a display area of a display panel according to at least one embodiment of the disclosure.
  • the display area may include: a plurality of pixel units and a plurality of photosensitive devices Q arranged in a matrix manner.
  • At least one of the plurality of pixel units includes a first light-emitting unit P1 that emits light of a first color, a second light-emitting unit P2 that emits light of a second color, a third light-emitting unit P3 that emits light of a third color, and a light of fourth color
  • the fourth light-emitting unit P4 is a schematic structural diagram of a display area of a display panel according to at least one embodiment of the disclosure.
  • the display area may include: a plurality of pixel units and a plurality of photosensitive devices Q arranged in a matrix manner.
  • At least one of the plurality of pixel units includes a first light-emitting unit P1 that emits light of a first color,
  • the first light emitting unit P1, the second light emitting unit P2, the third light emitting unit P3 and the fourth light emitting unit P4 all include a pixel driving circuit and a light emitting device.
  • the pixel driving circuits in the first light-emitting unit P1, the second light-emitting unit P2, the third light-emitting unit P3 and the fourth light-emitting unit P4 are respectively connected to the scanning signal line and the data signal line D, and the pixel driving circuit is configured to connect to the scanning signal line D. Under the control of the data signal line D, the data voltage transmitted by the data signal line D is received, and the corresponding current is output to the light-emitting device.
  • the light-emitting devices in the first light-emitting unit P1, the second light-emitting unit P2, the third light-emitting unit P3 and the fourth light-emitting unit P4 are respectively connected to the pixel driving circuit of the light-emitting unit, and the light-emitting devices are configured to respond to the pixel driving of the light-emitting unit.
  • the current output by the circuit emits light of corresponding brightness.
  • the pixel unit may include a red (R) light-emitting unit, a green (G) light-emitting unit, a blue (B) light-emitting unit, and a white light-emitting unit, or may include a red light-emitting unit, a green light-emitting unit, and a
  • the blue light-emitting unit is not limited in this disclosure.
  • the shape of the light emitting unit in the pixel unit may be a rectangle shape, a diamond shape, a pentagon shape or a hexagon shape.
  • the pixel unit when the pixel unit includes three light-emitting units, the three light-emitting units may be arranged in horizontal, vertical, or cross-section; when the pixel unit includes four light-emitting units, the four light-emitting units may be arranged in horizontal, vertical, or horizontal alignment. or square (Square) arrangement, which is not limited in this disclosure.
  • the plurality of photosensitive devices Q may correspond to the plurality of light emitting units in one-to-one correspondence.
  • the photosensitive device Q may be located on one side of the light emitting unit, for example, on the upper side of the light emitting unit. However, this embodiment does not limit this.
  • the photosensitive device may be located on the lower, left or right side of the light emitting unit.
  • one photosensitive device may correspond to multiple light emitting units.
  • the photosensitive device may be a PIN-type photodetector (also known as PIN junction diode, PIN diode). Since a photosensitive device is arranged around each light-emitting unit, when the light-emitting unit generates light with corresponding brightness according to the gray scale value, the light will be projected on the photosensitive device. After the photosensitive device is illuminated, it will generate a corresponding current through photoelectric conversion. Then, the light-emitting brightness of the corresponding light-emitting unit is obtained through conversion by the sensing circuit.
  • PIN-type photodetector also known as PIN junction diode, PIN diode
  • FIG. 3 is a schematic diagram of a sensing circuit connected to a photosensitive device according to at least one embodiment of the disclosure.
  • the sensing circuit may include a switching unit, a current integrating unit, a branching unit, a multiplexer (MUX), and an analog-to-digital converter (ADC).
  • the switch unit includes a transistor T1, the first pole of the transistor T1 is connected to the output terminal of the photosensitive device, the second pole of the transistor T1 is connected to the first input terminal of the operational amplifier AM, and the control pole of the transistor T1 is connected to the first signal terminal SW connect.
  • the current integration unit includes: an operational amplifier AM, a capacitor Cf, a first switch K1, a resistor Lpf and a second switch K2.
  • the second input terminal of the operational amplifier AM is connected to the second signal terminal REF.
  • the first switch K1 and the capacitor Cf are connected in parallel between the first input terminal and the output terminal of the operational amplifier AM.
  • the resistor Lpf and the second switch K2 are connected in parallel between the output terminal of the operational amplifier AM and the input terminal of the shunt unit.
  • the shunt unit includes a plurality of switches (eg, including a third switch K3, a fourth switch K4, a fifth switch K5 and a sixth switch K6) and a plurality of capacitors.
  • each switch is connected to the input end of the shunt unit, and the other end is connected to an output end of the shunt unit; one end of each capacitor is connected to one output end of the shunt unit, and the other end is grounded.
  • the multiple output terminals of the splitting unit are connected to a multiplexer (MUX), and the multiplexer is connected to an analog-to-digital converter (ADC).
  • MUX multiplexer
  • ADC analog-to-digital converter
  • the photosensitive device is disposed in the display area, the sensing circuit may be disposed in an external circuit board outside the display area, and the photosensitive device may be connected with the sensing circuit through wires.
  • the present embodiment does not limit the structure and arrangement position of the sensing circuit.
  • step S1 may include: determining the gray-scale voltage of the target sub-pixel in the display stage according to the following formula:
  • Vt is the turn-on voltage of the target sub-pixel
  • Vt1 is the voltage at which the target sub-pixel reaches the ideal brightness of displaying the target gray-scale value GL1
  • GL2 is the gray-scale value to be output by the target sub-pixel in the display stage.
  • L L max (GL/1023) 2.2 ;
  • L is the ideal brightness when the sub-pixel is displayed according to the grayscale value GL
  • L max is the maximum brightness of the sub-pixel.
  • this embodiment does not limit this.
  • other gamma curves can be used to calculate ideal brightness.
  • the sub-pixels are controlled to display at different gray-scale voltages, and the light-emitting brightness of the sub-pixels is sensed through the light-sensing devices corresponding to the sub-pixels.
  • the ideal brightness of the sub-pixel when it is lit and the ideal brightness when the target grayscale value is displayed can be determined.
  • the photosensitive device senses the ideal brightness of the light-emitting brightness of the sub-pixel when it is turned on, it can determine the voltage at which the sub-pixel reaches the ideal brightness when it is turned on, that is, the lighting voltage Vt.
  • the photosensitive device When the photosensitive device senses the ideal voltage when the light-emitting brightness of the sub-pixel reaches the target gray-scale value, the voltage Vt1 at which the sub-pixel reaches the ideal brightness of the target gray-scale value can be determined. In the display stage, brightness compensation can be performed using Vt and Vt1 obtained in the sensing stage.
  • the target grayscale value may be 127. However, this embodiment does not limit this.
  • the following formula can be used to calculate the display brightness of the sub-pixel:
  • L' is the display brightness determined based on the transistor current
  • Vt 0 is the lighting voltage of the sub-pixel
  • is the luminous efficiency coefficient
  • GL' is the gray-scale voltage corresponding to the gray-scale value displayed by the sub-pixel
  • K is the transistor constants related to the process parameters and geometric dimensions.
  • GL' is the gray-scale voltage corresponding to the gray-scale value GL2 to be displayed by the sub-pixel
  • Vt is the lighting voltage of the sub-pixel
  • Vt1 is the voltage at which the sub-pixel reaches the ideal brightness of the target gray-scale value GL1
  • GL2 is the sub-pixel Grayscale value to be displayed.
  • the calculation formula of grayscale compensation can be obtained as:
  • the target gray-scale value GL1 is a fixed gray scale adopted in the sensing stage.
  • the grayscale value GL2 to be displayed can be obtained according to the display data in the display stage. Therefore, according to the above known value, the grayscale voltage after compensation can be determined by using the grayscale compensation formula, so as to achieve the effect of compensation and adjustment of Gamma display. the goal of.
  • the sensing stage of obtaining the grayscale compensation parameters may be performed when the display device is turned on or off, so as to improve the display effect of the display stage periodically; or, the sensing stage may be non-displayed after the display device is turned on Periods to support real-time improvement of the display effect.
  • this embodiment does not limit this.
  • step S2 may include: according to the gray-scale voltages of the target sub-pixels in the adjacent sub-display regions in the display stage, determining by linear interpolation that the remaining sub-pixels in the adjacent sub-display regions are in the display stage grayscale voltage.
  • the gray-scale compensation formula it is not necessary to use a gray-scale compensation formula to calculate the compensated gray-scale voltage for each sub-pixel, but the gray-scale compensation parameters of the target sub-pixel are shared in the sub-display area, and then the A linear interpolation method between pixels is used to determine the compensated gray-scale voltages of the remaining sub-pixels. In this way, the workload of the photosensitive device and the amount of data calculation can be reduced, thereby improving the processing efficiency.
  • FIG. 4 is a schematic diagram of a sub-display area of at least one embodiment of the present disclosure.
  • three adjacent sub-display regions eg, sub-display regions 10 , 11 and 12
  • the photosensitive devices in the sub-display regions are omitted.
  • each sub-display area is provided with 9 sub-pixels arranged in a 3*3 array and a plurality of photosensitive devices corresponding to the plurality of sub-pixels one-to-one.
  • the photosensitive device may be located on one side of the corresponding sub-pixel.
  • the sub-pixel at the center of the sub-display area is used as the target sub-pixel.
  • the target sub-pixel 101 in the sub-display area 10 is located at the center of the sub-display area 10 .
  • the grayscale compensation parameter of the target subpixel can be determined by the photosensitive device corresponding to the target subpixel, and the grayscale compensation calculation formula can be obtained by using the grayscale compensation parameter of the target subpixel; then, the grayscale compensation calculation formula can be obtained by using the grayscale compensation parameter of the target subpixel. and the gray-scale value of the target sub-pixel in the display stage, the gray-scale voltage of the target sub-pixel in the display stage can be calculated, and the gray-scale voltage is the gray-scale voltage after compensation. After obtaining the gray-scale voltage of the target sub-pixel in the display stage, the gray-scale voltage of the remaining sub-pixels in the display stage can be determined by using the gray-scale voltage of the target sub-pixel in the display stage. For example, in FIG.
  • the gray-scale voltages of the sub-pixel 102 on the right side of the target sub-pixel 101 in the sub-display area 10 and the sub-pixel on the left side of the target sub-pixel 121 in the sub-display area 12 in the display stage can be determined by
  • the gray-scale voltages of the pixel 101 and the target sub-pixel 121 in the display stage are obtained by linear interpolation;
  • the gray-scale voltage can be obtained by linearly interpolating the gray-scale voltages of the target sub-pixel 111 and the target sub-pixel 101 in the display stage.
  • the gray-scale voltage of the sub-pixel on the upper side of the target sub-pixel 101 in the display stage can be obtained by linearly interpolating the gray-scale voltage of the target sub-pixel 101 and the target sub-pixel adjacent to the upper side of the target sub-pixel 101;
  • the gray-scale voltage of the sub-pixel at the upper left corner in the display stage can be obtained by linearly interpolating the gray-scale voltage of the target sub-pixel 101 and its diagonally adjacent target sub-pixel in the display stage.
  • the gray-scale voltages of the sub-pixels at the lower side of the target sub-pixel 101, the upper right corner, the lower left corner and the lower right corner of the sub-display area 10 in the display stage can also be obtained by linear interpolation in a similar manner. However, this embodiment does not limit this.
  • the gray-scale voltages of the remaining sub-pixels in the adjacent sub-display regions in the display stage are determined by linear interpolation according to the gray-scale voltages of the target sub-pixels in the adjacent sub-display regions in the display stage, Including: according to the gray-scale voltage of the target sub-pixels in the adjacent sub-display areas in the display stage, performing linear interpolation along the first direction and the second direction respectively to determine the gray-scale voltages of the remaining sub-pixels in the adjacent sub-display areas in the display stage step voltage, wherein the first direction crosses the second direction.
  • the first direction is the sub-pixel row direction
  • the second direction is the sub-pixel column direction
  • the first direction is the sub-pixel column direction
  • the second direction is the sub-pixel row direction.
  • this embodiment does not limit this.
  • FIG. 5A is another schematic diagram of a sub-display area of at least one embodiment of the present disclosure.
  • four adjacent sub-display areas (for example, the sub-display area 20 and the three sub-display areas adjacent to the sub-display area 20 ) are used as examples for illustration, and the photosensitive devices in the sub-display areas are omitted.
  • each sub-display area is provided with 16 sub-pixels arranged in a 4*4 array and a plurality of photosensitive devices corresponding to the plurality of sub-pixels one-to-one.
  • the photosensitive device may be located on one side of the corresponding sub-pixel.
  • the sub-pixel at the upper left corner of the sub display area is used as the target sub pixel.
  • the target sub pixel 201 in the sub display area 20 is located at the upper left corner of the sub display area 20 .
  • the gray-scale compensation parameter of the target sub-pixel can be determined by the photosensitive device corresponding to the target sub-pixel, and the gray-scale compensation calculation formula can be obtained by using the gray-scale compensation parameter of the target sub-pixel; then, in In the display stage, using the grayscale compensation formula and the grayscale value of the target subpixel in the display stage, the grayscale voltage of the target subpixel in the display stage can be calculated, and the grayscale voltage is the grayscale voltage after compensation.
  • the gray-scale voltage of the remaining sub-pixels in the display stage can be determined by using the gray-scale voltage of the target sub-pixel in the display stage.
  • 5B to 5D are schematic diagrams of linear interpolation sequences of sub-display regions according to at least one embodiment of the present disclosure.
  • the sub-display area 20 is taken as an example for description below.
  • the gray-scale voltages of the adjacent target sub-pixels 221 in the display stage are linearly interpolated to determine the gray-scale voltages of the sub-pixels 202 between the target sub-pixels 201 and 221 in the display stage. Then, as shown in FIG.
  • linear interpolation is performed using the gray-scale voltages of the target sub-pixel 201 and the target sub-pixel 211 adjacent to the second direction (eg, row direction) in the display stage to determine the target sub-pixels 201 and 211 The gray-scale voltage of the sub-pixels 203 between them in the display stage.
  • the sub-pixels 202 can be used to perform linear interpolation with the gray-scale voltages of the sub-pixels in the display stage that have been determined in the adjacent sub-display areas along the second direction (eg, row direction) to determine the adjacent sub-pixels.
  • the sub-pixels 203 can be used to perform linear interpolation with the gray-scale voltages of the sub-pixels in the display stage that have been determined in the adjacent sub-display areas along the first direction (eg, column direction) to determine the sub-pixels in the adjacent sub-display areas.
  • the gray-scale voltages of the remaining sub-pixels 204 between 203 and 204 in the display stage does not limit this.
  • linear interpolation may be performed along the row direction as shown in FIG. 5C first, and then linear interpolation may be performed along the column direction as shown in FIG. 5B .
  • the target sub-pixels in the sub-display area include: a first target sub-pixel and a second target sub-pixel.
  • the display method of this embodiment further includes: for at least one sub-display area, comparing the first target sub-pixel in the sub-display area obtaining a first comparison result between the gray-scale compensation parameter and the gray-scale compensation parameter of the first target sub-pixel in the adjacent sub-display area; and determining whether the first target sub-pixel in the sub-display area is abnormal according to the first comparison result;
  • the gray-scale voltages of the remaining sub-pixels in the sub-display area in the display phase are determined according to the gray-scale voltage of the second target sub-pixel in the sub-display area in the display phase.
  • FIG. 6 is another schematic diagram of a sub-display area of at least one embodiment of the present disclosure.
  • four adjacent sub-display areas (for example, the sub-display area 30 and the three sub-display areas adjacent to the sub-display area 30 ) are used as examples for illustration, and the photosensitive devices in the sub-display areas are omitted.
  • each sub-display area is provided with 16 sub-pixels arranged in a 4*4 array and a plurality of photosensitive devices corresponding to the plurality of sub-pixels one-to-one.
  • the photosensitive device may be located on one side of the corresponding sub-pixel.
  • the sub-pixel at the upper-left corner of the sub-display area is used as the first target sub-pixel
  • the sub-pixel at the lower-right corner of the sub-display area is used as the second target sub-pixel.
  • the first target sub-pixel 301 in the sub-display area 30 is located at the upper left corner of the sub-display area 30
  • the second target sub-pixel 302 is located at the lower right corner of the sub-display area 30 .
  • the first target sub-pixel 301 and the second target sub-pixel 302 are located at different angular positions of the sub-display area 30 .
  • this embodiment does not limit this.
  • the sub-display area 30 shown in FIG. 6 is used as an example for description.
  • the grayscale compensation parameter of the first target subpixel 301 is determined by the photosensitive device corresponding to the first target subpixel 301
  • the grayscale of the second target subpixel 302 is determined by the photosensitive device corresponding to the second target pixel 302 .
  • the gray scale compensation parameters of the first target sub-pixel 301 and the first target sub-pixel in the adjacent sub-display area are compared to obtain a first comparison result.
  • the first comparison result is that the absolute value of the difference between the grayscale compensation parameters of the first target sub-pixel 301 and at least one adjacent first target sub-pixel is greater than the abnormality identification threshold, it is determined that the first target sub-pixel 301 is abnormal.
  • the first comparison result is that the absolute value of the difference between the gray scale compensation parameters of the first target sub-pixel 301 and the adjacent first target sub-pixels on four sides is smaller than the abnormality identification threshold, it is determined that there is no abnormality in the first target sub-pixel 301 .
  • the gray-scale voltage of the second target sub-pixel 302 in the display stage is determined, and the gray-scale voltage of the second target sub-pixel 302 in the display stage is used to determine The gray-scale voltages of the remaining sub-pixels in the sub-display area 30 in the display stage.
  • the process of using the gray-scale voltage of the second target sub-pixel 302 in the display stage to determine the gray-scale voltage of the remaining sub-pixels in the sub-display region 30 in the display stage reference can be made to the description of the previous embodiment, so it is not repeated here. .
  • the gray-scale compensation parameter used in the process of identifying whether the first target sub-pixel is abnormal is the voltage at which the target sub-pixel reaches the ideal brightness for displaying the target gray-scale value.
  • the first comparison result can be obtained by comparing the voltage of the first target sub-pixel 301 and the first target sub-pixel in the adjacent sub-display area to reach the ideal brightness of displaying the target grayscale value. For example, the voltages of the first target sub-pixel 301 and the adjacent first target sub-pixels on the upper side, lower side, left side and right side to achieve the ideal brightness for displaying the target gray scale value can be compared respectively.
  • the display method of this embodiment further includes: for at least one sub-display area, using the sub-display area
  • the grayscale compensation parameter of the target subpixel in the display area and the grayscale compensation parameter of the target subpixel in the adjacent sub-display area determine whether the sub-display area has a first edge area and the position of the first edge area.
  • the target sub-pixels in the sub-display area include: a first target sub-pixel and at least one third target sub-pixel, and the first target sub-pixel and the third target sub-pixel are located in different rows and different columns.
  • the location of an edge area and a first edge area includes: for at least one sub-display area, comparing the grayscale compensation of the first target sub-pixel in the sub-display area and the first target sub-pixel in the adjacent sub-display area parameter to obtain a second comparison result; according to the second comparison result, determine whether there is a first edge area in the sub-display area; when it is determined that there is a first edge area in the sub-display area, compare the third edge area in the sub-display area Grayscale compensation parameters of the target
  • determining the gray-scale voltages of the remaining sub-pixels in the sub-display region in the display stage including: for the first edge region identified in the sub-display region , using the gray-scale voltage of the target sub-pixel in the first edge region in the display stage, determine the gray-scale voltage of the remaining sub-pixels in the first edge region in the display stage by linear interpolation; In areas other than the first edge region, the gray-scale voltages of the target sub-pixels in the display stage are used to determine the gray-scale voltages of the remaining sub-pixels in the display stage in the region other than the first edge region by linear interpolation.
  • the first edge region is an afterimage edge region. Due to the aging of the light-emitting device, there may be an afterimage display problem, and the gray-scale voltage compensation for the gray-scale compensation parameters of the sub-display area sharing a target sub-pixel may lead to the situation that the after-image in the sub-display area cannot be compensated, thus affecting the display effect. . In this exemplary embodiment, by selecting multiple sub-pixels in the sub-display area as target sub-pixels, and using the grayscale compensation parameters of the multiple target sub-pixels to identify whether the first edge area and the first edge area exist in the sub-display area s position.
  • the gray-level compensation parameters of the target sub-pixels in the first edge region are used to determine the compensated gray-level voltages of the remaining sub-pixels in the first edge region, and for the regions outside the first edge region, the The gray-scale compensation parameters of the target sub-pixels in this area are used to determine the compensated gray-scale voltages of the remaining sub-pixels in this area. In this way, targeted compensation can be performed in the first edge region to avoid the situation where afterimage cannot be compensated due to data sharing, thereby improving the display effect.
  • FIG. 7 is another schematic diagram of a sub-display area of at least one embodiment of the present disclosure.
  • four adjacent sub-display areas (for example, the sub-display area 40 and the three sub-display areas adjacent to the sub-display area 40 ) are used as examples for illustration, and the photosensitive devices in the sub-display areas are omitted.
  • each sub-display area is provided with 16 sub-pixels arranged in a 4*4 array and a plurality of photosensitive devices corresponding to the plurality of sub-pixels one-to-one.
  • the photosensitive device may be located on one side of the corresponding sub-pixel.
  • the sub-pixel at the upper left corner of the sub-display area is used as the first target sub-pixel, and a plurality of sub-pixels in different rows and columns from the first target sub-pixel and different rows and columns are selected.
  • pixel as the third target sub-pixel.
  • the first target sub-pixel 401 in the sub-display area 40 is located at the upper left corner of the sub-display area 40 (ie, located in the first row and the first column).
  • the third target sub-pixel 402b in the sub-display area 40 is located in the second row and the third column
  • the third target sub-pixel 402c is located in the third row and the second column
  • the third target sub-pixel 402a is located in the fourth row and the fourth column.
  • this embodiment does not limit this.
  • the grayscale compensation parameter used in the process of identifying the first edge region is the voltage at which the target sub-pixel achieves an ideal brightness for displaying the target grayscale value.
  • FIG. 8 is a schematic diagram of a first edge area of a sub-display area according to at least one embodiment of the present disclosure.
  • the sub-display area 40 is taken as an example for description below with reference to FIG. 7 and FIG. 8 .
  • the gray-scale compensation parameters of the first target sub-pixel 401 and the first target sub-pixel in the adjacent sub-display area are compared , to get the second comparison result.
  • the voltage at which the first target sub-pixel 401 and the first target sub-pixel in the adjacent sub-display area reach the ideal brightness for displaying the target grayscale value can be compared to obtain the second comparison result.
  • the gray scale compensation parameters of the first target sub-pixel 401 and the adjacent first target sub-pixels on the upper side, lower side, left side, right side, upper left side, lower left side, upper right side and lower right side can be compared respectively.
  • the second comparison result is that the absolute value of the difference between the grayscale compensation parameters of the first target sub-pixel 401 and at least one adjacent first target sub-pixel is greater than the edge detection threshold and smaller than the abnormality identification threshold, it is determined that the sub-display area 40 exists first edge region.
  • the second comparison result is that the absolute value of the difference between the gray scale compensation parameters of the first target sub-pixel 401 and the adjacent first target sub-pixels is smaller than the edge detection threshold, it is determined that there is no first edge region in the sub-display area 40 .
  • the first edge condition that is, the absolute difference between the gray-scale compensation parameters of the adjacent target sub-pixels 401 and the first target sub-pixel 401 is satisfied.
  • the position of the first target sub-pixel whose value is greater than the edge detection threshold and less than the abnormality identification threshold is used to identify the type of the first edge region.
  • the first edge region is identified as a vertical edge; If the first edge condition is satisfied between the adjacent first target sub-pixels 421 on the side, the first edge area is identified as a lateral edge; If the first edge condition is satisfied, the first edge region is identified as the corner region. As shown in FIG.
  • the first edge condition is satisfied between the first target sub-pixel 401 and the first target sub-pixel 411 adjacent to the lower side, and the first target sub-pixel 401 It is taken as an example that the first edge condition is satisfied between the first target sub-pixels 431 adjacent to the lower right side, that is, the sub-display area 40 has a vertical edge and a corner edge.
  • the gray levels of the third target sub-pixel in the sub-display area 40 and the first target sub-pixel in the adjacent sub-display area may be compared Compensation parameters, and comparing the grayscale compensation parameters of the third target sub-pixel in the sub-display area 40 and the third target sub-pixel in the adjacent sub-display area, obtaining a third comparison result, and determining the vertical edge according to the third comparison result and the position of the corner edges. As shown in FIG.
  • the third comparison result indicates that the first edge condition is not satisfied between the third target sub-pixel 402 c and the first target sub-pixel 411 , and there is no difference between the third target sub-pixel 402 a and the first target sub-pixel 411 If the first edge condition is satisfied, and the first edge condition is satisfied between the third target sub-pixel 402 b and the first target sub-pixel 411 , it can be determined that the vertical edge includes the third row and the fourth row of the sub-display area 40 .
  • the third comparison result indicates that the first edge condition is not satisfied between the third target sub-pixel 402a and the first target sub-pixel 431, and the first edge condition is not satisfied between the third target sub-pixel 402c and the first target sub-pixel 431, If the first edge condition is satisfied between the third target sub-pixel 402b and the first target sub-pixel 431, it can be determined that the corner edge is located at the lower right corner of the sub-display area 40, and the corner edge includes the second column to the sub-display area 40 Fourth column, third row, and fourth row. Combining the vertical edges and corner edges, it can be known that the first edge area 50 in the sub-display area 40 includes: the entire third row and the fourth row of the sub-display area 40 .
  • the gray-scale voltages of the third target sub-pixels 402 c and 402 a in the display stage can be used to determine through linear interpolation
  • the gray-scale voltages of the remaining sub-pixels 406 in the first edge region 50 in the display stage does not limit this.
  • the adjacent sub-display area on the left side can be used.
  • Linear interpolation is performed between the third target sub-pixel in the region and the third target sub-pixel 402a or 402c in the sub-display region 40 to obtain the gray-scale voltages of the remaining sub-pixels in the first edge region 50 in the display stage.
  • the gray-scale voltages of the sub-pixels 403 in the sub-display area 40 in the display stage can be based on the gray-scale voltages of the first target sub-pixel 401 and the upper adjacent first target sub-pixels in the display stage.
  • the gray-scale voltage of the sub-pixel 404 in the sub-display area 40 in the display phase can be obtained by linear interpolation using the gray-scale voltage of the first target sub-pixels 401 and 421 in the display phase, and the sub-pixels in the sub-display area 40
  • the gray-scale voltage of the pixel 405 in the display stage can be obtained by linear interpolation using the gray-scale voltage of the adjacent sub-pixels 403 in the display stage.
  • this embodiment does not limit this.
  • the present exemplary embodiment can realize fast identification and compensation of the first edge region, and can improve the compensation effect.
  • the display method further includes: determining the theoretical brightness of the sub-display area according to the gray-scale values of a plurality of sub-pixels in the sub-display area; and displaying the corresponding gray-scale values of the plurality of sub-pixels in the sub-display area
  • the sensing brightness of the sub-display area is obtained through the photosensitive device corresponding to the target sub-pixel in the sub-display area; whether the compensation condition is satisfied is judged by the theoretical brightness and the sensed brightness of the sub-display area; when the number of times the compensation condition is satisfied is greater than the number of times
  • the step of determining the grayscale compensation parameter of the target sub-pixel in at least one sub-display area of the display area by using at least one photosensitive device disposed in the display area is performed.
  • the ideal brightness calculation formula can be used to calculate the theoretical brightness corresponding to 9 sub-pixels in the sub-display area in the real-time display stage; in the real-time display stage, through the sub-display
  • the photosensitive device corresponding to the target sub-pixel in the center of the area can obtain the sensed brightness of the sub-display area.
  • the theoretical brightness and the sensed brightness are compared, and when the absolute value of the difference between the two is greater than or equal to the brightness threshold (eg, 10% of the theoretical brightness), the number of times the compensation condition is satisfied is increased by 1. Once the absolute value of the difference between the two is smaller than the luminance threshold, the number of times the compensation condition is satisfied is reset to zero.
  • the brightness threshold e. 10% of the theoretical brightness
  • step S1 When the number of times the compensation condition is satisfied is greater than the number of times threshold (eg, 60 times), the above step S1 is performed when the display device is turned off, so that steps S2 and S3 are performed when the display device is turned on again to compensate the display brightness.
  • this embodiment does not limit this.
  • steps S1 to S3 may be performed when the display device is turned on again.
  • the sensing and compensation calculation process is performed only when certain conditions are met.
  • a photosensitive device can be used to determine grayscale compensation parameters during the non-display period of the display device, and the compensated grayscale voltage can be calculated using the grayscale compensation parameters obtained during the non-display period in the display stage to improve the display effect.
  • FIG. 9 is a schematic diagram of a display device according to at least one embodiment of the disclosure.
  • a display device comprising: a plurality of photosensitive devices 81 , and a processor 82 connected to the plurality of photosensitive devices.
  • the plurality of photosensitive devices 81 are located in the display area of the display panel, and are disposed corresponding to at least one sub-pixel in at least one sub-display area of the display area.
  • the processor 82 is configured to determine the grayscale compensation parameter of the target subpixel in the subdisplay area through the photosensitive device 81 in the subdisplay area, and use the grayscale compensation parameter of the target subpixel in the subdisplay area and the output to be output in the display stage.
  • the grayscale value determines the grayscale voltage of the target subpixel in the display stage, and determines the grayscale voltage of the remaining subpixels in the sub-display area in the display stage according to the grayscale voltage of the target subpixel in the display stage.
  • the photosensitive device 81 may be disposed in the display area of the display panel, and the processor 82 may be disposed in the non-display area of the display panel.
  • the processor may provide the compensated gray-scale voltage to a data driver on the display panel, so that the data driver generates data voltages provided to data lines, which provide the data voltages to sub-pixels in the display area.
  • At least one embodiment of the present disclosure further provides a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the steps of the above-mentioned display method are implemented.
  • Computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示方法,包括:通过设置在显示区域内的至少一个感光器件,确定显示区域的至少一个子显示区域内的目标子像素的灰阶补偿参数(S1);利用目标子像素的灰阶补偿参数以及在显示阶段拟输出的灰阶值,确定目标子像素在显示阶段的灰阶电压(S2);根据目标子像素在显示阶段的灰阶电压,确定子显示区域内其余子像素在显示阶段的灰阶电压(S3)。

Description

显示方法、显示装置及计算机可读存储介质
本申请要求于2021年3月18日提交中国专利局、申请号为202110292898.4、发明名称为“显示方法、显示装置及计算机可读存储介质”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
技术领域
本文涉及但不限于显示技术领域,尤指一种显示方法、显示装置及计算机可读存储介质。
背景技术
电致发光元件作为一种电流型发光器件已越来越多地被应用于显示面板中。由于具备自发光特性,电致发光显示面板不需要背光源,且具有对比度高、厚度薄、视角广、反应速度快、可弯曲、构造及制程简单等优点,因此,电致发光显示面板逐渐成为下一代主流显示面板。一般来说,电致发光显示面板的像素电路包括薄膜晶体管(TFT,Thin Film Transistor)以及存储电容(Capacitance),通过固定的扫描波形控制TFT,将与显示数据相应的电压充至存储电容,借由电压的大小控制显示单元(例如,有机发光二极管(OLED,Organic Light-Emitting Diode)器件),进而调整显示单元的发光亮度。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供一种显示方法、显示装置及计算机可读存储介质。
一方面,本公开实施例提供一种显示方法,包括:通过设置在显示区域内的至少一个感光器件,确定所述显示区域的至少一个子显示区域内的目标子像素的灰阶补偿参数;利用所述目标子像素的灰阶补偿参数以及在显示阶段拟输出的灰阶值,确定所述目标子像素在所述显示阶段的灰阶电压;根据 所述目标子像素在所述显示阶段的灰阶电压,确定所述子显示区域内其余子像素在所述显示阶段的灰阶电压。
在一些示例性实施方式中,所述灰阶补偿参数包括:所述目标子像素的起亮电压、所述目标子像素达到显示目标灰阶值的理想亮度的电压。所述利用所述目标子像素的灰阶补偿参数以及在显示阶段拟输出的灰阶值,确定所述目标子像素在所述显示阶段的灰阶电压,包括:根据以下式子确定所述目标子像素在显示阶段的灰阶电压:
Figure PCTCN2021129975-appb-000001
其中,Vt为所述目标子像素的起亮电压,Vt1为所述目标子像素达到显示目标灰阶值GL1的理想亮度的电压,GL2为所述目标子像素在所述显示阶段拟输出的灰阶值。
在一些示例性实施方式中,所述根据所述目标子像素在所述显示阶段的灰阶电压,确定所述子显示区域内其余子像素在所述显示阶段的灰阶电压,包括:根据相邻子显示区域内的目标子像素在显示阶段的灰阶电压,通过线性插值方式确定相邻子显示区域内的其余子像素在所述显示阶段的灰阶电压。
在一些示例性实施方式中,所述根据相邻子显示区域内的目标子像素在显示阶段的灰阶电压,通过线性插值方式确定相邻子显示区域内的其余子像素在所述显示阶段的灰阶电压,包括:根据相邻子显示区域内的目标子像素在显示阶段的灰阶电压,分别沿第一方向和第二方向进行线性插值,确定相邻子显示区域内的其余子像素在所述显示阶段的灰阶电压,其中,所述第一方向与第二方向交叉。
在一些示例性实施方式中,所述子显示区域内的目标子像素位于所述子显示区域的中心位置。
在一些示例性实施方式中,所述子显示区域内的目标子像素包括:第一目标子像素和第二目标子像素。在获取所述显示区域的至少一个子显示区域内的目标子像素的灰阶补偿参数之后,所述显示方法还包括:针对至少一个子显示区域,比较所述子显示区域内的第一目标子像素的灰阶补偿参数与相邻子显示区域内的第一目标子像素的灰阶补偿参数,得到第一比较结果;根 据所述第一比较结果,确定所述子显示区域内的第一目标子像素是否存在异常;当所述子显示区域内的第一目标子像素存在异常,根据所述子显示区域内的第二目标子像素在显示阶段的灰阶电压,确定所述子显示区域内其余子像素在所述显示阶段的灰阶电压。
在一些示例性实施方式中,所述子显示区域内的第一目标子像素和第二目标子像素位于所述子显示区域的不同角位置。
在一些示例性实施方式中,在获取所述显示区域的至少一个子显示区域内的目标子像素的灰阶补偿参数之后,所述显示方法还包括:针对至少一个子显示区域,利用所述子显示区域内的目标子像素的灰阶补偿参数、以及相邻子显示区域内的目标子像素的灰阶补偿参数,确定所述子显示区域是否存在第一边缘区域以及第一边缘区域的位置。
在一些示例性实施方式中,所述子显示区域内的目标子像素包括:第一目标子像素和至少一个第三目标子像素,所述第一目标子像素和第三目标子像素位于不同行和不同列。所述针对至少一个子显示区域,利用所述子显示区域内的目标子像素的灰阶补偿参数、以及相邻子显示区域内的目标子像素的灰阶补偿参数,确定所述子显示区域是否存在第一边缘区域以及第一边缘区域的位置,包括:针对至少一子显示区域,比较所述子显示区域内的第一目标子像素与相邻子显示区域内的第一目标子像素的灰阶补偿参数,得到第二比较结果;根据所述第二比较结果,确定所述子显示区域是否存在第一边缘区域;当确定所述子显示区域存在第一边缘区域,比较所述子显示区域内的第三目标子像素与相邻子显示区域的第一目标子像素的灰阶补偿参数、以及比较所述子显示区域内的第三目标子像素与相邻子显示区域的第三目标子像素的灰阶补偿参数,得到第三比较结果,并根据第三比较结果,确定所述子显示区域内的第一边缘区域的位置。
在一些示例性实施方式中,所述根据所述目标子像素在显示阶段的灰阶电压,确定所述子显示区域内其余子像素在所述显示阶段的灰阶电压,包括:针对在所述子显示区域识别出的第一边缘区域,利用所述第一边缘区域内的目标子像素在显示阶段的灰阶电压,通过线性插值方式确定所述第一边缘区域内其余子像素在所述显示阶段的灰阶电压;针对所述子显示区域内除所述 第一边缘区域以外的区域,利用所述第一边缘区域以外的区域内的目标子像素在显示阶段的灰阶电压,通过线性插值方式确定所述第一边缘区域以外的区域内其余子像素在所述显示阶段的灰阶电压。
在一些示例性实施方式中,所述至少一个子显示区域设置有按照3*3阵列排布的多个子像素,或者,按照4*4阵列排布的多个子像素。
在一些示例性实施方式中,所述子显示区域内的子像素和感光器件一一对应。
在一些示例性实施方式中,所述显示方法还包括:根据所述子显示区域内的多个子像素的灰阶值,确定所述子显示区域的理论亮度;在所述子显示区域内的多个子像素显示对应的灰阶值时,通过所述子显示区域内的目标子像素对应的感光器件,获取所述子显示区域的感测亮度;通过所述子显示区域的理论亮度和感测亮度判断是否满足补偿条件;当满足补偿条件的次数大于次数阈值后,执行通过设置在显示区域内的至少一个感光器件,确定所述显示区域的至少一个子显示区域内的目标子像素的灰阶补偿参数的步骤。
另一方面,本公开实施例提供一种显示装置,包括:多个感光器件以及处理器。多个感光器件位于显示面板的显示区域,并与所述显示区域的至少一个子显示区域内的至少一个子像素对应设置。处理器与所述多个感光器件连接,配置为通过子显示区域内的感光器件,确定所述子显示区域内的目标子像素的灰阶补偿参数,利用所述子显示区域的目标子像素的灰阶补偿参数以及在显示阶段拟输出的灰阶值,确定所述目标子像素在所述显示阶段的灰阶电压,以及根据所述目标子像素在所述显示阶段的灰阶电压,确定所述子显示区域内其余子像素在所述显示阶段的灰阶电压。
另一方面,本公开实施例提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的显示方法。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部 分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开的技术方案的限制。附图中一个或多个部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
图1为本公开至少一实施例的显示方法的流程示意图;
图2为本公开至少一实施例的显示面板的显示区域的结构示意图;
图3为本公开至少一实施例的感光器件连接的感测电路的示例图;
图4为本公开至少一实施例的子显示区域的示意图;
图5A为本公开至少一实施例的子显示区域的另一示意图;
图5B至图5D为本公开至少一实施例的子显示区域的线性插值顺序的示意图;
图6为本公开至少一实施例的子显示区域的另一示意图;
图7为本公开至少一实施例的子显示区域的另一示意图;
图8为本公开至少一实施例的子显示区域的第一边缘区域的示意图;
图9为本公开至少一实施例的显示装置的示意图。
具体实施方式
下面将结合附图对本公开实施例进行详细说明。实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为一种或多种形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图中,有时为了明确起见,夸大表示了一个或多个构成要素的大小、层的厚度或区域。因此,本公开的一个方式并不一定限定于该尺寸,附图中多个部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的一个方式不局限于附图所示的形状或数值等。
本公开中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混 同而设置,而不是为了在数量方面上进行限定的。本公开中的“多个”表示两个或两个以上的数量。
在本公开中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本公开中的含义。
晶体管的工艺稳定性是影响显示画面的主要因素。多个子像素之间的驱动晶体管的阈值电压(Threshold Voltage)与迁移率(Mobility)存在差异,导致供给各个子像素的电流不同,从而出现亮度偏差,显示面板的亮度均匀性会下降,甚至产生区域的斑点或图案。另一方面,显示器件(例如,OLED器件)会随着使用时长的增加渐渐老化,并且不可恢复,在长时间点亮的区域会老化的更快,导致影像画面的残像。然而,针对上述问题,目前的补偿方式无法提供全面有效的补偿,导致随着使用时长的增加,显示面板的均匀性会开始下降,并可能出现残像等显示问题。
图1为本公开至少一实施例的显示方法的流程示意图。如图1所示,本实施例的显示方法,包括以下步骤S1至S3。
步骤S1、通过设置在显示区域内的至少一个感光器件,确定显示区域的至少一个子显示区域内的目标子像素的灰阶补偿参数;
步骤S2、利用目标子像素的灰阶补偿参数以及在显示阶段拟输出的灰阶值,确定目标子像素在显示阶段的灰阶电压;
步骤S3、根据目标子像素在显示阶段的灰阶电压,确定子显示区域内其余子像素在显示阶段的灰阶电压。
本实施例的显示方法可以对显示面板的亮度进行补偿,从而提升显示面板的显示均匀性。而且,通过子显示区域内的灰阶补偿参数的共用,可以在使用较少数据量的情况下,达到较好的补偿效果。在一些示例中,显示面板可以为OLED显示面板。然而,本实施例对此并不限定。
在一些示例性实施方式中,灰阶补偿参数包括:目标子像素的起亮电压、目标子像素达到显示目标灰阶值的理想亮度的电压。在本示例中,利用目标子像素在理想亮度下的电压数据,对子显示区域的显示效果进行补偿,可以改善由于显示区域的显示器件老化等造成的显示问题,从而提高显示面板的显示效果。
图2为本公开至少一实施例的显示面板的显示区域的结构示意图。如图2所示,显示区域可以包括:以矩阵方式排布的多个像素单元以及多个感光器件Q。多个像素单元中的至少一个包括出射第一颜色光线的第一发光单元P1、出射第二颜色光线的第二发光单元P2、出射第三颜色光线的第三发光单元P3和出射第四颜色光线的第四发光单元P4。第一发光单元P1、第二发光单元P2、第三发光单元P3和第四发光单元P4均包括像素驱动电路和发光器件。第一发光单元P1、第二发光单元P2、第三发光单元P3和第四发光单元P4中的像素驱动电路分别与扫描信号线、数据信号线D连接,像素驱动电路被配置为在扫描信号线的控制下,接收数据信号线D传输的数据电压,向发光器件输出相应的电流。第一发光单元P1、第二发光单元P2、第三发光单元P3和第四发光单元P4中的发光器件分别与所在发光单元的像素驱动电路连接,发光器件被配置为响应所在发光单元的像素驱动电路输出的电流发出相应亮度的光。
在一些示例性实施方式中,像素单元中可以包括红色(R)发光单元、绿色(G)发光单元、蓝色(B)发光单元和白色发光单元,或者可以包括红色发光单元、绿色发光单元和蓝色发光单元,本公开在此不做限定。在一些示例性实施方式中,像素单元中发光单元的形状可以是矩形状、菱形、五边形或六边形。例如,像素单元包括三个发光单元时,三个发光单元可以采用 水平并列、竖直并列或品字方式排列;像素单元包括四个发光单元时,四个发光单元可以采用水平并列、竖直并列或正方形(Square)方式排列,本公开在此不做限定。
在一些示例性实施方式中,多个感光器件Q与多个发光单元可以一一对应。感光器件Q可以位于发光单元的一侧,例如位于发光单元的上侧。然而,本实施例对此并不限定。例如,感光器件可以位于发光单元的下侧,左侧或右侧。在一些示例中,一个感光器件可以与多个发光单元对应。
在一些示例性实施方式中,感光器件可以为PIN型光电探测器(又称为PIN结二极管、PIN二极管)。由于每个发光单元周围均设置有感光器件,发光单元根据灰阶值产生对应的亮度的光时,光照会投射到感光器件上,感光器件受到光照后,经由光电转换,会产生相应的电流,然后通过感测电路转换得到对应的发光单元的发光亮度。
图3为本公开至少一实施例的感光器件连接的感测电路的示意图。如图3所示,感测电路可以包括:开关单元、电流积分单元、分路单元、多路复用器(MUX)和模数转换器(ADC)。其中,开关单元包括晶体管T1,晶体管T1的第一极与感光器件的输出端连接,晶体管T1的第二极与运算放大器AM的第一输入端连接,晶体管T1的控制极与第一信号端SW连接。电流积分单元包括:运算放大器AM、电容Cf、第一开关K1、电阻Lpf和第二开关K2。运算放大器AM的第二输入端与第二信号端REF连接。第一开关K1和电容Cf并联在运算放大器AM的第一输入端和输出端之间。电阻Lpf和第二开关K2并联在运算放大器AM的输出端和分路单元的输入端之间。分路单元包括多个开关(例如,包括第三开关K3、第四开关K4、第五开关K5和第六开关K6)和多个电容。每个开关的一端与分路单元的输入端连接,另一端与分路单元的一个输出端连接;每个电容的一端与分路单元的一个输出端连接,另一端接地。分路单元的多个输出端与多路复用器(MUX)连接,多路复用器与模数转换器(ADC)连接。在一些示例中,感光器件设置在显示区域,感测电路可以设置在显示区域之外的外部电路板中,感光器件可以通过走线与感测电路连接。然而,本实施例对于感测电路的结构和设置位置并不限定。
在一些示例性实施方式中,步骤S1可以包括:根据以下式子确定目标子像素在显示阶段的灰阶电压:
Figure PCTCN2021129975-appb-000002
其中,Vt为目标子像素的起亮电压,Vt1为目标子像素达到显示目标灰阶值GL1的理想亮度的电压,GL2为目标子像素在显示阶段拟输出的灰阶值。
在本示例性实施方式中,以达到Gamma2.2曲线的显示效果为例,可以采用以下式子来计算子像素的理想亮度:
L=L max(GL/1023) 2.2
其中,L为子像素按照灰阶值GL显示时的理想亮度,L max为子像素的最大亮度。然而,本实施例对此并不限定。例如,可以采用其他Gamma曲线来计算理想亮度。
在一些示例性实施方式中,在感测阶段,控制子像素在不同灰阶电压下进行显示,同时通过与子像素对应的感光器件感测子像素的发光亮度。根据子像素的理想亮度计算式子,可以确定子像素在起亮时的理想亮度和在显示目标灰阶值时的理想亮度。当感光器件感测到子像素的发光亮度在起亮时的理想亮度,可以确定子像素在起亮时达到理想亮度的电压,即起亮电压Vt。当感光器件感测到子像素的发光亮度达到目标灰阶值时的理想电压,可以确定子像素达到目标灰阶值的理想亮度的电压Vt1。在显示阶段,可以利用在感测阶段得到的Vt和Vt1进行亮度补偿。在一些示例中,目标灰阶值可以为127。然而,本实施例对此并不限定。
根据晶体管电流公式可以采用以下式子来计算子像素的显示亮度:
L’=η*K(GL’-Vt 0) 2
其中,L’为基于晶体管电流确定的显示亮度,Vt 0为子像素的起亮电压,η为发光效率系数,GL’为与子像素显示的灰阶值对应的灰阶电压,K为与晶体管的工艺参数和几何尺寸有关的常数。
根据以上子像素的理想亮度计算式和基于晶体管电流的亮度计算式,结合子像素的灰阶补偿参数可以得到以下式子:
Figure PCTCN2021129975-appb-000003
经过简化可以得到:
Figure PCTCN2021129975-appb-000004
最终可以得到以下的灰阶补偿计算式:
Figure PCTCN2021129975-appb-000005
其中,GL’为子像素待显示的灰阶值GL2对应的灰阶电压,Vt为子像素的起亮电压,Vt1为子像素达到显示目标灰阶值GL1的理想亮度的电压,GL2为子像素待显示的灰阶值。
例如,目标灰阶值GL1=127时,可以得到灰阶补偿计算式为:
Figure PCTCN2021129975-appb-000006
由于子像素的起亮电压Vt和子像素达到显示目标灰阶值GL1的理想亮度的电压Vt1均是利用感光器件在感测阶段已经得到的,目标灰阶值GL1是感测阶段采用的固定灰阶值,待显示的灰阶值GL2可以根据显示阶段的显示数据得到,因此,根据上述已知值,利用灰阶补偿计算式可以确定出补偿后的灰阶电压,从而达到补偿和调整Gamma显示效果的目的。
在一些示例性实施方式中,得到灰阶补偿参数的感测阶段可以在显示装置开启或关闭时进行,以便定期改善显示阶段的显示效果;或者,感测阶段可以在显示装置开启后的非显示时段进行,以便支持实时改善显示效果。然而,本实施例对此并不限定。
在一些示例性实施方式中,步骤S2可以包括:根据相邻子显示区域内的目标子像素在显示阶段的灰阶电压,通过线性插值方式确定相邻子显示区域内的其余子像素在显示阶段的灰阶电压。
在本示例性实施方式中,无需针对每个子像素利用灰阶补偿计算式计算补偿后的灰阶电压,而是在子显示区域内共用目标子像素的灰阶补偿参数,然后通过相邻目标子像素之间的线性插值方式来确定其余子像素的补偿后的灰阶电压。如此一来,可以减少感光器件的工作量和数据计算量,从而提高 处理效率。
图4为本公开至少一实施例的子显示区域的示意图。图4中以三个相邻的子显示区域(例如,子显示区域10、11和12)为例进行示意,且省略示意了子显示区域内的感光器件。在一些示例性实施方式中,如图4所示,每个子显示区域设置有按照3*3阵列排布的9个子像素以及与多个子像素一一对应的多个感光器件。在一些示例中,感光器件可以位于对应的子像素的一侧。在本示例中,以子显示区域的中心位置的子像素作为目标子像素,例如,子显示区域10内的目标子像素101位于子显示区域10的中心位置。
在一些示例中,通过目标子像素对应的感光器件可以确定目标子像素的灰阶补偿参数,利用目标子像素的灰阶补偿参数可以得出灰阶补偿计算式;然后,利用灰阶补偿计算式和目标子像素在显示阶段的灰阶值,可以计算出目标子像素在显示阶段的灰阶电压,该灰阶电压为经过补偿之后的灰阶电压。在得到目标子像素在显示阶段的灰阶电压之后,可以利用目标子像素在显示阶段的灰阶电压确定出其余子像素在显示阶段的灰阶电压。例如,在图4中,子显示区域10内的目标子像素101右侧的子像素102和子显示区域12内目标子像素121左侧的子像素在显示阶段的灰阶电压,可以通过对目标子像素101和目标子像素121在显示阶段的灰阶电压进行线性插值得到;子显示区域10内的目标子像素101左侧的子像素102和子显示区域11内目标子像素111右侧的子像素的灰阶电压,可以通过对目标子像素111和目标子像素101在显示阶段的灰阶电压进行线性插值得到。同理,目标子像素101上侧的子像素在显示阶段的灰阶电压,可以通过对目标子像素101与其上侧相邻的目标子像素的灰阶电压进行线性插值得到;子显示区域10的左上角处的子像素在显示阶段的灰阶电压,可以通过对目标子像素101与其在对角线方向相邻的目标子像素在显示阶段的灰阶电压进行线性插值得到。目标子像素101的下侧、子显示区域10的右上角、左下角和右下角处的子像素在显示阶段的灰阶电压同样可以参照类似方式,通过线性插值得到。然而,本实施例对此并不限定。
在一些示例性实施方式中,根据相邻子显示区域内的目标子像素在显示阶段的灰阶电压,通过线性插值方式确定相邻子显示区域内的其余子像素在 显示阶段的灰阶电压,包括:根据相邻子显示区域内的目标子像素在显示阶段的灰阶电压,分别沿第一方向和第二方向进行线性插值,确定相邻子显示区域内的其余子像素在显示阶段的灰阶电压,其中,第一方向与第二方向交叉。在一些示例中,第一方向为子像素行方向,第二方向为子像素列方向;或者,第一方向子像素列方向,第二方向为子像素行方向。然而,本实施例对此并不限定。
图5A为本公开至少一实施例的子显示区域的另一示意图。图5A中以四个相邻的子显示区域(例如,子显示区域20、以及与子显示区域20相邻的三个子显示区域)为例进行示意,且省略示意了子显示区域内的感光器件。在一些示例性实施方式中,如图5A所示,每个子显示区域设置有按照4*4阵列排布的16个子像素以及与多个子像素一一对应的多个感光器件。在一些示例中,感光器件可以位于对应的子像素的一侧。在本示例中,以子显示区域的左上角位置的子像素作为目标子像素,例如,子显示区域20内的目标子像素201位于子显示区域20的左上角处。在一些示例中,在感测阶段,通过目标子像素对应的感光器件可以确定目标子像素的灰阶补偿参数,利用目标子像素的灰阶补偿参数可以得出灰阶补偿计算式;然后,在显示阶段,利用灰阶补偿计算式和目标子像素在显示阶段的灰阶值,可以计算出目标子像素在显示阶段的灰阶电压,该灰阶电压为经过补偿之后的灰阶电压。在得到目标子像素在显示阶段的灰阶电压之后,可以利用目标子像素在显示阶段的灰阶电压确定出其余子像素在显示阶段的灰阶电压。
图5B至图5D为本公开至少一实施例的子显示区域的线性插值顺序的示意图。下面以子显示区域20为例进行说明。在确定目标子像素(例如,包括目标子像素201、211、221)在显示阶段的灰阶电压之后,如图5B所示,利用目标子像素201与沿第一方向(例如,列方向)相邻的目标子像素221在显示阶段的灰阶电压进行线性插值,以确定目标子像素201和221之间的子像素202在显示阶段的灰阶电压。然后,如图5C所示,利用目标子像素201与沿第二方向(例如,行方向)相邻的目标子像素211在显示阶段的灰阶电压进行线性插值,以确定目标子像素201和211之间的子像素203在显示阶段的灰阶电压。然后,如图5D所示,可以利用子像素202与沿第二方向(例 如,行方向)相邻子显示区域内已确定的子像素在显示阶段的灰阶电压进行线性插值,以确定相邻子显示区域的子像素202之间的其余子像素204在显示阶段的灰阶电压。或者,可以利用子像素203与沿第一方向(例如,列方向)相邻子显示区域内已确定的子像素在显示阶段的灰阶电压进行线性插值,以确定相邻子显示区域的子像素203之间的其余子像素204在显示阶段的灰阶电压。然而,本实施例对此并不限定。例如,可以先按照图5C所示沿行方向进行线性插值,再按照图5B所示沿列方向进行线性插值。
在一些示例性实施方式中,子显示区域内的目标子像素包括:第一目标子像素和第二目标子像素。在确定显示区域的至少一个子显示区域内的目标子像素的灰阶补偿参数之后,本实施方式的显示方法还包括:针对至少一个子显示区域,比较子显示区域内的第一目标子像素的灰阶补偿参数与相邻子显示区域内的第一目标子像素的灰阶补偿参数,得到第一比较结果;根据第一比较结果,确定子显示区域内的第一目标子像素是否存在异常;当子显示区域内的第一目标子像素存在异常,根据子显示区域内的第二目标子像素在显示阶段的灰阶电压,确定子显示区域内其余子像素在显示阶段的灰阶电压。
图6为本公开至少一实施例的子显示区域的另一示意图。图6中以四个相邻的子显示区域(例如,子显示区域30、以及与子显示区域30相邻的三个子显示区域)为例进行示意,且省略示意了子显示区域内的感光器件。在一些示例性实施方式中,如图6所示,每个子显示区域设置有按照4*4阵列排布的16个子像素以及与多个子像素一一对应的多个感光器件。在一些示例中,感光器件可以位于对应的子像素的一侧。在本示例中,以子显示区域的左上角位置的子像素作为第一目标子像素,以子显示区域的右下角位置的子像素作为第二目标子像素。例如,子显示区域30内的第一目标子像素301位于子显示区域30的左上角处,第二目标子像素302位于子显示区域30的右下角处。第一目标子像素301和第二目标子像素302位于子显示区域30的不同角位置。然而,本实施例对此并不限定。
在一些示例中,以图6所示的子显示区域30为例进行说明。在感测阶段,通过第一目标子像素301对应的感光器件确定第一目标子像素301的灰阶补偿参数,以及通过第二目标像素302对应的感光器件确定第二目标子像素302 的灰阶补偿参数之后,比较第一目标子像素301与相邻子显示区域内的第一目标子像素的灰阶补偿参数,得到第一比较结果。当第一比较结果为第一目标子像素301和至少一个相邻第一目标子像素的灰阶补偿参数之差的绝对值大于异常识别阈值,则确定第一目标子像素301存在异常。当第一比较结果为第一目标子像素301和四侧相邻的第一目标子像素的灰阶补偿参数之差的绝对值均小于异常识别阈值,则确定第一目标子像素301不存在异常。当确定第一目标子像素301存在异常后,在子显示区域30,确定第二目标子像素302在显示阶段的灰阶电压,并利用第二目标子像素302在显示阶段的灰阶电压,确定子显示区域30内的其余子像素在显示阶段的灰阶电压。关于利用第二目标子像素302在显示阶段的灰阶电压,确定子显示区域30内的其余子像素在显示阶段的灰阶电压的过程,可以参照前述实施例的说明,故于此不再赘述。
在一些示例中,在识别第一目标子像素是否异常的过程中所采用的灰阶补偿参数为目标子像素达到显示目标灰阶值的理想亮度的电压。其中,可以比较第一目标子像素301与相邻子显示区域内的第一目标子像素达到显示目标灰阶值的理想亮度的电压,得到第一比较结果。例如,可以分别比较第一目标子像素301与上侧、下侧、左侧和右侧相邻的第一目标子像素达到显示目标灰阶值的理想亮度的电压。
在一些示例性实施方式中,在确定显示区域的至少一个子显示区域内的目标子像素的灰阶补偿参数之后,本实施方式的显示方法还包括:针对至少一个子显示区域,利用所述子显示区域内的目标子像素的灰阶补偿参数、以及相邻子显示区域内的目标子像素的灰阶补偿参数,确定所述子显示区域是否存在第一边缘区域以及第一边缘区域的位置。
在一些示例性实施方式中,子显示区域内的目标子像素包括:第一目标子像素和至少一个第三目标子像素,第一目标子像素和第三目标子像素位于不同行和不同列。针对至少一个子显示区域,利用所述子显示区域内的目标子像素的灰阶补偿参数、以及相邻子显示区域内的目标子像素的灰阶补偿参数,确定所述子显示区域是否存在第一边缘区域以及第一边缘区域的位置,包括:针对至少一个子显示区域,比较所述子显示区域内的第一目标子像素 与相邻子显示区域内的第一目标子像素的灰阶补偿参数,得到第二比较结果;根据第二比较结果,确定所述子显示区域是否存在第一边缘区域;当确定所述子显示区域存在第一边缘区域,比较所述子显示区域内的第三目标子像素与相邻子显示区域的第一目标子像素的灰阶补偿参数、以及比较所述子显示区域内的第三目标子像素与相邻子显示区域的第三目标子像素的灰阶补偿参数,得到第三比较结果,并根据第三比较结果,确定子显示区域内的第一边缘区域的位置。
在一些示例性实施方式中,根据目标子像素在显示阶段的灰阶电压,确定子显示区域内其余子像素在显示阶段的灰阶电压,包括:针对在子显示区域识别出的第一边缘区域,利用第一边缘区域内的目标子像素在显示阶段的灰阶电压,通过线性插值方式确定第一边缘区域内其余子像素在显示阶段的灰阶电压;针对子显示区域内除第一边缘区域以外的区域,利用第一边缘区域以外的区域内的目标子像素在显示阶段的灰阶电压,通过线性插值方式确定第一边缘区域以外的区域内其余子像素在显示阶段的灰阶电压。
在一些示例中,第一边缘区域为残像边缘区域。由于发光器件老化可能会出现残像显示问题,而针对子显示区域共用一个目标子像素的灰阶补偿参数进行灰阶电压补偿,可能会导致子显示区域内的残像无法补偿的情况,从而影响显示效果。本示例性实施方式中,通过在子显示区域选择多个子像素作为目标子像素,利用多个目标子像素的灰阶补偿参数来识别出子显示区域内是否存在第一边缘区域以及第一边缘区域的位置。针对第一边缘区域,利用第一边缘区域内的目标子像素的灰阶补偿参数来确定第一边缘区域内其余子像素的补偿后的灰阶电压,而针对第一边缘区域以外的区域,利用这个区域内的目标子像素的灰阶补偿参数来确定这个区域内其余子像素的补偿后的灰阶电压。如此一来,可以在第一边缘区域进行有针对性地补偿,避免数据共用造成无法补偿残像的情况,从而提高显示效果。
图7为本公开至少一实施例的子显示区域的另一示意图。图7中以四个相邻的子显示区域(例如,子显示区域40、以及与子显示区域40相邻的三个子显示区域)为例进行示意,且省略示意了子显示区域内的感光器件。在一些示例性实施方式中,如图7所示,每个子显示区域设置有按照4*4阵列 排布的16个子像素以及与多个子像素一一对应的多个感光器件。在一些示例中,感光器件可以位于对应的子像素的一侧。在本示例中,以子显示区域的左上角位置的子像素作为第一目标子像素,并选择与第一目标子像素不同行和不同列,且相互之间为不同行和不同列的多个子像素作为第三目标子像素。例如,子显示区域40内的第一目标子像素401位于子显示区域40的左上角处(即位于第一行第一列)。子显示区域40内的第三目标子像素402b位于第二行第三列,第三目标子像素402c位于第三行第二列,第三目标子像素402a位于第四行第四列。然而,本实施例对此并不限定。
在一些示例中,在识别第一边缘区域的过程中所采用的灰阶补偿参数为目标子像素达到显示目标灰阶值的理想亮度的电压。在通过感光器件确定第一目标子像素和第三目标子像素的灰阶补偿参数之后,先利用相邻的第一目标子像素的灰阶补偿参数来判断子显示区域是否存在第一边缘区域,如果存在第一边缘区域,则识别出第一边缘区域的类型。然后,根据识别出的第一边缘区域的类型,利用子显示区域内的第三目标子像素和相邻子显示区域的第一目标子像素和第三目标子像素来识别第一边缘区域的位置。然后,对子显示区域内识别出的第一边缘区域和其余区域分别进行线性插值来确定子像素在显示阶段的灰阶电压。
图8为本公开至少一实施例的子显示区域的第一边缘区域的示意图。下面结合图7和图8,以子显示区域40为例进行说明。在一些示例中,在确定第一目标子像素和第三目标子像素的灰阶补偿参数之后,比较第一目标子像素401与相邻子显示区域内的第一目标子像素的灰阶补偿参数,得到第二比较结果。在本示例中,可以比较第一目标子像素401与相邻子显示区域内的第一目标子像素达到显示目标灰阶值的理想亮度的电压,得到第二比较结果。例如,可以分别比较第一目标子像素401与上侧、下侧、左侧、右侧、左上侧、左下侧、右上侧和右下侧相邻的第一目标子像素的灰阶补偿参数。当第二比较结果为第一目标子像素401与至少一个相邻第一目标子像素的灰阶补偿参数之差的绝对值大于边缘检测阈值、且小于异常识别阈值,则确定子显示区域40存在第一边缘区域。当第二比较结果为第一目标子像素401与周边相邻的第一目标子像素的灰阶补偿参数之差的绝对值均小于边缘检测阈值, 则确定子显示区域40不存在第一边缘区域。当根据第二比较结果确定子显示区域40存在第一边缘区域之后,根据与第一目标子像素401之间满足上述第一边缘条件(即相邻目标子像素的灰阶补偿参数之差的绝对值大于边缘检测阈值、且小于异常识别阈值)的第一目标子像素的位置,来识别第一边缘区域的类型。例如,当第一目标子像素401与下侧相邻的第一目标子像素411之间满足第一边缘条件,则识别出第一边缘区域为竖向边缘;当第一目标子像素401与右侧相邻的第一目标子像素421之间满足第一边缘条件,则识别出第一边缘区域为横向边缘;当第一目标子像素401与右下侧相邻的第一目标子像素431之间满足第一边缘条件,则识别出第一边缘区域为角部区域。如图8所示,在本示例的子显示区域40内,以第一目标子像素401与下侧相邻的第一目标子像素411之间满足第一边缘条件,以及第一目标子像素401与右下侧相邻的第一目标子像素431之间满足第一边缘条件为例,即子显示区域40存在竖向边缘和角部边缘。
在一些示例中,在识别出子显示区域40存在竖向边缘和角部边缘之后,可以比较子显示区域40内的第三目标子像素与相邻子显示区域的第一目标子像素的灰阶补偿参数,以及比较子显示区域40内的第三目标子像素与相邻子显示区域的第三目标子像素的灰阶补偿参数,得到第三比较结果,根据第三比较结果,确定竖向边缘和角部边缘的位置。如图7所示,在第三比较结果表明第三目标子像素402c与第一目标子像素411之间不满足第一边缘条件,第三目标子像素402a与第一目标子像素411之间不满足第一边缘条件,第三目标子像素402b与第一目标子像素411之间满足第一边缘条件,则可以确定竖向边缘包括子显示区域40的第三行和第四行。在第三比较结果表明第三目标子像素402a与第一目标子像素431之间不满足第一边缘条件,第三目标子像素402c与第一目标子像素431之间不满足第一边缘条件,第三目标子像素402b与第一目标子像素431之间满足第一边缘条件,则可以确定角部边缘位于子显示区域40的右下角,且角部边缘包括子显示区域40的第二列至第四列、第三行和第四行。综合竖向边缘和角部边缘可知,子显示区域40内的第一边缘区域50包括:子显示区域40的整个第三行和第四行。
在一些示例中,如图7和图8所示,针对子显示区域40内的第一边缘区 域50,可以利用第三目标子像素402c和402a在显示阶段的灰阶电压,通过线性插值方式确定第一边缘区域50内其余子像素406在显示阶段的灰阶电压。然而,本实施例对此并不限定。例如,通过比较子显示区域40的第一边缘区域50内的第三目标子像素(例如,第三目标子像素402b和402c)和左侧相邻子显示区域内的第三目标子像素的灰阶补偿参数,确定子显示区域40内的第一边缘区域50与左侧相邻子显示区域内的第三目标子像素之间均不满足第一边缘条件时,可以利用左侧相邻子显示区域内的第三目标子像素与子显示区域40内的第三目标子像素402a或402c进行线性插值,以得到第一边缘区域50内其余子像素在显示阶段的灰阶电压。如图7和图8所示,子显示区域40内的子像素403在显示阶段的灰阶电压可以利用第一目标子像素401和上侧相邻第一目标子像素在显示阶段的灰阶电压进行线性插值得到,子显示区域40内的子像素404在显示阶段的灰阶电压可以利用第一目标子像素401和421在显示阶段的灰阶电压进行线性插值得到,子显示区域40内的子像素405在显示阶段的灰阶电压可以利用相邻子像素403在显示阶段的灰阶电压进行线性插值得到。然而,本实施例对此并不限定。关于图8中其余子显示区域的第一边缘区域的识别和灰阶补偿过程可以参照前述实施例的说明,故于此不再赘述。
本示例性实施方式可以实现第一边缘区域的快速识别和补偿,可以提高补偿效果。
在一些示例性实施方式中,显示方法还包括:根据子显示区域内的多个子像素的灰阶值,确定子显示区域的理论亮度;在子显示区域内的多个子像素显示对应的灰阶值时,通过子显示区域内的目标子像素对应的感光器件,获取子显示区域的感测亮度;通过子显示区域的理论亮度和感测亮度判断是否满足补偿条件;当满足补偿条件的次数大于次数阈值后,执行通过设置在显示区域内的至少一个感光器件,确定显示区域的至少一个子显示区域内的目标子像素的灰阶补偿参数的步骤。
在一些示例中,以图4所示的子显示区域为例,可以利用理想亮度计算式,计算出子显示区域内9个子像素在实时显示阶段对应的理论亮度;在实时显示阶段,通过子显示区域中心的目标子像素对应的感光器件,可以得到 子显示区域的感测亮度。对理论亮度和感测亮度进行比较,当两者的差值的绝对值大于或等于亮度阈值(例如,理论亮度的10%)时,将满足补偿条件的次数加1。一旦两者的差值的绝对值小于亮度阈值,将满足补偿条件的次数归零。当满足补偿条件的次数大于次数阈值(例如,60次),则在显示装置关闭时执行上述步骤S1,以便在再次开启进行显示时执行步骤S2和S3,以补偿显示亮度。然而,本实施例对此并不限定。在一些示例中,当满足补偿条件的次数大于次数阈值(例如,60次),可以在显示装置重新开启时执行步骤S1至S3。
本示例性实施方式中,在满足一定条件才进行感测和补偿计算过程。然而,本实施例对此并不限定。例如,可以在显示装置的非显示时段利用感光器件确定灰阶补偿参数,并在显示阶段利用非显示时段得到的灰阶补偿参数计算补偿后的灰阶电压,以提高显示效果。
图9为本公开至少一实施例的显示装置的示意图。如图9所示,本公开至少一实施例还提供一种显示装置,包括:多个感光器件81,与多个感光器件连接的处理器82。多个感光器件81位于显示面板的显示区域,并与显示区域的至少一个子显示区域内的至少一个子像素对应设置。处理器82配置为通过子显示区域内的感光器件81,确定子显示区域内的目标子像素的灰阶补偿参数,利用子显示区域的目标子像素的灰阶补偿参数以及在显示阶段拟输出的灰阶值,确定目标子像素在显示阶段的灰阶电压,以及根据目标子像素在显示阶段的灰阶电压,确定子显示区域内其余子像素在显示阶段的灰阶电压。
在一些示例中,感光器件81可以设置在显示面板的显示区域,处理器82可以设置在显示面板的非显示区域。例如,处理器可以将补偿后的灰阶电压提供给显示面板上的数据驱动器,以便数据驱动器产生提供到数据线的数据电压,由数据线将数据电压提供给显示区域的子像素。
关于本实施例的显示装置的实施过程可以参照前述实施例的说明,故于此不再赘述。
此外,本公开至少一实施例还提供一种计算机可读存储介质,存储有计算机程序,该计算机程序被处理器执行时实现上述显示方法的步骤。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块或单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块或单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上显示和描述了本公开的基本原理、主要特征和本公开的优点。本公开不受上述实施例的限制,上述实施例和说明书中描述的只是说明本公开的原理,在不脱离本公开精神和范围的前提下,本公开还会有多种变化和改进,这些变化和改进都落入要求保护的本公开的范围内。

Claims (15)

  1. 一种显示方法,包括:
    通过设置在显示区域内的至少一个感光器件,确定所述显示区域的至少一个子显示区域内的目标子像素的灰阶补偿参数;
    利用所述目标子像素的灰阶补偿参数以及在显示阶段拟输出的灰阶值,确定所述目标子像素在所述显示阶段的灰阶电压;
    根据所述目标子像素在所述显示阶段的灰阶电压,确定所述子显示区域内其余子像素在所述显示阶段的灰阶电压。
  2. 根据权利要求1所述的显示方法,其中,所述灰阶补偿参数包括:所述目标子像素的起亮电压、所述目标子像素达到显示目标灰阶值的理想亮度的电压;
    所述利用所述目标子像素的灰阶补偿参数以及在显示阶段拟输出的灰阶值,确定所述目标子像素在所述显示阶段的灰阶电压,包括:
    根据以下式子确定所述目标子像素在显示阶段的灰阶电压:
    Figure PCTCN2021129975-appb-100001
    其中,Vt为所述目标子像素的起亮电压,Vt1为所述目标子像素达到显示目标灰阶值GL1的理想亮度的电压,GL2为所述目标子像素在所述显示阶段拟输出的灰阶值。
  3. 根据权利要求1或2所述的显示方法,其中,所述根据所述目标子像素在所述显示阶段的灰阶电压,确定所述子显示区域内其余子像素在所述显示阶段的灰阶电压,包括:
    根据相邻子显示区域内的目标子像素在显示阶段的灰阶电压,通过线性插值方式确定相邻子显示区域内的其余子像素在所述显示阶段的灰阶电压。
  4. 根据权利要求3所述的显示方法,其中,所述根据相邻子显示区域内的目标子像素在显示阶段的灰阶电压,通过线性插值方式确定相邻子显示区域内的其余子像素在所述显示阶段的灰阶电压,包括:
    根据相邻子显示区域内的目标子像素在显示阶段的灰阶电压,分别沿第 一方向和第二方向进行线性插值,确定相邻子显示区域内的其余子像素在所述显示阶段的灰阶电压,其中,所述第一方向与第二方向交叉。
  5. 根据权利要求3所述的显示方法,其中,所述子显示区域内的目标子像素位于所述子显示区域的中心位置。
  6. 根据权利要求1或2所述的显示方法,其中,所述子显示区域内的目标子像素包括:第一目标子像素和第二目标子像素;
    在获取所述显示区域的至少一个子显示区域内的目标子像素的灰阶补偿参数之后,所述显示方法还包括:
    针对至少一个子显示区域,比较所述子显示区域内的第一目标子像素的灰阶补偿参数与相邻子显示区域内的第一目标子像素的灰阶补偿参数,得到第一比较结果;
    根据所述第一比较结果,确定所述子显示区域内的第一目标子像素是否存在异常;
    当所述子显示区域内的第一目标子像素存在异常,根据所述子显示区域内的第二目标子像素在显示阶段的灰阶电压,确定所述子显示区域内其余子像素在所述显示阶段的灰阶电压。
  7. 根据权利要求6所述的显示方法,其中,所述子显示区域内的第一目标子像素和第二目标子像素位于所述子显示区域的不同角位置。
  8. 根据权利要求1或2所述的显示方法,在获取所述显示区域的至少一个子显示区域内的目标子像素的灰阶补偿参数之后,所述显示方法还包括:
    针对至少一个子显示区域,利用所述子显示区域内的目标子像素的灰阶补偿参数、以及相邻子显示区域内的目标子像素的灰阶补偿参数,确定所述子显示区域是否存在第一边缘区域以及第一边缘区域的位置。
  9. 根据权利要求8所述的显示方法,其中,所述子显示区域内的目标子像素包括:第一目标子像素和至少一个第三目标子像素,所述第一目标子像素和第三目标子像素位于不同行和不同列;
    所述针对至少一个子显示区域,利用所述子显示区域内的目标子像素的灰阶补偿参数、以及相邻子显示区域内的目标子像素的灰阶补偿参数,确定 所述子显示区域是否存在第一边缘区域以及第一边缘区域的位置,包括:
    针对至少一个子显示区域,比较所述子显示区域内的第一目标子像素与相邻子显示区域内的第一目标子像素的灰阶补偿参数,得到第二比较结果;
    根据所述第二比较结果,确定所述子显示区域是否存在第一边缘区域;
    当确定所述子显示区域存在第一边缘区域,比较所述子显示区域内的第三目标子像素与相邻子显示区域的第一目标子像素的灰阶补偿参数、以及比较所述子显示区域内的第三目标子像素与相邻子显示区域的第三目标子像素的灰阶补偿参数,得到第三比较结果,并根据第三比较结果,确定所述子显示区域内的第一边缘区域的位置。
  10. 根据权利要求9所述的显示方法,其中,所述根据所述目标子像素在所述显示阶段的灰阶电压,确定所述子显示区域内其余子像素在所述显示阶段的灰阶电压,包括:
    针对在所述子显示区域识别出的第一边缘区域,利用所述第一边缘区域内的目标子像素在显示阶段的灰阶电压,通过线性插值方式确定所述第一边缘区域内其余子像素在所述显示阶段的灰阶电压;
    针对所述子显示区域内除所述第一边缘区域以外的区域,利用所述第一边缘区域以外的区域内的目标子像素在显示阶段的灰阶电压,通过线性插值方式确定所述第一边缘区域以外的区域内其余子像素在所述显示阶段的灰阶电压。
  11. 根据权利要求1所述的显示方法,其中,所述至少一个子显示区域设置有按照3*3阵列排布的多个子像素,或者,按照4*4阵列排布的多个子像素。
  12. 根据权利要求1所述的显示方法,其中,所述子显示区域内的子像素和所述感光器件一一对应。
  13. 根据权利要求1所述的显示方法,所述显示方法还包括:根据所述子显示区域内的多个子像素的灰阶值,确定所述子显示区域的理论亮度;
    在所述子显示区域内的多个子像素显示对应的灰阶值时,通过所述子显示区域内的目标子像素对应的感光器件,获取所述子显示区域的感测亮度;
    通过所述子显示区域的理论亮度和感测亮度判断是否满足补偿条件;
    当满足补偿条件的次数大于次数阈值后,执行通过设置在显示区域内的至少一个感光器件,确定所述显示区域的至少一个子显示区域内的目标子像素的灰阶补偿参数的步骤。
  14. 一种显示装置,包括:
    多个感光器件,位于显示面板的显示区域,并与所述显示区域的至少一个子显示区域内的至少一个子像素对应设置;
    处理器,与所述多个感光器件连接,配置为通过子显示区域内的感光器件,确定所述子显示区域内的目标子像素的灰阶补偿参数,利用所述目标子像素的灰阶补偿参数以及在显示阶段拟输出的灰阶值,确定所述目标子像素在所述显示阶段的灰阶电压,以及根据所述目标子像素在所述显示阶段的灰阶电压,确定所述子显示区域内其余子像素在所述显示阶段的灰阶电压。
  15. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至13中任一项所述的显示方法。
PCT/CN2021/129975 2021-03-18 2021-11-11 显示方法、显示装置及计算机可读存储介质 WO2022193688A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110292898.4A CN113053308B (zh) 2021-03-18 2021-03-18 显示方法、显示装置及计算机可读存储介质
CN202110292898.4 2021-03-18

Publications (1)

Publication Number Publication Date
WO2022193688A1 true WO2022193688A1 (zh) 2022-09-22

Family

ID=76513743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129975 WO2022193688A1 (zh) 2021-03-18 2021-11-11 显示方法、显示装置及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN113053308B (zh)
WO (1) WO2022193688A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113053308B (zh) * 2021-03-18 2022-07-12 京东方科技集团股份有限公司 显示方法、显示装置及计算机可读存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011978A1 (en) * 2000-06-06 2002-01-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method of manufacturing the same
US20090058772A1 (en) * 2007-09-04 2009-03-05 Samsung Electronics Co., Ltd. Organic light emitting display and method for driving the same
CN106910483A (zh) * 2017-05-03 2017-06-30 深圳市华星光电技术有限公司 一种显示面板的mura现象补偿方法及显示面板
JP2018131306A (ja) * 2017-02-16 2018-08-23 Jfeスチール株式会社 屋内クレーンの自動運転装置及び自動運転方法
CN109599060A (zh) * 2019-01-11 2019-04-09 京东方科技集团股份有限公司 像素补偿方法、像素补偿系统及显示装置
CN109616049A (zh) * 2018-11-30 2019-04-12 信利(惠州)智能显示有限公司 显示面板的补偿方法、装置、计算机设备和存储介质
CN111292701A (zh) * 2020-03-31 2020-06-16 Tcl华星光电技术有限公司 显示面板补偿方法及装置
CN111724739A (zh) * 2019-03-21 2020-09-29 陕西坤同半导体科技有限公司 一种显示面板及其烙印改善方法、终端及存储介质
CN112071263A (zh) * 2020-09-04 2020-12-11 京东方科技集团股份有限公司 显示面板的显示方法及显示装置
CN113053308A (zh) * 2021-03-18 2021-06-29 京东方科技集团股份有限公司 显示方法、显示装置及计算机可读存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466832B2 (ja) * 1996-10-01 2003-11-17 シャープ株式会社 カラー画像表示装置
JP5879844B2 (ja) * 2011-09-13 2016-03-08 セイコーエプソン株式会社 画像表示装置、画像処理装置
JP2015095101A (ja) * 2013-11-12 2015-05-18 キヤノン株式会社 画像処理装置、画像処理装置の制御方法、及び、プログラム
CN104809986B (zh) * 2015-05-15 2016-05-11 京东方科技集团股份有限公司 一种有机电致发光显示面板及显示装置
JP6574629B2 (ja) * 2015-07-24 2019-09-11 ラピスセミコンダクタ株式会社 表示ドライバ
CN106251807B (zh) * 2016-08-31 2018-03-30 深圳市华星光电技术有限公司 用于提升oled画面对比度的驱动方法及驱动装置
CN108076335A (zh) * 2018-01-02 2018-05-25 京东方科技集团股份有限公司 一种投影播放设备及其播放方法、计算机存储介质
KR20200111324A (ko) * 2019-03-18 2020-09-29 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 구동 방법
CN112509514B (zh) * 2020-12-15 2022-10-21 合肥维信诺科技有限公司 显示面板的亮度补偿方法和装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011978A1 (en) * 2000-06-06 2002-01-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method of manufacturing the same
US20090058772A1 (en) * 2007-09-04 2009-03-05 Samsung Electronics Co., Ltd. Organic light emitting display and method for driving the same
JP2018131306A (ja) * 2017-02-16 2018-08-23 Jfeスチール株式会社 屋内クレーンの自動運転装置及び自動運転方法
CN106910483A (zh) * 2017-05-03 2017-06-30 深圳市华星光电技术有限公司 一种显示面板的mura现象补偿方法及显示面板
CN109616049A (zh) * 2018-11-30 2019-04-12 信利(惠州)智能显示有限公司 显示面板的补偿方法、装置、计算机设备和存储介质
CN109599060A (zh) * 2019-01-11 2019-04-09 京东方科技集团股份有限公司 像素补偿方法、像素补偿系统及显示装置
CN111724739A (zh) * 2019-03-21 2020-09-29 陕西坤同半导体科技有限公司 一种显示面板及其烙印改善方法、终端及存储介质
CN111292701A (zh) * 2020-03-31 2020-06-16 Tcl华星光电技术有限公司 显示面板补偿方法及装置
CN112071263A (zh) * 2020-09-04 2020-12-11 京东方科技集团股份有限公司 显示面板的显示方法及显示装置
CN113053308A (zh) * 2021-03-18 2021-06-29 京东方科技集团股份有限公司 显示方法、显示装置及计算机可读存储介质

Also Published As

Publication number Publication date
CN113053308B (zh) 2022-07-12
CN113053308A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
US11263948B2 (en) Display apparatus and control method
US11574600B2 (en) Display device
US10297201B2 (en) Compensation method of cathode voltage drop of organic light emitting diode display device and pixel driving circuit
US8368677B2 (en) Optical sensor device, display apparatus, and method for driving optical sensor device
US10217392B2 (en) Transparent display device and method for controlling same
US8599223B2 (en) Display device, method for correcting luminance degradation, and electronic apparatus
CN109285498B (zh) 一种显示处理方法、显示处理装置及其显示装置
US10620664B2 (en) Foldable display pannel, display device, image compensation method and image compensation device
US8004479B2 (en) Electroluminescent display with interleaved 3T1C compensation
US10510299B2 (en) Pixel illumination compensation method, pixel illumination compensation apparatus and display device incorporating the apparatus
US10157568B2 (en) Image processing method, image processing circuit, and organic light emitting diode display device using the same
CN107452327A (zh) 显示装置及用于对显示装置的像素进行补偿的模块和方法
CN112071263B (zh) 显示面板的显示方法及显示装置
US11610548B2 (en) Method, a device, a display device and a medium for improving OLED residual images
US10460668B2 (en) Pixel compensation method, pixel compensation apparatus and display apparatus
CN107492359B (zh) 一种显示装置的驱动方法及显示装置
CN110073433B (zh) 显示补偿方法、显示补偿装置、显示装置及存储介质
US11164502B2 (en) Display panel and driving method thereof and display device
CN111798797B (zh) 一种显示控制方法及装置、显示装置、介质
US20180226045A1 (en) Display device and driving method thereof
WO2020211543A1 (zh) 显示调试方法、补偿方法及装置、显示装置和存储介质
KR20170003226A (ko) 휘도보상 시스템 및 방법, 이를 구비한 표시장치
WO2022193688A1 (zh) 显示方法、显示装置及计算机可读存储介质
CN111785215A (zh) 像素电路的补偿方法及驱动方法、补偿装置及显示装置
CN107424559B (zh) 显示设备的显示控制方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17912037

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931263

Country of ref document: EP

Kind code of ref document: A1