WO2022193661A1 - 基于gic监测装置的变压器无功扰动计算方法 - Google Patents

基于gic监测装置的变压器无功扰动计算方法 Download PDF

Info

Publication number
WO2022193661A1
WO2022193661A1 PCT/CN2021/126273 CN2021126273W WO2022193661A1 WO 2022193661 A1 WO2022193661 A1 WO 2022193661A1 CN 2021126273 W CN2021126273 W CN 2021126273W WO 2022193661 A1 WO2022193661 A1 WO 2022193661A1
Authority
WO
WIPO (PCT)
Prior art keywords
gic
transformer
disturbance
monitoring device
signal processing
Prior art date
Application number
PCT/CN2021/126273
Other languages
English (en)
French (fr)
Inventor
石海鹏
高春辉
刁凤新
高贺
孙睿
燕思潼
姜楠
周立超
张倩然
王秀丰
陈旭
戴晨
张哲�
史文馨
王鹏
Original Assignee
国网内蒙古东部电力有限公司电力科学研究院
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网内蒙古东部电力有限公司电力科学研究院, 国家电网有限公司 filed Critical 国网内蒙古东部电力有限公司电力科学研究院
Priority to AU2021273585A priority Critical patent/AU2021273585B2/en
Publication of WO2022193661A1 publication Critical patent/WO2022193661A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the invention relates to the field of power information monitoring and measurement, in particular to a transformer reactive power disturbance calculation method based on a GIC monitoring device.
  • the present invention proposes a method for calculating the reactive power (GIC-Q) disturbance of the transformer based on the GIC monitoring device.
  • the proportional coefficient K value method K value method is used to calculate the GIC-Q disturbance data of the transformer to provide data for judging the GIC-Q disturbance risk.
  • the present invention proposes a transformer reactive power disturbance algorithm based on GIC monitoring device, which has fast calculation speed, and the GIC monitoring device can simultaneously provide GIC-Q data.
  • the method of establishing the field circuit model (referred to as the theoretical algorithm) to calculate the GIC-Q disturbance of the transformer is very complicated, and it is not suitable for the fast real-time calculation of GIC-Q.
  • the present invention proposes an algorithm for transformer reactive power disturbance based on GIC monitoring device. algorithm) to calculate the GIC-Q disturbance data of the transformer to provide real-time data for power grid security analysis.
  • the main realization method of the present invention is as follows:
  • a power grid GIC monitoring device based on the high-voltage incoming and outgoing lines of a transformer the power grid GIC monitoring device is installed on the wires of the high-voltage incoming and outgoing lines of the transformer, and the device includes: a power supply, a current sensor, a Direct Current-Direct Current (DC-DC) Converters, signal processing systems, gateway systems, cloud servers and display modules;
  • DC-DC Direct Current-Direct Current
  • the power supply is connected to the current sensor, the power supply is connected to the signal processing system through a DC-DC converter, the current sensor is connected to the signal processing system, the signal processing system is connected to the gateway system, and the gateway system communicates with the cloud server wirelessly , the cloud server is connected to the display module;
  • the power supply includes a solar panel and a battery.
  • the power grid GIC monitoring device uses a battery to supply power.
  • the solar panel supplies power to the grid GIC monitoring device on the one hand, and charges the battery on the other hand.
  • the power supply is used to output 15V voltage to supply power to the current sensor
  • the DC-DC converter is used to convert the 15V voltage output by the power supply into a 5V voltage to supply power to the signal processing system;
  • the current sensor is used to collect the GIC signal of 0.01-0.0001 Hz, and send the GIC signal to the signal processing system;
  • the signal processing system is used for receiving the GIC signal and processing the GIC signal, and sending the processed data to the cloud server through the gateway system;
  • the cloud server is used for receiving data sent by the signal processing system and storing the received data, and simultaneously sending the received data to the display module;
  • the display module is used to display data in real time to grid dispatchers or operation and maintenance personnel, so as to realize real-time monitoring of the GIC of the grid.
  • the display module includes a PC terminal and a mobile phone terminal.
  • the current sensor adopts a Hall current sensor.
  • a method for calculating reactive power disturbance of a transformer based on a GIC monitoring device applies the above-mentioned power grid GIC monitoring device, and specifically includes the following steps:
  • Step 1 Set Transformer K Value
  • a proportional coefficient K value for calculating the GIC-Q disturbance of the transformer based on the transformer core structure is set.
  • Step 2 Establish a transformer GIC-Q disturbance algorithm based on the K value method
  • a transformer GIC-Q disturbance algorithm based on the K value method is established.
  • the current sensor collects the GIC value flowing in each phase winding of the transformer high-voltage winding in real time, and sends the GIC value.
  • the signal processing system calculates the GIC-Q disturbance data of the tested transformer in real time according to the transformer GIC-Q disturbance algorithm based on the K value method;
  • the calculation formula of GIC-Q based on the K value is simple. As shown in Figure 2, the calculation speed of the CPU of the monitoring device is monitored, and the time for calculating the transformer GIC-Q by the K value method is negligible.
  • Step 3 Multiplatform Application Transformer GIC-Q Disturbance Data
  • the GIC-Q perturbation data calculated in step 2 is sent to the cloud server through the gateway system, and the cloud server is used to receive the GIC-Q perturbation data sent by the signal processing system and store the received GIC-Q perturbation data.
  • the received GIC-Q disturbance data is sent to the display module;
  • the display module is used by the power supply network inspection personnel to grasp the operation status of the transformer, on the other hand, the power supply network dispatcher analyzes the GIC-Q disturbance risk, formulates defense strategies, and realizes real-time monitoring of the power grid GIC.
  • the obtained IC-Q perturbation data is transmitted and displayed to multiple platforms.
  • the iron core structure types include: single-phase shell type, single-phase four-column type, five-column type, three-phase shell type, three-phase three-column type and three-phase five-column type.
  • the transformer GIC-Q disturbance algorithm based on the K value method is shown in formula (1).
  • the power grid GIC monitoring device calculates the GIC-Q disturbance as follows:
  • Q is the GIC-Q loss (three-phase total loss) generated by the GIC invading the transformer
  • Q0 is the reactive power loss (three-phase total loss ) when the transformer is normal
  • I GIC is the GIC of each phase winding of the transformer high-voltage winding (A , B, C, the GIC of each phase winding is equal)
  • K is the proportional coefficient for calculating the change of GIC-Q of the transformer with GIC.
  • the transformer GIC-Q disturbance algorithm based on the GIC monitoring device proposed by the present invention on the one hand, the function of monitoring GIC-Q disturbance of the GIC monitoring device can be expanded; on the other hand, it can also provide GIC-Q disturbance for the dispatching automation system of the power grid.
  • the measured data is used to calculate the voltage fluctuation of the power grid in real time and evaluate the impact of GIC-Q disturbance on voltage stability.
  • the calculation formula of the method of the invention is simple, and according to the calculation speed of the CPU of the monitoring device, the calculation time of the GIC-Q can be ignored.
  • FIG. 1 Comparison of GIC-Q of different types of transformers with the change of GIC
  • Figure 2 The composition diagram of the grid GIC monitoring system based on the transformer inlet and outlet lines.
  • the present invention adopts the K value method to calculate the GIC-Q disturbance secondary to the GIC damage to the transformer.
  • the specific implementation is as follows:
  • the secondary GIC-Q disturbance caused by GIC damage to the transformer is very complex, and there have been a lot of researches on this problem at home and abroad.
  • the GIC-Q disturbance data (referred to as theoretical algorithm) of the transformer can be calculated by establishing the field circuit model of the transformer and the J-A theory.
  • the theoretical algorithm is fine, but the calculation method is complicated and the workload is large. , not suitable for fast calculation of GIC-Q disturbance, but only for fine analysis of transformer GIC-Q.
  • the above theoretical algorithms and engineering algorithms are mainly used to calculate the GIC-Q disturbance of the transformer and the entire power grid, respectively.
  • the geomagnetic storm power grid accident is a problem that occurs with the increase in the scale of the power grid and the smaller and smaller resistance of the transmission line wires, the current public awareness of the geomagnetic storm power grid accident is limited, and there is no effective monitoring of the GIC-Q disturbance of the transformer.
  • the present invention proposes to calculate the GIC-Q disturbance by setting the K value for the transformer under test on the transformer GIC monitoring device.
  • the GIC of my country's 500kV and above UHV power grids is relatively large; that is, the risk assessment of geomagnetic storm accidents in 500kV and above power grids needs to calculate the GIC-Q disturbance of transformers and power grids.
  • the main types of transformer cores for 500kV and above power grids include: single-phase shell type, single-phase four-column, five-column, three-phase shell, three-phase three-column and three-phase five-column, etc. Therefore, for the transformer GIC monitoring device used in 500kV and above power grids, the monitoring device can set the transformer K value to calculate the GIC-Q disturbance.
  • Figure 1 shows the variation of GIC-Q of transformers with different structures with the size of GIC.
  • the GIC-Q of the transformer varies linearly with GIC. Therefore, the GIC-Q disturbance algorithm of the transformer can be calculated based on the K value method.
  • the output of the GIC monitoring device based on the incoming and outgoing conductors of the transformer is the GIC of each phase winding of the transformer.
  • the GIC-Q disturbance can be calculated using the GIC monitoring device as follows.
  • Q is the GIC-Q loss (three-phase total loss) generated by the GIC invading the transformer
  • Q0 is the reactive power loss (three-phase total loss ) when the transformer is normal
  • I GIC is the GIC of each phase winding of the transformer high-voltage winding (wherein The GICs of each phase winding of A, B, and C are equal)
  • K is the proportional coefficient for calculating the change of GIC-Q of the transformer with GIC.
  • the reactive power loss Q of a 1000kV single-phase four-column transformer developed by my country can be calculated according to the following formula:
  • the K value of the 1000kV single-phase four-column transformer developed by our country is 2.44, and the reactive power loss Q0 of the transformer is 1.23 (three-phase value ) when the transformer is normal, and the unit is Mvar;
  • I GIC is the GIC of each phase winding of the transformer high-voltage winding,
  • the unit is A.
  • the time required for the GIC monitoring device to calculate the GIC-Q according to formula (2) is negligible, and the GIC-Q can be monitored in real time.
  • the magnitude of GIC-Q disturbance generated by a large number of transformers in the power grid at the same time is large, which may lead to a voltage collapse accident of the power grid.
  • the present invention provides basic data for the analysis of geomagnetic storm accidents.
  • the GIC-Q disturbance data obtained by monitoring like the transformer GIC data collected by the device, can be displayed on multiple platforms in the background of the GIC monitoring device and provided to the power grid operation, maintenance and power grid dispatchers respectively to analyze the status of the transformer or grid voltage stability. sex.
  • the signal processing system of the monitoring device sends the GIC-Q disturbance data of the transformer calculated according to formula (1) or (2) to the cloud server of the monitoring system through the gateway system, and sends the data through the cloud server in time. It can be sent to the mobile phone of the operation and maintenance personnel, and can also be sent to the power grid dispatching automation system through the cloud server for summary, which is used to calculate the voltage fluctuation of the power grid in real time and evaluate the risk of geomagnetic storm accidents of the power grid.
  • K value data of transformers in addition to the 1000kV single-phase five-column transformer developed by my country, different types of transformers of 500kV and 750kV (using foreign 760kV) and 1000kV single-phase four-column transformers in China have K value calculation data, which can be used Calculate GIC-Q at the monitoring device.
  • the calculation of the K value of the transformer requires the design data of the transformer core, which is obtained through theoretical calculation. Since the design data of the transformer is the trade secret of the transformer manufacturer, it is necessary to work closely with the transformer manufacturer to determine the K value of the new transformer.
  • the GIC-Q loss calculation of the single-phase four-column UHV main transformer based on the K value method can be used according to the design data and data of the iron core, using the literature (Liu Lianguang et al., High Voltage Technology , Vol. 43, No. 7, pp. 2340-2349, July 31, 2017) method to complete the K-value calculation.
  • the secondary temperature rise, harmonics, vibration, noise, etc. of power transformers are all harmful interferences that need to be monitored. Expand the function of the GIC monitoring device to realize the harmful effects of temperature rise, harmonics, vibration, noise, etc.
  • the monitoring of disturbances is a research topic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种基于GIC监测装置的变压器无功扰动计算方法,GIC监测装置安装在变压器高压进出线的导线上,包括供电电源、电流传感器、DC-DC转换器、信号处理系统、网关系统、云服务器和显示模块;基于GIC监测装置的变压器无功扰动计算方法具体包括如下步骤:步骤1:设置变压器K值,步骤2:建立基于K值法的变压器GIC-Q扰动算法,步骤3:多平台应用变压器GIC-Q扰动数据;本方法可扩展GIC监测装置的监测GIC-Q扰动的功能;同时,还可为电网的调度自动化系统提供GIC-Q扰动实测数据,用于实时计算电网的电压波动,并评估GIC-Q扰动对电压稳定的影响。

Description

基于GIC监测装置的变压器无功扰动计算方法 技术领域
本发明涉及电力信息监测与量测领域,具体说是一种基于GIC监测装置的变压器无功扰动计算方法。
背景技术
随着电网技术的发展,超特高压电网导线的电阻越来越小,地磁暴在电网产生的地磁感应电流(Geomagnetically Induced Current,GIC)越来越大,GIC侵害电网变压器次生温升、谐波、无功增大等有害干扰,威胁变压器和电网的安全运行。针对GIC侵害变压器次生的无功(Geomagnetically Induced Current-Reactive Power,GIC-Q)扰动,本发明提出了一种基于GIC监测装置的变压器无功(GIC-Q)扰动计算方法,本方法根据变压器GIC监测数据,采用比例系数K值法(K值法)计算变压器的GIC-Q扰动数据,为判断GIC-Q扰动风险提供数据。
发明内容
太阳剧烈活动产生的地磁暴在全球各地几乎同时发生。GIC同时侵害电网大量变压器次生的GIC-Q扰动的量值很大,破坏电网的无功平衡,造成电网电压下降,以致发生电压崩溃事故。为分析GIC-Q扰 动的风险,本发明提出了一种基于GIC监测装置的变压器无功扰动算法,计算速度快,GIC监测装置可同时提供GIC-Q数据。
根据变压器设计数据,建立场路模型(简称理论算法)计算变压器GIC-Q扰动的方法非常复杂,不适用于GIC-Q的快速实时计算。针对日益增长的电网GIC及GIC-Q扰动监测的需求,本发明提出了一种基于GIC监测装置的变压器无功扰动的算法,该算法采用比例系数K值法(简称K值法,也称工程算法)计算变压器的GIC-Q扰动数据,为电网安全分析提供实时数据。本发明的主要实现方法如下:
一种基于变压器高压进出线的电网GIC监测装置,所述电网GIC监测装置安装在变压器高压进出线的导线上,所述装置包括:供电电源、电流传感器、Direct Current-Direct Current(DC-DC)转换器、信号处理系统、网关系统、云服务器和显示模块;
所述供电电源与电流传感器连接,所述供电电源通过DC-DC转换器与信号处理系统连接,电流传感器与信号处理系统连接,信号处理系统与网关系统连接,网关系统通过无线与云服务器进行通讯,云服务器与显示模块连接;
所述供电电源包括太阳能板和蓄电池,当处于夜晚或阴天时,所述电网GIC监测装置采用蓄电池供电,当有阳光时,太阳能板一方面给电网GIC监测装置供电,另一方面给蓄电池充电,
所述供电电源用于输出15V电压给电流传感器供电;
所述DC-DC转换器用于将供电电源输出的15V电压转换为5V电压给信号处理系统供电;
所述电流传感器用于采集0.01-0.0001Hz的GIC信号,并将GIC信号发送给信号处理系统;
所述信号处理系统用于接收GIC信号并对GIC信号进行处理,并将处理后的数据通过网关系统发送给云服务器;
所述云服务器用于接收信号处理系统发送的数据并对接收的数据进行存储,同时将接收的数据发送给显示模块;
所述显示模块用于给电网调度或运维人员实时显示数据,实现对电网GIC的实时监测。
在上述方案的基础上,所述显示模块包括PC端和手机端。
在上述方案的基础上,所述电流传感器采用霍尔电流传感器。
一种基于GIC监测装置的变压器无功扰动计算方法应用上述电网GIC监测装置,具体包括如下步骤:
步骤1:设置变压器K值
由于电网中变压器铁芯结构类型各不相同,针对不同类型的变压器,在所述电网GIC监测装置的信号处理系统中,设置基于变压器铁芯结构计算变压器GIC-Q扰动的比例系数K值。
步骤2:建立基于K值法的变压器GIC-Q扰动算法
在信号处理系统中,根据步骤1设置好的K值,建立基于K值法的变压器GIC-Q扰动算法,电流传感器实时采集变压器高压绕组每相绕组中流过的GIC量值,将GIC量值发送给信号处理系统,信号处理系统根据基于K值法的变压器GIC-Q扰动算法实时计算被测变压器的GIC-Q扰动数据;
基于K值的GIC-Q计算公式简单,如图2监测装置CPU的计算速度,K值法计算变压器GIC-Q的时间可忽略不计。
步骤3:多平台应用变压器GIC-Q扰动数据
将步骤2计算得到的GIC-Q扰动数据通过网关系统发送给云服务器,所述云服务器用于接收信号处理系统发送的GIC-Q扰动数据并对接收的GIC-Q扰动数据进行存储,同时将接收的GIC-Q扰动数据发送给显示模块;
所述显示模块一方面供电网运检人员掌握变压器运行状态使用,另一方面供电网调度人员分析GIC-Q扰动风险、制定防御策略使用,实现对电网GIC的实时监测。
因此,所获IC-Q扰动数据向多平台传输、显示数据。
在上述方案的基础上,不同类型变压器K值已有很多研究成果,可直接用于信号处理系统中K值的设定。新型变压器可通过理论计算确定K值。
在上述方案的基础上,所述铁芯结构类型包括:单相壳式、单相四柱、五柱式、三相壳式、三相三柱和三相五柱式。
在上述方案的基础上,所述基于K值法的变压器GIC-Q扰动算法如式(1)所示,电网GIC监测装置按下式计算GIC-Q扰动,
Q=K*I GIC+Q 0       (1)
其中,Q为GIC侵害变压器产生的GIC-Q损耗(三相总损耗),Q 0为变压器正常时的无功损耗(三相总损耗),I GIC为变压器高压绕组每相绕组的GIC(A、B、C每相绕组的GIC相等),K为计算变压 器GIC-Q随GIC变化的比例系数。
本发明的有益效果:
由于变压器GIC-Q扰动理论算法复杂,计算工作量大,目前电网中还没有对变压器GIC-Q扰动的监测方法与手段。本发明提出的基于GIC监测装置的变压器GIC-Q扰动算法:一方面,可扩展GIC监测装置的监测GIC-Q扰动的功能;另一方面,还可为电网的调度自动化系统提供GIC-Q扰动实测数据,用于实时计算电网的电压波动,并评估GIC-Q扰动对电压稳定的影响。本发明方法的计算公式简单,按监测装置CPU的计算速度,GIC-Q的计算时间可忽略不计。
附图说明
本发明有如下附图:
图1:不同类型变压器GIC-Q随GIC变化的对比图;
图2:基于变压器进出线的电网GIC监测系统构成图。
具体实施方式
本发明基于GIC监测的变压器每相GIC,采用K值法计算GIC侵害变压器次生的GIC-Q扰动。具体实施方式如下:
1)变压器K值的设置
GIC侵害变压器次生的GIC-Q扰动非常复杂,国内外对该问题已有大量的研究。首先理论上,可根据变压器铁芯设计参数,采用建立 变压器的场路模型和J-A理论等方法计算变压器的GIC-Q扰动数据(简称理论算法),理论算法精细,但计算方法复杂、工作量大,不适用GIC-Q扰动的快速计算,只适用于变压器GIC-Q的精细分析。
为了对电网中大量的变压器做理论计算,评估变压器GIC-Q产生的电网GIC-Q总扰动,进而分析电网GIC-Q扰动引起的电压波动的风险,国内外在大量的理论研究成果的基础上,提出了基于比例系数K值法(简称K值法)计算变压器的GIC-Q扰动算法,与理论算法相比,K值法简单和计算速度快,也称工程算法。
上述理论算法和工程算法,主要用于分别计算变压器和整个电网的GIC-Q扰动。但由于地磁暴电网事故是随着电网规模增大、输电线路导线电阻越来越小出现的问题,目前公众对地磁暴电网事故的认知有限,以及还没有有效的监测变压器GIC-Q扰动的方法与手段。由于电网中变压器的种类、数量非常多,本发明提出在变压器GIC监测装置上,通过为被测的变压器设置K值计算GIC-Q扰动。
2)基于GIC监测装置的变压器GIC-Q扰动算法
与高磁纬地区国家相比,我国500kV及以上超特高压电网的GIC相对比较大;也就是说,500kV及以上电网的地磁暴事故风险评估需要计算变压器和电网的GIC-Q扰动。500kV及以上电网变压器铁芯的主要类型包括:单相壳式、单相四柱、五柱式、三相壳式、三相三柱和三相五柱式等。因此,对于用于500kV及以上等级电网的变压器GIC监测装置,监测装置可设置变压器K值来计算GIC-Q扰动。不同结构变压器的GIC-Q随GIC大小变化的规律如附图1所示。
由图1可见,变压器的GIC-Q随GIC呈线性变化。因此,可基于K值法计算变压器的GIC-Q扰动算法。在GIC监测装置方面,基于变压器进出线导线的GIC监测装置的输出是变压器每相绕组的GIC。
因此,可利用GIC监测装置按下式计算GIC-Q扰动。
Q=K*I GIC+Q 0       (1)
其中,Q为GIC侵害变压器产生的GIC-Q损耗(三相总损耗),Q 0为变压器正常时的无功损耗(三相总损耗),I GIC为变压器高压绕组每相绕组的GIC(其中A、B、C每相绕组的GIC相等),K为计算变压器GIC-Q随GIC变化的比例系数。
国内外科学家根据变压器的设计数据与资料,已研究确定了多种变压器的K值。例如,我国自行研制的1000kV单相四柱变压器的无功损耗Q可根据下式计算:
Q=2.44*I GIC+1.23       (2)
即,我国自行研制的1000kV单相四柱变压器的K值为2.44,变压器正常时的无功损耗Q 0为1.23(三相值),单位为Mvar;I GIC为变压器高压绕组每相绕组的GIC,单位为A。
按GIC监测装置CPU的计算速度,GIC监测装置按式(2)计算GIC-Q需要的时间可忽略不计,可实时监测GIC-Q。
3)多平台应用变压器GIC-Q扰动数据
电网中大量变压器同时产生的GIC-Q扰动的量值大,可能导致电网的电压崩溃事故,本发明为地磁暴事故分析提供基础数据。监测获得GIC-Q扰动数据,与装置采集的变压器GIC数据一样,可通过GIC 监测装置后台的多平台显示,分别提供给电网运行、检修以及电网调度人员,用于分析变压器的状态或电网电压稳定性。
以图2监测系统为例,监测装置的信号处理系统,将根据(1)或(2)式计算的变压器GIC-Q扰动数据,通过网关系统送到监测系统的云服务器,并通过云服务器及时发送到运行、检修人员的手机上,也可以通过云服务器传送给电网调度自动化系统汇总,用于实时计算电网的电压波动,并评估电网地磁暴事故的风险。
4)不同电压等级不同类型变压器K值确定方法
对不同类型变压器K值计算已有大量的研究成果,该步骤的K值确定方法不属于本发明权利要求的范畴。在变压器K值数据上,目前除我国自行研制1000kV单相五柱式的变压器外,我国电网500kV、750kV(采用国外760kV)不同类型变压器,以及1000kV单相四柱变压器已有K值计算数据,可用于监测装置计算GIC-Q。
变压器K值的计算需要变压器铁芯设计数据,并通过理论算法计算得到,由于变压器设计数据为变压器厂家的商业秘密,确定新型变压器的K值需要与变压器生产厂家紧密合作。对1000kV单相五柱式变压器K值,可根据铁芯的设计数据与资料,采用文献(刘连光等,基于K值法的单相四柱式特高压主体变的GIC-Q损耗计算,高电压技术,第43卷第7期,第2340-2349页,2017年7月31日)方法可完成K值计算。
除监测GIC和GIC-Q外,电力变压器次生温升、谐波、振动、噪声等都是需要监测的有害干扰,扩大GIC监测装置的功能,实现温升、 谐波和振动、噪声等有害干扰的监测是研究课题。
本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (7)

  1. 一种基于变压器高压进出线的电网GIC监测装置,其特征在于,所述电网GIC监测装置安装在变压器高压进出线的导线上,所述装置包括:供电电源、电流传感器、DC-DC转换器、信号处理系统、网关系统、云服务器和显示模块;
    所述供电电源与电流传感器连接,所述供电电源通过DC-DC转换器与信号处理系统连接,电流传感器与信号处理系统连接,信号处理系统与网关系统连接,网关系统通过无线与云服务器进行通讯,云服务器与显示模块连接;
    所述供电电源包括太阳能板和蓄电池,当处于夜晚或阴天时,所述电网GIC监测装置采用蓄电池供电,当有阳光时,太阳能板一方面给电网GIC监测装置供电,另一方面给蓄电池充电,
    所述供电电源用于输出15V电压给电流传感器供电;
    所述DC-DC转换器用于将供电电源输出的15V电压转换为5V电压给信号处理系统供电;
    所述电流传感器用于采集0.01-0.0001Hz的GIC信号,并将GIC信号发送给信号处理系统;
    所述信号处理系统用于接收GIC信号并对GIC信号进行处理,并将处理后的数据通过网关系统发送给云服务器;
    所述云服务器用于接收信号处理系统发送的数据并对接收的数据进行存储,同时将接收的数据发送给显示模块;
    所述显示模块用于给电网调度或运维人员实时显示数据,实现对 电网GIC的实时监测。
  2. 如权利要求1所述的基于变压器高压进出线的电网GIC监测装置,其特征在于,所述显示模块包括PC端和手机端。
  3. 如权利要求1所述的基于变压器高压进出线的电网GIC监测装置,其特征在于,所述电流传感器采用霍尔电流传感器。
  4. 一种基于GIC监测装置的变压器无功扰动计算方法,应用如权利要求1~3任一权利要求所述的电网GIC监测装置,其特征在于,具体包括如下步骤:
    步骤1:设置变压器K值
    由于电网中变压器铁芯结构类型各不相同,针对不同类型的变压器,在所述电网GIC监测装置的信号处理系统中,设置基于变压器铁芯结构计算变压器GIC-Q扰动的比例系数K值;
    步骤2:建立基于K值法的变压器GIC-Q扰动算法
    在信号处理系统中,根据步骤1设置好的K值,建立基于K值法的变压器GIC-Q扰动算法,电流传感器实时采集变压器高压绕组每相绕组中流过的GIC量值,将GIC量值发送给信号处理系统,信号处理系统根据基于K值法的变压器GIC-Q扰动算法实时计算被测变压器的GIC-Q扰动数据;
    步骤3:多平台应用变压器GIC-Q扰动数据
    将步骤2计算得到的GIC-Q扰动数据通过网关系统发送给云服务器,所述云服务器用于接收信号处理系统发送的GIC-Q扰动数据并对接收的GIC-Q扰动数据进行存储,同时将接收的GIC-Q扰动数据发送 给显示模块;
    所述显示模块一方面供电网运检人员掌握变压器运行状态使用,另一方面供电网调度人员分析GIC-Q扰动风险、制定防御策略使用,实现对电网GIC的实时监测。
  5. 如权利要求4所述的基于GIC监测装置的变压器无功扰动计算方法,其特征在于,不同类型的变压器K值根据已有的研究成果,直接用于信号处理系统中K值的设定。
  6. 如权利要求4所述的基于GIC监测装置的变压器无功扰动计算方法,其特征在于,所述铁芯结构类型包括:单相壳式、单相四柱、五柱式、三相壳式、三相三柱和三相五柱式。
  7. 如权利要求4所述的基于GIC监测装置的变压器无功扰动计算方法,其特征在于,所述基于K值法的变压器GIC-Q扰动算法如式(1)所示,电网GIC监测装置按下式计算GIC-Q扰动,
    Q=K*I GIC+Q 0    (1)
    其中,Q为GIC侵害变压器产生的GIC-Q损耗,Q 0为变压器正常时的无功损耗,I GIC为变压器高压绕组每相绕组的GIC,K为计算变压器GIC-Q随GIC变化的比例系数。
PCT/CN2021/126273 2021-03-18 2021-10-26 基于gic监测装置的变压器无功扰动计算方法 WO2022193661A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021273585A AU2021273585B2 (en) 2021-03-18 2021-10-26 Method for calculating geomagnetically induced current-reactive power (GIC-Q) disturbance based on apparatus for monitoring a GIC

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110289341.5 2021-03-18
CN202110289341.5A CN113009207A (zh) 2021-03-18 2021-03-18 基于gic监测装置的变压器无功扰动计算方法

Publications (1)

Publication Number Publication Date
WO2022193661A1 true WO2022193661A1 (zh) 2022-09-22

Family

ID=76409526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126273 WO2022193661A1 (zh) 2021-03-18 2021-10-26 基于gic监测装置的变压器无功扰动计算方法

Country Status (3)

Country Link
CN (1) CN113009207A (zh)
AU (1) AU2021273585B2 (zh)
WO (1) WO2022193661A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116736048A (zh) * 2023-03-31 2023-09-12 科润智能控制股份有限公司 一种新型智能干变与数据分析系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113009207A (zh) * 2021-03-18 2021-06-22 国网内蒙古东部电力有限公司电力科学研究院 基于gic监测装置的变压器无功扰动计算方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201382970Y (zh) * 2009-04-09 2010-01-13 华中电网有限公司 超高压输电线路雷电全参数测量系统
CN202421318U (zh) * 2012-01-05 2012-09-05 山东电力研究院 大型变压器偏磁电流监测预警系统
CN104793044A (zh) * 2015-04-20 2015-07-22 华北电力大学 高铁地磁感应电流监测方法及装置
US20150226772A1 (en) * 2014-02-07 2015-08-13 Smart Wire Grid, Inc. Detection of geomagnetically-induced currents with power line-mounted devices
CN109932552A (zh) * 2019-02-25 2019-06-25 华北电力大学 基于北斗短报文的输电线路磁暴感应电流采集方法及装置
US20200400735A1 (en) * 2019-06-20 2020-12-24 Afshin REZAEI ZARE System and method for geomagnetic disturbance determination for power systems
CN113009207A (zh) * 2021-03-18 2021-06-22 国网内蒙古东部电力有限公司电力科学研究院 基于gic监测装置的变压器无功扰动计算方法
CN113206544A (zh) * 2021-03-18 2021-08-03 国网内蒙古东部电力有限公司电力科学研究院 一种基于变压器高压进出线的电网gic监测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201382970Y (zh) * 2009-04-09 2010-01-13 华中电网有限公司 超高压输电线路雷电全参数测量系统
CN202421318U (zh) * 2012-01-05 2012-09-05 山东电力研究院 大型变压器偏磁电流监测预警系统
US20150226772A1 (en) * 2014-02-07 2015-08-13 Smart Wire Grid, Inc. Detection of geomagnetically-induced currents with power line-mounted devices
CN104793044A (zh) * 2015-04-20 2015-07-22 华北电力大学 高铁地磁感应电流监测方法及装置
CN109932552A (zh) * 2019-02-25 2019-06-25 华北电力大学 基于北斗短报文的输电线路磁暴感应电流采集方法及装置
US20200400735A1 (en) * 2019-06-20 2020-12-24 Afshin REZAEI ZARE System and method for geomagnetic disturbance determination for power systems
CN113009207A (zh) * 2021-03-18 2021-06-22 国网内蒙古东部电力有限公司电力科学研究院 基于gic监测装置的变压器无功扰动计算方法
CN113206544A (zh) * 2021-03-18 2021-08-03 国网内蒙古东部电力有限公司电力科学研究院 一种基于变压器高压进出线的电网gic监测装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU LIANGUANG, XI ZHU, ZEZHONG WANG, JIAN CHEN, CHEN QIAN: "Calculation for Reactive Power Loss of Single-phase Four Limbs UHV Main Transformer Due to Geomagnetically Induced Currents with Parameter K", GAODIANYA-JISHU : JIKAN - HIGH VOLTAGE ENGINEERING, WUHAN : SHUILI DIANLI BU WUHAN GAOYA YANJIUSUO, CN, vol. 43, no. 7, 31 July 2017 (2017-07-31), CN , pages 2340 - 2348, XP055968332, ISSN: 1003-6520, DOI: 10.13336/j.1003-6520.hve.20170628032 *
QIAO JUN, LIU QING;GAO BING;LI AIDI: "Design of geomagnetic induction current monitoring system based on cloud server", HIGH POWER LASER AND PARTICLE BEAMS, QIANGJIGUANG YU LIZISHU, CN, vol. 31, no. 7, 31 July 2019 (2019-07-31), CN , pages 62 - 69, XP055968324, ISSN: 1001-4322, DOI: 10.11884/HPLPB201931.190054 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116736048A (zh) * 2023-03-31 2023-09-12 科润智能控制股份有限公司 一种新型智能干变与数据分析系统

Also Published As

Publication number Publication date
AU2021273585B2 (en) 2023-04-06
AU2021273585A1 (en) 2022-10-06
CN113009207A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
WO2022193661A1 (zh) 基于gic监测装置的变压器无功扰动计算方法
CN102768029B (zh) 通过弧垂监测进行工业控制的方法及其装置
US9306391B2 (en) Direct current transmission and distribution system and method of operating the same
CN102944745B (zh) 750kV线路带电作业用绝缘子检测器
CN205160090U (zh) 具有稳态不间断微电网并网接口一体化装置
CN110752674B (zh) 一种电力灾害监控和模拟系统
CN201926727U (zh) 电能质量监测仪
CN108768296A (zh) 一种光伏组件监控方法
Jin et al. WAMS light and its deployment in China
CN106483397B (zh) 一种高精度高带宽的电能质量检测装置和测量方法
CN104330615A (zh) 基于fft算法的避雷器和变压器的多相同测装置及其方法
CN111007419A (zh) 一种变电站直流系统运行状态在线监控系统
CN115236582A (zh) 一种三相四线接法电能计量装置误差在线评估方法及装置
CN203135572U (zh) 变电站直流装置状态监测系统
CN106451760A (zh) 一种500kV变电站集控系统遥测信息实时监控方法
CN102624091A (zh) 一种交流配电多回路监控系统
CN204304620U (zh) 一种电压质量监测一体化系统
CN201497777U (zh) 用电检查监测系统
Ma et al. Integration of protection and control systems for smart substation
CN105353233A (zh) 一种变压器在线运行能力检测方法和装置
CN206378540U (zh) 一种便携式防窃电在线监测装置
CN205581188U (zh) 一种共箱母线电参数在线监测装置
CN218481602U (zh) 一种台区分布式电流测量装置
CN205160091U (zh) 微电网并网接口一体化装置
CN203368515U (zh) 一种基于窄带电力线载波台区用电平衡分析装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021273585

Country of ref document: AU

Date of ref document: 20211026

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931236

Country of ref document: EP

Kind code of ref document: A1