WO2022193373A1 - 井底冲旋步进联合卸荷破岩高效钻井系统及方法 - Google Patents

井底冲旋步进联合卸荷破岩高效钻井系统及方法 Download PDF

Info

Publication number
WO2022193373A1
WO2022193373A1 PCT/CN2021/084838 CN2021084838W WO2022193373A1 WO 2022193373 A1 WO2022193373 A1 WO 2022193373A1 CN 2021084838 W CN2021084838 W CN 2021084838W WO 2022193373 A1 WO2022193373 A1 WO 2022193373A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill bit
impact
rock
assembly
transmission shaft
Prior art date
Application number
PCT/CN2021/084838
Other languages
English (en)
French (fr)
Inventor
刘永旺
魏森
管志川
邹德永
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Priority to US17/759,149 priority Critical patent/US11976554B2/en
Publication of WO2022193373A1 publication Critical patent/WO2022193373A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B6/00Drives for drilling with combined rotary and percussive action
    • E21B6/06Drives for drilling with combined rotary and percussive action the rotation being intermittent, e.g. obtained by ratchet device
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/16Plural down-hole drives, e.g. for combined percussion and rotary drilling; Drives for multi-bit drilling units
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/36Percussion drill bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/36Percussion drill bits
    • E21B10/38Percussion drill bits characterised by conduits or nozzles for drilling fluids
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/42Rotary drag type drill bits with teeth, blades or like cutting elements, e.g. fork-type bits, fish tail bits
    • E21B10/43Rotary drag type drill bits with teeth, blades or like cutting elements, e.g. fork-type bits, fish tail bits characterised by the arrangement of teeth or other cutting elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/60Drill bits characterised by conduits or nozzles for drilling fluids
    • E21B10/602Drill bits characterised by conduits or nozzles for drilling fluids the bit being a rotary drag type bit with blades

Definitions

  • the invention belongs to the technical field of drilling, and in particular relates to a high-efficiency drilling system and method for rock breaking through combined unloading and rock breaking at the bottom of the well.
  • Improving the rock-breaking efficiency is a hot research topic in the field of drilling engineering. Improving the rock-breaking capacity and life of rock-breaking tools and enhancing the bottom-hole rock-breaking energy are the most commonly used methods to improve the rock-breaking efficiency.
  • a variety of rock-breaking drilling systems have been used. Practice has shown that the above-mentioned systems have improved the rock-breaking efficiency to a certain extent, but have not yet reached the expected field targets. How to further improve the rock-breaking efficiency has become a bottleneck restricting drilling in hard and difficult-to-drill formations.
  • rock-breaking tools The relationship between the rock-breaking tools and the strata in the process of drilling and rock-breaking can be understood as the relationship between the attacker and the defender in the process of war.
  • the rock-breaking tools attack, the formation and formation defense, and the continuous rock-breaking ability of the rock-breaking tools can be improved.
  • Rock-breaking efficiency if it can disintegrate the defensive ability of the "defender" - formation, that is, reduce the formation's anti-drilling ability to rocks, then the rock-breaking efficiency will certainly be improved.
  • the present application proposes a high-efficiency drilling system and method for rock-breaking with bottom-hole swirl and stepping combined with unloading.
  • the arrangement of the rotating slamming assembly in the present application not only transmits rotational power to the drill bit, but also transmits the drilling shaft to the drill bit.
  • the drill bit in the drilling system includes two parts: an outer annular drill bit and an inner center drill bit. The stress relief at the center of the bottom hole is realized by the stepped arrangement of the outer annular drill bit and the inner center drill bit.
  • the retractable setting of the inner center bit relative to the outer annular bit of the present application realizes step-by-step rock breaking, and realizes automatic distribution and regulation of impact energy; the use of the above is conducive to improving the The setting of rock-breaking efficiency can improve the rock-breaking efficiency again and protect the bottom hole drilling tools.
  • the purpose of the present invention is to overcome the above-mentioned deficiencies of the prior art, and to provide a high-efficiency drilling system and method for rock breaking through combined unloading and rock-breaking at the bottom of the well.
  • the present invention adopts the following technical solutions:
  • the bottom hole flushing and rotating stepping combined unloading and rock-breaking high-efficiency drilling system includes a casing with a cylindrical structure; the casing is provided with a drive assembly, a universal joint, a transmission shaft, a rotating Impact assembly; the end of the rotating impact assembly is provided with a drill bit;
  • the outer wall surface of the transmission shaft is rotatably connected with the inner wall surface of the housing;
  • the rotary impact assembly includes a rotary transmission assembly for transmitting rotary power to the drill bit, and an impact assembly for providing high-frequency axial impact power for the drill bit; one end of the rotary transmission assembly is connected with the transmission shaft, and the other end is connected with the drill bit. connected; when the rotating transmission assembly rotates with the transmission shaft, the impact assembly applies a high-frequency impact force along the axial direction of the drilling to the rotating transmission assembly;
  • the outer end of the drill bit of the drill bit is provided with an annular drill bit; the inner ring end surface of the annular drill bit is slidably fitted with a center drill bit; the drill bit is provided with a drill bit inner cavity, and the drill bit inner cavity is provided with a center drill bit in the axial direction.
  • the rotary transmission assembly is coaxially arranged with the transmission shaft, the inner wall surface of one end is slidingly connected with the outer wall surface of the transmission shaft in the axial direction, and the other end of the rotary transmission assembly is connected to the drill bit; the rotary transmission assembly An annular space is formed between the middle part and the shell;
  • the impact assembly includes an impact ring located in the annular space, and the outer wall surface of the impact ring is slidably connected with the inner wall surface of the housing in the axial direction;
  • the end surface of the impact ring facing the drill bit is evenly arranged with a circle of first impact ratchets in the circumferential direction; the end surface of the impact ring facing away from the drill bit is evenly arranged with a number of impact springs in the circumferential direction, and the other end of the impact spring is connected to the casing. connected;
  • the end surface of the rotary transmission assembly facing the impact ring is provided with a second impact ratchet which is matched with the first impact ratchet.
  • a first impact portion is provided on the end face of the impact ring provided with the first impact ratchet;
  • a second impact portion that can be matched with the first impact portion is arranged on the end surface of the rotary transmission assembly provided with the second impact ratchet;
  • the rotation transmission assembly includes a rotation transmission shaft and an impact head
  • the rotating transmission shaft is coaxially arranged with the transmission shaft, and one end is in sliding connection with the outer wall surface of the transmission shaft in the axial direction, and the other end of the rotating transmission shaft is coaxially fixedly connected with one end of the impact head. The other end is connected to the drill bit;
  • the second impact portion and the second impact ratchet are arranged on the end surface of the impact head facing the impact ring.
  • a sealing ring is arranged between the outer end face of the impact head and the inner end face of the casing.
  • the force applying assembly includes a step-by-step force-transmitting body disposed in the inner cavity of the drill bit; the step-by-step force-transmitting body is slidably connected with the inner cavity of the drill bit in the axial direction; The end is connected with the central drill bit, the inner end of the stepping force transmission body is connected with the stepping spring, and the other end of the stepping spring is fixedly connected with the inner end face of the inner cavity of the drill bit;
  • the drill bit body of the drill bit is provided with a nozzle flow channel and a central drill bit chip discharge flow channel, and the nozzle flow channel is communicated with the inner cavity of the drill bit.
  • the drive assembly includes a stator and a rotor; the stator is fixedly arranged on the inner end face of the casing, and the rotor is inside the stator.
  • a universal flow cavity is formed between the universal joint and the housing, and the universal flow cavity is communicated with the flow cavity between the stator and the rotor;
  • the transmission shaft and the middle part of the rotary transmission assembly are provided with a transmission flow cavity that penetrates through in the axial direction; the transmission flow cavity is communicated with the inner cavity of the drill bit;
  • the end of the universal joint is provided with a universal shaft through hole which communicates with the universal flow cavity and the transmission flow cavity.
  • the outer wall surface of the transmission shaft and the inner wall surface of the casing are rotatably connected through a thrust bearing;
  • Both ends of the thrust bearing are also provided with TC bearings, the inner ring of the TC bearing is connected with the outer wall surface of the transmission shaft, and the outer ring of the TC bearing is connected with the inner wall surface of the housing.
  • the invention also provides a high-efficiency drilling method for rock breaking through combined unloading and rock breaking at the bottom of the well.
  • the high-efficiency drilling method for rock-breaking combined with bottom-hole swirl and stepping combined with unloading is implemented based on a high-efficiency drilling system for bottom-hole swirl and stepping combined with unloading and rock-breaking, and the drilling method includes the following steps:
  • the nozzle flow channel sprays drilling fluid to clean the drill bit, and the cuttings are carried to the ground through the central drill bit chip removal channel.
  • the present invention can simultaneously realize the functions of stepping rock breaking, bottom hole unloading, and swirling drilling through the overall structure setting, which greatly improves the rock breaking drilling efficiency, as follows:
  • the drill bit realizes the stress unloading at the center of the bottom hole through the stepped configuration of the outer annular drill bit and the inner center drill bit, which releases the in-situ stress and reduces the rock's anti-drilling ability;
  • the retractable setting of the central drill bit and the setting of the stepping spring cooperate with the external annular drill bit to achieve step-by-step rock breaking, and can automatically distribute and control the impact energy;
  • the impact component When the rotary transmission component drives the drill bit to rotate with the transmission shaft, the impact component exerts a high-frequency impact force along the drilling axial direction on the rotary transmission component, thereby realizing the impact on the external annular drill bit.
  • Fig. 1 is the structural representation of bottom hole rushing and rotating stepping combined unloading and rock-breaking high-efficiency drilling system of the present invention
  • Fig. 2 is a partial enlarged view of A in Fig. 1;
  • Fig. 3 is the structural representation of drill bit in the present invention.
  • Fig. 4 is the structural representation of the impact ring in the present invention.
  • FIG. 5 is a schematic structural diagram of the second impact ratchet and the annular concave surface on the impact head in the present invention
  • FIG. 6 is a schematic diagram of the cooperation of the first impact ratchet tooth and the second impact ratchet tooth when the end face of the annular projection and the end face of the annular groove are in contact with each other in the present invention
  • 2- drive assembly 201- stator, 202- rotor;
  • 5-Rotary shock assembly 501-Shock ring, 5011-Shock slide key, 5012-First shock portion, 5013-First shock ratchet, 502-Shock spring, 503-Shock head, 5031-Second shock portion, 5032-second impact ratchet, 504-rotation drive shaft, 505-seal ring;
  • 6-drill 601-ring drill, 602-center drill, 603-drill cavity, 604-concave cylindrical area, 605-stepping force transmission body, 606-stepping spring, 607-nozzle runner, 608-center Drill chip evacuation channel;
  • the bottom-hole rush-rotation step combined unloading and rock-breaking high-efficiency drilling system includes a casing 1 with a cylindrical structure; the casing 1 is provided with a drive assembly 2, The universal joint 3, the transmission shaft 4, the rotary impact assembly 5; the end of the rotary impact assembly 5 is provided with a drill bit 6; wherein the rotational power of the drive assembly 2 is transmitted to the transmission shaft 4 through the universal joint 3, The transmission shaft 4 then transmits the rotational power to the rotary impact assembly 5, and the rotary impact assembly 5 transmits the rotational power to the drill bit 6; at the same time, in the actual production process, the casing 1 can be designed and produced in sections according to the actual situation, so as to facilitate driving Installation of assembly 2, universal joint 3, drive shaft 4, and rotary impact assembly 5;
  • the outer wall surface of the transmission shaft 4 is rotatably connected with the inner wall surface of the housing 1;
  • the rotary impact assembly 5 includes a rotary drive assembly for transmitting rotational power to the drill bit 6 and an impact assembly for providing high-frequency axial impact power for the drill bit 6; one end of the rotary drive assembly is connected to the drive shaft 4, The other end is connected with the drill bit 6; when the rotary transmission assembly rotates with the transmission shaft 4, the impact assembly applies a high-frequency impact force along the axial direction of the drilling to the rotary transmission assembly, thereby realizing the percussion and rotary drilling of the drill bit;
  • the outer end of the drill bit 6 is provided with an annular drill bit 601; the inner ring end surface of the annular drill bit 601 is slidably fitted with a center drill bit 602;
  • the inner cavity 603 of the drill bit is provided with a force applying component that pushes the center drill bit 602 outward in the axial direction;
  • a concave cylindrical area 604 is formed between the head end of the annular drill bit 601 and the head end of the center drill bit 602;
  • Cutting teeth are provided on the drill bit 601 and the center drill bit 602 .
  • the cutting teeth on the annular drill bit 601 When drilling into a stratum with high ground stress, the cutting teeth on the annular drill bit 601 first break the rock at the outer ring of the bit, and the broken rock is discharged along with the drilling fluid ejected from the nozzle.
  • the height of the center drill bit 602 is relatively low, therefore, an inner concave cylindrical area 604 is formed in the end face area of the center drill bit 602, that is, a stepped structure with inner concave and outer convexity is formed; in the process of drilling into the stratum, a "rock” is formed in the inner concave cylindrical area. column".
  • the "rock column” formed by this stepped structure during the drilling process effectively reduces or even eliminates the influence of in-situ stress on the rock drillability, and greatly improves the rock drillability.
  • Drillability, the "rock column” part forms a stress unloading area, which can effectively prevent the occurrence of "core digging".
  • the center bit 602 crushes the middle "rock column", and the formed cuttings are carried and washed by the drilling fluid ejected from the nozzle in the nozzle flow channel 607 , and then discharged through the center bit chip removal flow channel 608 .
  • the rotary transmission assembly is coaxially arranged with the transmission shaft 4 and the inner wall surface of one end is slidably connected to the outer wall surface of the transmission shaft 4 in the axial direction, and the other end of the rotary transmission assembly is
  • the drill bits 6 are connected to realize the transmission of rotational power among the transmission shaft 4, the rotary transmission assembly 5, and the drill bit 6;
  • the keyway extends along the axial direction of the transmission shaft 4, and the corresponding ends of the inner wall surface of the rotary transmission assembly are provided along the circumferential direction with a number of first sliding keys that are axially slidably matched with the first sliding keyway;
  • An annular space is formed between the shells 1;
  • the impact assembly is located within the annular space
  • the impact assembly includes an impact ring 501 located in the annular space, and the outer wall surface of the impact ring 501 is slidably connected with the inner wall surface of the housing 1 in the axial direction.
  • a number of impact sliding keys 5011 are evenly arranged on the wall surface along the circumferential direction, the impact sliding keys 5011 extend along the axial direction of the transmission shaft 4, and a number of impact sliding keys 5011 are arranged along the circumferential direction at the corresponding positions of the inner wall surface of the housing 1 for axial sliding with the impact sliding keys 5011.
  • the end surface of the impact ring 501 facing the drill bit 6 is evenly provided with a circle of first impact ratchets 5013 in the circumferential direction; the end surface of the impact ring 501 facing away from the drill bit 6 is evenly provided with a number of impact springs 502 in the circumferential direction.
  • the other end of the spring 502 is connected to the housing 1, and specifically, the elastic force direction of the impact spring 502 is parallel to the axial direction of the transmission shaft 4;
  • a second impact ratchet 5032 matched with the first impact ratchet 5013 is provided on the end surface of the rotation transmission assembly facing the impact ring 501 .
  • a first impact portion 5012 is provided on the end surface of the impact ring 501 provided with the first impact ratchet teeth 5013;
  • a second impact portion 5031 that can cooperate with the first impact portion 5012 is provided on the end surface of the rotation transmission assembly provided with the second impact ratchet 5032;
  • first impact portion 5012 and the second impact portion 5031 are mutually matched annular bosses and annular grooves; when the first impact portion 5012 is an annular boss, the second impact portion 5031 is an annular groove. When the first impact portion 5012 is an annular groove, the second impact portion 5031 is an annular boss.
  • the first impact ratchet 5013 may be located radially outside the first impact portion 5012, or may be arranged such that the first impact ratchet 5013 is located radially inside the first impact portion 5012;
  • the second impact ratchet teeth 5032 may be located on the radially outer side of the second impact portion 5031 , or may be arranged such that the second impact ratchet teeth 5032 are located on the radially inner side of the second impact portion 5031 .
  • first impact portion 5012 is an annular boss and the first impact ratchet teeth 5013 are located radially outside the annular boss, the positional relationship between the first impact ratchet teeth 5013 and the annular boss is shown in FIG. 4 ;
  • the protruding length of the annular boss is greater than the concave length of the annular groove, so when the end face of the annular boss is in contact with the end face of the annular groove, the corresponding teeth in the first impact ratchet 5013 and the second impact ratchet 5032 The tip does not touch the corresponding tooth root.
  • the drive assembly 2 transmits the rotational power to the drill bit 6 through the universal joint 3, the transmission shaft 4 and the rotary transmission assembly, thereby providing the drill bit 6 with power for rotary drilling; at the same time, when the rotary transmission assembly rotates (in this During the process, the sliding fit of the impact sliding key 5011 on the impact ring 501 and the impact sliding keyway on the casing 1 limits the circumferential direction of the impact ring 501, so that the impact ring 501 does not rotate), under the action of the reverse thrust force at the bottom of the drilling well , between the second impact ratchet 5032 and the first impact ratchet 5013, there will be a tooth-to-top-to-stagger cycle, so that the impact ring 501 produces a periodic displacement change in the axial direction, which in turn drives the impact spring 502 to generate a cycle When the first impact ratchet teeth 5013 and the second impact ratchet teeth 5032 are staggered in vain, the impact spring 502 pops up to release energy,
  • the end face of the impact part 5031 during the impact process, the corresponding tooth tops of the first impact ratchet teeth 5013 and the second impact ratchet teeth 5032 did not reach the corresponding tooth roots, and the rotary transmission assembly continued to rotate by a small angle to make the first impact ratchet teeth 5013
  • the side surfaces are in surface contact with the corresponding side surfaces of the second impact ratchet teeth 5032, the rotation transmission assembly continues to rotate, and the first impact ratchet teeth 5013 and the second impact ratchet teeth 5032 move relative to each other, and so on.
  • the number of reciprocating impacts in one rotation is related to the number of ratchet teeth on the impact ring 501 , and the impact frequency can be controlled by designing the drilling speed of the driving assembly 2 and the number of ratchet teeth on the impact ring 501 .
  • the high-frequency impact force generated by the impact component is transmitted to the drill bit 6 through the rotary transmission component, so as to realize the high-frequency impact of the drill bit 6 on the bottom of the drilling hole, thereby realizing the high-efficiency swirling drilling at the bottom of the drilling hole.
  • the arrangement of the first impact portion 5012 and the second impact portion 5031 in the present application when the end face of the first impact portion 5012 of the impact ring 501 is in contact with the end face of the second impact portion 5031 of the rotary transmission assembly, the first impact ratchet teeth 5013.
  • the corresponding tooth tops of the second impact ratchet teeth 5032 do not reach the corresponding tooth roots, that is, when the impact ring 501 impacts the rotary transmission assembly, the tooth tops of the first impact ratchet teeth 5013 do not interact with the tooth roots of the second impact ratchet teeth 5032.
  • the tooth tip of the second impact ratchet 5032 does not contact and impact the tooth root of the first impact ratchet 5013, thereby reducing the damage rate of the first impact ratchet 5013 and the second impact ratchet 5032, improving the use of life.
  • the rotation transmission assembly includes a rotation transmission shaft 504 and an impact head 503;
  • the rotating transmission shaft 504 is coaxially arranged with the transmission shaft 4 and one end is slidingly connected with the outer wall surface of the transmission shaft 4 in the axial direction, that is, the rotating transmission shaft 504 can follow the transmission shaft 4 to rotate. Axial sliding can be performed, the other end of the rotating transmission shaft 504 is coaxially fixedly connected with one end of the impact head 503, and the other end of the impact head 503 is connected with the drill bit 6;
  • the second impact portion 5031 and the second impact ratchet teeth 5032 are disposed on the end surface of the impact head 503 facing the impact ring 501 .
  • a sealing ring 505 is provided between the outer end surface of the impact head 503 and the inner end surface of the housing 1 .
  • the force-applying assembly includes a step-by-step force-transmitting body 605 disposed in the inner cavity 603 of the drill bit; the stepping force-transmitting body 605 is slidably connected to the inner cavity 603 of the drill bit in an axial direction , Specifically, the outer wall surface of the stepping force transmission body 605 is evenly provided with several stepping sliding keys along the circumferential direction, the stepping sliding keys extend along the axial direction of the transmission shaft 4, and the corresponding position of the wall surface of the drilling cavity 603 is along the A number of step-by-step sliding keyways that are axially slidably matched with the step-by-step sliding keys are arranged in the circumferential direction; The feeding spring 606 is connected, and the other end of the stepping spring 606 is fixedly connected with the inner end face of the inner cavity 603 of the drill bit;
  • the drill bit body of the drill bit 6 is provided with a nozzle flow channel 607 and a center bit chip discharge flow channel 608; a nozzle is set in the nozzle flow channel 607 to provide drilling fluid, and the center bit chip discharge flow channel 608 is used to Cuttings from drilling by the center bit 602 are expelled into the wellbore annulus.
  • the nozzle flow channel 607 communicates with the inner cavity 603 of the drill bit.
  • the setting of the stepping force transmission body 605 and the stepping spring 606, under the action of the concave center drill bit 602 to unload the bottom hole pressure also realizes the crushing of the "rock column" by the center drill bit 602: when the center drill bit 602 After it also touches the bottom of the well, when the outer annular drill bit 601 is impacted, the outer annular drill bit 601 breaks the rock at a high speed, and the stepping spring 606 is compressed and stored to accumulate rock-breaking energy for the center bit 602. At this time, the center bit 602 breaks the rock at a low speed.
  • the drive assembly 2 includes a stator 201 and a rotor 202; the stator 201 is fixedly arranged on the inner end face of the casing 1, and the rotor 202 is inside the stator 201; wherein one end of the rotor 202 is connected to the universal joint 3 is connected, and the other end of the universal joint 3 is connected with the transmission shaft 4.
  • a universal flow cavity 301 is formed between the universal joint 3 and the casing 1, and the universal flow cavity 301 is communicated with the flow cavity between the stator 201 and the rotor 202;
  • the transmission shaft 4 and the middle of the rotary transmission assembly are provided with a transmission flow cavity 7 which penetrates through in the axial direction; the transmission flow cavity 7 is communicated with the inner cavity 603 of the drill bit;
  • the end of the universal joint 3 is provided with a universal shaft through hole 302 that communicates with the universal flow cavity 301 and the transmission flow cavity 7 .
  • the outer wall surface of the transmission shaft 4 and the inner wall surface of the housing 1 are rotatably connected through a thrust bearing 401;
  • Both ends of the thrust bearing 401 are also provided with TC bearings 402 , the inner ring of the TC bearing 402 is connected to the outer wall of the transmission shaft 4 , and the outer ring of the TC bearing 402 is connected to the inner wall of the housing 1 .
  • the arrangement of the TC bearing 402 makes the rotational connection between the transmission shaft 4 and the housing 1 more stable on the one hand, and also positions the axial direction of the thrust bearing 401 on the other hand.
  • a bypass valve 8 is provided at one end of the casing 1 away from the drill bit 6 ; the bypass valve 8 is connected to the inlet of the drive assembly 2 .
  • a high-efficiency drilling method for rock-breaking with bottom-hole swirl-stepping combined unloading and rock-breaking is implemented based on the high-efficiency drilling system for bottom-hole swash-rotating stepping combined with unloading and rock-breaking in Embodiment 1, and the drilling method includes the following steps:
  • the annular drill bit 601 first contacts the bottom of the well, and under the action of the weight-on-bit torque, the rock at the outer ring of the drill bit 6 is broken; during the rotation of the rotary transmission assembly, under the action of the bottom-hole reverse thrust, the impact assembly The high-frequency impact force along the drilling axial direction is applied to the rotary transmission assembly, so as to realize the impact on the outer annular drill bit 601, so that the outer annular drill bit 601 can realize the oscillating and rotary drilling; the principle of high-frequency impact realization: the rotation transmission assembly follows the transmission shaft 4 During rotation, the cooperation between the first impact ratchet teeth 5013 and the second impact ratchet teeth 5032 causes the impact ring 501 to produce periodic displacement changes in the axial direction, thereby driving the impact spring 502 to generate periodic compression and The drill bit 6 produces high-frequency axial impact;
  • the center drill bit 602 breaks the rock at a low speed or does not break the rock (during this process, the center drill bit 602 rotates with the annular drill bit 601, but the speed of the center drill bit 602 is slower); Slow or stop (the annular drill bit 601 is still rotating at this time, but the rock breaking rate is slowed down), the stepping spring 606 stretches to provide the rock breaking power for the center drill bit 602, so that the center drill bit 602 quickly breaks the rock, so as to realize the step-by-step breaking of the bottom hole rock. ;
  • the nozzle flow channel 607 sprays drilling fluid to clean the drill bit, and the cuttings are carried to the ground through the central drill bit chip removal channel 608.
  • the present invention can simultaneously realize the functions of stepping rock breaking, bottom hole unloading, and swirling drilling through the overall structural arrangement, which greatly improves the efficiency of rock breaking and drilling; It has the characteristics of large force and long service life; the invention has a wide range of applications and can be used for various well types such as vertical wells and directional wells; in the drilling process of the invention, the operation and construction are exactly the same as conventional drilling, and there is no need for surface facilities and drilling strings. Special requirements are conducive to promotion and application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

一种井底冲旋步进联合卸荷破岩高效钻井系统及钻井方法,该系统包括外壳(1)、驱动总成(2)、万向轴节(3)、传动轴(4)、旋转冲击总成(5)、钻头(6);传动轴与外壳转动连接;旋转冲击总成包括用来为钻头传递旋转动力的旋转传动组件、用来为钻头提供高频轴向冲击动力的冲击组件;旋转传动组件跟随传动轴转动时,冲击组件对旋转传动组件施加沿钻井轴向方向的高频冲击力;钻头的钻头体外端设置有环形钻头(601);环形钻头的内环端面上滑动配合有中心钻头(602);环形钻头的头端与中心钻头的头端之间形成内凹圆柱区(604)。该系统通过整体的结构设置,可同时实现步进破岩、井底卸荷、冲旋钻井的作用,极大地提升了破岩钻井效率。

Description

井底冲旋步进联合卸荷破岩高效钻井系统及方法 技术领域
本发明属于钻井技术领域,具体涉及一种井底冲旋步进联合卸荷破岩高效钻井系统及方法。
背景技术
提高破岩效率是钻井工程领域一直研究的热点,提高破岩工具破岩能力及寿命、强化井底破岩能量是现在最常用的提高破岩效率的方法,依据上述方法,至今为止已经形成了多种破岩钻井系统,实践表明,上述系统在一定程度上提高了破岩效率,但仍未达到现场预期指标,如何进一步提升破岩效率成为制约坚硬难钻地层钻井的瓶颈问题。
    钻井破岩过程的破岩工具与地层之间关系可以理解成战争过程的攻击方与防守方之间的关系,破岩工具攻击、地层岩层防守,强化破岩工具的持续破岩能力固然可以提高破岩效率,倘若能够瓦解“防守方”-地层的防守能力,即降低地层对岩石的抗钻能力,那么破岩效率也一定能够得到提高。
基于此,本申请提出一种井底冲旋步进联合卸荷破岩高效钻井系统及方法,本申请中的旋转冲击总成的设置既向钻头传递了旋转动力,还向钻头传递了钻井轴向的高频冲击力,该钻井系统中的钻头包括外部环形钻头、内部中心钻头两部分,通过外部环形钻头、内部中心钻头的内凹外凸的阶梯型设置实现井底中心部位的应力卸荷,释放地应力降低岩石抗钻能力,同时本申请的内部中心钻头相对于外部环形钻头的可伸缩设置实现了步进破岩,并且实现了自动分配与调控冲击能量;利用上述多个有利于提高破岩效率的设置实现破岩效率的再次提升,以及对井底钻具的保护。
技术解决方案
本发明的目的是为克服上述现有技术的不足,提供一种井底冲旋步进联合卸荷破岩高效钻井系统及方法。
为实现上述目的,本发明采用如下技术方案:
井底冲旋步进联合卸荷破岩高效钻井系统,包括呈圆筒状结构的外壳;所述外壳内设置有沿轴向方向依次相连的驱动总成、万向轴节、传动轴、旋转冲击总成;所述旋转冲击总成的端部设置钻头;
所述传动轴的外壁面与外壳的内壁面进行转动连接;
所述旋转冲击总成包括用来为钻头传递旋转动力的旋转传动组件、用来为钻头提供高频轴向冲击动力的冲击组件;所述旋转传动组件的一端与传动轴相连、另一端与钻头相连;所述旋转传动组件跟随传动轴转动时,所述冲击组件对旋转传动组件施加沿钻井轴向方向的高频冲击力;
所述钻头的钻头体外端设置有环形钻头;所述环形钻头的内环端面上滑动配合有中心钻头;所述钻头内部设置钻头内腔,所述钻头内腔内设置有将中心钻头沿轴向向外压出的施力组件;所述环形钻头的头端与中心钻头的头端之间形成内凹圆柱区域。
优选的,所述旋转传动组件与传动轴同轴设置且一端的内壁面与传动轴的外壁面进行轴向方向的滑动连接,所述旋转传动组件的另一端与钻头相连;所述旋转传动组件的中部与外壳之间形成环形空间;
所述冲击组件包括位于环形空间内的冲击环,所述冲击环的外壁面与外壳的内壁面进行轴向方向的滑动连接;
所述冲击环面向钻头的端面上沿圆周方向均匀设置一圈第一冲击棘齿;所述冲击环背向钻头的端面上沿圆周方向均匀设置若干冲击弹簧,所述冲击弹簧的另一端与外壳相连;
所述旋转传动组件面向冲击环的端面上设置有与第一冲击棘齿相配合的第二冲击棘齿。
优选的,设置有第一冲击棘齿的冲击环端面上设置第一冲击部;
设置有第二冲击棘齿的旋转传动组件端面上设置能够与第一冲击部相配合的第二冲击部;
所述旋转传动组件跟随传动轴转动过程中,当冲击环的第一冲击部端面与旋转传动组件的第二冲击部端面相贴时,所述第一冲击棘齿的齿顶未到达第二冲击棘齿的齿根处、第二冲击棘齿的齿顶未到达第一冲击棘齿的齿根处。
优选的,所述旋转传动组件包括旋转传动轴、冲击头;
所述旋转传动轴与传动轴同轴设置且一端与传动轴的外壁面进行轴向方向的滑动连接,所述旋转传动轴的另一端与冲击头的一端进行同轴固定连接,所述冲击头的另一端与钻头相连;
所述第二冲击部、第二冲击棘齿设置在冲击头面向冲击环的端面上。
优选的,所述冲击头的外端面与外壳的内端面之间设置密封圈。
优选的,所述施力组件包括设置在钻头内腔内的步进传力体;所述步进传力体与钻头内腔进行轴向方向的滑动连接;所述步进传力体的外端与中心钻头相连,所述步进传力体的内端与步进弹簧相连,所述步进弹簧的另一端与钻头内腔的内端面固定连接;
所述钻头的钻头体上设置喷嘴流道、中心钻头排屑流道,所述喷嘴流道与钻头内腔相连通。
优选的,所述驱动总成包括定子、转子;所述定子固定设置在外壳的内端面上,所述转子在定子的内部。
优选的,所述万向轴节与外壳之间形成万向流通腔,所述万向流通腔与定子、转子之间的流通腔相连通;
所述传动轴、旋转传动组件的中部设置有沿轴向贯通的传动流通腔;所述传动流通腔与钻头内腔相连通;
所述万向轴节的端部设置有连通万向流通腔、传动流通腔的万向轴贯通孔。
优选的,所述传动轴的外壁面与外壳的内壁面之间通过止推轴承进行转动连接;
所述止推轴承的两端还设置有TC轴承,所述TC轴承的内圈与传动轴外壁面相连,所述TC轴承的外圈与外壳的内壁面相连。
本发明还提供一种井底冲旋步进联合卸荷破岩高效钻井方法。
井底冲旋步进联合卸荷破岩高效钻井方法,基于井底冲旋步进联合卸荷破岩高效钻井系统进行实施,所述钻井方法包括以下步骤:
1)将钻井液泵送至驱动总成内,钻井液的压力能转换为转子的转动机械能,由万向轴节、传动轴、旋转传动组件传递给钻头;
2)环形钻头首先接触井底,在钻压扭矩的作用下对钻头外环部位的岩石进行破碎;在旋转传动组件转动的过程中,在井底反推靠力的作用下,冲击组件对旋转传动组件施加沿钻井轴向方向的高频冲击力,从而实现对外部环形钻头的冲击,使外部环形钻头实现冲旋钻井;
3)随着环形钻头破岩的进行,在中心钻头的内凹圆柱区内形成岩石柱,有效释放了井底应力;
4)当中心钻头也接触到井底后,在外部环形钻头承受冲击时,外部环形钻头高速破岩,步进弹簧被压缩蓄能,为中心钻头集聚破岩能量,此时中心钻头低速破岩或者不破岩;当外部环形钻头冲击结束时,外部环形钻头破岩变慢或者停止,步进弹簧伸展为中心钻头提供破岩动力使中心钻头快速破岩,从而实现井底岩石的步进破碎;
5)在冲旋钻井、井底卸荷、步进破岩的过程中,喷嘴流道喷射钻井液清洗钻头,并将岩屑通过中心钻头排屑通道携带至地面。
有益效果
本发明的有益效果是:
(1)本发明通过整体的结构设置,可同时实现步进破岩、井底卸荷、冲旋钻井的作用,极大地提升了破岩钻井效率,具体如下:
钻头通过外部环形钻头、内部中心钻头的内凹外凸的阶梯型设置实现井底中心部位的应力卸荷,释放地应力降低岩石抗钻能力;
中心钻头的可伸缩设置以及步进弹簧的设置,与外部环形钻头配合实现了步进破岩,并能自动分配与调控冲击能量;
旋转传动组件带动钻头跟随传动轴转动时,冲击组件对旋转传动组件施加沿钻井轴向方向的高频冲击力,从而实现对外部环形钻头的冲击。
(2)本发明中第一冲击部、第二冲击部的设置,当冲击环的第一冲击部端面与旋转传动组件的第二冲击部端面相贴时,第一冲击棘齿、第二冲击棘齿中相应齿顶并未到达相应齿根,即冲击环冲击旋转传动组件时,第一冲击棘齿的齿顶没有与第二冲击棘齿的齿根进行接触撞击、第二冲击棘齿的齿顶没有与第一冲击棘齿的齿根进行接触撞击,从而降低了第一冲击棘齿、第二冲击棘齿的损坏率,提高了使用寿命。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1是本发明井底冲旋步进联合卸荷破岩高效钻井系统的结构示意图;
图2是图1中A的局部放大图;
图3是本发明中钻头的结构示意图;
图4是本发明中冲击环的结构示意图;
图5是本发明中冲击头上第二冲击棘齿、环形凹面的结构示意图;
图6是本发明中环形凸块端面与环形凹槽端面相贴时第一冲击棘齿、第二冲击棘齿的配合示意图;
其中:
1-外壳;
2-驱动总成,201-定子,202-转子;
3-万向轴节,301-万向流通腔,302-万向轴贯通孔;
4-传动轴,401-止推轴承,402-TC轴承;
5-旋转冲击总成,501-冲击环,5011-冲击滑动键,5012-第一冲击部,5013-第一冲击棘齿,502-冲击弹簧, 503-冲击头,5031-第二冲击部,5032-第二冲击棘齿,504-旋转传动轴,505-密封圈;
6-钻头,601-环形钻头,602-中心钻头,603-钻头内腔,604-内凹圆柱区域,605-步进传力体,606-步进弹簧,607-喷嘴流道,608-中心钻头排屑流道;
7-传动流通腔;
8-旁通阀。
本发明的实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在本发明中,术语如“上”、“下”、“底”、“顶”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本发明各部件或元件结构关系而确定的关系词,并非特指本发明中任一部件或元件,不能理解为对本发明的限制。
本发明中,术语如“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本发明中的具体含义,不能理解为对本发明的限制。
下面结合附图和实施例对本发明进一步说明。
实施例1:
如图1所示,井底冲旋步进联合卸荷破岩高效钻井系统,包括呈圆筒状结构的外壳1;所述外壳1内设置有沿轴向方向依次相连的驱动总成2、万向轴节3、传动轴4、旋转冲击总成5;所述旋转冲击总成5的端部设置钻头6;其中驱动总成2的旋转动力通过万向轴节3传递给传动轴4,传动轴4再将旋转动力传递给旋转冲击总成5,旋转冲击总成5将旋转动力传递给钻头6;同时,在实际生产过程中,外壳1可根据实际情况分段设计生产,以便于驱动总成2、万向轴节3、传动轴4、旋转冲击总成5的安装;
所述传动轴4的外壁面与外壳1的内壁面进行转动连接;
所述旋转冲击总成5包括用来为钻头6传递旋转动力的旋转传动组件、用来为钻头6提供高频轴向冲击动力的冲击组件;所述旋转传动组件的一端与传动轴4相连、另一端与钻头6相连;所述旋转传动组件跟随传动轴4转动时,所述冲击组件对旋转传动组件施加沿钻井轴向方向的高频冲击力,从而实现钻头的冲旋钻井;
如图3所示,所述钻头6的钻头体外端设置有环形钻头601;所述环形钻头601的内环端面上滑动配合有中心钻头602;所述钻头6内部设置钻头内腔603,所述钻头内腔603内设置有将中心钻头602沿轴向向外压出的施力组件;所述环形钻头601的头端与中心钻头602的头端之间形成内凹圆柱区域604;其中,环形钻头601、中心钻头602上均设置切削齿。
当钻遇地应力较高的地层时,环形钻头601上的切削齿首先对钻头外环部位的岩石进行破碎,破碎的岩石随着喷嘴喷射出的钻井液被排出。
中心钻头602的高度较低,因此,在中心钻头602端面区域形成内凹圆柱区604,即形成内凹外凸的阶梯结构;在钻遇地层过程中,该内凹圆柱区内会形成“岩石柱”。当钻遇地应力较高区域,岩石可钻性差,此种阶梯结构在钻进过程中所形成的“岩石柱”有效的降低甚至消除了地应力对岩石可钻性的影响,大大提高了岩石可钻性,“岩石柱”部位形成了应力卸载区域,能有效防止“掏心”情况的发生。中心钻头602对中间“岩石柱”进行破碎,形成的岩屑被喷嘴流道607内喷嘴喷射而出的钻井液携带、冲洗,随后经中心钻头排屑流道608排出。
优选的,如图2所示,所述旋转传动组件与传动轴4同轴设置且一端的内壁面与传动轴4的外壁面进行轴向方向的滑动连接,所述旋转传动组件的另一端与钻头6相连,从而实现旋转动力在传动轴4、旋转传动组件5、钻头6之间的传递;具体地,传动轴4外壁面的一端沿圆周方向均匀设置有若干第一滑动键槽,第一滑动键槽沿传动轴4的轴向方向延伸,而旋转传动组件内壁面的相应端部沿圆周方向设置若干与第一滑动键槽进行轴向滑动配合的第一滑动键;所述旋转传动组件的中部与外壳1之间形成环形空间;
所述冲击组件位于环形空间内;
所述冲击组件包括位于环形空间内的冲击环501,所述冲击环501的外壁面与外壳1的内壁面进行轴向方向的滑动连接,具体地,如图4所示,冲击环501的外壁面沿圆周方向均匀设置有若干冲击滑动键5011,冲击滑动键5011沿传动轴4的轴向方向延伸,而外壳1内壁面的相应位置处沿圆周方向设置若干与冲击滑动键5011进行轴向滑动配合的冲击滑动键槽;
所述冲击环501面向钻头6的端面上沿圆周方向均匀设置一圈第一冲击棘齿5013;所述冲击环501背向钻头6的端面上沿圆周方向均匀设置若干冲击弹簧502,所述冲击弹簧502的另一端与外壳1相连,具体地,所述冲击弹簧502的弹力方向与传动轴4的轴向方向相平行;
如图5所示,所述旋转传动组件面向冲击环501的端面上设置有与第一冲击棘齿5013相配合的第二冲击棘齿5032。
所述旋转传动组件跟随传动轴4转动时,第一冲击棘齿5013、第二冲击棘齿5032之间的配合使冲击环501在轴向上产生周期型的位移变化,进而带动冲击弹簧502产生周期型的压缩与释放,从而对钻头6产生高频的轴向冲击。
优选的,设置有第一冲击棘齿5013的冲击环501端面上设置第一冲击部5012;
设置有第二冲击棘齿5032的旋转传动组件端面上设置能够与第一冲击部5012相配合的第二冲击部5031;
如图6所示,所述旋转传动组件跟随传动轴4转动过程中,当冲击环501的第一冲击部5012端面与旋转传动组件的第二冲击部5031端面相贴时,所述第一冲击棘齿5013的齿顶未到达第二冲击棘齿5032的齿根处、第二冲击棘齿5032的齿顶未到达第一冲击棘齿5013的齿根处。其中,本申请中,第一冲击棘齿5013、第二冲击棘齿5032的齿形轮廓是相吻合的。
其中,第一冲击部5012、第二冲击部5031为相互配合的环形凸台-环形凹槽设置;当第一冲击部5012为环形凸台时,第二冲击部5031就为环形凹槽,当第一冲击部5012为环形凹槽时,第二冲击部5031就为环形凸台。
第一冲击棘齿5013可以位于第一冲击部5012的径向外侧,也可以设置成第一冲击棘齿5013位于第一冲击部5012的径向内侧;
第二冲击棘齿5032可以位于第二冲击部5031的径向外侧,也可以设置成第二冲击棘齿5032位于第二冲击部5031的径向内侧。
当第一冲击部5012为环形凸台、第一冲击棘齿5013位于环形凸台的径向外侧时,第一冲击棘齿5013、环形凸台之间的位置关系如图4所示;
当第二冲击部5031为环形凹槽、第二冲击棘齿5032位于环形凹槽的径向外侧时,第二冲击棘齿5032、环形凹槽之间的位置关系如图5所示。
其中,环形凸台凸出的长度大于环形凹槽内凹的长度,因此当环形凸台端面与环形凹槽端面相贴时,第一冲击棘齿5013、第二冲击棘齿5032中的相应齿顶接触不到相应齿根。
钻井时,驱动总成2将旋转动力通过万向轴节3、传动轴4、旋转传动组件传递给钻头6,从而为钻头6提供旋转钻井的动力;同时,当旋转传动组件转动时(在该过程中冲击环501上冲击滑动键5011与外壳1上冲击滑动键槽的滑动配合对冲击环501的周向进行限位,使冲击环501不转动),在钻井井底的反推靠力作用下,第二冲击棘齿5032与第一冲击棘齿5013之间会循环出现齿顶对顶-交错的循环,使冲击环501在轴向上产生周期型的位移变化,进而带动冲击弹簧502产生周期型的压缩与释放,当第一冲击棘齿5013、第二冲击棘齿5032对顶徒然交错时,冲击弹簧502弹出释放能量,冲击环501的第一冲击部5012端面冲击旋转传动组件的第二冲击部5031端面,在该冲击过程中,第一冲击棘齿5013、第二冲击棘齿5032中相应齿顶并未到达相应齿根,旋转传动组件继续旋转一微小角度使第一冲击棘齿5013侧面与第二冲击棘齿5032相应侧面面面接触,旋转传动组件继续旋转,第一冲击棘齿5013、第二冲击棘齿5032之间相对运动,如此循环。旋转一周往复冲击的次数与冲击环501上棘齿数目有关,通过设计驱动总成2的钻速和冲击环501上棘齿数目可以控制冲击频率。冲击组件产生的高频冲击力通过旋转传动组件传递给钻头6,从而实现钻头6对钻井井底的高频冲击,进而实现钻井井底的冲旋高效钻进。
同时,本申请中第一冲击部5012、第二冲击部5031的设置,当冲击环501的第一冲击部5012端面与旋转传动组件的第二冲击部5031端面相贴时,第一冲击棘齿5013、第二冲击棘齿5032中相应齿顶并未到达相应齿根,即冲击环501冲击旋转传动组件时,第一冲击棘齿5013的齿顶没有与第二冲击棘齿5032的齿根进行接触撞击、第二冲击棘齿5032的齿顶没有与第一冲击棘齿5013的齿根进行接触撞击,从而降低了第一冲击棘齿5013、第二冲击棘齿5032的损坏率、提高了使用寿命。
优选的,所述旋转传动组件包括旋转传动轴504、冲击头503;
所述旋转传动轴504与传动轴4同轴设置且一端与传动轴4的外壁面进行轴向方向的滑动连接,即旋转传动轴504能够跟随传动轴4进行转动,在转动的过程中,也能进行轴向的滑动,所述旋转传动轴504的另一端与冲击头503的一端进行同轴固定连接,所述冲击头503的另一端与钻头6相连;
所述第二冲击部5031、第二冲击棘齿5032设置在冲击头503面向冲击环501的端面上。
优选的,所述冲击头503的外端面与外壳1的内端面之间设置密封圈505。
优选的,如图3所示,所述施力组件包括设置在钻头内腔603内的步进传力体605;所述步进传力体605与钻头内腔603进行轴向方向的滑动连接,具体地,步进传力体605的外壁面沿圆周方向均匀设置有若干步进滑动键,步进滑动键沿传动轴4的轴向方向延伸,而钻井内腔603壁面的相应位置处沿圆周方向设置若干与步进滑动键进行轴向滑动配合的步进滑动键槽;所述步进传力体605的外端与中心钻头602相连,所述步进传力体605的内端与步进弹簧606相连,所述步进弹簧606的另一端与钻头内腔603的内端面固定连接;
所述钻头6的钻头体上设置喷嘴流道607、中心钻头排屑流道608;所述喷嘴流道607内设置喷嘴,用来提供钻井液,所述中心钻头排屑流道608用来将中心钻头602钻井产生的岩屑排入井眼环空。所述喷嘴流道607与钻头内腔603相连通。
本申请中步进传力体605以及步进弹簧606的设置,在内凹中心钻头602实现卸荷井底压力的作用下,还实现中心钻头602对“岩石柱”的破碎:当中心钻头602也接触到井底后,在外部环形钻头601承受冲击时,外部环形钻头601高速破岩,步进弹簧606被压缩蓄能,为中心钻头602集聚破岩能量,此时中心钻头602低速破岩或者不破岩;当外部环形钻头601冲击结束时,外部环形钻头602破岩变慢或者停止,步进弹簧606伸展为中心钻头602提供破岩动力使中心钻头602快速破岩,从而实现井底岩石的步进破碎。
优选的,所述驱动总成2包括定子201、转子202;所述定子201固定设置在外壳1的内端面上,所述转子202在定子201的内部;其中转子202的一端与万向轴节3相连,万向轴节3的另一端与传动轴4相连。
优选的,所述万向轴节3与外壳1之间形成万向流通腔301,所述万向流通腔301与定子201、转子202之间的流通腔相连通;
所述传动轴4、旋转传动组件的中部设置有沿轴向贯通的传动流通腔7;所述传动流通腔7与钻头内腔603相连通;
所述万向轴节3的端部设置有连通万向流通腔301、传动流通腔7的万向轴贯通孔302。
优选的,所述传动轴4的外壁面与外壳1的内壁面之间通过止推轴承401进行转动连接;
所述止推轴承401的两端还设置有TC轴承402,所述TC轴承402的内圈与传动轴4外壁面相连,所述TC轴承402的外圈与外壳1的内壁面相连。
TC轴承402的设置一方面使传动轴4与外壳1之间的转动连接更加稳定,另一方面也对止推轴承401的轴向进行了定位。
具体地,所述外壳1远离钻头6的一端设置旁通阀8;所述旁通阀8与驱动总成2的入口相连。
实施例2:
一种井底冲旋步进联合卸荷破岩高效钻井方法,基于实施例1中的井底冲旋步进联合卸荷破岩高效钻井系统进行实施,所述钻井方法包括以下步骤:
1)将钻井液泵送至驱动总成2内,钻井液的压力能转换为转子202的转动机械能,由万向轴节3、传动轴4、旋转传动组件传递给钻头6;
2)环形钻头601首先接触井底,在钻压扭矩的作用下对钻头6外环部位的岩石进行破碎;在旋转传动组件转动的过程中,在井底反推靠力的作用下,冲击组件对旋转传动组件施加沿钻井轴向方向的高频冲击力,从而实现对外部环形钻头601的冲击,使外部环形钻头601实现冲旋钻井;其中高频冲击实现原理:旋转传动组件跟随传动轴4转动时,第一冲击棘齿5013、第二冲击棘齿5032之间的配合使冲击环501在轴向上产生周期型的位移变化,进而带动冲击弹簧502产生周期型的压缩与释放,从而对钻头6产生高频的轴向冲击;
3)随着环形钻头601破岩的进行,在中心钻头602的内凹圆柱区604内形成岩石柱,有效释放了井底应力;
4)当中心钻头602也接触到井底后,在外部环形钻头601承受冲击时,外部环形钻头601高速破岩,步进弹簧606被压缩蓄能,为中心钻头602集聚破岩能量,此时中心钻头602低速破岩或者不破岩(该过程中中心钻头602跟随环形钻头601旋转,但中心钻头602破岩的速率较慢);当外部环形钻头601冲击结束时,外部环形钻头601破岩变慢或者停止(此时环形钻头601依然转动,只是破岩速率变慢),步进弹簧606伸展为中心钻头602提供破岩动力使中心钻头602快速破岩,从而实现井底岩石的步进破碎;
5)在冲旋钻井、井底卸荷、步进破岩的过程中,喷嘴流道607喷射钻井液清洗钻头,并将岩屑通过中心钻头排屑通道608携带至地面。
本发明通过整体的结构设置,可同时实现步进破岩、井底卸荷、冲旋钻井的作用,极大地提升了破岩钻井效率;旋转冲击总成2的设置,具有冲击频次高、冲击力大、使用寿命长的特点;本发明适用范围广,可用于直井、定向井等各种井型;采用本发明钻井过程中,操作施工跟常规钻井完全相同,对地面设施、钻井管柱没有特殊要求,有利于推广和应用。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 井底冲旋步进联合卸荷破岩高效钻井系统,其特征在于,包括呈圆筒状结构的外壳;所述外壳内设置有沿轴向方向依次相连的驱动总成、万向轴节、传动轴、旋转冲击总成;所述旋转冲击总成的端部设置钻头;
    所述传动轴的外壁面与外壳的内壁面进行转动连接;
    所述旋转冲击总成包括用来为钻头传递旋转动力的旋转传动组件、用来为钻头提供高频轴向冲击动力的冲击组件;所述旋转传动组件的一端与传动轴相连、另一端与钻头相连;所述旋转传动组件跟随传动轴转动时,所述冲击组件对旋转传动组件施加沿钻井轴向方向的高频冲击力;
    所述钻头的钻头体外端设置有环形钻头;所述环形钻头的内环端面上滑动配合有中心钻头;所述钻头内部设置钻头内腔,所述钻头内腔内设置有将中心钻头沿轴向向外压出的施力组件;所述环形钻头的头端与中心钻头的头端之间形成内凹圆柱区域。
  2. 如权利要求1所述的井底冲旋步进联合卸荷破岩高效钻井系统,其特征在于,所述旋转传动组件与传动轴同轴设置且一端的内壁面与传动轴的外壁面进行轴向方向的滑动连接,所述旋转传动组件的另一端与钻头相连;所述旋转传动组件的中部与外壳之间形成环形空间;
    所述冲击组件包括位于环形空间内的冲击环,所述冲击环的外壁面与外壳的内壁面进行轴向方向的滑动连接;
    所述冲击环面向钻头的端面上沿圆周方向均匀设置一圈第一冲击棘齿;所述冲击环背向钻头的端面上沿圆周方向均匀设置若干冲击弹簧,所述冲击弹簧的另一端与外壳相连;
    所述旋转传动组件面向冲击环的端面上设置有与第一冲击棘齿相配合的第二冲击棘齿。
  3. 如权利要求2所述的井底冲旋步进联合卸荷破岩高效钻井系统,其特征在于,设置有第一冲击棘齿的冲击环端面上设置第一冲击部;
    设置有第二冲击棘齿的旋转传动组件端面设置能够与第一冲击部相配合的第二冲击部;
    所述旋转传动组件跟随传动轴转动过程中,当冲击环的第一冲击部端面与旋转传动组件的第二冲击部端面相贴时,所述第一冲击棘齿的齿顶未到达第二冲击棘齿的齿根处、第二冲击棘齿的齿顶未到达第一冲击棘齿的齿根处。
  4. 如权利要求3所述的井底冲旋步进联合卸荷破岩高效钻井系统,其特征在于,所述旋转传动组件包括旋转传动轴、冲击头;
    所述旋转传动轴与传动轴同轴设置且一端与传动轴的外壁面进行轴向方向的滑动连接,所述旋转传动轴的另一端与冲击头的一端进行同轴固定连接,所述冲击头的另一端与钻头相连;
    所述第二冲击部、第二冲击棘齿设置在冲击头面向冲击环的端面上。
  5. 如权利要求4所述的井底冲旋步进联合卸荷破岩高效钻井系统,其特征在于,所述冲击头的外端面与外壳的内端面之间设置密封圈。
  6. 如权利要求1所述的井底冲旋步进联合卸荷破岩高效钻井系统,其特征在于,所述施力组件包括设置在钻头内腔内的步进传力体;所述步进传力体与钻头内腔进行轴向方向的滑动连接;所述步进传力体的外端与中心钻头相连,所述步进传力体的内端与步进弹簧相连,所述步进弹簧的另一端与钻头内腔的内端面固定连接;
    所述钻头的钻头体上设置喷嘴流道、中心钻头排屑流道,所述喷嘴流道与钻头内腔相连通。
  7. 如权利要求1所述的井底冲旋步进联合卸荷破岩高效钻井系统,其特征在于,所述驱动总成包括定子、转子;所述定子固定设置在外壳的内端面上,所述转子在定子的内部。
  8. 如权利要求7所述的井底冲旋步进联合卸荷破岩高效钻井系统,其特征在于,所述万向轴节与外壳之间形成万向流通腔,所述万向流通腔与定子、转子之间的流通腔相连通;
    所述传动轴、旋转传动组件的中部设置有沿轴向贯通的传动流通腔;所述传动流通腔与钻头内腔相连通;
    所述万向轴节的端部设置有连通万向流通腔、传动流通腔的万向轴贯通孔。
  9. 如权利要求1所述的井底冲旋步进联合卸荷破岩高效钻井系统,其特征在于,所述传动轴的外壁面与外壳的内壁面之间通过止推轴承进行转动连接;
    所述止推轴承的两端还设置有TC轴承,所述TC轴承的内圈与传动轴外壁面相连,所述TC轴承的外圈与外壳的内壁面相连。
  10. 井底冲旋步进联合卸荷破岩高效钻井方法,其特征在于,基于如权利要求1~9任一所述的井底冲旋步进联合卸荷破岩高效钻井系统进行实施,所述钻井方法包括以下步骤:
    1)将钻井液泵送至驱动总成内,钻井液的压力能转换为转子的转动机械能,由万向轴节、传动轴、旋转传动组件传递给钻头;
    2)环形钻头首先接触井底,在钻压扭矩的作用下对钻头外环部位的岩石进行破碎;在旋转传动组件转动的过程中,在井底反推靠力的作用下,冲击组件对旋转传动组件施加沿钻井轴向方向的高频冲击力,从而实现对外部环形钻头的冲击,使外部环形钻头实现冲旋钻井;
    3)随着环形钻头破岩的进行,在中心钻头的内凹圆柱区内形成岩石柱,有效释放了井底应力;
    4)当中心钻头也接触到井底后,在外部环形钻头承受冲击时,外部环形钻头高速破岩,步进弹簧被压缩蓄能,为中心钻头集聚破岩能量,此时中心钻头低速破岩或者不破岩;当外部环形钻头冲击结束时,外部环形钻头破岩变慢或者停止,步进弹簧伸展为中心钻头提供破岩动力使中心钻头快速破岩,从而实现井底岩石的步进破碎;
    5)在冲旋钻井、井底卸荷、步进破岩的过程中,喷嘴流道喷射钻井液清洗钻头,并将岩屑通过中心钻头排屑通道携带至地面。
PCT/CN2021/084838 2021-03-17 2021-04-01 井底冲旋步进联合卸荷破岩高效钻井系统及方法 WO2022193373A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/759,149 US11976554B2 (en) 2021-03-17 2021-04-01 Bottom-hole impact-rotation stepping combined unloading rock-breaking efficient drilling system and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110283487.9A CN113027331B (zh) 2021-03-17 2021-03-17 井底冲旋步进联合卸荷破岩高效钻井系统及方法
CN202110283487.9 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022193373A1 true WO2022193373A1 (zh) 2022-09-22

Family

ID=76471220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084838 WO2022193373A1 (zh) 2021-03-17 2021-04-01 井底冲旋步进联合卸荷破岩高效钻井系统及方法

Country Status (3)

Country Link
US (1) US11976554B2 (zh)
CN (1) CN113027331B (zh)
WO (1) WO2022193373A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113982470A (zh) * 2021-10-22 2022-01-28 中国石油化工集团有限公司 用于产生高频低幅能量的冲击发生器
CN118669052A (zh) * 2024-08-20 2024-09-20 中国石油大学(华东) 一种具有地应力卸载功能的多阶梯pdc钻头及钻井方法
CN118704893A (zh) * 2024-08-27 2024-09-27 西南石油大学 一种冲切分离式复合pdc钻头工具

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743036A (en) * 1971-05-10 1973-07-03 Shell Oil Co Diamond bit with annular mud distributing groove
CN103174380A (zh) * 2013-03-21 2013-06-26 中国石油大学(华东) 一种弹簧蓄能激发式旋转冲击钻井装置
CN104847259A (zh) * 2015-04-13 2015-08-19 刘永旺 一种动力钻具旋转冲击提速装置及方法
CN204804696U (zh) * 2015-07-29 2015-11-25 陕西冠通钻探机具有限责任公司 一种防塌孔型内凹多翼金刚石复合片钻头
CN106639866A (zh) * 2016-12-30 2017-05-10 成都海猛石油机械有限公司 一种新型旋冲钻具
CN207485361U (zh) * 2017-09-30 2018-06-12 湖北康辉石业有限公司 一种开岩钻头
CN109594927A (zh) * 2018-12-21 2019-04-09 巴州大朴石油技术服务有限公司 一种用于石油开采的弹性钻头
CN111894463A (zh) * 2020-07-17 2020-11-06 中国石油大学(北京) 用于硬地层钻井的金刚石与单牙轮复合钻头

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2547609A (en) * 1945-06-09 1951-04-03 Joy Mfg Co Drilling apparatus
US10563459B2 (en) * 2001-08-19 2020-02-18 Smart Drilling And Completion, Inc. Mud motor assembly
US9051781B2 (en) * 2009-08-13 2015-06-09 Smart Drilling And Completion, Inc. Mud motor assembly
EP2623707B1 (en) * 2011-04-21 2019-10-09 China University of Petroleum (East China) Method and system for improving drilling speed by using drill string vibration
CN105257212A (zh) * 2015-11-03 2016-01-20 西南石油大学 一种旋冲耦合作用钻井工具及其工作方法
CN106703701A (zh) * 2017-01-20 2017-05-24 中国石油大学(华东) 脉动冲击产生机构及含有该产生机构的中心差压钻头
CA3148581A1 (en) * 2019-08-21 2021-02-25 Brock BENNION Downhole motor assemblies, systems and methods
CN110748300B (zh) * 2019-11-19 2020-09-25 中国石油大学(华东) 一种具有诱导载荷与磨料射流联合作用的钻头及钻井方法
CN110905418B (zh) * 2019-12-03 2021-02-26 中国石油大学(华东) 一种具有聚能攻击卸荷井底应力的钻头及钻井方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743036A (en) * 1971-05-10 1973-07-03 Shell Oil Co Diamond bit with annular mud distributing groove
CN103174380A (zh) * 2013-03-21 2013-06-26 中国石油大学(华东) 一种弹簧蓄能激发式旋转冲击钻井装置
CN104847259A (zh) * 2015-04-13 2015-08-19 刘永旺 一种动力钻具旋转冲击提速装置及方法
CN204804696U (zh) * 2015-07-29 2015-11-25 陕西冠通钻探机具有限责任公司 一种防塌孔型内凹多翼金刚石复合片钻头
CN106639866A (zh) * 2016-12-30 2017-05-10 成都海猛石油机械有限公司 一种新型旋冲钻具
CN207485361U (zh) * 2017-09-30 2018-06-12 湖北康辉石业有限公司 一种开岩钻头
CN109594927A (zh) * 2018-12-21 2019-04-09 巴州大朴石油技术服务有限公司 一种用于石油开采的弹性钻头
CN111894463A (zh) * 2020-07-17 2020-11-06 中国石油大学(北京) 用于硬地层钻井的金刚石与单牙轮复合钻头

Also Published As

Publication number Publication date
US11976554B2 (en) 2024-05-07
US20240084646A1 (en) 2024-03-14
CN113027331A (zh) 2021-06-25
CN113027331B (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2022193373A1 (zh) 井底冲旋步进联合卸荷破岩高效钻井系统及方法
WO2016150113A1 (zh) 螺杆钻具及其破岩钻井方法
CN106639866B (zh) 一种旋冲钻具
CN112483005B (zh) 一种用于井下钻具的破岩钻头
CN203701951U (zh) 一种扭转冲击发生器
CN113187402B (zh) 一种具有自适应缓冲模块的金刚石钻头
WO2013170788A1 (zh) 一种刮切—冲击复合式钻头
CN108104715A (zh) 基于涡轮与齿轮的扭力冲击器
US11946342B2 (en) Drilling tool
CN109779520A (zh) 一种脉冲式螺旋冲击钻井工具
CN109209239B (zh) 一种高频旋振式碎岩钻具
CN108547571B (zh) 一种偏心式扭转冲击钻具
CN107542405A (zh) 水力脉冲螺杆钻具
US20240344398A1 (en) Percussion and Cutting Composite Drilling Tool
CN105525868B (zh) 一种脉动式双向冲击器
CN106894756A (zh) 一种水力冲击螺杆钻具
WO2022205546A1 (zh) 自激轴冲与诱导卸荷耦合破岩钻头及钻井提速方法
US20240175323A1 (en) Torque-adaptive impact tool suitable for pdc bit
CN210460490U (zh) 一种高频周向冲击式螺杆钻具结构
CN112502609A (zh) 全开放式旋冲螺杆钻具
CN207048680U (zh) 随钻扩眼钻头
CN207863856U (zh) 基于螺杆与齿轮的差速扭力冲击器
CN110056309A (zh) 定轴旋转容积式动力工具
CN109989707A (zh) 基于涡轮发电式电机驱动的双速pdc钻头
CN113006680B (zh) 一种低压耗扭力冲击钻井工具及破岩方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930961

Country of ref document: EP

Kind code of ref document: A1