WO2022193253A1 - 电化学装置以及应用其的电子装置 - Google Patents

电化学装置以及应用其的电子装置 Download PDF

Info

Publication number
WO2022193253A1
WO2022193253A1 PCT/CN2021/081625 CN2021081625W WO2022193253A1 WO 2022193253 A1 WO2022193253 A1 WO 2022193253A1 CN 2021081625 W CN2021081625 W CN 2021081625W WO 2022193253 A1 WO2022193253 A1 WO 2022193253A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
insulating layer
thickness
region
material layer
Prior art date
Application number
PCT/CN2021/081625
Other languages
English (en)
French (fr)
Inventor
应豆
刘胜奇
王可飞
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to EP21930845.9A priority Critical patent/EP4310934A1/en
Priority to PCT/CN2021/081625 priority patent/WO2022193253A1/zh
Priority to BR112023018638A priority patent/BR112023018638A2/pt
Priority to CN202180094590.7A priority patent/CN116941056A/zh
Priority to JP2023554848A priority patent/JP2024509242A/ja
Priority to KR1020237031568A priority patent/KR20230140594A/ko
Publication of WO2022193253A1 publication Critical patent/WO2022193253A1/zh
Priority to US18/467,973 priority patent/US20240006597A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/122Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to an electrochemical device and an electronic device using the same.
  • a larger coating weight generally leads to a larger thickness of the active material layer, so that there is an obvious thickness step between the insulating layer for anti-burr coated on the edge of the pole piece and the active layer, which affects the The appearance of the pole piece; furthermore, when the insulating coating is applied, the expansion effect of the insulating coating slurry fluid under the additional stress on the surface of the coating device and the double casting phenomenon due to the surface tension of the slurry during the drying process. Under the influence, the edge of the insulating coating will produce a thick-sided morphology. The thick edge of the insulating coating will cause bulging when the pole piece is wound, which may cause the pole piece to break in severe cases. Affect the size of the pole piece processing.
  • the size of the insulating layer coating is usually larger than the size actually required by the electrode when the electrode is fabricated, and then the thick edge region of the edge of the pole piece is cut off.
  • the size of the insulating coating is larger than the actual size of the electrode and has thick edges, which will cause excessive waste of materials.
  • an embodiment of the present application provides an electrochemical device, which includes a pole piece, and the pole piece includes: a first current collector; the first current collector protrudes; a first active material layer is disposed on at least one surface of the first current collector; an insulating layer is disposed along and adjacent to the side of the first current collector close to the first tab in the first active material layer; wherein the insulating layer includes a first region and a second region, the first region is arranged on the side close to the first tab, and the second region is arranged away from The first tab is adjacent to the first active material layer, and the thickness of the insulating layer in the first region is smaller than the thickness of the insulating layer in the second region.
  • the first region includes a first surface, the first surface is far away from the first current collector, and the plane where the first surface is located is the same as the plane where the first current collector is located
  • the intersection forms an acute angle ⁇
  • the thickness of the second region is H
  • the width of the insulating layer is W, where W/H ⁇ cot ⁇ .
  • the acute angle ⁇ ranges from 5° to 75°.
  • the thickness H of the second region ranges from 20 ⁇ m to 100 ⁇ m
  • the width W of the insulating layer ranges from 1 mm to 10 mm.
  • the thickness L of the first active material layer ranges from 30 ⁇ m to 200 ⁇ m.
  • the thickness H of the second region and the thickness L of the first active material layer satisfy the following relationship: 0.3 ⁇ H/L ⁇ 0.8.
  • the coating weight of the first active material layer is 0.06 mg/mm 2 to 0.35 mg/mm 2 .
  • the compaction density of the first active material layer is 2g/cc to 6g/cc.
  • the insulating layer includes inorganic particles and a binder
  • the inorganic particles include at least one of boehmite, alumina, zirconia, boron oxide or hexagonal boron nitride
  • the binder includes at least one of polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate or sodium carboxymethyl cellulose .
  • the present application also provides an electronic device comprising the aforementioned electrochemical device.
  • the second region close to the first active material layer is formed.
  • the thickness is greater than the thickness of the first region away from the first active material layer, that is, the region of the insulating layer close to the edge of the pole piece is thinned, but the thinned region is controlled not to extend to the first active material layer. It can avoid the loss of the active material of the first active material layer under the condition of improving the energy density of the electrochemical device, eliminate the thick edge shape to overcome the problem of the bulging of the pole piece, and reduce the relationship between the first active material layer and the insulating layer. difference in thickness.
  • FIG. 1 is a schematic plan view of an electrochemical device according to an embodiment of the present application.
  • FIG. 2 is a schematic plan view of a pole piece of an electrochemical device according to an embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional view taken along the direction III-III of FIG. 2 .
  • FIG. 4 is a schematic perspective view of an electronic device according to an embodiment of the present application.
  • the first active material layer 13 is the first active material layer 13
  • an embodiment of the present application provides an electrochemical device 1 including a pole piece 10 .
  • the electrochemical device 1 of the present application takes a lithium-ion battery as an example to explain the present application, but the electrochemical device 10 of the present application is not limited to a lithium-ion battery.
  • FIG. 2 is a partial enlarged schematic view of the pole piece 10 of the electrochemical device 1 according to an embodiment of the present application.
  • the pole piece 10 includes a first current collector 11 , a first tab 12 , a first active material layer 13 and insulating layer 14 .
  • the first tab 12 protrudes from the first current collector 11 ;
  • the first active material layer 13 is disposed on at least one surface of the first current collector 11 ;
  • the insulating layer 14 is close to the first tab 12 along the first current collector 11 .
  • the sides are disposed adjacent to the first active material layer 13 .
  • the insulating layer 14 includes a first region 141 and a second region 142 , the first region 141 is disposed on a side close to the first tab 12 , and the second region 142 is disposed between the first region 141 and the first active material layer 13 , and adjacent to the first region 141 and the first active material layer 13 .
  • the thickness of the insulating layer 14 located in the first region 141 is smaller than that of the insulating layer 14 located in the second region 142 .
  • the thickness of the insulating layer 14 in the first region 141 is smaller than the thickness of the insulating layer 14 in the second region 142 means that the thickness of the insulating layer 14 in the first region 141 is smaller than that in the second region 141 .
  • Thickness of insulating layer 14 in region 142 in another embodiment, the thickness of the insulating layer 14 located in the first region 141 is smaller than the thickness of the insulating layer 14 located in the second region 142 means that the maximum thickness of the insulating layer 14 located in the first region 141 is smaller than that of the insulating layer 14 located in the second region 142 The minimum thickness of the insulating layer 14.
  • the thickness of the second region 142 close to the first active material layer 13 is greater than that far from the first active material layer
  • the thickness of the first region 141 of 13, that is, the region of the insulating layer 14 close to the edge of the pole piece 10 is thinned but the thinned region is controlled not to extend to the first active material layer 13, in the case of eliminating the thick edge topography
  • the loss of active material in the first active material layer 13 is avoided, the thick edge morphology is eliminated on the premise of improving the energy density of the electrochemical device 10 to overcome the problem of bulging of the pole piece 10, and the insulation between the first active material layer 13 and the insulation is reduced. Thickness difference between layers 14 .
  • a positive electrode typically includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode current collector is not particularly limited, and usually includes at least one of aluminum foil, aluminum alloy foil or composite current collector.
  • the positive electrode active material layer includes a positive electrode active material, which is not particularly limited, and may include nickel cobalt lithium manganate, nickel cobalt aluminate lithium, lithium iron phosphate, lithium-rich manganese-based materials, lithium cobalt oxide, lithium manganate, phosphoric acid At least one of lithium iron manganese or lithium titanate.
  • the negative electrode typically includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode current collector is not particularly limited, and may include at least one of copper foil, aluminum foil, aluminum alloy foil, and composite current collector.
  • the negative electrode active material layer includes a negative electrode active material, and the negative electrode active material is not particularly limited, and can include at least one of artificial graphite, natural graphite, mesocarbon microspheres, soft carbon, hard carbon, silicon, silicon carbon, lithium titanate, etc. .
  • the pole piece 10 may be a positive electrode or a negative electrode.
  • the pole piece 10 is used as an example to explain the present application.
  • the first active material layer 13 may be a positive electrode active material layer or a negative electrode active material layer, and the present application is explained by taking the positive electrode active material layer as an example in the embodiments of the present application.
  • the first tab 12 is protruded from the first current collector 11 , that is, the first tab 12 is convex in a direction away from the central region of the first current collector 11 compared to the edge of the first current collector 11 . out.
  • the first tab 12 protruding from the first current collector 11 in this embodiment means that the first tab 12 can be integrally formed with the first current collector 11 and formed by extending and protruding from the edge of the first current collector 11 ; In other embodiments, the first tab 12 and the first current collector 11 may be non-integrated structures, and the first tab 12 may be welded with the first current collector 11 before the insulating layer 14 is coated on the pole piece 10 . connect.
  • the first active material layer 13 is disposed on at least one surface of the first current collector 11 , for example, the first active material layer 13 may be disposed on surfaces on opposite sides of the first current collector 11 .
  • the insulating layer 14 is coated on the surface of the first current collector 11 and is adjacent to the first active material layer 13 .
  • the insulating layer 14 may be disposed on the edge of the first current collector 11 and cover at least the first current collector 11 .
  • the cut edge is used to cover the cutting burr located at the edge to prevent the burr from piercing the isolation film, and the insulating layer 14 also covers at least part of the area at the junction of the first current collector 11 and the first tab 12 to cover The cutting burr at the end of the first tab 12 adjacent to the first current collector 11 prevents the burr from piercing the isolation membrane.
  • the first region 141 includes a first surface 143 , the plane where the first surface 143 is located intersects with the plane where the first current collector 11 is located to form an acute angle ⁇ , the thickness of the second region 142 is H, the insulating The width of the layer is W, where W/H ⁇ cot ⁇ .
  • the cross section of the insulating layer 14 along the thickness direction of the pole piece is a trapezoid. 14 The side far from the first active material layer 13 and close to the first tab 12 is the first region 141 , and the thickness of the insulating layer 14 gradually increases from the junction of the first region 141 and the second region 142 to the side of the first tab 12 Reduced to the point where the first surface 143 intersects the first current collector 11 and forms the acute angle ⁇ .
  • the cross section of the insulating layer 14 along the thickness direction of the pole piece is not substantially a trapezoid, but is substantially to a triangle. That is, the part of the first active material layer 13 close to the insulating layer 14 may be removed, so that the overall energy density of the electrochemical device 1 is reduced, resulting in energy loss, and the boundary between the first active material layer 13 and the insulating layer 14 is blurred. .
  • the acute angle ⁇ ranges from 5° to 75°.
  • the acute angle ⁇ is less than 5°, which may cause the insulating layer 14 to fail to meet the angle requirement during the thinning process; the acute angle ⁇ is greater than 75°, which may cause the average thickness of the insulating layer 14 at the first region 141 to be too large, which in turn leads to the pole piece 10 the edges bulged.
  • the acute angle ⁇ can be obtained by using a CCD camera to obtain a picture of the cross section of the insulating layer 14 , and performing angle measurement on the area corresponding to the acute angle ⁇ on the picture.
  • the thickness of the insulating layer 14 can be measured by a micrometer or a CCD camera.
  • a micrometer or a CCD camera For example, cut or select the pole piece 10 of a predetermined length per unit, at least one surface of the pole piece 10 contains the cross section of the first area 141 and the second area 142, and use a micrometer to measure the second area 142 on the pole piece 10 multiple times.
  • a measuring tool such as software
  • the width of the insulating layer 14 can be measured by a CCD camera.
  • a CCD camera is used to capture an image of the insulating layer 14 including the continuous first area 141 and the second area 142.
  • the image can be acquired by a CCD camera in a low magnification state, and a measurement tool (such as a software) matched to the CCD camera can be used to capture the image )
  • a measurement tool such as a software
  • the thickness H of the second region 142 ranges from 20 ⁇ m to 100 ⁇ m, and the width W of the insulating layer 14 ranges from 1 mm to 10 mm. If the thickness H of the second region 142 is less than 20 ⁇ m, the thickness of the insulating layer 14 may be smaller than the length of the general burr, so that the burr cannot be effectively covered, so that the electrochemical device 1 has a risk of short circuit; if the thickness of the second region 142 is greater than 100 ⁇ m , which may cause the pole piece 10 to fail to meet the parameter requirements of cold pressing.
  • the thickness L of the first active material layer 13 ranges from 30 ⁇ m to 200 ⁇ m.
  • the thickness H of the second region 142 and the thickness L of the first active material layer 13 satisfy the following relationship: 0.3 ⁇ H/L ⁇ 0.8. If the ratio is too small and the insulating layer 14 is too thin, the effect of preventing burrs cannot be achieved; if the ratio is too large and the insulating layer is too thick, it is difficult to achieve the set compaction density during the cold pressing process of the pole piece 10 .
  • the coating weight of the first active material layer 13 is 0.06 mg/mm 2 to 0.35 mg/mm 2 .
  • the coating process is not easy to achieve, and on the other hand, the first active layer 13 (such as the active material of lithium iron phosphate material) is easy to crack, And it is not conducive to the diffusion of lithium ions, which has a negative impact on the electrochemical cycle.
  • the compaction density of the first active material layer 13 is 2 g/cc to 6 g/cc.
  • the weight of the first active material layer 13 or the pole piece 10 per unit area can be measured by a 1/10,000 analytical balance, and further through the formula: (the weight of the insulating layer pole piece per unit area - the weight of the current collector )/thickness of insulating layers other than substrate to obtain the compacted density and averaged. If the compaction density is too low (less than 2g/cc), there will be less active material per unit volume, resulting in a low energy density that is difficult to meet the demand.
  • the first active layer 13 If the compaction density is too high (greater than 6g/cc), the first active layer 13 If the porosity of the electrode is too small, the ion transport capacity will be weakened, or the internal resistance (DCR) will be too large, or the pole piece 10 will be embrittled, which will lead to easy band breakage during the cold pressing process.
  • DCR internal resistance
  • the insulating layer 14 includes inorganic particles including at least one of boehmite, aluminum oxide, zirconia, boron oxide or hexagonal boron nitride, and a binder, and the binder is At least one of polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate or sodium carboxymethylcellulose is included.
  • the electrochemical device of the present application may further include a separator to separate the positive electrode and the negative electrode, prevent internal short circuit of the electrochemical device, allow free passage of electrolyte ions, and complete the electrochemical charging and discharging process.
  • the separator is not particularly limited as long as the purpose of the present application can be achieved.
  • PET polyethylene terephthalate
  • cellulose films such as polyethylene terephthalate (PET) films
  • PET polyamide Imine film
  • PA polyamide film
  • spandex or aramid film woven film
  • non-woven film non-woven film (non-woven fabric)
  • microporous film composite film, diaphragm paper, laminated film, spinning film, etc. at least one of them.
  • the release film may include a substrate layer and a surface treatment layer.
  • the substrate layer can be a non-woven fabric, film or composite film with a porous structure, and the material of the substrate layer can include at least one of polyethylene, polypropylene, polyethylene terephthalate, polyimide, etc. kind.
  • a polypropylene porous membrane, a polyethylene porous membrane, a polypropylene non-woven fabric, a polyethylene non-woven fabric or a polypropylene-polyethylene-polypropylene porous composite membrane can be used.
  • a surface treatment layer is disposed on at least one surface of the base material layer, and the surface treatment layer may be a polymer layer or an inorganic layer, or a layer formed by mixing a polymer and an inorganic material.
  • the inorganic material layer may include inorganic particles and a binder
  • the inorganic particles are not particularly limited, for example, may be selected from aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium dioxide, tin oxide, ceria , at least one of nickel oxide, zinc oxide, calcium oxide, zirconium oxide, yttrium oxide, silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide and barium sulfate.
  • the binder is not particularly limited, for example, it can be selected from polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, polyethylene pyrrolidine One or a combination of ketone, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene and polyhexafluoropropylene.
  • the polymer layer contains a polymer
  • the polymer material includes polyamide, polyacrylonitrile, acrylate polymer, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinyl ether, polyvinylidene fluoride or At least one of poly(vinylidene fluoride-hexafluoropropylene) and the like.
  • the electrochemical device of the present application may further include an electrolyte, and the electrolyte may be one or more of a gel electrolyte, a solid electrolyte, and an electrolyte, and the electrolyte includes a lithium salt and a non-aqueous solvent.
  • the lithium salt is selected from LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB(C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3.
  • LiPF 6 may be chosen as the lithium salt because it gives high ionic conductivity and improves cycling characteristics.
  • the non-aqueous solvent may be a carbonate compound, a carboxylate compound, an ether compound, other organic solvents, or a combination thereof.
  • the above-mentioned carbonate compound may be a chain carbonate compound, a cyclic carbonate compound, a fluorocarbonate compound, or a combination thereof.
  • Examples of the above-mentioned chain carbonate compound are dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), carbonic acid Methyl ethyl ester (MEC) and combinations thereof.
  • Examples of cyclic carbonate compounds are ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylethylene carbonate (VEC), and combinations thereof.
  • fluorocarbonate compounds are fluoroethylene carbonate (FEC), 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1,2-trifluoroethylene carbonate Ethyl carbonate, 1,1,2,2-tetrafluoroethylene carbonate, 1-fluoro-2-methylethylene carbonate, 1-fluoro-1-methylethylene carbonate, 1,2-dicarbonate Fluoro-1-methylethylene, 1,1,2-trifluoro-2-methylethylene carbonate, trifluoromethylethylene carbonate, and combinations thereof.
  • FEC fluoroethylene carbonate
  • 1,2-difluoroethylene carbonate 1,1-difluoroethylene carbonate
  • 1,1,2-trifluoroethylene carbonate Ethyl carbonate 1,1,2,2-tetrafluoroethylene carbonate
  • 1-fluoro-2-methylethylene carbonate 1-fluoro-1-methylethylene carbonate
  • 1,2-dicarbonate Fluoro-1-methylethylene 1,1,2-trifluoro-2-methylethylene carbonate, trifluoromethyl
  • carboxylate compounds are methyl formate, methyl acetate, ethyl acetate, n-propyl acetate, tert-butyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone , caprolactone, valerolactone, mevalonolactone, caprolactone, and combinations thereof.
  • ether compounds examples include dibutyl ether, tetraglyme, diglyme, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethyl ether Oxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, and combinations thereof.
  • Examples of the above-mentioned other organic solvents are dimethyl sulfoxide, 1,2-dioxolane, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone, Formamide, dimethylformamide, acetonitrile, trimethyl phosphate, triethyl phosphate, trioctyl phosphate, and phosphate esters and combinations thereof.
  • an electrochemical device can be manufactured by the following process: overlapping the positive electrode and the negative electrode through a separator, and putting them into a case after winding, folding, etc. as required, injecting the electrolyte into the case and sealing, the separator used therein The above-mentioned separator provided in this application.
  • an overcurrent preventing element, a guide plate, etc. may be placed in the case to prevent pressure rise and overcharge and discharge inside the electrochemical device.
  • FIG. 4 it is a three-dimensional schematic diagram of the electronic device 100 according to an embodiment of the present application.
  • the present application also provides an electronic device 100 including the electrochemical device 1 .
  • the electronic device 100 is only a mobile phone as an example.
  • the electronic device 100 of the present application is not particularly limited, and can be used in any electronic device known in the prior art.
  • the electronic device 100 may include, but is not limited to, a notebook computer, a pen input computer, a mobile computer, an e-book player, a portable telephone, a portable fax machine, a portable copier, a portable printer, a headset , VCR, LCD TV, Portable Cleaner, Portable CD Player, Mini CD, Transceiver, Electronic Notepad, Calculator, Memory Card, Portable Recorder, Radio, Backup Power, Motor, Automobile, motorcycle, Power-assisted Bicycle, Bicycle , lighting equipment, toys, game consoles, clocks, power tools, flashes, cameras, large household batteries and lithium-ion capacitors, etc.
  • V ED Cap*E/V.
  • the positive active material lithium cobaltate, acetylene black, and polyvinylidene fluoride (PVDF) were mixed in a mass ratio of 94:3:3, and then N-methylpyrrolidone (NMP) was added as a solvent to prepare a solid content of 75%. slurry and mix well.
  • the slurry was uniformly coated on one surface of an aluminum foil with a thickness of 12 ⁇ m, dried at 90° C., and after cold pressing, a positive electrode sheet with a thickness of 100 ⁇ m of positive active material layer was obtained, and then on the other surface of the positive electrode sheet.
  • the thickness L of the positive active material is 100 ⁇ m, and the coating weight of the first active material layer is 0.2 mg /mm 2 , the compaction density of the first active material layer was 2.0 g/cc.
  • the thickness H is 20 ⁇ m
  • the width W of the insulating layer is 1.2 mm
  • the cot ⁇ corresponding to the acute angle ⁇ is 1.
  • the negative active material artificial graphite, acetylene black, styrene-butadiene rubber and sodium carboxymethyl cellulose are mixed in a mass ratio of 96:1:1.5:1.5, and then deionized water is added as a solvent to prepare a slurry with a solid content of 70% , and stir well.
  • the slurry was evenly coated on one surface of a copper foil with a thickness of 8 ⁇ m, dried at 110° C., and after cold pressing, a negative electrode pole piece with a negative electrode active material layer thickness of 150 ⁇ m was obtained on one side coated with a negative electrode active material layer, Then, the above coating steps are repeated on the other surface of the negative electrode pole piece to obtain a negative electrode pole piece coated with a negative electrode active material layer on both sides. Cut the negative pole piece into a size of 74mm ⁇ 867mm and weld the tabs for later use.
  • the non-aqueous organic solvents ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), propyl propionate (PP), vinylene carbonate ( VC) mixes according to mass ratio 20:30:20:28:2, then in non-aqueous organic solvent, add lithium hexafluorophosphate (LiPF ) to dissolve and mix, obtain electrolyte, wherein, LiPF
  • the mass ratio of non-aqueous organic solvent is 8 : 92.
  • the positive electrode and the negative electrode are wound, wherein the positive electrode and the negative electrode are separated by a polyethylene (PE) film as a separator to obtain an electrode assembly.
  • PE polyethylene
  • the electrode assembly is put into an aluminum-plastic film packaging bag, and the moisture is removed at 80 ° C, the prepared electrolyte is injected, and the lithium ion battery is obtained through vacuum packaging, standing, forming, and shaping.
  • the thickness L of the positive electrode active material is 100 ⁇ m
  • the coating weight of the first active material layer is 0.2mg/mm 2
  • the compaction density of the first active material layer is 2.0g/cc
  • Example 12 has the same lithium-ion battery preparation process as Example 1, but there are differences in the component parameters.
  • Example 13 has the same lithium-ion battery preparation process as Example 1, but there are differences in the component parameters.
  • Example 17 has the same lithium-ion battery preparation process as Example 1, but there are differences in the component parameters.
  • Comparative Example 1 has the same lithium-ion battery preparation process as Example 1, but there are differences in the component parameters.
  • the thickness L of the positive electrode active material is 100 ⁇ m
  • the coating weight of the first active material layer is 0.2mg/mm 2
  • the compaction density of the first active material layer is 2.0g/cc
  • the thickness L of the positive electrode active material is 100 ⁇ m
  • the coating weight of the first active material layer is 0.2mg/mm 2
  • the compaction density of the first active material layer is 2.0g/cc
  • the electrochemical device of the present application by arranging the adjacent first active material layer and the insulating layer on the pole piece, the insulating layer covers the first current collector and part of the cut edge burr of the electrode tab, avoiding electrochemical reactions.
  • the device is short-circuited; by setting a thinned first region outside the insulating layer, controlling the ratio between the thickness of the insulating layer and the thickness of the first active material layer and the thinning shape of the insulating layer, the safety performance of the electrochemical device can be guaranteed. Under the circumstance, the force uniformity of the pole piece during the rolling process is improved, thereby improving the overall performance of the electrochemical device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种电化学装置及应用所述电化学装置的电子装置。所述电化学装置包括极片,所述极片包括:第一集流体;第一极耳,从所述第一集流体凸出;第一活性物质层,设置于所述第一集流体的至少一个表面;绝缘层,沿所述第一集流体靠近所述第一极耳的侧边设置并邻接于所述第一活性物质层;所述绝缘层包括第一区域及第二区域,所述第一区域设置于靠近所述第一极耳的一侧,所述第二区域设置于远离所述第一极耳且与所述第一活性物质层邻接,所述第一区域的所述绝缘层的厚度小于所述第二区域的所述绝缘层的厚度。本申请的电化学装置,控制绝缘层厚度与第一活性物质层的厚度之间的比例以及绝缘层的削薄形状,提升极片在辊压过程中受力均匀性。

Description

电化学装置以及应用其的电子装置 技术领域
本申请涉及电池技术领域,尤其涉及一种电化学装置以及应用其的电子装置。
背景技术
随着人们对高能量密度电池需求的提升,通常需要在极片上设置较大涂覆重量的活性物质层来实现对电池容量的提升。然而,较大的涂覆重量(厚电极)一般会导致活性物质层的厚度较大,使得极片边缘涂布的用于防毛刺的绝缘层与活性层之间存在较明显的厚度阶梯,影响极片外观;再者,在涂布绝缘涂层时,绝缘涂层浆料流体在涂布装置表面的额外应力作用下的膨胀效应以及干燥过程中由于浆料表面张力导致的流延现象的双重影响下,绝缘涂层边缘会产生厚边的形貌。绝缘涂层的厚边会导致极片卷绕时产生鼓边现象,严重时可能造成极片断裂;同时会在极片被辊压时导致极片张力分布不均衡、对齐度不满足要求,从而影响极片加工的尺寸。
为解决上述问题,现有技术通常在制作电极时使绝缘层涂布的尺寸大于电极实际所需尺寸,然后切除极片边缘的厚边区域。但,使绝缘涂层涂布的尺寸大于电极实际所需尺寸且存在厚边,会造成物料过度浪费。如何找到一种既能改善厚电极极片外观又能削除绝缘层鼓边现象的解决方案,在满足高能量密度需求的同时提升电池产品的良率,是本领域技术人员需要考虑的。
发明内容
为了解决现有技术中极片涂层过厚所导致的问题,本申请实施例提供一种电化学装置,包括极片,所述极片包括:第一集流体;第一极耳,从所述第一集流体凸出;第一活性物质层,设置于所述第一集流体的至少一个表面;绝缘层,沿所述第一集流体靠近所述第一极耳的侧边设置并邻接于所述第一活性物质层;其中,所述绝缘层包括第一区域及第二区域,所述第一区域设置于靠近所述第一极耳的一侧,所述第二区域设置于远离所述第一极耳且与所述第一活性物质层邻接,所述第一区域的所述绝缘层的厚度小于所述第二区域的所述绝缘层的厚度。
在一种可能的实施方式中,所述第一区域包括第一表面,所述第一表面远离所述第一集流体,所述第一表面所在的平面与所述第一集流体所在的平面相交形成一个锐角α,所述第二区域的厚度为H,所述绝缘层的宽度为W,其中W/H≥cotα。
在一种可能的实施方式中,所述锐角α的范围为5°至75°。
在一种可能的实施方式中,所述第二区域的厚度H的范围为20μm至100μm,所述绝缘层的宽度W的范围为1mm至10mm。
在一种可能的实施方式中,所述第一活性物质层的厚度L的范围为30μm至200μm。
在一种可能的实施方式中,所述第二区域的厚度H和所述第一活性物质层的厚度为L满足如下关系:0.3≤H/L≤0.8。
在一种可能的实施方式中,所述第一活性物质层的涂覆重量为0.06mg/mm 2至0.35mg/mm 2
在一种可能的实施方式中,所述第一活性物质层的压实密度为 2g/cc至6g/cc。
在一种可能的实施方式中,所述绝缘层包括无机粒子和粘结剂,所述无机粒子包括勃姆石、氧化铝、氧化锆、氧化硼或六方氮化硼中的至少一种,所述粘结剂包括聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐或羧甲基纤维素钠中的至少一种。
本申请还提供一种电子装置,所述电子装置包括前述的电化学装置。
相比于现有技术,本申请的电化学装置,通过在第一活性物质层外侧设置具有不同厚度的第一区域及第二区域的绝缘层,使靠近第一活性物质层的第二区域的厚度大于远离第一活性物质层的第一区域的厚度,即,对绝缘层靠近极片边缘的区域进行削薄但控制该削薄区域并不延伸至第一活性物质层,在消除厚边形貌的情况下避免第一活性物质层的活性物质损失,在提升电化学装置能量密度的前提下消除厚边形貌以克服极片鼓边的问题,并降低第一活性物质层与绝缘层之间的厚度差。
附图说明
图1为本申请一实施例的电化学装置的平面示意图。
图2为本申请一实施例的电化学装置的极片的平面示意图。
图3为图2沿III-III方向的剖视示意图。
图4为本申请一实施例的电子装置的立体示意图。
主要元件符号说明
电化学装置               1
极片                               10
第一集流体                         11
第一极耳                           12
第一活性物质层                     13
绝缘层                             14
第一区域                           141
第二区域                           142
第一表面                           143
锐角                               α
电子装置                           100
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
以下描述将参考附图以更全面地描述本申请内容。附图中所示为本申请的示例性实施例。然而,本申请可以以许多不同的形式来实施,并且不应该被解释为限于在此阐述的示例性实施例。提供这些示例性实施例是为了使本申请透彻和完整,并且将本申请的范围充分地传达给本领域技术人员。类似的附图标记表示相同或类似的组件。
本文使用的术语仅用于描述特定示例性实施例的目的,而不意图限制本申请。如本文所使用的,除非上下文另外清楚地指出,否则单数形式“一”,“一个”和“该”旨在也包括复数形式。此外,当在本文中使用时,“包括”和/或“包含”和/或“具有”,整数,步骤,操作,组件和/或组件,但不排除存在或添加一个或多个其它 特征,区域,整数,步骤,操作,组件,组件和/或其群组。
除非另外定义,否则本文使用的所有术语(包括技术和科学术语)具有与本申请所属领域的普通技术人员通常理解的相同的含义。此外,除非文中明确定义,诸如在通用字典中定义的那些术语应该被解释为具有与其在相关技术和本申请内容中的含义一致的含义,并且将不被解释为理想化或过于正式的含义。
以下内容将结合附图对示例性实施例进行描述。须注意的是,参考附图中所描绘的组件不一定按比例显示;而相同或类似的组件将被赋予相同或相似的附图标记表示或类似的技术用语。
下面参照附图,对本申请的具体实施方式作进一步的详细描述。
如图1所示,本申请一实施方式提供一种电化学装置1,包括极片10。于一实施例中,本申请的电化学装置1以锂离子电池为例来解释本申请,但本申请的电化学装置10并不限于锂离子电池。
图2为本申请一实施方式的电化学装置1的极片10的局部放大示意图,如图所示,极片10包括第一集流体11、第一极耳12、第一活性物质层13以及绝缘层14。其中,第一极耳12从第一集流体11凸出;第一活性物质层13设置于第一集流体11的至少一个表面;绝缘层14沿第一集流体11靠近第一极耳12的侧边设置并邻接于第一活性物质层13。绝缘层14包括第一区域141及第二区域142,第一区域141设置于靠近第一极耳12的一侧,第二区域142设置于第一区域141与第一活性物质层13之间,且邻接所述第一区域141及第一活性物质层13。沿垂直于第一集流体11设置有绝缘层14的表面的方向,位于第一区域141的绝缘层14的厚度小于位于第二区域142的绝缘层14的厚度。在一实施方式中,位于第一区域141 的绝缘层14的厚度小于位于第二区域142的绝缘层14的厚度是指位于第一区域141的每一处绝缘层14的厚度均小于位于第二区域142的绝缘层14的厚度。在另一实施方式中,位于第一区域141的绝缘层14的厚度小于位于第二区域142的绝缘层14的厚度是指位于第一区域141的绝缘层14的最大厚度小于位于第二区域142的绝缘层14的最小厚度。
通过在第一活性物质层13外侧设置具有不同厚度的第一区域141及第二区域142的绝缘层14,使靠近第一活性物质层13的第二区域142的厚度大于远离第一活性物质层13的第一区域141的厚度,即,对绝缘层14靠近极片10边缘的区域进行削薄但控制该削薄区域并不延伸至第一活性物质层13,在消除厚边形貌的情况下避免第一活性物质层13中活性物质的损失,在提升电化学装置10能量密度的前提下消除厚边形貌以克服极片10鼓边的问题,并降低第一活性物质层13与绝缘层14之间的厚度差。
本申请实施例的正极中,对于正极没有特别限制,只要能够实现本申请目的即可。例如,正极通常包含正极集流体和正极活性物质层。对于正极集流体没有特别限制,通常包括铝箔、铝合金箔或复合集流体中的至少一种。正极活性物质层包括正极活性物质,对于正极活性物质没有特别限制,可以包括镍钴锰酸锂、镍钴铝酸锂、磷酸铁锂、富锂锰基材料、钴酸锂、锰酸锂、磷酸锰铁锂或钛酸锂中的至少一种。
本申请实施例的负极中,对于负极没有特别限制,只要能够实现本申请目的即可。例如,负极通常包含负极集流体和负极活性物质层。其中,负极集流体没有特别限制,可以包括铜箔、铝箔、铝 合金箔以及复合集流体中的至少一种。负极活性物质层包括负极活性物质,负极活性物质没有特别限制,可以包括人造石墨、天然石墨、中间相碳微球、软碳、硬碳、硅、硅碳、钛酸锂等中的至少一种。
其中,极片10可以为正极或者负极,本申请实施例中以极片10为正极作为例子来解释本申请。对应的,第一活性物质层13可以为正极活性物质层或负极活性物质层,本申请实施例中以正极活性物质层为例子解释本申请。于一实施例中,第一极耳12由第一集流体11凸出,即,第一极耳12相较于第一集流体11的边缘向远离第一集流体11的中心区域的方向凸出。第一极耳12由第一集流体11凸出在本实施例中是指第一极耳12可与第一集流体11为一体结构并由第一集流体11的边缘延伸凸出形成;在其他实施例中,第一极耳12与第一集流体11可为非一体式结构,第一极耳12可在极片10涂布绝缘层14前与第一集流体11通过例如焊接的方式连接。
于一实施例中,第一活性物质层13设置于第一集流体11的至少一个表面,例如,第一活性物质层13可设置于第一集流体11相背两侧的表面。
于一实施例中,绝缘层14涂布于第一集流体11表面并与第一活性物质层13邻接,绝缘层14可设置于第一集流体11的边缘并至少覆盖第一集流体11裁切后的边缘以包覆位于该边缘的裁切毛刺,避免毛刺刺穿隔离膜,且,绝缘层14还覆盖第一集流体11与第一极耳12交界处的至少部分区域,以包覆第一极耳12的与第一集流体11相邻的一端部的裁切毛刺,避免毛刺刺穿隔离膜。
如图3所示,第一区域141包括第一表面143,第一表面143 所在的平面与第一集流体11所在的平面相交形成一个锐角α,第二区域142的厚度为H,所述绝缘层的宽度为W,其中W/H≥cotα。
于一实施例中,绝缘层14沿极片厚度方向的截面是梯形,具体的,绝缘层14与第一活性物质层13相邻一侧(即第二区域142)的厚度大致相等,绝缘层14远离第一活性物质层13并靠近第一极耳12一侧为第一区域141,绝缘层14的厚度由第一区域141与第二区域142的交界处向第一极耳12一侧逐渐减小至第一表面143与第一集流体11相交并形成所述锐角α。
于一实施例中,若W/H<cotα,将导致第一集流体11裁切得到第一极耳12过程中,绝缘层14沿极片厚度方向的截面并非大致为一梯形,而是大致为一三角形。即,可能导致第一活性物质层13靠近绝缘层14的部分被去除,使得电化学装置1的整体能量密度降低,造成能量损失,且会使得第一活性物质层13与绝缘层14的边界模糊。
于一实施例中,锐角α的范围为5°至75°。锐角α小于5°,可能导致绝缘层14在削薄过程中无法实现该角度需求;锐角α大于75°,可能导致第一区域141处的绝缘层14的平均厚度过大,进而导致极片10的边缘鼓起。于一实施例中,锐角α可通过使用CCD相机获取绝缘层14的截面的图片,并对所述图片上对应锐角α的区域进行角度测量获得。
于一实施例中,绝缘层14的厚度也即第二区域的厚度可通过万分尺或CCD相机进行测量。例如,截取或选取单位预定长度的极片10,该极片10的至少一个面包含有第一区域141及第二区域142的截面,使用万分尺对极片10上的第二区域142进行多次测量以获 取绝缘层14的厚度,例如对第二区域142的厚度分别进行15次测量,然后取多次测量的平均值为第二区域142的厚度;或者,使用CCD相机拍摄包含有第一区域141及第二区域142的截面的面的图像,通过CCD相机相匹配的测量工具(例如软件)获取绝缘层14的厚度,重复获取不同图像或同一图像不同位点多次(例如15次),获取多次测量厚度的平均值以获得绝缘层14的厚度。
于一实施例中,绝缘层14的宽度可通过CCD相机进行测量。例如,使用CCD相机拍摄包含有连续的第一区域141及第二区域142的绝缘层14的图像,具体可以在低倍率状态下的CCD相机获取图像,通过CCD相机相匹配的测量工具(例如软件)在设定绝缘层14两侧边缘的情况下获取绝缘层14的宽度,重复获取不同图像或同一图像不同位点多次(例如15次),获取多次测量厚度的平均值以获得绝缘层14的宽度。
于一实施例中,第二区域142的厚度H的范围为20μm至100μm,绝缘层14的宽度W的范围为1mm至10mm。第二区域142的厚度H若小于20μm则可能使得绝缘层14的厚度小于一般毛刺的长度,进而无法有效包覆毛刺,使电化学装置1存在短路风险;若第二区域142的的厚度大于100μm,可能导致极片10无法满足冷压的参数需求。
于一实施例中,第一活性物质层13的厚度L的范围为30μm至200μm。第二区域142的厚度H和第一活性物质层13的厚度为L满足如下关系:0.3≤H/L≤0.8。若该比值太小,绝缘层14太薄,则无法起到预防毛刺的作用;若该比值太大,绝缘层太厚,则在极片10冷压过程,难以实现设定的压实密度。
于一实施例中,第一活性物质层13的涂覆重量为0.06mg/mm 2至0.35mg/mm 2。于一实施例中,可通过万分之一分析天平测量单位面积下的第一活性物质层13或极片10的重量,并按如下公式进行换算得到所述涂覆重量,涂覆重量=(极片重量-集流体重量)/极片面积,并取平均值。若涂覆重量小于0.06mg/mm 2则能量密度较低难以满足需求,或使第一活性物质层13较容易出现颗粒或划痕等问题;若涂覆重量大于0.35mg/mm 2则极片10可能会出现不易干燥或者烘裂等加工问题,且由于对应厚度较大一方面使得涂布制程不易实现,另一方面使第一活性层13(例如磷酸锂铁材质的活性物质)易开裂,且不利于锂离子的扩散,对电化学循环造成负面影响。
于一实施例中,第一活性物质层13的压实密度为2g/cc至6g/cc。于一实施例中,可通过万分之一分析天平测量单位面积下的第一活性物质层13或极片10的重量,进一步通过公式:(单位面积的绝缘层极片的重量-集流体重量)/除基材外的绝缘层厚度得到压实密度,并求平均值。若压实密度太低(小于2g/cc),则单位体积的活性物质较少,导致能量密度低难以满足需求,若压实密度太高(大于6g/cc),则使得第一活性层13的孔隙率过少进而导致离子传输能力减弱,或导致内阻(DCR)过大,或使极片10发生脆化进而导致冷压过程易发生断带。
于一实施例中,绝缘层14包括无机粒子和粘结剂,所述无机粒子包括勃姆石、氧化铝、氧化锆、氧化硼或六方氮化硼中的至少一种,所述粘结剂包括聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐或羧甲基纤维素钠中的至少一种。
本申请的电化学装置还可以包括隔离膜,用以分隔正极和负极,防止电化学装置内部短路,允许电解质离子自由通过,完成电化学充放电过程的作用。在本申请中,隔离膜没有特别限制,只要能够实现本申请目的即可。例如,聚乙烯(PE)、聚丙烯(PP)为主的聚烯烃(PO)类隔离膜,聚酯膜(例如聚对苯二甲酸二乙酯(PET)膜)、纤维素膜、聚酰亚胺膜(PI)、聚酰胺膜(PA),氨纶或芳纶膜、织造膜、非织造膜(无纺布)、微孔膜、复合膜、隔膜纸、碾压膜、纺丝膜等中的至少一种。
进一步的,隔离膜可以包括基材层和表面处理层。基材层可以为具有多孔结构的无纺布、膜或复合膜,基材层的材料可以包括聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚酰亚胺等中的至少一种。于一实施例中,可以使用聚丙烯多孔膜、聚乙烯多孔膜、聚丙烯无纺布、聚乙烯无纺布或聚丙烯-聚乙烯-聚丙烯多孔复合膜。于一实施例中,基材层的至少一个表面上设置有表面处理层,表面处理层可以是聚合物层或无机物层,也可以是混合聚合物与无机物所形成的层。
进一步的,例如,无机物层可以包括无机颗粒和粘结剂,该无机颗粒没有特别限制,例如可以选自氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙和硫酸钡等中的至少一种。粘结剂没有特别限制,例如可以选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯和聚六氟丙烯中的一种或几种的组 合。例如,聚合物层中包含聚合物,聚合物的材料包括聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚偏氟乙烯或聚(偏氟乙烯-六氟丙烯)等中的至少一种。
本申请的电化学装置还可包括电解质,电解质可以是凝胶电解质、固态电解质和电解液中的一种或多种,电解液包括锂盐和非水溶剂。
于一实施例中,当电化学装置10为锂离子电池时,锂盐选自LiPF 6、LiBF 4、LiAsF 6、LiClO 4、LiB(C 6H 5) 4、LiCH 3SO 3、LiCF 3SO 3、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3、LiSiF 6、LiBOB和二氟硼酸锂中的一种或多种。举例来说,锂盐可以选用LiPF 6,因为它可以给出高的离子导电率并改善循环特性。
非水溶剂可为碳酸酯化合物、羧酸酯化合物、醚化合物、其它有机溶剂或它们的组合。
上述碳酸酯化合物可为链状碳酸酯化合物、环状碳酸酯化合物、氟代碳酸酯化合物或其组合。
上述链状碳酸酯化合物的实例为碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸甲乙酯(MEC)及其组合。环状碳酸酯化合物的实例为碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸乙烯基亚乙酯(VEC)及其组合。氟代碳酸酯化合物的实例为碳酸氟代亚乙酯(FEC)、碳酸1,2-二氟亚乙酯、碳酸1,1-二氟亚乙酯、碳酸1,1,2-三氟亚乙酯、碳酸1,1,2,2-四氟亚乙酯、碳酸1-氟-2-甲基亚乙酯、碳酸1-氟-1-甲基亚乙酯、碳酸1,2-二氟-1-甲基亚乙酯、 碳酸1,1,2-三氟-2-甲基亚乙酯、碳酸三氟甲基亚乙酯及其组合。
上述羧酸酯化合物的实例为甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸叔丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、癸内酯、戊内酯、甲瓦龙酸内酯、己内酯及其组合。
上述醚化合物的实例为二丁醚、四甘醇二甲醚、二甘醇二甲醚、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、2-甲基四氢呋喃、四氢呋喃及其组合。
上述其它有机溶剂的实例为二甲亚砜、1,2-二氧戊环、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、N-甲基-2-吡咯烷酮、甲酰胺、二甲基甲酰胺、乙腈、磷酸三甲酯、磷酸三乙酯、磷酸三辛酯、和磷酸酯及其组合。
电化学装置1的制备过程为本领域技术人员所熟知的,本申请没有特别的限制。例如电化学装置可以通过以下过程制造:将正极和负极经由隔离膜重叠,并根据需要将其卷绕、折叠等操作后放入壳体内,将电解液注入壳体并封口,其中所用的隔离膜为本申请提供的上述隔离膜。此外,也可以根据需要将防过电流元件、导板等置于壳体中,从而防止电化学装置内部的压力上升、过充放电。
如图4所示,为本申请实施例提供的电子装置100的立体示意图。本申请还提供一种电子装置100,该电子装置100包括电化学装置1。图4中仅以电子装置100以手机为例,在其它实施例中,本申请的电子装置100没有特别限定,其可以是用于现有技术中已知的任何电子装置。在一些实施例中,电子装置100可以包括,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴 式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
极片边缘厚度COV测试:
1)在(25±3)℃的环境下,将极片从成品电池中拆出。用无尘纸拭去极片表面残留的电解液;
2)将极片进行切割,得到一定面积大小的极片样品;
3)用万分尺测量2)中极片样品靠近极耳一侧极片边缘的厚度,沿极片边缘依次测试15个不同点的厚度值,计算所有测试点厚度值的COV值。
电池体积能量密度测试:
1)在(25±3)℃的环境下,将电池恒流充电至3.6V,再在0.5C倍率下放电至2.5V得到实际容量Cap;
2)电池放电平台为E;
3)实测电池长宽高,每面各测10个点取平均值,体积V=长度*宽度*高度。
4)体积能量密度V ED=Cap*E/V。
实施例1
<1-2.正极极片的制备>
将正极活性材料钴酸锂、乙炔黑、聚偏二氟乙烯(PVDF)按质量比94∶3∶3混合,然后加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成固含量为75%的浆料,并搅拌均匀。将浆料均匀涂布在厚度为12μm的铝箔的一个表面上,90℃条件下烘干,冷压后得到 正极活性材料层厚度为100μm的正极极片,然后在该正极极片的另一个表面上重复以上步骤,得到双面涂布有正极活性材料层的正极极片,其中,正极活性材料(第一活性物质层)的厚度L为100μm,第一活性物质层的涂覆重量为0.2mg/mm 2,第一活性物质层的压实密度为2.0g/cc。
在该正极极片靠近极耳一侧的正极活性物质层的边缘设置绝缘层,其中,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为20μm,绝缘层的宽度W为1.2mm,锐角α对应的cotα为1。
将正极极片裁切成74mm×867mm的规格并焊接极耳后待用。
<1-3.负极极片的制备>
将负极活性材料人造石墨、乙炔黑、丁苯橡胶及羧甲基纤维素钠按质量比96∶1∶1.5∶1.5混合,然后加入去离子水作为溶剂,调配成固含量为70%的浆料,并搅拌均匀。将浆料均匀涂布在厚度为8μm的铜箔的一个表面上,110℃条件下烘干,冷压后得到负极活性材料层厚度为150μm的单面涂布负极活性材料层的负极极片,然后在该负极极片的另一个表面上重复以上涂布步骤,得到双面涂布有负极活性材料层的负极极片。将负极极片裁切成74mm×867mm的规格并焊接极耳后待用。
<1-5.电解液的制备>
在含水量小于10ppm的环境下,将非水有机溶剂碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸亚丙酯(PC)、丙酸丙酯(PP)、碳酸亚乙烯酯(VC)按照质量比20∶30∶20∶28∶2混合,然后向非水有机溶剂中加入六氟磷酸锂(LiPF6)溶解并混合均匀,得到电解液,其中,LiPF6与非水有机溶剂的质量比为8∶92。
<1-6锂离子电池的制备>
将上述正极极片及上述负极极片进行卷绕,其中,所述正极极片和所述负极极片之间以聚乙烯(PE)膜作为隔离膜进行分隔,进 而制得电极组件。将电极组件装入铝塑膜包装袋中,并在80℃下脱去水分,注入配好的电解液,经过真空封装、静置、化成、整形等工序得到锂离子电池。
实施例2
实施例2与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为100μm,第一活性物质层的涂覆重量为0.2mg/mm 2,第一活性物质层的压实密度为2.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为40μm,绝缘层宽度W为1.2mm,锐角α对应的cotα为1。
实施例3
实施例3与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为100μm,第一活性物质层的涂覆重量为0.2mg/mm 2,第一活性物质层的压实密度为2.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为50μm,绝缘层宽度W为1.2mm,锐角α对应的cotα为1。
实施例4
实施例4与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为100μm,第一活性物质层的涂覆重量为0.2mg/mm 2,第一活性物质 层的压实密度为2.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为80μm,绝缘层宽度W为1.2mm,锐角α对应的cotα为1。
实施例5
实施例5与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为125μm,第一活性物质层的涂覆重量为0.2mg/mm 2,第一活性物质层的压实密度为2.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为100μm,绝缘层宽度W为1.2mm,锐角α对应的cotα为1。
实施例6
实施例6与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为100μm,第一活性物质层的涂覆重量为0.2mg/mm 2,第一活性物质层的压实密度为2.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为50μm,绝缘层宽度W为1mm,锐角α对应的cotα为1。
实施例7
实施例7与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为100μm,第一活性物质层的涂覆重量为0.2mg/mm 2,第一活性物质 层的压实密度为2.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为50μm,绝缘层宽度W为1.2mm,锐角α对应的cotα为1。
实施例8
实施例8与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为100μm,第一活性物质层的涂覆重量为0.2mg/mm 2,第一活性物质层的压实密度为2.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为80μm,绝缘层宽度W为10mm,锐角α对应的cotα为1。
实施例9
实施例9与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为100μm,第一活性物质层的涂覆重量为0.2mg/mm 2,第一活性物质层的压实密度为2.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为30μm,绝缘层宽度W为1.2mm,锐角α对应的cotα为1。
实施例10
实施例10与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为100μm,第一活性物质层的涂覆重量为0.2mg/mm 2,第一活性物质 层的压实密度为2.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为50μm,绝缘层宽度W为10mm,锐角α对应的cotα为0.3。
实施例11
实施例11与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为100μm,第一活性物质层的涂覆重量为0.2mg/mm 2,第一活性物质层的压实密度为2.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为80μm,绝缘层宽度W为10mm,锐角α对应的cotα为1。
实施例12
实施例12与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为30μm,第一活性物质层的涂覆重量为0.06mg/mm 2,第一活性物质层的压实密度为2.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为24μm,绝缘层宽度W为1.2mm,锐角α对应的cotα为1。
实施例13
实施例13与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为175μm,第一活性物质层的涂覆重量为0.35mg/mm 2,第一活性物 质层的压实密度为2.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为88μm,绝缘层宽度W为1.2mm,锐角α对应的cotα为11.4。
实施例14
实施例14与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为88μm,第一活性物质层的涂覆重量为0.35mg/mm 2,第一活性物质层的压实密度为4.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为44μm,绝缘层宽度W为1.2mm,锐角α对应的cotα为1。
实施例15
实施例15与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为58μm,第一活性物质层的涂覆重量为0.35mg/mm 2,第一活性物质层的压实密度为6.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为30μm,绝缘层宽度W为1.2mm,锐角α对应的cotα为1。
实施例16
实施例16与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为100μm,第一活性物质层的涂覆重量为0.2mg/mm 2,第一活性物质 层的压实密度为2.0g/cc,绝缘层成分(质量占比)为聚丙烯酸:氧化锆=30%:70%,绝缘层第二区域的厚度H为50μm,绝缘层宽度W为1.2mm,锐角α对应的cotα为1。
实施例17
实施例17与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为100μm,第一活性物质层的涂覆重量为0.2mg/mm 2,第一活性物质层的压实密度为2.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为87.5μm,绝缘层宽度W为1mm,锐角α对应的cotα为11.4。
对比例1
对比例1与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为30μm,第一活性物质层的涂覆重量为0.045mg/mm 2,第一活性物质层的压实密度为1.5g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为30μm,绝缘层宽度W为1mm,不对绝缘层进行削薄。
对比例2
对比例2与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为100μm,第一活性物质层的涂覆重量为0.2mg/mm 2,第一活性物质 层的压实密度为2.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为50μm,绝缘层宽度W为1.2mm,不对绝缘层进行削薄。
对比例3
对比例2与实施1具有相同的锂离子电池制备流程,但组分参数存在区别,其中,正极活性材料(第一活性物质层)的厚度L为100μm,第一活性物质层的涂覆重量为0.2mg/mm 2,第一活性物质层的压实密度为2.0g/cc,绝缘层成分(质量占比)为PVDF:勃姆石=40%:60%,绝缘层第二区域的厚度H为0μm,绝缘层宽度W为1.2mm,不对绝缘层进行削薄。
对上述实施例1至17以及对比例1至3进行卷绕冷压等工艺,并观察极片外观,并计算能量密度,如下表1。
表1
Figure PCTCN2021081625-appb-000001
Figure PCTCN2021081625-appb-000002
Figure PCTCN2021081625-appb-000003
相比于现有技术,本申请的电化学装置,通过在极片上设置邻接的第一活性物质层及绝缘层,使绝缘层覆盖第一集流体及极耳的 部分切边毛刺,避免电化学装置发生短路;通过在绝缘层外侧设置削薄的第一区域,控制绝缘层厚度与第一活性物质层的厚度之间的比例以及绝缘层的削薄形状,可在保证电化学装置的安全性能的情况下,提升极片在辊压过程中受力均匀性,进而提升电化学装置的整体性能。上文中,参照附图描述了本申请的具体实施方式。但是,本领域中的普通技术人员能够理解,在不偏离本申请的精神和范围的情况下,还可以对本申请的具体实施方式作各种变更和替换。这些变更和替换都落在本申请所限定的范围内。

Claims (10)

  1. 一种电化学装置,包括极片,其特征在于,所述极片包括:
    第一集流体;
    第一极耳,从所述第一集流体凸出;
    第一活性物质层,设置于所述第一集流体的至少一个表面;
    绝缘层,沿所述第一集流体靠近所述第一极耳的侧边设置并邻接于所述第一活性物质层;
    其中,所述绝缘层包括第一区域及第二区域,所述第一区域设置于靠近所述第一极耳的一侧,所述第二区域设置于远离所述第一极耳且与所述第一活性物质层邻接,所述第一区域的所述绝缘层的厚度小于所述第二区域的所述绝缘层的厚度。
  2. 如权利要求1所述的电化学装置,其特征在于,所述第一区域包括第一表面,所述第一表面所在的平面与所述第一集流体所在的平面相交形成一个锐角α,所述第二区域的厚度为H,所述绝缘层的宽度为W,其中W/H≥cotα。
  3. 如权利要求2所述的电化学装置,其特征在于,所述锐角α的范围为5°至75°。
  4. 如权利要求2所述的电化学装置,其特征在于,所述第二区域的厚度H的范围为20μm至100μm,所述绝缘层的宽度W的范围为1mm至10mm。
  5. 如权利要求1所述的电化学装置,其特征在于,所述第一活性物质层的厚度L的范围为30μm至200μm。
  6. 如权利要求1所述的电化学装置,其特征在于,所述第二区域的厚度为H,所述第二区域的厚度H和所述第一活性物质层的厚 度为L满足如下关系:0.3≤H/L≤0.8。
  7. 如权利要求1所述的电化学装置,其特征在于,所述第一活性物质层的涂覆重量为0.06mg/mm 2至0.35mg/mm 2
  8. 如权利要求1所述的电化学装置,其特征在于,所述第一活性物质层的压实密度为2g/cc至6g/cc。
  9. 如权利要求1所述的电化学装置,其特征在于,所述绝缘层包括无机粒子和粘结剂,所述无机粒子包括勃姆石、氧化铝、氧化锆、氧化硼或六方氮化硼中的至少一种,所述粘结剂包括聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐或羧甲基纤维素钠中的至少一种。
  10. 一种电子装置,其特征在于,所述电子装置包括如权利要求1至9任意一项所述的电化学装置。
PCT/CN2021/081625 2021-03-18 2021-03-18 电化学装置以及应用其的电子装置 WO2022193253A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP21930845.9A EP4310934A1 (en) 2021-03-18 2021-03-18 Electrochemical device and electronic device using same
PCT/CN2021/081625 WO2022193253A1 (zh) 2021-03-18 2021-03-18 电化学装置以及应用其的电子装置
BR112023018638A BR112023018638A2 (pt) 2021-03-18 2021-03-18 Dispositivo eletroquímico e dispositivo eletrônico
CN202180094590.7A CN116941056A (zh) 2021-03-18 2021-03-18 电化学装置以及应用其的电子装置
JP2023554848A JP2024509242A (ja) 2021-03-18 2021-03-18 電気化学装置およびそれを応用した電気化学装置
KR1020237031568A KR20230140594A (ko) 2021-03-18 2021-03-18 전기화학장치 및 이를 이용한 전자장치
US18/467,973 US20240006597A1 (en) 2021-03-18 2023-09-15 Electrochemical device and electronic device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/081625 WO2022193253A1 (zh) 2021-03-18 2021-03-18 电化学装置以及应用其的电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/467,973 Continuation US20240006597A1 (en) 2021-03-18 2023-09-15 Electrochemical device and electronic device using same

Publications (1)

Publication Number Publication Date
WO2022193253A1 true WO2022193253A1 (zh) 2022-09-22

Family

ID=83321323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081625 WO2022193253A1 (zh) 2021-03-18 2021-03-18 电化学装置以及应用其的电子装置

Country Status (7)

Country Link
US (1) US20240006597A1 (zh)
EP (1) EP4310934A1 (zh)
JP (1) JP2024509242A (zh)
KR (1) KR20230140594A (zh)
CN (1) CN116941056A (zh)
BR (1) BR112023018638A2 (zh)
WO (1) WO2022193253A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206250284U (zh) * 2016-12-02 2017-06-13 东莞新能源科技有限公司 一种阳极极片及其电芯
CN108886128A (zh) * 2016-04-08 2018-11-23 锂能源和电力有限责任两合公司 能量储存装置
CN111129506A (zh) * 2018-10-31 2020-05-08 丰田自动车株式会社 电极板及其制造方法、使用该电极板的电池及其制造方法、模头
CN111342145A (zh) * 2020-03-13 2020-06-26 湖北亿纬动力有限公司 一种长循环寿命磷酸铁锂电池及其制备方法
CN211605277U (zh) * 2020-01-06 2020-09-29 万向一二三股份公司 一种防止极耳折断的陶瓷涂层极片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886128A (zh) * 2016-04-08 2018-11-23 锂能源和电力有限责任两合公司 能量储存装置
CN206250284U (zh) * 2016-12-02 2017-06-13 东莞新能源科技有限公司 一种阳极极片及其电芯
CN111129506A (zh) * 2018-10-31 2020-05-08 丰田自动车株式会社 电极板及其制造方法、使用该电极板的电池及其制造方法、模头
CN211605277U (zh) * 2020-01-06 2020-09-29 万向一二三股份公司 一种防止极耳折断的陶瓷涂层极片
CN111342145A (zh) * 2020-03-13 2020-06-26 湖北亿纬动力有限公司 一种长循环寿命磷酸铁锂电池及其制备方法

Also Published As

Publication number Publication date
US20240006597A1 (en) 2024-01-04
EP4310934A1 (en) 2024-01-24
KR20230140594A (ko) 2023-10-06
JP2024509242A (ja) 2024-02-29
CN116941056A (zh) 2023-10-24
BR112023018638A2 (pt) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2022204967A1 (zh) 电化学装置和电子装置
WO2022198654A1 (zh) 一种正极补锂材料、包含该材料的正极极片和电化学装置
CN215070049U (zh) 电化学装置以及应用其的电子装置
CN113366673B (zh) 电化学装置和电子装置
US20230076286A1 (en) Electrochemical device and electronic device
US20240021784A1 (en) Electrochemical device and electronic device
WO2022061851A1 (zh) 电池
EP4203089A1 (en) Electrode plate, electrochemical apparatus, and electronic apparatus
CN113839023B (zh) 一种电化学装置及电子装置
WO2022198660A1 (zh) 一种正极补锂材料、包含该材料的正极极片和电化学装置
WO2022061562A1 (zh) 电化学装置和电子装置
US20240079592A1 (en) Electrochemical Apparatus and Electronic Apparatus
JP7321932B2 (ja) 電力機器を始動するためのバッテリーモジュール
EP4084127A2 (en) Electrochemical device and electronic equipment
CN113421999B (zh) 电化学装置和电子装置
WO2022198657A1 (zh) 一种正极补锂材料、包含该材料的正极极片和电化学装置
WO2022198651A1 (zh) 一种正极极片、包含该正极极片的电化学装置和电子装置
US20220310998A1 (en) Positive electrode plate, and electrochemical apparatus and electronic apparatus containing such positive electrode plate
WO2022193253A1 (zh) 电化学装置以及应用其的电子装置
CN115176370A (zh) 电化学装置及包含该电化学装置的用电设备
CN113363417A (zh) 电化学装置和电子装置
WO2023092274A1 (zh) 电化学装置及包含该电化学装置的电子装置
CN112670444B (zh) 正极极片、电化学装置和电子装置
US20230207818A1 (en) Electrode plate, electrochemical device, and electronic device
CN116825953A (zh) 正极极片、电化学装置和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930845

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180094590.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023554848

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237031568

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031568

Country of ref document: KR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023018638

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023018638

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230914

WWE Wipo information: entry into national phase

Ref document number: 2021930845

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021930845

Country of ref document: EP

Effective date: 20231018