WO2022191569A1 - Novel compound and organic light emitting device comprising same - Google Patents

Novel compound and organic light emitting device comprising same Download PDF

Info

Publication number
WO2022191569A1
WO2022191569A1 PCT/KR2022/003251 KR2022003251W WO2022191569A1 WO 2022191569 A1 WO2022191569 A1 WO 2022191569A1 KR 2022003251 W KR2022003251 W KR 2022003251W WO 2022191569 A1 WO2022191569 A1 WO 2022191569A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
layer
deuterium
light emitting
Prior art date
Application number
PCT/KR2022/003251
Other languages
French (fr)
Korean (ko)
Inventor
박슬찬
이동훈
서상덕
정민우
이정하
한수진
황성현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202280007726.0A priority Critical patent/CN116615420A/en
Priority claimed from KR1020220029047A external-priority patent/KR20220126236A/en
Publication of WO2022191569A1 publication Critical patent/WO2022191569A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode.
  • the organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, it may be made of an electron injection layer, etc.
  • an organic light emitting device using a solution process is being developed instead of a conventional deposition process.
  • all organic light emitting device layers were coated with a solution process to develop an organic light emitting device, but the current technology has limitations. Therefore, only HIL, HTL, and EML are processed in a solution process in a regular structure, and subsequent processes are performed using the conventional deposition process.
  • the present invention provides a material for a novel organic light emitting device that can be used in an organic light emitting device and can be used in a solution process at the same time.
  • Patent Document 1 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the present invention provides a compound represented by Formula 1 or 2:
  • X 1 to X 3 are each independently CH or N, wherein at least one of X 1 to X 3 is N,
  • Y is O or S
  • Ar is substituted or unsubstituted C 1-30 alkyl, substituted or unsubstituted C 3-30 cycloalkyl, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted N, O and S C 2-60 heteroaryl including any one or more heteroatoms selected from the group,
  • L 1 and L 2 are each independently a single bond, phenylene, biphenylene, or terphenylene,
  • R 1 and R 2 are each independently hydrogen, deuterium, halogen, cyano, substituted or unsubstituted C 1-60 alkyl, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted N, O and C 2-60 heteroaryl including any one or more heteroatoms selected from the group consisting of S,
  • n is an integer from 1 to 8
  • Ar is substituted with one or more deuterium, or at least one of R 1 and R 2 is deuterium,
  • the compound represented by Formula 1 or 2 includes 4 or more deuterium in the compound.
  • the present invention is a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound represented by Formula 1 or 2, organic light emitting diode provide the element.
  • the compound represented by Chemical Formula 1 or 2 described above can be used as a material for an organic material layer of an organic light emitting device, and can also be used in a solution process, and improve efficiency, low driving voltage and/or lifespan characteristics in an organic light emitting device can do it
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , an organic material layer 3 , and a cathode 4 .
  • FIG. 2 is a substrate (1), anode (2), hole injection layer (5), hole transport layer (6), electron blocking layer (7), light emitting layer (8), hole blocking layer (9), electron transport layer (10) , an example of an organic light emitting device including an electron injection layer 11 and a cathode 4 is shown.
  • substituted or unsubstituted refers to deuterium; halogen group; cyano group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an aryl phosphine group; or N, O, and S atoms, which is substituted or unsubstituted with one or more substituents selected from the group consisting of heteroaryl containing one
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent in which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably from 1 to 40 carbon atoms.
  • the carbonyl group may have a structure as follows, but is not limited thereto.
  • the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • the ester group may have a structure as follows, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms.
  • the imide group may have a structure as follows, but is not limited thereto.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like.
  • the present invention is not limited thereto.
  • the boron group specifically includes, but is not limited to, a dimethyl boron group, a diethyl boron group, a t-butylmethyl boron group, a diphenyl boron group, a phenyl boron group, and the like.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20.
  • the aryl group may be a monocyclic aryl group such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a perylenyl group, a chrysenyl group, or a fluorenyl group, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, etc. can be
  • the present invention is not limited thereto.
  • heteroaryl is a heteroaryl containing at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but is preferably from 2 to 60 carbon atoms.
  • heteroaryl include xanthene, thioxanthen, thiophene, furan, pyrrole, imidazole, thiazole, oxazole, oxadiazole, triazole, pyridyl, bipyridyl, Pyrimidyl group, triazine group, acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyridopyrazinyl group, pyrazino Pyrazinyl group, isoquinoline group, indole group, carbazo
  • the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, the arylamine group, and the arylsilyl group is the same as the examples of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group.
  • heteroaryl among the heteroarylamine groups the description of the above-described heteroaryl may be applied.
  • the alkenyl group among the aralkenyl groups is the same as the examples of the above-described alkenyl groups.
  • the description of the above-described aryl group may be applied except that arylene is a divalent group.
  • the description of the aforementioned heteroaryl may be applied, except that heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents.
  • the heterocycle is not a monovalent group, and the description of the above-described heteroaryl may be applied, except that it is formed by combining two substituents.
  • the present invention provides a compound represented by Formula 1 or 2.
  • the compound represented by Formula 1 or 2 contains 4 or more deuterium in the compound, preferably 4 to 30 deuterium, more preferably 4 to 20, and still more preferably 4 Dogs to 15.
  • X 1 to X 3 are each N.
  • Ar is C 6-20 aryl, wherein Ar is unsubstituted or substituted with 5 to 15 deuterium.
  • Ar is phenyl, biphenyl, terphenyl, naphthyl, phenylnaphthyl, naphthylphenyl, phenanthrenyl, fluorenyl, 9,9-dimethylfluorenyl, 9,9-diphenylflu orenyl or triphenylenyl, wherein Ar is unsubstituted or substituted with 5 to 13 deuterium. Even more preferably, Ar is unsubstituted or substituted with 5, 9, 11 or 13 deuterium.
  • L 1 is a single bond, phenylene, biphenylene, or terphenylene
  • L 2 is a single bond
  • L 1 is a single bond
  • L 2 is phenylene or biphenylene
  • R 1 and R 2 are each independently hydrogen or deuterium.
  • R 1 and R 2 are each hydrogen; R 1 is deuterium, R 2 is hydrogen, m is an integer of 4, 6, or 7, and n is an integer of 8; R 1 is hydrogen, R 2 is deuterium, m is an integer of 7, and n is an integer of 4, 6, or 8; or R 1 and R 2 are each deuterium, m is an integer of 4, 6, or 7, and n is an integer of 4, 6, or 8.
  • Ar is phenyl, biphenyl, terphenyl, or triphenylenyl, wherein Ar is substituted with 5 to 13 deuterium, and R 1 and R 2 are each is hydrogen. Even more preferably in this case, Ar is phenyl substituted with 5 deuterium, biphenyl substituted with 5 or 9 deuterium, terphenyl substituted with 5 or 13 deuterium, or substituted with 11 deuterium triphenylenyl, and R 1 and R 2 are each hydrogen.
  • Ar is phenyl, biphenyl, terphenyl, or triphenylenyl, wherein Ar is unsubstituted, and at least one of R 1 and R 2 is deuterium; The rest is hydrogen.
  • m is an integer of 1 to 7
  • n is an integer of 1 to 8, and the compound represented by Formula 1 or 2 includes 4 to 15 deuterium in the compound.
  • Ar is phenyl, biphenyl, terphenyl, or triphenylenyl, wherein Ar is unsubstituted, R 1 is deuterium, R 2 is hydrogen, and m is 4, 6, or 7 is an integer of, n is an integer of 8; R 1 is hydrogen, R 2 is deuterium, m is an integer of 7, and n is an integer of 4, 6, or 8; or R 1 and R 2 are each deuterium, m is an integer of 4, 6, or 7, and n is an integer of 4, 6, or 8.
  • Ar is substituted with one or more deuterium, and at least one of R 1 and R 2 is deuterium, specifically, Ar is phenyl, biphenyl, terphenyl, or triphenylenyl, wherein Ar is substituted with 5 to 13 deuterium, at least one of R 1 and R 2 is deuterium, and the remainder is hydrogen, wherein m is an integer from 1 to 7, n is an integer from 1 to 8; Even more preferably in this case, Ar is phenyl substituted with 5 deuterium, biphenyl substituted with 5 or 9 deuterium, terphenyl substituted with 5 or 13 deuterium, or substituted with 11 deuterium triphenylenyl, R 1 is deuterium, R 2 is hydrogen, m is an integer of 4, 6, or 7, and n is an integer of 8; R 1 is hydrogen, R 2 is deuterium, m is an integer of 7, and n is an integer of 4, 6, or 8; or R 1 and R
  • the present invention provides a method for preparing a compound represented by Formula 1 as shown in Scheme 1 below, and a compound represented by Formula 2 may also be prepared by applying the following Reaction Scheme.
  • the steps S11 and S12 are amine substitution reactions, preferably performed in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction can be changed as known in the art.
  • the present invention provides a method for preparing a compound represented by Formula 1 as shown in Scheme 2 below, and the compound represented by Formula 2 may also be prepared by applying the following Reaction Scheme.
  • reaction of compound (iii) and compound (iv) in step S21 is an amine substitution reaction, preferably performed in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction can be changed as known in the art. do.
  • a method for preparing a compound represented by Formula 1 as shown in Scheme 3 is provided, and a compound represented by Formula 2 may also be prepared by applying the following Reaction Scheme.
  • W 1 and W 2 are each independently halogen, preferably bromo or chloro.
  • V is a boron-containing organic group such as a boronic acid group, a boronic acid ester group, or a boronic acid pinacol ester group.
  • reaction of compound (iv) and compound (v) in step S31 in Scheme 3 is an amine substitution reaction, and is preferably performed in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction is as known in the art. change is possible
  • reaction of compound (vi) and compound (vii) in step S32 is a Suzuki-coupling reaction, preferably performed under a palladium catalyst and a base, and the reactor for the Suzuki-coupling reaction is subject to change as known in the art. It is possible.
  • the present invention provides an organic light emitting device including the compound represented by the formula (1) or (2).
  • the present invention provides a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a compound represented by Formula 1 or 2 above.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, or an electron injection and transport layer that simultaneously injects and transports electrons as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic layer may include an emission layer, and the emission layer includes a compound represented by Chemical Formula 1 or 2.
  • the compound according to the present invention can be used as a host for the light emitting layer.
  • the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of the organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , an organic material layer 3 , and a cathode 4 .
  • the compound represented by Formula 1 or 2 may be included in the emission layer.
  • FIG. 2 is a substrate (1), anode (2), hole injection layer (5), hole transport layer (6), electron blocking layer (7), light emitting layer (8), hole blocking layer (9), electron transport layer (10) , an example of an organic light emitting device comprising an electron injection layer 11 and a cathode 4 is shown.
  • the compound represented by Formula 1 or 2 may be included in the emission layer.
  • the organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Chemical Formula 1 or 2. Also, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device may be manufactured by sequentially stacking an anode, an organic material layer, and a cathode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon it can be prepared by depositing a material that can be used as a cathode thereon.
  • the compound represented by Formula 1 or 2 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890). However, the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is an anode
  • anode material a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer.
  • the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive compounds such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multi-layered material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect on the light emitting layer or the light emitting material, and is produced in the light emitting layer
  • a compound that prevents the exciton from moving to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable.
  • the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • the hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, and conductive compounds of polyaniline and polythiophene series, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer.
  • the hole transport material is a material that can transport holes from the anode or the hole injection layer to the light emitting layer and transfer them to the light emitting layer. material is suitable. Specific examples include, but are not limited to, an arylamine-based organic material, a conductive compound, and a block copolymer having a conjugated portion and a non-conjugated portion together.
  • the electron suppression layer is formed on the hole transport layer, and is preferably provided in contact with the light emitting layer to control hole mobility and prevent excessive movement of electrons to increase the hole-electron coupling probability, thereby increasing the efficiency of the organic light emitting device. plays a role in improving
  • the electron blocking layer includes an electron blocking material, and an arylamine-based organic material may be used as an example of the electron blocking material, but is not limited thereto.
  • the light emitting layer is positioned between the anode and the cathode, and includes the compound of Formula 1 or 2 as a host material. Accordingly, excitons can emit light evenly throughout the light emitting layer, thereby exhibiting low voltage driving and high luminous efficiency of the organic light emitting diode, while exhibiting significantly improved lifespan characteristics.
  • the light emitting layer may further include a commonly used host material (hereinafter referred to as a second host) together with the compound of Formula 1 or 2 above.
  • a second host there is a condensed aromatic ring derivative or a heterocyclic compound containing compound.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc.
  • heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the emission layer may further include a dopant material in addition to the host material.
  • the dopant material include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group.
  • styrylamine compound a substituted or unsubstituted It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the hole blocking layer is formed on the light emitting layer, preferably provided in contact with the light emitting layer, to improve the efficiency of the organic light emitting device by controlling electron mobility and preventing excessive movement of holes to increase the hole-electron coupling probability layer that plays a role.
  • the hole blocking layer includes a hole blocking material, and examples of the hole blocking material include azine derivatives including triazine; triazole derivatives; oxadiazole derivatives; phenanthroline derivatives; A compound into which an electron withdrawing group is introduced, such as a phosphine oxide derivative, may be used, but the present invention is not limited thereto.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the emission layer, and is formed on the emission layer or the hole blocking layer.
  • the electron transport material included in the electron transport layer a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable, and a material having high electron mobility is suitable.
  • Specific examples include Al complex of 8-hydroxyquinoline; complexes comprising Alq3; organic radical compounds; hydroxyflavone-metal complexes; and triazine derivatives, but is not limited thereto.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone, and derivatives thereof, metal complex compounds , or may be used together with a nitrogen-containing 5-membered ring derivative, and the like, but is not limited thereto.
  • the electron injection layer is formed on the electron transport layer, and the electron injection material included in the electron injection layer is LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone. , thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylene tetracarboxylic acid, fluorenylidene methane, anthrone and their derivatives, metal complex compounds, nitrogen-containing 5-membered ring derivatives, etc. can be used.
  • the electron injection material included in the electron injection layer is LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone. , thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylene tetracarboxylic acid, fluorenylidene
  • the metal complex compound examples include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc. Accordingly, the present invention is not limited thereto.
  • electron injection and transport layer may include As the electron injection and transport material, the above-described electron injection material or electron transport material may be used.
  • the organic light emitting device according to the present invention may be a top emission type, a back emission type, or a double side emission type depending on the material used.
  • the compound according to the present invention may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • compound A-4 (20 g, 33.8 mmol) and 9H-2,9'-bicarbazole (11.2 g, 33.8 mmol) were added to 400 ml of xylene, stirred and refluxed. Thereafter, potassium triphosphate (9.8 g, 101.5 mmol) was added, and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0.5 g, 1 mmol) was added. After the reaction for 5 hours, it was cooled to room temperature, and the resulting solid was filtered. The resulting solid was dissolved in 900 mL of chloroform (an amount corresponding to 30 times the total volume of the solid), washed twice with water, and then the organic layer was separated.
  • potassium carbonate (26.2 g, 189.8 mmol) was dissolved in 79 ml of water, and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (1 g, 1.9 mmol) was added. After the reaction for 3 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. The resulting product was dissolved in 1388 mL of tetrahydrofuran (an amount corresponding to 50 times the total volume of the obtained product), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure.
  • a glass substrate coated with ITO (Indium Tin Oxide) to a thickness of 1,400 ⁇ was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • ITO Indium Tin Oxide
  • a product manufactured by Fischer Co. was used as the detergent
  • distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water.
  • ultrasonic washing was performed for 10 minutes by repeating twice with distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, and after drying, it was transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • a hole injection layer was formed by thermal vacuum deposition of the following HT-A compound and 5% by weight of PD on the prepared ITO transparent electrode to a thickness of 100 ⁇ , and only the HT-A compound was deposited thereon to a thickness of 1150 ⁇ to form a hole transport layer did.
  • the following HT-B compound was thermally vacuum deposited to a thickness of 450 ⁇ to form an electron blocking layer.
  • compound 1 prepared in Synthesis Example 1 and a GH-A compound as a second host were mixed in a weight ratio of 40:60 to constitute a host, and 15% by weight of GD based on the total weight of the host Using the compound as a dopant, it was vacuum-deposited to a thickness of 400 ⁇ on the electron suppression layer to form a light emitting layer. Then, the following ET-A compound was vacuum-deposited to a thickness of 50 ⁇ on the light emitting layer to form a hole blocking layer. Then, the following ET-B compound and Liq compound were thermally vacuum deposited on the hole blocking layer in a weight ratio of 2:1 to form an electron transport layer to a thickness of 250 ⁇ .
  • LiF and magnesium were vacuum-deposited to a thickness of 30 ⁇ in a weight ratio of 1:1 to form an electron injection layer.
  • Magnesium and silver were deposited on the electron injection layer in a weight ratio of 1:4 to form a cathode to a thickness of 160 ⁇ , thereby manufacturing an organic light emitting diode.
  • the deposition rate of the organic material was maintained at 0.4 ⁇ 0.7 ⁇ /sec
  • the deposition rate of magnesium and silver was maintained at 2 ⁇ /sec
  • the vacuum degree during deposition was 1 x 10 -7 ⁇ 5 x 10 -8 torr. kept.
  • the organic light emitting devices of Examples 2 to 8 and Comparative Examples 1 to 5 were manufactured in the same manner as in Example 1, except that the compound shown in Table 1 was used as the first host when the light emitting layer was formed. did. In this case, when a mixture of two types of compounds is used as the host, the weight ratio between the host compounds is indicated in parentheses.
  • the organic light-emitting devices prepared in Examples 1 to 8 and Comparative Examples 1 to 5 were heat-treated in an oven at 100° C. for 30 minutes, then taken out, and voltage, efficiency, and lifespan (T95) were measured while applying a current, and the results were obtained. It is shown in Table 1 below. At this time, the voltage and efficiency were measured by applying a current density of 10 mA/cm 2 , and the lifetime (T95) was measured for the time (hr) required for the luminance to decrease from the initial luminance to 95% at a current density of 20 mA/cm 2 .
  • the organic light emitting devices of Examples 1 to 8 including the deuterium substituted compound exhibited a significantly improved effect in terms of lifespan characteristics while exhibiting the same level of low voltage and high efficiency as compared to Comparative Examples 1 to 5. It was.
  • Example 1 and Comparative Examples 1, 3, and 4 are compared, the effect of improving lifespan characteristics according to deuterium substitution in the first host compound included in the emission layer is more clear.
  • Substrate 2 Anode
  • organic layer 4 cathode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides a novel compound and an organic light emitting device comprising same.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자Novel compound and organic light emitting device using same
관련 출원(들)과의 상호 인용Cross-Citation with Related Application(s)
본 출원은 2021년 3월 8일자 한국 특허 출원 제10-2021-0030416호 및 2022년 3월 8일자 한국 특허 출원 제10-2022-0029047호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2021-0030416 dated March 8, 2021 and Korean Patent Application No. 10-2022-0029047 dated March 8, 2022, All content disclosed in the literature is incorporated as a part of this specification.
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.The present invention relates to a novel compound and an organic light emitting device comprising the same.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. In general, the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material. The organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode. The organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, it may be made of an electron injection layer, etc. When a voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer. When the injected holes and electrons meet, excitons are formed, and the excitons It lights up when it falls back to the ground state.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.The development of new materials for organic materials used in organic light emitting devices as described above is continuously required.
한편, 최근에는 공정 비용 절감을 위하여 기존의 증착 공정 대신 용액 공정, 특히 잉크젯 공정을 이용한 유기 발광 소자가 개발되고 있다. 초창기에는 모든 유기 발광 소자 층을 용액 공정으로 코팅하여 유기 발광 소자를 개발하려 하였으나 현재 기술로는 한계가 있어, 정구조 형태에서 HIL, HTL, EML만을 용액 공정으로 진행하고 추후 공정은 기존의 증착 공정을 활용하는 하이브리드(hybrid) 공정이 연구 중이다. Meanwhile, in order to reduce process costs, an organic light emitting device using a solution process, particularly an inkjet process, is being developed instead of a conventional deposition process. In the early days, all organic light emitting device layers were coated with a solution process to develop an organic light emitting device, but the current technology has limitations. Therefore, only HIL, HTL, and EML are processed in a solution process in a regular structure, and subsequent processes are performed using the conventional deposition process. A hybrid process using
이에 본 발명에서는 유기 발광 소자에 사용될 수 있으면서 동시에 용액 공정에 사용 가능한 신규한 유기 발광 소자의 소재를 제공한다.Accordingly, the present invention provides a material for a novel organic light emitting device that can be used in an organic light emitting device and can be used in a solution process at the same time.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) 한국특허 공개번호 제10-2000-0051826호(Patent Document 1) Korean Patent Publication No. 10-2000-0051826
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to a novel compound and an organic light emitting device comprising the same.
본 발명은 하기 화학식 1 또는 2로 표시되는 화합물을 제공한다: The present invention provides a compound represented by Formula 1 or 2:
[화학식 1][Formula 1]
Figure PCTKR2022003251-appb-img-000001
Figure PCTKR2022003251-appb-img-000001
[화학식 2][Formula 2]
Figure PCTKR2022003251-appb-img-000002
Figure PCTKR2022003251-appb-img-000002
상기 화학식 1 및 2에서, In Formulas 1 and 2,
X1 내지 X3은 각각 독립적으로 CH 또는 N이되, X1 내지 X3 중 적어도 하나는 N이고, X 1 to X 3 are each independently CH or N, wherein at least one of X 1 to X 3 is N,
Y는 O 또는 S이며,Y is O or S;
Ar은 치환 또는 비치환된 C1-30 알킬, 치환 또는 비치환된 C3-30 시클로알킬, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,Ar is substituted or unsubstituted C 1-30 alkyl, substituted or unsubstituted C 3-30 cycloalkyl, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted N, O and S C 2-60 heteroaryl including any one or more heteroatoms selected from the group,
L1 및 L2는 각각 독립적으로, 단일 결합, 페닐렌, 비페닐렌, 또는 터페닐렌이며, L 1 and L 2 are each independently a single bond, phenylene, biphenylene, or terphenylene,
R1 및 R2는 각각 독립적으로 수소, 중수소, 할로겐, 시아노, 치환 또는 비치환된 C1-60 알킬, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,R 1 and R 2 are each independently hydrogen, deuterium, halogen, cyano, substituted or unsubstituted C 1-60 alkyl, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted N, O and C 2-60 heteroaryl including any one or more heteroatoms selected from the group consisting of S,
m은 1 내지 7의 정수이고, n은 1 내지 8의 정수이며,m is an integer from 1 to 7, n is an integer from 1 to 8,
상기 Ar이 1개 이상의 중수소로 치환되거나, 또는 상기 R1 및 R2 중 적어도 하나가 중수소이고,wherein Ar is substituted with one or more deuterium, or at least one of R 1 and R 2 is deuterium,
상기 화학식 1 또는 2로 표시되는 화합물은, 화합물 내 중수소를 4개 이상 포함한다.The compound represented by Formula 1 or 2 includes 4 or more deuterium in the compound.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1 또는 2로 표시되는 화합물을 포함하는 것인, 유기 발광 소자를 제공한다.In addition, the present invention is a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound represented by Formula 1 or 2, organic light emitting diode provide the element.
상술한 화학식 1 또는 2로 표시되는 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있으며, 또한 용액 공정에 사용이 가능하며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. The compound represented by Chemical Formula 1 or 2 described above can be used as a material for an organic material layer of an organic light emitting device, and can also be used in a solution process, and improve efficiency, low driving voltage and/or lifespan characteristics in an organic light emitting device can do it
도 1은 기판(1), 양극(2), 유기물 층(3), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , an organic material layer 3 , and a cathode 4 .
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(8), 정공저지층(9), 전자수송층(10), 전자주입층(11) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 2 is a substrate (1), anode (2), hole injection layer (5), hole transport layer (6), electron blocking layer (7), light emitting layer (8), hole blocking layer (9), electron transport layer (10) , an example of an organic light emitting device including an electron injection layer 11 and a cathode 4 is shown.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.Hereinafter, it will be described in more detail to help the understanding of the present invention.
(용어의 정의)(Definition of Terms)
본 명세서에서,
Figure PCTKR2022003251-appb-img-000003
또는
Figure PCTKR2022003251-appb-img-000004
는 다른 치환기에 연결되는 결합을 의미한다.
In this specification,
Figure PCTKR2022003251-appb-img-000003
or
Figure PCTKR2022003251-appb-img-000004
means a bond connected to another substituent.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로아릴로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.As used herein, the term "substituted or unsubstituted" refers to deuterium; halogen group; cyano group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an aryl phosphine group; or N, O, and S atoms, which is substituted or unsubstituted with one or more substituents selected from the group consisting of heteroaryl containing one or more . For example, "a substituent in which two or more substituents are connected" may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent in which two phenyl groups are connected.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 상기 카르보닐기는 하기와 같은 구조를 갖는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably from 1 to 40 carbon atoms. Specifically, the carbonyl group may have a structure as follows, but is not limited thereto.
Figure PCTKR2022003251-appb-img-000005
Figure PCTKR2022003251-appb-img-000005
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 상기 에스테르기는 하기와 같은 구조를 갖는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present specification, in the ester group, the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, the ester group may have a structure as follows, but is not limited thereto.
Figure PCTKR2022003251-appb-img-000006
Figure PCTKR2022003251-appb-img-000006
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 상기 이미드기는 하기와 같은 구조를 갖는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, the imide group may have a structure as follows, but is not limited thereto.
Figure PCTKR2022003251-appb-img-000007
Figure PCTKR2022003251-appb-img-000007
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. In the present specification, the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. However, the present invention is not limited thereto.
본 명세서에 있어서, 붕소기는 구체적으로 디메틸붕소기, 디에틸붕소기, t-부틸메틸붕소기, 디페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.In the present specification, the boron group specifically includes, but is not limited to, a dimethyl boron group, a diethyl boron group, a t-butylmethyl boron group, a diphenyl boron group, a phenyl boron group, and the like.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸헥실, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylhexyl, 4-methylhexyl, 5-methylhexyl, and the like, but is not limited thereto.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but is not limited thereto.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 비페닐이기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난쓰레닐기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20. The aryl group may be a monocyclic aryl group such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a perylenyl group, a chrysenyl group, or a fluorenyl group, but is not limited thereto.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2022003251-appb-img-000008
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
Figure PCTKR2022003251-appb-img-000008
etc. can be However, the present invention is not limited thereto.
본 명세서에 있어서, 헤테로아릴은 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로아릴로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴의 예로는 잔텐(xanthene), 티오잔텐(thioxanthen), 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, heteroaryl is a heteroaryl containing at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but is preferably from 2 to 60 carbon atoms. Examples of heteroaryl include xanthene, thioxanthen, thiophene, furan, pyrrole, imidazole, thiazole, oxazole, oxadiazole, triazole, pyridyl, bipyridyl, Pyrimidyl group, triazine group, acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyridopyrazinyl group, pyrazino Pyrazinyl group, isoquinoline group, indole group, carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group ( phenanthroline), an isoxazolyl group, a thiadiazolyl group, a phenothiazinyl group, and a dibenzofuranyl group, but are not limited thereto.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기, 아릴실릴기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민기 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로사이클은 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다In the present specification, the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, the arylamine group, and the arylsilyl group is the same as the examples of the aryl group described above. In the present specification, the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group. In the present specification, as for heteroaryl among the heteroarylamine groups, the description of the above-described heteroaryl may be applied. In the present specification, the alkenyl group among the aralkenyl groups is the same as the examples of the above-described alkenyl groups. In the present specification, the description of the above-described aryl group may be applied except that arylene is a divalent group. In the present specification, the description of the aforementioned heteroaryl may be applied, except that heteroarylene is a divalent group. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents. In the present specification, the heterocycle is not a monovalent group, and the description of the above-described heteroaryl may be applied, except that it is formed by combining two substituents.
(화합물) (compound)
본 발명은 상기 화학식 1 또는 2로 표시되는 화합물을 제공한다. The present invention provides a compound represented by Formula 1 or 2.
상기 화학식 1 또는 2로 표시되는 화합물은, 화합물 내 중수소를 4개 이상 포함하며, 바람직하게는 중수소를 4개 내지 30개 포함하고, 보다 바람직하게는 4개 내지 20개, 보다 더 바람직하게는 4개 내지 15개 포함한다.The compound represented by Formula 1 or 2 contains 4 or more deuterium in the compound, preferably 4 to 30 deuterium, more preferably 4 to 20, and still more preferably 4 Dogs to 15.
또, 상기 화학식 1 및 2에 있어서, 바람직하게는, X1 내지 X3은 각각 N이다.Further, in Formulas 1 and 2, preferably, X 1 to X 3 are each N.
또, 상기 화학식 1 및 2에 있어서, 바람직하게는, Ar은 C6-20 아릴이고, 상기 Ar은 비치환되거나, 또는 5개 내지 15개의 중수소로 치환된다.In addition, in Formulas 1 and 2, preferably, Ar is C 6-20 aryl, wherein Ar is unsubstituted or substituted with 5 to 15 deuterium.
보다 바람직하게는, Ar은 페닐, 비페닐, 터페닐, 나프틸, 페닐나프틸, 나프틸페닐, 페난쓰레닐, 플루오레닐, 9,9-디메틸플루오레닐, 9,9-디페닐플루오레닐, 또는 트리페닐레닐이고, 상기 Ar은 비치환되거나, 또는 5개 내지 13개의 중수소로 치환된다. 보다 더 바람직하게는, 상기 Ar는 비치환되거나, 또는 5개, 9개, 11개 또는 13개의 중수소로 치환된다. More preferably, Ar is phenyl, biphenyl, terphenyl, naphthyl, phenylnaphthyl, naphthylphenyl, phenanthrenyl, fluorenyl, 9,9-dimethylfluorenyl, 9,9-diphenylflu orenyl or triphenylenyl, wherein Ar is unsubstituted or substituted with 5 to 13 deuterium. Even more preferably, Ar is unsubstituted or substituted with 5, 9, 11 or 13 deuterium.
또, 상기 화학식 1 및 2에 있어서, 바람직하게는, L1은 단일 결합, 페닐렌, 비페닐렌, 또는 터페닐렌이고, L2는 단일 결합이거나; 또는 L1은 단일 결합이고, L2는 페닐렌 또는 비페닐렌이다.In addition, in Formulas 1 and 2, preferably, L 1 is a single bond, phenylene, biphenylene, or terphenylene, and L 2 is a single bond; or L 1 is a single bond, and L 2 is phenylene or biphenylene.
또, 상기 화학식 1 및 2에 있어서, 바람직하게는, R1 및 R2은 각각 독립적으로 수소 또는 중수소이다. In addition, in Formulas 1 and 2, preferably, R 1 and R 2 are each independently hydrogen or deuterium.
보다 바람직하게는 R1 및 R2가 각각 수소이거나; R1은 중수소이고, R2은 수소이며, m은 4, 6, 또는 7의 정수이고, n은 8의 정수이거나; R1은 수소이고, R2은 중수소이며, m은 7의 정수이고, n은 4, 6, 또는 8의 정수이거나; 또는 R1 및 R2가 각각 중수소이고, m은 4, 6, 또는 7의 정수이고, n은 4, 6, 또는 8의 정수이다.more preferably R 1 and R 2 are each hydrogen; R 1 is deuterium, R 2 is hydrogen, m is an integer of 4, 6, or 7, and n is an integer of 8; R 1 is hydrogen, R 2 is deuterium, m is an integer of 7, and n is an integer of 4, 6, or 8; or R 1 and R 2 are each deuterium, m is an integer of 4, 6, or 7, and n is an integer of 4, 6, or 8.
또, 보다 바람직하게는, 상기 화학식 1 및 2에 있어서, Ar은 페닐, 비페닐, 터페닐, 또는 트리페닐레닐이고, 상기 Ar은 5개 내지 13개의 중수소로 치환되며, R1 및 R2은 각각 수소이다. 이 경우 보다 더 바람직하게는, 상기 Ar은 5개의 중수소로 치환된 페닐, 5개 또는 9개의 중수소로 치환된 비페닐, 5개 또는 13개의 중수소로 치환된 터페닐, 또는 11개의 중수소로 치환된 트리페닐레닐이고, R1 및 R2은 각각 수소이다.More preferably, in Formulas 1 and 2, Ar is phenyl, biphenyl, terphenyl, or triphenylenyl, wherein Ar is substituted with 5 to 13 deuterium, and R 1 and R 2 are each is hydrogen. Even more preferably in this case, Ar is phenyl substituted with 5 deuterium, biphenyl substituted with 5 or 9 deuterium, terphenyl substituted with 5 or 13 deuterium, or substituted with 11 deuterium triphenylenyl, and R 1 and R 2 are each hydrogen.
또, 보다 바람직하게는, 상기 화학식 1 및 2에 있어서, Ar은 페닐, 비페닐, 터페닐, 또는 트리페닐레닐이고, 상기 Ar은 비치환되며, R1 및 R2 중 적어도 하나는 중수소이고, 나머지는 수소이다. 이때, m은 1 내지 7의 정수이고, n은 1 내지 8의 정수이며, 상기 화학식 1 또는 2로 표시되는 화합물은, 화합물 내 중수소를 4개 내지 15개 포함한다. 이 경우 보다 더 바람직하게는 Ar은 페닐, 비페닐, 터페닐, 또는 트리페닐레닐이고, 상기 Ar은 비치환되며, R1은 중수소이고, R2은 수소이며, m은 4, 6, 또는 7의 정수이고, n은 8의 정수이거나; R1은 수소이고, R2은 중수소이며, m은 7의 정수이고, n은 4, 6, 또는 8의 정수이거나; 또는 R1 및 R2가 각각 중수소이고, m은 4, 6, 또는 7의 정수이고, n은 4, 6, 또는 8의 정수이다.Also, more preferably, in Formulas 1 and 2, Ar is phenyl, biphenyl, terphenyl, or triphenylenyl, wherein Ar is unsubstituted, and at least one of R 1 and R 2 is deuterium; The rest is hydrogen. In this case, m is an integer of 1 to 7, n is an integer of 1 to 8, and the compound represented by Formula 1 or 2 includes 4 to 15 deuterium in the compound. Even more preferably in this case, Ar is phenyl, biphenyl, terphenyl, or triphenylenyl, wherein Ar is unsubstituted, R 1 is deuterium, R 2 is hydrogen, and m is 4, 6, or 7 is an integer of, n is an integer of 8; R 1 is hydrogen, R 2 is deuterium, m is an integer of 7, and n is an integer of 4, 6, or 8; or R 1 and R 2 are each deuterium, m is an integer of 4, 6, or 7, and n is an integer of 4, 6, or 8.
또, 보다 바람직하게는, 상기 화학식 1 및 2에 있어서, 상기 Ar이 1개 이상의 중수소로 치환되고, 상기 R1 및 R2 중 적어도 하나가 중수소이며, 구체적으로는 상기 Ar은 페닐, 비페닐, 터페닐, 또는 트리페닐레닐이고, 상기 Ar은 5개 내지 13개의 중수소로 치환되며, R1 및 R2 중 적어도 하나는 중수소이고, 나머지는 수소이며, 이때, m은 1 내지 7의 정수이고, n은 1 내지 8의 정수이다. 이 경우 보다 더 바람직하게는, 상기 Ar은 5개의 중수소로 치환된 페닐, 5개 또는 9개의 중수소로 치환된 비페닐, 5개 또는 13개의 중수소로 치환된 터페닐, 또는 11개의 중수소로 치환된 트리페닐레닐이고, R1은 중수소이고, R2은 수소이며, m은 4, 6, 또는 7의 정수이고, n은 8의 정수이거나; R1은 수소이고, R2은 중수소이며, m은 7의 정수이고, n은 4, 6, 또는 8의 정수이거나; 또는 R1 및 R2가 각각 중수소이고, m은 4, 6, 또는 7의 정수이고, n은 4, 6, 또는 8의 정수이다.More preferably, in Formulas 1 and 2, Ar is substituted with one or more deuterium, and at least one of R 1 and R 2 is deuterium, specifically, Ar is phenyl, biphenyl, terphenyl, or triphenylenyl, wherein Ar is substituted with 5 to 13 deuterium, at least one of R 1 and R 2 is deuterium, and the remainder is hydrogen, wherein m is an integer from 1 to 7, n is an integer from 1 to 8; Even more preferably in this case, Ar is phenyl substituted with 5 deuterium, biphenyl substituted with 5 or 9 deuterium, terphenyl substituted with 5 or 13 deuterium, or substituted with 11 deuterium triphenylenyl, R 1 is deuterium, R 2 is hydrogen, m is an integer of 4, 6, or 7, and n is an integer of 8; R 1 is hydrogen, R 2 is deuterium, m is an integer of 7, and n is an integer of 4, 6, or 8; or R 1 and R 2 are each deuterium, m is an integer of 4, 6, or 7, and n is an integer of 4, 6, or 8.
상기 화학식 1 또는 2로 표시되는 화합물의 대표적인 예는 하기와 같다: Representative examples of the compound represented by Formula 1 or 2 are as follows:
Figure PCTKR2022003251-appb-img-000009
Figure PCTKR2022003251-appb-img-000009
Figure PCTKR2022003251-appb-img-000010
Figure PCTKR2022003251-appb-img-000010
Figure PCTKR2022003251-appb-img-000011
Figure PCTKR2022003251-appb-img-000011
Figure PCTKR2022003251-appb-img-000012
Figure PCTKR2022003251-appb-img-000012
Figure PCTKR2022003251-appb-img-000013
Figure PCTKR2022003251-appb-img-000013
Figure PCTKR2022003251-appb-img-000014
Figure PCTKR2022003251-appb-img-000014
Figure PCTKR2022003251-appb-img-000015
Figure PCTKR2022003251-appb-img-000015
Figure PCTKR2022003251-appb-img-000016
.
Figure PCTKR2022003251-appb-img-000016
.
한편, 본 발명은 일례로 하기 반응식 1과 같은 상기 화학식 1로 표시되는 화합물의 제조방법을 제공하며, 화학식 2로 표시되는 화합물도 아래 반응식을 응용하여 제조할 수 있다. Meanwhile, the present invention provides a method for preparing a compound represented by Formula 1 as shown in Scheme 1 below, and a compound represented by Formula 2 may also be prepared by applying the following Reaction Scheme.
[반응식 1][Scheme 1]
Figure PCTKR2022003251-appb-img-000017
Figure PCTKR2022003251-appb-img-000017
상기 반응식 1에서, X 및 Z를 제외한 나머지 정의는 앞서 정의한 바와 같으며, X 및 Z는 각각 독립적으로 할로겐이고, 바람직하게는 브로모, 또는 클로로이다. In Scheme 1, definitions other than X and Z are the same as defined above, and X and Z are each independently halogen, preferably bromo or chloro.
상기 단계 S11 및 S12는 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. The steps S11 and S12 are amine substitution reactions, preferably performed in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction can be changed as known in the art.
또 본 발명은 다른 일 예로, 하기 반응식 2과 같은 상기 화학식 1로 표시되는 화합물의 제조방법을 제공하며, 화학식 2로 표시되는 화합물도 하기 반응식을 응용하여 제조할 수 있다.In another embodiment, the present invention provides a method for preparing a compound represented by Formula 1 as shown in Scheme 2 below, and the compound represented by Formula 2 may also be prepared by applying the following Reaction Scheme.
[반응식 2][Scheme 2]
Figure PCTKR2022003251-appb-img-000018
Figure PCTKR2022003251-appb-img-000018
상기 반응식 2에서, Z를 제외한 나머지 정의는 앞서 정의한 바와 같으며, Z는 할로겐이고, 바람직하게는 브로모, 또는 클로로이다. In Scheme 2, definitions other than Z are the same as defined above, and Z is halogen, preferably bromo or chloro.
상기 단계 S21에서의 화합물 (iii)과 화합물 (iv)의 반응은 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. The reaction of compound (iii) and compound (iv) in step S21 is an amine substitution reaction, preferably performed in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction can be changed as known in the art. do.
또 다른 일 예로, 하기 반응식 3과 같은 상기 화학식 1로 표시되는 화합물의 제조방법을 제공하며, 화학식 2로 표시되는 화합물도 하기 반응식을 응용하여 제조할 수 있다.As another example, a method for preparing a compound represented by Formula 1 as shown in Scheme 3 is provided, and a compound represented by Formula 2 may also be prepared by applying the following Reaction Scheme.
[반응식 3][Scheme 3]
Figure PCTKR2022003251-appb-img-000019
Figure PCTKR2022003251-appb-img-000019
상기 반응식 3에서, W1, W2 및 V를 제외한 나머지 정의는 앞서 정의한 바와 같다. W1 및 W2는 각각 독립적으로 할로겐이고, 바람직하게는 브로모, 또는 클로로이다. V는 보론산기, 보론산 에스터기, 또는 보론산 피나콜에스터(boronic acid pinacol ester)기 등과 같은 붕소 함유 유기기이다.In Scheme 3, definitions other than W 1 , W 2 and V are the same as defined above. W 1 and W 2 are each independently halogen, preferably bromo or chloro. V is a boron-containing organic group such as a boronic acid group, a boronic acid ester group, or a boronic acid pinacol ester group.
상기 반응식 3에서 단계 S31에서의 화합물 (iv)과 화합물 (v)의 반응은 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. The reaction of compound (iv) and compound (v) in step S31 in Scheme 3 is an amine substitution reaction, and is preferably performed in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction is as known in the art. change is possible
또 단계 S32에서의 화합물 (vi)와 화합물 (vii)의 반응은 Suzuki-coupling 반응으로서, 팔라듐 촉매 및 염기 하에서 수행되는 것이 바람직하며, Suzuki-coupling 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다.In addition, the reaction of compound (vi) and compound (vii) in step S32 is a Suzuki-coupling reaction, preferably performed under a palladium catalyst and a base, and the reactor for the Suzuki-coupling reaction is subject to change as known in the art. It is possible.
상기한 제조 방법들은 후술할 합성예에서 보다 구체화될 수 있다.The above-described manufacturing methods may be more specific in Synthesis Examples to be described later.
(유기 발광 소자)(organic light emitting element)
또한, 본 발명은 상기 화학식 1 또는 2로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1 또는 2로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. In addition, the present invention provides an organic light emitting device including the compound represented by the formula (1) or (2). In one example, the present invention provides a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a compound represented by Formula 1 or 2 above. provides
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층, 또는 전자 주입과 수송을 동시에 하는 전자주입 및 수송층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.The organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, or an electron injection and transport layer that simultaneously injects and transports electrons as an organic material layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1 또는 2로 표시되는 화합물을 포함한다. 특히, 본 발명에 따른 화합물은 발광층의 호스트로 사용할 수 있다. In addition, the organic layer may include an emission layer, and the emission layer includes a compound represented by Chemical Formula 1 or 2. In particular, the compound according to the present invention can be used as a host for the light emitting layer.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.Also, the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. Also, the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of the organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .
도 1은 기판(1), 양극(2), 유기물 층(3), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1 또는 2로 표시되는 화합물은 상기 발광층에 포함될 수 있다. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , an organic material layer 3 , and a cathode 4 . In such a structure, the compound represented by Formula 1 or 2 may be included in the emission layer.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(8), 정공저지층(9), 전자수송층(10), 전자주입층(11) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1 또는 2로 표시되는 화합물은 상기 발광층에 포함될 수 있다.2 is a substrate (1), anode (2), hole injection layer (5), hole transport layer (6), electron blocking layer (7), light emitting layer (8), hole blocking layer (9), electron transport layer (10) , an example of an organic light emitting device comprising an electron injection layer 11 and a cathode 4 is shown. In such a structure, the compound represented by Formula 1 or 2 may be included in the emission layer.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1 또는 2로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. The organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Chemical Formula 1 or 2. Also, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 양극, 유기물층 및 음극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking an anode, an organic material layer, and a cathode on a substrate. At this time, by using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode. and, after forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon, it can be prepared by depositing a material that can be used as a cathode thereon.
또한, 상기 화학식 1 또는 2로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다. 이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.In addition, the compound represented by Formula 1 or 2 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device. Here, the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto. In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890). However, the manufacturing method is not limited thereto.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.In one example, the first electrode is an anode, the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 화합물 등이 있으나, 이들에만 한정되는 것은 아니다. As the anode material, a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer. Specific examples of the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive compounds such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. The cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multi-layered material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 엑시톤의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 특히 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 화합물 등이 있으나, 이들에만 한정되는 것은 아니다. The hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect on the light emitting layer or the light emitting material, and is produced in the light emitting layer A compound that prevents the exciton from moving to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable. In particular, it is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer. Specific examples of the hole injection material include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, and conductive compounds of polyaniline and polythiophene series, but are not limited thereto.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 화합물, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. The hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer. The hole transport material is a material that can transport holes from the anode or the hole injection layer to the light emitting layer and transfer them to the light emitting layer. material is suitable. Specific examples include, but are not limited to, an arylamine-based organic material, a conductive compound, and a block copolymer having a conjugated portion and a non-conjugated portion together.
상기 전자억제층은 상기 정공수송층 상에 형성되며, 바람직하게는 발광층에 접하여 구비되어, 정공이동도를 조절하고, 전자의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 한다. 상기 전자억제층은 전자저지물질을 포함하고, 이러한 전자저지물질의 예로 아릴아민 계열의 유기물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.The electron suppression layer is formed on the hole transport layer, and is preferably provided in contact with the light emitting layer to control hole mobility and prevent excessive movement of electrons to increase the hole-electron coupling probability, thereby increasing the efficiency of the organic light emitting device. plays a role in improving The electron blocking layer includes an electron blocking material, and an arylamine-based organic material may be used as an example of the electron blocking material, but is not limited thereto.
상기 발광층은 양극과 음극 사이에 위치하며, 상기 화학식 1 또는 2의 화합물을 호스트 물질로 포함한다. 이에 따라, 엑시톤(exciton)이 발광층 전체에서 고르게 발광하여 유기 발광 소자의 저전압 구동 및 높은 발광 효율을 나타내면서도 현저히 개선된 수명 특성을 나타낼 수 있다. The light emitting layer is positioned between the anode and the cathode, and includes the compound of Formula 1 or 2 as a host material. Accordingly, excitons can emit light evenly throughout the light emitting layer, thereby exhibiting low voltage driving and high luminous efficiency of the organic light emitting diode, while exhibiting significantly improved lifespan characteristics.
또 상기 발광층은 상기 화학식 1 또는 2의 화합물과 함께, 통상적으로 사용되는 호스트 물질(이하 제2호스트라 함)을 더 포함할 수 있다. 구체적으로 상기 제2호스트로는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.In addition, the light emitting layer may further include a commonly used host material (hereinafter referred to as a second host) together with the compound of Formula 1 or 2 above. Specifically, as the second host, there is a condensed aromatic ring derivative or a heterocyclic compound containing compound. Specifically, condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc., and heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
한편, 상기 발광층은 상기 호스트 물질 외에 도펀트 물질을 더 포함할 수 있다. 이러한 도펀트 물질로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되는 것은 아니다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되는 것은 아니다.Meanwhile, the emission layer may further include a dopant material in addition to the host material. Examples of the dopant material include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex. Specifically, the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group. As the styrylamine compound, a substituted or unsubstituted It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted. Specifically, there are styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like, but is not limited thereto. In addition, the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
상기 정공저지층은 발광층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 전자이동도를 조절하고 정공의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 정공저지층은 정공저지물질을 포함하고, 이러한 정공저지물질의 예로 트리아진을 포함한 아진류유도체; 트리아졸 유도체; 옥사디아졸 유도체; 페난트롤린 유도체; 포스핀옥사이드 유도체 등의 전자흡인기가 도입된 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.The hole blocking layer is formed on the light emitting layer, preferably provided in contact with the light emitting layer, to improve the efficiency of the organic light emitting device by controlling electron mobility and preventing excessive movement of holes to increase the hole-electron coupling probability layer that plays a role. The hole blocking layer includes a hole blocking material, and examples of the hole blocking material include azine derivatives including triazine; triazole derivatives; oxadiazole derivatives; phenanthroline derivatives; A compound into which an electron withdrawing group is introduced, such as a phosphine oxide derivative, may be used, but the present invention is not limited thereto.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로, 상기 발광층 또는 상기 정공저지층 상에 형성된다. 상기 전자 수송층에 포함되는 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물; 트리아진 유도체 등이 있으나, 이들에만 한정되는 것은 아니다. 또는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물, 또는 질소 함유 5원환 유도체 등과 함께 사용할 수도 있으나, 이에 한정되는 것은 아니다.The electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the emission layer, and is formed on the emission layer or the hole blocking layer. As the electron transport material included in the electron transport layer, a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable, and a material having high electron mobility is suitable. Specific examples include Al complex of 8-hydroxyquinoline; complexes comprising Alq3; organic radical compounds; hydroxyflavone-metal complexes; and triazine derivatives, but is not limited thereto. or fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone, and derivatives thereof, metal complex compounds , or may be used together with a nitrogen-containing 5-membered ring derivative, and the like, but is not limited thereto.
또, 상기 전자주입층은 상기 전자수송층 상에 형성되고, 상기 전자 주입층에 포함되는 전자 주입 물질로는 LiF, NaCl, CsF, Li2O, BaO, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 사용될 수 있다In addition, the electron injection layer is formed on the electron transport layer, and the electron injection material included in the electron injection layer is LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone. , thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylene tetracarboxylic acid, fluorenylidene methane, anthrone and their derivatives, metal complex compounds, nitrogen-containing 5-membered ring derivatives, etc. can be used.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에, 한정되는 것은 아니다.Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc. Accordingly, the present invention is not limited thereto.
한편, 상기 유기 발광 소자는 상기 전자 수송층 및 전자 주입층을 대신에, 전극으로부터 전자를 주입하고, 수취된 전자를 발광층까지 수송하는 전자수송층 및 전자주입층의 역할을 동시에 수행하는, 전자 주입 및 수송층을 포함할 수도 있다. 이러한 전자 주입 및 수송물질로는 상술한 전자 주입 물질, 또는 전자 수송 물질이 사용될 수 있다.On the other hand, the organic light emitting device instead of the electron transport layer and the electron injection layer, injecting electrons from the electrode, and simultaneously performing the roles of the electron transport layer and the electron injection layer for transporting the received electrons to the light emitting layer, electron injection and transport layer may include As the electron injection and transport material, the above-described electron injection material or electron transport material may be used.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.The organic light emitting device according to the present invention may be a top emission type, a back emission type, or a double side emission type depending on the material used.
또한, 본 발명에 따른 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.In addition, the compound according to the present invention may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 다만, 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예들에 의하여 한정되는 것은 아니다.Hereinafter, preferred embodiments are presented to help the understanding of the present invention. However, the following examples are only for illustrating the present invention, and the content of the present invention is not limited by the following examples.
합성예 1: 화합물 1의 합성Synthesis Example 1: Synthesis of Compound 1
Figure PCTKR2022003251-appb-img-000020
Figure PCTKR2022003251-appb-img-000020
1) 화합물 A-1의 합성1) Synthesis of compound A-1
질소 분위기에서 2,4-dichloro-6-(dibenzo[b,d]furan-3-yl)-1,3,5-triazine(20 g, 63.3 mmol)와 (phenyl-d5)boronic acid(8 g, 63.3mmol)를 톨루엔 400ml에 넣고 교반 및 환류하였다. 이후 탄산 칼륨(26.2 g, 189.8mmol)를 물 79 ml에 녹여 투입하고 충분히 교반한 후, 비스(트리-tert-부틸포스핀)팔라듐(1 g, 1.9mmol)을 투입하였다. 6시간 반응 후 상온으로 식히고, 유기층과 물층을 분리 후 유기층을 증류하였다. 결과의 수득물을 테트라하이드로퓨란 1148 mL(상기 수득물 총 부피 기준 50배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에 무수황산마그네슘을 넣고 교반한 후, 여과하여 여액을 감압 증류하였다. 농축한 화합물을 테트라하이드로퓨란과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 A-1(13.1g, 57%, MS: [M+H]+ = 363.8)을 수득하였다.2,4-dichloro-6-(dibenzo[b,d]furan-3-yl)-1,3,5-triazine (20 g, 63.3 mmol) and (phenyl-d5)boronic acid (8 g , 63.3 mmol) was added to 400 ml of toluene, stirred and refluxed. Thereafter, potassium carbonate (26.2 g, 189.8 mmol) was dissolved in 79 ml of water, and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (1 g, 1.9 mmol) was added. After the reaction for 6 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and then the organic layer was distilled. The resulting product was dissolved in 1148 mL of tetrahydrofuran (an amount corresponding to 50 times the total volume of the obtained product), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using tetrahydrofuran and ethyl acetate to obtain a white solid compound A-1 (13.1 g, 57%, MS: [M+H] + = 363.8).
2) 화합물 B-1의 합성2) Synthesis of compound B-1
질소 분위기에서 화합물 A-1(10 g, 27.6 mmol)와 2-bromo-9H-carbazole(6.8 g, 27.6mmol)를 디메틸아세트아마이드 100ml에 넣고 교반 및 환류하였다. 이후 제삼인산칼륨(17.6 g, 82.7mmol)를 투입하고 가온 및 교반하였다. 2시간 반응 후 상온으로 식인 후 생성된 고체를 여과하여 수득하였다. 결과로 수득한 고체를 클로로포름 473 mL(상기 고체 총 부피 기준 30배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트로 재결정화하여 흰색의 고체 화합물 B-1(11.8g, 75%, MS: [M+H]+ = 573.5)을 수득하였다.Compound A-1 (10 g, 27.6 mmol) and 2-bromo-9H-carbazole (6.8 g, 27.6 mmol) were placed in 100 ml of dimethylacetamide in a nitrogen atmosphere, and stirred and refluxed. Thereafter, potassium triphosphate (17.6 g, 82.7 mmol) was added, followed by heating and stirring. After the reaction for 2 hours, it was cooled to room temperature, and the resulting solid was obtained by filtration. The resulting solid was dissolved in 473 mL of chloroform (an amount corresponding to 30 times the total volume of the solid), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to obtain a white solid compound B-1 (11.8 g, 75%, MS: [M+H] + = 573.5).
3) 화합물 1의 합성3) Synthesis of compound 1
질소 분위기에서 화합물 B-1(20 g, 34.9 mmol)와 9H-carbazole(5.8 g, 34.9mmol)를 자일렌 400ml에 넣고 교반 및 환류하였다. 이후 제삼인산칼륨(10.1 g, 104.8mmol)를 투입하고, 충분히 교반한 후 비스(트리 tert-부틸포스핀)팔라듐(0.5 g, 1mmol)을 투입하였다. 2시간 반응 후 상온으로 식히고, 유기층을 필터 처리하여 염을 제거한 후, 걸러진 유기층을 증류하였다. 결과의 수득물을 클로로포름 230 mL(상기 수득물 총 부피 기준 10배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 1(12.9g, 56%, MS: [M+H]+ = 659.8)을 수득하였다.Compound B-1 (20 g, 34.9 mmol) and 9H-carbazole (5.8 g, 34.9 mmol) were added to 400 ml of xylene in a nitrogen atmosphere, stirred and refluxed. Thereafter, potassium triphosphate (10.1 g, 104.8 mmol) was added, and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0.5 g, 1 mmol) was added. After the reaction for 2 hours, the mixture was cooled to room temperature, the organic layer was filtered to remove salt, and the filtered organic layer was distilled. The resulting product was dissolved in 230 mL of chloroform (an amount corresponding to 10 times the total volume of the obtained product), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to obtain a white solid compound 1 (12.9 g, 56%, MS: [M+H] + = 659.8).
합성예 2: 화합물 2의 합성Synthesis Example 2: Synthesis of compound 2
Figure PCTKR2022003251-appb-img-000021
Figure PCTKR2022003251-appb-img-000021
1) 화합물 A-2의 합성1) Synthesis of compound A-2
질소 분위기에서 2-bromo-9H-carbazole-1,3,4,5,6,7,8-d7(20 g, 79 mmol)와 9H-carbazole(13.2 g, 79mmol)를 자일렌 400ml에 넣고 교반 및 환류하였다. 이후 제삼인산칼륨(22.8 g, 237mmol)을 투입하고 충분히 교반한 후, 비스(트리 tert-부틸포스핀)팔라듐(1.2 g, 2.4mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고, 유기층을 필터 처리하여 염을 제거한 후, 걸러진 유기층을 증류하였다. 결과의 수득물을 다시 클로로포름 268 mL(상기 수득물 총 부피 기준 10배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 A-2(19g, 71%, MS: [M+H]+ = 340.5)을 수득하였다.In a nitrogen atmosphere, 2-bromo-9H-carbazole-1,3,4,5,6,7,8-d7 (20 g, 79 mmol) and 9H-carbazole (13.2 g, 79 mmol) were added to 400 ml of xylene and stirred. and reflux. Thereafter, potassium triphosphate (22.8 g, 237 mmol) was added, and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (1.2 g, 2.4 mmol) was added. After the reaction for 3 hours, the mixture was cooled to room temperature, the organic layer was filtered to remove salt, and the filtered organic layer was distilled. The resulting product was again dissolved in 268 mL of chloroform (an amount corresponding to 10 times the total volume of the obtained product), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to obtain a white solid compound A-2 (19 g, 71%, MS: [M+H] + = 340.5).
2) 화합물 2의 합성2) Synthesis of compound 2
질소 분위기에서 화합물 A-2(20 g, 58.9 mmol)와 2-(4-chlorophenyl)-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine(25.6 g, 58.9mmol)를 자일렌 400ml에 넣고 교반 및 환류하였다. 이후 제삼인산칼륨(17 g, 176.8mmol)을 투입하고 충분히 교반한 후, 비스(트리-tert-부틸포스핀)팔라듐(0.9 g, 1.8mmol)을 투입하였다. 4시간 반응 후, 상온으로 식히고, 유기층을 필터처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 결과의 수득물을 다시 클로로포름 434 mL(상기 수득물 총 부피 기준 10배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트로 재결정화하여 흰색의 고체 화합물 2(23.9g, 55%, MS: [M+H]+ = 737.9)를 제조하였다.Compound A-2 (20 g, 58.9 mmol) and 2-(4-chlorophenyl)-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine in nitrogen atmosphere (25.6 g, 58.9 mmol) was added to 400 ml of xylene, stirred and refluxed. Thereafter, potassium triphosphate (17 g, 176.8 mmol) was added, and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0.9 g, 1.8 mmol) was added. After the reaction for 4 hours, it was cooled to room temperature, the organic layer was filtered to remove salt, and the filtered organic layer was distilled. The resulting product was again dissolved in 434 mL of chloroform (an amount corresponding to 10 times the total volume of the obtained product), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a white solid compound 2 (23.9 g, 55%, MS: [M+H] + = 737.9).
합성예 3: 화합물 3의 합성Synthesis Example 3: Synthesis of compound 3
Figure PCTKR2022003251-appb-img-000022
Figure PCTKR2022003251-appb-img-000022
1) 화합물 A-3의 합성1) Synthesis of compound A-3
질소 분위기에서 4,4,5,5-tetramethyl-2-(triphenylen-2-yl-d11)-1,3,2-dioxaborolane(20 g, 54.7 mmol)과 2,4-dichloro-6-(dibenzo[b,d]thiophen-3-yl)-1,3,5-triazine(18.2 g, 54.7mmol)를 톨루엔 400ml에 넣고 교반 및 환류하였다. 이후 탄산 칼륨(22.7 g, 164.2mmol)를 물 68 ml에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0.8 g, 1.6mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고, 유기층과 물층을 분리 후 유기층을 증류하였다. 결과의 수득물을 테트라하이드로퓨란 1465 mL(상기 수득물 총 부피 기준 50배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 테트라하이드로퓨란과 에틸아세테이트로 재결정화하여 흰색의 고체 화합물 A-3(21.1g, 72%, MS: [M+H]+ = 536.1)을 수득하였다.4,4,5,5-tetramethyl-2-(triphenylen-2-yl-d11)-1,3,2-dioxaborolane (20 g, 54.7 mmol) and 2,4-dichloro-6-(dibenzo [b,d]thiophen-3-yl)-1,3,5-triazine (18.2 g, 54.7 mmol) was added to 400 ml of toluene, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (22.7 g, 164.2 mmol) was dissolved in 68 ml of water, and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0.8 g, 1.6 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and then the organic layer was distilled. The resulting product was dissolved in 1465 mL of tetrahydrofuran (an amount corresponding to 50 times the total volume of the obtained product), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from tetrahydrofuran and ethyl acetate to obtain a white solid compound A-3 (21.1 g, 72%, MS: [M+H] + = 536.1).
2) 화합물 3의 합성2) Synthesis of compound 3
질소 분위기에서 화합물 A-3(20 g, 37.4 mmol)와 9H-2,9'-bicarbazole(12.4 g, 37.4mmol)를 자일렌 400ml에 넣고 교반 및 환류하였다. 이후 제삼인산칼륨(10.8 g, 112.1mmol)를 투입하고 충분히 교반한 후, 비스(트리 tert-부틸포스핀)팔라듐(0.6 g, 1.1mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고, 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 결과의 수득물을 클로로포름 311 mL(상기 수득물 총 부피 기준 10배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트로 재결정화하여 흰색의 고체 화합물 3(21.4g, 69%, MS: [M+H]+ = 832.1)을 수득하였다.Compound A-3 (20 g, 37.4 mmol) and 9H-2,9'-bicarbazole (12.4 g, 37.4 mmol) were added to 400 ml of xylene in a nitrogen atmosphere, stirred and refluxed. Thereafter, potassium triphosphate (10.8 g, 112.1 mmol) was added, and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0.6 g, 1.1 mmol) was added. After the reaction for 5 hours, it was cooled to room temperature, the organic layer was filtered to remove salt, and the filtered organic layer was distilled. The resulting product was dissolved in 311 mL of chloroform (an amount corresponding to 10 times the total volume of the obtained product), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to obtain a white solid compound 3 (21.4 g, 69%, MS: [M+H] + = 832.1).
합성예 4: 화합물 4의 합성Synthesis Example 4: Synthesis of compound 4
Figure PCTKR2022003251-appb-img-000023
Figure PCTKR2022003251-appb-img-000023
1) 화합물 A-4의 합성1) Synthesis of compound A-4
질소 분위기에서 2-chloro-4-(5'-chloro-[1,1':3',1''-terphenyl]-4-yl)-6-(dibenzo[b,d]furan-3-yl)-1,3,5-triazine(20 g, 36.7 mmol)과 (phenyl-d5)boronic acid(4.7 g, 36.7mmol)를 톨루엔 400ml에 넣고 교반 및 환류하였다. 이후 탄산 칼륨(15.2 g, 110.2mmol)를 물46 ml에 녹여 투입하고 충분히 교반한 후 비스(트리-tert-부틸포스핀)팔라듐(0.6 g, 1.1mmol)을 투입하였다. 7시간 반응 후 상온으로 식히고, 생성된 고체를 여과하였다. 결과로 수득한 고체를 테트라하이드로퓨란 1086 mL(상기 고체 총 부피 기준 50배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 테트라하이드로퓨란과 에틸아세테이트로 재결정화하여 흰색의 고체 화합물 A-4(11.1g, 51%, MS: [M+H]+ = 592.1)을 수득하였다.2-chloro-4-(5'-chloro-[1,1':3',1''-terphenyl]-4-yl)-6-(dibenzo[b,d]furan-3-yl under nitrogen atmosphere )-1,3,5-triazine (20 g, 36.7 mmol) and (phenyl-d5)boronic acid (4.7 g, 36.7 mmol) were added to 400 ml of toluene, stirred and refluxed. Thereafter, potassium carbonate (15.2 g, 110.2 mmol) was dissolved in 46 ml of water, and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0.6 g, 1.1 mmol) was added. After the reaction for 7 hours, it was cooled to room temperature, and the resulting solid was filtered. The resulting solid was dissolved in 1086 mL of tetrahydrofuran (an amount corresponding to 50 times the total volume of the solid), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from tetrahydrofuran and ethyl acetate to obtain a white solid compound A-4 (11.1 g, 51%, MS: [M+H] + = 592.1).
2) 화합물 4의 합성2) Synthesis of compound 4
질소 분위기에서 화합물 A-4(20 g, 33.8 mmol)와 9H-2,9'-bicarbazole(11.2 g, 33.8mmol)를 자일렌 400ml에 넣고 교반 및 환류하였다. 이후 제삼인산칼륨(9.8 g, 101.5mmol)를 투입하고 충분히 교반한 후, 비스(트리 tert-부틸포스핀)팔라듐(0.5 g, 1mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고, 생성된 고체를 여과하였다. 결과로 수득한 고체를 클로로포름 900 mL(상기 고체 총 부피 기준 30배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트로 재결정화하여 흰색의 고체 화합물 4(18.3g, 61%, MS: [M+H]+ = 888.1)을 수득하였다.In a nitrogen atmosphere, compound A-4 (20 g, 33.8 mmol) and 9H-2,9'-bicarbazole (11.2 g, 33.8 mmol) were added to 400 ml of xylene, stirred and refluxed. Thereafter, potassium triphosphate (9.8 g, 101.5 mmol) was added, and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0.5 g, 1 mmol) was added. After the reaction for 5 hours, it was cooled to room temperature, and the resulting solid was filtered. The resulting solid was dissolved in 900 mL of chloroform (an amount corresponding to 30 times the total volume of the solid), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to obtain a white solid compound 4 (18.3 g, 61%, MS: [M+H] + = 888.1).
합성예 5: 화합물 5의 합성Synthesis Example 5: Synthesis of compound 5
Figure PCTKR2022003251-appb-img-000024
Figure PCTKR2022003251-appb-img-000024
1) 화합물 A-5의 합성1) Synthesis of compound A-5
질소 분위기에서 2-bromo-9H-carbazole(20 g, 81.3 mmol)와 9H-carbazole-1,2,3,4,5,6,7,8-d8(14.2 g, 81.3mmol)를 자일렌 400ml에 넣고 교반 및 환류하였다. 이후 제삼인산칼륨(23.4 g, 243.8mmol)을 투입하고 충분히 교반한 후 비스(트리 tert-부틸포스핀)팔라듐(1.2 g, 2.4mmol)을 투입하였다. 6시간 반응 후 상온으로 식히고, 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 결과의 수득물을 톨루엔 830 mL(상기 수득물 총 부피 기준 30배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 톨루엔과 에틸아세테이트로 재결정화하여 흰색의 고체 화합물 A-5(15.5g, 56%, MS: [M+H]+ = 341.5)을 수득하였다.400 ml of xylene with 2-bromo-9H-carbazole (20 g, 81.3 mmol) and 9H-carbazole-1,2,3,4,5,6,7,8-d8 (14.2 g, 81.3 mmol) in nitrogen atmosphere was added, stirred and refluxed. Thereafter, potassium triphosphate (23.4 g, 243.8 mmol) was added, and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (1.2 g, 2.4 mmol) was added. After the reaction for 6 hours, it was cooled to room temperature, the organic layer was filtered to remove salt, and the filtered organic layer was distilled. The resulting product was dissolved in 830 mL of toluene (an amount corresponding to 30 times the total volume of the obtained product), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from toluene and ethyl acetate to obtain a white solid compound A-5 (15.5 g, 56%, MS: [M+H] + = 341.5).
2) 화합물 5의 합성2) Synthesis of compound 5
질소 분위기에서 화합물 A-5(15 g, 44.1 mmol)와 2-([1,1'-biphenyl]-2-yl)-4-chloro-6-(dibenzo[b,d]furan-3-yl)-1,3,5-triazine(19.1 g, 44.1mmol)를 디메틸아세트아마이드 150ml에 넣고 교반 및 환류하였다. 이후 제삼인산칼륨(28.1 g, 132.2mmol)를 투입하고 가온 및 교반하였다. 1시간 반응 후 상온으로 식히고, 생성된 고체를 여과하였다. 결과로 수득한 고체를 클로로포름 975 mL(상기 고체 총 부피 기준 30배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트로 재결정화하여 흰색의 고체 화합물 5(24.4g, 75%, MS: [M+H]+ = 738.9)를 제조하였다.Compound A-5 (15 g, 44.1 mmol) and 2-([1,1'-biphenyl]-2-yl)-4-chloro-6-(dibenzo[b,d]furan-3-yl under nitrogen atmosphere )-1,3,5-triazine (19.1 g, 44.1 mmol) was placed in 150 ml of dimethylacetamide, stirred and refluxed. Thereafter, potassium triphosphate (28.1 g, 132.2 mmol) was added, followed by heating and stirring. After the reaction for 1 hour, it was cooled to room temperature, and the resulting solid was filtered. The resulting solid was dissolved in 975 mL of chloroform (an amount corresponding to 30 times the total volume of the solid), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a white solid compound 5 (24.4 g, 75%, MS: [M+H] + = 738.9).
합성예 6: 화합물 6의 합성Synthesis Example 6: Synthesis of compound 6
Figure PCTKR2022003251-appb-img-000025
Figure PCTKR2022003251-appb-img-000025
1) 화합물 A-6의 합성1) Synthesis of compound A-6
질소 분위기에서 4-bromo-9H-carbazole(20 g, 81.3 mmol)과 9H-carbazole-1,2,3,4,5,6,7,8-d8(14.2 g, 81.3mmol)를 자일렌 400ml에 넣고 교반 및 환류하였다. 이후 제삼인산칼륨(23.4 g, 243.8mmol)을 투입하고, 충분히 교반한 후 비스(트리 tert-부틸포스핀)팔라듐(1.2 g, 2.4mmol)을 투입하였다. 2시간 반응 후 상온으로 식히고, 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 결과의 수득물을 톨루엔 830 mL(상기 수득물 총 부피 기준 30배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 톨루엔과 에틸아세테이트로 재결정화하여 흰색의 고체 화합물 A-6(16.3g, 59%, MS: [M+H]+ = 341.5)을 수득하였다.400 ml of xylene with 4-bromo-9H-carbazole (20 g, 81.3 mmol) and 9H-carbazole-1,2,3,4,5,6,7,8-d8 (14.2 g, 81.3 mmol) in a nitrogen atmosphere was added, stirred and refluxed. Thereafter, potassium triphosphate (23.4 g, 243.8 mmol) was added, and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (1.2 g, 2.4 mmol) was added. After the reaction for 2 hours, it was cooled to room temperature, the organic layer was filtered to remove salt, and the filtered organic layer was distilled. The resulting product was dissolved in 830 mL of toluene (an amount corresponding to 30 times the total volume of the obtained product), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from toluene and ethyl acetate to obtain a white solid compound A-6 (16.3 g, 59%, MS: [M+H] + = 341.5).
2) 화합물 6의 합성2) Synthesis of compound 6
질소 분위기에서 화합물 A-6(15 g, 44.1 mmol)와 2-chloro-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine(15.8 g, 44.1mmol)을 디메틸아세트아마이드 150ml에 넣고 교반 및 환류하였다. 이후 제삼인산칼륨(28.1 g, 132.2mmol)를 투입하고 가온 및 교반하였다. 3시간 반응 후 상온으로 식히고, 생성된 고체를 여과하였다. 결과로 수득한 고체를 클로로포름 875 mL(상기 고체 총 부피 기준 30배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에 무수황산마그네슘을 넣고 교반한 후, 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트로 재결정화하여 흰색의 고체 화합물 6(19g, 65%, MS: [M+H]+ = 662.8)을 수득하였다.Compound A-6 (15 g, 44.1 mmol) and 2-chloro-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine (15.8 g, 44.1 mmol) was added to 150 ml of dimethylacetamide, stirred and refluxed. Thereafter, potassium triphosphate (28.1 g, 132.2 mmol) was added, followed by heating and stirring. After the reaction for 3 hours, it was cooled to room temperature, and the resulting solid was filtered. The resulting solid was dissolved in 875 mL of chloroform (an amount corresponding to 30 times the total volume of the solid), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to obtain a white solid compound 6 (19 g, 65%, MS: [M+H] + = 662.8).
합성예 7: 화합물 7의 합성Synthesis Example 7: Synthesis of compound 7
Figure PCTKR2022003251-appb-img-000026
Figure PCTKR2022003251-appb-img-000026
1) 화합물 A-7의 합성1) Synthesis of compound A-7
질소 분위기에서 4-bromo-9H-carbazole(20 g, 81.3 mmol)과 9H-carbazole(13.6 g, 81.3mmol)을 자일렌 400ml에 넣고 교반 및 환류하였다. 이후 제삼인산칼륨(23.4 g, 243.8mmol)을 투입하고 충분히 교반한 후, 비스(트리 tert-부틸포스핀)팔라듐(1.2 g, 2.4mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고, 유기층을 필터처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 결과의 수득물을 톨루엔 810 mL(상기 수득물 총 부피 기준 30배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 톨루엔과 에틸아세테이트로 재결정화하여 흰색의 고체 화합물 A-7(15.9g, 59%, MS: [M+H]+ = 333.4)을 수득하였다.In a nitrogen atmosphere, 4-bromo-9H-carbazole (20 g, 81.3 mmol) and 9H-carbazole (13.6 g, 81.3 mmol) were added to 400 ml of xylene, stirred and refluxed. Thereafter, potassium triphosphate (23.4 g, 243.8 mmol) was added, and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (1.2 g, 2.4 mmol) was added. After the reaction for 3 hours, it was cooled to room temperature, the organic layer was filtered to remove salt, and the filtered organic layer was distilled. The resulting product was dissolved in 810 mL of toluene (an amount corresponding to 30 times the total volume of the obtained product), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from toluene and ethyl acetate to obtain a white solid compound A-7 (15.9 g, 59%, MS: [M+H] + = 333.4).
2) 화합물 B-2의 합성2) Synthesis of compound B-2
질소 분위기에서 화합물 A-7(15 g, 45.1 mmol)과 2-chloro-4-(3-chlorophenyl)-6-(dibenzo[b,d]furan-3-yl)-1,3,5-triazine(17.7 g, 45.1mmol)를 디메틸아세트아마이드 150ml에 넣고 교반 및 환류하였다. 이후 제삼인산칼륨(28.7 g, 135.4mmol)를 투입하고 가온 및 교반하였다. 1시간 반응 후, 상온으로 식히고 생성된 고체를 여과하였다. 수득한 고체를 클로로포름 932 mL(상기 고체 총 부피 기준 30배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트로 재결정화하여 흰색의 고체 화합물 B-2(21.7g, 70%, MS: [M+H]+ = 689.2)을 수득하였다.Compound A-7 (15 g, 45.1 mmol) and 2-chloro-4-(3-chlorophenyl)-6-(dibenzo[b,d]furan-3-yl)-1,3,5-triazine in nitrogen atmosphere (17.7 g, 45.1 mmol) was added to 150 ml of dimethylacetamide, stirred and refluxed. Thereafter, potassium triphosphate (28.7 g, 135.4 mmol) was added, followed by heating and stirring. After reaction for 1 hour, the mixture was cooled to room temperature and the resulting solid was filtered. The obtained solid was dissolved in 932 mL of chloroform (an amount corresponding to 30 times the total volume of the solid), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to obtain a white solid compound B-2 (21.7 g, 70%, MS: [M+H] + = 689.2).
3) 화합물 7의 합성3) Synthesis of compound 7
질소 분위기에서 화합물 B-2(15 g, 21.8 mmol)와 (phenyl-d5)boronic acid(2.8 g, 21.8mmol)를 Diox 300ml에 넣고 교반 및 환류하였다. 이후 제3인산칼륨(13.9 g, 65.4mmol)를 물 14 ml에 녹여 투입하고 충분히 교반한 후, 디벤질리덴아세톤팔라듐(0.4 g, 0.7mmol) 및 트리시클로헥실포스핀 (0.4 g, 1.3mmol)을 투입하였다. 6시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 결과로 수득한 고체를 디클로로벤젠(DCB) 481 mL(상기 고체 총 부피 기준 30배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기물층에 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 결과로서 농축된 화합물을 DCB과 에틸아세테이트로 재결정화하여 노란색의 고체 화합물 7(9.8g, 61%, MS: [M+H]+ = 735.9)을 수득하였다.Compound B-2 (15 g, 21.8 mmol) and (phenyl-d5)boronic acid (2.8 g, 21.8 mmol) were added to 300 ml of Diox in a nitrogen atmosphere, and stirred and refluxed. Thereafter, potassium triphosphate (13.9 g, 65.4 mmol) was dissolved in 14 ml of water and thoroughly stirred, followed by dibenzylideneacetone palladium (0.4 g, 0.7 mmol) and tricyclohexylphosphine (0.4 g, 1.3 mmol). was put in. After the reaction for 6 hours, the resulting solid was filtered after cooling to room temperature. The resulting solid was dissolved in 481 mL of dichlorobenzene (DCB) (an amount corresponding to 30 times the total volume of the solid), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. As a result, the concentrated compound was recrystallized from DCB and ethyl acetate to obtain a yellow solid compound 7 (9.8 g, 61%, MS: [M+H] + = 735.9).
합성예 8: 화합물 8의 합성Synthesis Example 8: Synthesis of compound 8
Figure PCTKR2022003251-appb-img-000027
Figure PCTKR2022003251-appb-img-000027
1) 화합물 A-8의 합성1) Synthesis of compound A-8
질소 분위기에서 2,4-dichloro-6-(dibenzo[b,d]furan-3-yl)-1,3,5-triazine(20 g, 63.3 mmol)와 2-([1,1'-biphenyl]-3-yl-2',3',4',5',6'-d5)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane(18 g, 63.3mmol)를 톨루엔 400ml에 넣고 교반 및 환류하였다. 이후 탄산 칼륨(26.2 g, 189.8mmol)를 물 79 ml에 녹여 투입하고 충분히 교반한 후, 비스(트리-tert-부틸포스핀)팔라듐(1 g, 1.9mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고, 유기층과 물층을 분리한 후, 유기층을 증류하였다. 결과의 수득물을 테트라하이드로퓨란 1388 mL(상기 수득물 총 부피 기준 50배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척한 후에 유기층을 분리하였다. 분리한 유기층에 무수황산마그네슘을 넣고 교반한 후, 여과하여 여액을 감압 증류하였다. 농축한 화합물을 테트라하이드로퓨란과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하고, 결과로서 흰색의 고체 화합물 A-8(21.4g, 77%, MS: [M+H]+ = 439.9)을 수득하였다.2,4-dichloro-6-(dibenzo[b,d]furan-3-yl)-1,3,5-triazine (20 g, 63.3 mmol) and 2-([1,1'-biphenyl) in nitrogen atmosphere ]-3-yl-2',3',4',5',6'-d5)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (18 g, 63.3 mmol) to toluene It was added to 400ml, stirred and refluxed. Thereafter, potassium carbonate (26.2 g, 189.8 mmol) was dissolved in 79 ml of water, and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (1 g, 1.9 mmol) was added. After the reaction for 3 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. The resulting product was dissolved in 1388 mL of tetrahydrofuran (an amount corresponding to 50 times the total volume of the obtained product), washed twice with water, and then the organic layer was separated. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using tetrahydrofuran and ethyl acetate, and as a result, a white solid compound A-8 (21.4 g, 77%, MS: [M+H] + = 439.9) was obtained. .
2) 화합물 8의 합성2) Synthesis of compound 8
질소 분위기에서 화합물 A-8(10 g, 22.8 mmol)와 화합물 A-9(7.7 g, 22.8mmol)를 디메틸아세트아마이드 100ml에 넣고 교반 및 환류하였다. 이후 제삼인산칼륨(14.5 g, 68.3mmol)를 투입하고 가온 및 교반하였다. 3시간 반응 후 상온으로 식히고, 생성된 고체를 여과하였다. 수득한 고체를 클로로포름 506 mL(상기 고체 총 부피 기준 30배에 해당하는 양)에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하였다. 분리한 유기물층에, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 결과로서 농축된 화합물을 클로로포름과 에틸아세테이트로 재결정화하여 흰색의 고체 화합물 8(13.2g, 78%, MS: [M+H]+ = 741.9)을 수득하였다. In a nitrogen atmosphere, compound A-8 (10 g, 22.8 mmol) and compound A-9 (7.7 g, 22.8 mmol) were added to 100 ml of dimethylacetamide, and stirred and refluxed. Thereafter, potassium triphosphate (14.5 g, 68.3 mmol) was added, followed by heating and stirring. After the reaction for 3 hours, it was cooled to room temperature, and the resulting solid was filtered. The obtained solid was dissolved in 506 mL of chloroform (an amount corresponding to 30 times the total volume of the solid), and the organic layer was separated after washing twice with water. Anhydrous magnesium sulfate was added to the separated organic layer, stirred, filtered, and the filtrate was distilled under reduced pressure. As a result, the concentrated compound was recrystallized from chloroform and ethyl acetate to obtain a white solid compound 8 (13.2 g, 78%, MS: [M+H] + = 741.9).
실시예 1 Example 1
ITO(Indium Tin Oxide)가 1,400Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후, 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with ITO (Indium Tin Oxide) to a thickness of 1,400 Å was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves. In this case, a product manufactured by Fischer Co. was used as the detergent, and distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water. After washing the ITO for 30 minutes, ultrasonic washing was performed for 10 minutes by repeating twice with distilled water. After washing with distilled water, ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, and after drying, it was transported to a plasma cleaner. In addition, after cleaning the substrate for 5 minutes using oxygen plasma, the substrate was transported to a vacuum evaporator.
이렇게 준비된 ITO 투명 전극 위에 하기 HT-A 화합물과 5 중량%의 PD를 100Å의 두께로 열 진공 증착하여 정공주입층을 형성하고, 그 위에 HT-A 화합물만 1150Å의 두께로 증착하여 정공수송층을 형성하였다. 상기 정공 수송층 위에 하기 HT-B 화합물을 450Å 두께로 열 진공 증착하여 전자억제층을 형성하였다. 이어서 제1호스트로서 상기 합성예 1에서 제조한 화합물 1과, 그리고 제2호스트로서 GH-A 화합물을 40:60의 중량비로 혼합하여 호스트를 구성하고, 또 상기 호스트 총 중량 기준 15 중량%의 GD 화합물을 도펀트로 하여, 상기 전자억제층 위에 400Å의 두께로 진공 증착하여 발광층을 형성하였다. 이어서, 상기 발광층 위에 하기 ET-A 화합물을 50Å의 두께로 진공 증착하여 정공저지층을 형성하였다. 이어서 상기 정공 억제층 위에 하기 ET-B 화합물과 Liq 화합물을 2:1의 중량비로 열 진공 증착하여 250Å의 두께로 전자수송층을 형성하였다. 상기 전자 수송층 위에, LiF와 마그네슘을 1:1의 중량비로 30Å의 두께로 진공 증착하여 전자주입층을 형성하였다. 상기 전자 주입층 위에 마그네슘과 은을 1:4의 중량비로 증착하여 160Å의 두께로 음극을 형성하고, 유기 발광 소자를 제조하였다.A hole injection layer was formed by thermal vacuum deposition of the following HT-A compound and 5% by weight of PD on the prepared ITO transparent electrode to a thickness of 100 Å, and only the HT-A compound was deposited thereon to a thickness of 1150 Å to form a hole transport layer did. On the hole transport layer, the following HT-B compound was thermally vacuum deposited to a thickness of 450 Å to form an electron blocking layer. Then, as a first host, compound 1 prepared in Synthesis Example 1 and a GH-A compound as a second host were mixed in a weight ratio of 40:60 to constitute a host, and 15% by weight of GD based on the total weight of the host Using the compound as a dopant, it was vacuum-deposited to a thickness of 400 Å on the electron suppression layer to form a light emitting layer. Then, the following ET-A compound was vacuum-deposited to a thickness of 50 Å on the light emitting layer to form a hole blocking layer. Then, the following ET-B compound and Liq compound were thermally vacuum deposited on the hole blocking layer in a weight ratio of 2:1 to form an electron transport layer to a thickness of 250 Å. On the electron transport layer, LiF and magnesium were vacuum-deposited to a thickness of 30 Å in a weight ratio of 1:1 to form an electron injection layer. Magnesium and silver were deposited on the electron injection layer in a weight ratio of 1:4 to form a cathode to a thickness of 160 Å, thereby manufacturing an organic light emitting diode.
Figure PCTKR2022003251-appb-img-000028
Figure PCTKR2022003251-appb-img-000028
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 Å/sec를 유지하였고, 마그네슘 및 은은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 x 10-7 ~ 5 x 10-8 torr를 유지하였다. In the above process, the deposition rate of the organic material was maintained at 0.4 ~ 0.7 Å/sec, the deposition rate of magnesium and silver was maintained at 2 Å/sec, and the vacuum degree during deposition was 1 x 10 -7 ~ 5 x 10 -8 torr. kept.
실시예 2 내지 8, 및 비교예 1 내지 5Examples 2 to 8, and Comparative Examples 1 to 5
발광층 형성시 제1호스트로서 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 실시예 2 내지 8, 및 비교예 1 내지 5의 유기 발광 소자를 각각 제작하였다. 이때, 호스트로서 2종의 화합물의 혼합물을 사용한 경우, 괄호 안은 호스트 화합물 간의 중량비 의미한다.The organic light emitting devices of Examples 2 to 8 and Comparative Examples 1 to 5 were manufactured in the same manner as in Example 1, except that the compound shown in Table 1 was used as the first host when the light emitting layer was formed. did. In this case, when a mixture of two types of compounds is used as the host, the weight ratio between the host compounds is indicated in parentheses.
비교예 1 내지 5에서 사용된 화합물의 구조는 하기와 같다.The structures of the compounds used in Comparative Examples 1 to 5 are as follows.
Figure PCTKR2022003251-appb-img-000029
Figure PCTKR2022003251-appb-img-000029
<시험예: 소자 특성 평가><Test Example: Evaluation of Device Characteristics>
상기 실시예 1 내지 8, 및 비교예 1 내지 5에서 제조한 유기 발광 소자를 100℃ 오븐에서 30분간 열처리한 후 꺼내어, 전류를 인가하며 전압, 효율 및 수명(T95)을 측정하고, 그 결과를 하기 표 1에 나타내었다. 이때, 전압 및 효율은 10mA/cm2의 전류 밀도를 인가하여 측정하였고, 수명(T95)은 전류 밀도 20mA/cm2에서 휘도가 초기 휘도에서 95%로 감소되는데 소요되는 시간(hr)을 측정하였다.The organic light-emitting devices prepared in Examples 1 to 8 and Comparative Examples 1 to 5 were heat-treated in an oven at 100° C. for 30 minutes, then taken out, and voltage, efficiency, and lifespan (T95) were measured while applying a current, and the results were obtained. It is shown in Table 1 below. At this time, the voltage and efficiency were measured by applying a current density of 10 mA/cm 2 , and the lifetime (T95) was measured for the time (hr) required for the luminance to decrease from the initial luminance to 95% at a current density of 20 mA/cm 2 .
제1호스트1st host @ 10mA/cm2 @ 10mA/cm 2 @ 20mA/cm2 @ 20mA/cm 2
전압
(V)
Voltage
(V)
효율
(cd/A)
efficiency
(cd/A)
수명
(T95, hr)
life span
(T95, hr)
실시예 1Example 1 화합물 1 compound 1 4.14.1 67.267.2 8888
실시예 2Example 2 화합물 2 compound 2 4.34.3 66.566.5 9191
실시예 3Example 3 화합물 3 compound 3 3.93.9 64.364.3 8484
실시예 4Example 4 화합물 4 compound 4 4.44.4 65.465.4 8484
실시예 5Example 5 화합물 5 compound 5 4.14.1 64.964.9 9898
실시예 6Example 6 화합물 6 compound 6 4.34.3 69.269.2 9696
실시예 7Example 7 화합물 7 compound 7 4.24.2 69.569.5 8181
실시예 8Example 8 화합물 8 compound 8 4.14.1 68.268.2 9595
비교예 1Comparative Example 1 CE 1 CE 1 4.14.1 63.263.2 6666
비교예 2Comparative Example 2 CE 2 CE 2 4.34.3 55.355.3 3535
비교예 3Comparative Example 3 CE 3 CE 3 4.44.4 66.566.5 6363
비교예 4Comparative Example 4 CE 4 CE 4 4.14.1 67.067.0 7474
비교예 5Comparative Example 5 CE 5 CE 5 4.54.5 60.160.1 5252
실험결과, 중수소 치환된 화합물을 포함하는 실시예 1 내지 8의 유기 발광 소자는, 비교예 1 내지 5와 비교했을 때, 동등 수준의 저전압 및 고효율을 나타내면서도 수명 특성 면에서 현저히 개선된 효과를 나타내었다. 특히 실시예 1과 비교예 1, 3 및 4를 비교했을 때, 발광층에 포함된 제1호스트 화합물에서의 중수소 치환에 따른 수명 특성 개선 효과는 더욱 명확하다.As a result of the experiment, the organic light emitting devices of Examples 1 to 8 including the deuterium substituted compound exhibited a significantly improved effect in terms of lifespan characteristics while exhibiting the same level of low voltage and high efficiency as compared to Comparative Examples 1 to 5. It was. In particular, when Example 1 and Comparative Examples 1, 3, and 4 are compared, the effect of improving lifespan characteristics according to deuterium substitution in the first host compound included in the emission layer is more clear.
상기한 결과로부터, 화학식 1의 화합물을 유기 전계 발광 소자의 발광층에 이용시, 낮은 구동 전압 및 우수한 효율을 나타내면서도 수명 특성 면에서 더욱 개선된 효과를 구현할 수 있음을 알 수 있다.From the above results, it can be seen that when the compound of Formula 1 is used in the light emitting layer of the organic electroluminescent device, it is possible to realize a more improved effect in terms of lifespan characteristics while exhibiting a low driving voltage and excellent efficiency.
[부호의 설명][Explanation of code]
1: 기판 2: 양극1: Substrate 2: Anode
3: 유기물 층 4: 음극3: organic layer 4: cathode
5: 정공주입층 6: 정공수송층5: hole injection layer 6: hole transport layer
7: 전자억제층 8: 발광층7: electron suppression layer 8: light emitting layer
9: 정공저지층 10: 전자수송층9: hole blocking layer 10: electron transport layer
11: 전자주입층11: electron injection layer

Claims (13)

  1. 하기 화학식 1 또는 2로 표시되는 화합물:A compound represented by Formula 1 or 2:
    [화학식 1][Formula 1]
    Figure PCTKR2022003251-appb-img-000030
    Figure PCTKR2022003251-appb-img-000030
    [화학식 2][Formula 2]
    Figure PCTKR2022003251-appb-img-000031
    Figure PCTKR2022003251-appb-img-000031
    상기 화학식 1 및 2에서, In Formulas 1 and 2,
    X1 내지 X3은 각각 독립적으로 CH, 또는 N이되, X1 내지 X3 중 적어도 하나는 N이고, X 1 To X 3 are each independently CH, or N, wherein at least one of X 1 To X 3 is N,
    Y는 O, 또는 S이며,Y is O, or S;
    Ar은 치환 또는 비치환된 C1-30 알킬, 치환 또는 비치환된 C3-30 시클로알킬, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,Ar is substituted or unsubstituted C 1-30 alkyl, substituted or unsubstituted C 3-30 cycloalkyl, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted N, O and S C 2-60 heteroaryl including any one or more heteroatoms selected from the group,
    L1 및 L2는 각각 독립적으로, 단일 결합, 페닐렌, 비페닐렌, 또는 터페닐렌이며, L 1 and L 2 are each independently a single bond, phenylene, biphenylene, or terphenylene,
    R1 및 R2는 각각 독립적으로 수소, 중수소, 할로겐, 시아노, 치환 또는 비치환된 C1-60 알킬, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,R 1 and R 2 are each independently hydrogen, deuterium, halogen, cyano, substituted or unsubstituted C 1-60 alkyl, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted N, O and C 2-60 heteroaryl including any one or more heteroatoms selected from the group consisting of S,
    m은 1 내지 7의 정수이고, m is an integer from 1 to 7,
    n은 1 내지 8의 정수이며,n is an integer from 1 to 8,
    상기 Ar이 1개 이상의 중수소로 치환되거나, 또는 상기 R1 및 R2 중 적어도 하나가 중수소이고,wherein Ar is substituted with one or more deuterium, or at least one of R 1 and R 2 is deuterium,
    상기 화학식 1 또는 2로 표시되는 화합물은, 화합물 내 중수소를 4개 이상 포함한다.The compound represented by Formula 1 or 2 includes 4 or more deuterium in the compound.
  2. 제1항에 있어서,According to claim 1,
    상기 화학식 1 또는 2로 표시되는 화합물은, 화합물 내 중수소를 4개 내지 20개 포함하는, The compound represented by Formula 1 or 2 contains 4 to 20 deuterium in the compound,
    화합물.compound.
  3. 제1항에 있어서,According to claim 1,
    X1 내지 X3은 각각 N인,X 1 to X 3 are each N,
    화합물.compound.
  4. 제1항에 있어서,According to claim 1,
    Ar은 C6-20 아릴이고,Ar is C 6-20 aryl,
    상기 Ar은 비치환되거나, 또는 5개 내지 15개의 중수소로 치환된,Ar is unsubstituted or substituted with 5 to 15 deuterium,
    화합물.compound.
  5. 제1항에 있어서,According to claim 1,
    Ar은 페닐, 비페닐, 터페닐, 나프틸, 페닐나프틸, 나프틸페닐, 페난쓰레닐, 플루오레닐, 9,9-디메틸플루오레닐, 9,9-디페닐플루오레닐, 또는 트리페닐레닐이고,Ar is phenyl, biphenyl, terphenyl, naphthyl, phenylnaphthyl, naphthylphenyl, phenanthrenyl, fluorenyl, 9,9-dimethylfluorenyl, 9,9-diphenylfluorenyl, or tri phenylenyl,
    상기 Ar은 비치환되거나, 또는 5개 내지 13개의 중수소로 치환된,Ar is unsubstituted or substituted with 5 to 13 deuterium,
    화합물.compound.
  6. 제1항에 있어서,According to claim 1,
    L1은 단일 결합, 페닐렌, 비페닐렌, 또는 터페닐렌이고, L2는 단일 결합이거나; 또는L 1 is a single bond, phenylene, biphenylene, or terphenylene, and L 2 is a single bond; or
    L1은 단일 결합이고, L2는 페닐렌 또는 비페닐렌인,L 1 is a single bond and L 2 is phenylene or biphenylene,
    화합물. compound.
  7. 제1항에 있어서,According to claim 1,
    R1 및 R2은 각각 독립적으로 수소 또는 중수소인, R 1 and R 2 are each independently hydrogen or deuterium;
    화합물. compound.
  8. 제1항에 있어서,According to claim 1,
    Ar은 페닐, 비페닐, 터페닐, 또는 트리페닐레닐이고, Ar is phenyl, biphenyl, terphenyl, or triphenylenyl;
    상기 Ar은 5개 내지 13개의 중수소로 치환되며,Wherein Ar is substituted with 5 to 13 deuterium,
    R1 및 R2은 각각 수소인,R 1 and R 2 are each hydrogen;
    화합물.compound.
  9. 제1항에 있어서,According to claim 1,
    Ar은 페닐, 비페닐, 터페닐, 또는 트리페닐레닐이고,Ar is phenyl, biphenyl, terphenyl, or triphenylenyl;
    상기 Ar은 비치환되며,Ar is unsubstituted,
    R1 및 R2 중 적어도 하나는 중수소이고, 나머지는 수소이며,At least one of R 1 and R 2 is deuterium, the other is hydrogen,
    m은 1 내지 7의 정수이고, n은 1 내지 8의 정수이며, m is an integer from 1 to 7, n is an integer from 1 to 8,
    상기 화학식 1 또는 2로 표시되는 화합물은, 화합물 내 중수소를 4개 내지 15개 포함하는,The compound represented by Formula 1 or 2 contains 4 to 15 deuterium in the compound,
    화합물.compound.
  10. 제1항에 있어서,According to claim 1,
    Ar은 페닐, 비페닐, 터페닐, 또는 트리페닐레닐이고, Ar is phenyl, biphenyl, terphenyl, or triphenylenyl;
    상기 Ar은 5개 내지 13개의 중수소로 치환되며, Wherein Ar is substituted with 5 to 13 deuterium,
    R1 및 R2 중 적어도 하나는 중수소이고, 나머지는 수소이며, At least one of R 1 and R 2 is deuterium, the other is hydrogen,
    m은 1 내지 7의 정수이고, n은 1 내지 8의 정수인, m is an integer from 1 to 7, n is an integer from 1 to 8,
    화합물.compound.
  11. 제1항에 있어서,According to claim 1,
    상기 화학식 1 또는 2로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,The compound represented by Formula 1 or 2 is any one selected from the group consisting of
    화합물:compound:
    Figure PCTKR2022003251-appb-img-000032
    Figure PCTKR2022003251-appb-img-000032
    Figure PCTKR2022003251-appb-img-000033
    Figure PCTKR2022003251-appb-img-000033
    Figure PCTKR2022003251-appb-img-000034
    Figure PCTKR2022003251-appb-img-000034
    Figure PCTKR2022003251-appb-img-000035
    Figure PCTKR2022003251-appb-img-000035
    Figure PCTKR2022003251-appb-img-000036
    Figure PCTKR2022003251-appb-img-000036
    Figure PCTKR2022003251-appb-img-000037
    Figure PCTKR2022003251-appb-img-000037
    Figure PCTKR2022003251-appb-img-000038
    Figure PCTKR2022003251-appb-img-000038
    Figure PCTKR2022003251-appb-img-000039
    .
    Figure PCTKR2022003251-appb-img-000039
    .
  12. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항에 따른 화합물을 포함하는 것인, 유기 발광 소자.a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound according to claim 1 .
  13. 제12항에 있어서,13. The method of claim 12,
    상기 화합물을 포함하는 유기물층은 발광층인,The organic material layer containing the compound is a light emitting layer,
    유기 발광 소자. organic light emitting device.
PCT/KR2022/003251 2021-03-08 2022-03-08 Novel compound and organic light emitting device comprising same WO2022191569A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280007726.0A CN116615420A (en) 2021-03-08 2022-03-08 Novel compound and organic light emitting device comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0030416 2021-03-08
KR20210030416 2021-03-08
KR1020220029047A KR20220126236A (en) 2021-03-08 2022-03-08 Novel compound and organic light emitting device comprising the same
KR10-2022-0029047 2022-03-08

Publications (1)

Publication Number Publication Date
WO2022191569A1 true WO2022191569A1 (en) 2022-09-15

Family

ID=83228024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/003251 WO2022191569A1 (en) 2021-03-08 2022-03-08 Novel compound and organic light emitting device comprising same

Country Status (1)

Country Link
WO (1) WO2022191569A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140144550A (en) * 2013-06-11 2014-12-19 롬엔드하스전자재료코리아유한회사 Organic Electroluminescent Compounds and Organic Electroluminescent Device Comprising the Same
KR20180010808A (en) * 2016-07-22 2018-01-31 삼성에스디아이 주식회사 Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
KR20190121418A (en) * 2018-04-17 2019-10-28 삼성디스플레이 주식회사 Organic electroluminescence device and nitrogen-containing compound for organic electroluminescence device
KR20200078254A (en) * 2018-12-21 2020-07-01 솔브레인 주식회사 Heterocyclic Compound and Organic Light Emitting Device Comprising The Same
KR20200145674A (en) * 2019-06-20 2020-12-30 에스에프씨 주식회사 Organic Compound for organic light emitting diode and an organic light emitting diode including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140144550A (en) * 2013-06-11 2014-12-19 롬엔드하스전자재료코리아유한회사 Organic Electroluminescent Compounds and Organic Electroluminescent Device Comprising the Same
KR20180010808A (en) * 2016-07-22 2018-01-31 삼성에스디아이 주식회사 Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
KR20190121418A (en) * 2018-04-17 2019-10-28 삼성디스플레이 주식회사 Organic electroluminescence device and nitrogen-containing compound for organic electroluminescence device
KR20200078254A (en) * 2018-12-21 2020-07-01 솔브레인 주식회사 Heterocyclic Compound and Organic Light Emitting Device Comprising The Same
KR20200145674A (en) * 2019-06-20 2020-12-30 에스에프씨 주식회사 Organic Compound for organic light emitting diode and an organic light emitting diode including the same

Similar Documents

Publication Publication Date Title
WO2021080368A1 (en) Novel compound and organic light-emitting device using same
WO2020171531A1 (en) Compound and organic light emitting device comprising same
WO2020111733A1 (en) Organic light emitting device
WO2021125648A1 (en) Novel compound, and organic light-emitting element using same
WO2020262861A1 (en) Novel compound and organic light emitting device comprising same
WO2020149596A1 (en) Novel compound and organic light emitting diode using same
WO2021091173A1 (en) Novel compound and organic light emitting device using same
WO2021080253A1 (en) Novel compound and organic light emitting device comprising same
WO2021080254A1 (en) Novel compound and organic light emitting device comprising same
WO2021066351A1 (en) Novel compound and organic light-emitting device using same
WO2020111586A1 (en) Novel compound and organic light-emitting device using same
WO2022235101A1 (en) Organic light emitting device
WO2022031028A1 (en) Novel compound and organic light emitting device using same
WO2022031013A1 (en) Novel compound and organic light-emitting device comprising same
WO2022031016A1 (en) Novel compound and organic light-emitting device using same
WO2022059923A1 (en) Novel compound and organic light-emitting device comprising same
WO2021033980A1 (en) Novel compound and organic light-emitting device using same
WO2021040467A1 (en) Novel heterocyclic compound and organic light-emitting device using same
WO2020149656A1 (en) Novel compound and organic light-emitting diode using same
WO2021210774A1 (en) Novel compound and organic light-emitting element comprising same
WO2021162227A1 (en) Novel compound and organic light-emitting device using same
WO2021066350A1 (en) Novel compound and organic light emitting device using same
WO2020171530A1 (en) Compound and organic light-emitting device comprising same
WO2021029715A1 (en) Novel compound and organic light emitting device comprising same
WO2020185054A9 (en) Novel compound and organic light emitting device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767465

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007726.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767465

Country of ref document: EP

Kind code of ref document: A1