WO2021040467A1 - Novel heterocyclic compound and organic light-emitting device using same - Google Patents

Novel heterocyclic compound and organic light-emitting device using same Download PDF

Info

Publication number
WO2021040467A1
WO2021040467A1 PCT/KR2020/011561 KR2020011561W WO2021040467A1 WO 2021040467 A1 WO2021040467 A1 WO 2021040467A1 KR 2020011561 W KR2020011561 W KR 2020011561W WO 2021040467 A1 WO2021040467 A1 WO 2021040467A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
layer
mmol
substituted
Prior art date
Application number
PCT/KR2020/011561
Other languages
French (fr)
Korean (ko)
Inventor
정민우
이동훈
장분재
서상덕
이정하
한수진
박슬찬
황성현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080015141.4A priority Critical patent/CN113454078B/en
Priority claimed from KR1020200109034A external-priority patent/KR102447938B1/en
Publication of WO2021040467A1 publication Critical patent/WO2021040467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a novel heterocyclic compound and an organic light emitting device including the same.
  • the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy by using an organic material.
  • An organic light-emitting device using the organic light-emitting phenomenon has a wide viewing angle, excellent contrast, and fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light-emitting device generally has a structure including an anode and a cathode, and an organic material layer between the anode and the cathode.
  • the organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light-emitting device.For example, it may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet. When it falls back to the ground, it glows.
  • Patent Document 0001 Korean Patent Publication No. 10-2013-073537
  • the present invention relates to a novel heterocyclic compound and an organic light emitting device including the same.
  • the present invention provides a compound represented by the following formula (1):
  • X 1 to X 3 are each independently CH; Or N, provided that at least one of X 1 to X 3 is N,
  • Ar is substituted or unsubstituted C 6-60 aryl
  • R 1 and R 2 are each independently a substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
  • R 3 and R 4 are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
  • Each R 5 is independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
  • n1 and n2 are each independently an integer of 0 to 8,
  • n3 is an integer from 0 to 2.
  • the present invention is a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound of the present invention.
  • the compound represented by Chemical Formula 1 may be used as a material for an organic material layer of an organic light-emitting device, and may improve efficiency, low driving voltage, and/or lifetime characteristics in the organic light-emitting device.
  • the compound represented by Formula 1 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
  • FIG. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3, and a cathode 4.
  • FIG. 2 shows a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (7), a light emitting layer (3), an electron transport layer (8), an electron injection layer (9). And an example of an organic light-emitting device comprising the cathode 4 is shown.
  • substituted or unsubstituted refers to deuterium (D); Halogen group; Nitrile group; Nitro group; Hydroxy group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy group; Arylsulfoxy group; Silyl group; Boron group; Alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; Heteroarylamine group; Arylamine group; Arylphosphine group; Or it means substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more of N, O, and S atoms, or substituted or unsubstituted
  • a substituent to which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, or may be interpreted as a substituent to which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the ester group may be substituted with a C1-C25 linear, branched or cyclic alkyl group or an aryl group having 6 to 25 carbon atoms in the oxygen of the ester group.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group is specifically trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited thereto.
  • the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, a phenyl boron group, and the like, but is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cycloheptylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhex
  • the alkenyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but is preferably 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, or a terphenyl group, but the monocyclic aryl group is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, Can be, etc. However, it is not limited thereto.
  • the heterocyclic group is a heterocyclic group containing at least one of O, N, Si, and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but it is preferably 2 to 60 carbon atoms.
  • heterocyclic group examples include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, triazole group, Acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidine group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group , Indole group, carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthro
  • the aryl group among the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group and the alkylamine group is the same as the example of the aforementioned alkyl group.
  • the description of the aforementioned heterocyclic group may be applied.
  • the alkenyl group of the aralkenyl group is the same as the example of the alkenyl group described above.
  • the description of the aryl group described above may be applied except that the arylene is a divalent group.
  • the description of the aforementioned heterocyclic group may be applied except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aryl group or cycloalkyl group described above may be applied except that the hydrocarbon ring is formed by bonding of two substituents.
  • the heterocycle is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied, except that two substituents are bonded to each other and formed.
  • the present invention provides a compound represented by Chemical Formula 1.
  • the compound represented by Formula 1 is a compound in which two carbazole groups, triazine groups, and aryl groups are simultaneously substituted on a benzene ring, and two carbazole groups and aryl groups are substituted at the ortho position to improve electronic stability, and accordingly, an organic light-emitting device When employed as a light emitting layer compound, characteristics of low driving voltage, high efficiency, and long life can be realized.
  • the compound represented by Formula 1 is specifically as follows:
  • X 1 to X 3 are each independently CH; Or N, provided that at least one of X 1 to X 3 is N,
  • Ar is substituted or unsubstituted C 6-60 aryl
  • R 1 and R 2 are each independently a substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
  • R 3 and R 4 are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
  • Each R 5 is independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
  • n1 and n2 are each independently an integer of 0 to 8,
  • n3 is an integer from 0 to 2.
  • all of X 1 to X 3 are N.
  • R 1 and R 2 are each independently phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; Diphenylfluorenyl; Dibenzofuranyl; Dibenzothiophenyl; Carbazole-9-yl; 9-phenyl-9H-carbazolyl; Or 9H-carbazol-9-yl-N-phenyl,
  • Each of these is independently substituted or unsubstituted with one or more deuterium.
  • R 3 and R 4 are each independently hydrogen; heavy hydrogen; Phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; Or diphenylfluorenyl,
  • the phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; And diphenylfluorenyl are each independently substituted or unsubstituted with one or more deuterium.
  • R 3 and R 4 are each independently hydrogen; heavy hydrogen; Phenyl or phenyl substituted with one or more deuterium.
  • each R 5 is independently hydrogen; heavy hydrogen; Phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; Diphenylfluorenyl; Dibenzofuranyl; Dibenzothiophenyl; Carbazole-9-yl; Or 9-phenyl-9H-carbazolyl,
  • the phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; Diphenylfluorenyl; Dibenzofuranyl; Dibenzothiophenyl; Carbazole-9-yl; And 9-phenyl-9H-carbazolyl are each independently substituted or unsubstituted with one or more deuterium.
  • each R 5 is independently hydrogen; Phenyl; It is carbazole-9-yl.
  • Ar is phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; Or diphenylfluorenyl; and,
  • the compound represented by Formula 1 is any one selected from the group consisting of:
  • the compound represented by Formula 1 can be prepared by a manufacturing method such as the following Scheme 1:
  • X 1 and X 2 are each independently halogen, bromo, chloro or fluoro, more preferably X 1 is chloro and X 2 is fluoro.
  • the definition of other substituents is as described above.
  • Reaction Scheme 1 is a Suzuki-coupling reaction, and is preferably carried out in the presence of a palladium catalyst and a base.
  • the reactor for the Suzuki-coupling reaction may be appropriately changed.
  • the method for preparing the compound represented by Formula 1 may be more specific in Preparation Examples to be described later.
  • the present invention provides an organic light-emitting device including the compound represented by Formula 1 above.
  • the present invention provides a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a compound represented by Formula 1 do.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic material layer may include a hole injection layer, a hole transport layer, or a layer that simultaneously injects and transports holes, and the hole injection layer, a hole transport layer, or a layer that simultaneously injects and transports holes is represented by Formula 1 above. Including the indicated compound.
  • the organic material layer may include an emission layer, and the emission layer includes a compound represented by Formula 1 above.
  • the organic material layer may include an electron transport layer, an electron injection layer, or a layer for simultaneous electron transport and electron injection
  • the electron transport layer, an electron injection layer, or a layer for simultaneous electron transport and electron injection is represented by Formula 1 It includes a compound represented by.
  • the organic material layer includes a hole injection layer, a hole transport layer, an electron blocking layer, and an emission layer, and at least one selected from the group consisting of the hole injection layer, the hole transport layer, and the electron blocking layer is a compound represented by Formula 1 above.
  • the organic material layer may include an emission layer and an electron transport layer
  • the electron transport layer may include a compound represented by Formula 1 above.
  • the organic light-emitting device according to the present invention may be a normal type organic light-emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light-emitting device according to the present invention may be an inverted type organic light-emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of an organic light-emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
  • FIG. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3, and a cathode 4.
  • the compound represented by Formula 1 may be included in the emission layer.
  • the compound represented by Formula 1 may be included in one or more of the hole injection layer, the hole transport layer, the electron suppression layer, the light-emitting layer, the electron transport layer, and the electron injection layer.
  • the organic light-emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one of the organic material layers includes the compound represented by Chemical Formula 1.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • the anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon it can be prepared by depositing a material that can be used as a cathode thereon.
  • an organic light-emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode
  • the cathode material a material having a large work function is preferable so that holes can be smoothly injected into the organic material layer.
  • the cathode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SNO 2 :Sb; Poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), conductive polymers such as polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multilayered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • the hole injection layer is a layer that injects holes from the electrode, and has the ability to transport holes as a hole injection material, so that it has a hole injection effect at the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and is generated from the light emitting layer.
  • a compound that prevents the movement of excitons to the electron injection layer or the electron injection material and has excellent ability to form a thin film is preferable.
  • the HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection materials include metal porphyrin, oligothiophene, arylamine-based organic substances, hexanitrile hexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based organic substances.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.
  • a hole transport material a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer and having high mobility for holes This is suitable.
  • Specific examples include an arylamine-based organic material, a conductive polymer, and a block copolymer including a conjugated portion and a non-conjugated portion, but are not limited thereto.
  • the electron blocking layer (or electron suppressing layer) is a layer between the hole transport layer and the light emitting layer to prevent electrons injected from the cathode from being recombined in the light emitting layer and passing to the hole transport layer, and is called an electron suppressing layer. Also do.
  • the electron blocking layer is preferably a material having less electron affinity than the electron transport layer.
  • the light-emitting material a material capable of emitting light in a visible light region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency against fluorescence or phosphorescence is preferable.
  • the emission layer may include a host material and a dopant material.
  • Host materials include condensed aromatic ring derivatives or heterocyclic-containing compounds.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, periflanthene and the like having an arylamino group
  • the styrylamine compound is substituted or unsubstituted
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, periflanthene and the like having an arylamino group
  • the styrylamine compound is substituted or unsubstituted
  • at least one arylvinyl group is substituted on the arylamine, one or two or more substituents selected from
  • styrylamine styryldiamine
  • styryltriamine examples of the metal complex
  • styryltetraamine examples of the metal complex include, but are not limited to, an iridium complex and a platinum complex.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the emission layer.
  • an electron transport material a material capable of injecting electrons from the cathode and transferring them to the emission layer, and a material having high mobility for electrons is suitable. Do. Specific examples include Al complex of 8-hydroxyquinoline; Complexes containing Alq 3; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used according to the prior art.
  • suitable cathode materials are conventional materials that have a low work function and are followed by an aluminum layer or a silver layer. Specifically, they are cesium, barium, calcium, ytterbium, and samarium, and in each case an aluminum layer or a silver layer follows.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect for the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer
  • a compound that prevents migration to the layer and is excellent in thin film forming ability is preferable.
  • Complex compounds and nitrogen-containing 5-membered ring derivatives but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, etc. It is not limited to this.
  • the organic light-emitting device according to the present invention may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • 2-chloro-4,6-diphenyl-1,3,5-triazine 50 g, 187.2 mmol
  • (4-chloro-3,5-difluorophenyl) boronic acid 35.9 g, 187.2 mmol
  • potassium carbonate 77.6 g, 561.7 mmol
  • tetrakistriphenyl-phosphinopalladium 6.5 g, 5.6 mmol
  • sub 2-2 (30 g, 57.9 mmol) and bis (pinacolato) diboron (16.2 g, 63.7 mmol) were added to 600 ml of Diox and stirred and refluxed. Thereafter, potassium acetate (16.7 g, 173.7 mmol) was added, stirred sufficiently, and then palladium dibenzylidene acetone palladium (1 g, 1.7 mmol) and tricyclohexylphosphine (1 g, 3.5 mmol) were added. After reaction for 4 hours, after cooling to room temperature, the organic layer was filtered to remove salts, and the filtered organic layer was distilled.
  • sub 3-1 (30 g, 94.9 mmol) and 2-chloro-4,6-diphenyl-1,3,5-triazine (25.3 g, 94.9 mmol) were added to 600 ml of tetrahydrofuran and stirred and refluxed. . Thereafter, potassium carbonate (39.3 g, 284.7 mmol) was dissolved in 39 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (3.3 g, 2.8 mmol) was added. After reaction for 3 hours, the mixture was allowed to cool to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • sub 1-2 (15 g, 22.3 mmol) and phenylboronic acid (2.7 g, 22.3 mmol) were added to 300 ml of tetrahydrofuran, followed by stirring and refluxing. Thereafter, potassium carbonate (9.2 g, 66.8 mmol) was dissolved in 9 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.8 g, 0.7 mmol) was added. After the reaction for 2 hours, the resulting solid was filtered after cooling to room temperature.
  • sub 1-2 (15 g, 22.3 mmol) and [1,1'-biphenyl]-4-ylboronic acid (4.4 g, 22.3 mmol) were added to 300 ml of tetrahydrofuran, followed by stirring and refluxing. Thereafter, potassium carbonate (9.2 g, 66.8 mmol) was dissolved in 9 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.8 g, 0.7 mmol) was added. After the reaction for 1 hour, the resulting solid was filtered after cooling to room temperature.
  • sub 1-2 (15 g, 22.3 mmol) and [1,1'-biphenyl]-3-ylboronic acid (4.4 g, 22.3 mmol) were added to 300 ml of tetrahydrofuran, followed by stirring and refluxing. Thereafter, potassium carbonate (9.2 g, 66.8 mmol) was dissolved in 9 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.8 g, 0.7 mmol) was added. After the reaction for 2 hours, the resulting solid was filtered after cooling to room temperature.
  • sub 1-2 (15 g, 22.3 mmol) and (phenyl-d5) boronic acid (2.8 g, 22.3 mmol) were added to 300 ml of tetrahydrofuran and stirred and refluxed. Thereafter, potassium carbonate (9.2 g, 66.8 mmol) was dissolved in 9 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.8 g, 0.7 mmol) was added. After the reaction for 2 hours, the resulting solid was filtered after cooling to room temperature.
  • sub 1-2 (15 g, 22.3 mmol) and naphthalen-2-ylboronic acid (3.8 g, 22.3 mmol) were added to 300 ml of tetrahydrofuran and stirred and refluxed. Thereafter, potassium carbonate (9.2 g, 66.8 mmol) was dissolved in 9 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.8 g, 0.7 mmol) was added. After the reaction for 1 hour, the resulting solid was filtered after cooling to room temperature.
  • sub 1-2 (15 g, 22.3 mmol) and (9,9-dimethyl-9H-fluoren-2-yl) boronic acid (5.3 g, 22.3 mmol) were added to 300 ml of tetrahydrofuran and stirred and refluxed. . Thereafter, potassium carbonate (9.2 g, 66.8 mmol) was dissolved in 9 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.8 g, 0.7 mmol) was added. After reaction for 3 hours, the resulting solid was filtered after cooling to room temperature.
  • sub 3-2 (15 g, 35.6 mmol) and 3-phenyl-9H-carbazole (8.7 g, 35.6 mmol) were added to 300 ml of tetrahydrofuran and stirred and refluxed. Thereafter, potassium carbonate (14.8 g, 106.9 mmol) was dissolved in 15 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (1.2 g, 1.1 mmol) was added. After the reaction for 1 hour, the resulting solid was filtered after cooling to room temperature.
  • sub 3-2 (15 g, 35.6 mmol) and 4-phenyl-9H-carbazole (8.7 g, 35.6 mmol) were added to 300 ml of tetrahydrofuran and stirred and refluxed. Thereafter, potassium carbonate (14.8 g, 106.9 mmol) was dissolved in 15 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (1.2 g, 1.1 mmol) was added. After the reaction for 2 hours, the resulting solid was filtered after cooling to room temperature.
  • sub 3-2 (15 g, 35.6 mmol) and 9H-carbazole-1,2,3,4,5,6,7,8-d8 (6.2 g, 35.6 mmol) were added to 300 ml of tetrahydrofuran. It was stirred and refluxed. Thereafter, potassium carbonate (14.8 g, 106.9 mmol) was dissolved in 15 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (1.2 g, 1.1 mmol) was added. After the reaction for 1 hour, the resulting solid was filtered after cooling to room temperature.
  • sub 3-2 (15 g, 35.6 mmol) and 9H-carbazole-1,3,4,5,6,8-d6 (6.2 g, 35.6 mmol) were added to 300 ml of tetrahydrofuran and stirred and refluxed. . Thereafter, potassium carbonate (14.8 g, 106.9 mmol) was dissolved in 15 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (1.2 g, 1.1 mmol) was added. After the reaction for 1 hour, the resulting solid was filtered after cooling to room temperature.
  • a glass substrate coated with a thin film of ITO (indium tin oxide) to a thickness of 1,300 ⁇ was put in distilled water dissolved in a detergent and washed with ultrasonic waves.
  • a Fischer Co. product was used as a detergent, and distilled water secondarily filtered with a filter manufactured by Millipore Co. was used as distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • the following HI-1 compound was thermally vacuum deposited to a thickness of 50 ⁇ to form a hole injection layer.
  • the following HT-1 compound was thermally vacuum deposited on the hole injection layer to a thickness of 250 ⁇ to form a hole transport layer, and the following HT-2 compound was vacuum deposited on the HT-1 evaporated film to a thickness of 50 ⁇ to form an electron blocking layer.
  • a light emitting layer on the HT-2 deposited film a light emitting layer having a thickness of 400 ⁇ was formed by co-depositing Compound 1 prepared in Preparation Example 1, the following YGH-1 compound, and a phosphorescent dopant YGD-1 at a weight ratio of 44:44:12.
  • the following ET-1 compound was vacuum-deposited to a thickness of 250 ⁇ to form an electron transport layer, and the following ET-2 compound and Li were vacuum deposited on the electron transport layer at a weight ratio of 98:2 to form an electron injection layer having a thickness of 100 ⁇ . Formed.
  • a cathode was formed by depositing aluminum to a thickness of 1000 ⁇ on the electron injection layer.
  • the deposition rate of the organic material was maintained at 0.4 ⁇ 0.7 ⁇ /sec
  • the deposition rate of aluminum was maintained at 2 ⁇ /sec
  • the vacuum degree during deposition was maintained at 1 ⁇ 10 -7 ⁇ 5 ⁇ 10 -8 torr. I did.
  • An organic light-emitting device was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 below was used instead of the compound 1 of Synthesis Example 2-1 in Example 1.
  • An organic light-emitting device was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 below was used instead of the compound 1 of Synthesis Example 2-1 in Example 1.
  • the compounds of CE1 to CE3 in Table 1 are as follows.
  • the voltage and efficiency were measured at a current density of 10 mA/cm 2 of the organic light emitting device prepared in the above Examples and Comparative Examples, and the lifetime was measured at a current density of 50 mA/cm 2 and the results are shown in Table 1 below. .
  • LT95 means the time to become 95% of the initial luminance.
  • Example 1 Compound 1 4.0 81 0.44, 0.54 230
  • Example 2 Compound 2 4.1 80 0.45, 0.54 220
  • Example 3 Compound 3 4.0 81 0.46, 0.54 215
  • Example 4 Compound 4 4.0 81 0.46, 0.54 250
  • Example 5 Compound 5 4.0 79 0.46, 0.53 220
  • Example 6 Compound 6 3.9 81 0.46, 0.54 195
  • Example 7 Compound 7 4.0 81 0.46, 0.54 260
  • Example 8 Compound 8 4.0 81 0.46, 0.54 240
  • Experimental Example 9 Compound 9 4.1 80 0.46, 0.53 240
  • Example 10 Compound 10 4.0 81 0.46, 0.54 250
  • Example 11 Compound 11 3.8 80 0.46, 0.54 195
  • Example 12 Compound 12 3.9 81 0.46, 0.54 210
  • Example 13 Compound 13 4.1
  • substrate 2 anode

Abstract

The present invention provides a novel heterocyclic compound and an organic light-emitting device using same.

Description

신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자Novel heterocyclic compound and organic light emitting device using same
관련 출원(들)과의 상호 인용Cross-reference with related application(s)
본 출원은 2019년 8월 28일자 한국 특허 출원 제10-2019-0105959호 및 2020년 8월 28일자 한국 특허 출원 제10-2020-0109034호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2019-0105959 filed on August 28, 2019 and Korean Patent Application No. 10-2020-0109034 filed on August 28, 2020. All contents disclosed in the literature are included as part of this specification.
본 발명은 신규한 헤테로 고리 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to a novel heterocyclic compound and an organic light emitting device including the same.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. In general, the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy by using an organic material. An organic light-emitting device using the organic light-emitting phenomenon has a wide viewing angle, excellent contrast, and fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. An organic light-emitting device generally has a structure including an anode and a cathode, and an organic material layer between the anode and the cathode. The organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light-emitting device.For example, it may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like. In the structure of such an organic light emitting device, when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet. When it falls back to the ground, it glows.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.Development of new materials for organic materials used in organic light emitting devices as described above is continuously required.
선행기술문헌Prior art literature
특허문헌Patent Literature
(특허문헌 0001) 한국특허 공개번호 제10-2013-073537호(Patent Document 0001) Korean Patent Publication No. 10-2013-073537
본 발명은 신규한 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to a novel heterocyclic compound and an organic light emitting device including the same.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:The present invention provides a compound represented by the following formula (1):
[화학식 1][Formula 1]
Figure PCTKR2020011561-appb-img-000001
Figure PCTKR2020011561-appb-img-000001
상기 화학식 1에서,In Formula 1,
X 1 내지 X 3는 각각 독립적으로, CH; 또는 N이고, 단, X 1 내지 X 3 중 하나 이상이 N이고,X 1 to X 3 are each independently CH; Or N, provided that at least one of X 1 to X 3 is N,
Ar은 치환 또는 비치환된 C 6-60 아릴이고, Ar is substituted or unsubstituted C 6-60 aryl,
R 1 및 R 2는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C 5-60 헤테로아릴이고,R 1 and R 2 are each independently a substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
R 3 및 R 4는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C 5-60 헤테로아릴이고,R 3 and R 4 are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
R 5는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C 5-60 헤테로아릴이고,Each R 5 is independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
n1 및 n2는 각각 독립적으로, 0 내지 8의 정수이고,n1 and n2 are each independently an integer of 0 to 8,
n3는 0 내지 2의 정수이다.n3 is an integer from 0 to 2.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 전술한 본 발명의 화합물을 포함하는 유기 발광 소자를 제공한다.In addition, the present invention is a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound of the present invention.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.The compound represented by Chemical Formula 1 may be used as a material for an organic material layer of an organic light-emitting device, and may improve efficiency, low driving voltage, and/or lifetime characteristics in the organic light-emitting device. In particular, the compound represented by Formula 1 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3, and a cathode 4.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(3), 전자수송층(8), 전자주입층(9) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.2 shows a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (7), a light emitting layer (3), an electron transport layer (8), an electron injection layer (9). And an example of an organic light-emitting device comprising the cathode 4 is shown.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.Hereinafter, it will be described in more detail to aid the understanding of the present invention.
(용어의 설명)(Explanation of terms)
본 명세서에서,
Figure PCTKR2020011561-appb-img-000002
Figure PCTKR2020011561-appb-img-000003
는 다른 치환기에 연결되는 결합을 의미한다.
In this specification,
Figure PCTKR2020011561-appb-img-000002
And
Figure PCTKR2020011561-appb-img-000003
Means a bond connected to another substituent.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소(D); 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.In the present specification, the term "substituted or unsubstituted" refers to deuterium (D); Halogen group; Nitrile group; Nitro group; Hydroxy group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy group; Arylsulfoxy group; Silyl group; Boron group; Alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; Heteroarylamine group; Arylamine group; Arylphosphine group; Or it means substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more of N, O, and S atoms, or substituted or unsubstituted with two or more substituents connected among the above-exemplified substituents. . For example, "a substituent to which two or more substituents are connected" may be a biphenyl group. That is, the biphenyl group may be an aryl group, or may be interpreted as a substituent to which two phenyl groups are connected.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
Figure PCTKR2020011561-appb-img-000004
Figure PCTKR2020011561-appb-img-000004
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the ester group may be substituted with a C1-C25 linear, branched or cyclic alkyl group or an aryl group having 6 to 25 carbon atoms in the oxygen of the ester group. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
Figure PCTKR2020011561-appb-img-000005
Figure PCTKR2020011561-appb-img-000005
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the imide group is not particularly limited, but it is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
Figure PCTKR2020011561-appb-img-000006
Figure PCTKR2020011561-appb-img-000006
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. In the present specification, the silyl group is specifically trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited thereto.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.In the present specification, the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, a phenyl boron group, and the like, but is not limited thereto.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cycloheptylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, and the like, but are not limited thereto.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but is preferably 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a phenyl group, a biphenyl group, or a terphenyl group, but the monocyclic aryl group is not limited thereto. The polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2020011561-appb-img-000007
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
Figure PCTKR2020011561-appb-img-000007
Can be, etc. However, it is not limited thereto.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, the heterocyclic group is a heterocyclic group containing at least one of O, N, Si, and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but it is preferably 2 to 60 carbon atoms. Examples of the heterocyclic group include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, triazole group, Acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidine group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group , Indole group, carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, thiazolyl group, Isoxazolyl group, oxadiazolyl group, thiadiazolyl group, benzothiazolyl group, phenothiazinyl group, dibenzofuranyl group, and the like, but are not limited thereto.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.In the present specification, the aryl group among the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above. In the present specification, the alkyl group among the aralkyl group, the alkylaryl group and the alkylamine group is the same as the example of the aforementioned alkyl group. In the present specification, for heteroaryl among heteroarylamines, the description of the aforementioned heterocyclic group may be applied. In the present specification, the alkenyl group of the aralkenyl group is the same as the example of the alkenyl group described above. In the present specification, the description of the aryl group described above may be applied except that the arylene is a divalent group. In the present specification, the description of the aforementioned heterocyclic group may be applied except that the heteroarylene is a divalent group. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the aryl group or cycloalkyl group described above may be applied except that the hydrocarbon ring is formed by bonding of two substituents. In the present specification, the heterocycle is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied, except that two substituents are bonded to each other and formed.
(화합물)(compound)
본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다. 화학식 1로 표시되는 화합물은 벤젠 고리에 두 개의 카바졸기, 트리아진기 및 아릴기가 동시에 치환된 화합물로서, 두 개의 카바졸기와 아릴기가 ortho 위치에 치환되어 전자 안정성을 향상시키며, 이에 따라, 유기 발광 소자에 발광층 화합물로 채용 시 저구동 전압, 고효율 및 장수명의 특성을 구현할 수 있다. 화학식 1로 표시되는 화합물은 구체적으로 하기와 같다:The present invention provides a compound represented by Chemical Formula 1. The compound represented by Formula 1 is a compound in which two carbazole groups, triazine groups, and aryl groups are simultaneously substituted on a benzene ring, and two carbazole groups and aryl groups are substituted at the ortho position to improve electronic stability, and accordingly, an organic light-emitting device When employed as a light emitting layer compound, characteristics of low driving voltage, high efficiency, and long life can be realized. The compound represented by Formula 1 is specifically as follows:
[화학식 1][Formula 1]
Figure PCTKR2020011561-appb-img-000008
Figure PCTKR2020011561-appb-img-000008
상기 화학식 1에서,In Formula 1,
X 1 내지 X 3는 각각 독립적으로, CH; 또는 N이고, 단, X 1 내지 X 3 중 하나 이상이 N이고,X 1 to X 3 are each independently CH; Or N, provided that at least one of X 1 to X 3 is N,
Ar은 치환 또는 비치환된 C 6-60 아릴이고, Ar is substituted or unsubstituted C 6-60 aryl,
R 1 및 R 2는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C 5-60 헤테로아릴이고,R 1 and R 2 are each independently a substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
R 3 및 R 4는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C 5-60 헤테로아릴이고,R 3 and R 4 are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
R 5는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C 5-60 헤테로아릴이고,Each R 5 is independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
n1 및 n2는 각각 독립적으로, 0 내지 8의 정수이고,n1 and n2 are each independently an integer of 0 to 8,
n3는 0 내지 2의 정수이다.n3 is an integer from 0 to 2.
바람직하게는, X 1 내지 X 3는 모두 N이다.Preferably, all of X 1 to X 3 are N.
바람직하게는, R 1 및 R 2는 각각 독립적으로, 페닐; 비페닐릴; 터페닐릴; 쿼터페닐릴; 나프틸; 페난트레닐; 트리페닐레닐; 디메틸플루오레닐; 디페닐플루오레닐; 디벤조퓨라닐; 디벤조티오페닐; 카바졸-9-일; 9-페닐-9H-카바졸릴; 또는 9H-카바졸-9-일-N-페닐이고, Preferably, R 1 and R 2 are each independently phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; Diphenylfluorenyl; Dibenzofuranyl; Dibenzothiophenyl; Carbazole-9-yl; 9-phenyl-9H-carbazolyl; Or 9H-carbazol-9-yl-N-phenyl,
이들은 각각 독립적으로 하나 이상의 중수소로 치환 또는 비치환된다.Each of these is independently substituted or unsubstituted with one or more deuterium.
바람직하게는, R 3 및 R 4는 각각 독립적으로, 수소; 중수소; 페닐; 비페닐릴; 터페닐릴; 쿼터페닐릴; 나프틸; 페난트레닐; 트리페닐레닐; 디메틸플루오레닐; 또는 디페닐플루오레닐이고,Preferably, R 3 and R 4 are each independently hydrogen; heavy hydrogen; Phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; Or diphenylfluorenyl,
상기 페닐; 비페닐릴; 터페닐릴; 쿼터페닐릴; 나프틸; 페난트레닐; 트리페닐레닐; 디메틸플루오레닐; 및 디페닐플루오레닐은 각각 독립적으로, 하나 이상의 중수소로 치환 또는 비치환된다.The phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; And diphenylfluorenyl are each independently substituted or unsubstituted with one or more deuterium.
더욱 바람직하게는, R 3 및 R 4는 각각 독립적으로, 수소; 중수소; 페닐 또는 하나 이상의 중수소로 치환된 페닐이다. More preferably, R 3 and R 4 are each independently hydrogen; heavy hydrogen; Phenyl or phenyl substituted with one or more deuterium.
바람직하게는, R 5는 각각 독립적으로, 수소; 중수소; 페닐; 비페닐릴; 터페닐릴; 쿼터페닐릴; 나프틸; 페난트레닐; 트리페닐레닐; 디메틸플루오레닐; 디페닐플루오레닐; 디벤조퓨라닐; 디벤조티오페닐; 카바졸-9-일; 또는 9-페닐-9H-카바졸릴이고, Preferably, each R 5 is independently hydrogen; heavy hydrogen; Phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; Diphenylfluorenyl; Dibenzofuranyl; Dibenzothiophenyl; Carbazole-9-yl; Or 9-phenyl-9H-carbazolyl,
상기 페닐; 비페닐릴; 터페닐릴; 쿼터페닐릴; 나프틸; 페난트레닐; 트리페닐레닐; 디메틸플루오레닐; 디페닐플루오레닐; 디벤조퓨라닐; 디벤조티오페닐; 카바졸-9-일; 및 9-페닐-9H-카바졸릴은 각각 독립적으로, 하나 이상의 중수소로 치환 또는 비치환된다.The phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; Diphenylfluorenyl; Dibenzofuranyl; Dibenzothiophenyl; Carbazole-9-yl; And 9-phenyl-9H-carbazolyl are each independently substituted or unsubstituted with one or more deuterium.
더욱 바람직하게는, R 5는 각각 독립적으로, 수소; 페닐; 카바졸-9-일이다.More preferably, each R 5 is independently hydrogen; Phenyl; It is carbazole-9-yl.
바람직하게는 Ar은 페닐; 비페닐릴; 터페닐릴; 쿼터페닐릴; 나프틸; 페난트레닐; 트리페닐레닐; 디메틸플루오레닐; 또는 디페닐플루오레닐;이고, Preferably Ar is phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; Or diphenylfluorenyl; and,
이들은 각각 독립적으로, 중수소; C 1-60 알킬; C 6-60 아릴; 및 C 6-60 아르알킬로 이루어진 군에서 선택되는 하나 이상의 치환기로 치환 또는 비치환된다.Each independently, deuterium; C 1-60 alkyl; C 6-60 aryl; And C 6-60 aralkyl substituted or unsubstituted with one or more substituents selected from the group consisting of.
바람직하게는, 상기 화학식 1로 표시되는 화합물은, 하기로 구성되는 군으로부터 선택되는 어느 하나이다: Preferably, the compound represented by Formula 1 is any one selected from the group consisting of:
Figure PCTKR2020011561-appb-img-000009
Figure PCTKR2020011561-appb-img-000009
Figure PCTKR2020011561-appb-img-000010
Figure PCTKR2020011561-appb-img-000010
Figure PCTKR2020011561-appb-img-000011
Figure PCTKR2020011561-appb-img-000011
Figure PCTKR2020011561-appb-img-000012
Figure PCTKR2020011561-appb-img-000012
Figure PCTKR2020011561-appb-img-000013
Figure PCTKR2020011561-appb-img-000013
Figure PCTKR2020011561-appb-img-000014
.
Figure PCTKR2020011561-appb-img-000014
.
상기 화학식 1로 표시되는 화합물은 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다:The compound represented by Formula 1 can be prepared by a manufacturing method such as the following Scheme 1:
[반응식 1][Scheme 1]
Figure PCTKR2020011561-appb-img-000015
Figure PCTKR2020011561-appb-img-000015
상기 식 중에서, X 1 및 X 2은 각각 독립적으로 할로겐으로, 브로모, 클로로 또는 플루오로이고, 더욱 바람직하게는 X 1은 클로로, X 2은 플루오로이다. 이외에 다른 치환기에 대한 정의는 앞서 설명한 바와 같다. In the above formula, X 1 and X 2 are each independently halogen, bromo, chloro or fluoro, more preferably X 1 is chloro and X 2 is fluoro. In addition, the definition of other substituents is as described above.
상기 반응식 1은 Suzuki-coupling 반응으로, 팔라듐 촉매와 염기의 존재 하에 수행하는 것이 바람직하다. 또한, 상기 Suzuki-coupling 반응을 위한 반응기는 적절히 변경될 수 있다. 상기 화학식 1로 표시되는 화합물의 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. Reaction Scheme 1 is a Suzuki-coupling reaction, and is preferably carried out in the presence of a palladium catalyst and a base. In addition, the reactor for the Suzuki-coupling reaction may be appropriately changed. The method for preparing the compound represented by Formula 1 may be more specific in Preparation Examples to be described later.
(유기 발광 소자)(Organic Light-Emitting Element)
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. In addition, the present invention provides an organic light-emitting device including the compound represented by Formula 1 above. For example, the present invention provides a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a compound represented by Formula 1 do.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.The organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multilayer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like as an organic material layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다. In addition, the organic material layer may include a hole injection layer, a hole transport layer, or a layer that simultaneously injects and transports holes, and the hole injection layer, a hole transport layer, or a layer that simultaneously injects and transports holes is represented by Formula 1 above. Including the indicated compound.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다. In addition, the organic material layer may include an emission layer, and the emission layer includes a compound represented by Formula 1 above.
또한, 상기 유기물층은 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층을 포함할 수 있고, 상기 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다. In addition, the organic material layer may include an electron transport layer, an electron injection layer, or a layer for simultaneous electron transport and electron injection, and the electron transport layer, an electron injection layer, or a layer for simultaneous electron transport and electron injection is represented by Formula 1 It includes a compound represented by.
또한, 상기 유기물층은 정공주입층, 정공수송층, 전자저지층 및 발광층을 포함하고, 상기 정공주입층, 정공수송층 및 전자저지층으로 이루어진 군에서 선택되는 어느 하나 이상은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. In addition, the organic material layer includes a hole injection layer, a hole transport layer, an electron blocking layer, and an emission layer, and at least one selected from the group consisting of the hole injection layer, the hole transport layer, and the electron blocking layer is a compound represented by Formula 1 above. Can include.
또한, 상기 유기물 층은 발광층 및 전자수송층을 포함하고, 상기 전자수송층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. In addition, the organic material layer may include an emission layer and an electron transport layer, and the electron transport layer may include a compound represented by Formula 1 above.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.In addition, the organic light-emitting device according to the present invention may be a normal type organic light-emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. In addition, the organic light-emitting device according to the present invention may be an inverted type organic light-emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light-emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3, and a cathode 4. In such a structure, the compound represented by Formula 1 may be included in the emission layer.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(3), 전자수송층(8), 전자주입층(9) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 전자억제층, 발광층, 전자수송층 및 전자주입층 중 1층 이상에 포함될 수 있다. 2 shows a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (7), a light emitting layer (3), an electron transport layer (8), an electron injection layer (9). And an example of an organic light-emitting device comprising the cathode 4 is shown. In such a structure, the compound represented by Formula 1 may be included in one or more of the hole injection layer, the hole transport layer, the electron suppression layer, the light-emitting layer, the electron transport layer, and the electron injection layer.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. The organic light-emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one of the organic material layers includes the compound represented by Chemical Formula 1. In addition, when the organic light-emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. At this time, using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, the anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate. And, after forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon, it can be prepared by depositing a material that can be used as a cathode thereon. In addition to this method, an organic light-emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.In addition, the compound represented by Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device. Here, the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다. In addition to such a method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890). However, the manufacturing method is not limited thereto.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.For example, the first electrode is an anode, the second electrode is a cathode, or the first electrode is a cathode, and the second electrode is an anode.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SNO 2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. As the anode material, a material having a large work function is preferable so that holes can be smoothly injected into the organic material layer. Specific examples of the cathode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SNO 2 :Sb; Poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), conductive polymers such as polypyrrole and polyaniline, and the like, but are not limited thereto.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. It is preferable that the cathode material is a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multilayered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. The hole injection layer is a layer that injects holes from the electrode, and has the ability to transport holes as a hole injection material, so that it has a hole injection effect at the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and is generated from the light emitting layer. A compound that prevents the movement of excitons to the electron injection layer or the electron injection material and has excellent ability to form a thin film is preferable. It is preferable that the HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer. Specific examples of hole injection materials include metal porphyrin, oligothiophene, arylamine-based organic substances, hexanitrile hexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based organic substances. Organic substances, anthraquinone, polyaniline, and polythiophene-based conductive polymers, but are not limited thereto.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. The hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.As a hole transport material, a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer and having high mobility for holes This is suitable. Specific examples include an arylamine-based organic material, a conductive polymer, and a block copolymer including a conjugated portion and a non-conjugated portion, but are not limited thereto.
상기 전자저지층(또는 전자억제층)은 음극에서 주입된 전자가 발광층에서 재결합되지 않고 정공수송층으로 넘어가는 것을 방지하기 위해 정공수송층과 발광층의 사이에 두는 층으로는 층으로, 전자억제층으로 불리기도 한다. 전자저지층에는 전자수송층보다 전자 친화력이 작은 물질이 바람직하다. The electron blocking layer (or electron suppressing layer) is a layer between the hole transport layer and the light emitting layer to prevent electrons injected from the cathode from being recombined in the light emitting layer and passing to the hole transport layer, and is called an electron suppressing layer. Also do. The electron blocking layer is preferably a material having less electron affinity than the electron transport layer.
상기 발광 물질로는 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq 3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. As the light-emitting material, a material capable of emitting light in a visible light region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency against fluorescence or phosphorescence is preferable. Specific examples of 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole, and benzimidazole-based compounds; Poly(p-phenylenevinylene) (PPV)-based polymer; Spiro compounds; Polyfluorene, rubrene, and the like, but are not limited thereto.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. The emission layer may include a host material and a dopant material. Host materials include condensed aromatic ring derivatives or heterocyclic-containing compounds. Specifically, condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds, and heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다. Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes. Specifically, the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, periflanthene and the like having an arylamino group, and the styrylamine compound is substituted or unsubstituted As a compound in which at least one arylvinyl group is substituted on the arylamine, one or two or more substituents selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group, and arylamino group are substituted or unsubstituted. Specifically, there are styrylamine, styryldiamine, styryltriamine, and styryltetraamine, but are not limited thereto. In addition, examples of the metal complex include, but are not limited to, an iridium complex and a platinum complex.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.The electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the emission layer. As an electron transport material, a material capable of injecting electrons from the cathode and transferring them to the emission layer, and a material having high mobility for electrons is suitable. Do. Specific examples include Al complex of 8-hydroxyquinoline; Complexes containing Alq 3; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto. The electron transport layer can be used with any desired cathode material as used according to the prior art. In particular, examples of suitable cathode materials are conventional materials that have a low work function and are followed by an aluminum layer or a silver layer. Specifically, they are cesium, barium, calcium, ytterbium, and samarium, and in each case an aluminum layer or a silver layer follows.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. The electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect for the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer A compound that prevents migration to the layer and is excellent in thin film forming ability is preferable. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc. Complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, etc. It is not limited to this.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.The organic light-emitting device according to the present invention may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.In addition, the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조를 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.Preparation of the compound represented by Formula 1 and the organic light emitting device including the same will be described in detail in the following examples. However, the following examples are for illustrating the present invention, and the scope of the present invention is not limited thereto.
합성예 1-1: 화합물 sub 1-2 의 제조Synthesis Example 1-1: Preparation of compound sub 1-2
Figure PCTKR2020011561-appb-img-000016
Figure PCTKR2020011561-appb-img-000016
1) 화합물 sub 1-1의 제조1) Preparation of compound sub 1-1
질소 분위기에서 2-chloro-4,6-diphenyl-1,3,5-triazine(50 g, 187.2 mmol)와 (4-chloro-3,5-difluorophenyl)boronic acid(35.9 g, 187.2mmol)를 테트라하이드로퓨란 1000ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(77.6 g, 561.7mmol)를 물78 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(6.5 g, 5.6mmol)을 투입하였다. 2시간 반응 후 상온으로 식인 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시클로로포름 1419 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 sub 1-1(40.5g, 수득률: 57%, MS: [M+H] + = 380.1)을 제조하였다.2-chloro-4,6-diphenyl-1,3,5-triazine (50 g, 187.2 mmol) and (4-chloro-3,5-difluorophenyl) boronic acid (35.9 g, 187.2 mmol) were tetrahydrated in a nitrogen atmosphere. It was put into 1000ml of hydrofuran and stirred and refluxed. Thereafter, potassium carbonate (77.6 g, 561.7 mmol) was dissolved in 78 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (6.5 g, 5.6 mmol) was added. After 2 hours of reaction, the mixture was allowed to cool to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again added to 1419 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a white solid compound sub 1-1 (40.5 g, yield: 57%, MS: [M+H] + = 380.1).
2) 화합물 sub 1-2의 제조2) Preparation of compound sub 1-2
질소 분위기에서 sub 1-1(30 g, 79.1 mmol)와 9H-Carbazole(13.2 g, 79.1mmol)를 다이메틸포름아마이드 600ml에 넣고 교반 및 환류하였다. 이 후 나트륨 터셔리-부톡사이드 (50.4 g, 237.4mmol)를투입하고 충분히 교반한 후 4시간 반응 후 상온으로 식인 후 유기층을 필터처리하여 염을 제거 한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 533 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 옅은 노랑의 고체 화합물 sub 1-2(26.6g, 수득률: 50%, MS: [M+H] + = 674.2)을 제조하였다.In a nitrogen atmosphere, sub 1-1 (30 g, 79.1 mmol) and 9H-Carbazole (13.2 g, 79.1 mmol) were added to 600 ml of dimethylformamide and stirred and refluxed. Thereafter, sodium tertiary-butoxide (50.4 g, 237.4 mmol) was added, stirred sufficiently, allowed to react for 4 hours, allowed to cool to room temperature, and filtered the organic layer to remove salts, and the filtered organic layer was distilled. This was again added to 533 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to prepare a pale yellow solid compound sub 1-2 (26.6 g, yield: 50%, MS: [M+H] + = 674.2).
합성예 1-2: 화합물 sub 2-3 의 제조Synthesis Example 1-2: Preparation of compound sub 2-3
Figure PCTKR2020011561-appb-img-000017
Figure PCTKR2020011561-appb-img-000017
1) 화합물 sub 2-1의 제조1) Preparation of compound sub 2-1
질소 분위기에서 2-bromo-5-chloro-1,3-difluorobenzene(50 g, 221.3 mmol)와 phenyl boronic acid(27 g, 221.3mmol)를 테트라하이드로퓨란 1000ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(91.8 g, 664mmol)를 물92 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(7.7 g, 6.6mmol)을 투입하였다. 3시간 반응 후 상온으로 식인 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시클로로포름 992 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 sub 1-2(26.8g, 수득률: 54%, MS: [M+H] + = 225)을 제조하였다.In a nitrogen atmosphere, 2-bromo-5-chloro-1,3-difluorobenzene (50 g, 221.3 mmol) and phenyl boronic acid (27 g, 221.3 mmol) were added to 1000 ml of tetrahydrofuran, followed by stirring and refluxing. Thereafter, potassium carbonate (91.8 g, 664 mmol) was dissolved in 92 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (7.7 g, 6.6 mmol) was added. After reaction for 3 hours, the mixture was allowed to cool to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again added to 992 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a white solid compound sub 1-2 (26.8 g, yield: 54%, MS: [M+H] + = 225).
2) 화합물 sub 2-2의 제조2) Preparation of compound sub 2-2
질소 분위기에서 sub 1-21(30 g, 133.9 mmol)와 9H-Carbazole(22.4 g, 133.9mmol)를 다이메틸포름아마이드 600ml에 넣고 교반 및 환류하였다. 이 후 나트륨 터셔리-부톡사이드 (85.3 g, 401.7mmol)를투입하고 충분히 교반한 후 7시간 반응 후 상온으로 식인 후 유기층을 필터처리하여 염을 제거 한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 694 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 옅은 노랑의 고체 화합물 sub 2-2(45.1g, 수득률: 65%, MS: [M+H] + = 519.2)을 제조하였다.In a nitrogen atmosphere, sub 1-21 (30 g, 133.9 mmol) and 9H-Carbazole (22.4 g, 133.9 mmol) were added to 600 ml of dimethylformamide and stirred and refluxed. Thereafter, sodium tertiary-butoxide (85.3 g, 401.7 mmol) was added, stirred sufficiently, allowed to react for 7 hours, cooled to room temperature, and filtered to remove salts of the organic layer, and the filtered organic layer was distilled. This was again added to 694 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to prepare a pale yellow solid compound sub 2-2 (45.1 g, yield: 65%, MS: [M+H] + = 519.2).
3) 화합물 sub 2-3의 제조3) Preparation of compound sub 2-3
질소 분위기에서 sub 2-2(30 g, 57.9 mmol)와 비스(피나콜라토)디보론(16.2 g, 63.7mmol)를 Diox 600ml에 넣고 교반 및 환류하였다. 이 후 포타슘아세테이트(16.7 g, 173.7mmol)를 투입하고 충분히 교반한 후 팔라듐디벤질리덴아세톤팔라듐(1 g, 1.7mmol) 및 트리시클로헥실포스핀 (1 g, 3.5mmol) 을 투입하였다. 4시간 반응 후 상온으로 식인 후 유기층을 필터처리하여 염을 제거 한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 353 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올재결정을 통해 회색의 고체 화합물 sub 2-3(29g, 수득률: 82%, MS: [M+H] + = 611.3)을 제조하였다.In a nitrogen atmosphere, sub 2-2 (30 g, 57.9 mmol) and bis (pinacolato) diboron (16.2 g, 63.7 mmol) were added to 600 ml of Diox and stirred and refluxed. Thereafter, potassium acetate (16.7 g, 173.7 mmol) was added, stirred sufficiently, and then palladium dibenzylidene acetone palladium (1 g, 1.7 mmol) and tricyclohexylphosphine (1 g, 3.5 mmol) were added. After reaction for 4 hours, after cooling to room temperature, the organic layer was filtered to remove salts, and the filtered organic layer was distilled. This was again added to 353 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethanol to prepare a gray solid compound sub 2-3 (29g, yield: 82%, MS: [M+H] + = 611.3).
합성예 1-3: 화합물 sub 3-2 의 제조Synthesis Example 1-3: Preparation of compound sub 3-2
Figure PCTKR2020011561-appb-img-000018
Figure PCTKR2020011561-appb-img-000018
1) 화합물 sub 3-1의 제조1) Preparation of compound sub 3-1
질소 분위기에서 sub 2-1(50 g, 223.2 mmol)와 비스(피나콜라토)디보론(62.4 g, 245.5mmol)를 Diox 1000ml에 넣고 교반 및 환류하였다. 이 후 포타슘아세테이트(64.4 g, 669.6mmol)를 투입하고 충분히 교반한 후 팔라듐디벤질리덴아세톤팔라듐(3.9 g, 6.7mmol) 및 트리시클로헥실포스핀 (3.8 g, 13.4mmol) 을 투입하였다. 4시간 반응 후 상온으로 식인 후 유기층을 필터처리하여 염을 제거 한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 706 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올재결정을 통해 회색의 고체 화합물 sub 3-1(54.3g, 수득률: 77%, MS: [M+H] + = 317.1)을 제조하였다.In a nitrogen atmosphere, sub 2-1 (50 g, 223.2 mmol) and bis (pinacolato) diboron (62.4 g, 245.5 mmol) were added to 1000 ml of Diox and stirred and refluxed. After that, potassium acetate (64.4 g, 669.6 mmol) was added and sufficiently stirred, and then palladium dibenzylidene acetone palladium (3.9 g, 6.7 mmol) and tricyclohexylphosphine (3.8 g, 13.4 mmol) were added. After reaction for 4 hours, after cooling to room temperature, the organic layer was filtered to remove salts, and the filtered organic layer was distilled. This was again added to 706 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethanol to prepare a gray solid compound sub 3-1 (54.3 g, yield: 77%, MS: [M+H] + = 317.1).
2) 화합물 sub 3-2의 제조2) Preparation of compound sub 3-2
질소 분위기에서 sub 3-1(30 g, 94.9 mmol)와 2-chloro-4,6-diphenyl-1,3,5-triazine(25.3 g, 94.9mmol)를 테트라하이드로퓨란 600ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(39.3 g, 284.7mmol)를 물39 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(3.3 g, 2.8mmol)을 투입하였다. 3시간 반응 후 상온으로 식인 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시클로로포름 799 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 sub 3-2(26g, 수득률: 65%, MS: [M+H] + = 422.1)을 제조하였다.In a nitrogen atmosphere, sub 3-1 (30 g, 94.9 mmol) and 2-chloro-4,6-diphenyl-1,3,5-triazine (25.3 g, 94.9 mmol) were added to 600 ml of tetrahydrofuran and stirred and refluxed. . Thereafter, potassium carbonate (39.3 g, 284.7 mmol) was dissolved in 39 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (3.3 g, 2.8 mmol) was added. After reaction for 3 hours, the mixture was allowed to cool to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again added to 799 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a white solid compound sub 3-2 (26g, yield: 65%, MS: [M+H] + = 422.1).
합성예 2-1 : 화합물 1의 제조Synthesis Example 2-1: Preparation of Compound 1
Figure PCTKR2020011561-appb-img-000019
Figure PCTKR2020011561-appb-img-000019
질소 분위기에서 sub 1-2(15 g, 22.3 mmol)와 phenylboronic acid(2.7 g, 22.3mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(9.2 g, 66.8mmol)를 물9 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(0.8 g, 0.7mmol)을 투입하였다. 2시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 797 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 옅은 노랑의 고체 화합물 Compound 1(10g, 수득률: 63%, MS: [M+H] + = 716.3)을 제조하였다.In a nitrogen atmosphere, sub 1-2 (15 g, 22.3 mmol) and phenylboronic acid (2.7 g, 22.3 mmol) were added to 300 ml of tetrahydrofuran, followed by stirring and refluxing. Thereafter, potassium carbonate (9.2 g, 66.8 mmol) was dissolved in 9 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.8 g, 0.7 mmol) was added. After the reaction for 2 hours, the resulting solid was filtered after cooling to room temperature. The solid was added to 797 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a pale yellow solid compound Compound 1 (10 g, yield: 63%, MS: [M+H] + = 716.3).
합성예 2-2 : 화합물 2의 제조Synthesis Example 2-2: Preparation of Compound 2
Figure PCTKR2020011561-appb-img-000020
Figure PCTKR2020011561-appb-img-000020
질소 분위기에서 sub 1-2(15 g, 22.3 mmol)와 [1,1'-biphenyl]-4-ylboronic acid(4.4 g, 22.3mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(9.2 g, 66.8mmol)를 물9 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(0.8 g, 0.7mmol)을 투입하였다. 1시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 882 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 옅은 노랑의 고체 화합물 Compound 2(9.7g, 수득률: 55%, MS: [M+H] + = 792.3)을 제조하였다.In a nitrogen atmosphere, sub 1-2 (15 g, 22.3 mmol) and [1,1'-biphenyl]-4-ylboronic acid (4.4 g, 22.3 mmol) were added to 300 ml of tetrahydrofuran, followed by stirring and refluxing. Thereafter, potassium carbonate (9.2 g, 66.8 mmol) was dissolved in 9 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.8 g, 0.7 mmol) was added. After the reaction for 1 hour, the resulting solid was filtered after cooling to room temperature. The solid was added to 882 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a pale yellow solid compound Compound 2 (9.7 g, yield: 55%, MS: [M+H] + = 792.3).
합성예 2-3 : 화합물 3의 제조Synthesis Example 2-3: Preparation of Compound 3
Figure PCTKR2020011561-appb-img-000021
Figure PCTKR2020011561-appb-img-000021
질소 분위기에서 sub 1-2(15 g, 22.3 mmol)와 [1,1'-biphenyl]-3-ylboronic acid(4.4 g, 22.3mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(9.2 g, 66.8mmol)를 물9 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(0.8 g, 0.7mmol)을 투입하였다. 2시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 882 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 옅은 노랑의 고체 화합물 Compound 3(11.1g, 수득률: 63%, MS: [M+H] + = 792.3)을 제조하였다.In a nitrogen atmosphere, sub 1-2 (15 g, 22.3 mmol) and [1,1'-biphenyl]-3-ylboronic acid (4.4 g, 22.3 mmol) were added to 300 ml of tetrahydrofuran, followed by stirring and refluxing. Thereafter, potassium carbonate (9.2 g, 66.8 mmol) was dissolved in 9 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.8 g, 0.7 mmol) was added. After the reaction for 2 hours, the resulting solid was filtered after cooling to room temperature. The solid was added to 882 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a pale yellow solid compound Compound 3 (11.1 g, yield: 63%, MS: [M+H] + = 792.3).
합성예 2-4 : 화합물 4의 제조Synthesis Example 2-4: Preparation of compound 4
Figure PCTKR2020011561-appb-img-000022
Figure PCTKR2020011561-appb-img-000022
질소 분위기에서 sub 1-2(15 g, 22.3 mmol)와 (phenyl-d5)boronic acid(2.8 g, 22.3mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(9.2 g, 66.8mmol)를 물9 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(0.8 g, 0.7mmol)을 투입하였다. 2시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 802 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 Compound 4(11.1g, 수득률: 69%, MS: [M+H] + = 721.3)을 제조하였다.In a nitrogen atmosphere, sub 1-2 (15 g, 22.3 mmol) and (phenyl-d5) boronic acid (2.8 g, 22.3 mmol) were added to 300 ml of tetrahydrofuran and stirred and refluxed. Thereafter, potassium carbonate (9.2 g, 66.8 mmol) was dissolved in 9 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.8 g, 0.7 mmol) was added. After the reaction for 2 hours, the resulting solid was filtered after cooling to room temperature. The solid was dissolved in 802 mL of chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a white solid compound Compound 4 (11.1g, yield: 69%, MS: [M+H] + = 721.3).
합성예 2-5 : 화합물 5의 제조Synthesis Example 2-5: Preparation of Compound 5
Figure PCTKR2020011561-appb-img-000023
Figure PCTKR2020011561-appb-img-000023
질소 분위기에서 sub 1-2(15 g, 22.3 mmol)와 naphthalen-2-ylboronic acid(3.8 g, 22.3mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(9.2 g, 66.8mmol)를 물9 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(0.8 g, 0.7mmol)을 투입하였다. 1시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 853 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 노랑의 고체 화합물 Compound 5(10.4g, 수득률: 61%, MS: [M+H] + = 766.3)을 제조하였다.In a nitrogen atmosphere, sub 1-2 (15 g, 22.3 mmol) and naphthalen-2-ylboronic acid (3.8 g, 22.3 mmol) were added to 300 ml of tetrahydrofuran and stirred and refluxed. Thereafter, potassium carbonate (9.2 g, 66.8 mmol) was dissolved in 9 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.8 g, 0.7 mmol) was added. After the reaction for 1 hour, the resulting solid was filtered after cooling to room temperature. The solid was added to 853 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a yellow solid compound Compound 5 (10.4g, yield: 61%, MS: [M+H] + = 766.3).
합성예 2-6 : 화합물 6의 제조Synthesis Example 2-6: Preparation of Compound 6
Figure PCTKR2020011561-appb-img-000024
Figure PCTKR2020011561-appb-img-000024
질소 분위기에서 sub 1-2(15 g, 22.3 mmol)와 (9,9-dimethyl-9H-fluoren-2-yl)boronic acid(5.3 g, 22.3mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(9.2 g, 66.8mmol)를 물9 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(0.8 g, 0.7mmol)을 투입하였다. 3시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 926 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 옅은 노랑의 고체 화합물 Compound 6(12.4g, 수득률: 67%, MS: [M+H] + = 832.3)을 제조하였다.In a nitrogen atmosphere, sub 1-2 (15 g, 22.3 mmol) and (9,9-dimethyl-9H-fluoren-2-yl) boronic acid (5.3 g, 22.3 mmol) were added to 300 ml of tetrahydrofuran and stirred and refluxed. . Thereafter, potassium carbonate (9.2 g, 66.8 mmol) was dissolved in 9 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.8 g, 0.7 mmol) was added. After reaction for 3 hours, the resulting solid was filtered after cooling to room temperature. The solid was added to 926 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a pale yellow solid compound Compound 6 (12.4g, yield: 67%, MS: [M+H] + = 832.3).
합성예 2-7 : 화합물 7의 제조Synthesis Example 2-7: Preparation of Compound 7
Figure PCTKR2020011561-appb-img-000025
Figure PCTKR2020011561-appb-img-000025
질소 분위기에서 sub 2-3(15 g, 24.6 mmol)와 2-chloro-4,6-bis(phenyl-d5)-1,3,5-triazine(6.8 g, 24.6mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(10.2 g, 73.7mmol)를 물10 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(0.9 g, 0.7mmol)을 투입하였다. 2시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 891 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 옅은 노랑의 고체 화합물 Compound 7(13.4g, 수득률: 75%, MS: [M+H] + = 726.3)을 제조하였다.In a nitrogen atmosphere, sub 2-3 (15 g, 24.6 mmol) and 2-chloro-4,6-bis (phenyl-d5)-1,3,5-triazine (6.8 g, 24.6 mmol) were added to 300 ml of tetrahydrofuran. Put it and stirred and refluxed. Thereafter, potassium carbonate (10.2 g, 73.7 mmol) was dissolved in 10 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.9 g, 0.7 mmol) was added. After the reaction for 2 hours, the resulting solid was filtered after cooling to room temperature. The solid was added to 891 mL of chloroform to dissolve it, and the organic layer was separated after washing twice with water, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a pale yellow solid compound Compound 7 (13.4 g, yield: 75%, MS: [M+H] + = 726.3).
합성예 2-8 : 화합물 8의 제조Synthesis Example 2-8: Preparation of compound 8
Figure PCTKR2020011561-appb-img-000026
Figure PCTKR2020011561-appb-img-000026
질소 분위기에서 sub 2-3(15 g, 24.6 mmol)와 2-chloro-4-phenyl-6-(phenyl-d5)-1,3,5-triazine(6.7 g, 24.6mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(10.2 g, 73.7mmol)를 물10 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(0.9 g, 0.7mmol)을 투입하였다. 2시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 885 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 Compound 8(11.2g, 수득률: 63%, MS: [M+H] + = 721.3)을 제조하였다.In a nitrogen atmosphere, add sub 2-3 (15 g, 24.6 mmol) and 2-chloro-4-phenyl-6-(phenyl-d5)-1,3,5-triazine (6.7 g, 24.6 mmol) in tetrahydrofuran 300 ml Into the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.2 g, 73.7 mmol) was dissolved in 10 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.9 g, 0.7 mmol) was added. After the reaction for 2 hours, the resulting solid was filtered after cooling to room temperature. The solid was added to 885 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a white solid compound Compound 8 (11.2g, yield: 63%, MS: [M+H] + = 721.3).
합성예 2-9 : 화합물 9의 제조Synthesis Example 2-9: Preparation of Compound 9
Figure PCTKR2020011561-appb-img-000027
Figure PCTKR2020011561-appb-img-000027
질소 분위기에서 sub 2-3(15 g, 24.6 mmol)와 2-([1,1'-biphenyl]-3-yl)-4-chloro-6-phenyl-1,3,5-triazine(8.4 g, 24.6mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(10.2 g, 73.7mmol)를 물10 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(0.9 g, 0.7mmol)을 투입하였다. 2시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 972 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 노랑의 고체 화합물 Compound 9(10.7g, 수득률: 55%, MS: [M+H] + = 792.3)을 제조하였다.In a nitrogen atmosphere, sub 2-3 (15 g, 24.6 mmol) and 2-([1,1'-biphenyl]-3-yl)-4-chloro-6-phenyl-1,3,5-triazine(8.4 g) , 24.6mmol) was added to 300ml of tetrahydrofuran and stirred and refluxed. Thereafter, potassium carbonate (10.2 g, 73.7 mmol) was dissolved in 10 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.9 g, 0.7 mmol) was added. After the reaction for 2 hours, the resulting solid was filtered after cooling to room temperature. The solid was dissolved in 972 mL of chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a yellow solid compound Compound 9 (10.7 g, yield: 55%, MS: [M+H] + = 792.3).
합성예 2-10 : 화합물 10의 제조Synthesis Example 2-10: Preparation of Compound 10
Figure PCTKR2020011561-appb-img-000028
Figure PCTKR2020011561-appb-img-000028
질소 분위기에서 sub 2-3(15 g, 24.6 mmol)와 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine(8.4 g, 24.6mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(10.2 g, 73.7mmol)를 물10 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(0.9 g, 0.7mmol)을 투입하였다. 2시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 972 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 노랑의 고체 화합물 Compound 10(11.1g, 수득률: 57%, MS: [M+H] + = 792.3)을 제조하였다.In a nitrogen atmosphere, sub 2-3 (15 g, 24.6 mmol) and 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine(8.4 g) , 24.6mmol) was added to 300ml of tetrahydrofuran and stirred and refluxed. Thereafter, potassium carbonate (10.2 g, 73.7 mmol) was dissolved in 10 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.9 g, 0.7 mmol) was added. After the reaction for 2 hours, the resulting solid was filtered after cooling to room temperature. The solid was dissolved in 972 mL of chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a yellow solid compound Compound 10 (11.1g, yield: 57%, MS: [M+H] + = 792.3).
합성예 2-11 : 화합물 11의 제조Synthesis Example 2-11: Preparation of Compound 11
Figure PCTKR2020011561-appb-img-000029
Figure PCTKR2020011561-appb-img-000029
질소 분위기에서 sub 2-3(15 g, 24.6 mmol)와 2-chloro-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine(8.8 g, 24.6mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(10.2 g, 73.7mmol)를 물10 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(0.9 g, 0.7mmol)을 투입하였다. 1시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 990 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 노랑의 고체 화합물 Compound 11(13.9g, 수득률: 70%, MS: [M+H] + = 806.3)을 제조하였다.In a nitrogen atmosphere, sub 2-3 (15 g, 24.6 mmol) and 2-chloro-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine (8.8 g, 24.6mmol) was added to 300ml of tetrahydrofuran and stirred and refluxed. Thereafter, potassium carbonate (10.2 g, 73.7 mmol) was dissolved in 10 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.9 g, 0.7 mmol) was added. After the reaction for 1 hour, the resulting solid was filtered after cooling to room temperature. The solid was added to 990 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a yellow solid compound Compound 11 (13.9g, yield: 70%, MS: [M+H] + = 806.3).
합성예 2-12 : 화합물 12의 제조Synthesis Example 2-12: Preparation of Compound 12
Figure PCTKR2020011561-appb-img-000030
Figure PCTKR2020011561-appb-img-000030
질소 분위기에서 sub 2-3(15 g, 24.6 mmol)와 2-chloro-4-(dibenzo[b,d]furan-4-yl)-6-phenyl-1,3,5-triazine(8.8 g, 24.6mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(10.2 g, 73.7mmol)를 물10 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(0.9 g, 0.7mmol)을 투입하였다. 2시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 990 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 노랑의 고체 화합물 Compound 12(10.5g, 수득률: 53%, MS: [M+H] + = 806.3)을 제조하였다.In a nitrogen atmosphere, sub 2-3 (15 g, 24.6 mmol) and 2-chloro-4-(dibenzo[b,d]furan-4-yl)-6-phenyl-1,3,5-triazine (8.8 g, 24.6mmol) was added to 300ml of tetrahydrofuran and stirred and refluxed. Thereafter, potassium carbonate (10.2 g, 73.7 mmol) was dissolved in 10 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.9 g, 0.7 mmol) was added. After the reaction for 2 hours, the resulting solid was filtered after cooling to room temperature. The solid was added to 990 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a yellow solid compound Compound 12 (10.5g, yield: 53%, MS: [M+H] + = 806.3).
합성예 2-13 : 화합물 13의 제조Synthesis Example 2-13: Preparation of compound 13
Figure PCTKR2020011561-appb-img-000031
Figure PCTKR2020011561-appb-img-000031
질소 분위기에서 sub 2-3(15 g, 24.6 mmol)와 2-chloro-4-(dibenzo[b,d]thiophen-4-yl)-6-phenyl-1,3,5-triazine(9.2 g, 24.6mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(10.2 g, 73.7mmol)를 물10 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(0.9 g, 0.7mmol)을 투입하였다. 1시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 1009 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 옅은 노랑의 고체 화합물 Compound 13(10.1g, 수득률: 50%, MS: [M+H] + = 822.3)을 제조하였다.In a nitrogen atmosphere, sub 2-3 (15 g, 24.6 mmol) and 2-chloro-4-(dibenzo[b,d]thiophen-4-yl)-6-phenyl-1,3,5-triazine (9.2 g, 24.6mmol) was added to 300ml of tetrahydrofuran and stirred and refluxed. Thereafter, potassium carbonate (10.2 g, 73.7 mmol) was dissolved in 10 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.9 g, 0.7 mmol) was added. After the reaction for 1 hour, the resulting solid was filtered after cooling to room temperature. The solid was added to 1009 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a pale yellow solid compound Compound 13 (10.1 g, yield: 50%, MS: [M+H] + = 822.3).
합성예 2-14 : 화합물 14의 제조Synthesis Example 2-14: Preparation of compound 14
Figure PCTKR2020011561-appb-img-000032
Figure PCTKR2020011561-appb-img-000032
질소 분위기에서 sub 2-3(15 g, 24.6 mmol)와 9-(4-chloro-6-phenyl-1,3,5-triazin-2-yl)-9H-carbazole(8.8 g, 24.6mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(10.2 g, 73.7mmol)를 물10 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(0.9 g, 0.7mmol)을 투입하였다. 2시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 988 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 Compound 14(11.9g, 수득률: 60%, MS: [M+H] + = 805.3)을 제조하였다.In a nitrogen atmosphere, sub 2-3 (15 g, 24.6 mmol) and 9-(4-chloro-6-phenyl-1,3,5-triazin-2-yl)-9H-carbazole (8.8 g, 24.6 mmol) were added. Into 300ml of tetrahydrofuran was stirred and refluxed. Thereafter, potassium carbonate (10.2 g, 73.7 mmol) was dissolved in 10 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (0.9 g, 0.7 mmol) was added. After the reaction for 2 hours, the resulting solid was filtered after cooling to room temperature. The solid was dissolved in 988 mL of chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a white solid compound Compound 14 (11.9g, yield: 60%, MS: [M+H] + = 805.3).
합성예 2-15 : 화합물 15의 제조Synthesis Example 2-15: Preparation of compound 15
Figure PCTKR2020011561-appb-img-000033
Figure PCTKR2020011561-appb-img-000033
질소 분위기에서 sub 3-2(15 g, 35.6 mmol)와 3-phenyl-9H-carbazole(8.7 g, 35.6mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(14.8 g, 106.9mmol)를 물15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1mmol)을 투입하였다. 1시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 1545 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 옅은 노랑의 고체 화합물 Compound 15(21.3g, 수득률: 69%, MS: [M+H] + = 868.3)을 제조하였다.In a nitrogen atmosphere, sub 3-2 (15 g, 35.6 mmol) and 3-phenyl-9H-carbazole (8.7 g, 35.6 mmol) were added to 300 ml of tetrahydrofuran and stirred and refluxed. Thereafter, potassium carbonate (14.8 g, 106.9 mmol) was dissolved in 15 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (1.2 g, 1.1 mmol) was added. After the reaction for 1 hour, the resulting solid was filtered after cooling to room temperature. The solid was dissolved in 1545 mL of chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a pale yellow solid compound Compound 15 (21.3g, yield: 69%, MS: [M+H] + = 868.3).
합성예 2- 16 : 화합물 16의 제조Synthesis Example 2- 16: Preparation of Compound 16
Figure PCTKR2020011561-appb-img-000034
Figure PCTKR2020011561-appb-img-000034
질소 분위기에서 sub 3-2(15 g, 35.6 mmol)와 4-phenyl-9H-carbazole(8.7 g, 35.6mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(14.8 g, 106.9mmol)를 물15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1mmol)을 투입하였다. 2시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 1545 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 옅은 노랑의 고체 화합물 Compound 16(16.7g, 수득률: 54%, MS: [M+H] + = 868.3)을 제조하였다.In a nitrogen atmosphere, sub 3-2 (15 g, 35.6 mmol) and 4-phenyl-9H-carbazole (8.7 g, 35.6 mmol) were added to 300 ml of tetrahydrofuran and stirred and refluxed. Thereafter, potassium carbonate (14.8 g, 106.9 mmol) was dissolved in 15 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (1.2 g, 1.1 mmol) was added. After the reaction for 2 hours, the resulting solid was filtered after cooling to room temperature. The solid was dissolved in 1545 mL of chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a pale yellow solid compound Compound 16 (16.7 g, yield: 54%, MS: [M+H] + = 868.3).
합성예 2-17 : 화합물 17의 제조Synthesis Example 2-17: Preparation of compound 17
Figure PCTKR2020011561-appb-img-000035
Figure PCTKR2020011561-appb-img-000035
질소 분위기에서 sub 3-2(15 g, 35.6 mmol)와 9H-carbazole-1,2,3,4,5,6,7,8-d8(6.2 g, 35.6mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(14.8 g, 106.9mmol)를 물15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1mmol)을 투입하였다. 1시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 1302 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 옅은 노랑의 고체 화합물 Compound 17(18.2g, 수득률: 70%, MS: [M+H] + = 732.4)을 제조하였다.In a nitrogen atmosphere, sub 3-2 (15 g, 35.6 mmol) and 9H-carbazole-1,2,3,4,5,6,7,8-d8 (6.2 g, 35.6 mmol) were added to 300 ml of tetrahydrofuran. It was stirred and refluxed. Thereafter, potassium carbonate (14.8 g, 106.9 mmol) was dissolved in 15 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (1.2 g, 1.1 mmol) was added. After the reaction for 1 hour, the resulting solid was filtered after cooling to room temperature. The solid was added to 1302 mL of chloroform to dissolve it, and after washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a pale yellow solid compound Compound 17 (18.2g, yield: 70%, MS: [M+H] + = 732.4).
합성예 2-18 : 화합물 18의 제조Synthesis Example 2-18: Preparation of compound 18
Figure PCTKR2020011561-appb-img-000036
Figure PCTKR2020011561-appb-img-000036
질소 분위기에서 sub 3-2(15 g, 35.6 mmol)와 9H-carbazole-1,3,4,5,6,8-d6(6.2 g, 35.6mmol)를 테트라하이드로퓨란 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(14.8 g, 106.9mmol)를 물15 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(1.2 g, 1.1mmol)을 투입하였다. 1시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 1295 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 옅은 노랑의 고체 화합물 Compound 18(17.9g, 수득률: 69%, MS: [M+H] + = 728.4)을 제조하였다.In a nitrogen atmosphere, sub 3-2 (15 g, 35.6 mmol) and 9H-carbazole-1,3,4,5,6,8-d6 (6.2 g, 35.6 mmol) were added to 300 ml of tetrahydrofuran and stirred and refluxed. . Thereafter, potassium carbonate (14.8 g, 106.9 mmol) was dissolved in 15 ml of water, and after sufficiently stirring, tetrakistriphenyl-phosphinopalladium (1.2 g, 1.1 mmol) was added. After the reaction for 1 hour, the resulting solid was filtered after cooling to room temperature. The solid was dissolved in 1295 mL of chloroform, washed twice with water, and the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to prepare a pale yellow solid compound Compound 18 (17.9 g, yield: 69%, MS: [M+H] + = 728.4).
[실시예][Example]
실시예 1Example 1
ITO(indium tin oxide)가 1,300Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with a thin film of ITO (indium tin oxide) to a thickness of 1,300Å was put in distilled water dissolved in a detergent and washed with ultrasonic waves. At this time, a Fischer Co. product was used as a detergent, and distilled water secondarily filtered with a filter manufactured by Millipore Co. was used as distilled water. After washing the ITO for 30 minutes, it was repeated twice with distilled water to perform ultrasonic cleaning for 10 minutes. After washing with distilled water, ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner. In addition, after cleaning the substrate for 5 minutes using oxygen plasma, the substrate was transported to a vacuum evaporator.
상기와 같이 준비된 ITO 투명 전극 위에 하기 HI-1 화합물을 50Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 위에 하기 HT-1 화합물을 250Å의 두께로 열 진공 증착하여 정공수송층을 형성하고, HT-1 증착막 위에 하기 HT-2 화합물을 50Å 두께로 진공 증착하여 전자저지층을 형성하였다. 상기 HT-2 증착막 위에 발광층으로서 앞서 제조예 1에서 제조한 화합물 1, 하기 YGH-1 화합물, 및 인광도펀트 YGD-1을 44:44:12의 중량비로 공증착하여 400Å 두께의 발광층을 형성하였다. 상기 발광층 위에 하기 ET-1 화합물을 250Å의 두께로 진공 증착하여 전자수송층을 형성하고, 상기 전자수송층 위에 하기 ET-2 화합물 및 Li를 98:2의 중량비로 진공 증착하여 100Å 두께의 전자주입층을 형성하였다. 상기 전자주입층 위에 1000Å 두께로 알루미늄을 증착하여 음극을 형성하였다. On the ITO transparent electrode prepared as described above, the following HI-1 compound was thermally vacuum deposited to a thickness of 50 Å to form a hole injection layer. The following HT-1 compound was thermally vacuum deposited on the hole injection layer to a thickness of 250 Å to form a hole transport layer, and the following HT-2 compound was vacuum deposited on the HT-1 evaporated film to a thickness of 50 Å to form an electron blocking layer. As a light emitting layer on the HT-2 deposited film, a light emitting layer having a thickness of 400 Å was formed by co-depositing Compound 1 prepared in Preparation Example 1, the following YGH-1 compound, and a phosphorescent dopant YGD-1 at a weight ratio of 44:44:12. On the light emitting layer, the following ET-1 compound was vacuum-deposited to a thickness of 250 Å to form an electron transport layer, and the following ET-2 compound and Li were vacuum deposited on the electron transport layer at a weight ratio of 98:2 to form an electron injection layer having a thickness of 100 Å. Formed. A cathode was formed by depositing aluminum to a thickness of 1000 Å on the electron injection layer.
Figure PCTKR2020011561-appb-img-000037
Figure PCTKR2020011561-appb-img-000037
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 Å/sec를 유지하였고, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 × 10 -7 ~ 5 × 10 -8 torr를 유지하였다.In the above process, the deposition rate of the organic material was maintained at 0.4 ~ 0.7 Å/sec, the deposition rate of aluminum was maintained at 2 Å/sec, and the vacuum degree during deposition was maintained at 1 × 10 -7 ~ 5 × 10 -8 torr. I did.
실시예 2 내지 10Examples 2 to 10
상기 실시예 1에서 합성예 2-1의 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. An organic light-emitting device was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 below was used instead of the compound 1 of Synthesis Example 2-1 in Example 1.
비교 실시예 1 내지 3Comparative Examples 1 to 3
상기 실시예 1에서 합성예 2-1의 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. An organic light-emitting device was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 below was used instead of the compound 1 of Synthesis Example 2-1 in Example 1.
하기 표 1의 CE1 내지 CE3의 화합물은 하기와 같다.The compounds of CE1 to CE3 in Table 1 are as follows.
Figure PCTKR2020011561-appb-img-000038
Figure PCTKR2020011561-appb-img-000038
실험예Experimental example
상기 실시예 및 비교 실시예에서 제조된 유기 발광 소자를 10mA/cm 2의 전류 밀도에서 전압과 효율을 측정하였고, 50mA/cm 2의 전류 밀도에서 수명을 측정하여 그 결과를 하기 표 1에 나타내었다. The voltage and efficiency were measured at a current density of 10 mA/cm 2 of the organic light emitting device prepared in the above Examples and Comparative Examples, and the lifetime was measured at a current density of 50 mA/cm 2 and the results are shown in Table 1 below. .
이때, LT95는 초기 휘도 대비 95%가 되는 시간을 의미한다 At this time, LT95 means the time to become 95% of the initial luminance.
구분division 화합물compound 전압(V)(@10mA/cm 2)Voltage(V)(@10mA/cm 2 ) 효율(Cd/A)(@10mA/cm 2)Efficiency(Cd/A)(@10mA/cm 2 ) 색좌표(x,y)Color coordinate (x,y) 수명(h)(LT 95 at 50mA/cm 2)Life (h)(LT 95 at 50mA/cm 2 )
실시예 1Example 1 화합물 1Compound 1 4.04.0 8181 0.44, 0.540.44, 0.54 230230
실시예 2Example 2 화합물 2Compound 2 4.14.1 8080 0.45, 0.540.45, 0.54 220220
실시예 3Example 3 화합물 3Compound 3 4.04.0 8181 0.46, 0.540.46, 0.54 215215
실시예 4Example 4 화합물 4Compound 4 4.04.0 8181 0.46, 0.540.46, 0.54 250250
실시예 5Example 5 화합물 5Compound 5 4.04.0 7979 0.46, 0.530.46, 0.53 220220
실시예 6Example 6 화합물 6Compound 6 3.93.9 8181 0.46, 0.540.46, 0.54 195195
실시예 7Example 7 화합물 7Compound 7 4.04.0 8181 0.46, 0.540.46, 0.54 260260
실시예 8Example 8 화합물 8Compound 8 4.04.0 8181 0.46, 0.540.46, 0.54 240240
실험예 9Experimental Example 9 화합물 9Compound 9 4.14.1 8080 0.46, 0.530.46, 0.53 240240
실시예 10Example 10 화합물 10Compound 10 4.04.0 8181 0.46, 0.540.46, 0.54 250250
실시예 11Example 11 화합물 11Compound 11 3.83.8 8080 0.46, 0.540.46, 0.54 195195
실시예 12Example 12 화합물 12Compound 12 3.93.9 8181 0.46, 0.540.46, 0.54 210210
실시예 13Example 13 화합물 13Compound 13 4.14.1 7979 0.46, 0.540.46, 0.54 240240
실시예 14Example 14 화합물 14Compound 14 4.24.2 8080 0.46, 0.540.46, 0.54 250250
실시예 15Example 15 화합물 15Compound 15 4.14.1 8080 0.46, 0.540.46, 0.54 210210
실시예 16Example 16 화합물 16Compound 16 4.24.2 7979 0.46, 0.540.46, 0.54 240240
실시예 17Example 17 화합물 17Compound 17 4.04.0 8181 0.44, 0.540.44, 0.54 260260
실시예 18Example 18 화합물 18Compound 18 4.04.0 8181 0.44, 0.540.44, 0.54 255255
비교실시예 1Comparative Example 1 CE1CE1 4.54.5 7575 0.46, 0.540.46, 0.54 8585
비교실시예 2Comparative Example 2 CE2CE2 4.44.4 7777 0.46, 0.550.46, 0.55 1515
비교실시예 3Comparative Example 3 CE3CE3 4.84.8 6666 0.46, 0.550.46, 0.55 120120
상기 표 1에서 나타난 바와 같이, 본 발명의 화합물을 발광층 물질로 사용할 경우, 비교 실험예에 비하여 효율 및 수명이 우수한 특성을 나타내는 것을 확인할 수 있었다. As shown in Table 1, when the compound of the present invention was used as the light emitting layer material, it was confirmed that the compound of the present invention exhibited excellent properties in terms of efficiency and lifespan compared to the comparative experimental example.
부호의 설명Explanation of the sign
1: 기판 2: 양극1: substrate 2: anode
3: 발광층 4: 음극3: light-emitting layer 4: cathode
5: 정공주입층 6: 정공수송층5: hole injection layer 6: hole transport layer
7: 전자저지층 8: 전자수송층7: electron blocking layer 8: electron transport layer
9: 전자주입층9: electron injection layer

Claims (8)

  1. 하기 화학식 1로 표시되는 화합물:Compound represented by the following formula 1:
    [화학식 1][Formula 1]
    Figure PCTKR2020011561-appb-img-000039
    Figure PCTKR2020011561-appb-img-000039
    상기 화학식 1에서,In Formula 1,
    X 1 내지 X 3는 각각 독립적으로, CH; 또는 N이고, 단, X 1 내지 X 3 중 하나 이상이 N이고,X 1 to X 3 are each independently CH; Or N, provided that at least one of X 1 to X 3 is N,
    Ar은 치환 또는 비치환된 C 6-60 아릴이고, Ar is substituted or unsubstituted C 6-60 aryl,
    R 1 및 R 2는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C 5-60 헤테로아릴이고,R 1 and R 2 are each independently a substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
    R 3 및 R 4는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C 5-60 헤테로아릴이고,R 3 and R 4 are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
    R 5는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 6-60 아릴; 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C 5-60 헤테로아릴이고,Each R 5 is independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 6-60 aryl; Or a substituted or unsubstituted C 5-60 heteroaryl containing at least one hetero atom selected from the group consisting of N, O and S,
    n1 및 n2는 각각 독립적으로, 0 내지 8의 정수이고,n1 and n2 are each independently an integer of 0 to 8,
    n3는 0 내지 2의 정수이다.n3 is an integer from 0 to 2.
  2. 제 1항에 있어서, The method of claim 1,
    X 1 내지 X 3는 모두 N인, X 1 to X 3 are all N,
    화합물.compound.
  3. 제 1항에 있어서, The method of claim 1,
    R 1 및 R 2는 각각 독립적으로, 페닐; 비페닐릴; 터페닐릴; 쿼터페닐릴; 나프틸; 페난트레닐; 트리페닐레닐; 디메틸플루오레닐; 디페닐플루오레닐; 디벤조퓨라닐; 디벤조티오페닐; 카바졸-9-일; 9-페닐-9H-카바졸릴; 또는 9H-카바졸-9-일-N-페닐이고,R 1 and R 2 are each independently phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; Diphenylfluorenyl; Dibenzofuranyl; Dibenzothiophenyl; Carbazole-9-yl; 9-phenyl-9H-carbazolyl; Or 9H-carbazol-9-yl-N-phenyl,
    이들은 각각 독립적으로, 하나 이상의 중수소로 치환 또는 비치환되는, These are each independently, unsubstituted or substituted with one or more deuterium,
    화합물.compound.
  4. 제 1항에 있어서, The method of claim 1,
    R 3 및 R 4는 각각 독립적으로, 수소; 중수소; 페닐; 비페닐릴; 터페닐릴; 쿼터페닐릴; 나프틸; 페난트레닐; 트리페닐레닐; 디메틸플루오레닐; 또는 디페닐플루오레닐이고,R 3 and R 4 are each independently hydrogen; heavy hydrogen; Phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; Or diphenylfluorenyl,
    상기 페닐; 비페닐릴; 터페닐릴; 쿼터페닐릴; 나프틸; 페난트레닐; 트리페닐레닐; 디메틸플루오레닐; 및 디페닐플루오레닐은 각각 독립적으로, 하나 이상의 중수소로 치환 또는 비치환되는, The phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; And diphenylfluorenyl is each independently substituted or unsubstituted with one or more deuterium,
    화합물.compound.
  5. 제 1항에 있어서, The method of claim 1,
    R 5는 각각 독립적으로, 수소; 중수소; 페닐; 비페닐릴; 터페닐릴; 쿼터페닐릴; 나프틸; 페난트레닐; 트리페닐레닐; 디메틸플루오레닐; 디페닐플루오레닐; 디벤조퓨라닐; 디벤조티오페닐; 카바졸-9-일; 또는 9-페닐-9H-카바졸릴이고,Each R 5 is independently hydrogen; heavy hydrogen; Phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; Diphenylfluorenyl; Dibenzofuranyl; Dibenzothiophenyl; Carbazole-9-yl; Or 9-phenyl-9H-carbazolyl,
    상기 페닐; 비페닐릴; 터페닐릴; 쿼터페닐릴; 나프틸; 페난트레닐; 트리페닐레닐; 디메틸플루오레닐; 디페닐플루오레닐; 디벤조퓨라닐; 디벤조티오페닐; 카바졸-9-일; 및 9-페닐-9H-카바졸릴은 각각 독립적으로, 하나 이상의 중수소로 치환 또는 비치환되는, The phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; Diphenylfluorenyl; Dibenzofuranyl; Dibenzothiophenyl; Carbazole-9-yl; And 9-phenyl-9H-carbazolyl is each independently substituted or unsubstituted with one or more deuterium,
    화합물.compound.
  6. 제 1항에 있어서, The method of claim 1,
    Ar은 페닐; 비페닐릴; 터페닐릴; 쿼터페닐릴; 나프틸; 페난트레닐; 트리페닐레닐; 디메틸플루오레닐; 또는 디페닐플루오레닐;이고, Ar is phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Phenanthrenyl; Triphenylenyl; Dimethylfluorenyl; Or diphenylfluorenyl; and,
    이들은 각각 독립적으로, 중수소; C 1-60 알킬; C 6-60 아릴; 및 C 6-60 아르알킬로 이루어진 군에서 선택되는 하나 이상의 치환기로 치환 또는 비치환되는, Each independently, deuterium; C 1-60 alkyl; C 6-60 aryl; And C 6-60 unsubstituted or substituted with one or more substituents selected from the group consisting of aralkyl,
    화합물.compound.
  7. 제 1항에 있어서,The method of claim 1,
    상기 화학식 1로 표시되는 화합물은, 하기로 구성되는 군으로부터 선택되는 어느 하나인, The compound represented by Formula 1 is any one selected from the group consisting of,
    화합물:compound:
    Figure PCTKR2020011561-appb-img-000040
    Figure PCTKR2020011561-appb-img-000040
    Figure PCTKR2020011561-appb-img-000041
    Figure PCTKR2020011561-appb-img-000041
    Figure PCTKR2020011561-appb-img-000042
    Figure PCTKR2020011561-appb-img-000042
    Figure PCTKR2020011561-appb-img-000043
    Figure PCTKR2020011561-appb-img-000043
    Figure PCTKR2020011561-appb-img-000044
    Figure PCTKR2020011561-appb-img-000044
    Figure PCTKR2020011561-appb-img-000045
    .
    Figure PCTKR2020011561-appb-img-000045
    .
  8. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제 1항 내지 제 7항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.A first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound according to any one of claims 1 to 7 That is, an organic light emitting device.
PCT/KR2020/011561 2019-08-28 2020-08-28 Novel heterocyclic compound and organic light-emitting device using same WO2021040467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080015141.4A CN113454078B (en) 2019-08-28 2020-08-28 Novel heterocyclic compound and organic light-emitting device comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0105959 2019-08-28
KR20190105959 2019-08-28
KR10-2020-0109034 2020-08-28
KR1020200109034A KR102447938B1 (en) 2019-08-28 2020-08-28 Novel hetero-cyclic compound and organic light emitting device comprising the same

Publications (1)

Publication Number Publication Date
WO2021040467A1 true WO2021040467A1 (en) 2021-03-04

Family

ID=74683869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011561 WO2021040467A1 (en) 2019-08-28 2020-08-28 Novel heterocyclic compound and organic light-emitting device using same

Country Status (1)

Country Link
WO (1) WO2021040467A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4335846A1 (en) 2022-06-30 2024-03-13 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106316924A (en) * 2015-06-16 2017-01-11 清华大学 Thermally activated delayed fluorescence material
DE102016112377A1 (en) * 2016-07-06 2018-01-11 Cynora Gmbh Organic molecules, in particular for use in organic optoelectronic devices
WO2018041933A1 (en) * 2016-09-01 2018-03-08 Cynora Gmbh Organic molecules, especially for use in organic optoelectronic devices
WO2018237389A1 (en) * 2017-06-23 2018-12-27 Kyulux Inc. Composition of matter for use in organic light-emitting diodes
WO2019101746A1 (en) * 2017-11-21 2019-05-31 Cynora Gmbh Organic molecules for use in optoelectronic devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106316924A (en) * 2015-06-16 2017-01-11 清华大学 Thermally activated delayed fluorescence material
DE102016112377A1 (en) * 2016-07-06 2018-01-11 Cynora Gmbh Organic molecules, in particular for use in organic optoelectronic devices
WO2018041933A1 (en) * 2016-09-01 2018-03-08 Cynora Gmbh Organic molecules, especially for use in organic optoelectronic devices
WO2018237389A1 (en) * 2017-06-23 2018-12-27 Kyulux Inc. Composition of matter for use in organic light-emitting diodes
WO2019101746A1 (en) * 2017-11-21 2019-05-31 Cynora Gmbh Organic molecules for use in optoelectronic devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4335846A1 (en) 2022-06-30 2024-03-13 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device thereof

Similar Documents

Publication Publication Date Title
WO2021080368A1 (en) Novel compound and organic light-emitting device using same
WO2020171531A1 (en) Compound and organic light emitting device comprising same
WO2020149596A1 (en) Novel compound and organic light emitting diode using same
WO2015152651A1 (en) Heterocyclic compound and organic light-emitting element comprising same
WO2021125648A1 (en) Novel compound, and organic light-emitting element using same
WO2021080254A1 (en) Novel compound and organic light emitting device comprising same
WO2021080253A1 (en) Novel compound and organic light emitting device comprising same
WO2021091173A1 (en) Novel compound and organic light emitting device using same
WO2020262861A1 (en) Novel compound and organic light emitting device comprising same
WO2021066351A1 (en) Novel compound and organic light-emitting device using same
WO2015178740A2 (en) Heterocyclic compound and organic light emitting device comprising same
WO2020231242A1 (en) Organic light-emitting element
WO2022031013A1 (en) Novel compound and organic light-emitting device comprising same
WO2022031016A1 (en) Novel compound and organic light-emitting device using same
WO2021040467A1 (en) Novel heterocyclic compound and organic light-emitting device using same
WO2022031028A1 (en) Novel compound and organic light emitting device using same
WO2022059923A1 (en) Novel compound and organic light-emitting device comprising same
WO2022060047A1 (en) Novel compound and organic light emitting device comprising same
WO2022031020A1 (en) Novel compound and organic light emitting device comprising same
WO2021149954A1 (en) Organic light emitting device
WO2021029715A1 (en) Novel compound and organic light emitting device comprising same
WO2021033980A1 (en) Novel compound and organic light-emitting device using same
WO2020149656A1 (en) Novel compound and organic light-emitting diode using same
WO2020246835A1 (en) Novel compound and organic light-emitting device using same
WO2020185054A9 (en) Novel compound and organic light emitting device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859040

Country of ref document: EP

Kind code of ref document: A1