WO2022191371A1 - 비정질 금속섬유를 보강한 저수축 경량 모르타르 조성물 - Google Patents

비정질 금속섬유를 보강한 저수축 경량 모르타르 조성물 Download PDF

Info

Publication number
WO2022191371A1
WO2022191371A1 PCT/KR2021/012576 KR2021012576W WO2022191371A1 WO 2022191371 A1 WO2022191371 A1 WO 2022191371A1 KR 2021012576 W KR2021012576 W KR 2021012576W WO 2022191371 A1 WO2022191371 A1 WO 2022191371A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous metal
fine aggregate
metal fiber
mortar composition
test examples
Prior art date
Application number
PCT/KR2021/012576
Other languages
English (en)
French (fr)
Inventor
최세진
김지환
배성호
이재인
Original Assignee
원광대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원광대학교산학협력단 filed Critical 원광대학교산학협력단
Publication of WO2022191371A1 publication Critical patent/WO2022191371A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/0436Dredged harbour or river sludge
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a lightweight mortar composition in which an energy-reducing amorphous metal fiber is reinforced in a lightweight mortar composition using artificial lightweight fine aggregate to reinforce flexural strength and split tensile strength, and to further strengthen fluidity, lightweight properties and resistance to drying and shrinkage.
  • amorphous metal fiber manufacturing process is simpler than general metal fiber manufacturing process, and since there is no subsequent process after molten metal, there is an advantage of reducing CO 2 and energy.
  • amorphous metals are known to have excellent corrosion resistance and tensile strength.
  • lightweight aggregates that are lighter than general aggregates are increasing in order to reduce the weight of ultra-high-rise and large-scale concrete structures.
  • the use of lightweight aggregate has the advantage of reducing the unit weight of the cement composite, but there is a risk of deterioration of physical properties such as compressive strength and tensile strength due to the porosity of the lightweight aggregate.
  • the present invention is "a mortar composition with a compressive strength of 30 MPa or more at 28 days of age, artificial lightweight fine aggregate is applied as fine aggregate, and low shrinkage lightweight mortar composition containing 10 to 30 kg/m of amorphous metal fiber" provides
  • the amorphous metal fiber may have a specific gravity of 7.0 to 7.3, a tensile strength of 1,350 to 1,450 N/mm 2 , and a length of 13 to 17 mm.
  • the fluidity, lightness, and drying shrinkage reduction effect that is improved by using artificial lightweight fine aggregate in place of natural fine aggregate is improved to equal or more than the previously known effect
  • the flexural strength and split tensile strength which have been problematic in terms of physical properties degradation due to the use of artificial lightweight fine aggregates instead of natural fine aggregates, can be greatly improved beyond the physical properties of mortars using natural fine aggregates.
  • FIG. 2 is a graph showing the comparison of the unit weight for each content of amorphous metal fiber in NAF and LAF test examples.
  • FIG. 3 is a graph showing the comparison of the compressive strength of each age and content of amorphous metal fibers of NAF and LAF test examples.
  • FIG. 4 is a graph showing the comparison of the flexural strength at 28 days of age for each amorphous metal fiber content of NAF and LAF test examples.
  • FIG. 5 is a graph showing a comparison of the ratio of compressive strength (Fc) to flexural strength (Fb) for each amorphous metal fiber content in NAF and LAF test examples.
  • FIG. 6 is a graph showing the comparison of the split tensile strength for each amorphous metal fiber content of NAF and LAF test examples.
  • FIG. 7 is a graph showing a comparison of the ratio of tensile strength (Ft) to compressive strength (Fc) for each content of amorphous metal fibers in NAF and LAF test examples.
  • FIG. 8 is a graph showing the comparison of drying shrinkage by age of NAF and LAF test examples.
  • Figure 9 is a graph showing the comparison of the carbonation depth by the accelerated carbonation test of the NAF and LAF test examples.
  • the artificial lightweight fine aggregate is manufactured by calcining a mixture of coal ash and dredged soil at 1,100 ⁇ 1,200 ° C. 1,100 kg/L,
  • the present invention provides "a mortar composition with a compressive strength of 30 M Pa or more at 28 days of age, in which artificial lightweight fine aggregate is applied as a fine aggregate, and a low shrinkage lightweight mortar composition containing 10 to 30 kg/m of amorphous metal fiber".
  • the artificial lightweight fine aggregate applied to the present invention is a porous aggregate, and is produced by calcining a mixture of coal ash and dredged soil at 1,100 to 1,200 ° C. In the firing process, the surface of the artificial lightweight fine aggregate is first exposed to a high temperature, and the surface portion is first liquefied to form a shell structure with a higher density than the inside.
  • the artificial lightweight fine aggregate is prepared by pre-wetting the coal ash and dredged soil in the ready-mixed concrete recovery water for 22 to 26 hours and then adjusting it to a dry condition and mixing it so that the combined content of SiO 2 and Al 2 O 3 exceeds 80 wt%. can do.
  • Alkali aggregate reaction is a phenomenon in which alkali components (Na 2 O, K 2 O) in cement and reactive silica contained in aggregate react in the presence of water to generate alkali silicate gel and cause expansion. It can be said that it is a reaction that must be suppressed in the common sense of human technology.
  • porous artificial lightweight fine aggregate having a lower density than general sand is prepared. Because the voids of the artificial lightweight aggregate itself or the voids of the adjacent artificial lightweight aggregate where the alkali aggregate reaction occurs), volume expansion of the aggregate does not occur, but rather densification occurs.
  • [Table 1] below shows the physical properties (assembly rate, surface dry density, absolute dry density, water absorption, and unit weight) of the artificial lightweight fine aggregate collected as a sample compared with the natural fine aggregate (washing sand), and [Table 2] below is The results of the sieving test of the natural fine aggregate and the artificial lightweight fine aggregate are summarized and shown.
  • Type of Sand Sieve Passing Ratio 10mm 5mm 2.5mm 1.2mm 0.6mm 0.3mm 0.15mm Standard 100 100 100 85 60 30 10 100 95 80 50 25 10 2 NS 100 100 93.75 73.50 52 20 6 LS 100 99.75 38.50 1.25 0.25 0.20 0.20
  • the content of the amorphous metal fiber was applied differentially by 10 kg/m3 in the range of 0 to 30 kg/m3, and the water-binding material ratio was applied equally to 0.5.
  • a binder mixed with 60 wt% of cement and 40 wt% of fine blast furnace slag powder was applied to all test examples, and the amount of binder was fixed at 340 kg/m3. [Table 3] below is a combination table of each test example.
  • Fluidity and compressive strength tests for each specimen were conducted according to KS L 515, and flexural strength and split tensile strength tests were performed according to KS F 2408 and KS F 2423. Each strength test value is the average value of three specimens. The unit weight of each specimen was measured according to KS F 2462. The drying shrinkage test was performed according to KS F 2424 using a mechanical strain gauge.
  • Carbonation test was carried out in a manner of measuring the carbonation depth of the specimen using a phenolphthalein solution after the carbonation process was carried out in a chamber having a CO 2 concentration of 5% according to KS F 2584.
  • both a test example of mortar using natural fine aggregate (hereinafter, 'NAF') and a test example of mortar using artificial lightweight fine aggregate (hereinafter, 'LAF') test example did not contain amorphous metal fibers (NAF0, LAF0) showed the highest mortar flow value.
  • the NAF test examples reinforced with amorphous metal fibers showed a mortar flow value of 21% to 33% lower than that of the NAF0 test example.
  • the LAF test examples showed higher mortar flow values than the NAF test examples regardless of whether the amorphous metal fiber was reinforced or not.
  • the artificial lightweight fine aggregate has a spherical shape, and a certain amount of water is absorbed in the pre-wetting process of the artificial lightweight fine aggregate.
  • the LAF also decreases the mortar flow value as the amount of amorphous fiber reinforcement is increased.
  • the amorphous fiber content of the LAF test example was increased to 30 kg/m 3 , the mortar flow value was higher than that of the NAF0 test example.
  • FIG. 2 is a graph showing the comparison of the unit weight for each amorphous metal fiber content of the NAF and LAF test examples.
  • NAF test examples show similar unit weight regardless of the amorphous metal fiber content.
  • the unit weight of the NAF0 test example in which the amorphous metal fiber was not contained was measured to be about 2.17 kg/L.
  • the LAF test examples were measured to be about 20% less unit weight than the NAF test examples.
  • the unit weight showed a tendency to be slightly decreased.
  • the unit weight of the LAF0 test example containing no amorphous metal fiber was measured to be about 1.72 kg/L, and as the amorphous metal fiber content was increased from 10 kg/m to 30 kg/m, the unit weight was 1.68 kg/L to 1.60. It was gradually reduced to kg/L. It is understood as the effect due to the voids and the adhesive properties of the interface between the amorphous metal fiber and the mortar matrix.
  • the 7-day compressive strength of the NAF0 test example is 31.7 MPa, which is the highest value among the NAF test examples.
  • the 7-day compressive strength of both the NAF1 test example (containing 10 kg/m3 of amorphous metal fiber) and the NAF2 test example (containing 20 kg/m3 of amorphous metal fiber) was 29.3 MPa, which was about 7.5% lower than that of NAF0.
  • the 14-day compressive strength of the NAF examples was also the highest at 37.1 MPa in the NAF1 test example, and the compressive strength gradually decreased as the amorphous metal fiber content was increased.
  • the 28-day compressive strength of the NAF0 test example and the NAF1 test example was 43 MPa at the same level, but NAF2 and NAF3, which increased the amorphous metal fiber content, showed about 7% and 23% lower than that of NAF0, respectively.
  • the LAF test examples also showed the highest compressive strength for each age in LAF0, which does not contain amorphous metal fibers.
  • the LAF specimens exhibited generally lower compressive strength than the NAF specimens. Therefore, when designing high-strength or ultra-high-strength concrete mix, it is important to consider the reduction in strength expression due to the use of artificial lightweight fine aggregates and amorphous metal fibers.
  • FIG. 4 is a graph showing the comparison of the flexural strength at 20 days of age for each amorphous metal fiber content of NAF and LAF test examples.
  • the flexural strength of the NAF test examples increased with the increase of the amorphous metal fiber content.
  • the flexural strength of the NAF3 test example (containing 30 kg/m3 of amorphous metal fiber) was about 9.79 MPa, which was improved by about 39% compared to the NAF0 test example that did not contain the amorphous metal fiber.
  • the LAF test examples also showed the lowest flexural strength of about 4.96 MPa in the LAF0 test example that did not contain amorphous metal fibers.
  • the flexural strength of the LAF3 test example (containing 30 kg/m3 of amorphous metal fiber) was dir 9.28 MPa, which was 87% higher than that of the LAF0 test example.
  • the effect of increasing the flexural strength was larger in the LAF test examples than the NAF test examples.
  • FIG. 5 is a graph showing a comparison of the ratio of compressive strength (Fc) to flexural strength (Fb) for each amorphous metal fiber content in NAF and LAF test examples.
  • the ratio of flexural strength to compressive strength (Fb/Fc) according to the metal fiber content is 18.9% to 29.0%. These values are 2.9% to 13.0% higher than Fb/Fc of NAF0.
  • FIG. 6 is a graph showing the comparison of the split tensile strength for each amorphous metal fiber content of NAF and LAF test examples.
  • the split tensile strength was found to increase as the amorphous metal fiber content was increased in both the NAF and LAF test examples.
  • the fracture tensile strength of the NAF0 test example is 2.8 MPa, which is 55.5% higher than that of the LAF0 test example.
  • the split tensile strength of the NAF1 to NAF3 test examples was in the range of about 3.7 MPa to 4.5 MPa, which is 32.1% to 60.7% higher than that of the NAF0 test example.
  • the split tensile strength of the LAF1 to LAF3 test examples was in the range of about 2.4 MPa to 3.3 MPa, which is a value improved by 33.3% to 83.3% compared to the LAF0 test example.
  • the Ft/Fc values of NAF0 and LAF0 test examples not containing amorphous metal fibers were 6.4% and 5.0%, respectively.
  • Ft/Fc values of NAF and LAF test examples containing amorphous metal fibers were 8.7% to 13.5% and 7.5% to 11.4%, respectively. Regardless of the type of fine aggregate, it can be seen that the Ft/Fc value increases as the amorphous metal fiber content increases.
  • FIG. 8 is a graph showing the comparison of drying shrinkage by age of NAF and LAF.
  • (a) of [Fig. 8] among the mortar test examples using natural fine aggregate, the most drying shrinkage was achieved in the NAF0 test example, and the drying shrinkage at 28 days of age was about 0.163%.
  • the drying shrinkage was reduced by about 0.13% to 20% compared to the NAF0, and the NAF2 test example showed the least drying shrinkage by age.
  • FIG. 9 is a graph showing the comparison of the carbonation depth by the accelerated carbonation test of NAF and LAF.
  • the carbonation depth at 28 days of age of the NAF0 and NAF1 test examples was similar.
  • the carbonation depth of NAF2 and NAF3 test examples was slightly deeper than that of NAF0.
  • the LAF test examples showed a deeper carbonation depth than the NAF test examples, which is considered to be due to the porous nature of the artificial lightweight fine aggregate.
  • mortars using artificial lightweight fine aggregates have improved fluidity and resistance to drying and shrinkage compared to mortars using natural fine aggregates, and have reduced unit weight, but tend to have lower physical properties in terms of compressive strength, flexural strength, split tensile strength and carbonation depth. There is this.
  • the present invention examines the incorporation of amorphous metal fibers in the mortar as a way to overcome the deterioration of the above-described properties when it is essential to reduce the weight of the construction member.
  • the mortar composition provided by the present invention can be applied as a material for buildings and civil structures requiring weight reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

본 발명은 인공 경량 잔골재가 사용된 모르타르 조성물에 에너지 저감형 비정질 금속섬유가 보강되어 휨강도 및 할렬 인장강도를 보강하고, 유동성, 경량 특성 및 건조수축 저항성은 더욱 강화하는 저수축 경량 모르타르 조성물에 관한 것이다. 본 발명은 「재령 28일 압축강도 30MPa 이상의 모르타르 조성물로서, 잔골재로는 인공 경량 잔골재가 적용되고, 비정질 금속섬유가 10~30kg/㎥ 함유된 저수축 경량 모르타르 조성물」을 제공한다.

Description

비정질 금속섬유를 보강한 저수축 경량 모르타르 조성물
본 발명은 인공 경량 잔골재가 사용된 경량 모르타르 조성물에 에너지 저감형 비정질 금속섬유가 보강되어 휨강도 및 할렬 인장강도를 보강하고, 유동성, 경량 특성 및 건조수축 저항성은 더욱 강화하는 경량 모르타르 조성물에 관한 것이다.
일반적으로 콘크리트는 압축에 강한 성능을 발휘하지만 인장강도는 압축 강도의 8~12%로 매우 약하다.
이에 휨강도와 내충격성을 개선하기 위한 금속 섬유 보강 콘크리트에 관한 연구가 증가하고 있다. 금속섬유 중, 비정질 금속섬유 제조 공정은 일반 금속섬유 제조 공정보다 단순하고, 용탕 이후 후속 공정이 없으므로 CO2와 에너지를 줄이는 이점이 있다. 특히, 결정질 금속에서는 결정립 경계를 통해 부식과 파손이 발생하는 것에 반해, 비정질 금속은 내식성과 인장 강도가 우수한 것으로 알려져 있다.
한편, 초고층 및 대형 콘크리트 구조물의 무게를 줄이기 위해 일반 골재보다 가벼운 경량 골재에 대한 관심이 증가하고 있다. 경량 골재를 사용하면 시멘트 복합체의 단위 중량을 줄이는 장점이 있으나, 경량 골재의 다공성으로 인해 압축강도, 인장강도 등의 물성 저하 우려가 있다.
비정질 금속 섬유로 보강된 시멘트 복합체에 관한 기존 연구는 주로 소성 수축 감소 또는 고강도 콘크리트의 인성과 내충격성 향상의 측면에 초점이 맞춰져 있다. 그러나 경량 골재를 사용한 비정질 금속섬유 보강 모르타르에 관한 연구는 거의 없었으며, 이에 비정질 금속섬유를 사용함으로써 경량 골재를 사용한 모르타르나 콘크리트의 공학적 특성 개선 방안을 연구할 필요가 있다.
본 발명은 모르타르 조성물에서 천연 잔골재 대신 인공 경량 잔골재를 사용함에 따른 문제점을 극복하는 방안을 제시함으로써, 인공 경량 잔골재 사용량을 늘리고 상대적으로 천연 잔골재 사용량을 저감토록 함에 목적이 있다.
전술한 과제 해결을 위해 본 발명은 「재령 28일 압축강도 30 MPa 이상의 모르타르 조성물로서, 잔골재로는 인공 경량 잔골재가 적용되고, 비정질 금속섬유가 10~30 kg/㎥ 함유된 저수축 경량 모르타르 조성물」을 제공한다.
상기 인공 경량 잔골재는, 석탄재와 준설토의 혼합물을 1,100~1,200℃에서 소성함으로써 제조한 것으로서, 조립율 1.6~2.0, 표건밀도 1.6~1.8, 절건밀도 1.5~1.7, 흡수율 8~9%, 단위 중량 980~1,100 kg/L인 것을 적용할 수 있다.
상기 비정질 금속섬유는 비중 7.0~7.3, 인장강도 1,350~1,450 N/㎟, 길이 13~17 ㎜인 것을 적용할 수 있다.
본 발명에 따라,
천연 잔골재를 대체하여 인공 경량 잔골재를 사용함에 따라 향상되는 유동성, 경량성 및 건조수축 저감효과는 기존에 알려진 효과 대비 동등 이상으로 향상시키고,
천연 잔골재를 대체하여 인공 경량 잔골재를 사용함에 따라 물성 저하가 문제되어 온 휨강도 및 할렬 인장강도는 천연 잔골재를 사용한 모르타르의 물성 이상으로 크게 개선할 수 있다.
아울러, 본 발명에 의해서도 개선되지 않는 압축강도 저하 문제나 탄산화 깊이 증가 문제 등은 분명한 약점으로 명확히 인식하여, 재료, 시공적 방법에 의해 미리 대비토록 할 수 있다.
위와 같이 인공 경량 잔골재 사용에 따른 강점은 더욱 강화하고, 약점은 보완하면서도 보완되지 않는 약점을 분명히 드러냄으로써 인공 경량 잔골재를 효율적으로 다량 사용할 수 있고, 천연 자원인 천연 잔골재 사용량을 저감시킬 수 있다.
[도 1]은 NAF와 LAF 시험예들의 비정질 금속섬유 함량별 모르타르의 플로우값을 비교하여 나타낸 그래프이다.
[도 2]는 NAF와 LAF 시험예들의 비정질 금속섬유 함량별 단위 중량을 비교하여 나타낸 그래프이다.
[도 3]은 NAF와 LAF 시험예들의 비정질 금속섬유 함량별, 재령별 압축강도를 비교하여 나타낸 그래프이다.
[도 4]는 NAF와 LAF 시험예들의 비정질 금속섬유 함량별 재령 28일 휨강도를 비교하여 나타낸 그래프이다.
[도 5]는 NAF와 LAF 시험예들의 비정질 금속섬유 함량별 압축강도(Fc) 대비 휨강도(Fb) 비를 비교하여 나타낸 그래프이다.
[도 6]은 NAF와 LAF 시험예들의 비정질 금속섬유 함량별 할렬 인장강도를 비교하여 나타낸 그래프이다.
[도 7]은 NAF와 LAF 시험예들의 비정질 금속섬유 함량별 압축강도(Fc) 대비 인장강도(Ft) 비를 비교하여 나타낸 그래프이다.
[도 8]은 NAF와 LAF 시험예들의 재령별 건조수축율을 비교하여 나타낸 그래프이다.
[규칙 제91조에 의한 정정 18.10.2021] 
[도 9]는 NAF와 LAF 시험예들의 촉진 탄산화 시험에 의한 탄산화 깊이를 비교하여 나타낸 그래프이다.
재령 28일 압축강도 30 MPa 이상의 모르타르 조성물로서, 잔골재로는 인공 경량 잔골재가 적용되고, 비정질 금속섬유가 10~30 kg/㎥ 함유되되,
상기 인공 경량 잔골재는, 석탄재와 준설토의 혼합물을 1,100~1,200℃에서 소성함으로써 제조한 것으로서, 조립율 1.6~2.0, 표건밀도 1.6~1.8, 절건밀도 1.5~1.7, 흡수율 8~9%, 단위 중량 980~1,100 kg/L이고,
상기 비정질 금속섬유는 비중 7.0~7.3, 인장강도 1,350~1,450 N/㎟, 길이 13~17 ㎜인 저수축 경량 모르타르 조성물.
1. 발명의 구체적 내용
본 발명은 「재령 28일 압축강도 30M Pa 이상의 모르타르 조성물로서, 잔골재로는 인공 경량 잔골재가 적용되고, 비정질 금속섬유가 10~30 kg/㎥ 함유된 저수축 경량 모르타르 조성물」을 제공한다.
본 발명에 적용되는 인공 경량 잔골재는 다공성 골재로서, 석탄재와 준설토의 혼합물을 1,100~1,200℃에서 소성함으로써 제조된다. 소성 공정에서 인공 경량 잔골재는 표면부가 먼저 고온에 노출되고, 상기 표면부가 먼저 액화됨으로써 내부보다 밀도가 높은 쉘 구조가 형성된다.
상기 인공 경량 잔골재는, 조립율 1.6~2.0, 표건밀도 1.6~1.8, 절건밀도 1.5~1.7, 흡수율 8~9 %, 단위 중량 980~1,100 kg/L가 되도록 제조하여 천연 잔골재를 대체할 수 있다.
상기 인공 경량 잔골재는 레미콘 회수수에 석탄재와 준설토를 22~26시간 프리웨팅(pre-wetting)시킨 후 표건상태로 조정하여 혼합함으로써 SiO2와 Al2O3의 합산 함량이 80 wt%를 초과하도록 할 수 있다.
일반적으로 골재에 SiO2와 Al2O3 성분이 다량 함유된 경우에는 알칼리 골재 반응이 문제된다. 알칼리 골재 반응은 시멘트 중의 알칼리 성분(Na2O, K2O)과 골재 중에 포함되는 반응성 실리카가 물의 존재하에서 반응하여 알칼리 실리케이트 겔을 생성하여 팽창을 일으키는 현상으로서, 콘크리트 내구성 저하의 원인이 되므로 통상적인 기술 상식으로는 반드시 억제해야 하는 반응이라 할 수 있다.
그러나, 본 발명에서는 석탄재와 준설토를 혼합, 소성함으로써 일반 모래보다 밀도가 낮은 다공성의 인공 경량 잔골재를 제조한 것인데, 전술한 알칼리 골재 반응이 일어나더라도 생성되는 알칼리 실리케이트 겔은 주로 인공 경량 잔골재의 공극(알칼리 골재 반응이 일어나는 인공경량골재 자신의 공극 또는 인접한 인공경량골재의 공극)에 채워지게 되므로, 골재의 부피팽창은 일어나지 않고 오히려 내밀화가 이루어지게 된다.
아래 [표 1]은 표본으로 수집된 상기 인공 경량 잔골재의 물리적 성질(조립율, 표건밀도, 절건밀도, 흡수율, 단위 중량)을 천연 잔골재(세척사)와 비교하여 나타낸 것이고, 아래 [표 2]는 상기 천연 잔골재와 인공 경량 잔골재의 체가름 시험 결과를 정리하여 나타낸 것이다.
Type of
Sand
Fineness
Modulus
Surface Dry
Density(g/㎤)
Oven Dry
Density(g/㎤)
Water Absorption
Ratio(%)
Unit Weight
(kg/L)
Natural sand(NS) 2.89 2.60 - 1.00 1427
Lightweight sand(LS) 4.61 1.77 1.63 8.71 1010
Type of
Sand
Sieve Passing Ratio(%)
10mm 5mm 2.5mm 1.2mm 0.6mm 0.3mm 0.15mm
Standard 100 100 100 85 60 30 10
100 95 80 50 25 10 2
NS 100 100 93.75 73.50 52 20 6
LS 100 99.75 38.50 1.25 0.25 0.20 0.20
본 발명에서, 비정질 금속섬유는 얇은 금속판을 절단한 것으로서, 비중 7.0~7.3 g/㎤, 인장강도 1,350~1,450 N/㎟, 길이 13~17 ㎜인 것을 적용할 수 있다. 이하의 각 시험에서는 비중 7.2 g/㎤, 인장강도 1,400 N/㎟, 길이 15 ㎜인 비정질 금속섬유를 적용하였다.
2. 시험 내용
비정질 금속섬유 보강에 의한 모르타르 물성 개선 효과를 파악하기 위해 상기 천연 잔골재를 적용한 시험예와 상기 인공 경량 잔골재를 적용한 시험예를 함께 검토하였다.
각 시험예에서 상기 비정질 금속섬유 함유량은 0~30 kg/㎥ 범위에서 10 kg/㎥ 씩 차등 적용하였고, 물-결합재비는 0.5로 동일하게 적용했다. 모든 시험예에 시멘트 60 wt% 및 고로슬래그 미분말 40 wt% 혼합된 결합재를 적용하였고, 결합재량은 340 kg/㎥ 로 고정하였다. 아래 [표 3]은 각 시험예들의 배합표이다.
Mix W/(C+BFS) Water
(㎏/㎥)
Cement
(㎏/㎥)
BFS
(㎏/㎥)
NS
(㎏/㎥)
LS
(㎏/㎥)
Fiber
(㎏/㎥)
NAF0 0.5 170 204 136 735 - 0
NAF1 0.5 170 204 136 735 - 10
NAF2 0.5 170 204 136 735 - 20
NAF3 0.5 170 204 136 735 - 30
LAF0 0.5 170 204 136 - 502 0
LAF1 0.5 170 204 136 - 502 10
LAF2 0.5 170 204 136 - 502 20
LAF3 0.5 170 204 136 - 502 30
- NA : Natural Sand
- LS : Lightweight Sand
압축강도와 단위 중량 시험에는 각 변 50 ㎜의 정육면체형 공시체가 사용되었고, 할렬 인장강도 시험에는 직경 50 ㎜, 높이 100 ㎜의 원기둥형 공시체가 사용되었다. 휨강도, 건조수축 및 촉진 탄산화 시험에는 가로, 세로, 높이가 각각 40 ㎜, 40 ㎜, 160 ㎜인 막대형 공시체가 사용되었다. 각 시험체는 재령 24시간 이후에 몰드에서 탈형하여, 수온 20℃의 수조에 담아 양생하였다.
각 시험체에 대한 유동성과 압축강도 시험은 KS L 515에 따라 실시하였고, 휨강도 및 할렬 인장강도 시험은 KS F 2408 및 KS F 2423에 따라 실시하였다. 각 강도 시험값은 3개 시험체의 평균값이다. 각 시험체의 단위 중량은 KS F 2462에 따라 측정하였다. 건조수축 시험은 기계식 스트레인 게이지를 사용하여 KS F 2424에 따라 실시하였다.
탄산화 시험은, KS F 2584에 따라 CO2 농도 5%인 챔버에서 탄산화 과정을 진행시킨 후, 페놀프탈레인 용액을 사용하여 시험체의 탄산화 깊이를 측정하는 방식으로 실시하였다.
3. 시험 결과
(1) 모르타르 플로우
[도 1]은 천연 잔골재와 인공 경량 잔골재를 사용한 비정질 금속섬유 보강 모르타르의 플로우값을 비교하여 나타낸 것이다.
[도 1]에 나타난 바와 같이, 천연 잔골재를 사용한 모르타르(이하, 'NAF') 시험예와 인공 경량 잔골재를 사용한 모르타르(이하, 'LAF') 시험예 양자 모두 비정질 금속섬유를 포함하지 않은 시험예(NAF0, LAF0) 모르타르 플로우값이 가장 높게 나타났다. 비정질 금속섬유로 보강된 NAF 시험예들은 NAF0 시험예에 비해 모르타르 플로우값이 21% 내지 33% 낮게 나타났다. 상기 LAF 시험예들은 비정질 금속섬유 보강 여부와 관계없이 NAF 시험예들 보다는 모르타르 플로우값이 높게 나타났다. 이러한 차이는 인공 경량 잔골재의 입형이 구 형태이고, 상기 인공 경량 잔골재의 프리 웨팅(pre-wetting) 과정에서 일정량의 물을 흡수한 것에 기인한 것으로 보인다. 상기 LAF 역시 비정질 섬유 보강량을 늘림에 따라 모르타르 플로우값이 감소된다. 그러나, 상기 LAF 시험예의 비정질 섬유 함량을 30 kg/㎥ 까지 증가시키더라도, 모르타르 플로우값이 상기 NAF0 시험예 보다 높게 나타남을 확인할 수 있었다.
(2) 단위 중량
[도 2]는 상기 NAF와 LAF 시험예들의 비정질 금속섬유 함량별 단위 중량을 비교하여 나타낸 그래프이다.
NAF 시험예들은 비정질 금속섬유 함량에 관계없이 단위 중량이 유사하게 나타난다. 비정질 금속섬유가 함유되지 않은 NAF0 시험예의 단위 중량은 약 2.17 kg/L로 측정되었다.
LAF 시험예들은 NAF 시험예들에 비해 약 20% 가량 단위 중량이 적게 측정되었다. 또한 LAF 시험예들은 비정질 금속섬유 함량이 증가할수록 단위 중량이 미세하게 감소되는 경향을 보였다. 비정질 금속섬유가 함유되지 않은 LAF0 시험예의 단위 중량은 약 1.72 kg/L로 측정되었는데, 상기 비정질 금속섬유 함량을 10 kg/㎥에서 30 kg/㎥ 까지 늘림에 따라 단위 중량은 1.68 kg/L에서 1.60 kg/L까지 순차적으로 감량되었다. 비정질 금속섬유와 모르타르 매트릭스 사이 계면의 접착 특성과 공극에 기인한 효과로 파악된다.
(3) 압축강도
[도 3]은 NAF와 LAF 시험예들의 비정질 금속섬유 함량별, 재령별 압축강도를 비교하여 나타낸 그래프이다.
[도 3]의 (a)에 도시된 바와 같이 NAF0 시험예의 재령 7일 압축강도는 31.7 MPa이며, 이것은 NAF 시험예들 중 가장 높은 수치임을 알 수 있다. NAF1 시험예(비정질 금속섬유 10 kg/㎥ 함유)와 NAF2 시험예(비정질 금속섬유 20 kg/㎥ 함유)의 재령 7일 압축강도는 모두 29.3 MPa로 나타나 NAF0 보다 약 7.5% 감소되었다.
NAF 실시예들은 14일 압축강도 역시 NAF1 시험예에서 37.1 MPa로 가장 높게 나타났고, 비정질 금속섬유 함량을 늘리면서 압축강도가 점차 감소하는 것으로 나타났다. 또한, 재령 28일 압축강도는 NAF0 시험예와 NAF1 시험예가 43 MPa로 동등 수준으로 나타났으나, 비정질 금속섬유 함량을 증가시킨 NAF2 및 NAF3에서는 각각 NAF0 대비 약 7%, 23% 낮게 나타났다.
LAF 시험예들 역시 [도 3]의 (b)에 도시된 바와 같이, 각 재령별 압축강도가 비정질 금속섬유가 함유되지 않은 LAF0에서 가장 높게 나타났다. 또한, LAF 시험체들은 NAF 시험체들에 비해 대체적으로 압축강도가 낮게 발현되었다. 따라서, 고강도 또는 초고강도 콘크리트 배합 설계시 인공 경량 잔골재 및 비정질 금속섬유 사용에 따른 강도 발현 저감을 중요하게 고려해야 한다.
(4) 휨강도
[도 4]는 NAF와 LAF 시험예들의 비정질 금속섬유 함량별 재령 20일 휨강도를 비교하여 나타낸 그래프이다.
NAF 시험예들의 휨강도는 비정질 금속섬유 함유량이 증가함에 따라 함께 증가하였다. NAF3 시험예(비정질 금속섬유 30 kg/㎥ 함유)의 휨강도는 약 9.79 MPa로 비정질 금속섬유를 함유하지 않은 NAF0 시험예 보다 약 39% 향상되었다. LAF 시험예들 역시 비정질 금속섬유를 함유하지 않은 LAF0 시험예의 휨강도가 약 4.96 MPa로 가장 낮게 나타났다. LAF3 시험예(비정질 금속섬유 30 kg/㎥ 함유)의 휨강도는 dir 9.28 MPa로 LAF0 시험예보다 87% 높게 나타났다. 또한, 이러한 휨강도 증가 효과는 NAF 시험예들보다 LAF 시험예들에서 더욱 큰 폭으로 나타났다.
[도 5]는 NAF와 LAF 시험예의 비정질 금속섬유 함량별 압축강도(Fc) 대비 휨강도(Fb) 비를 비교하여 나타낸 그래프이다.
천연 잔골재를 사용한 비정질 금속섬유 보강 모르타르 시험예들(NAF1 내지 NAF3)의 경우, 금속섬유 함량에 따른 압축강도 대비 휨강도 비(Fb/Fc)는 18.9% 내지 29.0%로 나타난다. 이러한 수치는 NAF0의 Fb/Fc 대비 2.9% 내지 13.0% 높게 나타난 것이다.
인공 경량 잔골재를 사용한 비정질 금속섬유 보강 모르타르 시험예들(LAF1 내지 LAF3)의 경우, 금속섬유 함량에 따른 압축강도 대비 휨강도 비(Fb/Fc)는 15.9% 내지 31.7%로 나타난다. 이러한 수치는 LAF0의 Fb/Fc 대비 2.1% 내지 17.9% 높게 나타난 것이다.
[도 5]에 나타난 바와 같이, 비정질 금속섬유 함량이 20 kg/㎥ 이상인 경우 LAF 시험예들의 Fb/Fc는 NAF 시험예들과 동등 이상으로 나타난다.
(5) 인장강도
[도 6]은 NAF와 LAF 시험예들의 비정질 금속섬유 함량별 할렬 인장강도를 비교하여 나타낸 그래프이다.
할렬 인장강도는 NAF와 LAF 시험예들 모두 비정질 금속섬유 함량을 늘리면서 증가하는 것으로 나타났다. NAF0 시험예의 할렬 인장강도는 2.8 MPa로서, 이것은 LAF0 시험예보다 55.5% 높은 수치이다. NAF1 내지 NAF3 시험예들의 할렬 인장강도는 약 3.7 MPa에서 4.5 MPa 범위에서 나타났으며, 이것은 NAF0 시험예 보다 32.1% 내지 60.7% 높은 수치이다.
한편, LAF1 내지 LAF3 시험예들의 할렬 인장강도는 약 2.4 MPa 내지 3.3 MPa 범위에서 나타났으며, 이것은 LAF0 시험예 보다 33.3% 내지 83.3% 향상된 수치이다.
휨강도 시험 결과와 유사하게, 비정질 금속섬유 함량을 증가시킴에 따른 할렬 인장강도 향상율은 LAF 시험예들이 NAF 시험예들보다 높게 나타났다. [도 7]은 NAF와 LAF 시험예들의 비정질 금속섬유 함량별 압축강도 대비 인장강도 비(Ft/Ft)를 비교하여 나타낸 그래프이다.
비정질 금속섬유가 함유되지 않은 NAF0 및 LAF0 시험예의 Ft/Fc 값은 각각 6.4% 및 5.0%이다. 비정질 금속섬유가 함유된 NAF 및 LAF 시험예들의 Ft/Fc 값은 각각 8.7% 내지 13.5%, 7.5% 내지 11.4%이다. 잔골재 유형에 관계없이 Ft/Fc 값은 비정질 금속섬유 함량이 증가하면서 상승함을 알 수 있다.
(6) 건조수축
[도 8]은 NAF와 LAF의 재령별 건조수축율을 비교하여 나타낸 그래프이다. [도 8]의 (a)에 나타난 바와 같이 천연 잔골재를 사용한 모르타르 시험예 중에서는 NAF0 시험예에서 가장 많은 건조수축이 이루어졌으며, 재령 28일 건조수축은 약 0.163%로 나타났다. 비정질 금속섬유가 함유된 시험예들은 NAF0에 비해 건조수축율이 약 0.13% 내지 20% 감소하였으며, NAF2 시험예에서 재령별 건조수축이 가장 적게 이루어지는 것으로 나타났다.
[도 8]의 (b)에 나타난 바와 같이, 인공 경량 잔골재를 사용한 모르타르 시험예 중에서는 LAF0 시험예에서 가장 많은 건조수축이 이루어졌으며, 비정질 금속섬유 혼입에 따라 건조수축율이 저감되었다. 다만, 재령별 건조수축율 저감 효과는 LAF1 및 LAF2가 LAF3 보다 전반적으로 높게 나타나며, LAF1 및 LAF2의 재령 28일 건조수축율은 0.08%로 LAF0에 비해 27.2% 감소한 것으로 나타났다. 이에 따라 인공 경량 잔골재를 포함한 모르타르의 건조수축은 비정질 금속섬유의 사용에 의해 효과적으로 감소시킬 수 있음을 알 수 있다.
(7) 탄산화 깊이
[도 9]는 NAF와 LAF의 촉진 탄산화 시험에 의한 탄산화 깊이를 비교하여 나타낸 그래프이다. NAF0과 NAF1 시험예의 재령 28일 탄산화 깊이는 유사하게 나타났다. NAF2 및 NAF3 시험예의 탄산화 깊이는 NAF0 보다 다소 깊게 나타났다.
LAF 시험예들의 경우, LAF1 시험예의 재령 28일 탄산화 깊이는 LAF0 시험예 보다 약간 깊게 나타났으며, LAF2 시험예에서 더욱 깊게 나타나다가 LAF3 시험예에서는 LAF0 보다 오히려 적은 양의 탄산화 깊이가 나타났다.
LAF 시험예들이 NAF 시험예들 보다 탄산화 깊이가 깊게 나타났으며, 이는 인공 경량 잔골재의 다공 특성에 기인한 것으로 사료된다.
전술한 바와 같이 인공 경량 잔골재를 사용한 모르타르는 천연 잔골재를 사용한 모르타르에 비해 유동성 및 건조수축 저항성이 향상되고, 단위 중량이 저감되나 압축강도, 휨강도, 할렬 인장강도 및 탄산화 깊이 면에서 물성이 저하되는 경향이 있다.
다만, 본 발명은 건설부재의 경량화가 필수적으로 요구되는 경우, 전술한 물성 저하를 극복하기 위한 방안으로 모르타르 내 비정질 금속섬유의 혼입을 검토한 것이다.
결과적으로 인공 경량 잔골재를 사용한 모르타르에 비정질 금속섬유를 30 kg/㎥ 까지 혼입시키더라도, 비정질 금속섬유를 전혀 혼입하지 않고 천연 잔골재를 사용한 모르타르 보다 모르타르 플로우값이 높아 유동성이 문제되지 않음을 확인하였고, 단위 중량은 오히려 더욱 감소하는 것을 확인하였다. 또한, 인공 경량 잔골재를 사용한 모르타르의 건조수축율이 천연 잔골재를 사용한 모르타르의 건조수축율 보다 작은데, 비정질 금속섬유를 혼입함에 따라 동일한 혼입량 기준으로 보더라도 인공 경량 잔골재를 사용한 모르타르의 건조수축율 저감폭이 더욱 크게 나타나는 것이 확인되며, 비정질 금속섬유를 10~20 kg/㎥ 혼입시킨 경우가 비정질 금속섬유를 30kg/㎥ 혼입시킨 경우보다 오히려 건조수축 저항 성능이 더욱 향상되는 점을 파악하였다. 비정질 금속섬유의 혼입으로 건조수축 저항성이 효과적으로 개선되는 점을 알 수 있었으며, 이와 같이 인공 경량 잔골재 사용에 따라 유리하게 발현되는 물성은 동등 수준으로 유지되거나 더욱 향상됨을 알 수 있었다.
한편, 인공 경량 잔골재 사용에 따른 재령별 압축강도 저감 문제는 비정질 금속섬유를 혼입시키더라도 큰 개선점이 도출되지 아니하므로, 압축강도의 저감을 고려한 철저한 설계 기준 마련과 품질 관리가 요망된다. 다만, 인공 경량 잔골재를 사용한 모르타르에 비정질 금속섬유를 혼입함에 따라 압축강도 대비 휨강도 비가 향상되어 압축강도와 휨강도가 고르게 발현되어야 하는 부분에 효과적으로 적용할 수 있다.
인공 경량 잔골재 사용에 따른 휨강도 저감 문제는 비정질 금속섬유 혼입에 의해 크게 개선되어, 비정질 금속섬유를 30 kg/㎥ 혼입시키는 경우에는 천연 잔골재를 사용한 모르타르보다 휨강도가 높게 발현됨은 물론, 천연 잔골재를 사용하고 비정질 금속섬유를 30 kg/㎥ 혼입시킨 경우와 거의 대등한 수준의 휨강도가 발현됨을 알 수 있었다.
인공 경량 잔골재 사용에 따른 할렬 인장강도 저감 문제 역시 비정질 금속섬유 혼입에 의해 크게 개선되어 비정질 금속섬유를 20 kg/㎥ 혼입시킨 경우 천연 잔골재를 사용한 모르타르(비정질 금속섬유는 혼입시키지 않은 상태)와 동등 수준의 인장강도가 발현되고, 비정질 금속섬유를 30 kg/㎥ 혼입시킨 경우에는 천연 잔골재를 사용한 모르타르(비정질 금속섬유는 혼입시키지 않은 상태) 보다 높은 인장강도가 발현됨을 알 수 있었다.
인공 경량 잔골재 사용에 따른 탄산화 깊이 증가 문제는 비정질 금속섬유 혼입 방법으로는 극복하기 어려운 것으로 판단되나, 인공 경량 잔골재를 사용한 모르타르에 비정질 금속섬유를 30 kg/㎥ 혼입시킨 경우, 비정질 금속섬유를 혼입하지 않은 경우보다는 탄산화 깊이가 저감되었으므로, 건축 재료 계획 시 이 점을 고려할 수 있다.
본 발명은 상기에서 언급한 바와 같이 바람직한 실시예와 관련하여 설명되었으나, 본 발명의 요지를 벗어남이 없는 범위 내에서 다양한 수정 및 변형이 가능하며, 다양한 분야에서 사용 가능하다. 따라서 본 발명의 청구범위는 이전 발명의 진정한 범위 내에 속하는 수정 및 변형을 포함한다
.
본 발명이 제공하는 모르타르 조성물은 경량화가 요구되는 건축, 토목 구조물의 재료로 적용될 수 있다.

Claims (3)

  1. 재령 28일 압축강도 30 MPa 이상의 모르타르 조성물로서,
    잔골재로는 인공 경량 잔골재가 적용되고,
    비정질 금속섬유가 10~30 kg/㎥ 함유된, 저수축 경량 모르타르 조성물.
  2. 제1항에서,
    상기 인공 경량 잔골재는, 석탄재와 준설토의 혼합물을 1,100~1,200℃에서 소성함으로써 제조한 것으로서, 조립율 1.6~2.0, 표건밀도 1.6~1.8, 절건밀도 1.5~1.7, 흡수율 8~9%, 단위 중량 980~1,100 kg/L인 것을 특징으로 하는 저수축 경량 모르타르 조성물.
  3. 제1항에서,
    상기 비정질 금속섬유는 비중 7.0~7.3, 인장강도 1,350~1,450 N/㎟, 길이 13~17 ㎜인 것을 특징으로 하는 저수축 경량 모르타르 조성물.
PCT/KR2021/012576 2021-03-11 2021-09-15 비정질 금속섬유를 보강한 저수축 경량 모르타르 조성물 WO2022191371A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0032052 2021-03-11
KR1020210032052A KR102531939B1 (ko) 2021-03-11 2021-03-11 비정질 금속섬유를 보강한 저수축 경량 모르타르 조성물

Publications (1)

Publication Number Publication Date
WO2022191371A1 true WO2022191371A1 (ko) 2022-09-15

Family

ID=83227909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012576 WO2022191371A1 (ko) 2021-03-11 2021-09-15 비정질 금속섬유를 보강한 저수축 경량 모르타르 조성물

Country Status (2)

Country Link
KR (1) KR102531939B1 (ko)
WO (1) WO2022191371A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014989A (ko) * 2011-08-01 2013-02-12 주식회사 포스코 비정질 강섬유 강화 콘크리트의 제조방법
KR101341179B1 (ko) * 2012-06-28 2013-12-13 재단법인 포항산업과학연구원 고속충격에 대하여 내충격 성능을 가지는 콘크리트 조성물
JP2016190415A (ja) * 2015-03-31 2016-11-10 住友大阪セメント株式会社 重量コンクリート構造物の製造方法及び重量コンクリート構造物
KR101698983B1 (ko) * 2015-05-11 2017-02-01 경기대학교 산학협력단 인공경량골재의 제조방법
KR101989503B1 (ko) * 2018-12-28 2019-06-17 주식회사 삼표산업 프리캐스트 경량콘크리트 및 이의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100597712B1 (ko) 2006-01-12 2006-07-10 주식회사 포스코건설 콘크리트용 액상형 수축저감제 조성물과 이를 이용한콘크리트 조성물
KR101310662B1 (ko) 2012-06-28 2013-09-25 재단법인 포항산업과학연구원 비정질강섬유로 보강된 콘크리트 조성물
KR102210337B1 (ko) * 2019-04-26 2021-02-01 원광대학교산학협력단 레미콘 회수수로 프리웨팅시킨 인공경량잔골재를 포함하는 고강도 경량 모르타르 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014989A (ko) * 2011-08-01 2013-02-12 주식회사 포스코 비정질 강섬유 강화 콘크리트의 제조방법
KR101341179B1 (ko) * 2012-06-28 2013-12-13 재단법인 포항산업과학연구원 고속충격에 대하여 내충격 성능을 가지는 콘크리트 조성물
JP2016190415A (ja) * 2015-03-31 2016-11-10 住友大阪セメント株式会社 重量コンクリート構造物の製造方法及び重量コンクリート構造物
KR101698983B1 (ko) * 2015-05-11 2017-02-01 경기대학교 산학협력단 인공경량골재의 제조방법
KR101989503B1 (ko) * 2018-12-28 2019-06-17 주식회사 삼표산업 프리캐스트 경량콘크리트 및 이의 제조방법

Also Published As

Publication number Publication date
KR20220128519A (ko) 2022-09-21
KR102531939B1 (ko) 2023-05-12

Similar Documents

Publication Publication Date Title
Aarthi et al. Durability studies on fibre reinforced self compacting concrete with sustainable wastes
Park et al. Experimental study on the engineering properties of carbon fiber reinforced cement composites
CN110282935B (zh) 一种纤维增强型混凝土及其制备方法
CN110790552B (zh) 一种废弃砖再生超高韧性混合料及其制备方法和应用
WO2017122916A1 (ko) 무시멘트 결합재 및 이의 응용
CN113354342A (zh) 一种再生微粉混凝土及其制备方法
KR100697221B1 (ko) 메타카올린을 사용한 고성능 숏크리트 조성물
Chen et al. Effect of partial substitution of cement with Dolomite powder on Glass-Fiber-Reinforced mortar
CN111320439B (zh) 一种可再生预制构件用混凝土及其制备方法
WO2020130250A1 (ko) 콘크리트용 잔골재 및 이를 포함하는 건축 재료용 조성물
WO2022191371A1 (ko) 비정질 금속섬유를 보강한 저수축 경량 모르타르 조성물
Zhang et al. Experimental research on mechanical properties and microstructure of magnesium phosphate cement-based high-strength concrete
WO2020262726A1 (ko) 패각을 이용한 친환경 산업자재용 조성물
WO2015060666A1 (ko) 고강도 도로보수용 몰탈 조성물 및 그 제조방법
KR102024036B1 (ko) 광물질 섬유를 포함하는 보수용 모르타르 조성물
Oltulu et al. The mechanical properties of concrete with red mud (bauxite residue) and nano-Al2O3 at high temperatures
WO2023210877A1 (ko) 산중성 폐내화물을 재활용한 내화 뿜칠 피복재 조성물
Chen Review of heat resistant concrete
WO2022158640A1 (ko) 고로슬래그 잔골재 및 레미콘회수수가 적용된 친환경 모르타르 조성물
Ali et al. The Influence of Nano-Silica on Some Properties of Light Weight Self-Compacting Concrete Aggregate
WO2023054956A1 (ko) 균열제어 자기치유 혼화재 조성물과 그 혼화재의 제조방법, 그리고 자기치유 모르타르 조성물과 이를 이용한 콘크리트 구조물의 단면보수공법
Vishal et al. Effects of Polyvinyl Alcohol fibers in engineered cementitious composite concrete
CN113582627A (zh) 一种纳米氧化铝改性超轻质水泥基复合材料及其制备方法和应用
KR100516758B1 (ko) 고강도 시멘트 조성물 및 이를 이용한 패널의 제조방법
Xu et al. Study on the mechanical properties and durability of carbon fiber reinforced lime-based mortar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930471

Country of ref document: EP

Kind code of ref document: A1