WO2022191173A1 - ガス識別方法及びガス識別システム - Google Patents

ガス識別方法及びガス識別システム Download PDF

Info

Publication number
WO2022191173A1
WO2022191173A1 PCT/JP2022/009944 JP2022009944W WO2022191173A1 WO 2022191173 A1 WO2022191173 A1 WO 2022191173A1 JP 2022009944 W JP2022009944 W JP 2022009944W WO 2022191173 A1 WO2022191173 A1 WO 2022191173A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
value
gas
sensor
signal
Prior art date
Application number
PCT/JP2022/009944
Other languages
English (en)
French (fr)
Inventor
拓哉 林
靖裕 間宮
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280019745.5A priority Critical patent/CN116964441A/zh
Priority to JP2023505569A priority patent/JPWO2022191173A1/ja
Priority to US18/278,802 priority patent/US20240125748A1/en
Publication of WO2022191173A1 publication Critical patent/WO2022191173A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • G01N33/0034General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array comprising neural networks or related mathematical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • the present disclosure relates to gas identification methods and gas identification systems.
  • Patent Document 1 discloses a method of identifying an analyte using data of a pulsed signal that detects the analyte, using the intensity, wavelength, intensity ratio, kurtosis, etc. of the pulsed signal as feature quantities.
  • the present disclosure provides a gas identification method and the like that can improve identification accuracy.
  • a gas identification method is a gas identification method using a sensor that outputs a signal corresponding to the adsorption concentration of a gas, comprising a first period, a second period following the first period, and a first step of acquiring a signal output from the sensor exposed to the sample gas only during the second period of a measurement period consisting of a third period following the second period; and a drift of the acquired signal.
  • a gas identification system includes a sensor that outputs a signal corresponding to the adsorption concentration of a gas, a first period, a second period following the first period, and a third period following the second period.
  • an exposure unit that exposes the sensor to the sample gas only during the second period of the measurement period consisting of periods; an acquisition circuit that acquires the signal output from the sensor during the measurement period; and a drift of the acquired signal.
  • an extraction circuit for extracting one or more feature quantities corresponding to the above, a memory storing a learned logical model for identifying the sample gas, and the one or more extracted feature quantities using the learned logical model an identification circuit that identifies the sample gas based on the identification information and outputs an identification result.
  • identification accuracy can be improved.
  • FIG. 1 is a block diagram showing a schematic configuration of a gas identification system according to an embodiment.
  • FIG. 2 is a schematic diagram showing an example of a configuration of an exposed portion according to the embodiment.
  • FIG. 3 is a block diagram showing a schematic configuration of a gas identification system according to a modification of the embodiment.
  • FIG. 4 is a flow chart for explaining the operation of the gas identification system according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of a control signal to an exposure unit and a signal output from a sensor according to the embodiment;
  • FIG. 6 is a diagram showing an example of signals output from the sensor according to the embodiment in a plurality of continuous measurement periods;
  • FIG. 7 is a diagram for explaining values of signals acquired by the extraction circuit according to the embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of a gas identification system according to an embodiment.
  • FIG. 2 is a schematic diagram showing an example of a configuration of an exposed portion according to the embodiment.
  • FIG. 3 is
  • FIG. 8 is another diagram for explaining values of signals acquired by the extraction circuit according to the embodiment.
  • FIG. 9 is a diagram for explaining values of signals acquired by the extraction circuit according to the embodiment in a plurality of continuous measurement periods;
  • FIG. 10 is another diagram for explaining signal values acquired by the extraction circuit according to the embodiment in a plurality of consecutive measurement periods.
  • 11A and 11B are diagrams for explaining the rate and amount of change in the value of the signal output from the sensor according to the embodiment.
  • a sensor that outputs a signal corresponding to the adsorption concentration of a gas is used for gas identification, for example, a feature value using the signal output from the sensor when exposed to a sample gas containing chemical substances such as volatile organic compounds
  • the chemical substance contained in the sample gas is identified as the substance to be identified.
  • the signal output from the sensor changes because the concentration of adsorption to the sensor differs depending on the type of chemical substance. Therefore, chemical substances contained in the sample gas are identified using, for example, the amount of change and the rate of change in the signal output from the sensor during the period in which the sensor is exposed to the sample gas as the feature amount.
  • the gas identification method is required to improve the identification accuracy.
  • the present disclosure provides a gas identification method and the like that can improve identification accuracy based on such knowledge.
  • a gas identification method is a gas identification method using a sensor that outputs a signal corresponding to the adsorption concentration of a gas, comprising a first period, a second period following the first period, and a first step of acquiring a signal output from the sensor exposed to the sample gas only during the second period of a measurement period consisting of a third period following the second period; and a drift of the acquired signal.
  • the drift of the signal which is different from the output of the signal during the second period in which the sensor is exposed to the sample gas, that is, the output depending on the adsorption concentration of the gas to the sensor, is determined.
  • One or more corresponding feature quantities are extracted. Therefore, in the third step, identification based on signal drift is performed, and even when sample gases with similar outputs from sensors that depend on gas adsorption concentration are identified, sample gases can be identified with high identification accuracy.
  • one or more feature values can be extracted using the signal output from the sensor exposed in the fourth step.
  • the senor may be exposed to a reference gas during the first period and the third period.
  • the signal output from the sensor may be acquired via a network.
  • the value of the signal fluctuated due to the exposure of the sensor to the sample gas during the second period is about to return to a reference value during the third period.
  • the value of the signal fluctuated due to the exposure of the sensor to the sample gas during the second period is about to return to a reference value during the third period.
  • the first value which is the value of the signal when trying to return to the reference value directly related to drift, can be used to extract the feature amount.
  • the signal output from the sensor is acquired in a plurality of consecutive measurement periods
  • two or more of the measurement periods out of the plurality of measurement periods are acquired.
  • the first values may be obtained for each, and a difference between the obtained first values may be extracted as at least one feature quantity among the one or more feature quantities.
  • the signal output from the sensor is acquired in a plurality of consecutive measurement periods
  • two or more of the measurement periods out of the plurality of measurement periods are acquired.
  • Obtaining the first value for each deriving an approximate expression using the obtained first value, and extracting a coefficient of the derived approximate expression as at least one feature quantity among the one or more feature quantities.
  • the feature amount in which the variation in the first value is smoothed out can be extracted.
  • a second value that is the value of the last signal in the first period is acquired, and the difference between the acquired first value and the acquired second value is calculated as the 1 At least one of the above feature amounts may be extracted.
  • the feature quantity corresponding to the drift can be extracted using the second value as the reference value.
  • the value of the signal at the end of the third period may be obtained as the first value.
  • the value of the signal at the end of the third period in which the value of the signal that is about to return to the reference value in the third period tends to be stable As a result, it is possible to use, as the first value, the value of the signal at the end of the third period in which the value of the signal that is about to return to the reference value in the third period tends to be stable.
  • the signal output from the sensor is acquired in a plurality of consecutive measurement periods
  • two or more of the measurement periods out of the plurality of measurement periods are acquired.
  • a third value which is the value of the signal when the sensor fluctuates due to exposure to the sample gas in the second period, is obtained, and the difference between the obtained third values is calculated as the At least one of the one or more feature amounts may be extracted.
  • the signal output from the sensor is acquired in a plurality of consecutive measurement periods
  • two or more of the measurement periods out of the plurality of measurement periods are acquired.
  • a third value which is the value of the signal when the sensor is exposed to the sample gas during the second period
  • an approximate expression is derived using the obtained third value.
  • the derived coefficient of the approximate expression may be extracted as at least one of the one or more feature amounts.
  • the signal output from the sensor is obtained in a plurality of consecutive measurement periods
  • the second step in the second and subsequent measurement periods of the plurality of measurement periods At least one of the one or more feature amounts may be extracted based on the acquired signal.
  • the feature quantity is extracted using the signals output in the second and subsequent measurement periods in which the drift is likely to increase. Therefore, the difference in the extracted feature amount tends to increase according to the type of sample gas, and the identification accuracy can be further improved.
  • a gas identification system includes a sensor that outputs a signal corresponding to the adsorption concentration of a gas, a first period, a second period following the first period, and a period following the second period.
  • an exposure unit that exposes the sensor to the sample gas only during the second period of a measurement period consisting of a third period; an acquisition circuit that acquires a signal output from the sensor during the measurement period; and the acquired signal.
  • an extraction circuit for extracting one or more feature quantities corresponding to the drift of the sample gas, a memory in which a learned logical model for identifying the sample gas is stored, and the one or more features extracted using the learned logical model an identification circuit for identifying the sample gas based on the quantity and outputting an identification result.
  • the extraction circuit responds to the drift of the signal, which is different from the output of the signal during the second period in which the sensor is exposed to the sample gas, that is, the output dependent on the adsorption concentration of the gas to the sensor. 1 or more feature quantities are extracted. Therefore, the identification circuit performs identification based on signal drift, and can identify sample gases with high identification accuracy even when identifying sample gases with similar outputs from sensors that depend on gas adsorption concentrations.
  • each figure is not necessarily a strict illustration.
  • substantially the same configurations are denoted by the same reference numerals, and overlapping descriptions are omitted or simplified.
  • ordinal numbers such as “first” and “second” do not mean the number or order of steps, components, etc., unless otherwise specified. It is used for the purpose of avoiding confusion and distinguishing between
  • FIG. 1 is a block diagram showing a schematic configuration of a gas identification system 100 according to this embodiment.
  • a gas identification system 100 includes a sensor 10, an exposure unit 20, a control circuit 31, an acquisition circuit 32, an extraction circuit 33, an identification circuit 34, a memory 40 and.
  • Gas identification system 100 identifies a sample gas based on the output of sensor 10 exposed to the sample gas.
  • the sample gas contains, for example, chemical substances to be identified.
  • the sample gas is, for example, gas collected from food, exhaled air collected from the human body, air surrounding the human body, air collected from a room in a building, or the like.
  • the gas identification system 100 identifies chemical substances contained in the sample gas, for example. Specifically, the gas identification system 100 identifies which of the plurality of identification target substances is contained in the sample gas as a chemical substance. Further, the gas identification system 100 may identify whether or not the sample gas contains the identification target substance.
  • Substances to be identified are, for example, volatile organic compounds, but may also be inorganic gases such as ammonia and carbon monoxide.
  • the gas identification system 100 is used, for example, for odor identification.
  • the volatile organic compound is, for example, a molecule that becomes an odor component.
  • the sensor 10 is a sensor that outputs a signal corresponding to the adsorption concentration of gas.
  • the sensor 10 is, for example, an electrochemical sensor, a semiconductor sensor, a field effect transistor sensor, a surface acoustic wave sensor, a crystal oscillator sensor, or a variable resistance sensor.
  • the sensor 10 has, for example, a sensing portion and a pair of electrodes electrically connected to the sensing portion.
  • the sensing part changes its electric resistance value according to, for example, the adsorption concentration of the gas.
  • a signal corresponding to the electrical resistance value of the sensing portion of the sensor 10 is acquired by the acquisition circuit 32 as, for example, a voltage signal or a current signal via a pair of electrodes.
  • the sensing part is composed of, for example, a resin material that is an adsorbent that adsorbs gas and conductive particles dispersed in the resin material.
  • resin materials include polyalkylene glycol resins, polyester resins and silicone resins.
  • the resin material is, for example, a material commercially available as a stationary phase of a gas chromatography column in the side chain. From the viewpoint of durability and gas adsorption, the resin material may be, for example, a silicone resin having various substituents such as phenyl groups and methyl groups on the side chains, which is commercially available as a stationary phase for columns.
  • the sensing portion is not limited to the configuration of the resin material and the conductive particles, and may be any member as long as the electrical resistance value changes due to the adsorption of gas. It may be made of porous ceramics, for example.
  • the gas identification system 100 includes a plurality of sensors 10, for example. At least two sensors 10 among the plurality of sensors 10 each have a sensing portion (specifically, a resin material that constitutes the sensing portion), which is made of, for example, different kinds of materials. Also, the types of materials of the sensing portions of all the plurality of sensors 10 may be different from each other. Different types of materials exhibit different adsorption behaviors with respect to the same chemical substance. Therefore, the multiple sensors 10 output different signals for the same chemical substance. As a result, different feature quantities can be extracted from the outputs of the plurality of sensors 10, so that the identification accuracy of the gas identification system 100 can be improved.
  • a sensing portion specifically, a resin material that constitutes the sensing portion
  • the types of materials of the sensing portions of all the plurality of sensors 10 may be different from each other. Different types of materials exhibit different adsorption behaviors with respect to the same chemical substance. Therefore, the multiple sensors 10 output different signals for the same chemical substance. As a result, different feature quantities can be extracted from the
  • the exposure unit 20 is an exposure mechanism that exposes the sensor 10 to gas under the control of the control circuit 31 . Specifically, the exposure unit 20 exposes the sensor 10 to the sample gas only during the second period of the measurement period consisting of the first period, the second period following the first period, and the third period following the second period. expose. Also, the exposure unit 20 may expose the sensor 10 to the reference gas during the first period and the third period.
  • a reference gas is a gas that serves as a reference for measurement, and is, for example, a gas that does not contain a substance to be identified. Also, the reference gas is, for example, a gas that is less likely to be adsorbed by the sensing part of the sensor 10 than the substance to be identified.
  • the reference gas examples include air, an inert gas such as nitrogen, and a gas obtained by removing chemical substances from a sample gas using a filter or the like.
  • FIG. 2 is a schematic diagram showing an example of the configuration of the exposed portion 20 according to this embodiment.
  • the exposure section 20 has, for example, a housing section 21, a three-way solenoid valve 22, an intake pump 23, and a plurality of pipes 25a, 25b, 25c, 25d, and 25e.
  • An inlet port 26a for introducing sample gas is provided at one end of the pipe 25a.
  • the intake port 26a is provided, for example, in a space filled with sample gas.
  • One end of the pipe 25b is provided with an intake port 26b for introducing the reference gas.
  • the intake port 26b is provided, for example, in a space filled with a reference gas.
  • One end of the pipe 25e is provided with an exhaust port 26e for discharging the introduced sample gas and reference gas.
  • the housing portion 21 is a box-shaped container that houses the sensor 10 .
  • a plurality of sensors 10 are arranged in an array inside the housing portion 21 .
  • One end of each of the pipe 25c and the pipe 25d is connected to the accommodation portion 21 .
  • a plurality of sensors 10 are arranged in a gas flow path.
  • the sample gas introduced from the intake port 26a is introduced into the housing portion 21 via the pipe 25a, the three-way solenoid valve 22, and the pipe 25c.
  • the reference gas introduced from the intake port 26b is introduced into the housing portion 21 via the pipe 25b, the three-way solenoid valve 22, and the pipe 25c.
  • the sample gas and the reference gas introduced into the storage section 21 are discharged from the exhaust port 26e via the pipe 25d, the intake pump 23 and the pipe 25e.
  • the three-way solenoid valve 22 is a solenoid valve for switching the gas to be introduced into the housing portion 21 .
  • the three-way solenoid valve 22 has an input port P1 to which the other end of the pipe 25a is connected, an input port P2 to which the other end of the pipe 25b is connected, and an output port P3 to which the other end of the pipe 25c is connected. is provided.
  • the three-way solenoid valve 22 is controlled by the control circuit 31 to open and close each port. Under the control of the control circuit 31, the three-way solenoid valve 22 switches between a first state in which the input port P1 and the output port P3 are electrically connected and a second state in which the input port P2 and the output port P3 are electrically connected. In a first state, input port P1 and output port P3 are open and input port P2 is closed. Also, in the second state, the input port P2 and the output port P3 are open, and the input port P1 is closed.
  • the intake pump 23 is a pump for introducing the sample gas and the reference gas into the housing section 21 and discharging the introduced sample gas and reference gas from the exhaust port 26e.
  • the operation of the intake pump 23 is controlled by the control of the control circuit 31 .
  • An intake port of the intake pump 23 is connected to the other end of the pipe 25d.
  • the exhaust port of the intake pump 23 is connected to the other end of the pipe 25e.
  • the sample gas is introduced into the housing portion 21 .
  • the exposure unit 20 exposes the plurality of sensors 10 to the sample gas.
  • the reference gas is introduced into the housing portion 21 .
  • the exposure unit 20 exposes the plurality of sensors 10 to the reference gas.
  • the configuration of the exposure unit 20 is not limited to the configuration shown in FIG. 2, and is not particularly limited as long as the configuration allows the sensor 10 to be exposed to the sample gas.
  • the exposure unit 20 may be configured, for example, such that the sample gas and the reference gas are introduced into the storage unit 21 through separate pipes without passing through the three-way solenoid valve 22 .
  • the exposure section 20 may have a configuration in which the sample gas is mixed into the carrier gas without the suction pump 23, and the carrier gas is always flowed to the storage section 21.
  • the intake pump 23 may be used to evacuate the storage section 21 .
  • the exposure unit 20 further includes various removal filters for removing moisture or fine particles from the sample gas and reference gas, an electromagnetic control valve for adjusting the flow rate of each pipe, and a check valve for preventing reverse flow in each pipe. may
  • control circuit 31 controls the operation of the exposing section 20, specifically the three-way solenoid valve 22 and the intake pump 23, as described above.
  • the control circuit 31 may also output information indicating the timing of the operation of the exposing section 20 to the acquisition circuit 32 .
  • the acquisition circuit 32 acquires the signal output from the sensor 10 during the measurement period.
  • the acquisition circuit 32 acquires, for example, a voltage signal or a current signal as a signal output corresponding to the electrical resistance value of the sensing portion of the sensor 10 .
  • the extraction circuit 33 extracts one or more feature quantities corresponding to the drift of the signal acquired by the acquisition circuit 32 .
  • the extraction circuit 33 may extract a feature quantity other than the feature quantity corresponding to the drift from the signal acquired by the acquisition circuit 32 .
  • the extraction circuit 33 extracts one or more feature quantities from the signals output by each of the multiple sensors 10 .
  • the identification circuit 34 identifies the sample gas based on one or more feature quantities extracted by the extraction circuit 33 using the learned logical model.
  • the identification circuit 34 identifies, for example, which of the plurality of identification target substances is contained in the sample gas. Further, the identification circuit 34 may identify whether or not the sample gas contains the identification target substance.
  • the identification circuit 34 receives one or more feature values as input and outputs identification results.
  • the identification circuit 34 outputs, for example, information for displaying the identification result on a display (not shown) or the like provided in the gas identification system.
  • the identification circuit 34 may output information indicating the identification result to the memory 40 and cause the memory 40 to store the information. Further, the identification circuit 34 may output information indicating the identification result to an external device.
  • the control circuit 31, the acquisition circuit 32, the extraction circuit 33, and the identification circuit 34 are implemented by a microcomputer or processor containing a program that performs the above processes.
  • the control circuit 31, the acquisition circuit 32, the extraction circuit 33, and the identification circuit 34 may each be implemented by a dedicated logic circuit that performs the above processing.
  • the memory 40 is a storage device that stores the learned logical model used in the identification circuit 34.
  • the memory 40 is implemented by, for example, a semiconductor memory.
  • a learned logical model is a logical model that identifies a sample gas.
  • the learned logical model is, for example, a logical model that identifies which of the plurality of identification target substances is contained in the sample gas.
  • the learned logic model receives, for example, one or more feature values extracted by the extraction circuit 33 as input, and outputs which of the plurality of identification target substances is contained in the sample gas.
  • the learned logic model may output whether or not the sample gas contains the substance to be identified.
  • the learned logical model is constructed by performing machine learning using, for example, a known identification target substance and one or more feature values extracted by the extraction circuit 33 using the known identification target substance as teacher data.
  • the method used to construct the logical model in machine learning is not particularly limited.
  • a neural network for example, is used to construct a logical model in machine learning. That is, a trained logical model includes, for example, a neural network.
  • a random forest, a support vector machine, a self-organizing map, or the like may be used to construct a logical model in machine learning.
  • the gas identification system 100 is implemented as, for example, a single gas identification device including the above components, but may be implemented by a plurality of devices. When the gas identification system 100 is implemented by multiple devices, the components included in the gas identification system 100 may be distributed among the multiple devices in any way.
  • FIG. 3 is a block diagram showing a schematic configuration of a gas identification system 100a according to a modification of the embodiment.
  • the gas identification system 100a includes a detection device 200 and an identification device 300.
  • the detection device 200 includes a sensor 10 , an exposure section 20 , a control circuit 31 , a detection section 50 and a communication section 51 .
  • the sensor 10, the exposure unit 20 and the control circuit 31 have, for example, the same configuration as the gas identification system 100 described above.
  • the detection unit 50 acquires the signal output from the sensor 10 during the measurement period. For example, a voltage signal or a current signal is acquired as a signal corresponding to the electrical resistance value of the sensing portion of the sensor 10 . Also, information indicating the timing of controlling the exposure unit 20 is acquired from the control circuit 31 . The detection unit 50 transmits the acquired signal and information to the identification device 300 using the communication unit 51 .
  • the detection unit 50 is implemented by a microcomputer or processor containing a program for performing the above processes.
  • the detection unit 50 may be implemented by a dedicated logic circuit that performs the above processing.
  • the communication unit 51 is a communication module (communication circuit) for the detection device 200 to communicate with the identification device 300 via a wide area communication network 90 such as the Internet, which is an example of a network.
  • the communication unit 51 may perform wired communication or wireless communication.
  • a communication standard used for communication performed by the communication unit 51 is not particularly limited.
  • the identification device 300 includes an acquisition circuit 32a, an extraction circuit 33, an identification circuit 34, a memory 40, and a communication unit 60.
  • the extraction circuit 33, the identification circuit 34 and the memory 40 have, for example, the same configuration as the gas identification system 100 described above.
  • the acquisition circuit 32a acquires the signal output from the sensor 10 during the measurement period, which is acquired by the detection unit 50 via the wide area communication network 90. Acquisition circuit 32 a communicates with detection device 200 via wide area communication network 90 using communication unit 60 .
  • the communication unit 60 is a communication module (communication circuit) for the identification device 300 to communicate with the detection device 200 via the wide area communication network 90 .
  • the communication unit 60 may perform wired communication or wireless communication.
  • a communication standard used for communication performed by the communication unit 60 is not particularly limited.
  • FIG. 4 is a flowchart for explaining the operation of the gas identification system 100 according to this embodiment.
  • FIG. 4 is a flowchart of the gas identification method performed by gas identification system 100 .
  • a gas identification method according to the present embodiment includes an exposure step, an acquisition step, an extraction step, and an identification step.
  • the exposure step is an example of a fourth step
  • the acquisition step is an example of a first step
  • the extraction step is an example of a second step
  • the identification step is an example of a third step.
  • step S11 the exposure unit 20 exposes the sensor 10 to the sample gas only during the second period of the measurement period. Also, the exposure unit 20 exposes the sensor 10 to the reference gas during the first period and the third period.
  • the control circuit 31 operates the intake pump 23 and controls opening and closing of each port of the three-way solenoid valve 22 to expose the sensor 10 to the reference gas during the first period and the third period, and expose the sensor 10 to the reference gas during the second period. exposing the sensor 10 to the sample gas.
  • step S11 for example, in a plurality of continuous measurement periods, the sensor 10 is exposed to the sample gas only during the second period of the measurement periods.
  • the acquisition circuit 32 acquires the signal output from the sensor 10 exposed in step S11 (step S12). That is, the acquisition circuit 32 acquires the signal output from the sensor 10 exposed to the sample gas only during the second period of the measurement period.
  • the detector 50 acquires the signal output from the sensor 10 exposed in step S11.
  • the acquisition circuit 32a acquires the signal output from the sensor 10 exposed in step S11 from the detection unit 50 via the wide area communication network 90. FIG. Accordingly, even when the sensor 10 is located at a location distant from the identification device 300, the acquisition circuit 32a can acquire the signal output from the sensor 10. FIG.
  • FIG. 5 is a diagram showing an example of the control signal to the exposure unit 20 and the signal output from the sensor 10.
  • FIG. FIG. 5 shows the intensity of the control signal to the three-way solenoid valve 22 and the signal output from the sensor 10 during the measurement period Tm consisting of the first period T1, the second period T2 and the third period T3.
  • (a) of FIG. 5 is a graph showing an example of the change over time of the control signal output from the control circuit 31 .
  • the control signal when the control signal is at High level, the three-way solenoid valve 22 is controlled to be in the first state, and when the control signal is at Low level, the three-way solenoid valve 22 is It is controlled to be in the second state.
  • (b) of FIG. 5 is a graph showing an example of temporal changes in the intensity (for example, voltage) of the signal output from the sensor 10 .
  • step S11 for example, as shown in (a) of FIG. 5, the three-way solenoid valve 22 is in the second state during the first period T1 and the third period T3, and the exposing section 20 exposes the sensor 10 to the reference gas. exposed to Also, during the second period T2, the three-way solenoid valve 22 is in the first state, and the exposure section 20 exposes the sensor 10 to the sample gas.
  • the signal acquired in step S12 changes, for example, as shown in FIG. 5(b). First, during the first period T1 during which the sensor 10 is exposed to the reference gas, the signal value hardly changes.
  • the sensing portion of the sensor 10 absorbs the sample gas (mainly chemical substances contained in the sample gas), and the signal value changes (for example, Rise.
  • the sample gas mainly the chemical substances contained in the sample gas
  • the signal value changes (for example, Rise.
  • the sample gas mainly the chemical substances contained in the sample gas
  • the value of the signal tries to return to the reference value.
  • the reference value is, for example, the value before the sensor 10 is exposed to the sample gas and the signal value begins to fluctuate.
  • the lengths of the first period, the second period, and the third period are not particularly limited, and are set according to, for example, the type of sensor 10 and the type of substance to be identified.
  • the length of the first period T1 is, for example, 1 second or more and 10 seconds or less.
  • the length of the second period T2 is, for example, 5 seconds or more and 30 seconds or less.
  • the length of the third period is, for example, 10 seconds or more and 100 seconds or less.
  • step S11 for example, the exposure unit 20 exposes the sensor 10 to the sample gas only during the second period of each measurement period Tm in a plurality of consecutive measurement periods Tm. Then, in step S12, the acquisition circuit 32 acquires signals output from the sensor 10 during a plurality of continuous measurement periods Tm.
  • FIG. 6 is a diagram showing an example of signals output from the sensor 10 during a plurality of continuous measurement periods.
  • the acquisition circuit 32 acquires the signal output from the sensor 10, for example, during seven consecutive measurement periods Tm-1 to Tm-7.
  • the operation described with reference to FIG. 5 is performed, and the same operation is repeatedly performed.
  • the next measurement period Tm starts before the value of the signal that fluctuated in the second period T2 completely returns to the reference value. drift increases.
  • the number of consecutive measurement periods Tm is not particularly limited, and is set according to, for example, the type of sensor 10 and the type of substance to be identified.
  • the extraction circuit 33 extracts one or more feature amounts corresponding to the drift of the signal acquired in step S12 (step S13).
  • the extraction circuit 33 extracts one or more feature quantities using the acquired signal values.
  • the baseline is dissociated from the reference value and drift occurs.
  • a signal drift is considered to be caused, for example, by the difficulty of gas escape in the sensing portion of the sensor 10.
  • the size changes depending on the combination with the material. For example, when the sample gas is difficult to escape from the sensing portion of the sensor 10, the value of the output from the sensor 10 does not return to the reference value and the drift increases. On the other hand, when the sample gas easily escapes from the sensing portion of the sensor 10, the drift is small or does not occur.
  • the extraction circuit 33 extracts one or more feature quantities corresponding to signal drift for use in identifying the sample gas.
  • the extraction circuit 33 obtains at least one of a first value, a second value, and a third value as the value of the signal from the obtained signal, and uses the obtained value to extract one or more feature amounts. do.
  • FIGS. 7 and 8 are diagrams for explaining values of signals acquired by the extraction circuit 33.
  • FIG. FIGS. 7 and 8 show changes over time in the intensity (for example, voltage) of the signal output from the sensor 10 acquired by the acquisition circuit 32.
  • FIG. 7 and 8 show changes over time in the intensity (for example, voltage) of the signal output from the sensor 10 acquired by the acquisition circuit 32.
  • the first value is the signal value when the signal value fluctuated due to the exposure of the sensor 10 to the sample gas during the second period T2 is about to return to the reference value during the third period T3.
  • the first value is, for example, the signal value V1 at a predetermined point in the third period T3, as shown in FIG.
  • the first value may be the average value of the signal values in the predetermined section S1 in the third period T3, as shown in FIG.
  • the length of the section S1 is, for example, 0.1 seconds or more and 5 seconds or less.
  • the first value may be the last signal value in the third period T3.
  • the first value may be the signal value V1 at the last point in the third period T3, or the average value of the signal values in the interval S1 including the last point in the third period T3. may This allows the extraction circuit 33 to use the value of the signal that is stable during the third period T3 as the first value.
  • the first value may be the value V1 of the signal at the time when a predetermined time has passed since the start of the third period T3, or the signal in the section S1 that starts after the predetermined time has passed since the start of the third period T3. It may be the average value of the values of The predetermined time is, for example, a time longer than half the third period T3.
  • the first value is the value of the signal at the third time period T3 during which the sensor 10 is not exposed to the sample gas after the second time period T2 during which the sensor 10 is exposed to the sample gas. is less sensitive to exposure to , and is a good indicator of baseline fluctuations in the signal.
  • the second value is the last signal value in the first period T1.
  • the second value is, for example, the value V2 of the signal at the last point in the first period T1, as shown in FIG.
  • the second value may be the average value of the signal values in the section S2 including the end of the first period T1, as shown in FIG.
  • the length of the section S2 is, for example, 0.1 seconds or more and 5 seconds or less.
  • the second value is the value of the signal during the first time period T1 when the sensor 10 is not exposed to the sample gas, prior to the second time period T2 when the sensor 10 is exposed to the sample gas. It is suitable as a value indicating a reference value.
  • the third value is the value of the signal when it fluctuates due to the exposure of the sensor 10 to the sample gas during the second period T2.
  • the third value is, for example, the signal value V3 at a predetermined point in the second period T2, as shown in FIG.
  • the third value may be the average value of the signal values in the predetermined section S3 in the second period T2, as shown in FIG.
  • the length of the section S3 is, for example, 0.1 seconds or more and 5 seconds or less.
  • the third value is, for example, the value of the signal at the timing when the value of the signal becomes maximum in the second period T2.
  • the third value may be the signal value V3 at the point in time when the signal value reaches its maximum value in the second period T2.
  • the third value may be the value V3 of the signal at the time when a predetermined time has passed since the start of the second period T2, or the signal in the section S3 that starts after the predetermined time has passed since the start of the second period T2. It may be the average value of the values of The predetermined time is, for example, a time longer than half the second period T2.
  • the third value is a value when it fluctuates due to adsorption of the sample gas on the sensor 10, and when the baseline of the signal shifts, the third value also shifts. Therefore, it is possible to extract the feature amount corresponding to the drift using the third value.
  • the extraction circuit 33 extracts at least one of a first value, a second value, and a third value from the signal output from the sensor 10 in each of two or more measurement periods among a plurality of consecutive measurement periods Tm1 to Tm7. get one. Acquiring signals in a plurality of continuous measurement periods Tm1 to Tm7 in this way tends to increase the drift of the acquired signals, and can improve the identification accuracy described later.
  • 9 and 10 are diagrams for explaining the values of the signals acquired by the extraction circuit 33 during a plurality of continuous measurement periods Tm-1 to Tm-7. 9 and 10 show temporal changes in the intensity (for example, voltage) of the signal output from the sensor 10 acquired by the acquisition circuit 32.
  • FIG. 9 shows temporal changes in the intensity (for example, voltage) of the signal output from the sensor 10 acquired by the acquisition circuit 32.
  • the extraction circuit 33 when obtaining the first value, obtains at least one of the first values in each of the first measurement period Tm-1 to the seventh measurement period Tm-7. get one. Acquisition of the second and third values is similar to acquisition of the first value.
  • the extraction circuit 33 acquires the first value, the second value, or the third value in a plurality of measurement periods Tm, for example, in each measurement period Tm, the first value, the second value, or the third value is obtained at the same timing. get.
  • the extraction circuit 33 acquires, for example, at least one of the signal values V1-1 to V1-7 corresponding to the signal value V1 shown in FIG. 7 as the first value.
  • the extraction circuit 33 obtains, for example, the average value of the signal values in at least one of the intervals S1-1 to S1-7 corresponding to the interval S1 shown in FIG. 8 as the first value.
  • the extraction circuit 33 acquires, for example, at least one of the signal values V3-1 to V3-7 corresponding to the signal value V3 shown in FIG. 7 as the third value.
  • the extraction circuit 33 obtains, for example, the average value of the signal values in at least one of the intervals S3-1 to S3-7 corresponding to the interval S3 shown in FIG. 8 as the third value.
  • obtaining the second value is similar to the first and third values.
  • the extraction circuit 33 acquires the first value in each of two or more measurement periods Tm among a plurality of continuous measurement periods Tm-1 to Tm-7 shown in FIGS. 9 and 10, for example. , the difference between the acquired first values is extracted as a feature amount.
  • the extraction circuit 33 extracts, for example, the difference between the first values of the two separated measurement periods Tm as the feature amount.
  • the two spaced apart measurement periods Tm are, for example, a measurement period Tm-2 and a measurement period Tm-7, which are the second and final measurement periods Tm among a plurality of consecutive measurement periods Tm-1 to Tm-7.
  • the extraction circuit 33 may also extract the difference between the first values of two consecutive measurement periods Tm (for example, the measurement period Tm-2 and the measurement period Tm-3) as the feature amount.
  • the extraction circuit 33 may extract a plurality of feature quantities by changing a plurality of combinations of the two measurement periods Tm for obtaining the difference of the first values.
  • the extraction circuit 33 may, for example, extract differences between the first values in all combinations of two consecutive measurement periods Tm as a plurality of feature amounts.
  • the extraction circuit 33 may extract each difference between the plurality of extracted first values as a feature amount. You may extract the average value of the difference of as a feature-value.
  • the extraction circuit 33 may acquire the third value instead of the first value. That is, the extraction circuit 33 acquires the third value in each of two or more measurement periods Tm among a plurality of consecutive measurement periods Tm-1 to Tm-7 shown in FIGS. A difference between values may be extracted as a feature amount. In this case, the description is made by replacing the first value in the above description with the third value. Further, the extraction circuit 33 may extract both the difference between the first values and the difference between the third values as feature quantities.
  • the extraction circuit 33 obtains the difference between the values at the same timing in each of the plurality of measurement periods Tm, thereby obtaining the feature amount corresponding to the drift indicating that the baseline of the signal has fluctuated. can be extracted.
  • the extracted feature amount tends to be large.
  • the extraction circuit 33 acquires the first value and the second value in the measurement period Tm, and extracts the difference between the acquired first value and the second value as the feature amount.
  • the extraction circuit 33 acquires the first value and the second value in at least one measurement period Tm among a plurality of consecutive measurement periods Tm-1 to Tm-7 shown in FIGS. A difference between the first value and the second value obtained from the measurement period Tm is extracted as a feature amount.
  • the extraction circuit 33 extracts each of the plurality of differences between the first value and the second value as a feature amount.
  • the average value of the differences between the first and second values extracted in plurality may be extracted as the feature amount.
  • the extraction circuit 33 can extract the feature amount corresponding to the drift of the signal by taking the difference between the first value and the second value, which is the reference value.
  • the extraction circuit 33 acquires the first value in each of two or more measurement periods Tm among a plurality of continuous measurement periods Tm-1 to Tm-7 shown in FIGS. 9 and 10, for example. .
  • the extraction circuit 33 acquires the first value in each of all the measurement periods Tm after the second measurement period Tm-2 among a plurality of consecutive measurement periods Tm-1 to Tm-7.
  • the extraction circuit 33 may acquire the first value in one or more measurement periods Tm after the second measurement period Tm-2 among a plurality of consecutive measurement periods Tm-1 to Tm-7.
  • the extraction circuit 33 extracts all measurement periods Tm after the third measurement period Tm-3 or after the fourth measurement period Tm-4 among a plurality of consecutive measurement periods Tm-1 to Tm-7. A first value in may be obtained.
  • the extraction circuit 33 may obtain the first value in each of all the continuous measurement periods Tm-1 to Tm-7.
  • the extraction circuit 33 derives an approximation formula using the obtained first value, and extracts the coefficients of the derived approximation formula as feature quantities.
  • the approximation formula is, for example, an approximation formula when the first value in each measurement period Tm is a function of time.
  • the approximation formula is, for example, a linear formula (that is, linear approximation) or a quadratic formula.
  • the approximation formula may be a polynomial formula other than a quadratic formula, and may be an exponential, logarithmic or exponential formula.
  • a known method can be used to derive the approximate expression. In the case of a linear approximation, for example, the least squares method can be used to derive the approximation.
  • the extraction circuit 33 may acquire the third value instead of the first value. That is, the extraction circuit 33 acquires the third value in each of two or more measurement periods Tm among a plurality of consecutive measurement periods Tm-1 to Tm-7 shown in FIGS.
  • An approximation formula may be derived using the values, and the coefficients of the derived approximation formula may be extracted as feature quantities.
  • the description is made by replacing the first value in the above description with the third value.
  • the extraction circuit 33 may extract both the coefficient of the approximate expression using the first value and the coefficient of the approximate expression using the third value as feature amounts.
  • an approximation formula corresponding to the baseline of the signal is derived, so the extraction circuit 33 can extract the feature quantity corresponding to the drift of the signal. Further, by extracting the coefficient of the approximation using the first value or the third value in each of the plurality of measurement periods Tm as the feature quantity, the feature quantity in which the variation in the first value or the third value is smoothed is extracted. can.
  • the number of measurement periods Tm for acquiring the first value or the second value may be 3 or more, or 4 or more.
  • the extraction circuit 33 may extract at least one feature quantity using any one of the above-described first to third examples.
  • a plurality of feature quantities may be extracted using two or more methods.
  • the extraction circuit 33 performs the second and subsequent measurement periods Tm (that is, measurement One or more feature quantities may be extracted based on the signal acquired during the period Tm ⁇ 2 or later).
  • the feature quantity is extracted using the signal output during the second and subsequent measurement periods Tm in which the drift tends to increase. Therefore, the difference in the extracted feature amount tends to increase according to the type of sample gas, and the identification accuracy described later can be further improved.
  • the extraction circuit 33 extracts one or more feature amounts based on the signal acquired during the second and subsequent measurement periods Tm, the extraction circuit 33 does not acquire the first value during the second and subsequent measurement periods Tm. There may be a measurement period Tm.
  • the extraction circuit 33 may extract one or more feature amounts based on the signal acquired in any measurement period Tm from the second measurement period Tm onward.
  • the extraction circuit 33 may extract one or more feature amounts based on the signals acquired in the third and subsequent measurement periods Tm among the plurality of measurement periods Tm-1 to Tm-7.
  • One or more feature quantities may be extracted based on the signal acquired in the fourth and subsequent measurement periods Tm from -1 to Tm-7.
  • the extraction circuit 33 may extract a feature amount other than the feature amount corresponding to the drift of the acquired signal.
  • the extraction circuit 33 may acquire, as feature amounts, signal values at predetermined intervals in at least one of the second period T2 and the third period T3.
  • the predetermined interval is, for example, 0.1 seconds or more and 10 seconds or less.
  • the extraction circuit 33 determines the rate of change in the value of the signal in at least one of the second period T2 and the third period T3 and At least one of the amount of change may be acquired as a feature amount.
  • 11A and 11B are diagrams for explaining the rate of change (that is, the slope) and the amount of change in the value of the signal output from the sensor 10.
  • FIG. 11 shows changes over time in the intensity (for example, voltage) of the signal output from the sensor 10 acquired by the acquisition circuit 32 . In the graph of FIG.
  • points a to d are points indicating the time and signal values after a predetermined time has passed since the start of the second period T2
  • points e and f are points indicating the third period T2. This point indicates the time and the value of the signal after a predetermined time has elapsed from the start of the period T3.
  • the number of points and the position of each point are set according to the type of sensor 10, the type of substance to be identified, and the like. Also, the position of each point may be determined from the shape of the waveform of the signal instead of the predetermined time.
  • the extraction circuit 33 extracts, for example, the gradient between two points in the graph of time and signal intensity as a feature quantity.
  • the extracted slopes are, for example, the slope SU1 of the line connecting the points a and b in the second period T2, and the line connecting the points c and d in the second period T2 after the point b. and the slope SD of the line connecting the point e and the point f in the third period T3.
  • the extraction circuit 33 also extracts, as a feature amount, the amount of change from a predetermined point in time in the graph of signal strength versus time.
  • the amount of change extracted is, for example, the amount of change DU, which is the difference between the signal value at the start of the second period T2 and the signal value at point d, and the signal value at the start of the third period T3 and point f is the amount of change DD that is the difference from the value of the signal at .
  • the identification circuit 34 uses the learned logical model for identifying the sample gas, based on one or more feature quantities extracted in step S13. , the sample gas is identified, and the identification result is output (step S14).
  • the identification circuit 34 uses, for example, a learned logical model, receives one or more feature values as input, and outputs information indicating which of the plurality of identification target substances is contained in the sample gas. .
  • the identification circuit 34 may output information indicating whether or not the sample gas contains the identification target substance.
  • the trained logical model includes a neural network
  • the output node outputs the probability that each of the plurality of identification target substances is contained in the sample gas.
  • the learned logic model outputs the identification target substance with the highest probability of being output from the output node among the plurality of identification target substances.
  • the learned logic model outputs whether or not the sample gas contains the identification target substance based on the probability output from the output node, for example, based on whether or not the probability is equal to or greater than a threshold.
  • the gas identification method performed by the gas identification system 100 is a gas identification method using the sensor 10, and includes an acquisition step (step S12) of acquiring a signal output from the sensor 10, and an acquired signal Using an extraction step (step S13) of extracting one or more feature values corresponding to the drift of the sample gas based on the extracted one or more feature values using the learned logical model, the sample gas is identified and an identification result is output. and an output step (step S14).
  • the extraction step the output of the signal during the second period in which the sensor 10 is exposed to the sample gas, that is, the signal drift corresponding to the signal drift, which is different from the feature amount depending on the adsorption concentration of the gas to the sensor 10.
  • the above feature values are extracted. Therefore, in the identification step, identification is performed based on signal drift, and sample gases can be identified with high identification accuracy even when sample gases with similar outputs from sensors that depend on gas adsorption concentrations are identified.
  • the waveform of the signal in the second period is the same as that of the first sample gas in which the drift of the signal output from the sensor 10 is large, as shown in FIG. , and the second sample gas, in which almost no signal drift occurs, unlike the signal shown in FIG.
  • sensors 10 having different materials for the sensing portions were used.
  • the sensor 10 in which the material of the sensing portion is made of a resin material such as methylphenyl silicone (75% side chain phenyl groups) or methylphenyl silicone (35% side chain phenyl groups) was used.
  • sample gas A phenylethyl alcohol
  • sample gas B methylcyclopentenolone
  • sample gas C isovaleric acid
  • sample gas D undecalactone
  • sample gas E skatole
  • ⁇ Acquisition of voltage signal> As a voltage signal acquisition operation, first, the 16 sensors 10 are exposed to the reference gas in the first period of 5 seconds, and then the 16 sensors 10 are exposed to the sample gas in the second period of 10 seconds. , followed by exposing the 16 sensors 10 to the reference gas for a third period of 25 seconds. In one operation of acquiring a voltage signal, the exposure operation of the measurement period consisting of the first period, the second period and the third period was continuously repeated seven times. Thus, in one acquisition operation, the 16 sensors 10 were exposed to the sample gas and the reference gas in seven consecutive measurement periods, and voltage signals output from each of the 16 sensors 10 were acquired. .
  • a voltage signal set composed of 16 voltage signals corresponding to the 16 sensors 10 was obtained by one signal voltage obtaining operation. Further, such a voltage signal set acquisition operation was performed for the sample gases A to E a total of 158 times. Specifically, 30 voltage signal sets were obtained for sample gas A, and 32 voltage signal sets were obtained for each of sample gases B through E.
  • a feature quantity was extracted from each of a total of 158 voltage signal sets corresponding to the sample gases A to E obtained by the above [Acquisition of signal for identification test].
  • ⁇ Construction of trained logical model> For each of the training feature sets in the reference example and the working example, 128 sets of training feature sets and identification target substances contained in the sample gas corresponding to the 128 sets of training feature sets are used as teacher data, By performing machine learning using a neural network including one hidden layer with five nodes, a trained logical model for identifying a substance to be identified was constructed. Inputs to the neural network are feature amounts that constitute one set of feature amounts, and outputs from the neural network are probabilities that each of the five substances to be identified is contained in the sample gas. In the learned logical model, the substance to be identified with the highest probability is identified as the substance to be identified contained in the sample gas.
  • the learned logical model constructed above was used to identify the identification target substance contained in the sample gas. . Also, the classification of the training feature set and the prediction feature set for the 158 sets was changed, the learned logical model was rebuilt, and the identification target substance contained in the sample gas was identified three times in total.
  • Tables 1 to 3 show the results of the first to third identifications using the prediction feature set in the reference example.
  • Tables 4 to 6 show the results of the first to third classifications using the prediction feature set in the example.
  • the uppermost alphabet and the leftmost alphabet are alphabets corresponding to sample gas A to sample gas E, respectively. Further, in each cell, when inputting a feature amount constituting a prediction feature amount set extracted from signals corresponding to sample gas A to sample gas E listed at the top of the column in which the cell is located, Described is the number of times the learned logic model identifies the substance as the substance to be identified contained in the sample gas described in the leftmost part of the row in which the cell is located. In other words, the number of cells where the sample gas described at the top and the leftmost is the same is the number of times the identification was correct, and the number of cells where the sample gas described at the top and the leftmost is different. is the number of times the identification was wrong.
  • the number of mistakes in identifying sample gas D and sample gas E was less than in the reference example.
  • the ratio of outputting wrong classification results was 9.4%, 3.1%, and 3.1% for the first to third times, respectively. 1%, and the average of the first to third times was 5.2%.
  • the rate of erroneous determination was reduced by 10% or more as compared with the reference example. There was no erroneous determination in the identification of sample gas A to sample gas C.
  • the result of the example using the feature amount corresponding to drift has a lower rate of misjudgment than the result of the reference example not using the feature amount corresponding to drift, and the identification accuracy is improved. I know there is.
  • the waveform of the signal acquired from the sensor 10 (for example, the sensor 10 whose sensing part is made of methylphenyl silicone)
  • the sensor 10 is exposed to the sample gas A and the sensor 10 is exposed to the sample gas B. and the sensor 10 was exposed to the sample gas C, the waveform of the signal in the second period was different. Therefore, in both the reference example and the example, it is considered that the sample gas A to sample gas C were distinguished with high accuracy.
  • the exposure unit 20 exposes the sensor 10 to the reference gas in the first period and the third period, but the present invention is not limited to this.
  • the exposure unit 20 does not need to expose the sensor 10 to the sample gas during the first period and the third period.
  • the sample gas may be sucked to expose the sensor 10 to the vacuum atmosphere. good.
  • the gas identification system 100a includes the detection device 200 and the identification device 300, but the present invention is not limited to this.
  • the gas identification system 100a may be composed of the identification device 300 only. In this case, for example, the process of step S11 in FIG. 4 is omitted, and the acquisition circuit 32a acquires, for example, already detected sensor signals via the network.
  • all or part of the components of the gas identification system according to the present disclosure may be configured with dedicated hardware, or a software program suitable for each component may be executed. It may be realized by Each component may be implemented by a program execution unit such as a CPU or processor reading and executing a software program recorded in a recording medium such as an HDD or a semiconductor memory.
  • a program execution unit such as a CPU or processor reading and executing a software program recorded in a recording medium such as an HDD or a semiconductor memory.
  • the components of the gas identification system according to the present disclosure may be configured with one or more electronic circuits.
  • Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit.
  • One or more electronic circuits may include, for example, a semiconductor device, an IC (Integrated Circuit), or an LSI (Large Scale Integration).
  • An IC or LSI may be integrated on one chip or may be integrated on a plurality of chips. Although they are called ICs or LSIs here, they may be called system LSIs, VLSIs (Very Large Scale Integration), or ULSIs (Ultra Large Scale Integration) depending on the degree of integration.
  • An FPGA Field Programmable Gate Array
  • general or specific aspects of the present disclosure may be implemented as a system, apparatus, method, integrated circuit, or computer program. Alternatively, it may be realized by a computer-readable non-temporary recording medium such as an optical disc, HDD, or semiconductor memory storing the computer program. Also, any combination of systems, devices, methods, integrated circuits, computer programs and recording media may be implemented.
  • the present disclosure may be implemented as a gas identification method executed by a computer such as a gas identification system, or may be implemented as a program for causing a computer to execute such a gas identification method.
  • the present disclosure may be implemented as a computer-readable non-temporary recording medium in which such a program is recorded.
  • the gas identification system and gas identification method according to the present disclosure are useful for identifying chemical substances in gas.
  • REFERENCE SIGNS LIST 10 sensor 10 exposure unit 21 accommodation unit 22 three-way solenoid valve 23 intake pump 25a, 25b, 25c, 25d, 25e pipes 26a, 26b intake port 26e exhaust port 31 control circuit 32, 32a acquisition circuit 33 extraction circuit 34 identification circuit 40 memory 50 detection unit 51, 60 communication unit 90 wide area communication network 100, 100a gas identification system 200 detection device 300 identification device P1, P2 input port P3 output port

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

ガス識別方法は、ガスの吸着濃度に応じた信号を出力するセンサを用いたガス識別方法であって、第1期間、第1期間に続く第2期間、及び、第2期間に続く第3期間からなる測定期間のうち第2期間にのみサンプルガスに暴露させたセンサから出力される信号を取得する取得ステップ(ステップS12)と、取得された信号のドリフトに対応する1以上の特徴量を抽出する抽出ステップ(ステップS13)と、サンプルガスを識別する学習済み論理モデルを用い、抽出された1以上の特徴量に基づいて、サンプルガスを識別し、識別結果を出力する識別ステップ(ステップS14)と、を含む。

Description

ガス識別方法及びガス識別システム
 本開示は、ガス識別方法及びガス識別システムに関する。
 ガスの識別では、例えば、ガスに暴露させたセンサから取得される信号に基づいて、ガスの識別が行われる。特許文献1には、分析物を検出したパルス状信号のデータを用いた分析物の識別方法として、パルス状信号の強度、波長、強度比及び尖度等を特徴量として用いる方法が開示されている。
国際公開2018/207524号
 センサを用いて、揮発性有機化合物等の化学物質を含むサンプルガスを識別する場合に、誤判定を減らすことが求められている。
 そこで、本開示は、識別精度を高めることができるガス識別方法等を提供する。
 本開示の一態様に係るガス識別方法は、ガスの吸着濃度に応じた信号を出力するセンサを用いたガス識別方法であって、第1期間、前記第1期間に続く第2期間、及び、前記第2期間に続く第3期間からなる測定期間のうち前記第2期間にのみサンプルガスに暴露させた前記センサから出力される信号を取得する第1ステップと、取得された前記信号のドリフトに対応する1以上の特徴量を抽出する第2ステップと、前記サンプルガスを識別する学習済み論理モデルを用い、抽出された前記1以上の特徴量に基づいて、前記サンプルガスを識別し、識別結果を出力する第3ステップと、を含む。
 本開示の一態様に係るガス識別システムは、ガスの吸着濃度に応じた信号を出力するセンサと、第1期間、前記第1期間に続く第2期間、及び、前記第2期間に続く第3期間からなる測定期間のうち前記第2期間にのみ前記センサをサンプルガスに暴露させる暴露部と、前記測定期間において前記センサから出力される信号を取得する取得回路と、取得された前記信号のドリフトに対応する1以上の特徴量を抽出する抽出回路と、前記サンプルガスを識別する学習済み論理モデルが記憶されるメモリと、前記学習済み論理モデルを用い、抽出された前記1以上の特徴量に基づいて、前記サンプルガスを識別し、識別結果を出力する識別回路と、を備える。
 本開示の一態様に係るガス識別方法等によれば、識別精度を高めることができる。
図1は、実施の形態に係るガス識別システムの概略構成を示すブロック図である。 図2は、実施の形態に係る暴露部の構成の一例を示す模式図である。 図3は、実施の形態の変形例に係るガス識別システムの概略構成を示すブロック図である。 図4は、実施の形態に係るガス識別システムの動作を説明するためのフローチャートである。 図5は、実施の形態に係る暴露部への制御信号及びセンサから出力される信号の一例を示す図である。 図6は、連続する複数の測定期間において、実施の形態に係るセンサから出力される信号の一例を示す図である。 図7は、実施の形態に係る抽出回路が取得する信号の値を説明するための図である。 図8は、実施の形態に係る抽出回路が取得する信号の値を説明するための別の図である。 図9は、連続する複数の測定期間において、実施の形態に係る抽出回路が取得する信号の値を説明するための図である。 図10は、連続する複数の測定期間において、実施の形態に係る抽出回路が取得する信号の値を説明するための別の図である。 図11は、実施の形態に係るセンサから出力される信号の値の変化割合及び変化量を説明するための図である。
 (本開示の一態様を得るに至った経緯)
 ガスの吸着濃度に応じた信号を出力するセンサをガスの識別に用いる場合、例えば、揮発性有機化合物等の化学物質を含むサンプルガスを暴露した際のセンサから出力される信号を用いた特徴量に基づいて、サンプルガスに含まれる化学物質を識別対象物質として識別する。例えば、化学物質の種類によってセンサへの吸着濃度が違うため、センサから出力される信号が変化する。そのため、例えば、センサをサンプルガスに暴露させる期間におけるセンサから出力される信号の変化量及び変化割合等を特徴量に用いて、サンプルガスに含まれる化学物質の識別が行われる。しかし、化学物質の種類によっては、複数の化学物質の間で、当該期間のセンサへの化学物質の吸着に伴う信号の変化が類似し、識別において誤判定が生じる場合がある。そのため、ガス識別方法では、識別精度を高めることが求められる。
 一方、ガスの識別において、センサをサンプルガスに暴露させる期間の前後には、センサをサンプルガスに暴露させない期間が設けられることが多い。本発明者らは、センサをサンプルガスに暴露させた後の期間において、サンプルガスの暴露によって変化した信号の値がもとに戻りにくく、センサから出力される信号にドリフトが生じる場合があることを見出した。また、本発明者らは、このようなドリフトは、センサへの化学物質の吸着に伴う信号の変化が類似する場合であっても、違いが生じうることも見出した。そこで、本開示では、このような知見に基づき、識別精度を高めることができるガス識別方法等を提供する。
 (本開示の概要)
 本開示の一態様の概要は、以下の通りである。
 本開示の一態様に係るガス識別方法は、ガスの吸着濃度に応じた信号を出力するセンサを用いたガス識別方法であって、第1期間、前記第1期間に続く第2期間、及び、前記第2期間に続く第3期間からなる測定期間のうち前記第2期間にのみサンプルガスに暴露させた前記センサから出力される信号を取得する第1ステップと、取得された前記信号のドリフトに対応する1以上の特徴量を抽出する第2ステップと、前記サンプルガスを識別する学習済み論理モデルを用い、抽出された前記1以上の特徴量に基づいて、前記サンプルガスを識別し、識別結果を出力する第3ステップと、を含む。
 これにより、第2ステップでは、センサがサンプルガスに暴露される第2期間の信号の出力、つまり、センサへのガスの吸着濃度に依存した出力に応じた特徴量とは異なる、信号のドリフトに対応する1以上の特徴量を抽出する。そのため、第3ステップでは、信号のドリフトに基づいた識別が行われ、ガスの吸着濃度に依存したセンサからの出力が類似するサンプルガスを識別する場合でも、高い識別精度でサンプルガスを識別できる。
 また、例えば、前記測定期間のうち前記第2期間にのみ前記センサを前記サンプルガスに暴露させる第4ステップをさらに含み、前記第1ステップでは、前記第4ステップで暴露させた前記センサから出力される前記信号を取得してもよい。
 これにより、第4ステップで暴露させたセンサから出力される信号を用いて、1以上の特徴量を抽出できる。
 また、例えば、前記第4ステップでは、前記第1期間及び前記第3期間に前記センサをリファレンスガスに暴露させてもよい。
 これにより、第1期間及び第3期間に測定の基準となるリファレンスガスにセンサを暴露させるため、周囲環境が変化した場合などでも基準となる信号がセンサから得られる。
 また、例えば、前記第1ステップでは、ネットワークを介して前記センサから出力される前記信号を取得してもよい。
 これにより、別の場所で測定されたセンサからの出力を取得できる。
 また、例えば、前記第2ステップでは、前記第2期間において前記センサが前記サンプルガスに暴露されることによって変動した前記信号の値が前記第3期間において基準値に戻ろうとしている際の前記信号の値である第1値を取得し、取得した前記第1値を用いて前記1以上の特徴量のうちの少なくとも1つの特徴量を抽出してもよい。
 これにより、直接的にドリフトに関係する基準値に戻ろうとしている際の信号の値である第1値を特徴量の抽出に利用できる。
 また、例えば、前記第1ステップでは、連続する複数の前記測定期間において前記センサから出力される前記信号を取得し、前記第2ステップでは、複数の前記測定期間のうちの2以上の前記測定期間それぞれにおいて前記第1値を取得し、取得した前記第1値同士の差分を、前記1以上の特徴量のうちの少なくとも1つの特徴量として抽出してもよい。
 これにより、連続する複数の測定期間の信号を取得することで、取得される信号のドリフトが大きくなりやすい。そのため、複数の測定期間それぞれの第1値同士の差分が大きくなりやすいため、サンプルガスの種類に応じて、抽出される特徴量の違いが大きくなりやすく、識別精度をさらに高めることができる。
 また、例えば、前記第1ステップでは、連続する複数の前記測定期間において前記センサから出力される前記信号を取得し、前記第2ステップでは、複数の前記測定期間のうちの2以上の前記測定期間それぞれにおいて前記第1値を取得し、取得した前記第1値を用いて近似式を導出し、導出した前記近似式の係数を、前記1以上の特徴量のうちの少なくとも1つの特徴量として抽出してもよい。
 これにより、連続する複数の測定期間の信号を取得することで、取得される信号のドリフトが大きくなりやすい。また、複数の測定期間それぞれにおける第1値を用いた近似式の係数を特徴量として抽出することで、第1値のバラツキが平準化された特徴量を抽出できる。
 また、例えば、前記第2ステップでは、前記第1期間における最後の前記信号の値である第2値を取得し、取得した前記第1値と取得した前記第2値との差分を、前記1以上の特徴量のうちの少なくとも1つの特徴量として抽出してもよい。
 これにより、第2値を基準値として、ドリフトに対応した特徴量を抽出できる。
 また、例えば、前記第2ステップでは、前記第3期間の最後の前記信号の値を前記第1値として取得してもよい。
 これにより、第3期間において基準値に戻ろうとしている信号の値が安定しやすい第3期間の最後の信号の値を第1値として用いることができる。
 また、例えば、前記第1ステップでは、連続する複数の前記測定期間において前記センサから出力される前記信号を取得し、前記第2ステップでは、複数の前記測定期間のうちの2以上の前記測定期間にそれぞれにおいて、前記第2期間において前記センサが前記サンプルガスに暴露されることによって変動した際の前記信号の値である第3値を取得し、取得した前記第3値同士の差分を、前記1以上の特徴量のうちの少なくとも1つの特徴量として抽出してもよい。
 これにより、連続する複数の測定期間の信号を取得することで、取得される信号のドリフトが大きくなりやすい。そのため、複数の測定期間それぞれの第3値同士の差分が大きくなりやすいため、サンプルガスの種類に応じて、抽出される特徴量の違いが大きくなりやすく、識別精度をさらに高めることができる。
 また、例えば、前記第1ステップでは、連続する複数の前記測定期間において前記センサから出力される前記信号を取得し、前記第2ステップでは、複数の前記測定期間のうちの2以上の前記測定期間それぞれにおいて、前記第2期間において前記センサが前記サンプルガスに暴露されることによって変動した際の前記信号の値である第3値を取得し、取得した前記第3値を用いて近似式を導出し、導出した前記近似式の係数を、前記1以上の特徴量のうちの少なくとも1つの特徴量として抽出してもよい。
 これにより、連続する複数の測定期間の信号を取得することで、取得される信号のドリフトが大きくなりやすい。また、複数の測定期間それぞれにおける第3値を用いた近似式の係数を特徴量として抽出することで、第3値のバラツキが平準化された特徴量を抽出できる。
 また、例えば、前記第1ステップでは、連続する複数の前記測定期間において前記センサから出力される前記信号を取得し、前記第2ステップでは、複数の前記測定期間における2回目以降の前記測定期間で取得した前記信号に基づいて前記1以上の特徴量のうちの少なくとも1つの特徴量を抽出してもよい。
 これにより、連続する複数の測定期間で取得される信号のうち、ドリフトが大きくなりやすい2回目以降の測定期間で出力される信号を用いて特徴量が抽出される。そのため、サンプルガスの種類に応じて、抽出される特徴量の違いが大きくなりやすく、識別精度をさらに高めることができる。
 また、本開示の一態様に係るガス識別システムは、ガスの吸着濃度に応じた信号を出力するセンサと、第1期間、前記第1期間に続く第2期間、及び、前記第2期間に続く第3期間からなる測定期間のうち前記第2期間にのみ前記センサをサンプルガスに暴露させる暴露部と、前記測定期間において前記センサから出力される信号を取得する取得回路と、取得された前記信号のドリフトに対応する1以上の特徴量を抽出する抽出回路と、前記サンプルガスを識別する学習済み論理モデルが記憶されるメモリと、前記学習済み論理モデルを用い、抽出された前記1以上の特徴量に基づいて、前記サンプルガスを識別し、識別結果を出力する識別回路と、を備える。
 これにより、抽出回路は、センサがサンプルガスに暴露される第2期間の信号の出力、つまり、センサへのガスの吸着濃度に依存した出力に応じた特徴量とは異なる、信号のドリフトに対応する1以上の特徴量を抽出する。そのため、識別回路は、信号のドリフトに基づいた識別を行い、ガスの吸着濃度に依存したセンサからの出力が類似するサンプルガスを識別する場合でも、高い識別精度でサンプルガスを識別できる。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、本明細書において、平行などの要素間の関係性を示す用語、及び、要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
 また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化する。
 また、本明細書において、「第1」、「第2」などの序数詞は、特に断りの無い限り、ステップ及び構成要素等の数又は順序を意味するものではなく、ステップ及び同種の構成要素等の混同を避け、区別する目的で用いられている。
 (実施の形態)
 [構成]
 まず、実施の形態に係るガス識別システムの構成について説明する。
 図1は、本実施の形態に係るガス識別システム100の概略構成を示すブロック図である。
 図1に示されるように、本実施の形態に係るガス識別システム100は、センサ10と、暴露部20と、制御回路31と、取得回路32と、抽出回路33と、識別回路34と、メモリ40と、を備える。ガス識別システム100は、サンプルガスに暴露させたセンサ10の出力に基づいて、サンプルガスを識別する。サンプルガスは、例えば、識別の対象となる化学物質を含む。サンプルガスは、例えば、食品から捕集したガス、人体から採取した呼気、人体の周囲の空気、又は、建物の部屋から採取した空気等である。
 ガス識別システム100は、例えば、サンプルガスに含まれている化学物質を識別する。具体的には、ガス識別システム100は、化学物質として、複数の識別対象物質のうちのどの識別対象物質がサンプルガスに含まれているかを識別する。また、ガス識別システム100は、サンプルガスに識別対象物質が含まれているか否かを識別してもよい。
 識別対象物質は、例えば、揮発性有機化合物であるが、アンモニア及び一酸化炭素等の無機ガスであってもよい。ガス識別システム100は、例えば、匂いの識別に用いられる。この場合、揮発性有機化合物は、例えば、匂い成分となる分子である。
 センサ10は、ガスの吸着濃度に応じた信号を出力するセンサである。センサ10は、例えば、電気化学式、半導体式、電界効果トランジスタ型、表面弾性波型、水晶振動子型又は抵抗変化型等のセンサである。
 センサ10は、例えば、センシング部とセンシング部に電気的に接続される一対の電極とを有する。センシング部は、例えば、ガスの吸着濃度に応じて、電気抵抗値が変化する。センサ10のセンシング部の電気抵抗値に応じた信号は、例えば、一対の電極を介して電圧信号又は電流信号として取得回路32によって取得される。
 センシング部は、例えば、ガスを吸着する吸着材である樹脂材料と樹脂材料に分散する導電性粒子とで構成される。樹脂材料としては、例えば、ポリアルキレングリコール樹脂、ポリエステル樹脂及びシリコーン樹脂等が挙げられる。樹脂材料は、例えば、側鎖にガスクロマトグラフィーのカラムの固定相として市販されている材料である。耐久性及びガスの吸着性の観点から、樹脂材料は、例えば、カラムの固定相として市販されている、側鎖にフェニル基及びメチル基等の各種置換基を有するシリコーン樹脂であってもよい。また、センシング部は、樹脂材料と導電性粒子との構成に限らず、ガスの吸着によって電気抵抗値が変化する部材であればよい、センシング部は、金属酸化物等の無機材料で構成されてもよく、例えば、多孔性のセラミックスで構成されていてもよい。
 ガス識別システム100は、例えば、複数のセンサ10を備える。複数のセンサ10のうちの少なくとも2つのセンサ10それぞれのセンシング部(具体的には、センシング部を構成する樹脂材料)は、例えば、互いに異なる種類の材料によって構成される。また、全ての複数のセンサ10のそれぞれのセンシング部の材料の種類が互いに異なっていてもよい。互いに種類が異なる材料は、同じ化学物質に対して、互いに異なる吸着挙動を示す。そのため、複数のセンサ10は、同じ化学物質に対して異なる信号を出力する。これにより、複数のセンサ10それぞれの出力から異なる特徴量を抽出できるため、ガス識別システム100における識別精度を高めることができる。
 暴露部20は、制御回路31の制御に基づいて、センサ10をガスに暴露させる暴露機構である。具体的には、暴露部20は、第1期間、第1期間に続く第2期間、及び、第2期間に続く第3期間からなる測定期間のうち第2期間にのみセンサ10をサンプルガスに暴露させる。また、暴露部20は、第1期間及び第3期間にセンサ10をリファレンスガスに暴露させてもよい。リファレンスガスは、測定の基準となるガスであり、例えば、識別対象物質を含まないガスである。また、リファレンスガスは、例えば、識別対象物質よりもセンサ10のセンシング部に吸着されにくいガスである。リファレンスガスの具体例としては、空気及び窒素等の不活性ガス、並びに、サンプルガスから化学物質をフィルタ等によって除去したガス等が挙げられる。このように第1期間及び第3期間にリファレンスガスに暴露させたセンサ10からの信号が出力されることにより、周囲環境が変化した場合等でも測定毎の周囲環境に応じた基準となる信号が得られるため、このような信号を用いることで後述する識別精度を高めることができる。
 ここで、暴露部20の具体的な構成について説明する。図2は、本実施の形態に係る暴露部20の構成の一例を示す模式図である。図2に示されるように、暴露部20は、例えば、収容部21と、三方向電磁弁22と、吸気ポンプ23と、複数の配管25a、25b、25c、25d、25eと、を有する。
 配管25aの一端には、サンプルガスを導入するための吸気口26aが設けられている。吸気口26aは、例えば、サンプルガスで満たされた空間に設けられる。配管25bの一端には、リファレンスガスを導入するための吸気口26bが設けられている。吸気口26bは、例えば、リファレンスガスで満たされた空間に設けられる。配管25eの一端には、導入されたサンプルガス及びリファレンスガスを排出するための排気口26eが設けられている。
 収容部21は、センサ10を収容する箱型の容器である。収容部21の内部には、例えば、複数のセンサ10がアレイ状に配置される。収容部21には、配管25c及び配管25dそれぞれの一端が接続されている。後述する吸気ポンプ23が動作することにより、配管25cの一端から配管25dの一端に向かってガスが流れる。複数のセンサ10は、ガスの流れる流路に配置される。
 吸気口26aから導入されたサンプルガスは、配管25a、三方向電磁弁22及び配管25cを介して収容部21の内部に導入される。また、吸気口26bから導入されたリファレンスガスは、配管25b、三方向電磁弁22及び配管25cを介して収容部21の内部に導入される。収容部21の内部に導入されたサンプルガス及びリファレンスガスは、配管25d、吸気ポンプ23及び配管25eを介して、排気口26eから排出される。
 三方向電磁弁22は、収容部21に導入するガスを切り替えるための電磁弁である。三方向電磁弁22には、配管25aの他端が接続される入力ポートP1と、配管25bの他端が接続される入力ポートP2と、配管25cの他端が接続される出力ポートP3とが設けられている。三方向電磁弁22は、制御回路31の制御により、各ポートの開閉が制御される。三方向電磁弁22は、制御回路31の制御により、入力ポートP1と出力ポートP3とが導通した第1状態と、入力ポートP2と出力ポートP3とが導通した第2状態とを切り替える。第1状態では、入力ポートP1及び出力ポートP3が開であり、入力ポートP2が閉である。また、第2状態では、入力ポートP2及び出力ポートP3が開であり、入力ポートP1が閉である。
 吸気ポンプ23は、収容部21の内部にサンプルガス及びリファレンスガスを導入し、導入されたサンプルガス及びリファレンスガスを排気口26eから排出するためのポンプである。吸気ポンプ23は、制御回路31の制御により動作が制御される。吸気ポンプ23の吸気口は配管25dの他端に接続されている。また、吸気ポンプ23の排気口は、配管25eの他端に接続されている。
 このような構成によって、吸気ポンプ23が動作している状態で、三方向電磁弁22が第1状態である場合には、サンプルガスが収容部21の内部に導入される。これにより、暴露部20は、複数のセンサ10をサンプルガスに暴露させる。また、吸気ポンプ23が動作している状態で、三方向電磁弁22が第2状態である場合には、リファレンスガスが収容部21の内部に導入される。これにより、暴露部20は、複数のセンサ10をリファレンスガスに暴露させる。
 なお、暴露部20の構成は、図2に示される構成に限らず、センサ10をサンプルガスに暴露できる構成であれば、特に制限されない。暴露部20は、例えば、サンプルガス及びリファレンスガスが三方向電磁弁22を介さずに別の配管によって、収容部21の内部に導入される構成であってもよい。また、暴露部20は、吸気ポンプ23を備えず、キャリアガスを常時、収容部21へ流して、キャリアガス中にサンプルガスを混入させる構成であってもよい。また、リファレンスガスを導入せず、センサ10をサンプルガスに暴露させた後、吸気ポンプ23によって収容部21を真空にしてもよい。また、暴露部20は、サンプルガス及びリファレンスガスの水分又は微粒子等を除去する各種除去フィルタ、各配管の流量を調整する電磁調整弁、各配管の逆流を防止する逆止弁等をさらに備えていてもよい。
 再び、図1を参照し、制御回路31は、上述のように、暴露部20の動作、具体的には、三方向電磁弁22及び吸気ポンプ23の動作を制御する。また、制御回路31は、暴露部20の動作のタイミングを示す情報を取得回路32に出力してもよい。
 取得回路32は、測定期間においてセンサ10から出力される信号を取得する。取得回路32は、例えば、センサ10のセンシング部の電気抵抗値に対応して出力される信号として、電圧信号又は電流信号を取得する。
 抽出回路33は、取得回路32によって取得された信号のドリフトに対応する1以上の特徴量を抽出する。抽出回路33は、上記ドリフトに対応する特徴量以外の特徴量を、取得回路32によって取得された信号から抽出してもよい。センサ10が複数である場合には、抽出回路33は、複数のセンサ10それぞれが出力する信号から1以上の特徴量を抽出する。
 識別回路34は、学習済み論理モデルを用い、抽出回路33によって抽出された1以上の特徴量に基づいて、サンプルガスを識別する。識別回路34は、例えば、複数の識別対象物質のうちのどの識別対象物質がサンプルガスに含まれているかを識別する。また、識別回路34は、サンプルガスに識別対象物質が含まれているか否かを識別してもよい。識別回路34は、1以上の特徴量を入力として、識別結果を出力する。識別回路34は、例えば、識別結果をガス識別システムに設けられたディスプレイ(図示省略)等に表示させるための情報を出力する。識別回路34は、識別結果を示す情報をメモリ40に出力し、当該情報をメモリ40に記憶させてもよい。また、識別回路34は、識別結果を示す情報を外部の装置に出力してもよい。
 制御回路31、取得回路32、抽出回路33及び識別回路34は、上記処理を行うプログラムを内蔵するマイコン又はプロセッサによって実現される。制御回路31、取得回路32、抽出回路33及び識別回路34は、それぞれ、上記処理を行う専用の論理回路によって実現されてもよい。
 メモリ40は、識別回路34に用いられる学習済み論理モデルが記憶される記憶装置である。メモリ40は、例えば、半導体メモリによって実現される。
 学習済み論理モデルは、サンプルガスを識別する論理モデルである。具体的には、学習済み論理モデルは、例えば、複数の識別対象物質のうちのどの識別対象物質がサンプルガスに含まれているかを識別する論理モデルである。学習済み論理モデルは、例えば、抽出回路33によって抽出される1以上の特徴量を入力として、複数の識別対象物質のうちのどの識別対象物質がサンプルガスに含まれているかを出力する。学習済み論理モデルは、サンプルガスに識別対象物質が含まれているか否かを出力してもよい。
 学習済み論理モデルは、例えば、既知の識別対象物質と、既知の識別対象物質を用いて抽出回路33によって抽出された1以上の特徴量とを教師データに用いて機械学習を行うことで構築される。機械学習における論理モデルの構築に用いられる方法は、特に制限されない。機械学習における論理モデルの構築には、例えば、ニューラルネットワークが用いられる。つまり、学習済み論理モデルは、例えば、ニューラルネットワークを含む。機械学習における論理モデルの構築には、ランダムフォレスト、サポートベクターマシン又は自己組織化マップ等が用いられてもよい。
 なお、ガス識別システム100は、例えば、上記構成要素を含む単一のガス識別装置として実現されるが、複数の装置によって実現されてもよい。ガス識別システム100が複数の装置によって実現される場合、ガス識別システム100が備える構成要素は、複数の装置にどのように振り分けられてもよい。ここで、図3を用いて、複数の装置で実現されるガス識別システムの例について説明する。図3は、実施の形態の変形例に係るガス識別システム100aの概略構成を示すブロック図である。
 図3に示されるように、ガス識別システム100aは、検出装置200と識別装置300とを備える。
 検出装置200は、センサ10と、暴露部20と、制御回路31と、検出部50と、通信部51とを備える。センサ10、暴露部20及び制御回路31は、例えば、上述のガス識別システム100と同じ構成である。
 検出部50は、測定期間においてセンサ10から出力される信号を取得する。例えば、センサ10のセンシング部の電気抵抗値に対応する信号として、電圧信号又は電流信号を取得する。また、制御回路31から暴露部20を制御するタイミングを示す情報を取得する。検出部50は、取得した信号及び情報を、通信部51を用いて識別装置300に送信する。検出部50は、上記処理を行うプログラムを内蔵するマイコン又はプロセッサによって実現される。検出部50は、上記処理を行う専用の論理回路によって実現されてもよい。
 通信部51は、検出装置200が、ネットワークの一例であるインターネット等の広域通信ネットワーク90を介して識別装置300と通信を行うための通信モジュール(通信回路)である。通信部51は、有線通信を行ってもよく、無線通信を行ってもよい。通信部51が行う通信に用いられる通信規格については、特に限定されない。
 識別装置300は、取得回路32aと、抽出回路33と、識別回路34と、メモリ40と、通信部60と、を備える。抽出回路33、識別回路34及びメモリ40は、例えば、上述のガス識別システム100と同じ構成である。
 取得回路32aは、広域通信ネットワーク90を介して、検出部50が取得した、測定期間においてセンサ10から出力される信号を取得する。取得回路32aは、通信部60を用いて、広域通信ネットワーク90を介して、検出装置200と通信する。
 通信部60は、識別装置300が、広域通信ネットワーク90を介して検出装置200と通信を行うための通信モジュール(通信回路)である。通信部60は、有線通信を行ってもよく、無線通信を行ってもよい。通信部60が行う通信に用いられる通信規格については、特に限定されない。
 [動作]
 次に、本実施の形態に係るガス識別システムの動作について説明する。以下では、主に、ガス識別システム100の動作について説明するが、特に記載が無い限り、ガス識別システム100aについても同様の動作が行われる。
 図4は、本実施の形態に係るガス識別システム100の動作を説明するためのフローチャートである。言い換えると、図4は、ガス識別システム100が行うガス識別方法のフローチャートである。本実施の形態に係るガス識別方法は、暴露ステップと、取得ステップと、抽出ステップと、識別ステップと、を含む。本明細書において、暴露ステップは第4ステップの一例であり、取得ステップは第1ステップの一例であり、抽出ステップは第2ステップの一例であり、識別ステップは第3ステップの一例である。
 (1)暴露ステップ及び取得ステップ
 図4に示されるように、まず、暴露ステップでは、暴露部20は、測定期間のうち第2期間にのみセンサ10をサンプルガスに暴露させる(ステップS11)。また、暴露部20は、第1期間及び第3期間にセンサ10をリファレンスガスに暴露させる。例えば、制御回路31が、吸気ポンプ23を動作させ、三方向電磁弁22の各ポートの開閉を制御することで、第1期間及び第3期間にセンサ10をリファレンスガスに暴露させ、第2期間にセンサ10をサンプルガスに暴露させる。ステップS11では、例えば、連続する複数の測定期間において、測定期間のうち第2期間にのみセンサ10をサンプルガスに暴露させる。
 そして、取得ステップでは、取得回路32は、ステップS11で暴露させたセンサ10から出力される信号を取得する(ステップS12)。つまり、取得回路32は、測定期間のうち第2期間にのみセンサ10をサンプルガスに暴露させたセンサ10から出力される信号を取得する。
 なお、ガス識別システム100aでは、検出部50が、ステップS11で暴露させたセンサ10から出力される信号を取得する。取得回路32aは、検出部50から、広域通信ネットワーク90を介して、ステップS11で暴露させたセンサ10から出力される信号を取得する。これにより、識別装置300と離れた場所にセンサ10が存在する場合でも、取得回路32aは、センサ10から出力される信号を取得できる。
 図5は、暴露部20への制御信号及びセンサ10から出力される信号の一例を示す図である。図5では、第1期間T1、第2期間T2及び第3期間T3からなる測定期間Tmにおける三方向電磁弁22への制御信号及びセンサ10から出力される信号の強度が示されている。図5の(a)は、制御回路31から出力される制御信号の時間変化の例を示すグラフである。図5の(a)において、制御信号がHighレベルの場合には、三方向電磁弁22は第1状態になるように制御され、制御信号がLowレベルの場合には、三方向電磁弁22は第2状態になるように制御される。図5の(b)は、センサ10から出力される信号の強度(例えば電圧)の時間変化の例を示すグラフである。
 ステップS11において、例えば、図5の(a)に示されるように、第1期間T1及び第3期間T3では、三方向電磁弁22が第2状態であり、暴露部20はセンサ10をリファレンスガスに暴露させる。また、第2期間T2においては、三方向電磁弁22が第1状態であり、暴露部20はセンサ10をサンプルガスに暴露させる。その結果、ステップS12で取得される信号は、例えば、図5の(b)に示されるように変化する。まず、センサ10がリファレンスガスに暴露される第1期間T1においては、信号の値はほとんど変化しない。次に、センサ10がサンプルガスに暴露される第2期間T2において、センサ10のセンシング部がサンプルガス(主にはサンプルガスに含まれる化学物質)を吸着することで信号の値が変動(例えば上昇)する。そして、センサ10がリファレンスガスに再び暴露される第3期間T3において、センサ10のセンシング部からサンプルガス(主にはサンプルガスに含まれる化学物質)が離脱することで、第2期間で変動した信号の値が基準値に戻ろうとする。基準値は、例えば、センサ10をサンプルガスに暴露させることで信号の値が変動し始める前の値である。
 第1期間、第2期間及び第3期間の長さは、特に制限されず、例えば、センサ10の種類及び識別対象物質の種類等に応じて設定される。第1期間T1の長さは、例えば、1秒以上10秒以下である。第2期間T2の長さは、例えば、5秒以上30秒以下である。第3期間の長さは、例えば、10秒以上100秒以下である。
 また、ステップS11では、例えば、暴露部20は、連続する複数の測定期間Tmにおいて、各測定期間Tmのうち第2期間にのみセンサ10をサンプルガスに暴露させる。そして、ステップS12では、取得回路32は、連続する複数の測定期間Tmにおいてセンサ10から出力される信号を取得する。
 図6は、連続する複数の測定期間において、センサ10から出力される信号の一例を示す図である。図6に示されるように、取得回路32は、例えば、7回連続する測定期間Tm-1からTm-7において、センサ10から出力される信号を取得する。各測定期間Tm-1からTm-7では、図5で説明した動作が行われ、同じ動作が繰り返し行われる。このように、2回目以降の測定期間Tm-2からTm-7では、第2期間T2において変動した信号の値が基準値に戻りきる前に、次の測定期間Tmが開始し、詳細を後述するドリフトが大きくなる。なお、測定期間Tmの連続する回数は特に制限されず、例えば、センサ10の種類及び識別対象物質の種類等に応じて設定される。
 (2)抽出ステップ
 再び図4を参照し、次に、抽出ステップでは、抽出回路33は、ステップS12で取得された信号のドリフトに対応する1以上の特徴量を抽出する(ステップS13)。抽出回路33は、取得された信号の値を用いて、1以上の特徴量を抽出する。
 センサ10から出力される信号は、図6に示されるように、ベースラインが基準値から解離し、ドリフトが生じている。このような信号のドリフトは、例えば、センサ10のセンシング部におけるガスの抜けにくさに起因すると考えられ、サンプルガス(具体的には、サンプルガスに含まれる化学物質)とセンサ10のセンシング部の材料との組み合わせに応じて大きさが変化する。例えば、サンプルガスがセンサ10のセンシング部から抜けにくい場合には、センサ10からの出力の値が基準値にまで戻らずに、ドリフトが大きくなる。一方、サンプルガスがセンサ10のセンシング部から抜けやすい場合には、ドリフトは小さくなる、又は、ドリフトは生じない。抽出回路33は、サンプルガスの識別に用いるための、信号のドリフトに対応する1以上の特徴量を抽出する。
 抽出回路33は、例えば、取得された信号から、信号の値として、第1値、第2値及び第3値の少なくとも1つを取得し、取得した値を用いて1以上の特徴量を抽出する。
 まず、抽出回路33に取得される第1値、第2値及び第3値について説明する。
 図7及び図8は、抽出回路33が取得する信号の値を説明するための図である。図7及び図8には、取得回路32によって取得されたセンサ10から出力される信号の強度(例えば電圧)の時間変化が示されている。
 第1値は、第2期間T2においてセンサ10がサンプルガスに暴露されることによって変動した信号の値が第3期間T3において基準値に戻ろうとしている際の信号の値である。第1値は、例えば、図7に示されるように、第3期間T3における所定の時点での信号の値V1である。また、第1値は、図8に示されるように、第3期間T3における所定の区間S1での信号の値の平均値であってもよい。区間S1の長さは、例えば、0.1秒以上5秒以下である。
 第1値は、第3期間T3における最後の信号の値であってもよい。この場合、第1値は、第3期間T3における最後の時点での信号の値V1であってもよく、第3期間T3における最後の時点を含む区間S1での信号の値の平均値であってもよい。これにより、抽出回路33は、第3期間T3の間で安定した信号の値を第1値として用いることができる。また、第1値は、第3期間T3の開始から所定の時間経過時点の信号の値V1であってもよく、第3期間T3の開始から所定の時間経過後から開始する区間S1での信号の値の平均値であってもよい。所定の時間は、例えば、第3期間T3の半分以上の長さの時間である。
 このように、第1値は、センサ10をサンプルガスに暴露させる第2期間T2の後の、センサ10をサンプルガスに暴露させていない第3期間T3での信号の値であるため、サンプルガスの暴露の影響を受けにくく、信号におけるベースラインの変動を示す値として好適である。
 第2値は、第1期間T1における最後の信号の値である。第2値は、例えば、図7に示されるように、第1期間T1における最後の時点での信号の値V2である。また、第2値は、図8に示されるように、第1期間T1における最後を含む区間S2での信号の値の平均値であってもよい。区間S2の長さは、例えば、0.1秒以上5秒以下である。
 このように、第2値は、センサ10をサンプルガスに暴露させる第2期間T2の前の、センサ10をサンプルガスに暴露させていない第1期間T1での信号の値であるため、信号の基準値を示す値として好適である。
 第3値は、第2期間T2においてセンサ10がサンプルガスに暴露されることによって変動した際の信号の値である。第3値は、例えば、図7に示されるように、第2期間T2における所定の時点での信号の値V3である。また、第3値は、図8に示されるように、第2期間T2における所定の区間S3での信号の値の平均値であってもよい。区間S3の長さは、例えば、0.1秒以上5秒以下である。
 第3値は、例えば、第2期間T2において信号の値が最大となるタイミングの信号の値である。この場合、第3値は、第2期間T2において信号の値が最大となる時点の信号の値V3であってもよく、第2期間T2において信号の値が最大となる時点を含む区間S3での信号の値の平均値であってもよい。また、第3値は、第2期間T2の開始から所定の時間経過時点の信号の値V3であってもよく、第2期間T2の開始から所定の時間経過後から開始する区間S3での信号の値の平均値であってもよい。所定の時間は、例えば、第2期間T2の半分以上の長さの時間である。
 第3値は、センサ10へのサンプルガスの吸着により変動した際の値であり、信号のベースラインがずれた場合には、第3値もずれることになる。そのため、第3値を用いてドリフトに対応する特徴量を抽出することが可能である。
 抽出回路33は、例えば、連続する複数の測定期間Tm1からTm7のうちの2以上の測定期間それぞれにおいて、センサ10から出力される信号から、第1値、第2値及び第3値の少なくとも1つを取得する。このように、連続する複数の測定期間Tm1からTm7の信号を取得することで、取得される信号のドリフトが大きくなりやすく、後述する識別精度を高めることができる。
 図9及び図10は、連続する複数の測定期間Tm-1からTm-7において抽出回路33が取得する信号の値を説明するための図である。図9及び図10には、取得回路32によって取得されたセンサ10から出力される信号の強度(例えば電圧)の時間変化が示されている。
 図9及び図10に示されるように、抽出回路33は、第1値を取得する場合、1回目の測定期間Tm-1から7回目の測定期間Tm-7それぞれの第1値のうちの少なくとも1つを取得する。第2値及び第3値を取得する場合についても、第1値を取得する場合と同様である。抽出回路33は、複数の測定期間Tmにおいて第1値、第2値又は第3値を取得する場合、例えば、各測定期間Tmにおいて、同じタイミングで第1値、第2値又は第3値は取得する。
 具体的には、抽出回路33は、例えば、図7に示される信号の値V1に対応する信号の値V1-1からV1-7のうちの少なくとも1つを第1値として取得する。または、抽出回路33は、例えば、図8に示される区間S1に対応する区間S1-1からS1-7のうちの少なくとも1つの区間での信号の値の平均値を第1値として取得する。
 また、抽出回路33は、例えば、図7に示される信号の値V3に対応する信号の値V3-1からV3-7のうちの少なくとも1つを第3値として取得する。または、抽出回路33は、例えば、図8に示される区間S3に対応する区間S3-1からS3-7のうちの少なくとも1つの区間での信号の値の平均値を第3値として取得する。なお、図示されていないが、第2値を取得する場合も、第1値及び第3値と同様である。
 次に、抽出回路33による特徴量の抽出方法の具体例について説明する。
 まず、抽出回路33による特徴量の抽出方法の第1例について説明する。第1例では、抽出回路33は、例えば、図9及び図10に示される連続する複数の測定期間Tm-1からTm-7のうち、2以上の測定期間Tmそれぞれにおける第1値を取得し、取得した第1値同士の差分を特徴量として抽出する。抽出回路33は、例えば、離間した2つの測定期間Tmそれぞれの第1値同士の差分を特徴量として抽出する。離間した2つの測定期間Tmは、例えば、連続する複数の測定期間Tm-1からTm-7のうち2回目及び最後の測定期間Tmである測定期間Tm-2及び測定期間Tm-7である。これにより、第1値同士の差分が大きくなりやすく、後述する識別における精度が高くなりやすい。
 また、抽出回路33は、連続する2回の測定期間Tm(例えば、測定期間Tm-2及び測定期間Tm-3)それぞれの第1値同士の差分を特徴量として抽出してもよい。
 また、抽出回路33は、第1値の差分をとるための2回の測定期間Tmの組み合わせを複数通りに変えて、複数の特徴量を抽出してもよい。抽出回路33は、例えば、連続する2回の測定期間Tmの全ての組み合わせにおける第1値同士の差分を、複数の特徴量として抽出してもよい。2回の測定期間Tmの組み合わせを複数通りに変える場合、抽出回路33は、複数抽出される第1値同士の差分のそれぞれを特徴量として抽出してもよく、複数抽出される第1値同士の差分の平均値を特徴量として抽出してもよい。
 また、第1例において、抽出回路33は、第1値の代わりに、第3値を取得してもよい。つまり、抽出回路33は、図9及び図10に示される連続する複数の測定期間Tm-1からTm-7のうち、2以上の測定期間Tmそれぞれにおける第3値を取得し、取得した第3値同士の差分を特徴量として抽出してもよい。この場合、上述の説明の第1値を第3値に読み替えることで説明される。また、抽出回路33は、上述の第1値同士の差分及び第3値同士の差分の両方をそれぞれ特徴量として抽出してもよい。
 このように、第1例では、抽出回路33は、複数の測定期間Tmのそれぞれの同じタイミングでの値の差分をとることで、信号のベースラインが変動したことを示すドリフトに対応する特徴量を抽出できる。また、複数の測定期間Tmにまたがって取得された第1値同士又は第3値同士の差分をとるため、抽出される特徴量が大きくなりやすい。
 次に、抽出回路33による特徴量の抽出方法の第2例について説明する。第2例では、抽出回路33は、測定期間Tmにおける第1値及び第2値を取得し、取得した第1値と第2値との差分を特徴量として抽出する。抽出回路33は、例えば、図9及び図10に示される連続する複数の測定期間Tm-1からTm-7のうち、少なくとも1つの測定期間Tmにおける第1値及び第2値を取得し、同じ測定期間Tmから取得した第1値と第2値との差分を特徴量として抽出する。また、複数の測定期間における第1値と第2値との差分を抽出する場合、抽出回路33は、複数抽出される第1値と第2値との差分のそれぞれを特徴量として抽出してもよく、複数抽出される第1値と第2値との差分の平均値を特徴量として抽出してもよい。
 このように、第2例では、抽出回路33は、第1値に対して基準値となる第2値との差分をとることで、信号のドリフトに対応する特徴量を抽出できる。
 次に、抽出回路33による特徴量の抽出方法の第3例について説明する。第3例では、抽出回路33は、例えば、図9及び図10に示される連続する複数の測定期間Tm-1からTm-7のうち、2以上の測定期間Tmそれぞれにおける第1値を取得する。抽出回路33は、例えば、連続する複数の測定期間Tm-1からTm-7のうち2回目の測定期間Tm-2以降の全ての測定期間Tmそれぞれにおける第1値を取得する。
 また、2回目の測定期間Tm-2以降の測定期間Tmのうち、抽出回路33が第1値を取得しない測定期間Tmがあってもよい。つまり、抽出回路33は、連続する複数の測定期間Tm-1からTm-7のうち2回目の測定期間Tm-2以降の1以上の測定期間Tmにおける第1値を取得してもよい。例えば、抽出回路33は、連続する複数の測定期間Tm-1からTm-7のうち3回目の測定期間Tm-3以降、又は、4回目の測定期間Tm-4以降の全ての測定期間Tmそれぞれにおける第1値を取得してもよい。
 また、抽出回路33は、連続する複数の測定期間Tm-1からTm-7の全ての測定期間Tmそれぞれにおける第1値を取得してもよい。
 そして、抽出回路33は、取得した第1値を用いて近似式を導出し、導出した近似式の係数を特徴量として抽出する。近似式は、例えば、各測定期間Tmにおける第1値を時間の関数とした場合の近似式である。近似式は、例えば、一次式(つまり直線近似)又は二次式である。近似式は、二次式以外の多項式であってもよく、指数、対数又は累乗の式であってもよい。近似式の導出には、公知の方法が用いられうる。一次式の近似式の場合、例えば、最小二乗法を用いて近似式を導出することができる。
 また、第3例において、抽出回路33は、第1値の代わりに、第3値を取得してもよい。つまり、抽出回路33は、図9及び図10に示される連続する複数の測定期間Tm-1からTm-7のうち、2以上の測定期間Tmそれぞれにおける第3値を取得し、取得した第3値を用いて近似式を導出し、導出した近似式の係数を特徴量として抽出してもよい。この場合、上述の説明の第1値を第3値に読み替えることで説明される。また、抽出回路33は、上述の第1値を用いた近似式の係数及び第3値を用いた近似式の係数の両方をそれぞれ特徴量として抽出してもよい。
 このように、第3例では、信号のベースラインに対応する近似式を導出することになるため、抽出回路33は、信号のドリフトに対応する特徴量を抽出できる。また、複数の測定期間Tmそれぞれにおける第1値又は第3値を用いた近似式の係数を特徴量として抽出することで、第1値又は第3値のバラツキが平準化された特徴量を抽出できる。
 なお、第1例及び第3例において、第1値又は第2値を取得する測定期間Tmの数は、3以上であってもよく、4以上であってもよい。
 また、抽出回路33は、上述の第1例から第3例のうちのいずれかの方法を用いて少なくとも1つの特徴量を抽出してもよく、上述の第1例から第3例のうちの2つ以上の方法を用いて複数の特徴量を抽出してもよい。
 また、上述の第1例から第3例において、抽出回路33は、例えば、図9及び図10に示される複数の測定期間Tm-1からTm-7における2回目以降の測定期間Tm(つまり測定期間Tm-2以降)で取得した信号に基づいて1以上の特徴量を抽出してもよい。これにより、ドリフトが大きくなりやすい2回目以降の測定期間Tmで出力される信号を用いて特徴量が抽出される。そのため、サンプルガスの種類に応じて、抽出される特徴量の違いが大きくなりやすく、後述する識別精度をさらに高めることができる。また、抽出回路33が2回目以降の測定期間Tmで取得した信号に基づいて1以上の特徴量を抽出する場合、2回目以降の測定期間Tmのうち、抽出回路33が第1値を取得しない測定期間Tmがあってもよい。つまり、抽出回路33は、2回目以降の測定期間Tmであれば、いずれの測定期間Tmで取得した信号に基づいて1以上の特徴量を抽出してもよい。例えば、抽出回路33は、複数の測定期間Tm-1からTm-7における3回目以降の測定期間Tmで取得した信号に基づいて1以上の特徴量を抽出してもよく、複数の測定期間Tm-1からTm-7における4回目以降の測定期間Tmで取得した信号に基づいて1以上の特徴量を抽出してもよい。
 なお、抽出回路33は、取得された信号のドリフトに対応する特徴量以外の特徴量を抽出してもよい。抽出回路33は、例えば、第2期間T2及び第3期間T3のうちの少なくとも一方における所定の間隔での信号の値をそれぞれ特徴量として取得してもよい。所定の間隔は、例えば、0.1秒以上10秒以下である。
 また、抽出回路33は、例えば、さらに識別精度を高めるために、ドリフトに対応する特徴量に加えて、第2期間T2及び第3期間T3のうちの少なくとも一方における、信号の値の変化割合及び変化量の少なくとも一方を特徴量として取得してもよい。図11は、センサ10から出力される信号の値の変化割合(つまり傾き)及び変化量を説明するための図である。図11には、取得回路32によって取得されたセンサ10から出力される信号の強度(例えば電圧)の時間変化が示されている。図11のグラフにおいて、点aから点dは、それぞれ、第2期間T2の開始から所定の時間経過後の時間と信号の値とを示す点であり、点e及び点fは、それぞれ第3期間T3の開始から所定の時間経過後の時間と信号の値とを示す点である。点の数及び各点の位置は、センサ10の種類及び識別対象物質の種類等に応じて設定される。また、各点の位置は、所定の時間ではなく、信号の波形の形状から決定されてもよい。
 抽出回路33は、例えば、時間と信号強度とのグラフにおける2点の間の傾きを特徴量として抽出する。抽出される傾きは、例えば、第2期間T2における点aと点bとを結んだ線の傾きSU1、点bよりも後の時間の第2期間T2における点cと点dとを結んだ線の傾きSU2、及び、第3期間T3における点eと点fとを結んだ線の傾きSD等である。また、抽出回路33は、時間と信号強度のグラフにおける点の所定の時点からの変化量を特徴量として抽出する。抽出される変化量は、例えば、第2期間T2開始時点の信号の値と点dにおける信号の値との差である変化量DU、及び、第3期間T3開始時点の信号の値と点fにおける信号の値との差である変化量DDである。
 (3)識別ステップ
 再び図4を参照し、次に、識別ステップでは、識別回路34は、サンプルガスを識別する学習済み論理モデルを用い、ステップS13で抽出された1以上の特徴量に基づいて、サンプルガスを識別し、識別結果を出力する(ステップS14)。識別回路34は、例えば、学習済み論理モデルを用いて、1以上の特徴量を入力として、複数の識別対象物質のうちのどの識別対象物質がサンプルガスに含まれているかを示す情報を出力する。識別回路34は、サンプルガスに識別対象物質が含まれているか否かを示す情報を出力してもよい。
 学習済み論理モデルがニューラルネットワークを含む場合、例えば、ニューラルネットワークの入力ノードに、1以上の特徴量が入力され、出力ノードから複数の識別対象物質それぞれについてサンプルガスに含まれている確率が出力される。つまり、入力ノード数は、入力する1以上の特徴量の数であり、出力ノード数は、識別の対象となる複数の識別対象物質の数である。学習済み論理モデルは、複数の識別対象物質のうち、出力ノードから出力される確率が最も高い識別対象物質を出力する。また、学習済み論理モデルは、出力ノードから出力される確率に基づいて、例えば、閾値以上の確率であるか否かに基づいて、サンプルガスに識別対象物質が含まれているか否かを出力してもよい。
 以上のように、ガス識別システム100が行うガス識別方法は、センサ10を用いたガス識別方法であって、センサ10から出力される信号を取得する取得ステップ(ステップS12)と、取得された信号のドリフトに対応する1以上の特徴量を抽出する抽出ステップ(ステップS13)と、学習済み論理モデルを用い、抽出された1以上の特徴量に基づいて、サンプルガスを識別し、識別結果を出力する出力ステップ(ステップS14)と、を含む。
 これにより、抽出ステップでは、センサ10がサンプルガスに暴露される第2期間の信号の出力、つまり、センサ10へのガスの吸着濃度に依存した特徴量とは異なる、信号のドリフトに対応する1以上の特徴量を抽出する。そのため、識別ステップでは、信号のドリフトに基づいた識別が行われ、ガスの吸着濃度に依存したセンサからの出力が類似するサンプルガスを識別する場合でも、高い識別精度でサンプルガスを識別できる。
 例えば、センサ10において、図6に示される信号のように、出力される信号のドリフトが大きくなる第1のサンプルガスと、第1のサンプルガスと第2期間における信号の波形は同じであるが、図6に示される信号と異なり、信号のドリフトがほとんど生じない第2のサンプルガスとを、精度よく識別することができる。
 (実施例)
 次に、本開示を実施例に基づき、具体的に説明する。ただし、本開示は、以下の実施例によって何ら限定されるものではない。
 [識別テスト用信号の取得]
 まず、収容部21に配置された16個のセンサ10を用いて、16個のセンサ10それぞれから出力される信号を取得した。
 <センサ>
 16個のセンサには、それぞれ、センシング部の材料の異なるセンサ10を用いた。例えば、センシング部の材料が、メチルフェニルシリコーン(側鎖フェニル基75%)又はメチルフェニルシリコーン(側鎖フェニル基35%)等の樹脂材料で構成されるセンサ10を用いた。
 <ガス>
 リファレンスガスには収容部21が配置された測定室中の空気を用いた。また、サンプルガスには、下記の5種類の化学物質をそれぞれ測定室中の空気に揮発させて得られる5種類のサンプルガスAからEを用いた。つまり、サンプルガスAからサンプルガスEは、それぞれ、下記の対応する化学物質を含む。
・サンプルガスA:フェニルエチルアルコール
・サンプルガスB:メチルシクロペンテノロン
・サンプルガスC:イソ吉草酸
・サンプルガスD:ウンデカラクトン
・サンプルガスE:スカトール
 <電圧信号の取得>
 電圧信号の取得操作としては、まず、5秒間の第1期間において16個のセンサ10をリファレンスガスに暴露させ、続いて、10秒間の第2期間において16個のセンサ10をサンプルガスに暴露させ、続いて、25秒間の第3期間において16個のセンサ10をリファレンスガスに暴露させた。1回の電圧信号の取得操作において、第1期間、第2期間及び第3期間からなる測定期間の暴露操作を連続して7回繰り返した。このように、1回の取得操作では、7回の連続した測定期間において、16個のセンサ10をサンプルガス及びリファレンスガスに暴露させ、16個のセンサ10それぞれから出力される電圧信号を取得した。つまり、1回の信号電圧の取得操作により、16個のセンサ10それぞれに対応する16通りの電圧信号で構成される電圧信号セットを取得した。また、このような電圧信号セットの取得操作を、サンプルガスAからEに対して、合計158回実施した。具体的には、サンプルガスAに対して、30回電圧信号セットを取得し、サンプルガスBからEに対して、32回ずつ電圧信号セットを取得した。
 [特徴量の抽出]
 上記の[識別テスト用信号の取得]によって得られた、サンプルガスAからEに対応する合計158セットの電圧信号セットのそれぞれから、特徴量を抽出した。
 <参考例>
 参考例における特徴量の抽出では、電圧信号セットを構成する16通りの電圧信号のそれぞれから、図11に示される傾きSU1、SU2及びSD並びに変化量DU及びDDの5つの特徴量を抽出した。つまり1セットの電圧信号セットに対して、16通り×5つ=80の特徴量で構成される特徴量セットを抽出した。このようにして、158セットの電圧信号セットそれぞれの特徴量セットを抽出し、158セットの参考例における特徴量セットを抽出した。
 <実施例>
 実施例における特徴量の抽出では、電圧信号セットを構成する16通りの電圧信号のそれぞれから、参考例と同じ5つの特徴量に加え、信号のドリフトに対応する特徴量である、図9に示される値V1-7と値V1-2との差分、及び、値V3-7と値V3-2との差分の合計7つの特徴量を抽出した。つまり1セットの電圧信号セットに対して、16通り×7つ=112の特徴量で構成される特徴量セットを抽出した。このようにして、158セットの電圧信号セットそれぞれの特徴量セットを抽出し、158セットの実施例における特徴量セットを抽出した。
 [識別テスト]
 上述の5種類の化学物質を識別対象物質とした場合に、5つの識別対象物質のうちどの識別対象物質がサンプルガスに含まれているかを識別するテストを実施した。
 <特徴量のセットの振り分け>
 158セットの参考例及び実施例における特徴量セットを、サンプルガスの種類に関係なく、コンピュータによってランダムに、128セットの参考例及び実施例における訓練用特徴量セットと、32セットの参考例及び実施例における予測用特徴量セットとに振り分けた。なお、上記の特徴量の抽出前に振り分けが実施されてもよい。
 <学習済み論理モデルの構築>
 参考例及び実施例それぞれにおける訓練用特徴量セットについての、128セットの訓練用特徴量セットと、128セットの訓練用特徴量セットに対応するサンプルガスに含まれる識別対象物質とを教師データとして、ノード数が5の隠れ層1層を含むニューラルネットワークを用いて機械学習を行うことで、識別対象物質を識別する学習済み論理モデルを構築した。ニューラルネットワークの入力は、1セットの特徴量セットを構成する特徴量であり、ニューラルネットワークの出力は、5つの識別対象物質のそれぞれがサンプルガスに含まれる確率である。学習済み論理モデルでは、最も高い確率の識別対象物質が、サンプルガスに含まれる識別対象物質であると識別される。
 <サンプルガスの識別>
 参考例及び実施例それぞれの32セットの予測用特徴量セットを構成する特徴量を入力として、上記で構築された学習済み論理モデルを用いて、サンプルガスに含まれる識別対象物質の識別を行った。また、158セットに対する訓練用特徴量セットと予測用特徴量セットとの振り分けを変えて、学習済み論理モデルを構築しなおし、サンプルガスに含まれる識別対象物質の識別を合計3回行った。
 参考例における予測用特徴量セットを用いた1回目から3回目の識別の結果を表1から表3に示す。また、実施例における予測用特徴量セットを用いた1回目から3回目の識別の結果を表4から表6に示す。
 表1から表6において、最上部のアルファベット及び最左部のアルファベットは、それぞれ、サンプルガスAからサンプルガスEに対応するアルファベットである。また、各セルには、セルが位置する列の最上部に記載されたサンプルガスAからサンプルガスEに対応する信号から抽出された予測用特徴量セットを構成する特徴量を入力した際に、学習済み論理モデルによって、当該セルが位置する行の最左部に記載されたサンプルガスに含まれる識別対象物質であると識別された回数が記載されている。つまり、最上部と最左部とに記載されたサンプルガスが同じになるセルの数値が、識別が正しかった回数であり、最上部と最左部とに記載されたサンプルガスが異なるセルの数値が、識別が間違っていた回数である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1から表3に示されるように、参考例においては、サンプルガスD及びサンプルガスEの識別において、識別を間違えた回数が多かった。32セットの予測用特徴量セットを入力した中で、間違った識別結果が出力された割合、つまり誤判定の割合は、1回目から3回目それぞれで12.5%、15.6%及び18.8%であり、1回目から3回目の平均では15.6%であった。なお、サンプルガスAからサンプルガスCの識別においては、誤判定は無かった。
 それに対して、表4から表6に示されるように、実施例においては、サンプルガスD及びサンプルガスEの識別において、識別を間違えた回数が参考例よりも少なかった。32セットの予測用特徴量セットを入力した中で、間違った識別結果が出力された割合、つまり誤判定の割合は、1回目から3回目それぞれで9.4%、3.1%及び3.1%であり、1回目から3回目の平均では5.2%であった。このように、実施例では、参考例よりも誤判定の割合が10%以上低下した。なお、サンプルガスAからサンプルガスCの識別においては、誤判定は無かった。
 以上の結果から、ドリフトに対応する特徴量を用いた実施例の結果は、ドリフトに対応する特徴量を用いていない参考例の結果よりも誤判定の割合が低くなり、識別精度が高められていることが分かる。
 センサ10(例えば、センシング部の材料がメチルフェニルシリコーンで構成されるセンサ10)から取得された信号の波形を確認すると、センサ10をサンプルガスAに暴露させた場合と、センサ10をサンプルガスBに暴露させた場合と、センサ10をサンプルガスCに暴露させた場合とで、第2期間における信号の波形が異なっていた。そのため、参考例及び実施例の両方において、サンプルガスAからサンプルガスCの識別精度は高かったと考えられる。
 一方、センサ10をサンプルガスDに暴露させた場合と、センサ10をサンプルガスEに暴露させた場合とで、第2期間における信号の波形はほとんど同じであった。また、サンプルガスEに対応する信号のドリフトは、サンプルガスDに対応する信号のドリフトよりも大きかった。そのため、特に参考例において誤判定が発生しやすく、ドリフトに対応した特徴量を用いた実施例の方が、識別精度が高かったと考えられる。
 (他の実施の形態)
 以上、本開示に係るガス識別システム及びガス識別方法について、実施の形態及び実施例に基づいて説明したが、本開示は、これらの実施の形態及び実施例に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態及び実施例に施したもの、並びに、実施の形態及び実施例における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
 また、上記実施の形態では、暴露部20は、第1期間及び第3期間においてセンサ10をリファレンスガスに暴露させていたが、これに限らない。暴露部20は、第1期間及び第3期間にセンサ10をサンプルガスに暴露させなければよく、例えば、リファレンスガスに暴露させる代わりに、サンプルガスを吸気させセンサ10を真空雰囲気に暴露させてもよい。
 また、例えば、ガス識別システム100aは、検出装置200と識別装置300とを備えたが、これに限らない。ガス識別システム100aは、識別装置300のみで構成されていてもよい。この場合、例えば、図4におけるステップS11の処理は省略され、取得回路32aは、例えば、すでに検出されたセンサの信号を、ネットワークを介して取得する。
 また、例えば、上記実施の形態において、本開示に係るガス識別システムの構成要素の全部又は一部は、専用のハードウェアで構成されてもよく、或いは、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサ等のプログラム実行部が、HDD又は半導体メモリ等の記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、本開示に係るガス識別システムの構成要素は、1つ又は複数の電子回路で構成されてもよい。1つ又は複数の電子回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。
 1つ又は複数の電子回路には、例えば、半導体装置、IC(Integrated Circuit)又はLSI(Large Scale Integration)等が含まれてもよい。IC又はLSIは、1つのチップに集積されてもよく、複数のチップに集積されてもよい。ここでは、IC又はLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、又は、ULSI(Ultra Large Scale Integration)と呼ばれるかもしれない。また、LSIの製造後にプログラムされるFPGA(Field Programmable Gate Array)も同じ目的で使うことができる。
 また、本開示の全般的又は具体的な態様は、システム、装置、方法、集積回路又はコンピュータプログラムで実現されてもよい。或いは、当該コンピュータプログラムが記憶された光学ディスク、HDD若しくは半導体メモリ等のコンピュータ読み取り可能な非一時的記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 例えば、本開示は、ガス識別システムなどのコンピュータによって実行されるガス識別方法として実現されてもよいし、このようなガス識別方法をコンピュータに実行させるためのプログラムとして実現されてもよい。また、本開示は、このようなプログラムが記録されたコンピュータ読み取り可能な非一時的な記録媒体として実現されてもよい。
 本開示に係るガス識別システム及びガス識別方法は、ガス中の化学物質等の識別などに有用である。
 10 センサ
 20 暴露部
 21 収容部
 22 三方向電磁弁
 23 吸気ポンプ
 25a、25b、25c、25d、25e 配管
 26a、26b 吸気口
 26e 排気口
 31 制御回路
 32、32a 取得回路
 33 抽出回路
 34 識別回路
 40 メモリ
 50 検出部
 51、60 通信部
 90 広域通信ネットワーク
 100、100a ガス識別システム
 200 検出装置
 300 識別装置
 P1、P2 入力ポート
 P3 出力ポート

Claims (13)

  1.  ガスの吸着濃度に応じた信号を出力するセンサを用いたガス識別方法であって、
     第1期間、前記第1期間に続く第2期間、及び、前記第2期間に続く第3期間からなる測定期間のうち前記第2期間にのみサンプルガスに暴露させた前記センサから出力される信号を取得する第1ステップと、
     取得された前記信号のドリフトに対応する1以上の特徴量を抽出する第2ステップと、
     前記サンプルガスを識別する学習済み論理モデルを用い、抽出された前記1以上の特徴量に基づいて、前記サンプルガスを識別し、識別結果を出力する第3ステップと、を含む、
     ガス識別方法。
  2.  前記測定期間のうち前記第2期間にのみ前記センサを前記サンプルガスに暴露させる第4ステップをさらに含み、
     前記第1ステップでは、前記第4ステップで暴露させた前記センサから出力される前記信号を取得する、
     請求項1に記載のガス識別方法。
  3.  前記第4ステップでは、前記第1期間及び前記第3期間に前記センサをリファレンスガスに暴露させる、
     請求項2に記載のガス識別方法。
  4.  前記第1ステップでは、ネットワークを介して前記センサから出力される前記信号を取得する、
     請求項1に記載のガス識別方法。
  5.  前記第2ステップでは、前記第2期間において前記センサが前記サンプルガスに暴露されることによって変動した前記信号の値が前記第3期間において基準値に戻ろうとしている際の前記信号の値である第1値を取得し、取得した前記第1値を用いて前記1以上の特徴量のうちの少なくとも1つの特徴量を抽出する、
     請求項1から4のいずれか1項に記載のガス識別方法。
  6.  前記第1ステップでは、連続する複数の前記測定期間において前記センサから出力される前記信号を取得し、
     前記第2ステップでは、複数の前記測定期間のうちの2以上の前記測定期間それぞれにおいて前記第1値を取得し、取得した前記第1値同士の差分を、前記1以上の特徴量のうちの少なくとも1つの特徴量として抽出する、
     請求項5に記載のガス識別方法。
  7.  前記第1ステップでは、連続する複数の前記測定期間において前記センサから出力される前記信号を取得し、
     前記第2ステップでは、複数の前記測定期間のうちの2以上の前記測定期間それぞれにおいて前記第1値を取得し、取得した前記第1値を用いて近似式を導出し、導出した前記近似式の係数を、前記1以上の特徴量のうちの少なくとも1つの特徴量として抽出する、
     請求項5又は6に記載のガス識別方法。
  8.  前記第2ステップでは、前記第1期間における最後の前記信号の値である第2値を取得し、取得した前記第1値と取得した前記第2値との差分を、前記1以上の特徴量のうちの少なくとも1つの特徴量として抽出する、
     請求項5から7のいずれか1項に記載のガス識別方法。
  9.  前記第2ステップでは、前記第3期間の最後の前記信号の値を前記第1値として取得する、
     請求項5から8のいずれか1項に記載のガス識別方法。
  10.  前記第1ステップでは、連続する複数の前記測定期間において前記センサから出力される前記信号を取得し、
     前記第2ステップでは、複数の前記測定期間のうちの2以上の前記測定期間にそれぞれにおいて、前記第2期間において前記センサが前記サンプルガスに暴露されることによって変動した際の前記信号の値である第3値を取得し、取得した前記第3値同士の差分を、前記1以上の特徴量のうちの少なくとも1つの特徴量として抽出する、
     請求項1から9のいずれか1項に記載のガス識別方法。
  11.  前記第1ステップでは、連続する複数の前記測定期間において前記センサから出力される前記信号を取得し、
     前記第2ステップでは、複数の前記測定期間のうちの2以上の前記測定期間それぞれにおいて、前記第2期間において前記センサが前記サンプルガスに暴露されることによって変動した際の前記信号の値である第3値を取得し、取得した前記第3値を用いて近似式を導出し、導出した前記近似式の係数を、前記1以上の特徴量のうちの少なくとも1つの特徴量として抽出する、
     請求項1から10のいずれか1項に記載のガス識別方法。
  12.  前記第1ステップでは、連続する複数の前記測定期間において前記センサから出力される前記信号を取得し、
     前記第2ステップでは、複数の前記測定期間における2回目以降の前記測定期間で取得した前記信号に基づいて前記1以上の特徴量のうちの少なくとも1つの特徴量を抽出する、
     請求項1から11のいずれか1項に記載のガス識別方法。
  13.  ガスの吸着濃度に応じた信号を出力するセンサと、
     第1期間、前記第1期間に続く第2期間、及び、前記第2期間に続く第3期間からなる測定期間のうち前記第2期間にのみ前記センサをサンプルガスに暴露させる暴露部と、
     前記測定期間において前記センサから出力される信号を取得する取得回路と、
     取得された前記信号のドリフトに対応する1以上の特徴量を抽出する抽出回路と、
     前記サンプルガスを識別する学習済み論理モデルが記憶されるメモリと、
     前記学習済み論理モデルを用い、抽出された前記1以上の特徴量に基づいて、前記サンプルガスを識別し、識別結果を出力する識別回路と、を備える、
     ガス識別システム。
PCT/JP2022/009944 2021-03-12 2022-03-08 ガス識別方法及びガス識別システム WO2022191173A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280019745.5A CN116964441A (zh) 2021-03-12 2022-03-08 气体识别方法以及气体识别系统
JP2023505569A JPWO2022191173A1 (ja) 2021-03-12 2022-03-08
US18/278,802 US20240125748A1 (en) 2021-03-12 2022-03-08 Gas identification method and gas identification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-040843 2021-03-12
JP2021040843 2021-03-12

Publications (1)

Publication Number Publication Date
WO2022191173A1 true WO2022191173A1 (ja) 2022-09-15

Family

ID=83227996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009944 WO2022191173A1 (ja) 2021-03-12 2022-03-08 ガス識別方法及びガス識別システム

Country Status (4)

Country Link
US (1) US20240125748A1 (ja)
JP (1) JPWO2022191173A1 (ja)
CN (1) CN116964441A (ja)
WO (1) WO2022191173A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090156A1 (ja) * 2022-10-28 2024-05-02 パナソニックIpマネジメント株式会社 匂い識別方法及び匂い識別システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618466A (ja) * 1992-05-07 1994-01-25 Figaro Eng Inc ガス検出装置
JP2011169830A (ja) * 2010-02-19 2011-09-01 Osaka Prefecture Univ 匂い識別方法
WO2016033186A1 (en) * 2014-08-26 2016-03-03 Eloret Corporation Chemical monitoring system
JP2018105659A (ja) * 2016-12-23 2018-07-05 国立研究開発法人理化学研究所 識別装置、識別システム、学習装置、学習方法、識別プログラム、学習プログラム、記録媒体、及び集積回路
JP2020186934A (ja) * 2019-05-10 2020-11-19 アズビル株式会社 容量式電磁流量計および計測制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618466A (ja) * 1992-05-07 1994-01-25 Figaro Eng Inc ガス検出装置
JP2011169830A (ja) * 2010-02-19 2011-09-01 Osaka Prefecture Univ 匂い識別方法
WO2016033186A1 (en) * 2014-08-26 2016-03-03 Eloret Corporation Chemical monitoring system
JP2018105659A (ja) * 2016-12-23 2018-07-05 国立研究開発法人理化学研究所 識別装置、識別システム、学習装置、学習方法、識別プログラム、学習プログラム、記録媒体、及び集積回路
JP2020186934A (ja) * 2019-05-10 2020-11-19 アズビル株式会社 容量式電磁流量計および計測制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU QIHE, XIAONAN HU,MAO YE,XIANQIONG CHENG,FAN LI: "Gas Recognition under Sensor Drift by Using Deep Learning", INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, vol. 30, no. 8, 9 April 2015 (2015-04-09), pages 907 - 922, XP055965926, ISSN: 1098-111X, DOI: 10.1002/int.21731 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090156A1 (ja) * 2022-10-28 2024-05-02 パナソニックIpマネジメント株式会社 匂い識別方法及び匂い識別システム

Also Published As

Publication number Publication date
CN116964441A (zh) 2023-10-27
JPWO2022191173A1 (ja) 2022-09-15
US20240125748A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
Güney et al. Multiclass classification of n-butanol concentrations with k-nearest neighbor algorithm and support vector machine in an electronic nose
Tomchenko et al. Semiconducting metal oxide sensor array for the selective detection of combustion gases
El Barbri et al. Building of a metal oxide gas sensor-based electronic nose to assess the freshness of sardines under cold storage
Peled et al. Detection of volatile organic compounds in cattle naturally infected with Mycobacterium bovis
Reimann et al. Sensor arrays, virtual multisensors, data fusion, and gas sensor data evaluation
Mahdavi et al. Reducing the destructive effect of ambient humidity variations on gas detection capability of a temperature modulated gas sensor by calcium chloride
WO2022191173A1 (ja) ガス識別方法及びガス識別システム
CN104569062B (zh) 基于分子筛过滤的电子鼻气室
Paknahad et al. Diffusion-based humidity control membrane for microfluidic-based gas detectors
EP3077938A1 (en) Modified data representation in gas chromatographic analysis
KR20210116278A (ko) 가스 감지 디바이스 및 가스 감지 디바이스를 작동시키기 위한 방법
US6360584B1 (en) Devices for measuring gases with odors
Wong et al. Development of a breath detection method based E-nose system for lung cancer identification
WO2023037999A1 (ja) ガス分析方法及びガス分析システム
CN105891431A (zh) 一种亚麻籽油品质检测方法
JP2016186426A (ja) におい識別システム
Bastuck Improving the performance of gas sensor systems with advanced data evaluation, operation, and calibration methods
CN116457654A (zh) 空气质量判断系统、空气质量判断方法和传感器模块
Le Maout et al. A low cost, handheld E-nose for renal diseases early diagnosis
Tan et al. E-nose screening of pesticide residue on chilli and double-checked analysis through different data-recognition algorithms
Omatu et al. Mixed odors classification by neural networks
EP1099949B1 (en) Device for measuring gases with odors
KR101736651B1 (ko) 전기화학적 분석물질 측정에서 회복 펄스로부터 정보를 이용하는 방법들 뿐만 아니라 이를 통합한 기기들, 장치들 및 시스템들
Vergara et al. Gas sensor drift mitigation using classifier ensembles
KR102031900B1 (ko) 화학 물질 검출용 반도체형 센서, 검출 방법 및 검출 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767127

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023505569

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18278802

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280019745.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767127

Country of ref document: EP

Kind code of ref document: A1