WO2022191139A1 - Method for producing 3-bromo-1-(3-chloropyridin-2-yl)-1h-pyrazole-5-carboxylic acid ester - Google Patents

Method for producing 3-bromo-1-(3-chloropyridin-2-yl)-1h-pyrazole-5-carboxylic acid ester Download PDF

Info

Publication number
WO2022191139A1
WO2022191139A1 PCT/JP2022/009771 JP2022009771W WO2022191139A1 WO 2022191139 A1 WO2022191139 A1 WO 2022191139A1 JP 2022009771 W JP2022009771 W JP 2022009771W WO 2022191139 A1 WO2022191139 A1 WO 2022191139A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
solvent
mixture
reaction
peroxodisulfate
Prior art date
Application number
PCT/JP2022/009771
Other languages
French (fr)
Japanese (ja)
Inventor
堅一 浅川
祐樹 高橋
大介 森戸
敦基 釘屋
Original Assignee
石原産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石原産業株式会社 filed Critical 石原産業株式会社
Priority to CN202280019216.5A priority Critical patent/CN116940560A/en
Priority to KR1020237030202A priority patent/KR20230155447A/en
Priority to JP2023505549A priority patent/JPWO2022191139A1/ja
Publication of WO2022191139A1 publication Critical patent/WO2022191139A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention provides highly pure 3-bromo-1-(3-chloropyridin-2-yl)-4,5-dihydro-1H-pyrazole-5-carboxylic acid ester and 3-bromo-1-(3-chloro
  • the present invention relates to a production method suitable for high-yield and efficient industrial production of pyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester.
  • Patent Document 1 and Patent Documents 3 to 4 are known as methods for producing these production intermediates.
  • a method for producing a compound analogous to 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester is also known (for example, Patent Document 2 and Non-Patent Document 1 ).
  • Patent Document 1 discloses 3-bromo-1-(3-chloropyridin-2-yl)-4,5-dihydro-1H-pyrazole-5-carboxylic acid ester and 3-bromo-1-(3-chloropyridine -2-yl)-1H-pyrazole-5-carboxylic acid esters are disclosed in Scheme 2 and Scheme 3.
  • halogenation is carried out by reacting a compound containing 2-(3-chloropyridin-2-yl)-5-oxopyrazolidine-3-carboxylic acid ester with a halogenating agent in a solvent. reactions are described.
  • Example 9A of Patent Document 1 ethyl 2-(3-chloropyridin-2-yl)-5-oxopyrazolidine-3-carboxylate and POBr3 were reacted in an acetonitrile solvent, and then post-treatment was carried out.
  • the preparation of ethyl 3-bromo-1-(3-chloropyridin-2-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate with multiple filtration purifications is disclosed.
  • Example 12 of Patent Document 1 contains acetonitrile solvent, 98% sulfuric acid and ethyl 3-bromo-1-(3-chloropyridin-2-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate
  • a method of producing ethyl 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylate by adding potassium peroxodisulfate to a reaction vessel is disclosed.
  • Example 12 of Patent Document 1 The reaction yield of Example 12 of Patent Document 1 is 90%, and the reaction product, ethyl 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylate, is about 1 % of one unknown structure and 0.5% acetonitrile was observed by 1 H-NMR.
  • Patent Documents 5 to 7 also disclose specific examples corresponding to Schemes 2 and 3 of Patent Document 1.
  • anthranilamide insecticides When industrially producing anthranilamide insecticides as active ingredients for agricultural chemicals, it is necessary to produce high-purity anthranilamide insecticides at a high yield and at a low cost so as to meet the prescribed standards. For this purpose, intermediates for the production of anthranilamide insecticides need to be produced with high purity and high yield, and a more efficient production method is desired.
  • the present inventors prepared 3-bromo-1-(3-chloropyridin-2-yl)-4,5 represented by formula (V) according to scheme [A] below according to scheme 3 of Patent Document 1.
  • -3-bromo-1-(3-chloropyridin-2-yl)-1H- represented by formula (IV) from ethyl dihydro-1H-pyrazole-5-carboxylate (hereinafter also referred to as compound (V))
  • compound (IV) ethyl pyrazole-5-carboxylate
  • the reaction yield is lower than the yield described in Example 12 of Patent Document 1, and the product contains the compound ( It was observed from the HPLC chromatogram (FIG.
  • Patent Document 1 and Patent Documents 5 to 7 in the production of compound (IV) from compound (V), compound (IV), which is a reaction product, contains about 1% of an impurity of unknown structure and 0.5% of acetonitrile, but there is no description of the formation of other impurities and means of suppressing the formation of impurities.
  • step b of Scheme 1 of Patent Document 2 3-(3-chloro-4,5-dihydropyrazol-1-yl)pyridine having no alkoxycarbonyl group on the dihydro-1H-pyrazole ring is converted to dimethyl
  • An oxidation reaction is described involving potassium peroxodisulfate in formamide solvent.
  • the reaction yield is as low as 54%, and significant improvement in yield is required for use in industrial production methods.
  • Non-Patent Document 1 describes the same raw materials and the same oxidation reaction as Step b of Scheme 1 of Patent Document 2. However, like Patent Document 2, Non-Patent Document 1 does not describe the production of 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester and its impurities.
  • Patent Documents 3 and 4 there is no specific description regarding the production of 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester and its impurities.
  • the present inventors have made various studies to produce 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester of higher purity in high yield and efficiency. did As a result of the investigation, in the production of 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester, sulfuric acid was used in the oxidation reaction using peroxodisulfate as an oxidizing agent. It was found that the production of impurities can be suppressed by not adding Ni.
  • the present inventors further investigated the reaction conditions, and carried out the oxidation reaction under substantially anhydrous conditions to obtain 3-bromo-1-(3-chloropyridin-2-yl)-1H with higher purity.
  • -pyrazole-5-carboxylic acid esters can be produced in high yields.
  • anthranilamide with a very low content of impurities which does not require complicated operations as in the conventional methods, can be obtained. It was found that intermediates for the production of pesticides can be produced efficiently with high yield. Furthermore, it was found that the production method of the present invention can be scaled up and is suitable for industrial production.
  • the present invention provides a compound represented by formula (I) or a salt thereof (hereinafter simply referred to as compound (I)):
  • compound (I) and compound (III), which are useful production intermediates for the production of anthranilamide insecticides, can be produced with high purity and high yield. Furthermore, compared with conventional methods for producing compound (I) and compound (III), the present invention can produce highly purified compound (I) and compound (III) in a higher yield and more efficiently. .
  • FIG. 1 is a 1 H-NMR spectrum of the product obtained in Comparative Example 2.
  • the method for producing compound (I) of the present invention comprises step (1) of reacting compound (II) with POBr 3 in a solvent, and post-treating the reaction mixture obtained in step (1) to give compound (III). and reacting the compound (III) obtained in step (2) with peroxodisulfate in a solvent containing at least one or more amide solvents without adding sulfuric acid. It is characterized by including step (3).
  • Salts of the compounds represented by formula (I), (II) or (III) include all pesticide-acceptable salts, such as alkali metal salts (e.g., sodium salts, potassium salts, etc.). ), alkaline earth metal salts (e.g., magnesium salts, calcium salts, etc.), ammonium salts, alkylammonium salts (e.g., dimethylammonium salts, triethylammonium salts, etc.), acid addition salts (hydrochlorides, hydrobromides, phosphates (monohydrogen phosphate, dihydrogen phosphate, etc.), perchlorates, sulfates, nitrates, acetates, methanesulfonates, etc.);
  • the alkyl group having 1 to 3 carbon atoms represented by R in formula (I), (II) or (III) is not particularly limited as long as the reaction proceeds, but methyl, ethyl, n-propyl and is
  • Compound (II) in the present invention can be produced by methods known in the art, for example, methods described in Patent Documents 1, 5 to 7, or methods analogous thereto, or commercially available products can be used. can also
  • the amount of compound (II) and POBr 3 used in the reaction of step (1) is not particularly limited as long as the reaction proceeds. , 0.4 to 1.5 mol, more preferably 0.5 to 1 mol of POBr 3 can be used.
  • the solvent used in the reaction of step (1) is not particularly limited as long as it does not adversely affect the reaction of step (1).
  • examples include nitrile solvents (e.g., acetonitrile, propionitrile, butyronitrile), halogen solvent (e.g., dichloromethane, dichloroethane, chloroform, chlorobenzene, etc.), ether solvent (e.g., tetrahydrofuran, diethyl ether, anisole, etc.), ester solvent (e.g., ethyl acetate, butyl acetate, etc.), ketone solvent (e.g., Acetone, methyl ethyl ketone, cyclohexanone, etc.), amide solvents (e.g., dimethylformamide, diethylformamide, dimethylacetamide, N-methylpyrrolidone, etc.), aromatic hydrocarbon solvents (e.g., toluene, xylene,
  • the reaction of step (1) can also be carried out under solvent-free conditions.
  • nitrile solvents, halogen solvents and aromatic carbonization At least one selected from the group consisting of hydrogen solvents is preferred, at least one selected from the group consisting of nitrile solvents and halogen solvents is more preferred, and from the group consisting of acetonitrile, dichloromethane, dichloroethane and chlorobenzene. More preferably, at least one or more are selected.
  • the amount of the solvent used is not particularly limited as long as the reaction in step (1) proceeds. Double volume (V/W), more preferably 2 to 5 times volume (V/W).
  • the order of addition of compound (II), POBr 3 and solvent is not particularly limited, and they may be added and mixed in any order. Addition of compound (II), POBr 3 and solvent to the reaction system may be carried out at once or in portions, or may be carried out continuously. For example, as the order of addition, all components may be mixed at once, or some components may be added later. Specific examples of such addition include compounds ( II) and solvent are mixed and POBr 3 is added thereto.
  • the reaction temperature in step (1) is usually room temperature (20-30°C) to about 100°C, preferably about 70-90°C.
  • the reaction time of the step (1) is usually about 0.5 to 48 hours, preferably about 1 to 24 hours, more preferably about 1 to 8 hours.
  • step (2) compound (III) is obtained by post-treatment by conventional methods such as neutralization, extraction, distillation, solvent distillation, washing, filtration and drying. can be obtained, eg isolated. Thereafter, if necessary, compound (III) may be purified by conventional methods such as recrystallization, washing, and column chromatography. Alternatively, without isolating compound (III) or purifying the isolated compound (III), the obtained compound (III) can be used as it is for the next reaction. From the viewpoint of improving the purity of the compound represented by formula (I), the post-treatment is preferably neutralization, extraction and distillation, and more preferably a combination thereof.
  • Step (2) is preferably characterized by including the following steps.
  • step (2) is more preferably characterized by including the following steps after step (2-2).
  • (2-3) A step of obtaining an extract containing the compound represented by formula (III) or a salt thereof and a solvent from the mixture obtained in step (2-2) using a solvent
  • (2-4) A step of replacing the solvent contained in the extract obtained in step (2-3) with an amide solvent.
  • Examples of the base used in step (2-1) include alkali metal hydroxides (e.g. sodium hydroxide, potassium hydroxide, etc.), alkali metal carbonates (e.g., sodium carbonate, potassium carbonate, etc.), alkali metal Hydrogen carbonates (e.g., sodium hydrogen carbonate, potassium hydrogen carbonate, etc.), alkaline earth metal hydroxides (e.g., calcium hydroxide, etc.), alkaline earth metal carbonates (e.g., calcium carbonate, etc.), alkaline earth metal Hydrogen carbonates (such as calcium hydrogen carbonate), or mixtures thereof.
  • alkali metal hydroxides e.g. sodium hydroxide, potassium hydroxide, etc.
  • alkali metal carbonates e.g., sodium carbonate, potassium carbonate, etc.
  • alkali metal Hydrogen carbonates e.g., sodium hydrogen carbonate, potassium hydrogen carbonate, etc.
  • alkaline earth metal hydroxides e.g., calcium hydroxide, etc.
  • alkali metal hydroxides e.g., sodium hydroxide, potassium hydroxide, etc.
  • alkali metal hydrogen carbonates e.g., sodium bicarbonate, etc.
  • alkali metal hydroxides e.g, sodium hydroxide, potassium hydroxide, etc.
  • sodium hydroxide and potassium hydroxide are even more preferred.
  • the form of the base is not particularly limited as long as it can quench the reaction in step (1), and examples thereof include solids and aqueous solutions.
  • the concentration of the base in the aqueous solution is, for example, 1 to 50% by weight, preferably 5 to 40% by weight, more preferably 10 to 30% by weight.
  • the amount of the base to be used is not particularly limited as long as it can quench the reaction in step (1). Yes, more preferably 1.7 to 2 mol.
  • the temperature at which the reaction mixture and the base are mixed is usually about 0 to 60°C, preferably about 10 to 30°C.
  • the time required for this step is usually about 0.5 to 24 hours, preferably about 0.5 to 8 hours, more preferably about 1 to 8 hours.
  • the reaction mixture obtained in the above step (1) is The pH of the mixture obtained by mixing with is, for example, 6-12, preferably 7-10, more preferably 8-9.
  • step (2-2) As the operation for removing the solvent of step (1) from the mixture of step (2-1) in step (2-2), a conventional method such as distilling off the solvent under reduced pressure or normal pressure can be used.
  • the solvent used in the extraction in step (2-3) is not particularly limited as long as it does not adversely affect the reaction yield and purity of step (1) or step (3).
  • halogen-based solvents examples thereof include dichloromethane, dichloroethane, chloroform, chlorobenzene, etc.), ester solvents (eg, ethyl acetate, butyl acetate, etc.), aromatic hydrocarbon solvents (eg, toluene, xylene, etc.), and mixed solvents thereof.
  • the solvent is preferably at least one selected from the group consisting of halogen solvents and ester solvents, more preferably at least one selected from the group consisting of dichloromethane, ethyl acetate and butyl acetate, dichloromethane and acetic acid At least one selected from the group consisting of ethyl is particularly preferred.
  • the amount of the solvent used in the extraction is, for example, 0.5 to 15 times (V/W), preferably 1 to 10 times (V/W) the amount of compound (III). , more preferably 1 to 8 times (V/W).
  • a mixture containing compound (III) and the solvent used in the extraction can be obtained by an extraction operation in step (2-3), for example, a conventional method such as liquid separation.
  • amide-based solvents used in replacing the solvent in step (2-4) include dimethylformamide, diethylformamide, dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoric acid triamide, and mixed solvents thereof.
  • the amide-based solvent is not particularly limited as long as it does not adversely affect the reaction in step (3), and preferred examples include dimethylformamide, diethylformamide, dimethylacetamide, N-methylpyrrolidone, and mixed solvents thereof.
  • the amide solvent is preferably at least one selected from the group consisting of dimethylformamide, diethylformamide, and dimethylacetamide.
  • the amount of the amide-based solvent used is not particularly limited as long as it does not adversely affect the reaction yield and purity of step (3). , preferably 2 to 15 times (V/W), more preferably 3 to 10 times (V/W).
  • An operation of replacing with an amide solvent in step (2-4), for example, the solvent used in the extraction of step (2-3) is distilled off to obtain compound (III), and then the obtained compound (III ) and the above amide solvent, a mixture containing compound (III) and the amide solvent can be obtained.
  • the step (3) comprises reacting the compound (III) obtained in the step (2) with a peroxodisulfate in a solvent containing at least one amide-based solvent without adding sulfuric acid. Characterized by In the present invention, by not adding sulfuric acid, the purity of the resulting compound (I) is improved, as shown in the examples below.
  • the peroxodisulfate used in the reaction of step (3) is not particularly limited as long as it does not adversely affect the reaction of step (3).
  • Examples include sodium peroxodisulfate, potassium peroxodisulfate, ammonium peroxodisulfate, Or a mixture thereof. Among these, sodium peroxodisulfate and ammonium peroxodisulfate are preferred, and sodium peroxodisulfate is more preferred, from the viewpoint of the purity and reaction yield of compound (I) obtained in the reaction of step (3).
  • the amount of compound (III) and peroxodisulfate used in the reaction of step (3) is not particularly limited as long as the reaction of step (3) proceeds. It is 3 mol, preferably 1.2 to 2.5 mol, more preferably 1.4 to 2 mol.
  • the amide solvent used in the reaction of step (3) is not particularly limited as long as it does not adversely affect the reaction of step (3).
  • Examples include dimethylformamide, diethylformamide, dimethylacetamide and mixed solvents thereof. be done.
  • the amide-based solvent in step (3) is at least one selected from the group consisting of dimethylformamide and dimethylacetamide. The above are preferred, and dimethylformamide is more preferred.
  • the amount of the amide solvent used in the reaction of step (3) is not particularly limited as long as the reaction of step (3) proceeds. W), preferably 2 to 15 times (V/W), more preferably 3 to 10 times (V/W).
  • step (3) When performing steps (2-1) to (2-4), in the reaction of step (3), a mixture containing compound (III) obtained in step (2-4) and an amide solvent and the above-described Peroxodisulfate may be used.
  • the solvent for the reaction in step (3) may contain the solvent in step (2-3) as long as it does not adversely affect the reaction.
  • the order of addition of compound (III), peroxodisulfate, and solvent is not particularly limited, and may be added and mixed in any order. Addition of compound (III), peroxodisulfate and solvent to the reaction system may be carried out at once or in portions, or may be carried out continuously.
  • a solvent may be added as necessary.
  • the order of addition includes adding peroxodisulfate to a mixture obtained by mixing compound (III) and a solvent.
  • the temperature at which the peroxodisulfate is added to the mixture of compound (III) and solvent is usually room temperature (20 to 30°C) to 100°C, preferably about 50 to 80°C.
  • the solvent used in step (3) is not particularly limited as long as the reaction in step (3) proceeds, but is preferably a solvent containing at least one or more amide solvents, and the proportion of the amide solvent is preferably 70 to 100%, more preferably 80 to 100%, still more preferably 100%.
  • the reaction in step (3) is preferably carried out under substantially anhydrous conditions.
  • substantially anhydrous conditions for the reaction in step (3) mean that the water content range of the mixture of the compound (III) and a solvent containing at least one amide solvent does not adversely affect the reaction in step (3). means no numeric range.
  • the specific water content is not particularly limited as long as the reaction in step (3) proceeds. It is 000 ppm or less, preferably 3,000 ppm or less, more preferably 1,000 ppm or less.
  • Operations for allowing the reaction in step (3) to proceed under substantially anhydrous conditions include, for example, operations such as not using sulfuric acid in the reaction in step (3), using a dehydrating solvent, or performing azeotropic dehydration. available. This operation allows the reaction of step (3) to be carried out under substantially anhydrous conditions.
  • the reaction temperature in step (3) is usually room temperature (20-30°C) to about 100°C, preferably about 60-80°C.
  • the reaction time of step (3) is usually about 0.5 to 24 hours, preferably about 0.5 to 8 hours, more preferably about 1 to 5 hours.
  • compound (I) can be isolated by performing post-treatments by conventional methods such as neutralization, extraction, washing, and drying, if necessary. Thereafter, if necessary, compound (I) may be purified by conventional methods such as recrystallization, washing, and column chromatography. Alternatively, the isolated compound (I) can be used as it is for the production of the next production intermediate for an anthranilamide insecticide without purification.
  • the purity of compound (I) obtained by this reaction is usually 90% or higher, preferably 95% or higher, more preferably 98% or higher.
  • the amount of each impurity contained in compound (I) obtained by this reaction is usually 2% or less, preferably 1% or less, and more preferably substantially free of impurities.
  • the total amount of impurities contained in compound (I) obtained by this reaction is usually 2% or less, preferably 1% or less, and more preferably substantially no impurities.
  • substantially free of impurities means an amount of impurities that are unavoidably mixed in, and an amount that does not adversely affect the anthranilamide insecticide used.
  • step (2) includes the following steps: (2-1): A step of mixing the reaction mixture obtained in step (1) with a base to obtain a mixture, and (2-2): Step (1) from the mixture obtained in step (2-1) to obtain a mixture containing the compound represented by formula (III) or a salt thereof.
  • [6] The production method according to [5], wherein the solvent in step (1) is one or more selected from the group consisting of acetonitrile, dichloromethane, dichloroethane and chlorobenzene.
  • the base used in step (2-1) consists of an alkali metal hydroxide (such as sodium hydroxide, potassium hydroxide, etc.) and an alkali metal hydrogen carbonate (such as sodium hydrogen carbonate).
  • the peroxodisulfate in step (3) is at least one selected from the group consisting of sodium peroxodisulfate, potassium peroxodisulfate, and ammonium peroxodisulfate.
  • the manufacturing method according to any one of the items.
  • the peroxodisulfate in step (3) is sodium peroxodisulfate.
  • the amide solvent in step (3) is at least one selected from the group consisting of dimethylformamide, diethylformamide and dimethylacetamide, according to any one of [1] to [16].
  • Production method. [18] The production method according to any one of [1] to [17], wherein the amide solvent in step (3) is at least one selected from the group consisting of dimethylformamide and dimethylacetamide. . [19] The production method according to any one of [1] to [18], wherein the amide solvent in step (3) is dimethylformamide. [20] The production method according to any one of [1] to [18], wherein the amide solvent in step (3) is dimethylformamide and the peroxodisulfate is sodium peroxodisulfate.
  • HPLC analysis conditions in this example are as follows.
  • [Reaction tracking] ⁇ Equipment used: Nexera XS series manufactured by Shimadzu Corporation ⁇ Column: SunShell C18 2.6 ⁇ m (2.1 ⁇ 100 mm) manufactured by Chromanic Technologies Inc.
  • Detection UV detector (254 nm) ⁇ Column temperature: 40°C ⁇ Flow rate: 0.5 ml/min -
  • Mobile phase A solution: 0.1% formic acid aqueous solution, and B solution: acetonitrile Gradient conditions are as follows.
  • the analysis conditions for measuring the water content in this example are as follows. ⁇ Equipment used: AQ-2250 manufactured by Hiranuma Sangyo Co., Ltd. ⁇ Reagent used: Hiranuma Sangyo Co., Ltd., Aqualite RS-A general moisture measurement generation solution ⁇ Method: Coulometric method ⁇ Electrolytic cell: One-chamber cell
  • Example 1 Synthesis of compound (V) Ethyl 1-(3-chloropyridin-2-yl)-3-hydroxy-4,5-dihydro-1H-pyrazole-5-carboxylate with a purity of 96% (hereinafter referred to as A mixture of 14.0 g of phosphorus oxybromide and 15.1 g of acetonitrile was added dropwise to a mixture of 20 g of compound (VI) and 15.1 g of acetonitrile at room temperature to obtain a reaction mixture. The reaction mixture was heated to the reflux temperature and stirred at the same temperature for 1 hour. A reaction check was performed by HPLC, and it was confirmed that compound (V) was produced at 99.0 area %.
  • the reaction mixture was cooled to 20-30° C., and 20 g of water was slowly added dropwise at the same temperature to obtain a mixture.
  • 24 ml of 20% sodium hydroxide aqueous solution was added to the mixture between 60 and 62° C. to adjust the pH to about 8.
  • the pH-adjusted mixture was stirred at 60° C. for 20 minutes, and acetonitrile was distilled off from the mixture under normal pressure, followed by extraction with 105.6 g of dichloromethane to obtain 124.2 g of a mixture containing compound (V) and dichloromethane. rice field.
  • Example 2 Synthesis of compound (IV) Dichloromethane in 62.1 g of the mixture containing compound (V) obtained in Example 1 and dichloromethane was replaced with 94.7 g (8 vol.) of dimethylformamide to obtain the compound (IV). A mixture containing V) and dimethylformamide was obtained. 17.6 g (2.0 eq.) of sodium peroxodisulfate was added to the mixture at 60° C. to obtain a reaction mixture. The resulting reaction mixture was stirred at the same temperature for 1 hour. A reaction check was performed by HPLC, and it was confirmed that compound (IV) was produced at 92.0 area %. The reaction mixture was ice-cooled, and 142.1 g of water was slowly added dropwise at the same temperature to obtain a mixture.
  • the pH was adjusted to about 9 by adding 1,219 g of 20% aqueous sodium hydroxide solution to the mixture.
  • the pH adjusted mixture was stirred overnight at 20-30°C.
  • Acetonitrile was distilled off from the mixture under reduced pressure, and extraction was performed with 2,376 g of dichloromethane to obtain a mixture containing compound (V) and dichloromethane.
  • 5,947 g of dimethylformamide was added to the mixture, and the solvent was replaced with dimethylformamide under reduced pressure to obtain a mixture of compound (V) and dimethylformamide.
  • Example 4 To a mixture of 5 g of compound (V) and 28.3 g of dimethylformamide was added 7.16 g of sodium peroxodisulfate at 60-110° C. to obtain a reaction mixture. For Entries 2 to 4 in Table 3, water was added as appropriate to obtain the indicated moisture values. The resulting reaction mixture was stirred at the same temperature for 1 hour. The reaction mixture was cooled to room temperature, and 45.0 g of water was slowly added dropwise at the same temperature to obtain a mixture. The mixture was stirred at 20-30° C. for 1 hour. The resulting slurry was filtered to obtain crystals containing compound (IV). The resulting crystals were washed with water and dried overnight in a warm air dryer to obtain compound (IV).
  • the reaction mixture was cooled to 55° C., filtered to remove solids, and washed twice with 12 mL of acetonitrile. After concentrating the filtrate to about 50 mL, the concentrated reactant was added to 100 mL of water to obtain a mixture. The resulting mixture was stirred at the same temperature for 1 hour. The resulting slurry was filtered to obtain crude crystals containing compound (IV). The resulting crude crystals were washed with 25 mL of 20% aqueous acetonitrile solution and 20 mL of water, and dried overnight in a warm air dryer to obtain compound (IV). The water content, reaction temperature and reaction results of the mixture of compound (V) and acetonitrile were as shown in Table 5 below.
  • Example 5 Synthesis of compound (V) To a mixture of 3 g of compound (VI) and 33.2 g of chlorobenzene was added dropwise a mixture of 3.19 g of phosphorus oxybromide and 13.2 g of chlorobenzene at room temperature to obtain a reaction mixture. The reaction mixture was heated to 100° C. and stirred overnight at the same temperature. A reaction check was performed by HPLC, and it was confirmed that compound (V) was produced at 97.8 area %.
  • Example 7 Synthesis of compound (IV) To a mixture of 5 g of compound (V) and 28.3 g of dimethylformamide (water content: about 953 ppm), 5.48 g of ammonium peroxodisulfate was added at 60°C to obtain a reaction mixture. The resulting reaction mixture was stirred at the same temperature for 1 hour. A reaction check was performed by HPLC to confirm that compound (IV) was produced. After the conventional post-treatment described above, compound (IV) was obtained.
  • Example 8 Synthesis of isopropyl 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylate (hereinafter also simply referred to as compound (VII)) (1) 1 with a purity of 91.8 area% 5 g of isopropyl-(3-chloropyridin-2-yl)-3-hydroxy-4,5-dihydro-1H-pyrazole-5-carboxylate (remaining 9.2% is compound (VI)) and 3.9 g of acetonitrile A mixture of 3.3 g of phosphorus oxybromide and 3.9 g of acetonitrile was added dropwise to the mixture at room temperature to obtain a reaction mixture.
  • reaction mixture was heated to the reflux temperature and stirred at the same temperature for 1 hour.
  • the reaction was checked by HPLC, and isopropyl 3-bromo-1-(3-chloropyridin-2-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (hereinafter also simply referred to as compound (VIII) ) was generated at 91.0 area %.
  • the reaction mixture was cooled to 26° C., and 5 g of water was slowly added dropwise at the same temperature to obtain a mixture. 7.6 g of a 20% sodium hydroxide aqueous solution was added to the mixture to adjust the pH to about 7.8, and the mixture was stirred at 20 to 30° C. for 20 minutes.
  • the reaction mixture was cooled to 20° C., 48.8 g of a 5% aqueous sodium hydroxide solution was added at the same temperature to adjust the pH to about 8, and the mixture was stirred at 20-30° C. for 15 minutes. Then, acetonitrile was distilled off from the pH-adjusted mixture under normal pressure, and 4.3 g of a 10% aqueous sodium hydroxide solution was added to the mixture after distillation to adjust the pH to about 7. The resulting mixture was extracted with 63 g of ethyl acetate to obtain a mixture containing compound (V) and ethyl acetate.

Abstract

The purpose of the present invention is to provide a method for producing an intermediate for the production of a high-purity anthranilamide-based pesticide with high yield and high efficiency. Provided is a method for producing a compound represented by formula (I) or a salt thereof, the method being characterized by comprising: (1) a step for reacting a compound represented by formula (II) or a salt thereof with POBr3 without using a solvent or in a solvent; (2) a step for post-treating a reaction mixture produced in the step (1) to produce a compound represented by formula (III) or a salt thereof; and (3) a step for reacting the compound represented by formula (III) or the salt thereof produced in the step (2) with a peroxydisulfuric acid salt in a solvent comprising at least one amide-type solvent without adding sulfuric acid. This production method makes it possible to produce an intermediate for the production of a high-purity anthranilamide-based pesticide with high yield and high efficiency. The formulae (I), (II) and (III) are as described in the description.

Description

3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸エステルの製造方法Method for producing 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester
 本発明は、高純度な3-ブロモ-1-(3-クロロピリジン-2-イル)-4,5-ジヒドロ-1H-ピラゾール-5-カルボン酸エステル及び3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸エステルの高収率かつ効率的な工業的製造に適した製造方法に関する。 The present invention provides highly pure 3-bromo-1-(3-chloropyridin-2-yl)-4,5-dihydro-1H-pyrazole-5-carboxylic acid ester and 3-bromo-1-(3-chloro The present invention relates to a production method suitable for high-yield and efficient industrial production of pyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester.
 3-ブロモ-1-(3-クロロピリジン-2-イル)-4,5-ジヒドロ-1H-ピラゾール-5-カルボン酸エステル及び3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸エステルは、アントラニルアミド系殺虫剤の重要な製造中間体である。これらの製造中間体の製造方法としては、特許文献1及び特許文献3~4が知られている。また、3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸エステルの類似化合物の製造方法も知られている(例えば、特許文献2及び非特許文献1)。 3-bromo-1-(3-chloropyridin-2-yl)-4,5-dihydro-1H-pyrazole-5-carboxylic acid ester and 3-bromo-1-(3-chloropyridin-2-yl)- 1H-pyrazole-5-carboxylic acid esters are important intermediates for the production of anthranilamide insecticides. Patent Document 1 and Patent Documents 3 to 4 are known as methods for producing these production intermediates. In addition, a method for producing a compound analogous to 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester is also known (for example, Patent Document 2 and Non-Patent Document 1 ).
 特許文献1には、3-ブロモ-1-(3-クロロピリジン-2-イル)-4,5-ジヒドロ-1H-ピラゾール-5-カルボン酸エステル及び3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸エステルの製造方法として、スキーム2及びスキーム3が開示されている。 Patent Document 1 discloses 3-bromo-1-(3-chloropyridin-2-yl)-4,5-dihydro-1H-pyrazole-5-carboxylic acid ester and 3-bromo-1-(3-chloropyridine -2-yl)-1H-pyrazole-5-carboxylic acid esters are disclosed in Scheme 2 and Scheme 3.
 特許文献1のスキーム2では、溶媒中で、2-(3-クロロピリジン-2-イル)-5-オキソピラゾリジン-3-カルボン酸エステルを包含する化合物とハロゲン化剤を反応させるハロゲン化反応が記載されている。特許文献1の実施例9Aでは、アセトニトリル溶媒中で、2-(3-クロロピリジン-2-イル)-5-オキソピラゾリジン-3-カルボン酸エチルとPOBr3を反応させた後、後処理時に複数回のろ過精製を行う、3-ブロモ-1-(3-クロロピリジン-2-イル)-4,5-ジヒドロ-1H-ピラゾール-5-カルボン酸エチルの製造が開示されている。 In Scheme 2 of Patent Document 1, halogenation is carried out by reacting a compound containing 2-(3-chloropyridin-2-yl)-5-oxopyrazolidine-3-carboxylic acid ester with a halogenating agent in a solvent. reactions are described. In Example 9A of Patent Document 1, ethyl 2-(3-chloropyridin-2-yl)-5-oxopyrazolidine-3-carboxylate and POBr3 were reacted in an acetonitrile solvent, and then post-treatment was carried out. The preparation of ethyl 3-bromo-1-(3-chloropyridin-2-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate with multiple filtration purifications is disclosed.
 そして、特許文献1のスキーム3では、溶媒中で、酸の存在下で3-ブロモ-1-(3-クロロピリジン-2-イル)-4,5-ジヒドロ-1H-ピラゾール-5-カルボン酸エステルを包含する化合物と酸化剤を反応させる酸化反応が記載されている。特許文献1の実施例12では、アセトニトリル溶媒、98%硫酸及び3-ブロモ-1-(3-クロロピリジン-2-イル)-4,5-ジヒドロ-1H-ピラゾール-5-カルボン酸エチルを含む反応容器にペルオキソ二硫酸カリウムを添加し、3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸エチルを製造する方法が開示されている。特許文献1の実施例12の反応収率は90%、及び反応生成物である3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸エチルに約1%の1種類の構造不明物と0.5%のアセトニトリルを含むことがH-NMRより観察されたことが開示されている。 Then, in Scheme 3 of Patent Document 1, 3-bromo-1-(3-chloropyridin-2-yl)-4,5-dihydro-1H-pyrazole-5-carboxylic acid in the presence of an acid in a solvent Oxidation reactions are described in which a compound, including an ester, is reacted with an oxidizing agent. Example 12 of Patent Document 1 contains acetonitrile solvent, 98% sulfuric acid and ethyl 3-bromo-1-(3-chloropyridin-2-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate A method of producing ethyl 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylate by adding potassium peroxodisulfate to a reaction vessel is disclosed. The reaction yield of Example 12 of Patent Document 1 is 90%, and the reaction product, ethyl 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylate, is about 1 % of one unknown structure and 0.5% acetonitrile was observed by 1 H-NMR.
 また、特許文献5~7においても、特許文献1のスキーム2及びスキーム3に相当する具体例が開示されている。 In addition, Patent Documents 5 to 7 also disclose specific examples corresponding to Schemes 2 and 3 of Patent Document 1.
国際公開第2003/016283号WO2003/016283 国際公開第2015/058021号WO2015/058021 中国特許出願公開第104557860号Chinese Patent Application Publication No. 104557860 中国特許出願公開第104496967号Chinese Patent Application Publication No. 104496967 国際公開第2003/015518号WO2003/015518 国際公開第2003/015519号WO2003/015519 国際公開第2003/024222号WO 2003/024222
 農薬原体としてアントラニルアミド系殺虫剤を工業的に製造する場合、所定の規格に適合するように、高純度のアントラニルアミド系殺虫剤を高収率かつ安価に製造しなければならない。そのためには、アントラニルアミド系殺虫剤の製造中間体も高純度かつ高収率で製造する必要があり、さらに効率的に製造する方法が望まれている。 When industrially producing anthranilamide insecticides as active ingredients for agricultural chemicals, it is necessary to produce high-purity anthranilamide insecticides at a high yield and at a low cost so as to meet the prescribed standards. For this purpose, intermediates for the production of anthranilamide insecticides need to be produced with high purity and high yield, and a more efficient production method is desired.
 本発明者らが、特許文献1のスキーム3に従って下記のスキーム〔A〕の通り、式(V)で表される3-ブロモ-1-(3-クロロピリジン-2-イル)-4,5-ジヒドロ-1H-ピラゾール-5-カルボン酸エチル(以下、化合物(V)ともいう)から式(IV)で表される3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸エチル(以下、化合物(IV)ともいう)を製造すると、その反応収率は特許文献1の実施例12に記載されている収率よりも低く、生成物には化合物(IV)に加えて構造不明の複数の不純物が含まれることがHPLCによるクロマトグラム(図1)及びH-NMRスペクトル(図2)より観察された。図1より、生成物には1%を超える不純物が2種類含まれることが明らかになった。さらに、その2種類の不純物以外に複数の不純物が生成物に含まれ、不純物の総量は6%を超えることが確認された。そして、特許文献1に記載された製造方法で得られた生成物からこれらの不純物を除去するには、特許文献1の実施例9Aに記載されているように、例えば、反応生成物をろ過精製する操作が複数回必要であることが想定されるため、特許文献1に記載された化合物(V)から化合物(IV)の製造方法は操作面で非効率的であると言える。したがって、特許文献1に記載された化合物(V)から化合物(IV)の製造方法は、高純度のアントラニルアミド系殺虫剤の製造中間体を高収率、かつ効率的に製造するには不適である。 The present inventors prepared 3-bromo-1-(3-chloropyridin-2-yl)-4,5 represented by formula (V) according to scheme [A] below according to scheme 3 of Patent Document 1. -3-bromo-1-(3-chloropyridin-2-yl)-1H- represented by formula (IV) from ethyl dihydro-1H-pyrazole-5-carboxylate (hereinafter also referred to as compound (V)) When ethyl pyrazole-5-carboxylate (hereinafter also referred to as compound (IV)) is produced, the reaction yield is lower than the yield described in Example 12 of Patent Document 1, and the product contains the compound ( It was observed from the HPLC chromatogram (FIG. 1) and 1 H-NMR spectrum (FIG. 2) that multiple impurities of unknown structure were contained in addition to IV). Figure 1 reveals that the product contains two impurities exceeding 1%. Furthermore, it was confirmed that the product contained a plurality of impurities in addition to the two types of impurities, and the total amount of impurities exceeded 6%. In order to remove these impurities from the product obtained by the production method described in Patent Document 1, for example, the reaction product is filtered and purified as described in Example 9A of Patent Document 1. It can be said that the method for producing compound (IV) from compound (V) described in Patent Document 1 is inefficient in terms of operation, because it is assumed that the operation to carry out is required multiple times. Therefore, the method for producing compound (IV) from compound (V) described in Patent Document 1 is not suitable for producing a high-purity intermediate for producing anthranilamide insecticides in high yield and efficiency. be.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 特許文献1及び特許文献5~7には、化合物(V)から化合物(IV)の製造において反応生成物である化合物(IV)に約1%の1種類の構造不明の不純物及び0.5%のアセトニトリルを含むことは示唆されているが、その他の不純物の生成及び不純物の生成を抑制する手段に関する記載は無い。 In Patent Document 1 and Patent Documents 5 to 7, in the production of compound (IV) from compound (V), compound (IV), which is a reaction product, contains about 1% of an impurity of unknown structure and 0.5% of acetonitrile, but there is no description of the formation of other impurities and means of suppressing the formation of impurities.
 一方、特許文献2のスキーム1の工程bにおいて、ジヒドロ-1H-ピラゾール環上にアルコキシカルボニル基を有さない3-(3-クロロ-4,5-ジヒドロピラゾール-1-イル)ピリジンを、ジメチルホルムアミド溶媒中でペルオキソ二硫酸カリウムと反応させる酸化反応が記載されている。しかしながら、特許文献2の実施例2は、反応収率は54%と低く、工業的製造方法に利用するためには大幅な収率改善の必要がある。さらに、3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸エステルの製造及びその不純物に関する記載は無い。 On the other hand, in step b of Scheme 1 of Patent Document 2, 3-(3-chloro-4,5-dihydropyrazol-1-yl)pyridine having no alkoxycarbonyl group on the dihydro-1H-pyrazole ring is converted to dimethyl An oxidation reaction is described involving potassium peroxodisulfate in formamide solvent. However, in Example 2 of Patent Document 2, the reaction yield is as low as 54%, and significant improvement in yield is required for use in industrial production methods. Furthermore, there is no description of the preparation of 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester and its impurities.
 非特許文献1のスキーム1には、特許文献2のスキーム1の工程bと同じ原料及び同じ酸化反応が記載されている。しかしながら、非特許文献1も特許文献2と同じように3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸エステルの製造及びその不純物に関する記載は無い。 Scheme 1 of Non-Patent Document 1 describes the same raw materials and the same oxidation reaction as Step b of Scheme 1 of Patent Document 2. However, like Patent Document 2, Non-Patent Document 1 does not describe the production of 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester and its impurities.
 一方、特許文献3及び4にも、3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸エステルの製造及びその不純物に関する具体的な記載が無い。 On the other hand, in Patent Documents 3 and 4, there is no specific description regarding the production of 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester and its impurities.
 本発明者らは、より高純度な3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸エステルを高収率かつ効率的に製造するために種々検討を行った。その検討の結果、3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸エステルの製造において、酸化剤にペルオキソ二硫酸塩を用いた酸化反応において硫酸を添加しないことにより不純物の生成が抑えられることを見出した。 The present inventors have made various studies to produce 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester of higher purity in high yield and efficiency. did As a result of the investigation, in the production of 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester, sulfuric acid was used in the oxidation reaction using peroxodisulfate as an oxidizing agent. It was found that the production of impurities can be suppressed by not adding Ni.
 そして、本発明者らは反応条件をさらに検討し、実質的に無水条件で酸化反応を実施することで、より高純度な3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸エステルを高収率で製造することが可能であることも見出した。 Then, the present inventors further investigated the reaction conditions, and carried out the oxidation reaction under substantially anhydrous conditions to obtain 3-bromo-1-(3-chloropyridin-2-yl)-1H with higher purity. -pyrazole-5-carboxylic acid esters can be produced in high yields.
 さらに、より高純度な3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸エステルを効率的に製造するために、原料である3-ブロモ-1-(3-クロロピリジン-2-イル)-4,5-ジヒドロ-1H-ピラゾール-5-カルボン酸エステルも高純度で効率的に製造することが望まれる。そこで、本発明者らが、特許文献1及び特許文献5~7に記載されている方法で3-ブロモ-1-(3-クロロピリジン-2-イル)-4,5-ジヒドロ-1H-ピラゾール-5-カルボン酸エチルを製造すると、後処理工程で複数回のろ過精製が必要であり、操作が非常に煩雑であり、かつ反応生成物のロスが多かった。したがって、特許文献1及び特許文献5~7に記載の方法では、高純度な3-ブロモ-1-(3-クロロピリジン-2-イル)-4,5-ジヒドロ-1H-ピラゾール-5-カルボン酸エステルを効率的に高収率で製造するには不適であることを見出した。 Furthermore, in order to efficiently produce 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester with higher purity, 3-bromo-1- Efficient production of (3-chloropyridin-2-yl)-4,5-dihydro-1H-pyrazole-5-carboxylic acid ester with high purity is desired. Therefore, the present inventors prepared 3-bromo-1-(3-chloropyridin-2-yl)-4,5-dihydro-1H-pyrazole by the method described in Patent Document 1 and Patent Documents 5-7. When ethyl -5-carboxylate is produced, multiple filtration purification steps are required in the post-treatment step, the operation is very complicated, and the loss of the reaction product is large. Therefore, in the methods described in Patent Document 1 and Patent Documents 5 to 7, highly pure 3-bromo-1-(3-chloropyridin-2-yl)-4,5-dihydro-1H-pyrazole-5-carvone It was found to be unsuitable for efficiently producing acid esters in high yields.
 そこで、特定の溶媒及び特定の反応試薬を選択し、反応条件及び後処理方法を改良することにより、従来の方法のような煩雑な操作を必要としない、不純物の含有量が非常に少ないアントラニルアミド系殺虫剤の製造中間体を高収率かつ効率的に製造できることを見出した。さらに、本発明の製造方法はスケールアップすることができ、工業的製造に適した製造方法であることも見出した。 Therefore, by selecting a specific solvent and a specific reaction reagent, and improving the reaction conditions and post-treatment method, anthranilamide with a very low content of impurities, which does not require complicated operations as in the conventional methods, can be obtained. It was found that intermediates for the production of pesticides can be produced efficiently with high yield. Furthermore, it was found that the production method of the present invention can be scaled up and is suitable for industrial production.
 すなわち、本発明は、式(I)で表される化合物又はその塩(以下、単に化合物(I)ともいう): That is, the present invention provides a compound represented by formula (I) or a salt thereof (hereinafter simply referred to as compound (I)):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (式中、Rは、炭素原子数1~3のアルキル基である)
の製造方法であって、
(1)無溶媒又は溶媒中で、式(II)で表される化合物又はその塩(以下、単に化合物(II)ともいう):
(Wherein, R is an alkyl group having 1 to 3 carbon atoms)
A manufacturing method of
(1) a compound represented by formula (II) or a salt thereof (hereinafter also simply referred to as compound (II)) in the absence or in a solvent:
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、Rは、前述のとおりである)
とPOBrとを反応させる工程、
(2)上記工程(1)で得られた反応混合物を後処理し、式(III)で表される化合物又はその塩(以下、単に化合物(III)ともいう):
(Wherein, R is as described above)
reacting POBr3 with
(2) post-treating the reaction mixture obtained in step (1) above to obtain a compound represented by formula (III) or a salt thereof (hereinafter also simply referred to as compound (III)):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、Rは、前述のとおりである)
を得る工程、並びに
(3)少なくとも一種類以上のアミド系溶媒を含む溶媒中で、硫酸を添加せずに、上記工程(2)で得られた式(III)で表される化合物又はその塩とペルオキソ二硫酸塩とを反応させる工程、
を含むことを特徴とする、式(I)で表される化合物又はその塩の製造方法を提供する。
(Wherein, R is as described above)
and (3) the compound represented by the formula (III) obtained in the above step (2) or a salt thereof in a solvent containing at least one or more amide solvents without adding sulfuric acid reacting the peroxodisulfate with
A method for producing a compound represented by formula (I) or a salt thereof is provided, comprising:
 本発明によれば、アントラニルアミド系殺虫剤の製造に有用な製造中間体である化合物(I)及び化合物(III)を高純度かつ高収率で製造することができる。さらに、従来の化合物(I)及び化合物(III)の製造方法と比較して、本発明は高純度な化合物(I)及び化合物(III)をより高収率かつ効率的に製造することができる。 According to the present invention, compound (I) and compound (III), which are useful production intermediates for the production of anthranilamide insecticides, can be produced with high purity and high yield. Furthermore, compared with conventional methods for producing compound (I) and compound (III), the present invention can produce highly purified compound (I) and compound (III) in a higher yield and more efficiently. .
比較実施例2において得られた生成物のHPLC分析によるクロマトグラムである。2 is a chromatogram obtained by HPLC analysis of the product obtained in Comparative Example 2. FIG. 比較実施例2において得られた生成物のH-NMR分析によるスペクトルである。1 is a 1 H-NMR spectrum of the product obtained in Comparative Example 2. FIG.
[式(I)の化合物の製造方法]
 本発明の化合物(I)の製造方法は、溶媒中で化合物(II)とPOBrとを反応させる工程(1)、工程(1)で得られた反応混合物を後処理して化合物(III)を得る工程(2)、並びに少なくとも一種類以上のアミド系溶媒を含む溶媒中で、硫酸を添加せずに、工程(2)で得られた化合物(III)とペルオキソ二硫酸塩とを反応させる工程(3)を含むことを特徴とする。
[Method for producing compound of formula (I)]
The method for producing compound (I) of the present invention comprises step (1) of reacting compound (II) with POBr 3 in a solvent, and post-treating the reaction mixture obtained in step (1) to give compound (III). and reacting the compound (III) obtained in step (2) with peroxodisulfate in a solvent containing at least one or more amide solvents without adding sulfuric acid. It is characterized by including step (3).
 式(I)、(II)又は(III)として表される化合物の塩としては、農薬上許容されるものであればあらゆるものを含み、例えば、アルカリ金属塩(例えば、ナトリウム塩、カリウム塩など)、アルカリ土類金属塩(例えば、マグネシウム塩、カルシウム塩など)、アンモニウム塩、アルキルアンモニウム塩(例えば、ジメチルアンモニウム塩、トリエチルアンモニウム塩など)、酸付加塩(塩酸塩、臭化水素酸塩、リン酸塩類(リン酸一水素塩、リン酸二水素塩など)、過塩素酸塩、硫酸塩、硝酸塩、酢酸塩、メタンスルホン酸塩など)などが挙げられる。式(I)、(II)又は(III)中のRとして示される炭素原子数1~3のアルキル基は、反応が進行する限り特に限定されないが、メチル、エチル、n-プロピル、及びイソプロピルが好ましく、エチルがより好ましい。 Salts of the compounds represented by formula (I), (II) or (III) include all pesticide-acceptable salts, such as alkali metal salts (e.g., sodium salts, potassium salts, etc.). ), alkaline earth metal salts (e.g., magnesium salts, calcium salts, etc.), ammonium salts, alkylammonium salts (e.g., dimethylammonium salts, triethylammonium salts, etc.), acid addition salts (hydrochlorides, hydrobromides, phosphates (monohydrogen phosphate, dihydrogen phosphate, etc.), perchlorates, sulfates, nitrates, acetates, methanesulfonates, etc.); The alkyl group having 1 to 3 carbon atoms represented by R in formula (I), (II) or (III) is not particularly limited as long as the reaction proceeds, but methyl, ethyl, n-propyl and isopropyl Preferred, more preferred is ethyl.
 本発明における化合物(II)は、当技術分野において公知の方法、例えば、特許文献1、5~7などに記載された方法又はそれに準じる方法により製造することができ、或いは市販品を使用することもできる。 Compound (II) in the present invention can be produced by methods known in the art, for example, methods described in Patent Documents 1, 5 to 7, or methods analogous thereto, or commercially available products can be used. can also
 工程(1)の反応における化合物(II)とPOBrの使用量は、反応が進行する限り特に限定されないが、化合物(II)1モルに対して、例えば、0.3~2モル、好ましくは、0.4~1.5モル、より好ましくは、0.5~1モルのPOBrを使用することができる。 The amount of compound (II) and POBr 3 used in the reaction of step (1) is not particularly limited as long as the reaction proceeds. , 0.4 to 1.5 mol, more preferably 0.5 to 1 mol of POBr 3 can be used.
 工程(1)の反応において使用される溶媒としては、工程(1)の反応に悪影響を及ぼさない限り特に限定されないが、例えば、ニトリル系溶媒(例えば、アセトニトリル、プロピオニトリル、ブチロニトリルなど)、ハロゲン系溶媒(例えば、ジクロロメタン、ジクロロエタン、クロロホルム、クロロベンゼンなど)、エーテル系溶媒(例えば、テトラヒドロフラン、ジエチルエーテル、アニソールなど)、エステル系溶媒(例えば、酢酸エチル、酢酸ブチルなど)、ケトン系溶媒(例えば、アセトン、メチルエチルケトン、シクロヘキサノンなど)、アミド系溶媒(例えば、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなど)、芳香族炭化水素系溶媒(例えば、トルエン、キシレンなど)、極性溶媒(例えば、ジメチルスルホキシド、酢酸など)、又はこれらの混合溶媒が挙げられる。また、工程(1)の反応は、無溶媒条件においても実施することができる。これらの中でも、工程(1)又は工程(3)のそれぞれの反応収率、並びに得られる化合物(I)又は(III)のそれぞれの純度の観点から、ニトリル系溶媒、ハロゲン系溶媒及び芳香族炭化水素系溶媒からなる群から選択される少なくとも1種以上が好ましく、ニトリル系溶媒及びハロゲン系溶媒からなる群から選択される少なくとも1種以上がより好ましく、アセトニトリル、ジクロロメタン、ジクロロエタン及びクロロベンゼンからなる群から選択される少なくとも1種以上がさらに好ましい。溶媒の使用量は、工程(1)の反応が進行する限り特に限定されないが、化合物(II)に対して、例えば、0.1~20倍量(V/W)、好ましくは、1~10倍量(V/W)、より好ましくは2~5倍量(V/W)である。 The solvent used in the reaction of step (1) is not particularly limited as long as it does not adversely affect the reaction of step (1). Examples include nitrile solvents (e.g., acetonitrile, propionitrile, butyronitrile), halogen solvent (e.g., dichloromethane, dichloroethane, chloroform, chlorobenzene, etc.), ether solvent (e.g., tetrahydrofuran, diethyl ether, anisole, etc.), ester solvent (e.g., ethyl acetate, butyl acetate, etc.), ketone solvent (e.g., Acetone, methyl ethyl ketone, cyclohexanone, etc.), amide solvents (e.g., dimethylformamide, diethylformamide, dimethylacetamide, N-methylpyrrolidone, etc.), aromatic hydrocarbon solvents (e.g., toluene, xylene, etc.), polar solvents (e.g., dimethylsulfoxide, acetic acid, etc.), or a mixed solvent thereof. The reaction of step (1) can also be carried out under solvent-free conditions. Among these, from the viewpoint of the reaction yield of each step (1) or step (3) and the purity of each compound (I) or (III) obtained, nitrile solvents, halogen solvents and aromatic carbonization At least one selected from the group consisting of hydrogen solvents is preferred, at least one selected from the group consisting of nitrile solvents and halogen solvents is more preferred, and from the group consisting of acetonitrile, dichloromethane, dichloroethane and chlorobenzene. More preferably, at least one or more are selected. The amount of the solvent used is not particularly limited as long as the reaction in step (1) proceeds. Double volume (V/W), more preferably 2 to 5 times volume (V/W).
 工程(1)の反応形態について、化合物(II)、POBr、及び溶媒の添加の順序は、特に限定されず、任意の順序で添加及び混合すればよい。化合物(II)、POBr、及び溶媒の反応系への添加は、一度に又は分割して行ってもよいし、連続的であってもよい。例えば、添加の順序としては、すべての成分を一度に混合してもよいし、或いは、一部の成分を後で添加してもよく、このような添加の具体例としては、例えば、化合物(II)及び溶媒を混合し、そこにPOBrを添加する、などが挙げられる。 Regarding the reaction mode of step (1), the order of addition of compound (II), POBr 3 and solvent is not particularly limited, and they may be added and mixed in any order. Addition of compound (II), POBr 3 and solvent to the reaction system may be carried out at once or in portions, or may be carried out continuously. For example, as the order of addition, all components may be mixed at once, or some components may be added later. Specific examples of such addition include compounds ( II) and solvent are mixed and POBr 3 is added thereto.
 工程(1)の反応温度は、通常、室温(20~30℃)~100℃程度、好ましくは、70~90℃程度である。上記工程(1)の反応時間は、通常、0.5~48時間程度、好ましくは、1~24時間程度、より好ましくは、1~8時間程度である。 The reaction temperature in step (1) is usually room temperature (20-30°C) to about 100°C, preferably about 70-90°C. The reaction time of the step (1) is usually about 0.5 to 48 hours, preferably about 1 to 24 hours, more preferably about 1 to 8 hours.
 工程(1)の反応の終了後、工程(2)において、例えば、中和、抽出、蒸留、溶媒留去、洗浄、ろ過及び乾燥などの常法による後処理を行うことにより、化合物(III)を得る、例えば、単離することができる。その後、必要により、再結晶、洗浄、カラムクロマトグラフィーなどの常法により、化合物(III)を精製してもよい。或いは、化合物(III)を単離することなく、又は単離された化合物(III)を精製することなく、得られた化合物(III)をそのまま次の反応に使用することもできる。上記後処理としては、式(I)で表される化合物の純度向上の観点から、中和、抽出及び蒸留が好ましく、これらの組み合わせがより好ましい。 After completion of the reaction in step (1), in step (2), compound (III) is obtained by post-treatment by conventional methods such as neutralization, extraction, distillation, solvent distillation, washing, filtration and drying. can be obtained, eg isolated. Thereafter, if necessary, compound (III) may be purified by conventional methods such as recrystallization, washing, and column chromatography. Alternatively, without isolating compound (III) or purifying the isolated compound (III), the obtained compound (III) can be used as it is for the next reaction. From the viewpoint of improving the purity of the compound represented by formula (I), the post-treatment is preferably neutralization, extraction and distillation, and more preferably a combination thereof.
 工程(2)は、好ましくは、以下の工程を含むことを特徴とする。
(2-1):工程(1)で得られた反応混合物を塩基と混合し、混合物を得る工程、及び
(2-2):工程(2-1)で得られた混合物から工程(1)の溶媒を除去し、式(III)で表される化合物又はその塩を含む混合物を得る工程。
Step (2) is preferably characterized by including the following steps.
(2-1): A step of mixing the reaction mixture obtained in step (1) with a base to obtain a mixture, and (2-2): Step (1) from the mixture obtained in step (2-1) to obtain a mixture containing the compound represented by formula (III) or a salt thereof.
 さらに、工程(2)は、より好ましくは、工程(2-2)の後に、以下の工程を含むことも特徴とする。
(2-3):溶媒を用いて工程(2-2)で得られた混合物から、式(III)で表される化合物又はその塩及び溶媒を含む抽出物を得る工程、及び
(2-4):工程(2-3)で得られた抽出物に含まれる溶媒をアミド系溶媒に置換する工程。
Further, step (2) is more preferably characterized by including the following steps after step (2-2).
(2-3): A step of obtaining an extract containing the compound represented by formula (III) or a salt thereof and a solvent from the mixture obtained in step (2-2) using a solvent, and (2-4) ): A step of replacing the solvent contained in the extract obtained in step (2-3) with an amide solvent.
 工程(2-1)において使用される塩基としては、アルカリ金属の水酸化物(例えば水酸化ナトリウム、水酸化カリウムなど)、アルカリ金属の炭酸塩(例えば炭酸ナトリウム、炭酸カリウムなど)、アルカリ金属の炭酸水素塩(例えば炭酸水素ナトリウム、炭酸水素カリウムなど)、アルカリ土類金属の水酸化物(例えば水酸化カルシウムなど)、アルカリ土類金属の炭酸塩(例えば炭酸カルシウムなど)、アルカリ土類金属の炭酸水素塩(例えば炭酸水素カルシウムなど)、又はこれらの混合物が挙げられる。これらの中でも、収率並びに得られる化合物(I)又は(III)の純度の観点から、アルカリ金属の水酸化物(例えば水酸化ナトリウム、水酸化カリウムなど)、及びアルカリ金属の炭酸水素塩(例えば炭酸水素ナトリウムなど)が好ましく、アルカリ金属の水酸化物(例えば水酸化ナトリウム、水酸化カリウムなど)がより好ましく、水酸化ナトリウム及び水酸化カリウムがさらに好ましい。塩基の形態は、工程(1)の反応をクエンチできる限り特に限定されないが、例えば、固形物、水溶液などが挙げられる。塩基の形態が水溶液の場合、水溶液中の塩基の濃度は例えば1~50重量%であり、好ましくは5~40重量%であり、より好ましくは10~30重量%である。塩基の使用量は、工程(1)の反応をクエンチできる限り特に限定されないが、化合物(II)1モルに対して、例えば1~3モルであり、好ましくは1.5~2.5モルであり、より好ましくは1.7~2モルである。反応混合物と塩基を混合する時の温度は、通常0~60℃程度であり、好ましくは、10~30℃程度である。また、この工程に要する時間は、通常、0.5~24時間程度であり、好ましくは0.5~8時間程度であり、より好ましくは1~8時間程度である。 Examples of the base used in step (2-1) include alkali metal hydroxides (e.g. sodium hydroxide, potassium hydroxide, etc.), alkali metal carbonates (e.g., sodium carbonate, potassium carbonate, etc.), alkali metal Hydrogen carbonates (e.g., sodium hydrogen carbonate, potassium hydrogen carbonate, etc.), alkaline earth metal hydroxides (e.g., calcium hydroxide, etc.), alkaline earth metal carbonates (e.g., calcium carbonate, etc.), alkaline earth metal Hydrogen carbonates (such as calcium hydrogen carbonate), or mixtures thereof. Among these, alkali metal hydroxides (e.g., sodium hydroxide, potassium hydroxide, etc.) and alkali metal hydrogen carbonates (e.g., sodium bicarbonate, etc.) are preferred, alkali metal hydroxides (eg, sodium hydroxide, potassium hydroxide, etc.) are more preferred, and sodium hydroxide and potassium hydroxide are even more preferred. The form of the base is not particularly limited as long as it can quench the reaction in step (1), and examples thereof include solids and aqueous solutions. When the form of the base is an aqueous solution, the concentration of the base in the aqueous solution is, for example, 1 to 50% by weight, preferably 5 to 40% by weight, more preferably 10 to 30% by weight. The amount of the base to be used is not particularly limited as long as it can quench the reaction in step (1). Yes, more preferably 1.7 to 2 mol. The temperature at which the reaction mixture and the base are mixed is usually about 0 to 60°C, preferably about 10 to 30°C. The time required for this step is usually about 0.5 to 24 hours, preferably about 0.5 to 8 hours, more preferably about 1 to 8 hours.
 さらに、工程(1)又は工程(3)のそれぞれの反応収率、並びに得られる化合物(I)又は(III)のそれぞれの純度の観点から、上記工程(1)で得られた反応混合物を塩基と混合して得られた混合物のpHは、例えば、6~12、好ましくは、7~10、より好ましくは、8~9である。 Furthermore, from the viewpoint of the reaction yield of each step (1) or step (3) and the purity of each compound (I) or (III) obtained, the reaction mixture obtained in the above step (1) is The pH of the mixture obtained by mixing with is, for example, 6-12, preferably 7-10, more preferably 8-9.
 工程(2-2)において工程(2-1)の混合物から工程(1)の溶媒を除去する操作としては、例えば、減圧下又は常圧下で溶媒を留去するなどの常法が使用できる。 As the operation for removing the solvent of step (1) from the mixture of step (2-1) in step (2-2), a conventional method such as distilling off the solvent under reduced pressure or normal pressure can be used.
 工程(2-3)において抽出で使用される溶媒は、工程(1)又は工程(3)のそれぞれの反応収率、及び純度に悪影響を及ぼさない限り特に限定されないが、例えば、ハロゲン系溶媒(例えば、ジクロロメタン、ジクロロエタン、クロロホルム、クロロベンゼンなど)、エステル系溶媒(例えば、酢酸エチル、酢酸ブチルなど)、芳香族炭化水素系溶媒(例えば、トルエン、キシレンなど)、又はこれらの混合溶媒が挙げられる。これらの中でも、工程(1)又は工程(3)のそれぞれの反応収率、並びに得られる化合物(I)又は(III)のそれぞれの純度の観点から、工程(2-3)において抽出で使用される溶媒は、ハロゲン系溶媒及びエステル系溶媒からなる群から選択される少なくとも1種以上が好ましく、ジクロロメタン、酢酸エチル及び酢酸ブチルからなる群から選択される少なくとも1種以上がより好ましく、ジクロロメタン及び酢酸エチルからなる群から選択される少なくとも1種以上が特に好ましい。抽出で使用される溶媒の使用量は、化合物(III)に対して、例えば、0.5~15倍量(V/W)であり、好ましくは1~10倍量(V/W)であり、より好ましくは1~8倍量(V/W)である。工程(2-3)において抽出する操作、例えば、分液などの常法により、化合物(III)及び抽出で使用される溶媒を含む混合物を得ることができる。 The solvent used in the extraction in step (2-3) is not particularly limited as long as it does not adversely affect the reaction yield and purity of step (1) or step (3). For example, halogen-based solvents ( Examples thereof include dichloromethane, dichloroethane, chloroform, chlorobenzene, etc.), ester solvents (eg, ethyl acetate, butyl acetate, etc.), aromatic hydrocarbon solvents (eg, toluene, xylene, etc.), and mixed solvents thereof. Among these, from the viewpoint of the reaction yield of each step (1) or step (3) and the purity of each compound (I) or (III) obtained, it is used for extraction in step (2-3) The solvent is preferably at least one selected from the group consisting of halogen solvents and ester solvents, more preferably at least one selected from the group consisting of dichloromethane, ethyl acetate and butyl acetate, dichloromethane and acetic acid At least one selected from the group consisting of ethyl is particularly preferred. The amount of the solvent used in the extraction is, for example, 0.5 to 15 times (V/W), preferably 1 to 10 times (V/W) the amount of compound (III). , more preferably 1 to 8 times (V/W). A mixture containing compound (III) and the solvent used in the extraction can be obtained by an extraction operation in step (2-3), for example, a conventional method such as liquid separation.
 工程(2-4)の溶媒の置換において使用されるアミド系溶媒としては、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ヘキサメチルリン酸トリアミド及びこれらの混合溶媒などが挙げられる。これらの中でも、アミド系溶媒は、工程(3)の反応に悪影響を及ぼさない限り特に限定されないが、例えば、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、及びこれらの混合溶媒が好ましい。特に、工程(3)の反応収率、及び得られる化合物(I)の純度の観点から、アミド系溶媒はジメチルホルムアミド、ジエチルホルムアミド、及びジメチルアセトアミドからなる群から選択される少なくとも1種以上が好ましく、ジメチルホルムアミド、及びジメチルアセトアミドからなる群から選択される少なくとも1種以上がより好ましい。アミド系溶媒の使用量は、工程(3)の反応収率、及び純度に悪影響を及ぼさない限り特に限定されないが、化合物(III)に対して、例えば、1~20倍量(V/W)であり、好ましくは2~15倍量(V/W)であり、より好ましくは3~10倍量(V/W)である。工程(2-4)においてアミド系溶媒へ置換する操作、例えば、工程(2-3)の抽出で使用した溶媒を留去し、化合物(III)を得た後、その得られた化合物(III)と上記アミド系溶媒を混合するなどの常法により、化合物(III)及びアミド系溶媒を含む混合物を得ることができる。 Examples of amide-based solvents used in replacing the solvent in step (2-4) include dimethylformamide, diethylformamide, dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoric acid triamide, and mixed solvents thereof. Among these, the amide-based solvent is not particularly limited as long as it does not adversely affect the reaction in step (3), and preferred examples include dimethylformamide, diethylformamide, dimethylacetamide, N-methylpyrrolidone, and mixed solvents thereof. In particular, from the viewpoint of the reaction yield in step (3) and the purity of the resulting compound (I), the amide solvent is preferably at least one selected from the group consisting of dimethylformamide, diethylformamide, and dimethylacetamide. , dimethylformamide, and dimethylacetamide are more preferred. The amount of the amide-based solvent used is not particularly limited as long as it does not adversely affect the reaction yield and purity of step (3). , preferably 2 to 15 times (V/W), more preferably 3 to 10 times (V/W). An operation of replacing with an amide solvent in step (2-4), for example, the solvent used in the extraction of step (2-3) is distilled off to obtain compound (III), and then the obtained compound (III ) and the above amide solvent, a mixture containing compound (III) and the amide solvent can be obtained.
 工程(3)は、少なくとも一種類以上のアミド系溶媒を含む溶媒中で、硫酸を添加せずに、工程(2)で得られた化合物(III)とペルオキソ二硫酸塩とを反応させることを特徴とする。本発明において、硫酸を添加しないことにより、後述の実施例で示すように、得られる化合物(I)の純度が改善される。 The step (3) comprises reacting the compound (III) obtained in the step (2) with a peroxodisulfate in a solvent containing at least one amide-based solvent without adding sulfuric acid. Characterized by In the present invention, by not adding sulfuric acid, the purity of the resulting compound (I) is improved, as shown in the examples below.
 工程(3)の反応において使用されるペルオキソ二硫酸塩としては、工程(3)の反応に悪影響を及ぼさない限り特に限定されないが、例えば、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸アンモニウム、又はこれらの混合物が挙げられる。これらの中でも、工程(3)の反応で得られる化合物(I)の純度及び反応収率の観点から、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸アンモニウムが好ましく、ペルオキソ二硫酸ナトリウムがより好ましい。工程(3)の反応における化合物(III)及びペルオキソ二硫酸塩の使用量は、工程(3)の反応が進行する限り特に限定されないが、化合物(III)1モルに対して、例えば、1~3モルであり、好ましくは1.2~2.5モルであり、より好ましくは1.4~2モルである。 The peroxodisulfate used in the reaction of step (3) is not particularly limited as long as it does not adversely affect the reaction of step (3). Examples include sodium peroxodisulfate, potassium peroxodisulfate, ammonium peroxodisulfate, Or a mixture thereof. Among these, sodium peroxodisulfate and ammonium peroxodisulfate are preferred, and sodium peroxodisulfate is more preferred, from the viewpoint of the purity and reaction yield of compound (I) obtained in the reaction of step (3). The amount of compound (III) and peroxodisulfate used in the reaction of step (3) is not particularly limited as long as the reaction of step (3) proceeds. It is 3 mol, preferably 1.2 to 2.5 mol, more preferably 1.4 to 2 mol.
 工程(3)の反応において使用されるアミド系溶媒は、工程(3)の反応に悪影響を及ぼさない限り特に限定されないが、例えば、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド及びこれらの混合溶媒などが挙げられる。これらの中でも、工程(3)の反応収率及び得られる化合物(I)の純度の観点から、工程(3)におけるアミド系溶媒は、ジメチルホルムアミド及びジメチルアセトアミドからなる群から選択される少なくとも1種以上が好ましく、ジメチルホルムアミドがより好ましい。工程(3)の反応において使用されるアミド系溶媒の使用量は、工程(3)の反応が進行する限り特に限定されないが、化合物(III)に対して、例えば1~20倍量(V/W)であり、好ましくは2~15倍量(V/W)であり、より好ましくは3~10倍量(V/W)である。 The amide solvent used in the reaction of step (3) is not particularly limited as long as it does not adversely affect the reaction of step (3). Examples include dimethylformamide, diethylformamide, dimethylacetamide and mixed solvents thereof. be done. Among these, from the viewpoint of the reaction yield in step (3) and the purity of the resulting compound (I), the amide-based solvent in step (3) is at least one selected from the group consisting of dimethylformamide and dimethylacetamide. The above are preferred, and dimethylformamide is more preferred. The amount of the amide solvent used in the reaction of step (3) is not particularly limited as long as the reaction of step (3) proceeds. W), preferably 2 to 15 times (V/W), more preferably 3 to 10 times (V/W).
 工程(2-1)~工程(2-4)を行う場合、工程(3)の反応において、工程(2-4)で得られた化合物(III)及びアミド系溶媒を含む混合物と上記記載のペルオキソ二硫酸塩を使用すればよい。この場合、反応に悪影響を及ぼさない限り、工程(3)の反応の溶媒は工程(2-3)の溶媒を含んでいてもよい。 When performing steps (2-1) to (2-4), in the reaction of step (3), a mixture containing compound (III) obtained in step (2-4) and an amide solvent and the above-described Peroxodisulfate may be used. In this case, the solvent for the reaction in step (3) may contain the solvent in step (2-3) as long as it does not adversely affect the reaction.
 工程(3)の反応の形態について、化合物(III)、ペルオキソ二硫酸塩、溶媒の添加の順序は、特に限定されず、任意の順序で添加及び混合すればよい。化合物(III)、ペルオキソ二硫酸塩、溶媒の反応系への添加は、一度に又は分割して行ってもよいし、連続的であってもよい。ここで、工程(2-4)~工程(3)を行う場合、必要に応じて溶媒を添加してもよい。例えば、添加の順序としては、例えば、化合物(III)及び溶媒を混合して得られた混合物にペルオキソ二硫酸塩を添加する、などが挙げられる。これらの中でも、工程(3)の反応収率及び得られる化合物(I)の純度の観点から、化合物(III)及び溶媒の混合物にペルオキソ二硫酸塩を添加する時の温度は通常、室温(20~30℃)~100℃程度であり、好ましくは50~80℃程度である。工程(3)で使用する溶媒は、工程(3)の反応が進行する限り特に限定されないが、好ましくは少なくとも1種類以上のアミド系溶媒を含む溶媒であり、そのアミド系溶媒の割合は好ましくは70~100%、より好ましくは80~100%、さらに好ましくは100%である。 Regarding the form of reaction in step (3), the order of addition of compound (III), peroxodisulfate, and solvent is not particularly limited, and may be added and mixed in any order. Addition of compound (III), peroxodisulfate and solvent to the reaction system may be carried out at once or in portions, or may be carried out continuously. Here, when performing steps (2-4) to (3), a solvent may be added as necessary. For example, the order of addition includes adding peroxodisulfate to a mixture obtained by mixing compound (III) and a solvent. Among these, the temperature at which the peroxodisulfate is added to the mixture of compound (III) and solvent is usually room temperature (20 to 30°C) to 100°C, preferably about 50 to 80°C. The solvent used in step (3) is not particularly limited as long as the reaction in step (3) proceeds, but is preferably a solvent containing at least one or more amide solvents, and the proportion of the amide solvent is preferably 70 to 100%, more preferably 80 to 100%, still more preferably 100%.
 さらに、工程(3)の反応は、実質的に無水条件で行われることが好ましい。工程(3)の反応の実質的に無水条件とは、少なくとも1種類以上のアミド系溶媒を含む溶媒及び化合物(III)の混合物の水分値の範囲が、工程(3)の反応に悪影響を及ぼさない数値範囲を意味する。その具体的な水分値は、上記工程(3)の反応が進行する限り特に限定されないが、上記工程(3)の反応収率及び得られる化合物(I)の純度の観点から、例えば、5,000ppm以下であり、好ましくは3,000ppm以下であり、より好ましくは1,000ppm以下である。工程(3)の反応が実質的に無水条件で進行するための操作としては、例えば、工程(3)の反応において硫酸を使用しない、脱水溶媒を使用する、又は共沸脱水を行うなどの操作を利用できる。この操作により、実質的に無水条件で工程(3)の反応を行うことができる。 Furthermore, the reaction in step (3) is preferably carried out under substantially anhydrous conditions. Substantially anhydrous conditions for the reaction in step (3) mean that the water content range of the mixture of the compound (III) and a solvent containing at least one amide solvent does not adversely affect the reaction in step (3). means no numeric range. The specific water content is not particularly limited as long as the reaction in step (3) proceeds. It is 000 ppm or less, preferably 3,000 ppm or less, more preferably 1,000 ppm or less. Operations for allowing the reaction in step (3) to proceed under substantially anhydrous conditions include, for example, operations such as not using sulfuric acid in the reaction in step (3), using a dehydrating solvent, or performing azeotropic dehydration. available. This operation allows the reaction of step (3) to be carried out under substantially anhydrous conditions.
 工程(3)の反応温度は、通常、室温(20~30℃)~100℃程度であり、好ましくは60~80℃程度である。工程(3)の反応時間は、通常、0.5~24時間程度であり、好ましくは0.5~8時間程度であり、より好ましくは、1~5時間程度である。 The reaction temperature in step (3) is usually room temperature (20-30°C) to about 100°C, preferably about 60-80°C. The reaction time of step (3) is usually about 0.5 to 24 hours, preferably about 0.5 to 8 hours, more preferably about 1 to 5 hours.
 工程(3)の反応の終了後、必要に応じて、例えば、中和、抽出、洗浄、乾燥などの常法による後処理を行うことにより、化合物(I)を単離することができる。その後、必要により、再結晶、洗浄、カラムクロマトグラフィーなどの常法により、化合物(I)を精製してもよい。あるいは、単離された化合物(I)を精製することなく、そのまま次のアントラニルアミド系殺虫剤の製造中間体の製造に使用することもできる。 After completion of the reaction in step (3), compound (I) can be isolated by performing post-treatments by conventional methods such as neutralization, extraction, washing, and drying, if necessary. Thereafter, if necessary, compound (I) may be purified by conventional methods such as recrystallization, washing, and column chromatography. Alternatively, the isolated compound (I) can be used as it is for the production of the next production intermediate for an anthranilamide insecticide without purification.
 本反応により得られる化合物(I)の純度は、通常、90%以上であり、好ましくは95%以上であり、より好ましくは98%以上である。また、本反応により得られる化合物(I)に含有される個々の不純物の量は、通常、それぞれ2%以下であり、好ましくはそれぞれ1%以下であり、より好ましくは不純物を実質的に含有しない。また、本反応により得られる化合物(I)に含有される不純物の総量は、通常、それぞれ2%以下であり、好ましくはそれぞれ1%以下であり、より好ましくは不純物を実質的に含有しない。ここで、“不純物を実質的に含有しない”とは、不可避的に混入する不純物の量であって、使用されるアントラニルアミド系殺虫剤に悪影響を与えない程度の量を意味する。このような化合物(I)を使用してアントラニルアミド系殺虫剤の重要な製造中間体を製造することにより、農薬原体としての規格を満たす高純度のアントラニルアミド系殺虫剤を製造することができる。 The purity of compound (I) obtained by this reaction is usually 90% or higher, preferably 95% or higher, more preferably 98% or higher. In addition, the amount of each impurity contained in compound (I) obtained by this reaction is usually 2% or less, preferably 1% or less, and more preferably substantially free of impurities. . The total amount of impurities contained in compound (I) obtained by this reaction is usually 2% or less, preferably 1% or less, and more preferably substantially no impurities. Here, "substantially free of impurities" means an amount of impurities that are unavoidably mixed in, and an amount that does not adversely affect the anthranilamide insecticide used. By using such compound (I) to produce an important production intermediate for anthranilamide pesticides, it is possible to produce high-purity anthranilamide pesticides that meet the standards for active ingredients of agricultural chemicals. .
 本発明の方法における種々の構成要素は、前述した複数の例示や条件の中から、例えば、前述した通常範囲の例示及び条件だけでなく好ましい範囲の例示及び条件の中から適宜選択し、かつ、相互に組み合わせることができる。 Various constituent elements in the method of the present invention are appropriately selected from among the above-described multiple examples and conditions, for example, from not only the examples and conditions in the normal range described above but also the examples and conditions in the preferred range, and They can be combined with each other.
 以下に本発明の好ましい実施形態の一例を列記するが、本発明はこれらに限定されるものではない。
[1]式(I)で表される化合物又はその塩:
Examples of preferred embodiments of the present invention are listed below, but the present invention is not limited to these.
[1] A compound represented by formula (I) or a salt thereof:
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、Rは、炭素原子数1~3のアルキル基である)
の製造方法であって、
(1)無溶媒又は溶媒中で、式(II)で表される化合物又はその塩:
(Wherein, R is an alkyl group having 1 to 3 carbon atoms)
A manufacturing method of
(1) a compound represented by formula (II) or a salt thereof in the absence or in a solvent:
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、Rは、前述のとおりである)
 とPOBrとを反応させる工程、
(2)工程(1)で得られた反応混合物を後処理し、式(III)で表される化合物又はその塩(以下、単に化合物(III)ともいう):
(Wherein, R is as described above)
reacting POBr3 with
(2) post-treating the reaction mixture obtained in step (1) to obtain a compound represented by formula (III) or a salt thereof (hereinafter also simply referred to as compound (III)):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、Rは、前述のとおりである)
を得る工程、並びに
(3)少なくとも一種類以上のアミド系溶媒を含む溶媒中で、硫酸を添加せずに、工程(2)で得られた式(III)で表される化合物又はその塩とペルオキソ二硫酸塩とを反応させる工程、
を含む、式(I)で表される化合物又はその塩の製造方法。
[2]工程(2)が、以下の工程を含む、[1]に記載の製造方法:
(2-1):工程(1)で得られた反応混合物を塩基と混合し、混合物を得る工程、及び
(2-2):工程(2-1)で得られた混合物から工程(1)の溶媒を除去し、式(III)で表される化合物又はその塩を含む混合物を得る工程。
[3]工程(2-2)の後に以下の工程を含む、[2]に記載の製造方法:
(2-3):溶媒を用いて工程(2-2)で得られた混合物から、式(III)で表される化合物又はその塩及び溶媒を含む抽出物を得る工程、及び
(2-4):工程(2-3)で得られた抽出物に含まれる溶媒をアミド系溶媒に置換する工程。
[4]工程(3)におけるペルオキソ二硫酸塩との反応が、実質的に無水条件で行われることを特徴とする、[1]~[3]のいずれか一項に記載の製造方法。
[5]工程(1)の溶媒が、ニトリル系溶媒、ハロゲン系溶媒及び芳香族炭化水素系溶媒からなる群から選択される1種以上である、[1]~[4]のいずれか一項に記載の製造方法。
[6]工程(1)の溶媒が、アセトニトリル、ジクロロメタン、ジクロロエタン及びクロロベンゼンからなる群から選択される1種以上である、[5]に記載の製造方法。
[7]工程(2-1)において使用される塩基が、アルカリ金属の水酸化物(例えば水酸化ナトリウム、水酸化カリウムなど)、及びアルカリ金属の炭酸水素塩(例えば炭酸水素ナトリウムなど)からなる群から選択される少なくとも1種以上である、[2]~[6]のいずれか一項に記載の製造方法。
[8]工程(2-1)の塩基が、アルカリ金属の水酸化物(例えば水酸化ナトリウム、水酸化カリウムなど)である、[2]~[6]のいずれか一項に記載の製造方法。
[9]工程(2-1)の塩基が、水酸化ナトリウム又は水酸化カリウムである、[2]~[6]のいずれか一項に記載の製造方法。
[10]工程(2-1)の塩基が、水酸化ナトリウム、水酸化カリウム又は炭酸水素ナトリウムである、[2]~[6]のいずれか一項に記載の製造方法。
[11]工程(2-3)及び(2-4)の溶媒が、ハロゲン系溶媒又はエステル系溶媒である、[3]~[10]のいずれか一項に記載の製造方法。
[12]工程(2-3)及び(2-4)の溶媒が、ジクロロメタン、酢酸エチル及び酢酸ブチルからなる群から選択される少なくとも1種以上である、[3]~[11]のいずれか一項に記載の製造方法。
[13]工程(2-3)及び(2-4)の溶媒が、ジクロロメタン及び酢酸エチルからなる群から選択される少なくとも1種以上である、[3]~[11]のいずれか一項に記載の製造方法。
[14]工程(3)のペルオキソ二硫酸塩が、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム、及びペルオキソ二硫酸アンモニウムからなる群から選択される少なくとも1種以上である、[1]~[13]のいずれか一項に記載の製造方法。
[15]工程(3)のペルオキソ二硫酸塩が、ペルオキソ二硫酸ナトリウム、又はペルオキソ二硫酸アンモニウムである、[1]~[13]のいずれか一項に記載の製造方法。
[16]工程(3)のペルオキソ二硫酸塩が、ペルオキソ二硫酸ナトリウムである、[1]~[13]のいずれか一項に記載の製造方法。
[17]工程(3)におけるアミド系溶媒が、ジメチルホルムアミド、ジエチルホルムアミド及びジメチルアセトアミドからなる群から選択される少なくとも1種以上である、[1]~[16]のいずれか一項に記載の製造方法。
[18]工程(3)におけるアミド系溶媒が、ジメチルホルムアミド、及びジメチルアセトアミドからなる群から選択される少なくとも1種以上である、[1]~[17]のいずれか一項に記載の製造方法。
[19]工程(3)におけるアミド系溶媒が、ジメチルホルムアミドである、[1]~[18]のいずれか一項に記載の製造方法。
[20]工程(3)のアミド系溶媒がジメチルホルムアミドであり、ペルオキソ二硫酸塩がペルオキソ二硫酸ナトリウムである、[1]~[18]のいずれか一項に記載の製造方法。
(Wherein, R is as described above)
and (3) with the compound represented by the formula (III) obtained in step (2) or a salt thereof in a solvent containing at least one or more amide solvents without adding sulfuric acid reacting with a peroxodisulfate;
A method for producing a compound represented by formula (I) or a salt thereof, comprising:
[2] The production method according to [1], wherein step (2) includes the following steps:
(2-1): A step of mixing the reaction mixture obtained in step (1) with a base to obtain a mixture, and (2-2): Step (1) from the mixture obtained in step (2-1) to obtain a mixture containing the compound represented by formula (III) or a salt thereof.
[3] The production method according to [2], which includes the following steps after step (2-2):
(2-3): A step of obtaining an extract containing the compound represented by formula (III) or a salt thereof and a solvent from the mixture obtained in step (2-2) using a solvent, and (2-4) ): A step of replacing the solvent contained in the extract obtained in step (2-3) with an amide solvent.
[4] The production method according to any one of [1] to [3], wherein the reaction with peroxodisulfate in step (3) is carried out under substantially anhydrous conditions.
[5] Any one of [1] to [4], wherein the solvent in step (1) is one or more selected from the group consisting of nitrile solvents, halogen solvents and aromatic hydrocarbon solvents. The manufacturing method described in .
[6] The production method according to [5], wherein the solvent in step (1) is one or more selected from the group consisting of acetonitrile, dichloromethane, dichloroethane and chlorobenzene.
[7] The base used in step (2-1) consists of an alkali metal hydroxide (such as sodium hydroxide, potassium hydroxide, etc.) and an alkali metal hydrogen carbonate (such as sodium hydrogen carbonate). The production method according to any one of [2] to [6], which is at least one selected from the group.
[8] The production method according to any one of [2] to [6], wherein the base in step (2-1) is an alkali metal hydroxide (eg, sodium hydroxide, potassium hydroxide, etc.). .
[9] The production method according to any one of [2] to [6], wherein the base in step (2-1) is sodium hydroxide or potassium hydroxide.
[10] The production method according to any one of [2] to [6], wherein the base in step (2-1) is sodium hydroxide, potassium hydroxide or sodium hydrogen carbonate.
[11] The production method according to any one of [3] to [10], wherein the solvent in steps (2-3) and (2-4) is a halogen solvent or an ester solvent.
[12] Any one of [3] to [11], wherein the solvent in steps (2-3) and (2-4) is at least one selected from the group consisting of dichloromethane, ethyl acetate and butyl acetate. 1. The manufacturing method according to item 1.
[13] Any one of [3] to [11], wherein the solvent in steps (2-3) and (2-4) is at least one selected from the group consisting of dichloromethane and ethyl acetate. Method of manufacture as described.
[14] of [1] to [13], wherein the peroxodisulfate in step (3) is at least one selected from the group consisting of sodium peroxodisulfate, potassium peroxodisulfate, and ammonium peroxodisulfate. The manufacturing method according to any one of the items.
[15] The production method according to any one of [1] to [13], wherein the peroxodisulfate in step (3) is sodium peroxodisulfate or ammonium peroxodisulfate.
[16] The production method according to any one of [1] to [13], wherein the peroxodisulfate in step (3) is sodium peroxodisulfate.
[17] The amide solvent in step (3) is at least one selected from the group consisting of dimethylformamide, diethylformamide and dimethylacetamide, according to any one of [1] to [16]. Production method.
[18] The production method according to any one of [1] to [17], wherein the amide solvent in step (3) is at least one selected from the group consisting of dimethylformamide and dimethylacetamide. .
[19] The production method according to any one of [1] to [18], wherein the amide solvent in step (3) is dimethylformamide.
[20] The production method according to any one of [1] to [18], wherein the amide solvent in step (3) is dimethylformamide and the peroxodisulfate is sodium peroxodisulfate.
 次に本発明の実施例を記載するが、本発明はこれらに限定して解釈されるものではない。 Examples of the present invention are described below, but the present invention should not be construed as being limited to these.
 本実施例におけるH-NMRの分析条件は以下の通りである。
・使用機器:日本電子株式会社製JNM-ECX500
・測定溶媒:重ジメチルスルホキシド
・共鳴周波数:500MHz
The analysis conditions for 1 H-NMR in this example are as follows.
・ Equipment used: JNM-ECX500 manufactured by JEOL Ltd.
・Measurement solvent: heavy dimethyl sulfoxide ・Resonance frequency: 500 MHz
 本実施例におけるHPLCの分析条件は以下の通りである。
[反応追跡]
・使用機器:株式会社島津製作所製Nexera XSシリーズ
・カラム:株式会社クロマニックテクノロジーズ製 SunShell C18 2.6 μm (2.1×100mm)
・検出:UV検出器(254nm)
・カラム温度:40℃
・流速:0.5ml/min
・移動相:A液:0.1%ギ酸水溶液、及びB液:アセトニトリル
 グラジエント条件は以下の通りである。
The HPLC analysis conditions in this example are as follows.
[Reaction tracking]
・Equipment used: Nexera XS series manufactured by Shimadzu Corporation ・Column: SunShell C18 2.6 μm (2.1×100 mm) manufactured by Chromanic Technologies Inc.
・Detection: UV detector (254 nm)
・Column temperature: 40°C
・Flow rate: 0.5 ml/min
- Mobile phase: A solution: 0.1% formic acid aqueous solution, and B solution: acetonitrile Gradient conditions are as follows.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
[純度分析]
・使用機器:Agilent Technologies社製 1260 Infinity・カラム:Cadenza CD-C18 3μm 4.6×150mm
・検出:UV検出器(254nm)
・カラム温度:45℃
・流速:1.0ml/min
・移動相:A液:0.1% ギ酸水溶液、及びB液:アセトニトリル
 グラジエント条件は以下の通りである。
[Purity analysis]
・ Equipment used: 1260 Infinity manufactured by Agilent Technologies ・ Column: Cadenza CD-C18 3 μm 4.6 × 150 mm
・Detection: UV detector (254 nm)
・Column temperature: 45°C
・Flow rate: 1.0 ml/min
- Mobile phase: A solution: 0.1% formic acid aqueous solution, and B solution: acetonitrile Gradient conditions are as follows.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 本実施例における水分値を測定する際の分析条件は以下の通りである。
・使用機器:平沼産業社製、AQ-2250
・使用試薬:平沼産業社製、アクアライトRS-A 一般用水分測定発生液
・方式:電量法
・電解セル:一室セル
The analysis conditions for measuring the water content in this example are as follows.
・ Equipment used: AQ-2250 manufactured by Hiranuma Sangyo Co., Ltd.
・Reagent used: Hiranuma Sangyo Co., Ltd., Aqualite RS-A general moisture measurement generation solution ・Method: Coulometric method ・Electrolytic cell: One-chamber cell
[実施例1]化合物(V)の合成
 純度96%の1-(3-クロロピリジン-2-イル)-3-ヒドロキシ-4,5-ジヒドロ-1H-ピラゾール-5-カルボン酸エチル(以下、単に化合物(VI)ともいう。)20gとアセトニトリル15.1gの混合物に、オキシ臭化リン14.0gとアセトニトリル15.1gの混合物を室温で滴下し反応混合物を得た。その反応混合物を還流温度に昇温し、同温度で1時間撹拌した。HPLCにて反応チェックを行い、化合物(V)が99.0面積%で生成したことを確認した。その反応混合物を20~30℃に冷却し、同温度で水20gをゆっくり滴下し混合物を得た。その混合物に60~62℃の間で20%水酸化ナトリウム水溶液24mlを加え、pHを約8に調整した。pHを調整された混合物を60℃で20分間撹拌し、その混合物からアセトニトリルを常圧下留去した後、ジクロロメタン105.6gで抽出を行い、化合物(V)とジクロロメタンを含む混合物124.2gを得た。
[Example 1] Synthesis of compound (V) Ethyl 1-(3-chloropyridin-2-yl)-3-hydroxy-4,5-dihydro-1H-pyrazole-5-carboxylate with a purity of 96% (hereinafter referred to as A mixture of 14.0 g of phosphorus oxybromide and 15.1 g of acetonitrile was added dropwise to a mixture of 20 g of compound (VI) and 15.1 g of acetonitrile at room temperature to obtain a reaction mixture. The reaction mixture was heated to the reflux temperature and stirred at the same temperature for 1 hour. A reaction check was performed by HPLC, and it was confirmed that compound (V) was produced at 99.0 area %. The reaction mixture was cooled to 20-30° C., and 20 g of water was slowly added dropwise at the same temperature to obtain a mixture. 24 ml of 20% sodium hydroxide aqueous solution was added to the mixture between 60 and 62° C. to adjust the pH to about 8. The pH-adjusted mixture was stirred at 60° C. for 20 minutes, and acetonitrile was distilled off from the mixture under normal pressure, followed by extraction with 105.6 g of dichloromethane to obtain 124.2 g of a mixture containing compound (V) and dichloromethane. rice field.
[実施例2]化合物(IV)の合成
 実施例1で得られた化合物(V)とジクロロメタンを含む混合物62.1g中のジクロロメタンを、ジメチルホルムアミド94.7g(8vol.)に置換し、化合物(V)とジメチルホルムアミドを含む混合物を得た。その混合物に、ペルオキソ二硫酸ナトリウム17.6g(2.0eq.)を60℃下で添加し反応混合物を得た。得られた反応混合物を同温度で1時間撹拌した。HPLCにて反応チェックを行い、化合物(IV)が92.0面積%で生成したことを確認した。その反応混合物を氷冷し、同温度で水142.1gをゆっくり滴下し混合物を得た。その混合物を20~30℃で1時間撹拌した。生じたスラリーをろ過し、得られた結晶を水で洗浄し、温風乾燥機で一晩乾燥することで、化合物(IV)10.1gを得た。(収率:85%(2Steps)、純度:99%)
[Example 2] Synthesis of compound (IV) Dichloromethane in 62.1 g of the mixture containing compound (V) obtained in Example 1 and dichloromethane was replaced with 94.7 g (8 vol.) of dimethylformamide to obtain the compound (IV). A mixture containing V) and dimethylformamide was obtained. 17.6 g (2.0 eq.) of sodium peroxodisulfate was added to the mixture at 60° C. to obtain a reaction mixture. The resulting reaction mixture was stirred at the same temperature for 1 hour. A reaction check was performed by HPLC, and it was confirmed that compound (IV) was produced at 92.0 area %. The reaction mixture was ice-cooled, and 142.1 g of water was slowly added dropwise at the same temperature to obtain a mixture. The mixture was stirred at 20-30° C. for 1 hour. The resulting slurry was filtered, and the resulting crystals were washed with water and dried overnight in a warm air dryer to obtain 10.1 g of compound (IV). (Yield: 85% (2 Steps), Purity: 99%)
[実施例3]化合物(IV)の合成
(1) 純度99%の化合物(VI)900gとアセトニトリル1,415gの混合物に、オキシ臭化リン628gとアセトニトリル707gの混合物を室温で滴下し、反応混合物を得た。その反応混合物を還流温度に昇温し、同温度で2時間撹拌した。HPLCにて反応チェックを行い、化合物(V)が99.4面積%で生成したことを確認した。その反応混合物を20℃まで冷却し、同温度で水900gをゆっくり滴下し混合物を得た。その混合物に20%水酸化ナトリウム水溶液1,219gを加えてpHを約9に調整した。pHが調整された混合物を20~30℃で一晩撹拌した。そして、その混合物からアセトニトリルを減圧留去し、ジクロロメタン2,376gで抽出を行い、化合物(V)とジクロロメタンを含む混合物を得た。その混合物にジメチルホルムアミド5,947gを添加し、減圧下でジメチルホルムアミドに溶媒を置換し、化合物(V)とジメチルホルムアミドの混合物を得た。この際、HPLCを用いた純度分析の結果から反応は定量的に進行することを確認し、化合物(V)とジメチルホルムアミドの混合物の水分値は約3,000ppmであった。
[Example 3] Synthesis of compound (IV) (1) To a mixture of 900 g of compound (VI) having a purity of 99% and 1,415 g of acetonitrile, a mixture of 628 g of phosphorus oxybromide and 707 g of acetonitrile was added dropwise at room temperature to form a reaction mixture. got The reaction mixture was heated to the reflux temperature and stirred at the same temperature for 2 hours. A reaction check was performed by HPLC, and it was confirmed that compound (V) was produced at 99.4 area %. The reaction mixture was cooled to 20° C., and 900 g of water was slowly added dropwise at the same temperature to obtain a mixture. The pH was adjusted to about 9 by adding 1,219 g of 20% aqueous sodium hydroxide solution to the mixture. The pH adjusted mixture was stirred overnight at 20-30°C. Acetonitrile was distilled off from the mixture under reduced pressure, and extraction was performed with 2,376 g of dichloromethane to obtain a mixture containing compound (V) and dichloromethane. 5,947 g of dimethylformamide was added to the mixture, and the solvent was replaced with dimethylformamide under reduced pressure to obtain a mixture of compound (V) and dimethylformamide. At this time, it was confirmed from the results of purity analysis using HPLC that the reaction proceeded quantitatively, and the water content of the mixture of compound (V) and dimethylformamide was about 3,000 ppm.
(2) 続いて、前工程(1)で得られた化合物(V)とジメチルホルムアミドの混合物にペルオキソ二硫酸ナトリウム1,268gを60~70℃で添加し反応混合物を得た。得られた反応混合物を同温度下で1時間撹拌した。HPLCにて反応チェックを行い、化合物(IV)が86.4面積%で生成したことを確認した。その反応混合物を20℃まで冷却し、同温度下で水2,213gをゆっくり滴下し混合物を得た。得られた混合物を20~30℃で1時間撹拌した。生じたスラリーをろ過し、化合物(IV)を含む白色結晶を得た。得られた結晶を水で洗浄し、温風乾燥機で一晩乾燥させることで、化合物(IV)の粗結晶を得た(収率:65%(2Steps)、純度:74%)。その粗結晶を水に懸濁させ、ろ過し、得られた結晶を温風乾燥機で一晩乾燥させることで、化合物(IV)の結晶を得た(純度96.9%)。 (2) Subsequently, 1,268 g of sodium peroxodisulfate was added to the mixture of compound (V) obtained in the previous step (1) and dimethylformamide at 60-70°C to obtain a reaction mixture. The resulting reaction mixture was stirred at the same temperature for 1 hour. A reaction check was performed by HPLC, and it was confirmed that compound (IV) was produced at 86.4 area %. The reaction mixture was cooled to 20° C., and 2,213 g of water was slowly added dropwise at the same temperature to obtain a mixture. The resulting mixture was stirred at 20-30° C. for 1 hour. The resulting slurry was filtered to obtain white crystals containing compound (IV). The resulting crystals were washed with water and dried overnight in a hot air dryer to obtain crude crystals of compound (IV) (yield: 65% (2 steps), purity: 74%). The crude crystals were suspended in water, filtered, and the obtained crystals were dried overnight in a warm air dryer to obtain crystals of compound (IV) (96.9% purity).
[実施例4] 
 化合物(V)5gとジメチルホルムアミド28.3gの混合物に、ペルオキソ二硫酸ナトリウム7.16gを60~110℃で添加し反応混合物を得た。表3中のEntry2~4については、表記の水分値となるように適宜水を添加した。得られた反応混合物を同温度で1時間撹拌した。その反応混合物を室温まで冷却し、同温度で水45.0gをゆっくり滴下し混合物を得た。その混合物を20~30℃で1時間撹拌した。生じたスラリーをろ過し、化合物(IV)を含む結晶を得た。得られた結晶を水で洗浄し、温風乾燥機で一晩乾燥させ化合物(IV)を得た。化合物(V)とジメチルホルムアミドの混合物の水分値並びに反応温度について条件検討し、その結果を以下の表3に記載した。その結果より、本発明の反応条件によれば、幅広い温度範囲において高純度の化合物(IV)が得られることが認められた。
[Example 4]
To a mixture of 5 g of compound (V) and 28.3 g of dimethylformamide was added 7.16 g of sodium peroxodisulfate at 60-110° C. to obtain a reaction mixture. For Entries 2 to 4 in Table 3, water was added as appropriate to obtain the indicated moisture values. The resulting reaction mixture was stirred at the same temperature for 1 hour. The reaction mixture was cooled to room temperature, and 45.0 g of water was slowly added dropwise at the same temperature to obtain a mixture. The mixture was stirred at 20-30° C. for 1 hour. The resulting slurry was filtered to obtain crystals containing compound (IV). The resulting crystals were washed with water and dried overnight in a warm air dryer to obtain compound (IV). The water content and reaction temperature of the mixture of compound (V) and dimethylformamide were investigated, and the results are shown in Table 3 below. From the results, it was confirmed that, according to the reaction conditions of the present invention, highly pure compound (IV) can be obtained over a wide temperature range.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
[比較実施例1]
 化合物(V)5.0gにジメチルホルムアミド28.3g及び97%濃硫酸2.95gを添加し混合物を得た。得られた混合物の水分値は約1,900ppmであった。得られた混合物にペルオキソ二硫酸ナトリウム7.16gを60~70℃で添加し反応混合物を得た。得られた反応混合物を同温度で1時間撹拌した。その反応混合物を室温まで冷却し、同温度で水45.0gをゆっくり滴下し混合物を得た。得られた混合物を20~30℃で1時間撹拌した。生じたスラリーをろ過し、化合物(IV)を含む結晶を得た。得られた結晶を水で洗浄、温風乾燥機で一晩乾燥させ化合物(IV)を得た。反応温度並びにその反応結果は、以下の表4の通りであった。実施例4の表3に記載のEntry1と比較実施例1の表4に記載のEntry10とを比較し、97%濃硫酸を添加した条件では、化合物(V)、ジメチルホルムアミド及び97%濃硫酸の混合物の水分値は高く、反応収率の低下が認められた。
[Comparative Example 1]
28.3 g of dimethylformamide and 2.95 g of 97% concentrated sulfuric acid were added to 5.0 g of compound (V) to obtain a mixture. The water content of the resulting mixture was approximately 1,900 ppm. To the resulting mixture, 7.16 g of sodium peroxodisulfate was added at 60-70°C to obtain a reaction mixture. The resulting reaction mixture was stirred at the same temperature for 1 hour. The reaction mixture was cooled to room temperature, and 45.0 g of water was slowly added dropwise at the same temperature to obtain a mixture. The resulting mixture was stirred at 20-30° C. for 1 hour. The resulting slurry was filtered to obtain crystals containing compound (IV). The resulting crystals were washed with water and dried overnight in a warm air dryer to obtain compound (IV). The reaction temperature and the reaction results were as shown in Table 4 below. Entry 1 described in Table 3 of Example 4 and Entry 10 described in Table 4 of Comparative Example 1 were compared, and under conditions where 97% concentrated sulfuric acid was added, compound (V), dimethylformamide and 97% concentrated sulfuric acid The water content of the mixture was high, and a decrease in reaction yield was observed.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
[比較実施例2]
 特許文献1に記載の反応条件を基に、化合物(V)10gとアセトニトリル75mLの混合物に、97%濃硫酸6.0gを室温で添加し混合物を得た。得られた混合物の水分値は約1,900ppmであった。その後、その混合物にペルオキソ二硫酸カリウム12.2gを添加し反応混合物を得た。その得られた反応混合物を還流温度まで昇温し、同温で2時間撹拌した。HPLCにて反応チェックを行い、化合物(IV)の生成、及び未反応の化合物(V)を確認した。その反応混合物を55℃まで冷却し、ろ過することで固形物を除去し、アセトニトリル12mLで2回洗浄を行った。ろ液を約50mLまで濃縮した後、濃縮された反応物を水100mLに添加し混合物を得た。得られた混合物を同温度で1時間撹拌した。生じたスラリーをろ過し、化合物(IV)を含む粗結晶を得た。得られた粗結晶を25mLの20%アセトニトリル水溶液と20mLの水で洗浄し、温風乾燥機で一晩乾燥させ、化合物(IV)を得た。化合物(V)及びアセトニトリルの混合物の水分値、反応温度並びにその反応結果は以下の表5の記載の通りであった。特許文献1に記載の反応条件で反応を実施したが、特許文献1に記載された反応結果(反応収率90%、及び反応生成物である化合物(IV)に約1%の1種類の不純物を含む)よりも低純度かつ低収率であった。さらに、実施例4の表3のEntry6及び比較実施例2の表5のEntry11を比較した結果、実施例4の表3のEntry6の条件では比較実施例2の条件よりも純度及び収率の向上が認められた。
[Comparative Example 2]
Based on the reaction conditions described in Patent Document 1, 6.0 g of 97% concentrated sulfuric acid was added to a mixture of 10 g of compound (V) and 75 mL of acetonitrile at room temperature to obtain a mixture. The water content of the resulting mixture was approximately 1,900 ppm. After that, 12.2 g of potassium peroxodisulfate was added to the mixture to obtain a reaction mixture. The resulting reaction mixture was heated to the reflux temperature and stirred at the same temperature for 2 hours. A reaction check was performed by HPLC to confirm the formation of compound (IV) and unreacted compound (V). The reaction mixture was cooled to 55° C., filtered to remove solids, and washed twice with 12 mL of acetonitrile. After concentrating the filtrate to about 50 mL, the concentrated reactant was added to 100 mL of water to obtain a mixture. The resulting mixture was stirred at the same temperature for 1 hour. The resulting slurry was filtered to obtain crude crystals containing compound (IV). The resulting crude crystals were washed with 25 mL of 20% aqueous acetonitrile solution and 20 mL of water, and dried overnight in a warm air dryer to obtain compound (IV). The water content, reaction temperature and reaction results of the mixture of compound (V) and acetonitrile were as shown in Table 5 below. The reaction was carried out under the reaction conditions described in Patent Document 1, but the reaction results described in Patent Document 1 (reaction yield 90%, and about 1% of one impurity in the reaction product compound (IV) ) was of lower purity and lower yield than Furthermore, as a result of comparing Entry 6 of Table 3 of Example 4 and Entry 11 of Table 5 of Comparative Example 2, the conditions of Entry 6 of Table 3 of Example 4 improved the purity and yield more than the conditions of Comparative Example 2. was accepted.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
[実施例5]化合物(V)の合成
 化合物(VI)3gとクロロベンゼン33.2gの混合物に、オキシ臭化リン3.19gとクロロベンゼン13.2gの混合物を室温で滴下し反応混合物を得た。その反応混合物を100℃に昇温し、同温度で終夜撹拌した。HPLCにて反応チェックを行い、化合物(V)が97.8面積%で生成したことを確認した。
[Example 5] Synthesis of compound (V) To a mixture of 3 g of compound (VI) and 33.2 g of chlorobenzene was added dropwise a mixture of 3.19 g of phosphorus oxybromide and 13.2 g of chlorobenzene at room temperature to obtain a reaction mixture. The reaction mixture was heated to 100° C. and stirred overnight at the same temperature. A reaction check was performed by HPLC, and it was confirmed that compound (V) was produced at 97.8 area %.
[実施例6]化合物(IV)の合成
 化合物(V)4gとジメチルホルムアミド29.3gの混合物(水分値約330ppm)に、ペルオキソ二硫酸カリウム6.27gを60℃で添加し反応混合物を得た。得られた反応混合物を同温度で1.5時間撹拌した。HPLCにて反応チェックを行い、化合物(IV)が生成したことを確認した。
[Example 6] Synthesis of compound (IV) To a mixture of 4 g of compound (V) and 29.3 g of dimethylformamide (water content: about 330 ppm), 6.27 g of potassium peroxodisulfate was added at 60°C to obtain a reaction mixture. . The resulting reaction mixture was stirred at the same temperature for 1.5 hours. A reaction check was performed by HPLC to confirm that compound (IV) was produced.
[実施例7]化合物(IV)の合成
 化合物(V)5gとジメチルホルムアミド28.3gの混合物(水分値約953ppm)に、ペルオキソ二硫酸アンモニウム5.48gを60℃で添加し反応混合物を得た。得られた反応混合物を同温度で1時間撹拌した。HPLCにて反応チェックを行い、化合物(IV)が生成したことを確認した。上記記載の定法の後処理を行い、化合物(IV)を得た。
[Example 7] Synthesis of compound (IV) To a mixture of 5 g of compound (V) and 28.3 g of dimethylformamide (water content: about 953 ppm), 5.48 g of ammonium peroxodisulfate was added at 60°C to obtain a reaction mixture. The resulting reaction mixture was stirred at the same temperature for 1 hour. A reaction check was performed by HPLC to confirm that compound (IV) was produced. After the conventional post-treatment described above, compound (IV) was obtained.
[実施例8]
 3-ブロモ-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボン酸イソプロピル(以下、単に化合物(VII)ともいう)の合成
(1) 純度91.8面積%の1-(3-クロロピリジン-2-イル)-3-ヒドロキシ-4,5-ジヒドロ-1H-ピラゾール-5-カルボン酸イソプロピル5g(残り9.2%は化合物(VI))とアセトニトリル3.9gの混合物に、オキシ臭化リン3.3gとアセトニトリル3.9gの混合物を室温で滴下し、反応混合物を得た。その反応混合物を還流温度に昇温し、同温度で1時間撹拌した。HPLCにて反応チェックを行い、3-ブロモ-1-(3-クロロピリジン-2-イル)-4,5-ジヒドロ-1H-ピラゾール-5-カルボン酸イソプロピル(以下、単に化合物(VIII)ともいう)が91.0面積%で生成したことを確認した。その反応混合物を26℃まで冷却し、同温度で水5gをゆっくり滴下し混合物を得た。その混合物に20%水酸化ナトリウム水溶液7.6gを加えてpHを約7.8に調整し20~30℃で20分撹拌した。pHが調整された混合物からアセトニトリルを常圧下留去した後、ジクロロメタン19.8gで抽出を行い、化合物(VIII)とジクロロメタンを含む混合物を得た。化合物(VIII)とジクロロメタンを含む混合物にジメチルホルムアミド33gを添加し、常圧下でジメチルホルムアミドに溶媒を置換し、化合物(VIII)とジメチルホルムアミドの混合物を得た。
[Example 8]
Synthesis of isopropyl 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylate (hereinafter also simply referred to as compound (VII)) (1) 1 with a purity of 91.8 area% 5 g of isopropyl-(3-chloropyridin-2-yl)-3-hydroxy-4,5-dihydro-1H-pyrazole-5-carboxylate (remaining 9.2% is compound (VI)) and 3.9 g of acetonitrile A mixture of 3.3 g of phosphorus oxybromide and 3.9 g of acetonitrile was added dropwise to the mixture at room temperature to obtain a reaction mixture. The reaction mixture was heated to the reflux temperature and stirred at the same temperature for 1 hour. The reaction was checked by HPLC, and isopropyl 3-bromo-1-(3-chloropyridin-2-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (hereinafter also simply referred to as compound (VIII) ) was generated at 91.0 area %. The reaction mixture was cooled to 26° C., and 5 g of water was slowly added dropwise at the same temperature to obtain a mixture. 7.6 g of a 20% sodium hydroxide aqueous solution was added to the mixture to adjust the pH to about 7.8, and the mixture was stirred at 20 to 30° C. for 20 minutes. After acetonitrile was distilled off from the pH-adjusted mixture under normal pressure, extraction was performed with 19.8 g of dichloromethane to obtain a mixture containing compound (VIII) and dichloromethane. 33 g of dimethylformamide was added to a mixture containing compound (VIII) and dichloromethane, and the solvent was replaced with dimethylformamide under normal pressure to obtain a mixture of compound (VIII) and dimethylformamide.
(2) 続いて、前工程(1)で得られた化合物(VIII)とジメチルホルムアミドの混合物にペルオキソ二硫酸ナトリウム6.7gを60~70℃で添加し反応混合物を得た。得られた反応混合物を同温度下で1時間撹拌した。HPLCにて反応チェックを行い、化合物(VII)が81.0面積%で生成したことを確認した。上記記載の定法の後処理を行い、化合物(VII)の粗結晶を得た。得られた粗結晶は、カラムクロマトグラフィーにて精製を行い、化合物(VII)を得た(純度:97.5面積%)。 (2) Subsequently, 6.7 g of sodium peroxodisulfate was added to the mixture of compound (VIII) obtained in the previous step (1) and dimethylformamide at 60-70°C to obtain a reaction mixture. The resulting reaction mixture was stirred at the same temperature for 1 hour. A reaction check was performed by HPLC, and it was confirmed that compound (VII) was produced at 81.0 area %. After the usual post-treatment described above, crude crystals of compound (VII) were obtained. The obtained crude crystals were purified by column chromatography to obtain compound (VII) (purity: 97.5 area %).
[実施例9]化合物(IV)の合成
(1) 純度99%の化合物(VI)10gとアセトニトリル7.9gの混合物に、オキシ臭化リン6.9gとアセトニトリル15.7gの混合物を室温で滴下し、反応混合物を得た。その反応混合物を還流温度に昇温し、同温度で1時間撹拌した。HPLCにて反応チェックを行い、化合物(V)が93.0面積%で生成したことを確認した。その反応混合物を20℃まで冷却し、同温度下で5%水酸化ナトリウム水溶液48.8gを加えてpHを約8に調整し、20~30℃で15分撹拌した。そして、pHが調整された混合物からアセトニトリルを常圧下留去し、留去後の混合物に再度10%水酸化ナトリウム水溶液4.3gを加えてpHを約7に調整した。得られた混合物は酢酸エチル63gで抽出を行い、化合物(V)と酢酸エチルを含む混合物を得た。その混合物にジメチルホルムアミド66gを添加し、常圧下でジメチルホルムアミドに溶媒を置換し、化合物(V)とジメチルホルムアミドの混合物を得た。この際、HPLCを用いた純度分析の結果から反応は定量的に進行することを確認した。得られた化合物(V)とジメチルホルムアミドの混合物の水分値は約7,800ppmであった。
[Example 9] Synthesis of compound (IV) (1) To a mixture of 10 g of compound (VI) having a purity of 99% and 7.9 g of acetonitrile, a mixture of 6.9 g of phosphorus oxybromide and 15.7 g of acetonitrile was added dropwise at room temperature. to obtain a reaction mixture. The reaction mixture was heated to the reflux temperature and stirred at the same temperature for 1 hour. A reaction check was performed by HPLC, and it was confirmed that compound (V) was produced at 93.0 area %. The reaction mixture was cooled to 20° C., 48.8 g of a 5% aqueous sodium hydroxide solution was added at the same temperature to adjust the pH to about 8, and the mixture was stirred at 20-30° C. for 15 minutes. Then, acetonitrile was distilled off from the pH-adjusted mixture under normal pressure, and 4.3 g of a 10% aqueous sodium hydroxide solution was added to the mixture after distillation to adjust the pH to about 7. The resulting mixture was extracted with 63 g of ethyl acetate to obtain a mixture containing compound (V) and ethyl acetate. 66 g of dimethylformamide was added to the mixture, and the solvent was replaced with dimethylformamide under normal pressure to obtain a mixture of compound (V) and dimethylformamide. At this time, it was confirmed from the results of purity analysis using HPLC that the reaction proceeded quantitatively. The water content of the obtained mixture of compound (V) and dimethylformamide was about 7,800 ppm.
(2) 続いて、前工程(1)で得られた化合物(V)とジメチルホルムアミドの混合物に酢酸エチルを27g加え、常圧下で共沸脱水を行い、その混合物の水分値を約2,000ppmまで脱水した。更に、酢酸エチルを27g加え、常圧下で共沸脱水を行ったところ、化合物(V)とジメチルホルムアミドの混合物の水分値は約1,000ppmまで脱水された。脱水された混合物にペルオキソ二硫酸ナトリウム13.6gを60~70℃で添加し反応混合物を得た。得られた反応混合物を同温度下で1時間撹拌した。HPLCにて反応チェックを行い、化合物(IV)が94.6面積%で生成したことを確認した。その反応混合物を20℃まで冷却し、同温度下で水100gをゆっくり滴下し混合物を得た。得られた混合物を20~30℃で1時間撹拌した。生じたスラリーをろ過し、化合物(IV)を含む白色結晶を得た。得られた結晶を水で洗浄し、温風乾燥機で一晩乾燥することで、化合物(IV)の粗結晶を得た(収率:81.7%(2Steps)、純度:92%)。その粗結晶を水に懸濁し、ろ過し、得られた結晶を温風乾燥機で一晩乾燥することで、化合物(IV)の結晶を得た(収率:79.6%(2Steps)、純度:97.1%)。 (2) Subsequently, 27 g of ethyl acetate was added to the mixture of compound (V) and dimethylformamide obtained in the previous step (1), and azeotropic dehydration was performed under normal pressure, and the water content of the mixture was reduced to about 2,000 ppm. dehydrated to Furthermore, 27 g of ethyl acetate was added and azeotropic dehydration was carried out under normal pressure. As a result, the water content of the mixture of compound (V) and dimethylformamide was dehydrated to about 1,000 ppm. 13.6 g of sodium peroxodisulfate was added to the dehydrated mixture at 60-70° C. to obtain a reaction mixture. The resulting reaction mixture was stirred at the same temperature for 1 hour. A reaction check was performed by HPLC, and it was confirmed that compound (IV) was produced at 94.6 area %. The reaction mixture was cooled to 20° C., and 100 g of water was slowly added dropwise at the same temperature to obtain a mixture. The resulting mixture was stirred at 20-30° C. for 1 hour. The resulting slurry was filtered to obtain white crystals containing compound (IV). The resulting crystals were washed with water and dried overnight in a warm air dryer to obtain crude crystals of compound (IV) (yield: 81.7% (2 steps), purity: 92%). The crude crystals were suspended in water, filtered, and the obtained crystals were dried overnight in a warm air dryer to obtain crystals of compound (IV) (yield: 79.6% (2 steps), Purity: 97.1%).
 [実施例10]化合物(IV)の合成
(1) 純度99%の化合物(VI)5gとアセトニトリル11.7gの混合物に、オキシ臭化リン3.8gとアセトニトリル7.8gの混合物を30~40℃で滴下し、反応混合物を得た。その反応混合物を還流温度に昇温し、同温度で1時間撹拌した。HPLCにて反応チェックを行い、化合物(V)が99.0面積%で生成したことを確認した。その反応混合物を30℃まで冷却し、同温度で水15gをゆっくり滴下し混合物を得た。その混合物に20%水酸化カリウム水溶液11.7gを加えてpHを約7.4に調整した。pHが調整された混合物を20~30℃で15分撹拌した後、その混合物からアセトニトリルを常圧下留去した。再度、20%水酸化カリウム水溶液0.9gを加えてpHを7.5に調整した後、酢酸エチル27gで抽出を行い、化合物(V)と酢酸エチルを含む混合物を得た。その混合物にジメチルホルムアミド18.7g添加し、常圧下でジメチルホルムアミドに溶媒を置換し、化合物(V)とジメチルホルムアミドの混合物を得た。化合物(V)とジメチルホルムアミドの混合物の水分値は約7,000ppmであった。
[Example 10] Synthesis of compound (IV) (1) To a mixture of 5 g of compound (VI) having a purity of 99% and 11.7 g of acetonitrile, 30 to 40 g of a mixture of 3.8 g of phosphorus oxybromide and 7.8 g of acetonitrile was added. °C to obtain a reaction mixture. The reaction mixture was heated to reflux temperature and stirred at the same temperature for 1 hour. A reaction check was performed by HPLC, and it was confirmed that compound (V) was produced at 99.0 area %. The reaction mixture was cooled to 30° C., and 15 g of water was slowly added dropwise at the same temperature to obtain a mixture. 11.7 g of 20% potassium hydroxide aqueous solution was added to the mixture to adjust the pH to about 7.4. After stirring the pH-adjusted mixture at 20-30° C. for 15 minutes, acetonitrile was distilled off from the mixture under normal pressure. After adjusting the pH to 7.5 by adding 0.9 g of a 20% aqueous potassium hydroxide solution again, extraction was performed with 27 g of ethyl acetate to obtain a mixture containing compound (V) and ethyl acetate. 18.7 g of dimethylformamide was added to the mixture, and the solvent was replaced with dimethylformamide under normal pressure to obtain a mixture of compound (V) and dimethylformamide. The water content of the mixture of compound (V) and dimethylformamide was about 7,000 ppm.
(2) 続いて、前工程(1)で得られた化合物(V)とジメチルホルムアミドの混合物に酢酸エチル17.8gを加え、常圧下で共沸脱水を行った。得られた化合物(V)とジメチルホルムアミドの混合物の水分値は約2,500ppmまで脱水された。脱水された化合物(V)とジメチルホルムアミドの混合物にペルオキソ二硫酸ナトリウム6.9gを60~70℃で添加し反応混合物を得た。得られた反応混合物を同温度下で18時間撹拌した。HPLCにて反応チェックを行い、化合物(IV)が87.3面積%で生成したことを確認した。
 反応混合物を20℃まで冷却し、同温度下で水40gをゆっくり滴下し混合物を得た。得られた混合物を20~30℃で1時間撹拌した。生じたスラリーをろ過し、化合物(IV)を含む白色結晶を得た。得られた結晶を水で洗浄し、温風乾燥機で一晩乾燥し化合物(IV)を得た(収率:81.6%(2Steps)、純度:97.1%)。
(2) Subsequently, 17.8 g of ethyl acetate was added to the mixture of compound (V) obtained in the previous step (1) and dimethylformamide, and azeotropic dehydration was performed under normal pressure. The resulting mixture of compound (V) and dimethylformamide was dehydrated to a water content of about 2,500 ppm. To a mixture of dehydrated compound (V) and dimethylformamide, 6.9 g of sodium peroxodisulfate was added at 60-70°C to obtain a reaction mixture. The resulting reaction mixture was stirred at the same temperature for 18 hours. A reaction check was performed by HPLC, and it was confirmed that compound (IV) was produced at 87.3 area %.
The reaction mixture was cooled to 20° C., and 40 g of water was slowly added dropwise at the same temperature to obtain a mixture. The resulting mixture was stirred at 20-30° C. for 1 hour. The resulting slurry was filtered to obtain white crystals containing compound (IV). The resulting crystals were washed with water and dried overnight in a warm air dryer to obtain compound (IV) (yield: 81.6% (2 steps), purity: 97.1%).
[実施例11]化合物(IV)の合成
(1) 純度99%の化合物(VI)5gとアセトニトリル15.7gの混合物に、オキシ臭化リン3.5gとアセトニトリル3.9gの混合物を室温で滴下し、反応混合物を得た。その反応混合物を還流温度に昇温し、同温度で1時間撹拌した。HPLCにて反応チェックを行い、化合物(V)が99面積%で生成したことを確認した。その反応混合物を15℃まで冷却し、同温度で水25gをゆっくり滴下し混合物を得た。その混合物に炭酸水素ナトリウム3.9gを加えてpHを約7.7に調整した。pHが調整された混合物を20~30℃で1時間撹拌した後、その混合物からアセトニトリルを常圧下留去した。得られた残渣に酢酸ブチル22.1gを加えて抽出を行い、化合物(V)と酢酸ブチルを含む混合物を得た。その混合物にジメチルホルムアミド34.9gを添加し、常圧下でジメチルホルムアミドに溶媒を置換し、化合物(V)とジメチルホルムアミドの混合物を得た。化合物(V)とジメチルホルムアミドの混合物の水分値は約250ppmであった。
[Example 11] Synthesis of compound (IV) (1) To a mixture of 5 g of compound (VI) having a purity of 99% and 15.7 g of acetonitrile, a mixture of 3.5 g of phosphorus oxybromide and 3.9 g of acetonitrile was added dropwise at room temperature. to obtain a reaction mixture. The reaction mixture was heated to the reflux temperature and stirred at the same temperature for 1 hour. A reaction check was performed by HPLC, and it was confirmed that compound (V) was produced at 99 area %. The reaction mixture was cooled to 15° C., and 25 g of water was slowly added dropwise at the same temperature to obtain a mixture. 3.9 g of sodium bicarbonate was added to the mixture to adjust the pH to about 7.7. After the pH-adjusted mixture was stirred at 20-30° C. for 1 hour, acetonitrile was distilled off from the mixture under normal pressure. 22.1 g of butyl acetate was added to the resulting residue for extraction to obtain a mixture containing compound (V) and butyl acetate. 34.9 g of dimethylformamide was added to the mixture, and the solvent was replaced with dimethylformamide under normal pressure to obtain a mixture of compound (V) and dimethylformamide. The water content of the mixture of compound (V) and dimethylformamide was about 250 ppm.
(2) 続いて、前工程(1)で得られた化合物(V)とジメチルホルムアミドの混合物にペルオキソ二硫酸ナトリウム5.68gを60~70℃で添加し反応混合物を得た。得られた反応混合物を同温度下で1時間撹拌した。HPLCにて反応チェックを行い、化合物(IV)が95.2面積%で生成したことを確認した。その反応混合物を30℃まで冷却し、同温度下で水44.5gをゆっくり滴下し混合物を得た。得られた混合物を加熱し水に溶解させた後、冷却し結晶を析出させた。生じた結晶をろ過し、化合物(IV)の結晶を得た(収率:62%(2Steps)、純度:99%)。
 なお、2021年3月9日に出願された日本特許出願2021-037729号の明細書、特許請求の範囲、及び要約書及び図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
(2) Subsequently, 5.68 g of sodium peroxodisulfate was added to the mixture of compound (V) obtained in the previous step (1) and dimethylformamide at 60-70°C to obtain a reaction mixture. The resulting reaction mixture was stirred at the same temperature for 1 hour. A reaction check was performed by HPLC, and it was confirmed that compound (IV) was produced at 95.2 area %. The reaction mixture was cooled to 30° C., and 44.5 g of water was slowly added dropwise at the same temperature to obtain a mixture. The resulting mixture was heated and dissolved in water, and then cooled to precipitate crystals. The resulting crystals were filtered to obtain crystals of compound (IV) (yield: 62% (2 steps), purity: 99%).
In addition, the entire contents of the specification, claims, abstract and drawings of Japanese Patent Application No. 2021-037729 filed on March 9, 2021 are cited here as disclosure of the specification of the present invention. , is to be incorporated.

Claims (11)

  1.  式(I)で表される化合物又はその塩
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、炭素原子数1~3のアルキル基である)
    の製造方法であって、
    (1)無溶媒又は溶媒中で、
    式(II)で表される化合物又はその塩
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、前述のとおりである)
    とPOBrとを反応させる工程、
    (2)前記工程(1)で得られた反応混合物を後処理し、式(III)で表される化合物又はその塩
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、前述のとおりである)
    を得る工程、並びに
    (3)少なくとも一種類以上のアミド系溶媒を含む溶媒中で、硫酸を添加せずに、
    前記工程(2)で得られた式(III)で表される化合物又はその塩とペルオキソ二硫酸塩とを反応させる工程、
    を含むことを特徴とする、式(I)で表される化合物又はその塩の製造方法。
    A compound represented by formula (I) or a salt thereof
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, R is an alkyl group having 1 to 3 carbon atoms)
    A manufacturing method of
    (1) without solvent or in a solvent,
    A compound represented by formula (II) or a salt thereof
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, R is as described above)
    reacting POBr3 with
    (2) post-treating the reaction mixture obtained in step (1) to obtain a compound represented by formula (III) or a salt thereof;
    Figure JPOXMLDOC01-appb-C000003
    (Wherein, R is as described above)
    and (3) in a solvent containing at least one or more amide solvents, without adding sulfuric acid,
    a step of reacting the compound represented by the formula (III) obtained in the step (2) or a salt thereof with a peroxodisulfate;
    A method for producing a compound represented by formula (I) or a salt thereof, comprising:
  2.  前記工程(2)が、以下の工程を含むことを特徴とする、請求項1記載の製造方法:
    (2-1)前記工程(1)で得られた反応混合物を塩基と混合し、混合物を得る工程、及び
    (2-2)前記工程(2-1)で得られた混合物から前記工程(1)の溶媒を除去し、式(III)で表される化合物又はその塩を含む混合物を得る工程。
    2. The method of claim 1, wherein step (2) comprises the steps of:
    (2-1) a step of mixing the reaction mixture obtained in step (1) with a base to obtain a mixture; ) to obtain a mixture containing the compound represented by formula (III) or a salt thereof.
  3.  前記工程(3)における前記ペルオキソ二硫酸塩との反応が、実質的に無水条件で行われることを特徴とする、請求項1又は請求項2に記載の製造方法。 The production method according to claim 1 or 2, wherein the reaction with the peroxodisulfate in step (3) is performed under substantially anhydrous conditions.
  4.  前記工程(2-2)の後に、以下の工程を含むことを特徴とする、請求項2又は3に記載の製造方法:
    (2-3)溶媒を用いて前記工程(2-2)で得られた混合物から、式(III)で表される化合物又はその塩及び溶媒を含む抽出物を得る工程、及び
    (2-4)前記工程(2-3)で得られた抽出物に含まれる溶媒をアミド系溶媒に置換する工程。
    The production method according to claim 2 or 3, characterized by comprising the following steps after the step (2-2):
    (2-3) obtaining an extract containing the compound represented by formula (III) or a salt thereof and a solvent from the mixture obtained in step (2-2) using a solvent; and (2-4) ) A step of replacing the solvent contained in the extract obtained in the step (2-3) with an amide solvent.
  5.  前記工程(1)の溶媒が、ニトリル系溶媒及びハロゲン系溶媒からなる群から選択される少なくとも1種以上である、請求項1から4のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the solvent in step (1) is at least one selected from the group consisting of nitrile solvents and halogen solvents.
  6.  前記工程(1)の溶媒が、アセトニトリル、ジクロロメタン、ジクロロエタン及びクロロベンゼンからなる群から選択される少なくとも1種以上である、請求項5に記載の製造方法。 The production method according to claim 5, wherein the solvent in step (1) is at least one selected from the group consisting of acetonitrile, dichloromethane, dichloroethane and chlorobenzene.
  7.  前記ペルオキソ二硫酸塩が、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム及びペルオキソ二硫酸アンモニウムからなる群から選択される少なくとも1種以上である、請求項1から6のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the peroxodisulfate is at least one selected from the group consisting of sodium peroxodisulfate, potassium peroxodisulfate and ammonium peroxodisulfate.
  8.  前記塩基が、水酸化ナトリウム及び水酸化カリウムからなる群から選択される少なくとも1種以上である、請求項2及び請求項4から6のいずれか一項に記載の製造方法。 The production method according to any one of claims 2 and 4 to 6, wherein the base is at least one selected from the group consisting of sodium hydroxide and potassium hydroxide.
  9.  前記工程(2-3)及び(2-4)の溶媒が、ジクロロメタン、酢酸エチル及び酢酸ブチルからなる群から選択される少なくとも1種以上である、請求項4に記載の製造方法。 The production method according to claim 4, wherein the solvent in steps (2-3) and (2-4) is at least one selected from the group consisting of dichloromethane, ethyl acetate and butyl acetate.
  10.  前記工程(2-3)及び(2-4)の溶媒が、ジクロロメタン及び酢酸エチルからなる群から選択される少なくとも1種以上である、請求項4に記載の製造方法。 The production method according to claim 4, wherein the solvent in steps (2-3) and (2-4) is at least one selected from the group consisting of dichloromethane and ethyl acetate.
  11.  前記塩基が、水酸化ナトリウム、水酸化カリウム及び炭酸水素ナトリウムからなる群から選択される少なくとも1種以上である、請求項2及び請求項4から6のいずれか一項に記載の製造方法。 The production method according to any one of claims 2 and 4 to 6, wherein the base is at least one selected from the group consisting of sodium hydroxide, potassium hydroxide and sodium hydrogen carbonate.
PCT/JP2022/009771 2021-03-09 2022-03-07 Method for producing 3-bromo-1-(3-chloropyridin-2-yl)-1h-pyrazole-5-carboxylic acid ester WO2022191139A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280019216.5A CN116940560A (en) 2021-03-09 2022-03-07 Process for producing 3-bromo-1- (3-chloropyridin-2-yl) -1H-pyrazole-5-carboxylic acid ester
KR1020237030202A KR20230155447A (en) 2021-03-09 2022-03-07 Method for producing 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester
JP2023505549A JPWO2022191139A1 (en) 2021-03-09 2022-03-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021037729 2021-03-09
JP2021-037729 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022191139A1 true WO2022191139A1 (en) 2022-09-15

Family

ID=83226738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009771 WO2022191139A1 (en) 2021-03-09 2022-03-07 Method for producing 3-bromo-1-(3-chloropyridin-2-yl)-1h-pyrazole-5-carboxylic acid ester

Country Status (4)

Country Link
JP (1) JPWO2022191139A1 (en)
KR (1) KR20230155447A (en)
CN (1) CN116940560A (en)
WO (1) WO2022191139A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320498A (en) * 2018-11-27 2019-02-12 利尔化学股份有限公司 The bromo- 1-(3- chloro-2-pyridyl of 3-) -1H- pyrazoles -5- formic acid alkyl ester preparation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR036872A1 (en) 2001-08-13 2004-10-13 Du Pont ANTRANILAMIDE COMPOSITE, COMPOSITION THAT INCLUDES IT AND METHOD FOR CONTROLLING AN INVERTEBRATE PEST
TWI325302B (en) 2001-08-13 2010-06-01 Du Pont Benzoxazinone compounds
TWI327566B (en) 2001-08-13 2010-07-21 Du Pont Novel substituted ihydro 3-halo-1h-pyrazole-5-carboxylates,their preparation and use
TWI283164B (en) 2001-09-21 2007-07-01 Du Pont Anthranilamide arthropodicide treatment
EP3057429A4 (en) 2013-10-17 2017-08-09 Dow AgroSciences LLC Processes for the preparation of pesticidal compounds
CN104496967A (en) 2015-01-20 2015-04-08 南开大学 Substituent N heterozygous aromatic base amide compound and application thereof
CN104557860B (en) 2015-02-05 2017-03-15 浙江新安化工集团股份有限公司 A kind of adjacent formamido heterocyclic carbamate derivatives, its preparation method and a kind of insecticide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320498A (en) * 2018-11-27 2019-02-12 利尔化学股份有限公司 The bromo- 1-(3- chloro-2-pyridyl of 3-) -1H- pyrazoles -5- formic acid alkyl ester preparation method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YANG QIANG, LI XIAOYONG, LORSBACH BETH A., MUHUHI JOSECK M., ROTH GARY A., GRAY KAITLYN, PODHOREZ DAVID E.: "Development of a Scalable Process for the Insecticidal Candidate Tyclopyrazoflor. Part 2. Fit-for-Purpose Optimization of the Route to Tyclopyrazoflor Featuring [3 + 2] Cyclization of 3-Hydrazinopyridine·2HCl and Methyl Acrylate", ORGANIC PROCESS RESEARCH & DEVELOPMENT, AMERICAN CHEMICAL SOCIETY, US, vol. 23, no. 10, 18 October 2019 (2019-10-18), US , pages 2133 - 2141, XP055965674, ISSN: 1083-6160, DOI: 10.1021/acs.oprd.9b00128 *
YU, CHANG-CHUN ET AL.: "Synthesis of 3-bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazole-5-carboxylic acid esters with DDQ", vol. 40, no. 1, 1 January 2013 (2013-01-01), pages 67 - 70, 75, XP009539481, ISSN: 1008-9497, DOI: 10.3785/j.issn.1008-9497.2013.01.015 *
ZENG JI-CHAO, XU HUI, HUANG RONG-LU, YU FEI, ZHANG ZE: "Facile synthesis of polysubstituted 2,3-dihydropyrroles and pyrroles from Mn(OAc)3-promoted oxidative cyclization of alkenes with amines/alkyne esters or enaminone esters", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 59, no. 16, 1 April 2018 (2018-04-01), Amsterdam , NL , pages 1576 - 1580, XP055965673, ISSN: 0040-4039, DOI: 10.1016/j.tetlet.2018.03.025 *

Also Published As

Publication number Publication date
CN116940560A (en) 2023-10-24
KR20230155447A (en) 2023-11-10
JPWO2022191139A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
JP5670343B2 (en) Method for producing substituted 5-methoxymethylpyridine-2,3-dicarboxylic acid derivative
CA2850337A1 (en) Method for producing 4,4-difluoro-3,4-dihydroisoquinoline derivatives
CN110028489B (en) Method for preparing benzamide compound by pressure reduction method
SK280466B6 (en) 5,6-disubstituted-3-pyridylmethyl ammonium halide compounds and process for their preparation
US5922886A (en) Process for producing N-substituted 3-hydroxypyrazoles
KR20080000621A (en) Process for the preparation of anticancer drugs
US9695124B2 (en) Method of producing 2-aminonicotinic acid benzyl ester derivatives
WO2022191139A1 (en) Method for producing 3-bromo-1-(3-chloropyridin-2-yl)-1h-pyrazole-5-carboxylic acid ester
EP3740469A1 (en) Processes for the synthesis of sulfentrazone
US6150528A (en) Method for producing 5-aminomethyl-2-chloropyridines
EP2729444B1 (en) Method for manufacturing 2-amino-5-cyano-n,3-dimethylbenzamide
DE102005031348B4 (en) Process for the preparation of 3,4-dichloroisothiazolecarboxylic acid
Kim et al. A Facile Synthetic Method of Herbicidal 2, 3-Dihydro-3-methylene-2-substituted-phenyl-1 H-isoindol-1-one Derivatives
KR20050013234A (en) Method for the production of 1,2,4-triazolylmethyl-oxiranes
US9334241B2 (en) Process for the preparation of N-substituted pyrazole compounds
US5688963A (en) Intermediates for the preparation of triazolinones
JP2005502701A (en) Method for producing 3-bromomethylbenzoic acid
KR102229493B1 (en) Method for producing 2-chloro acetoacetic acid amide and ester
US10150731B2 (en) Method for preparing 4-cyanopiperidine hydrochloride
CN116675671A (en) Method for preparing amide compound from pyridylpyrazoline carboxylic acid
HU193454B (en) Process for producing 3-phenyl-butyraldehyde derivatives
JP4739695B2 (en) Process for producing 5-amino-1-substituted-1,2,4-triazole, and triazole derivative obtained by the process
CN112204015A (en) Process for preparing halogenated N-arylpyrazoles
CA2138065A1 (en) Process for preparing 5-aminodihydropyrrole, intermediate thereof and process for preparing said intermediate
JP2003171332A (en) Method for producing bisbenzyl compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505549

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280019216.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767095

Country of ref document: EP

Kind code of ref document: A1