WO2022191099A1 - Liquid crystal resin composition, and molded article comprising same - Google Patents

Liquid crystal resin composition, and molded article comprising same Download PDF

Info

Publication number
WO2022191099A1
WO2022191099A1 PCT/JP2022/009606 JP2022009606W WO2022191099A1 WO 2022191099 A1 WO2022191099 A1 WO 2022191099A1 JP 2022009606 W JP2022009606 W JP 2022009606W WO 2022191099 A1 WO2022191099 A1 WO 2022191099A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystalline
resin composition
parts
structural unit
polyester resin
Prior art date
Application number
PCT/JP2022/009606
Other languages
French (fr)
Japanese (ja)
Inventor
藤野慎吾
森脇和弘
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2022533061A priority Critical patent/JPWO2022191099A1/ja
Publication of WO2022191099A1 publication Critical patent/WO2022191099A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a liquid crystalline resin composition and a molded article made from it.
  • liquid crystalline resins such as optically anisotropic liquid crystalline polyester resins, characterized by the parallel arrangement of molecular chains, have attracted attention due to their excellent moldability, mechanical properties, and insulating properties, and have been used in electrical and electronic parts.
  • Demand is expanding mainly for injection molding applications. Due to their liquid crystal structure, these liquid crystalline polyester resins are excellent in heat resistance, fluidity and dimensional stability. Modularization that combines each part is progressing. When modularizing, the chances of contact between parts increase, so in addition to the conventional required properties, high surface hardness and surface smoothness are required. Due to the thinning and complication of the shape of steel, higher performance than ever before is required for the above characteristics.
  • Patent Document 1 has the problem that the improvement in surface hardness is insufficient because the shape of the filler to be blended is irregular or spherical powder. Further, in the technique described in Patent Document 2, since the shape of the filler to be blended is needle-like, there is a problem that improvement in surface smoothness and surface hardness is insufficient.
  • the present invention provides a liquid crystalline resin composition that solves the above-mentioned problems and can obtain a molded article that achieves both high surface hardness and excellent surface smoothness at a high level.
  • the task is to
  • the liquid crystalline resin composition of the present invention is a liquid crystalline resin composition containing 5 to 50 parts by weight of (B) glass flakes relative to 100 parts by weight of (A) a liquid crystalline polyester resin,
  • the average particle size is 1-8 ⁇ m.
  • the molded article of the present invention is made of the liquid crystal resin composition of the present invention.
  • liquid crystalline resin composition of the present invention it is possible to obtain a molded article that achieves both high surface hardness and excellent surface smoothness at a high level.
  • the liquid crystalline polyester resin consists of structural units selected from, for example, aromatic oxycarbonyl units, aromatic and/or aliphatic dioxy units, aromatic and/or aliphatic dicarbonyl units, etc., and is anisotropic A liquid crystalline polyester resin that forms a melt phase can be mentioned.
  • aromatic oxycarbonyl units examples include structural units generated from p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, etc. Structural units generated from p-hydroxybenzoic acid are preferred.
  • Aromatic and/or aliphatic dioxy units include, for example, 4,4′-dihydroxybiphenyl, hydroquinone, 3,3′,5,5′-tetramethyl-4,4′-dihydroxybiphenyl, t-butylhydroquinone, phenylhydroquinone, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,2-bis(4-hydroxyphenyl)propane, 4,4'-dihydroxydiphenyl ether, ethylene glycol, 1,3-propylene glycol, 1, Structural units generated from 4-butanediol and the like can be mentioned, and structural units generated from 4,4'-dihydroxybiphenyl and hydroquinone are preferred.
  • Aromatic and/or aliphatic dicarbonyl units include, for example, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 1,2-bis(phenoxy)ethane-4, Structural units generated from 4'-dicarboxylic acid, 1,2-bis(2-chlorophenoxy)ethane-4,4'-dicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, adipic acid, sebacic acid, and the like. , terephthalic acid and isophthalic acid are preferred.
  • liquid crystal polyester resin examples include a liquid crystal polyester resin composed of a structural unit generated from p-hydroxybenzoic acid and a structural unit generated from 6-hydroxy-2-naphthoic acid, and a liquid crystal polyester resin generated from p-hydroxybenzoic acid.
  • a liquid crystalline polyester resin comprising a structural unit, a structural unit generated from 6-hydroxy-2-naphthoic acid, a structural unit generated from an aromatic dihydroxy compound, and a structural unit generated from an aromatic dicarboxylic acid and/or an aliphatic dicarboxylic acid, Structural units generated from p-hydroxybenzoic acid, structural units generated from 4,4′-dihydroxybiphenyl, aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid and/or aliphatic dicarboxylic acids such as adipic acid and sebacic acid
  • Liquid crystalline polyester resin composed of structural units produced, structural units produced from p-hydroxybenzoic acid, structural units produced from 4,4'-dihydroxybiphenyl, structural units produced from hydroquinone, aromatics such as terephthalic acid and isophthalic acid
  • Liquid crystalline polyester resin composed of structural units generated from aliphatic dicarboxylic acids such as dicarboxy
  • liquid crystal polyester resins containing the following structural units (I), (II), (III), (IV) and (V) are preferable from the viewpoint of low dust generation. This is because such a liquid crystalline polyester resin has a large number of copolymerized units, so that the liquid crystallinity is low and fibrillation, which is a characteristic of the liquid crystalline polyester resin, is less likely to occur.
  • Structural unit (I) is a structural unit generated from p-hydroxybenzoic acid
  • structural unit (II) is a structural unit generated from 4,4'-dihydroxybiphenyl
  • structural unit (III) is a structural unit generated from hydroquinone
  • structural unit (IV) represents a structural unit generated from terephthalic acid
  • structural unit (V) represents a structural unit generated from isophthalic acid.
  • Structural unit (I) is preferably 65 to 80 mol%, more preferably 68 to 72 mol%, relative to the total of structural units (I), (II) and (III).
  • the lower limit is preferably 65 mol %, more preferably 68 mol %, since the amount of generated gas can be further reduced.
  • the upper limit is preferably 80 mol%, more preferably 78 mol%, and even more preferably 72 mol%.
  • the structural unit (II) is preferably 55 to 85 mol% relative to the total of the structural units (II) and (III).
  • the lower limit is more preferably 60 mol % or more, most preferably 70 mol % or more, because the amount of generated gas is reduced.
  • the upper limit is more preferably 82 mol% or less, most preferably 80 mol% or less.
  • the structural unit (IV) is preferably 50 to 95 mol% relative to the total of the structural units (IV) and (V).
  • the lower limit is preferably 55 mol % or more, most preferably 60 mol % or more, because the amount of generated gas is reduced.
  • the upper limit is more preferably 85 mol % or less, most preferably 75 mol % or less, from the viewpoint of toughness.
  • the sum of structural units (II) and (III) and the sum of (IV) and (V) are preferably substantially equimolar.
  • substantially equimolar means that the structural units constituting the polymer main chain excluding the terminal are equimolar, and when the structural unit constituting the terminal is included, it is not necessarily equimolar. Not exclusively. Excess dicarboxylic acid or dihydroxy moieties may be added to control the end groups of the polymer.
  • the content of each structural unit in (A) the liquid crystal polyester resin can be calculated by the following process. That is, (A) liquid crystalline polyester resin is weighed into an NMR (nuclear magnetic resonance) test tube, and (A) liquid crystalline polyester resin is dissolved in a soluble solvent (for example, pentafluorophenol/heavy tetrachloroethane-d 2 mixed solvent). Then, 1 H-NMR spectrum measurement is performed. The content of each structural unit can be calculated from the peak area ratio derived from each structural unit.
  • a soluble solvent for example, pentafluorophenol/heavy tetrachloroethane-d 2 mixed solvent
  • the melting point of (A) the liquid crystal polyester resin in the present invention is preferably 300 to 350° C. from the viewpoint of workability and fluidity, and the lower limit thereof is more preferably 310° C. or higher, particularly preferably 320° C. or higher, from the viewpoint of workability. . From the viewpoint of fluidity, the upper limit is more preferably 340°C or lower, particularly preferably 330°C or lower. Such a melting point is preferable because generation of decomposition gas during processing can be suppressed and fluidity is sufficiently exhibited.
  • the melting point (Tm) of (A) the liquid crystal polyester resin can be measured by the following method.
  • the temperature is Tm 1 +20° C. for 5 minutes.
  • the temperature is once cooled to room temperature under the condition of temperature decrease of 20°C/min, and the endothermic peak temperature (Tm 2 ) observed when measured again under the condition of temperature increase of 20°C/min is defined as the melting point (Tm).
  • the melt viscosity of (A) the liquid crystalline polyester resin in the present invention is preferably 1 to 100 Pa ⁇ s, and from the viewpoint of workability, the lower limit thereof is more preferably 3 Pa ⁇ s or more, and particularly preferably 5 Pa ⁇ s or more. From the viewpoint of fluidity, the upper limit of the melt viscosity is more preferably 50 Pa ⁇ s or less, particularly preferably 30 Pa ⁇ s or less.
  • the melt viscosity is a value measured with a Koka-type flow tester under conditions of (A) the melting point of the liquid crystal polyester resin +10° C. and a shear rate of 1,000/s.
  • the liquid crystalline polyester resin can be obtained, for example, by a known polyester polycondensation method.
  • the liquid crystalline polyester resin composed of the structural units (I), (II), (III), (IV) and (V) described above, the following production methods are preferred.
  • Method for producing liquid crystalline polyester by dephenol polycondensation reaction from phenyl ester of p-hydroxybenzoic acid, 4,4'-dihydroxybiphenyl, hydroquinone, and diphenyl esters of terephthalic acid and isophthalic acid (4) p-hydroxybenzoic acid and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid are reacted with a predetermined amount of diphenyl carbonate to form diphenyl esters, respectively, and then 4,4'-dihydroxybiphenyl and an aromatic dihydroxy compound such as hydroquinone are added to dephenolate.
  • a method for producing a liquid crystalline polyester by a polycondensation reaction is reacted with a predetermined amount of diphenyl carbonate to form diphenyl esters, respectively, and then 4,4'-dihydroxybiphenyl and an aromatic dihydroxy compound such as hydroquinone are added to dephenolate.
  • the liquid crystalline polyester resin when the liquid crystalline polyester resin is produced by the deacetic acid polycondensation reaction, it is preferable to use a melt polymerization method in which the reaction is performed under reduced pressure at a temperature at which the liquid crystalline polyester resin melts to complete the polycondensation reaction.
  • a predetermined amount of p-hydroxybenzoic acid, 4,4'- Dihydroxybiphenyl, hydroquinone, terephthalic acid, isophthalic acid, and acetic anhydride are charged into a reaction vessel equipped with a stirring blade, a distillation tube, and a discharge port at the bottom, and heated with stirring under a nitrogen gas atmosphere to remove hydroxyl groups. is acetylated, the temperature is raised to the melting temperature of the liquid crystalline polyester resin, and polycondensation is performed under reduced pressure to complete the reaction.
  • the obtained polymer is pressurized in the reaction vessel at a temperature at which it melts, for example, to about 1.0 kg/cm 2 (0.1 MPa), and is discharged in a strand form from a discharge port provided at the bottom of the reaction vessel.
  • the melt polymerization method is an advantageous method for producing a homogeneous polymer, and is preferred because it can obtain a superior polymer with less outgassing.
  • the polycondensation reaction in the production of the liquid crystalline polyester resin proceeds without a catalyst, but metal compounds such as stannous acetate, tetrabutyl titanate, potassium acetate, sodium acetate, antimony trioxide, and metallic magnesium can also be used. can.
  • liquid crystal polyester resin can be used by mixing two or more liquid crystal polyester resins.
  • the liquid crystalline resin composition of the present invention contains 5 to 50 parts by weight of (B) glass flakes per 100 parts by weight of (A) the liquid crystal polyester resin.
  • the content of (B) glass flakes is preferably 10 to 45 parts by weight, more preferably 15 to 35 parts by weight, per 100 parts by weight of the liquid crystal polyester resin. If the content is less than 5 parts by weight, the surface hardness will be insufficient. Moreover, when the content is more than 50 parts by weight, the surface smoothness is lowered.
  • the (B) glass flakes have an average particle size of 1 to 8 ⁇ m, preferably 2 to 7 ⁇ m.
  • the average particle size referred to here is the number average particle size.
  • the number average particle size is measured with a laser diffraction/scattering particle size distribution analyzer ("LA-300" manufactured by HORIBA).
  • the cumulative degree is less than 10% for those having a particle size of 1 ⁇ m or less, and the cumulative degree for those having a particle size of 20 ⁇ m or more is less than 10%.
  • the particle size exceeds 10% or the particle size exceeds 10%, the surface hardness and surface smoothness are both insufficient.
  • the thickness of the (B) glass flakes is preferably 0.1 to 5 ⁇ m, more preferably 0.1 to 3 ⁇ m, still more preferably 0.3 to 1 ⁇ m.
  • 10 pieces are randomly selected from the image of the glass flakes observed with a scanning electron microscope (SEM), the thickness is measured, and the average value is taken as the thickness of the (B) glass flakes.
  • glass flakes having a thickness within the above range include MEG005FY manufactured by Nippon Sheet Glass Co., Ltd., and the like.
  • the thickness of the glass flakes is 0.1 ⁇ m or more, it becomes easier to obtain a higher surface hardness. Moreover, when it is 5 ⁇ m or less, the surface smoothness is likely to be improved.
  • the (B) glass flakes are preferably E glass having a low alkaline component content from the viewpoint of improving the dispersibility in the resin of the liquid crystalline resin composition of the present invention. Glass can also be used.
  • the method for producing (B) glass flakes as described above includes, for example, a method in which molten glass is inflated like a balloon, rapidly cooled and then crushed, or a method in which the glass is heated and melted in a melting tank, and the molten glass base material is discharged from the bottom of the tank. is pulled out, and a gas is blown into the molten glass base to form a hollow thin film, which is pulverized by a pressure roller.
  • the (B) glass flakes may be surface-treated with a coupling agent, specifically ⁇ -(2-aminoethyl)aminopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - Silane coupling agents such as mercaptopropyltrimethoxysilane, methyltrimethoxysilane, ⁇ -anilinopropyltrimethoxysilane, hydroxypropyltrimethoxysilane, ⁇ -ureidopropyltriethoxysilane, vinylacetoxysilane, and isopropyltrisisostearoyl titanate , isopropyltris(dioctylpyrophosphate)titanate, tetraoctylbis(ditridecylphosphite)titanate, bis(dioctylpyrophosphate)ethylenetitanate, isopropyl
  • glass flakes examples include MEG005FY manufactured by Nippon Sheet Glass Co., Ltd., and the like. Also, other commercially available products can be used as long as they have a shape that meets the requirements of the present invention.
  • the liquid crystalline resin composition of the present invention may further contain (C) a non-fibrous filler.
  • C) Non-fibrous fillers include, for example, plate-like fillers, powdery fillers, granular fillers, and the like.
  • plate-like fillers include mica, talc, kaolin, clay, molybdenum disulfide, and the like.
  • Powdered and particulate fillers include silica, glass beads, titanium oxide, zinc oxide, calcium polyphosphate and graphite.
  • a plate-like filler is preferable, and mica or talc is more preferable, from the viewpoint of fluidity during molding and suppression of warpage. Mica is more preferable in terms of surface hardness and surface smoothness.
  • Two or more types of the above (C) non-fibrous filler may be used in combination.
  • the total content of (A) the liquid crystal polyester resin and (B) the glass flakes is , preferably 0 to 30 parts by weight, more preferably 5 to 30 parts by weight.
  • the surface of the (C) non-fibrous filler may be treated with a known coupling agent (eg, silane coupling agent, titanate coupling agent, etc.) or other surface treatment agent.
  • a known coupling agent eg, silane coupling agent, titanate coupling agent, etc.
  • liquid crystalline resin composition of the present invention may contain antioxidants and heat stabilizers (for example, hindered phenols, hydroquinones, phosphites and substituted products thereof), ultraviolet Absorbents (e.g. resorcinol, salicylate, benzotriazole, benzophenone, etc.), lubricants and release agents (montanic acid and its salts, its esters, its half-esters, stearyl alcohol, stearamide and polyethylene waxes, etc.), dyes (e.g.
  • nitrosine, etc. and conventional additives such as colorants, plasticizers, antistatic agents, including pigments (e.g., cadmium sulfide, phthalocyanine, carbon black, etc.), and other thermoplastics can also be added to impart desired properties.
  • colorants plasticizers
  • antistatic agents including pigments (e.g., cadmium sulfide, phthalocyanine, carbon black, etc.), and other thermoplastics can also be added to impart desired properties.
  • pigments e.g., cadmium sulfide, phthalocyanine, carbon black, etc.
  • other thermoplastics can also be added to impart desired properties.
  • Melt-kneading is preferable as a method of adding these, and known methods can be used for melt-kneading.
  • a Banbury mixer, roll mill, kneader, single-screw or twin-screw extruder, etc. can be used to melt and knead the composition at a temperature of 200 to 350°C.
  • (B) glass flakes and (D) inorganic fibrous filler are homogeneously kneaded with good dispersibility, so it is preferable to use an extruder.
  • the liquid crystal polyester resin and the filler it is preferable to provide one or more kneading portions, more preferably two or more locations.
  • the filler is added from the side feeder, (A) one or more locations upstream of the side feeder of the filler in order to promote plasticization of the liquid crystal polyester resin, (A )
  • the side feeder it is preferable to install the side feeder at one or more locations downstream of the side feeder, that is, a total of two or more locations.
  • vents more preferably two or more vents.
  • the vent section is installed at one or more points upstream of the side feeder into which the filler is introduced in order to remove the moisture adhering to the liquid crystal polyester resin (A).
  • the side feeder In order to remove the cracked gas during kneading and the air brought in during the supply of the filler, it is preferable to install the side feeder at one or more locations downstream of the side feeder, a total of two or more locations.
  • the vent section may be under normal pressure or under reduced pressure.
  • liquid crystalline resin composition of the present invention is excellent in thin wall fluidity and does not impair mechanical properties, it can be molded into various molded articles by a known molding method, for example, and the excellent thin wall fluidity can be utilized. and injection molding is preferred.
  • liquid crystalline resin composition of the present invention various molded articles having high surface hardness and excellent surface smoothness can be obtained by, for example, a known molding method.
  • the molded article of the present invention is made of the liquid crystalline resin composition of the present invention.
  • Molded articles of the present invention include, for example, various gears, various cases, sensors, LED parts, liquid crystal backlight bobbins, connectors, sockets, resistors, relay cases, relay spools and bases, switches, coil bobbins, capacitors, and variable condenser cases.
  • the molded article of the present invention since the molded article of the present invention is excellent in surface hardness and surface smoothness, it has a structure in which thin parts are in contact with each other. It is preferably a molded article selected from the group consisting of
  • the polymerization temperature was maintained at 320° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour
  • the reaction was continued for 90 minutes, and polymerization was completed when the torque required for stirring reached 15 kg ⁇ cm.
  • the inside of the reaction vessel is pressurized to 1.0 kg/cm 2 (0.1 MPa), and the polymer is discharged into strands through a mouthpiece having a circular discharge port with a diameter of 10 mm, and pelletized by a cutter.
  • a liquid crystalline polyester resin (A-1) was obtained.
  • a composition analysis of this liquid crystal polyester resin (A-1) revealed that a structural unit derived from p-hydroxybenzoic acid (structural unit (I)) and a structural unit derived from 4,4′-dihydroxybiphenyl (structural unit (II) )) and the structural unit derived from hydroquinone (structural unit (III)), the ratio of the structural unit derived from p-hydroxybenzoic acid (structural unit (I)) was 70 mol %. 4,4'-dihydroxybiphenyl-derived structural unit (structural unit (II )) was 70 mol %.
  • the ratio of the terephthalic acid-derived structural unit (structural unit (IV)) to the total of the terephthalic acid-derived structural unit (structural unit (IV)) and the isophthalic acid-derived structural unit (structural unit (V)) was 65 mol%. Met.
  • the total of structural units derived from 4,4′-dihydroxybiphenyl (structural unit (II)) and structural units derived from hydroquinone (structural unit (III)) is 23 mol% of all structural units, and terephthalic acid-derived
  • the structural unit (structural unit (IV)) and the isophthalic acid-derived structural unit (structural unit (V)) were 23 mol % of the total structural units.
  • the melting point (Tm) of the liquid crystal polyester resin (A-2) was 314°C.
  • the melt viscosity measured at a temperature of 324° C. and a shear rate of 1,000/s using a Koka flow tester (orifice 0.5 ⁇ 10 mm) was 20 Pa ⁇ s.
  • the jacket temperature was raised from 145°C to 270°C at an average temperature increase rate of 0.68°C/min, and from 270°C to 350°C at an average temperature increase rate of 1.4°C/min. .
  • the heating time was 4 hours.
  • the polymerization temperature was maintained at 350° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, the reaction was continued, and polymerization was completed when the torque required for stirring reached 10 kg ⁇ cm.
  • the inside of the reaction vessel is pressurized to 1.0 kg/cm 2 (0.1 MPa), and the polymer is discharged into strands through a mouthpiece having a circular discharge port with a diameter of 10 mm, and pelletized by a cutter.
  • a liquid crystalline polyester resin (A-2) was obtained.
  • a composition analysis of this liquid crystal polyester resin (A-2) revealed that a structural unit derived from p-hydroxybenzoic acid (structural unit (I)) and a structural unit derived from 4,4'-dihydroxybiphenyl (structural unit (II) )) and the structural unit derived from hydroquinone (structural unit (III)), the ratio of the structural unit derived from p-hydroxybenzoic acid (structural unit (I)) was 75 mol%. 4,4'-dihydroxybiphenyl-derived structural unit (structural unit (II )) was 60 mol %.
  • the ratio of the terephthalic acid-derived structural unit (structural unit (IV)) to the total of the terephthalic acid-derived structural unit (structural unit (IV)) and the isophthalic acid-derived structural unit (structural unit (V)) was 76 mol%. Met.
  • the total of structural units derived from 4,4'-dihydroxybiphenyl (structural unit (II)) and structural units derived from hydroquinone (structural unit (III)) is 20 mol% of all structural units, and terephthalic acid-derived
  • the structural unit (structural unit (IV)) and the isophthalic acid-derived structural unit (structural unit (V)) were 20 mol % of the total structural units.
  • the melting point (Tm) of the liquid crystal polyester resin (A-2) was 325°C.
  • the melt viscosity measured at a temperature of 335° C. and a shear rate of 1,000/s using a Koka flow tester (orifice 0.5 ⁇ 10 mm) was 8 Pa ⁇ s.
  • the inorganic filler containing the (B) glass flakes used is as follows.
  • the cumulative degree was 1% or less for particles with a particle size of 1 ⁇ m or less, and the cumulative degree was 5% or less for particles with a particle size of 20 ⁇ m or more.
  • Examples 1 to 9, Comparative Examples 1 to 3 Using a twin-screw extruder with a coaxially rotating vent having a screw diameter of 30 mm (manufactured by Japan Steel Works, Ltd., TEX30 ⁇ ), (A) liquid crystalline polyester resin was charged from a hopper in the amount shown in Table 1, and (B) glass flakes and (C) A non-fibrous filler was added in the amount shown in Table 1 through an intermediate supply port. The cylinder temperature was set to the melting point of (A) the liquid crystalline polyester resin +10° C., and melt-kneading was performed to obtain pellets of the liquid crystalline resin composition. Various characteristic values were evaluated using the obtained pellets. Table 1 shows the test results.
  • the liquid crystalline resin composition of the present invention achieves both high surface hardness and excellent surface smoothness at a high level. Therefore, the liquid crystalline resin composition of the present invention is particularly useful for electric and electronic parts such as connectors, relays, switches, coil bobbins, lamp sockets, camera modules, and integrated circuit encapsulants, which have a structure in which thin parts are in contact with each other. It can be said that it is suitable for machine parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

In order to provide a liquid crystal resin composition capable of obtaining a molded product having both high surface hardness and a high level of surface smoothness, the liquid crystal resin composition according to the present invention contains 5-50 parts by weight of glass flakes (B) with respect to 100 parts by weight of a liquid crystal polyester resin (A), wherein the average particle size of the glass flakes (B) is 1-8 μm.

Description

液晶性樹脂組成物およびそれからなる成形品Liquid crystalline resin composition and molded article made of same
 本発明は、液晶性樹脂組成物およびそれからなる成形品に関するものである。 The present invention relates to a liquid crystalline resin composition and a molded article made from it.
 近年、プラスチックの高性能化に対する要求がますます高まり、種々の新規性能を有するポリマーが数多く開発され、市場に供されている。中でも分子鎖の平行な配列を特徴とする光学異方性の液晶ポリエステル樹脂などの液晶性樹脂が、優れた成形性と機械的性質、絶縁性を有する点で注目され、電気・電子部品用途を中心とした、射出成形用途で需要が拡大している。これらの液晶ポリエステル樹脂は、その液晶構造から耐熱性、流動性、寸法安定性に優れるため、それらの特性が要求されるコネクタやリレーなどの電気・電子部品を中心に需要が拡大しており、各部品を組み合わせるモジュール化が進んでいる。モジュール化の際には部品同士の接触機会が増加するため、従来の要求特性に加え、高い表面硬度や表面平滑性が求められるが、近年の機器の小型化や薄肉化に伴う更なる成形品の薄肉化や形状の複雑化により、上記特性についてこれまでよりもより高度な性能が必要とされ始めている。  In recent years, the demand for higher performance plastics has increased, and many polymers with various new performances have been developed and put on the market. In particular, liquid crystalline resins such as optically anisotropic liquid crystalline polyester resins, characterized by the parallel arrangement of molecular chains, have attracted attention due to their excellent moldability, mechanical properties, and insulating properties, and have been used in electrical and electronic parts. Demand is expanding mainly for injection molding applications. Due to their liquid crystal structure, these liquid crystalline polyester resins are excellent in heat resistance, fluidity and dimensional stability. Modularization that combines each part is progressing. When modularizing, the chances of contact between parts increase, so in addition to the conventional required properties, high surface hardness and surface smoothness are required. Due to the thinning and complication of the shape of steel, higher performance than ever before is required for the above characteristics.
 これまでに、液晶性樹脂組成物の表面硬度向上の観点から、液晶性樹脂に微細の球状粉体を配合する検討がなされている。例えば、液晶性ポリエステルにモース硬度が5以上、かつ、1次粒子径が5μm以下の不定形あるいは球状粉体を配合することで、高い表面硬度を付与することが開示されている(例えば、特許文献1参照)。また、液晶性ポリエステルに針状酸化チタンおよび特定のエポキシ化合物を配合することで、高レベルの表面平滑性を付与することが開示されている(例えば、特許文献2参照)。 So far, from the viewpoint of improving the surface hardness of liquid crystalline resin compositions, studies have been made on blending fine spherical powder into liquid crystalline resins. For example, it is disclosed that high surface hardness is imparted by blending amorphous or spherical powder having a Mohs hardness of 5 or more and a primary particle size of 5 μm or less to a liquid crystalline polyester (for example, patent Reference 1). Further, it is disclosed that a high level of surface smoothness is imparted by blending acicular titanium oxide and a specific epoxy compound with liquid crystalline polyester (see, for example, Patent Document 2).
特許第5486889号公報Japanese Patent No. 5486889 特許第5810636号公報Japanese Patent No. 5810636
 しかしながら、特許文献1に記載された技術では、配合する充填材の形状が不定形あるいは球状粉体であることから、表面硬度の改善が不十分である課題がある。また、特許文献2に記載された技術では、配合する充填材の形状が針状であることから、表面平滑性および表面硬度の改善が不十分である課題がある。 However, the technique described in Patent Document 1 has the problem that the improvement in surface hardness is insufficient because the shape of the filler to be blended is irregular or spherical powder. Further, in the technique described in Patent Document 2, since the shape of the filler to be blended is needle-like, there is a problem that improvement in surface smoothness and surface hardness is insufficient.
 よって本発明は、かかる従来技術の背景に鑑み、上述の問題点を解決し、高い表面硬度と優れた表面平滑性を高い次元で両立する成形品を得ることができる液晶性樹脂組成物を提供することを課題とする。 Therefore, in view of the background of such prior art, the present invention provides a liquid crystalline resin composition that solves the above-mentioned problems and can obtain a molded article that achieves both high surface hardness and excellent surface smoothness at a high level. The task is to
 本発明の液晶性樹脂組成物は、(A)液晶ポリエステル樹脂100重量部に対し、(B)ガラスフレークを5~50重量部含有する液晶性樹脂組成物であって、(B)ガラスフレークの平均粒子径が1~8μmである。 The liquid crystalline resin composition of the present invention is a liquid crystalline resin composition containing 5 to 50 parts by weight of (B) glass flakes relative to 100 parts by weight of (A) a liquid crystalline polyester resin, The average particle size is 1-8 μm.
 また、本発明の成形品は、本発明の液晶樹脂組成物からなる。 Also, the molded article of the present invention is made of the liquid crystal resin composition of the present invention.
 本発明の液晶性樹脂組成物によれば、高い表面硬度と優れた表面平滑性を高い次元で両立する成形品を得ることができる。 According to the liquid crystalline resin composition of the present invention, it is possible to obtain a molded article that achieves both high surface hardness and excellent surface smoothness at a high level.
 以下、本発明を詳細に説明するが、本発明はこれらの形態に限定されない。 Although the present invention will be described in detail below, the present invention is not limited to these forms.
 (A)液晶ポリエステル樹脂としては、例えば芳香族オキシカルボニル単位、芳香族および/または脂肪族ジオキシ単位、芳香族および/または脂肪族ジカルボニル単位などから選ばれた構造単位からなり、かつ異方性溶融相を形成する液晶ポリエステル樹脂が挙げられる。 (A) The liquid crystalline polyester resin consists of structural units selected from, for example, aromatic oxycarbonyl units, aromatic and/or aliphatic dioxy units, aromatic and/or aliphatic dicarbonyl units, etc., and is anisotropic A liquid crystalline polyester resin that forms a melt phase can be mentioned.
 芳香族オキシカルボニル単位としては、例えば、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸などから生成した構造単位が挙げられ、p-ヒドロキシ安息香酸から生成した構造単位が好ましい。 Examples of aromatic oxycarbonyl units include structural units generated from p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, etc. Structural units generated from p-hydroxybenzoic acid are preferred.
 芳香族および/または脂肪族ジオキシ単位としては、例えば、4,4’-ジヒドロキシビフェニル、ハイドロキノン、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェニル、t-ブチルハイドロキノン、フェニルハイドロキノン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,2-ビス(4-ヒドロキシフェニル)プロパン、4,4’-ジヒドロキシジフェニルエーテル、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオールなどから生成した構造単位が挙げられ、4,4’-ジヒドロキシビフェニル、ハイドロキノンから生成した構造単位が好ましい。 Aromatic and/or aliphatic dioxy units include, for example, 4,4′-dihydroxybiphenyl, hydroquinone, 3,3′,5,5′-tetramethyl-4,4′-dihydroxybiphenyl, t-butylhydroquinone, phenylhydroquinone, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,2-bis(4-hydroxyphenyl)propane, 4,4'-dihydroxydiphenyl ether, ethylene glycol, 1,3-propylene glycol, 1, Structural units generated from 4-butanediol and the like can be mentioned, and structural units generated from 4,4'-dihydroxybiphenyl and hydroquinone are preferred.
 芳香族および/または脂肪族ジカルボニル単位としては、例えば、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4’-ジカルボン酸、1,2-ビス(2-クロロフェノキシ)エタン-4,4’-ジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、アジピン酸、セバシン酸などから生成した構造単位が挙げられ、テレフタル酸、イソフタル酸から生成した構造単位が好ましい。 Aromatic and/or aliphatic dicarbonyl units include, for example, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 1,2-bis(phenoxy)ethane-4, Structural units generated from 4'-dicarboxylic acid, 1,2-bis(2-chlorophenoxy)ethane-4,4'-dicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, adipic acid, sebacic acid, and the like. , terephthalic acid and isophthalic acid are preferred.
 (A)液晶ポリエステル樹脂の具体例としては、p-ヒドロキシ安息香酸から生成した構造単位および6-ヒドロキシ-2-ナフトエ酸から生成した構造単位からなる液晶ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、6-ヒドロキシ-2-ナフトエ酸から生成した構造単位、芳香族ジヒドロキシ化合物から生成した構造単位、および芳香族ジカルボン酸および/または脂肪族ジカルボン酸から生成した構造単位からなる液晶ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、4,4’-ジヒドロキシビフェニルから生成した構造単位、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸および/またはアジピン酸、セバシン酸等の脂肪族ジカルボン酸から生成した構造単位からなる液晶ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、4,4’-ジヒドロキシビフェニルから生成した構造単位、ハイドロキノンから生成した構造単位、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸および/またはアジピン酸、セバシン酸等の脂肪族ジカルボン酸から生成した構造単位からなる液晶ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、エチレングリコールから生成した構造単位、テレフタル酸および/またはイソフタル酸から生成した構造単位からなる液晶ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、エチレングリコールから生成した構造単位、4,4’-ジヒドロキシビフェニルから生成した構造単位、テレフタル酸から生成した構造単位および/またはアジピン酸、セバシン酸等の脂肪族ジカルボンから生成した構造単位からなる液晶ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、エチレングリコールから生成した構造単位、芳香族ジヒドロキシ化合物から生成した構造単位、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸などの芳香族ジカルボン酸から生成した構造単位からなる液晶ポリエステル樹脂、6-ヒドロキシ-2-ナフトエ酸から生成した構造単位、4,4’-ジヒドロキシビフェニルから生成した構造単位、2,6-ナフタレンジカルボン酸から生成した構造単位からなる液晶ポリエステル樹脂などが挙げられる。 (A) Specific examples of the liquid crystal polyester resin include a liquid crystal polyester resin composed of a structural unit generated from p-hydroxybenzoic acid and a structural unit generated from 6-hydroxy-2-naphthoic acid, and a liquid crystal polyester resin generated from p-hydroxybenzoic acid. A liquid crystalline polyester resin comprising a structural unit, a structural unit generated from 6-hydroxy-2-naphthoic acid, a structural unit generated from an aromatic dihydroxy compound, and a structural unit generated from an aromatic dicarboxylic acid and/or an aliphatic dicarboxylic acid, Structural units generated from p-hydroxybenzoic acid, structural units generated from 4,4′-dihydroxybiphenyl, aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid and/or aliphatic dicarboxylic acids such as adipic acid and sebacic acid Liquid crystalline polyester resin composed of structural units produced, structural units produced from p-hydroxybenzoic acid, structural units produced from 4,4'-dihydroxybiphenyl, structural units produced from hydroquinone, aromatics such as terephthalic acid and isophthalic acid Liquid crystalline polyester resin composed of structural units generated from aliphatic dicarboxylic acids such as dicarboxylic acid and/or adipic acid and sebacic acid, structural units generated from p-hydroxybenzoic acid, structural units generated from ethylene glycol, terephthalic acid and/or Or a liquid crystal polyester resin composed of a structural unit generated from isophthalic acid, a structural unit generated from p-hydroxybenzoic acid, a structural unit generated from ethylene glycol, a structural unit generated from 4,4'-dihydroxybiphenyl, and a structural unit generated from terephthalic acid and/or liquid crystalline polyester resins composed of structural units generated from aliphatic dicarboxylic acids such as adipic acid and sebacic acid, structural units generated from p-hydroxybenzoic acid, structural units generated from ethylene glycol, aromatic dihydroxy compounds liquid crystal polyester resin composed of structural units generated from aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid, structural units generated from 6-hydroxy-2-naphthoic acid, Examples thereof include liquid crystal polyester resins composed of structural units generated from 4,4'-dihydroxybiphenyl and structural units generated from 2,6-naphthalene dicarboxylic acid.
 これら液晶ポリエステル樹脂の中でも、下記構造単位(I)、(II)、(III)、(IV)および(V)を含む液晶ポリエステル樹脂は、低発塵性の観点から好ましい。このような液晶ポリエステル樹脂は、共重合単位が多いため液晶性が低くなり、液晶ポリエステル樹脂の特性であるフィブリル化を起こしにくいためである。 Among these liquid crystal polyester resins, liquid crystal polyester resins containing the following structural units (I), (II), (III), (IV) and (V) are preferable from the viewpoint of low dust generation. This is because such a liquid crystalline polyester resin has a large number of copolymerized units, so that the liquid crystallinity is low and fibrillation, which is a characteristic of the liquid crystalline polyester resin, is less likely to occur.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 構造単位(I)はp-ヒドロキシ安息香酸から生成した構造単位を、構造単位(II)は4,4’-ジヒドロキシビフェニルから生成した構造単位を、構造単位(III)はハイドロキノンから生成した構造単位を、構造単位(IV)はテレフタル酸から生成した構造単位を、構造単位(V)はイソフタル酸から生成した構造単位を各々示す。 Structural unit (I) is a structural unit generated from p-hydroxybenzoic acid, structural unit (II) is a structural unit generated from 4,4'-dihydroxybiphenyl, and structural unit (III) is a structural unit generated from hydroquinone. , structural unit (IV) represents a structural unit generated from terephthalic acid, and structural unit (V) represents a structural unit generated from isophthalic acid.
 構造単位(I)は、構造単位(I)、(II)および(III)の合計に対して65~80モル%が好ましく、68~72モル%がより好ましい。発生ガス量をより低減できることから、その下限値は65モル%が好ましく、68モル%がより好ましい。また、靭性の観点から、その上限値は80モル%が好ましく、78モル%がより好ましく、72モル%がより好ましい。 Structural unit (I) is preferably 65 to 80 mol%, more preferably 68 to 72 mol%, relative to the total of structural units (I), (II) and (III). The lower limit is preferably 65 mol %, more preferably 68 mol %, since the amount of generated gas can be further reduced. From the viewpoint of toughness, the upper limit is preferably 80 mol%, more preferably 78 mol%, and even more preferably 72 mol%.
 また、構造単位(II)は、構造単位(II)および(III)の合計に対して55~85モル%が好ましい。特に発生ガス量が低下することから、その下限値は60モル%以上がより好ましく、最も好ましくは70モル%以上である。また、靭性の観点から上限値は82モル%以下がより好ましく、最も好ましくは80モル%以下である。 Also, the structural unit (II) is preferably 55 to 85 mol% relative to the total of the structural units (II) and (III). In particular, the lower limit is more preferably 60 mol % or more, most preferably 70 mol % or more, because the amount of generated gas is reduced. From the viewpoint of toughness, the upper limit is more preferably 82 mol% or less, most preferably 80 mol% or less.
 また、構造単位(IV)は、構造単位(IV)および(V)の合計に対して50~95モル%が好ましい。特に発生ガス量が低下することから、その下限値はより好ましくは55モル%以上であり、最も好ましくは60モル%以上である。また、上限値は靭性の観点から85モル%以下がより好ましく、最も好ましくは75モル%以下である。 Further, the structural unit (IV) is preferably 50 to 95 mol% relative to the total of the structural units (IV) and (V). In particular, the lower limit is preferably 55 mol % or more, most preferably 60 mol % or more, because the amount of generated gas is reduced. Moreover, the upper limit is more preferably 85 mol % or less, most preferably 75 mol % or less, from the viewpoint of toughness.
 構造単位(II)および(III)の合計と(IV)および(V)の合計は実質的に等モルであることが好ましい。ここで、「実質的に等モル」とは、末端を除くポリマー主鎖を構成する構造単位が等モルであることを示し、末端を構成する構造単位まで含めた場合には必ずしも等モルとは限らない。ポリマーの末端基を調節するために、ジカルボン酸成分またはジヒドロキシ成分を過剰に加えてもよい。 The sum of structural units (II) and (III) and the sum of (IV) and (V) are preferably substantially equimolar. Here, "substantially equimolar" means that the structural units constituting the polymer main chain excluding the terminal are equimolar, and when the structural unit constituting the terminal is included, it is not necessarily equimolar. Not exclusively. Excess dicarboxylic acid or dihydroxy moieties may be added to control the end groups of the polymer.
 本発明において、(A)液晶ポリエステル樹脂における各構造単位の含有量は、以下の処理によって算出することができる。すなわち、(A)液晶ポリエステル樹脂をNMR(核磁気共鳴)試験管に量りとり、(A)液晶ポリエステル樹脂が可溶な溶媒(例えば、ペンタフルオロフェノール/重テトラクロロエタン-d2混合溶媒)に溶解して、1H-NMRスペクトル測定を行う。各構造単位の含有量は、各構造単位由来のピーク面積比から算出することができる。 In the present invention, the content of each structural unit in (A) the liquid crystal polyester resin can be calculated by the following process. That is, (A) liquid crystalline polyester resin is weighed into an NMR (nuclear magnetic resonance) test tube, and (A) liquid crystalline polyester resin is dissolved in a soluble solvent (for example, pentafluorophenol/heavy tetrachloroethane-d 2 mixed solvent). Then, 1 H-NMR spectrum measurement is performed. The content of each structural unit can be calculated from the peak area ratio derived from each structural unit.
 本発明における(A)液晶ポリエステル樹脂の融点は、加工性および流動性の点から300~350℃が好ましく、加工性の観点からその下限値は310℃以上がより好ましく、特に320℃以上が好ましい。また、流動性の観点からその上限値は340℃以下がより好ましく、330℃以下が特に好ましい。このような融点である場合には、加工時の分解ガス発生が抑制でき、かつ流動性が充分に発揮されるため好ましい。 The melting point of (A) the liquid crystal polyester resin in the present invention is preferably 300 to 350° C. from the viewpoint of workability and fluidity, and the lower limit thereof is more preferably 310° C. or higher, particularly preferably 320° C. or higher, from the viewpoint of workability. . From the viewpoint of fluidity, the upper limit is more preferably 340°C or lower, particularly preferably 330°C or lower. Such a melting point is preferable because generation of decomposition gas during processing can be suppressed and fluidity is sufficiently exhibited.
 本発明において、(A)液晶ポリエステル樹脂の融点(Tm)は次の方法で測定することができる。示差熱量測定において、(A)液晶ポリエステル樹脂を室温から40℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm)の観測後、Tm+20℃の温度で5分間保持した後、20℃/分の降温条件で室温まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm)を融点(Tm)とする。 In the present invention, the melting point (Tm) of (A) the liquid crystal polyester resin can be measured by the following method. In the differential calorimetry, after observing the endothermic peak temperature (Tm 1 ) observed when measuring the (A) liquid crystalline polyester resin under the temperature rising condition of 40° C./min from room temperature, the temperature is Tm 1 +20° C. for 5 minutes. After holding, the temperature is once cooled to room temperature under the condition of temperature decrease of 20°C/min, and the endothermic peak temperature (Tm 2 ) observed when measured again under the condition of temperature increase of 20°C/min is defined as the melting point (Tm).
 また、本発明における(A)液晶ポリエステル樹脂の溶融粘度は1~100Pa・sが好ましく、加工性の観点からその下限値は3Pa・s以上がより好ましく、特に好ましくは5Pa・s以上である。また、流動性の観点から溶融粘度の上限値は50Pa・s以下がより好ましく、30Pa・s以下が特に好ましい。なお、溶融粘度は(A)液晶ポリエステル樹脂の融点+10℃の条件で、ずり速度1,000/sの条件下で高化式フローテスターによって測定した値である。 Further, the melt viscosity of (A) the liquid crystalline polyester resin in the present invention is preferably 1 to 100 Pa·s, and from the viewpoint of workability, the lower limit thereof is more preferably 3 Pa·s or more, and particularly preferably 5 Pa·s or more. From the viewpoint of fluidity, the upper limit of the melt viscosity is more preferably 50 Pa·s or less, particularly preferably 30 Pa·s or less. The melt viscosity is a value measured with a Koka-type flow tester under conditions of (A) the melting point of the liquid crystal polyester resin +10° C. and a shear rate of 1,000/s.
 本発明において、(A)液晶ポリエステル樹脂は、例えば、公知のポリエステルの重縮合法により得ることができる。例えば、前述の構造単位(I)、(II)、(III)、(IV)および(V)から構成される液晶ポリエステル樹脂の場合は、次の製造方法が好ましく挙げられる。
(1)p-アセトキシ安息香酸、4,4’-ジアセトキシビフェニル、およびジアセトキシベンゼンとテレフタル酸およびイソフタル酸とから脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法
(2)p-ヒドロキシ安息香酸、4,4’-ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸およびイソフタル酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法
(3)p-ヒドロキシ安息香酸のフェニルエステル、4,4’-ジヒドロキシビフェニル、ハイドロキノン、ならびにテレフタル酸およびイソフタル酸のジフェニルエステルから脱フェノール重縮合反応により液晶性ポリエステルを製造する方法
(4)p-ヒドロキシ安息香酸ならびにテレフタル酸およびイソフタル酸などの芳香族ジカルボン酸に所定量のジフェニルカーボネートを反応させて、それぞれジフェニルエステルとした後、4,4’-ジヒドロキシビフェニルおよびハイドロキノンなどの芳香族ジヒドロキシ化合物を加え、脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。
In the present invention, (A) the liquid crystalline polyester resin can be obtained, for example, by a known polyester polycondensation method. For example, in the case of the liquid crystalline polyester resin composed of the structural units (I), (II), (III), (IV) and (V) described above, the following production methods are preferred.
(1) Method for producing liquid crystalline polyester by deacetic acid polycondensation reaction from p-acetoxybenzoic acid, 4,4'-diacetoxybiphenyl, and diacetoxybenzene with terephthalic acid and isophthalic acid (2) p-hydroxybenzoic acid Acid, 4,4'-dihydroxybiphenyl, hydroquinone, terephthalic acid and isophthalic acid are reacted with acetic anhydride to acylate the phenolic hydroxyl groups, followed by a deacetic acid polycondensation reaction to produce a liquid crystalline polyester (3). Method for producing liquid crystalline polyester by dephenol polycondensation reaction from phenyl ester of p-hydroxybenzoic acid, 4,4'-dihydroxybiphenyl, hydroquinone, and diphenyl esters of terephthalic acid and isophthalic acid (4) p-hydroxybenzoic acid and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid are reacted with a predetermined amount of diphenyl carbonate to form diphenyl esters, respectively, and then 4,4'-dihydroxybiphenyl and an aromatic dihydroxy compound such as hydroquinone are added to dephenolate. A method for producing a liquid crystalline polyester by a polycondensation reaction.
 本発明において、液晶ポリエステル樹脂を脱酢酸重縮合反応により製造する際には、液晶ポリエステル樹脂が溶融する温度で減圧下反応させ、重縮合反応を完了させる溶融重合法が好ましい。例えば、前述の構造単位(I)、(II)、(III)、(IV)および(V)から構成される液晶ポリエステル樹脂の場合は、所定量のp-ヒドロキシ安息香酸、4,4’-ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸、イソフタル酸、および無水酢酸を、撹拌翼および留出管を備え、下部に吐出口を備えた反応容器中に仕込み、窒素ガス雰囲気下で撹拌しながら加熱して水酸基をアセチル化させた後、液晶ポリエステル樹脂の溶融温度まで昇温し、減圧により重縮合して反応を完了させる方法が挙げられる。 In the present invention, when the liquid crystalline polyester resin is produced by the deacetic acid polycondensation reaction, it is preferable to use a melt polymerization method in which the reaction is performed under reduced pressure at a temperature at which the liquid crystalline polyester resin melts to complete the polycondensation reaction. For example, in the case of a liquid crystalline polyester resin composed of structural units (I), (II), (III), (IV) and (V) described above, a predetermined amount of p-hydroxybenzoic acid, 4,4'- Dihydroxybiphenyl, hydroquinone, terephthalic acid, isophthalic acid, and acetic anhydride are charged into a reaction vessel equipped with a stirring blade, a distillation tube, and a discharge port at the bottom, and heated with stirring under a nitrogen gas atmosphere to remove hydroxyl groups. is acetylated, the temperature is raised to the melting temperature of the liquid crystalline polyester resin, and polycondensation is performed under reduced pressure to complete the reaction.
 得られたポリマーは、それが溶融する温度で反応容器内を、例えば、およそ1.0kg/cm(0.1MPa)に加圧し、反応容器下部に設けられた吐出口よりストランド状に吐出することができる。溶融重合法は均一なポリマーを製造するために有利な方法であり、ガス発生量がより少ない優れたポリマーを得ることができるため、好ましい。 The obtained polymer is pressurized in the reaction vessel at a temperature at which it melts, for example, to about 1.0 kg/cm 2 (0.1 MPa), and is discharged in a strand form from a discharge port provided at the bottom of the reaction vessel. be able to. The melt polymerization method is an advantageous method for producing a homogeneous polymer, and is preferred because it can obtain a superior polymer with less outgassing.
 液晶ポリエステル樹脂を製造する際の重縮合反応は無触媒でも進行するが、酢酸第一錫、テトラブチルチタネート、酢酸カリウム、酢酸ナトリウム、三酸化アンチモン、および金属マグネシウムなどの金属化合物を使用することもできる。 The polycondensation reaction in the production of the liquid crystalline polyester resin proceeds without a catalyst, but metal compounds such as stannous acetate, tetrabutyl titanate, potassium acetate, sodium acetate, antimony trioxide, and metallic magnesium can also be used. can.
 本発明において、(A)液晶ポリエステル樹脂は、2種類以上の液晶ポリエステル樹脂を混合して用いることができる。 In the present invention, (A) liquid crystal polyester resin can be used by mixing two or more liquid crystal polyester resins.
 本発明の液晶性樹脂組成物は、(A)液晶ポリエステル樹脂100重量部に対し、(B)ガラスフレークを5~50重量部含有する。(B)ガラスフレークの含有量は、液晶ポリエステル樹脂100重量部に対し、好ましくは10~45重量部であり、より好ましくは15~35重量部である。含有量が5重量部よりも少ないと表面硬度が不十分となる。また、含有量が50重量部より多いときには表面平滑性が低下する。 The liquid crystalline resin composition of the present invention contains 5 to 50 parts by weight of (B) glass flakes per 100 parts by weight of (A) the liquid crystal polyester resin. The content of (B) glass flakes is preferably 10 to 45 parts by weight, more preferably 15 to 35 parts by weight, per 100 parts by weight of the liquid crystal polyester resin. If the content is less than 5 parts by weight, the surface hardness will be insufficient. Moreover, when the content is more than 50 parts by weight, the surface smoothness is lowered.
 本発明において、(B)ガラスフレークの平均粒子径が1~8μmであり、好ましくは2~7μmである。ここでいう平均粒子径とは、数平均粒子径である。数平均粒子径はレーザー回折/散乱式粒子径分布測定装置(HORIBA社製“LA-300”)において測定する。(B)ガラスフレークの平均粒子径が1μmよりも小さいと表面硬度が不十分となり、また8μmより大きいと表面平滑性が低下する。 In the present invention, the (B) glass flakes have an average particle size of 1 to 8 μm, preferably 2 to 7 μm. The average particle size referred to here is the number average particle size. The number average particle size is measured with a laser diffraction/scattering particle size distribution analyzer ("LA-300" manufactured by HORIBA). (B) If the average particle size of the glass flakes is smaller than 1 µm, the surface hardness will be insufficient, and if it is larger than 8 µm, the surface smoothness will be reduced.
 また、(B)ガラスフレークの累積粒子径分布曲線において、粒子径が1μm以下のものが累積度10%未満であり、かつ粒子径が20μm以上のものが累積度10%未満であることが好ましい。粒子径が1μm以下のものが10%を超えた場合や粒子径が20μm以上のものが10%を超えた場合は、表面硬度と表面平滑性の両立が不十分となる。 In addition, (B) in the cumulative particle size distribution curve of glass flakes, it is preferable that the cumulative degree is less than 10% for those having a particle size of 1 μm or less, and the cumulative degree for those having a particle size of 20 μm or more is less than 10%. . When the particle size exceeds 10% or the particle size exceeds 10%, the surface hardness and surface smoothness are both insufficient.
 本発明において、(B)ガラスフレークの厚みが0.1~5μmであることが好ましく、より好ましくは、0.1~3μmであり、さらに好ましくは、0.3~1μmである。厚みは、走査型電子顕微鏡(SEM)で観察したガラスフレークの画像から無作為に10個を選び、厚みを測定し、その平均値を(B)ガラスフレークの厚みとする。厚みが上記範囲に入るガラスフレークとしては、例えば、日本板硝子(株)社製 MEG005FYなどが挙げられる。(B)ガラスフレークの厚みが0.1μm以上であると、より高い表面硬度が得られやすくなる。また、5μm以下であると表面平滑性が向上しやすくなる。 In the present invention, the thickness of the (B) glass flakes is preferably 0.1 to 5 μm, more preferably 0.1 to 3 μm, still more preferably 0.3 to 1 μm. For the thickness, 10 pieces are randomly selected from the image of the glass flakes observed with a scanning electron microscope (SEM), the thickness is measured, and the average value is taken as the thickness of the (B) glass flakes. Examples of glass flakes having a thickness within the above range include MEG005FY manufactured by Nippon Sheet Glass Co., Ltd., and the like. (B) When the thickness of the glass flakes is 0.1 µm or more, it becomes easier to obtain a higher surface hardness. Moreover, when it is 5 μm or less, the surface smoothness is likely to be improved.
 本発明において、(B)ガラスフレークは、本発明の液晶性樹脂組成物の樹脂中における分散性を向上させるという観点からアルカリ成分の含有量が少ないEガラスが好ましいが、アルカリ成分を含有するCガラスも用いることができる。 In the present invention, the (B) glass flakes are preferably E glass having a low alkaline component content from the viewpoint of improving the dispersibility in the resin of the liquid crystalline resin composition of the present invention. Glass can also be used.
 上記のような(B)ガラスフレークの製造方法は、例えば、溶融したガラスを風船のように膨らませ、急冷させた後に粉砕する方法やガラスを溶融槽で加熱溶融し、その槽底から溶融ガラス素地を引き出し、この溶融ガラス素地内に気体を吹き込むことで中空薄膜上に成形したものを押圧ローラーにて粉砕するなどが挙げられる。 The method for producing (B) glass flakes as described above includes, for example, a method in which molten glass is inflated like a balloon, rapidly cooled and then crushed, or a method in which the glass is heated and melted in a melting tank, and the molten glass base material is discharged from the bottom of the tank. is pulled out, and a gas is blown into the molten glass base to form a hollow thin film, which is pulverized by a pressure roller.
 また、(B)ガラスフレークは、カップリング剤で表面処理されても良く、具体的にはγ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン、ヒドロキシプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、ビニルアセトキシシランなどのシランカップリング剤や、イソプロピルトリスイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリデシルベンゼンスルホニルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネートなどのチタンカップリング剤、またアセトアルコキシアルミニウムジイソプロピレートなどのアルミニウムカップリング剤でカップリングしても良い。 In addition, the (B) glass flakes may be surface-treated with a coupling agent, specifically γ-(2-aminoethyl)aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ- Silane coupling agents such as mercaptopropyltrimethoxysilane, methyltrimethoxysilane, γ-anilinopropyltrimethoxysilane, hydroxypropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, vinylacetoxysilane, and isopropyltrisisostearoyl titanate , isopropyltris(dioctylpyrophosphate)titanate, tetraoctylbis(ditridecylphosphite)titanate, bis(dioctylpyrophosphate)ethylenetitanate, isopropyltridecylbenzenesulfonyltitanate, isopropyltri(dioctylphosphate)titanate, and other titanium coupling agents , and may be coupled with an aluminum coupling agent such as acetoalkoxyaluminum diisopropylate.
 (B)ガラスフレークの例として、日本板硝子(株)社製MEG005FYなどが挙げられる。また、本発明の要件に該当する形状の物であれば、その他市販品も使用することができる。 (B) Examples of glass flakes include MEG005FY manufactured by Nippon Sheet Glass Co., Ltd., and the like. Also, other commercially available products can be used as long as they have a shape that meets the requirements of the present invention.
 本発明の液晶性樹脂組成物は、更に(C)非繊維状充填材を含有してもよい。(C)非繊維状充填材としては、例えば、板状充填材、粉末状充填材、粒状充填材などを挙げることができる。具体的には、板状充填材としては、マイカ、タルク、カオリン、クレーおよび二硫化モリブデンなどが挙げられる。粉末状充填材および粒状充填材としては、シリカ、ガラスビーズ、酸化チタン、酸化亜鉛、ポリリン酸カルシウムおよび黒鉛などが挙げられる。中でも成形時の流動性と反り抑制の面から板状充填材が好ましく、マイカ又はタルクがより好ましい。表面硬度や表面平滑性の面でマイカがさらに好ましい。また、上記(C)非繊維状充填材は2種類以上併用してもよい。 The liquid crystalline resin composition of the present invention may further contain (C) a non-fibrous filler. (C) Non-fibrous fillers include, for example, plate-like fillers, powdery fillers, granular fillers, and the like. Specifically, plate-like fillers include mica, talc, kaolin, clay, molybdenum disulfide, and the like. Powdered and particulate fillers include silica, glass beads, titanium oxide, zinc oxide, calcium polyphosphate and graphite. Among them, a plate-like filler is preferable, and mica or talc is more preferable, from the viewpoint of fluidity during molding and suppression of warpage. Mica is more preferable in terms of surface hardness and surface smoothness. Two or more types of the above (C) non-fibrous filler may be used in combination.
 (C)非繊維状充填材の含有量は、表面硬度や表面平滑性以外の特性も向上することから、(A)液晶ポリエステル樹脂及び(B)ガラスフレークの合計含有量100重量部に対して、0~30重量部が好ましく、5~30重量部がより好ましい。 Since the content of the non-fibrous filler (C) also improves properties other than surface hardness and surface smoothness, the total content of (A) the liquid crystal polyester resin and (B) the glass flakes is , preferably 0 to 30 parts by weight, more preferably 5 to 30 parts by weight.
 上記(C)非繊維状充填材は、その表面が公知のカップリング剤(例えば、シラン系カップリング剤、チタネート系カップリング剤など)、その他の表面処理剤により処理されていてもよい。 The surface of the (C) non-fibrous filler may be treated with a known coupling agent (eg, silane coupling agent, titanate coupling agent, etc.) or other surface treatment agent.
 また、本発明の液晶性樹脂組成物には、本発明の目的を損なわない範囲で、酸化防止剤および熱安定剤(たとえばヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体など)、紫外線吸収剤(たとえばレゾルシノール、サリシレート、ベンゾトリアゾール、ベンゾフェノンなど)、滑剤および離型剤(モンタン酸およびその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、染料(たとえばニトロシンなど)および顔料(たとえば硫化カドミウム、フタロシアニン、カーボンブラックなど)を含む着色剤、可塑剤、帯電防止剤などの通常の添加剤や他の熱可塑性樹脂も添加して、所定の特性を付与することができる。 In addition, the liquid crystalline resin composition of the present invention may contain antioxidants and heat stabilizers (for example, hindered phenols, hydroquinones, phosphites and substituted products thereof), ultraviolet Absorbents (e.g. resorcinol, salicylate, benzotriazole, benzophenone, etc.), lubricants and release agents (montanic acid and its salts, its esters, its half-esters, stearyl alcohol, stearamide and polyethylene waxes, etc.), dyes (e.g. nitrosine, etc.) and conventional additives such as colorants, plasticizers, antistatic agents, including pigments (e.g., cadmium sulfide, phthalocyanine, carbon black, etc.), and other thermoplastics can also be added to impart desired properties. .
 これらを添加する方法としては溶融混練することが好ましく、溶融混練には公知の方法を用いることができる。たとえば、バンバリーミキサー、ロールミル、ニーダー、単軸もしくは二軸押出機などを用い、200~350℃の温度で溶融混練して組成物とすることができる。本発明の液晶性樹脂組成物を製造する方法において、(B)ガラスフレーク、無機の(D)繊維状充填材を均質に分散性良く混練するため、押出機を用いることが好ましく、二軸押出機を用いることがより好ましく、なかでも中間添加口を有する二軸押出機を用いることが特に好ましい。また、(A)液晶ポリエステル樹脂、および充填材の分散性を向上させるため、ニーディング部を1箇所以上設けていることが好ましく、2箇所以上設けていることがより好ましい。ニーディング部の設置箇所は、例えば、充填材をサイドフィーダーから添加する場合、(A)液晶ポリエステル樹脂の可塑化を促進させるために、充填材のサイドフィーダーより上流側に1箇所以上、(A)液晶ポリエステル樹脂と充填材との分散性を向上させるため、サイドフィーダーよりも下流側に1箇所以上の計2箇所以上設置することが好ましい。また、二軸押出機中の水分や混練中に生じた分解物を除去するため、ベント部を設けていることが好ましく、2箇所以上設けていることがより好ましい。ベント部の設置箇所は、例えば、充填材をサイドフィーダーから添加する場合、(A)液晶ポリエステル樹脂の付着水分を除去するために、充填材を投入するサイドフィーダーより上流側に1箇所以上、溶融混練時の分解ガス、充填材供給時の持ち込み空気を除去するため、サイドフィーダーよりも下流側に1箇所以上の計2箇所以上設置することが好ましい。ベント部は、常圧下としてもよく、減圧下としてもよい。 Melt-kneading is preferable as a method of adding these, and known methods can be used for melt-kneading. For example, a Banbury mixer, roll mill, kneader, single-screw or twin-screw extruder, etc. can be used to melt and knead the composition at a temperature of 200 to 350°C. In the method for producing the liquid crystalline resin composition of the present invention, (B) glass flakes and (D) inorganic fibrous filler are homogeneously kneaded with good dispersibility, so it is preferable to use an extruder. It is more preferable to use an extruder, and it is particularly preferable to use a twin-screw extruder having an intermediate addition port. In order to improve the dispersibility of (A) the liquid crystal polyester resin and the filler, it is preferable to provide one or more kneading portions, more preferably two or more locations. For example, when the filler is added from the side feeder, (A) one or more locations upstream of the side feeder of the filler in order to promote plasticization of the liquid crystal polyester resin, (A ) In order to improve the dispersibility of the liquid crystalline polyester resin and the filler, it is preferable to install the side feeder at one or more locations downstream of the side feeder, that is, a total of two or more locations. Also, in order to remove moisture in the twin-screw extruder and decomposition products generated during kneading, it is preferable to provide vents, more preferably two or more vents. For example, when the filler is added from the side feeder, the vent section is installed at one or more points upstream of the side feeder into which the filler is introduced in order to remove the moisture adhering to the liquid crystal polyester resin (A). In order to remove the cracked gas during kneading and the air brought in during the supply of the filler, it is preferable to install the side feeder at one or more locations downstream of the side feeder, a total of two or more locations. The vent section may be under normal pressure or under reduced pressure.
 本発明の液晶性樹脂組成物は薄肉流動性に優れ、かつ機械特性も損なうことがないため、例えば公知の成形法により各種成形品に成形することができるが、その優れた薄肉流動性を活かして、射出成形することが好ましい。 Since the liquid crystalline resin composition of the present invention is excellent in thin wall fluidity and does not impair mechanical properties, it can be molded into various molded articles by a known molding method, for example, and the excellent thin wall fluidity can be utilized. and injection molding is preferred.
 本発明の液晶性樹脂組成物は、例えば公知の成形法により、高い表面硬度と優れた表面平滑性を有する各種成形品を得ることができる。 With the liquid crystalline resin composition of the present invention, various molded articles having high surface hardness and excellent surface smoothness can be obtained by, for example, a known molding method.
 本発明の成形品は、本発明の液晶性樹脂組成物からなる。本発明の成形品は、例えば、各種ギヤー、各種ケース、センサー、LED用部品、液晶バックライトボビン、コネクタ、ソケット、抵抗器、リレーケース、リレー用スプールおよびベース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント配線板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、ハウジング、半導体、液晶ディスプレー部品、FDDキャリッジ、FDDシャーシ、HDD部品、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品などに代表される電気・電子部品、VTR部品、テレビ部品(プラズマ、有機EL、液晶)、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク(登録商標)・コンパクトディスクなどの音声機器部品、照明部品、冷蔵庫部品、エアコン部品などに代表される家庭、事務電気製品部品、オフィスコンピューター関連部品、電話機関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、オイルレス軸受、船尾軸受、水中軸受などの各種軸受、モーター部品、ライター、タイプライターなどに代表される機械関連部品、顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器、精密機械関連部品、オルタネーターターミナル、オルタネーターコネクタ、ICレギュレーター、ライトディマー用ポテンショメーターベース、排気ガスバルブなどの各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキバット磨耗センサー、エアコン用サーモスタットベース、エアコン用モーターインシュレーター、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンべイン、ワイパーモーター関連部品、デュストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウオッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクタ、ECUコネクタ、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケースなどの自動車・車両関連部品などに用いることができる。 The molded article of the present invention is made of the liquid crystalline resin composition of the present invention. Molded articles of the present invention include, for example, various gears, various cases, sensors, LED parts, liquid crystal backlight bobbins, connectors, sockets, resistors, relay cases, relay spools and bases, switches, coil bobbins, capacitors, and variable condenser cases. , optical pickups, oscillators, various terminal boards, transformers, plugs, printed wiring boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, housings, semiconductors, liquid crystal display parts, FDD carriages, FDDs Electric/electronic parts such as chassis, HDD parts, motor brush holders, parabolic antennas, computer-related parts, VTR parts, TV parts (plasma, organic EL, liquid crystal), irons, hair dryers, rice cooker parts, microwave ovens Parts, audio parts, audio equipment parts such as audio equipment, laser discs (registered trademark) and compact discs, lighting parts, refrigerator parts, air conditioner parts, home and office electrical product parts, office computer parts, telephone parts , facsimile-related parts, copier-related parts, cleaning jigs, various bearings such as oil-less bearings, stern bearings, underwater bearings, motor parts, machine-related parts such as lighters and typewriters, microscopes, binoculars, cameras , optical instruments such as clocks, precision machinery related parts, alternator terminals, alternator connectors, IC regulators, potentiometer bases for light dimmers, various valves such as exhaust gas valves, various pipes related to fuel, exhaust system, intake system, air intake Nozzle snorkel, intake manifold, fuel pump, engine coolant joint, carburetor main body, carburetor spacer, exhaust gas sensor, coolant sensor, oil temperature sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake butt wear sensor , thermostat bases for air conditioners, motor insulators for air conditioners, hot air flow control valves for heating, brush holders for radiator motors, water pump impellers, turbine vanes, wiper motor related parts, dust tributors, starter switches, starter relays, transmission wires Harness, window washer nozzle, air conditioner panel switch board , fuel-related electromagnetic valve coils, fuse connectors, ECU connectors, horn terminals, electrical component insulation plates, step motor rotors, lamp sockets, lamp reflectors, lamp housings, brake pistons, solenoid bobbins, engine oil filters, ignition device cases, etc. It can be used for automobiles and vehicle-related parts.
 特に、本発明の成形品は表面硬度と表面平滑性に優れることから、薄肉の部品同士が接触する構造を有する、コネクタ、リレー、スイッチ、コイルボビン、ランプソケット、カメラモジュール、および集積回路封止材からなる群から選択される成形品であることが好ましい。 In particular, since the molded article of the present invention is excellent in surface hardness and surface smoothness, it has a structure in which thin parts are in contact with each other. It is preferably a molded article selected from the group consisting of
 以下、実施例を用いて本発明を説明するが、本発明が実施例により限定されるものではない。実施例中、液晶ポリエステル樹脂の組成および特性評価は以下の方法により測定した。 The present invention will be described below using examples, but the present invention is not limited by the examples. In the examples, the composition and property evaluation of the liquid crystalline polyester resin were measured by the following methods.
 [成形品の表面硬度]
 各実施例および比較例で得られた液晶性樹脂組成物を用いて、ファナック製ファナックα30C射出成形機で、シリンダー温度:(A)液晶ポリエステル樹脂の融点+20℃、金型温度:130℃の温度条件にて、射出速度:100mm/sec、射出圧力:98MPaに設定し、127mm×12.7mm×3.2mm厚の短冊状試験片を作成した。ASTM D785に従い、硬度計(松沢精機製 HARDNESS TESTER DRH-FA)により、Rスケール、Mスケールのロックウェル硬さを評価した。得られた数値が大きいほど表面硬度が高いことを示す。
[Surface hardness of molded product]
Using the liquid crystalline resin composition obtained in each example and comparative example, with a FANUC α30C injection molding machine manufactured by FANUC, cylinder temperature: (A) melting point of liquid crystal polyester resin + 20 ° C., mold temperature: 130 ° C. The conditions were an injection speed of 100 mm/sec and an injection pressure of 98 MPa, and strip test pieces of 127 mm×12.7 mm×3.2 mm thick were prepared. According to ASTM D785, a hardness tester (HARDNESS TESTER DRH-FA manufactured by Matsuzawa Seiki Co., Ltd.) was used to evaluate the Rockwell hardness of the R scale and M scale. A larger numerical value indicates a higher surface hardness.
 [成形品の表面粗さ]
 各実施例および比較例で得られた液晶性樹脂組成物を用いて、住友SE100DU射出成形機で表面硬度測定時と同様の温度条件にて、80mm×80mm×3mm厚の平板状試験片を作成した。得られた試験片の表面粗さを、Mitutoyo製 SURF TEST SV-2100にて算術平均粗さ(Ra)を3回繰り返し測定し、数平均値を表面粗さとして算出した。得られた数値が小さいほど、表面平滑性に優れることを示す。
[Surface roughness of molded product]
Using the liquid crystalline resin composition obtained in each example and comparative example, a flat test piece with a thickness of 80 mm × 80 mm × 3 mm was prepared under the same temperature conditions as when measuring the surface hardness with a Sumitomo SE100DU injection molding machine. did. The arithmetic average roughness (Ra) of the obtained test piece was repeatedly measured three times with SURF TEST SV-2100 manufactured by Mitutoyo, and the number average value was calculated as the surface roughness. The smaller the obtained value, the better the surface smoothness.
 [耐衝撃性]
 各実施例および比較例で得られた液晶性樹脂組成物を用いて、ファナック製ロボショットα30C射出成形機で、シリンダー温度:(A)液晶ポリエステル樹脂の融点+20℃、金型温度:130℃の温度条件にて、射出速度:100mm/sec、射出圧力:98MPaに設定し、63mm×13mm×6mm厚の評価用試験片を射出成形した。Izod衝撃強度(ノッチ付き)をASTM D256に従って測定した。
[Impact resistance]
Using the liquid crystalline resin composition obtained in each example and comparative example, with a FANUC Roboshot α30C injection molding machine, the cylinder temperature: (A) the melting point of the liquid crystal polyester resin + 20 ° C., the mold temperature: 130 ° C. The temperature conditions were set at an injection speed of 100 mm/sec and an injection pressure of 98 MPa, and a test piece for evaluation of 63 mm×13 mm×6 mm thickness was injection molded. Izod impact strength (notched) was measured according to ASTM D256.
 (A)液晶ポリエステル樹脂
 [参考例1]液晶ポリエステル樹脂(A-1)の合成
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸870重量部、4,4’-ジヒドロキシビフェニル327重量部、ハイドロキノン89重量部、テレフタル酸292重量部、イソフタル酸157重量部および無水酢酸1367重量部(フェノール性水酸基合計の1.03当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で2時間反応させた後、320℃まで4時間で。昇温した。その後、重合温度を320℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に90分間反応を続け、撹拌に要するトルクが15kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-1)を得た。
(A) Liquid crystalline polyester resin [Reference Example 1] Synthesis of liquid crystalline polyester resin (A-1) 870 parts by weight of p-hydroxybenzoic acid and 4,4'-dihydroxy were placed in a 5 L reaction vessel equipped with a stirring blade and a distillation tube. 327 parts by weight of biphenyl, 89 parts by weight of hydroquinone, 292 parts by weight of terephthalic acid, 157 parts by weight of isophthalic acid and 1367 parts by weight of acetic anhydride (1.03 equivalents of the total phenolic hydroxyl groups) were charged, and the mixture was stirred under a nitrogen gas atmosphere at 145 parts by weight. C. for 2 hours, then up to 320.degree. C. in 4 hours. heated up. Thereafter, the polymerization temperature was maintained at 320° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, the reaction was continued for 90 minutes, and polymerization was completed when the torque required for stirring reached 15 kg·cm. . Next, the inside of the reaction vessel is pressurized to 1.0 kg/cm 2 (0.1 MPa), and the polymer is discharged into strands through a mouthpiece having a circular discharge port with a diameter of 10 mm, and pelletized by a cutter. A liquid crystalline polyester resin (A-1) was obtained.
 この液晶ポリエステル樹脂(A-1)について組成分析を行なったところ、p-ヒドロキシ安息香酸由来の構造単位(構造単位(I))と4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))とハイドロキノン由来の構造単位(構造単位(III))の合計に対するp-ヒドロキシ安息香酸由来の構造単位(構造単位(I))の割合は、70モル%であった。4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))とハイドロキノン由来の構造単位(構造単位(III))の合計に対する4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))の割合は、70モル%であった。テレフタル酸由来の構造単位(構造単位(IV))とイソフタル酸由来の構造単位(構造単位(V))の合計に対するテレフタル酸由来の構造単位(構造単位(IV))の割合は、65モル%であった。4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))およびハイドロキノン由来の構造単位(構造単位(III))の合計は全構造単位に対して23モル%であり、テレフタル酸由来の構造単位(構造単位(IV))およびイソフタル酸由来の構造単位(構造単位(V))の合計全構造単位に対して23モル%であった。液晶ポリエステル樹脂(A-2)の融点(Tm)は314℃であった。高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度324℃、せん断速度1,000/sで測定した溶融粘度は20Pa・sであった。 A composition analysis of this liquid crystal polyester resin (A-1) revealed that a structural unit derived from p-hydroxybenzoic acid (structural unit (I)) and a structural unit derived from 4,4′-dihydroxybiphenyl (structural unit (II) )) and the structural unit derived from hydroquinone (structural unit (III)), the ratio of the structural unit derived from p-hydroxybenzoic acid (structural unit (I)) was 70 mol %. 4,4'-dihydroxybiphenyl-derived structural unit (structural unit (II )) was 70 mol %. The ratio of the terephthalic acid-derived structural unit (structural unit (IV)) to the total of the terephthalic acid-derived structural unit (structural unit (IV)) and the isophthalic acid-derived structural unit (structural unit (V)) was 65 mol%. Met. The total of structural units derived from 4,4′-dihydroxybiphenyl (structural unit (II)) and structural units derived from hydroquinone (structural unit (III)) is 23 mol% of all structural units, and terephthalic acid-derived The structural unit (structural unit (IV)) and the isophthalic acid-derived structural unit (structural unit (V)) were 23 mol % of the total structural units. The melting point (Tm) of the liquid crystal polyester resin (A-2) was 314°C. The melt viscosity measured at a temperature of 324° C. and a shear rate of 1,000/s using a Koka flow tester (orifice 0.5φ×10 mm) was 20 Pa·s.
 [参考例2]液晶ポリエステル樹脂(A-2)の合成
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸932重量部、4,4’-ジヒドロキシビフェニル251重量部、ハイドロキノン99重量部、テレフタル酸284重量部、イソフタル酸90重量部および無水酢酸1252重量部(フェノール性水酸基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、ジャケット温度を145℃から270℃までを平均昇温速度0.68℃/分で昇温させ、270℃から350℃までを平均昇温速度1.4℃/分で昇温させた。昇温時間は4時間であった。その後、重合温度を350℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶ポリエステル樹脂(A-2)を得た。
[Reference Example 2] Synthesis of liquid crystalline polyester resin (A-2) Into a 5 L reaction vessel equipped with a stirring blade and a distillation tube were added 932 parts by weight of p-hydroxybenzoic acid, 251 parts by weight of 4,4'-dihydroxybiphenyl and hydroquinone. 99 parts by weight of terephthalic acid, 284 parts by weight of terephthalic acid, 90 parts by weight of isophthalic acid and 1252 parts by weight of acetic anhydride (1.09 equivalents of the total phenolic hydroxyl groups) were charged and reacted at 145°C for 1 hour under a nitrogen gas atmosphere with stirring. After that, the jacket temperature was raised from 145°C to 270°C at an average temperature increase rate of 0.68°C/min, and from 270°C to 350°C at an average temperature increase rate of 1.4°C/min. . The heating time was 4 hours. After that, the polymerization temperature was maintained at 350° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.0 hour, the reaction was continued, and polymerization was completed when the torque required for stirring reached 10 kg·cm. Next, the inside of the reaction vessel is pressurized to 1.0 kg/cm 2 (0.1 MPa), and the polymer is discharged into strands through a mouthpiece having a circular discharge port with a diameter of 10 mm, and pelletized by a cutter. A liquid crystalline polyester resin (A-2) was obtained.
 この液晶ポリエステル樹脂(A-2)について組成分析を行なったところ、p-ヒドロキシ安息香酸由来の構造単位(構造単位(I))と4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))とハイドロキノン由来の構造単位(構造単位(III))の合計に対するp-ヒドロキシ安息香酸由来の構造単位(構造単位(I))の割合は、75モル%であった。4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))とハイドロキノン由来の構造単位(構造単位(III))の合計に対する4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))の割合は、60モル%であった。テレフタル酸由来の構造単位(構造単位(IV))とイソフタル酸由来の構造単位(構造単位(V))の合計に対するテレフタル酸由来の構造単位(構造単位(IV))の割合は、76モル%であった。4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))およびハイドロキノン由来の構造単位(構造単位(III))の合計は全構造単位に対して20モル%であり、テレフタル酸由来の構造単位(構造単位(IV))およびイソフタル酸由来の構造単位(構造単位(V))の合計全構造単位に対して20モル%であった。液晶ポリエステル樹脂(A-2)の融点(Tm)は325℃であった。高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度335℃、せん断速度1,000/sで測定した溶融粘度は8Pa・sであった。 A composition analysis of this liquid crystal polyester resin (A-2) revealed that a structural unit derived from p-hydroxybenzoic acid (structural unit (I)) and a structural unit derived from 4,4'-dihydroxybiphenyl (structural unit (II) )) and the structural unit derived from hydroquinone (structural unit (III)), the ratio of the structural unit derived from p-hydroxybenzoic acid (structural unit (I)) was 75 mol%. 4,4'-dihydroxybiphenyl-derived structural unit (structural unit (II )) was 60 mol %. The ratio of the terephthalic acid-derived structural unit (structural unit (IV)) to the total of the terephthalic acid-derived structural unit (structural unit (IV)) and the isophthalic acid-derived structural unit (structural unit (V)) was 76 mol%. Met. The total of structural units derived from 4,4'-dihydroxybiphenyl (structural unit (II)) and structural units derived from hydroquinone (structural unit (III)) is 20 mol% of all structural units, and terephthalic acid-derived The structural unit (structural unit (IV)) and the isophthalic acid-derived structural unit (structural unit (V)) were 20 mol % of the total structural units. The melting point (Tm) of the liquid crystal polyester resin (A-2) was 325°C. The melt viscosity measured at a temperature of 335° C. and a shear rate of 1,000/s using a Koka flow tester (orifice 0.5φ×10 mm) was 8 Pa·s.
 また、使用した(B)ガラスフレークを含む、無機充填材は以下のものである。
(B)ガラスフレーク
(B-1)日本板硝子(株)社製 MEG005FY
                   平均粒子径:5μm、厚み:0.7μm
(B-2)日本板硝子(株)社製 MEG160FY
                   平均粒子径:160μm、厚み:0.7μm
 なお、(B-1)の累積粒子径分布曲線において、粒子径が1μm以下のものの累積度は1%以下、粒子径が20μm以上のものの累積度は5%以下であった。また、(B-2)の累積粒子径分布曲線において、粒子径が20μm以上のものの累積度は10%以上であった。
(C)非繊維状充填材
(C-1)ヤマグチマイカ社製 マイカ AB-25S 平均粒子径24μm
(C-2)富士タルク工業社製 タルク RL119 平均粒子径10μm
Moreover, the inorganic filler containing the (B) glass flakes used is as follows.
(B) Glass flakes (B-1) MEG005FY manufactured by Nippon Sheet Glass Co., Ltd.
Average particle size: 5 µm, thickness: 0.7 µm
(B-2) MEG160FY manufactured by Nippon Sheet Glass Co., Ltd.
Average particle size: 160 µm, thickness: 0.7 µm
In the cumulative particle size distribution curve (B-1), the cumulative degree was 1% or less for particles with a particle size of 1 μm or less, and the cumulative degree was 5% or less for particles with a particle size of 20 μm or more. Further, in the cumulative particle size distribution curve of (B-2), the cumulative degree of particles having a particle size of 20 μm or more was 10% or more.
(C) Non-fibrous filler (C-1) Mica AB-25S manufactured by Yamaguchi Mica Co., Ltd. Average particle size 24 μm
(C-2) Talc RL119 manufactured by Fuji Talc Kogyo Co., Ltd. Average particle size 10 μm
 [実施例1~9、比較例1~3]
 スクリュー径30mmの同軸方向回転ベント付き2軸押出機(日本製鋼所製、TEX30α)を用いて、(A)液晶ポリエステル樹脂を表1に示す配合量でホッパーから投入し、(B)ガラスフレークおよび(C)非繊維状充填材を表1に示す配合量で中間供給口から投入した。シリンダー温度は、(A)液晶ポリエステル樹脂の融点+10℃に設定し、溶融混練して液晶性樹脂組成物のペレットを得た。得られたペレットを用いて各種特性値を評価した。試験結果を表1に示す。
[Examples 1 to 9, Comparative Examples 1 to 3]
Using a twin-screw extruder with a coaxially rotating vent having a screw diameter of 30 mm (manufactured by Japan Steel Works, Ltd., TEX30α), (A) liquid crystalline polyester resin was charged from a hopper in the amount shown in Table 1, and (B) glass flakes and (C) A non-fibrous filler was added in the amount shown in Table 1 through an intermediate supply port. The cylinder temperature was set to the melting point of (A) the liquid crystalline polyester resin +10° C., and melt-kneading was performed to obtain pellets of the liquid crystalline resin composition. Various characteristic values were evaluated using the obtained pellets. Table 1 shows the test results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の結果から、本発明の液晶性樹脂組成物は、高い表面硬度と優れた表面平滑性を高い次元で両立できていることが分かる。そのため、本発明の液晶性樹脂組成物は、特に薄肉の部品同士が接触する構造を有する、コネクタ、リレー、スイッチ、コイルボビン、ランプソケット、カメラモジュール、集積回路封止材などの電気・電子部品や機械部品に適しているといえる。 From the results in Table 1, it can be seen that the liquid crystalline resin composition of the present invention achieves both high surface hardness and excellent surface smoothness at a high level. Therefore, the liquid crystalline resin composition of the present invention is particularly useful for electric and electronic parts such as connectors, relays, switches, coil bobbins, lamp sockets, camera modules, and integrated circuit encapsulants, which have a structure in which thin parts are in contact with each other. It can be said that it is suitable for machine parts.

Claims (7)

  1. (A)液晶ポリエステル樹脂100重量部に対し、(B)ガラスフレークを5~50重量部含有する液晶性樹脂組成物であって、(B)ガラスフレークの平均粒子径が1~8μmである液晶性樹脂組成物。 (A) A liquid crystalline resin composition containing 5 to 50 parts by weight of (B) glass flakes relative to 100 parts by weight of the liquid crystal polyester resin, wherein the average particle diameter of the (B) glass flakes is 1 to 8 μm. elastic resin composition.
  2. (B)ガラスフレークの厚みが0.1~5μmである、請求項1に記載の液晶性樹脂組成物。 2. The liquid crystalline resin composition according to claim 1, wherein (B) the glass flakes have a thickness of 0.1 to 5 μm.
  3. (B)ガラスフレークの累積粒子径分布曲線において、粒子径が1μm以下のものが累積度10%未満であり、かつ粒子径が20μm以上のものが累積度10%未満である、請求項1または2に記載の液晶性樹脂組成物。 (B) In the cumulative particle size distribution curve of glass flakes, those having a particle size of 1 μm or less have a cumulative degree of less than 10%, and those having a particle size of 20 μm or more have a cumulative degree of less than 10%. 2. The liquid crystalline resin composition according to 2 above.
  4. 更に(C)非繊維状充填材を、(A)液晶ポリエステル樹脂及び(B)ガラスフレークの合計含有量100重量部に対して、0~30重量部含有する、請求項1~3のいずれかに記載の液晶性樹脂組成物。 Any one of claims 1 to 3, further containing (C) a non-fibrous filler of 0 to 30 parts by weight with respect to 100 parts by weight of the total content of (A) the liquid crystal polyester resin and (B) the glass flakes. The liquid crystalline resin composition according to .
  5. (A)液晶ポリエステル樹脂が、下記構造単位(I)、(II)、(III)、(IV)および(V)を含む、請求項1~4のいずれかに記載の液晶性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    5. The liquid crystalline resin composition according to any one of claims 1 to 4, wherein (A) the liquid crystalline polyester resin comprises the following structural units (I), (II), (III), (IV) and (V).
    Figure JPOXMLDOC01-appb-C000001
  6. 請求項1~5のいずれかに記載の液晶性樹脂組成物からなる成形品。 A molded article made of the liquid crystalline resin composition according to any one of claims 1 to 5.
  7. コネクタ、リレー、スイッチ、コイルボビン、ランプソケット、カメラモジュール、および集積回路封止材からなる群から選択される、請求項6に記載の成形品。 7. The molded article of Claim 6 selected from the group consisting of connectors, relays, switches, coil bobbins, lamp sockets, camera modules, and integrated circuit encapsulants.
PCT/JP2022/009606 2021-03-11 2022-03-07 Liquid crystal resin composition, and molded article comprising same WO2022191099A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022533061A JPWO2022191099A1 (en) 2021-03-11 2022-03-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021039036 2021-03-11
JP2021-039036 2021-03-11

Publications (1)

Publication Number Publication Date
WO2022191099A1 true WO2022191099A1 (en) 2022-09-15

Family

ID=83226678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009606 WO2022191099A1 (en) 2021-03-11 2022-03-07 Liquid crystal resin composition, and molded article comprising same

Country Status (3)

Country Link
JP (1) JPWO2022191099A1 (en)
TW (1) TW202246382A (en)
WO (1) WO2022191099A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155525A (en) * 2007-12-27 2009-07-16 Polyplastics Co Liquid crystalline polymer composition
JP2011074301A (en) * 2009-10-01 2011-04-14 Toray Ind Inc Liquid crystalline polyester resin composition
JP2018168320A (en) * 2017-03-30 2018-11-01 住友化学株式会社 Liquid crystal polyester composition and molded body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155525A (en) * 2007-12-27 2009-07-16 Polyplastics Co Liquid crystalline polymer composition
JP2011074301A (en) * 2009-10-01 2011-04-14 Toray Ind Inc Liquid crystalline polyester resin composition
JP2018168320A (en) * 2017-03-30 2018-11-01 住友化学株式会社 Liquid crystal polyester composition and molded body

Also Published As

Publication number Publication date
JPWO2022191099A1 (en) 2022-09-15
TW202246382A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP6315152B1 (en) Liquid crystalline polyester resin composition, molded article and method for producing molded article
EP2540778B1 (en) Liquid crystal polyester resin composition and metal composite molded article using same
JP7159693B2 (en) Liquid crystalline polyester resin composition and molded article made of the same
US9085672B2 (en) Liquid crystalline polyester composition and metal composite molded product using the same
JP2019006973A (en) Liquid crystal polyester resin composition, molded article and method for manufacturing molded article
KR101413835B1 (en) Thermoplastic resin composition and molded article using same
JP2007146123A (en) Thermoplastic resin composition and method for producing the same
JP2007138143A (en) Liquid crystalline resin composition and method for producing the same
WO2018230195A1 (en) Liquid crystalline polyester resin composition and molded article produced therefrom
JP2000226508A (en) Fiber-reinforced resin composition and molding product
JP2004256656A (en) Liquid crystalline polyester and composition containing the same
JP3562122B2 (en) Glass bead reinforced liquid crystalline resin composition
JP2019183040A (en) Liquid crystal polyester resin, production method of the same, molded article made of the resin
JP5092324B2 (en) Liquid crystalline polyester composition
JP2002201344A (en) Liquid crystalline resin composition, method for producing the same and molded product
WO2022191099A1 (en) Liquid crystal resin composition, and molded article comprising same
JP3265719B2 (en) Liquid crystalline resin composition
JP2009249536A (en) Liquid-crystalline resin injection-molding compound and method for producing the same
JP3690059B2 (en) Thermoplastic resin composition and molded article
JP6507783B2 (en) Liquid crystalline polyester resin composition and molded article thereof
JP5742567B2 (en) Liquid crystalline polyester composition and molded article comprising the same
JP2010106177A (en) Liquid crystalline resin composition and method for producing the same
JP3111586B2 (en) Liquid crystalline resin composition
JP2004168841A (en) Liquid crystalline resin composition
JP2005248052A (en) Liquid crystalline polyester composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022533061

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767055

Country of ref document: EP

Kind code of ref document: A1