WO2022190715A1 - Piezoelectric film - Google Patents

Piezoelectric film Download PDF

Info

Publication number
WO2022190715A1
WO2022190715A1 PCT/JP2022/003906 JP2022003906W WO2022190715A1 WO 2022190715 A1 WO2022190715 A1 WO 2022190715A1 JP 2022003906 W JP2022003906 W JP 2022003906W WO 2022190715 A1 WO2022190715 A1 WO 2022190715A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
layer
conductive
electrode layer
piezoelectric film
Prior art date
Application number
PCT/JP2022/003906
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 香川
輝男 芦川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023505209A priority Critical patent/JPWO2022190715A1/ja
Publication of WO2022190715A1 publication Critical patent/WO2022190715A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/24Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins

Definitions

  • the present invention relates to piezoelectric films.
  • the speakers used in these thin displays are also required to be lighter and thinner.
  • the speaker is also required to be flexible in order to integrate the speaker into the flexible display without impairing light weight and flexibility.
  • a lightweight, thin and flexible speaker it is considered to employ a sheet-like piezoelectric film (electroacoustic conversion film) having a property of expanding and contracting in response to an applied voltage.
  • a piezoelectric film having electrode layers and protective layers on both sides of a piezoelectric layer has been proposed as such a flexible sheet-like piezoelectric film.
  • Patent Document 1 discloses a dielectric layer, thin film electrodes formed on both sides of the dielectric layer (piezoelectric layer), and protective layers formed on the surfaces of both thin film electrodes. Furthermore, an electroacoustic conversion film is disclosed in which at least one of the protective layers has a thin layer portion thinner than the peripheral portion.
  • the thickness of the electrode layer it is necessary to make the thickness of the electrode layer very thin in order to vibrate the electroacoustic conversion film by applying a voltage to the electrode layer.
  • a deposited film having a thickness of 1 ⁇ m or less is suitable for the electrode layer.
  • the electroacoustic conversion film in order to mount the electroacoustic conversion film as a speaker or the like, it is necessary to pull out the electrode layer and connect wiring there. However, it is difficult to extract a thin electrode layer such as a deposited film out of the plane of the electroacoustic conversion film. In addition, if a thin electrode such as a deposited film is exposed to the outside for connection with wiring and stored in this state, the electrode may be oxidized depending on the storage environment, resulting in a decrease in conductivity.
  • Patent Document 1 describes a configuration in which a recess is provided in a protective layer, a conductive material is inserted into the recess, and a lead wiring for electrically connecting an electrode layer and an external device is connected to the conductive material. It is described that, as a result, the electrical connection between the electrode layer and the lead wiring can be ensured, and the electrode layer can be prevented from being deteriorated due to oxidation or the like because the electrode layer is entirely covered with the protective layer. ing.
  • Patent Document 1 describes electrically connecting an electrode layer and a wiring by inserting a conductive paste containing a conductive filler, a metal member, or the like into a hole provided in a protective layer.
  • the paint of the conductive paste is applied to the inside of the hole and then dried before use.
  • the thickness of the conductive paste afterward becomes thinner than the protective layer, and the contact area between the filler and the electrode layer and/or the wiring decreases, and sufficient conduction with the wiring may not be obtained.
  • An object of the present invention is to solve the problems of the prior art, and to provide a piezoelectric film that has high flexibility and can sufficiently ensure electrical connection to the electrode layer.
  • the piezoelectric film according to [1] which has a sealing member that covers the connection position between the soft conductive member and the lead wire.
  • FIG. 1 is a plan view schematically showing an example of the piezoelectric film of the present invention
  • FIG. FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1
  • FIG. 2 is a cross-sectional view taken along line BB of FIG. 1
  • It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film.
  • It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film.
  • It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film.
  • It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film.
  • It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film.
  • It
  • a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
  • the piezoelectric film of the present invention is A piezoelectric film having a piezoelectric layer, electrode layers formed on both sides of the piezoelectric layer, and a protective layer laminated on a surface of the electrode layer opposite to the surface of the electrode layer, The protective layer has a hole penetrating from the surface to the electrode layer, A piezoelectric film having a soft conductive member including at least one of a conductive cloth, a metal cloth and a conductive urethane foam disposed in a hole and electrically connecting an electrode layer and a conductive wire.
  • FIG. 1 shows a plan view schematically showing an example of the piezoelectric film of the present invention.
  • FIG. 2 shows a cross-sectional view of the piezoelectric film of FIG. 1 taken along the line AA.
  • FIG. 3 shows an enlarged cross-sectional view of a part of the piezoelectric film of FIG. 1 taken along line BB.
  • the piezoelectric film 10 shown in FIGS. 1 to 3 includes a piezoelectric layer 20 which is a sheet-like material having piezoelectric properties, a lower electrode layer 24 laminated on one side of the piezoelectric layer 20, and a lower electrode layer 24 laminated on the lower electrode layer 24.
  • a piezoelectric layer 20 which is a sheet-like material having piezoelectric properties
  • a lower electrode layer 24 laminated on one side of the piezoelectric layer 20 and a lower electrode layer 24 laminated on the lower electrode layer 24.
  • an upper protective layer 26 laminated on the other surface of the piezoelectric layer 20 an upper protective layer 30 laminated on the upper electrode layer 26; a soft conductive member 70; , a sealing member 74 and a conductor 76 .
  • the piezoelectric layer 20 includes piezoelectric particles 36 in a matrix 34 containing polymeric material.
  • the lower electrode layer 24 and the upper electrode layer 26 are electrode layers in the present invention.
  • the lower protective layer 28 and the upper protective layer 30 are protective layers in the present invention.
  • the piezoelectric film 10 is preferably polarized in the thickness direction.
  • the upper protective layer 30 has holes 31 penetrating from the surface to the upper electrode layer 26 . That is, the hole 31 is formed through the upper protective layer 30 from the surface opposite to the upper electrode layer 26 to the interface on the upper electrode layer 26 side. As shown in FIG. 1, the hole 31 is formed near the end of the upper protective layer 30 in the plane direction.
  • the lower protective layer 28 also has a hole penetrating from the surface to the lower electrode layer 24 in the same manner. That is, the hole portion of the lower protective layer 28 is formed through the lower protective layer 28 from the surface opposite to the lower electrode layer 24 to the interface on the lower electrode layer 24 side.
  • the soft conductive member 70 is filled in the hole 31 , is in contact with the upper electrode layer 26 inside the hole 31 , and is electrically connected to the upper electrode layer 26 .
  • the soft conductive member 70 is electrically connected to the conductive adhesive tape 72 provided in a preferred embodiment by contacting the surface opposite to the upper electrode layer 26 .
  • the soft conductive member 70 includes at least one of conductive cloth, metal cloth and conductive urethane foam. That is, the soft conductive member 70 may be made of a conductive cloth, a metal cloth, a conductive urethane foam, or a conductive cloth and a conductive material. Any of a combination with urethane foam, a combination of metal cloth and conductive urethane foam, and a combination of conductive cloth and metal cloth may be used, or a combination of conductive cloth, metal cloth and conductive urethane foam may be used. It can be anything. For example, the soft conductive member 70 may have a configuration in which conductive cloth is laminated on both sides of conductive urethane foam.
  • a conductive cloth is, for example, a woven or non-woven fabric woven from resin threads coated with a metal film by plating or the like.
  • Various known conductive cloths can be used as the conductive cloth.
  • the conductive cloth a conductive cloth obtained by plating the surface of a thread made of PET with Cu or Ni is exemplified.
  • Sui-10-511M manufactured by Seiren Co., Ltd. can be used as the conductive cloth.
  • a conductive cloth with low resistance and high flexibility it is preferable to use a conductive cloth with low resistance and high flexibility.
  • the surface resistivity of the conductive cloth is 0.1 ⁇ /sq. The following is preferable, and 0.05 ⁇ /sq. The following are more preferred.
  • thickness of an electrically conductive cloth 500 micrometers or less are preferable and 100 micrometers or less are more preferable.
  • a metal cloth is a woven or non-woven fabric woven with metal threads.
  • Various known metal cloths can be used as the metal cloth.
  • a plain weave wire mesh ⁇ 0.05 ⁇ 200 m/s manufactured by Okutani Wire Net Mfg. Co., Ltd. can be used as the metal cloth.
  • Copper is preferable as the material for the metal cloth.
  • the number of stitches per side (1 inch) of the metal cloth is preferably 100 or more, more preferably 200 or more.
  • Conductive urethane foam is made by supporting conductive particles such as carbon black on soft urethane foam.
  • Various known conductive urethane foams can be used as the conductive urethane foam.
  • conductive urethane foam that has low resistance and is highly flexible.
  • the surface resistivity of the conductive urethane foam is 0.1 ⁇ /sq. The following is preferable, and 0.05 ⁇ /sq. The following are more preferred.
  • the thickness of the conductive urethane foam is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the conductive adhesive tape 72 is adhered to a position overlapping the hole 31 of the upper protective layer 30 in the surface direction. That is, the conductive adhesive tape 72 contacts and is electrically connected to the soft conductive member 70 arranged in the hole 31 .
  • the conductive adhesive tape 72 has an adhesive layer provided on at least one surface of a conductive foil, and is attached to the upper protective layer 30 by being laminated with the adhesive layer facing the upper protective layer 30 .
  • the conductive adhesive tape 72 may be provided with adhesive layers on both sides of the conductive foil. 30, and the conductive wire 76 is adhered to the other adhesive layer.
  • a conductive wire 76 is arranged on the surface of the conductive adhesive tape 72 opposite to the upper protective layer 30 .
  • the conducting wire 76 is a conductive sheet-like or wire-like member. Conductive wire 76 is electrically connected to soft conductive member 70 via conductive adhesive tape 72 . Also, the above-described soft conductive member may be used as the lead wire 76 .
  • the sealing member 74 is an insulating sheet-like member, and is covered with an upper protective layer so as to cover at least a part of the positions where the flexible conductive member 70, the conductive adhesive tape 72, and the conductive wire 76 are laminated in the surface direction. 30 is laminated on. In the example shown in FIG. 3, the sealing member 74 is laminated so as to cover the entire surfaces of the soft conductive member 70 and the conductive adhesive tape 72 .
  • a sealing member 74 can fix the soft conductive member 70 , the conductive adhesive tape 72 , and the lead wire 76 .
  • the holes of the lower protective layer 28 are similarly filled with the soft conductive member 70 on the lower protective layer 28 side, and the conductive adhesive tape 72 is attached to the lower protective layer 28 so as to cover the soft conductive member 70 .
  • the conductive wire 76 is placed on the conductive adhesive tape 72 and electrically connected to the soft conductive member 70, and the sealing member 74 is formed by the soft conductive member 70, the conductive adhesive tape 72 and the conductive wire. It is laminated so as to cover at least part of the position where 76 is laminated.
  • the conductor wire 76 is electrically connected to the conductive adhesive tape 72, the conductive adhesive tape 72 is electrically connected to the soft conductive member 70, and the soft conductive member 70 is the electrode. electrically connected to the layer. Therefore, the conducting wire 76 can be used as a lead wire, and wiring can be connected to the conducting wire 76 . Alternatively, the conductor 76 can be used as wiring.
  • the conductive paste containing the conductive filler when the conductive paste containing the conductive filler is filled in the holes provided in the protective layer to electrically connect the electrode layer and the wiring, the conductive paste at the time of application Depending on the dispersion state of the conductive filler, the amount of the conductive filler may decrease, and the thickness of the conductive paste after drying may become thinner than the protective layer, resulting in insufficient electrical connection with the wiring. There was a problem.
  • the hole provided in the protective layer is filled with a solid metal member or solder to electrically connect the electrode layer and the wiring, the flexibility of the piezoelectric film becomes low. There was a problem of hoarding.
  • the holes of the protective layer are filled with a soft conductive member 70 containing at least one of conductive cloth, metal cloth and conductive urethane foam, and the soft conductive member 70 is inserted between the holes. to electrically connect the electrode layer and the conductor 76 . Therefore, since there is no influence of the dispersed state of the conductive filler, the electrical connection between the electrode layer and the conductor wire 76 can be ensured.
  • the soft conductive member 70 is more flexible than a solid metal member or solder, the piezoelectric film has high flexibility without impairing the flexibility of the piezoelectric film. be able to.
  • the structure having the soft conductive member 70, the conductive adhesive tape 72, and the sealing member 74 adhered on the upper protective layer 30 so as to cover the conductive wire 76 is adopted.
  • the piezoelectric film of the present invention does not have the sealing member 74, the conductive adhesive tape 72 has adhesive layers on both sides, and the conducting wire 76 is attached to the conductive adhesive tape 72. good.
  • the piezoelectric film of the present invention may have a configuration in which the sealing member 74 is not provided and the fixing member is adhered to the protective layer so as to cover the conductive wire 76 at a position not covering the soft conductive member 70 . .
  • the conductive wire 76 can be replaced by the soft conductive member 70 (conductive By pressing it against the adhesive tape 72 ), the contact area can be increased, and stable electrical connection can be obtained between the soft conductive member 70 (electrode layer) and the lead wire 76 .
  • the sealing member 74 when the piezoelectric film is bent, the positions of the soft conductive member 70, the conductive adhesive tape 72, and the lead wire 76 are displaced and the contact area is prevented from becoming small. and stable conduction can be obtained.
  • the configuration is such that the conductive adhesive tape 72 is arranged between the soft conductive member 70 and the lead wire 76, but the configuration is not limited to this.
  • the piezoelectric film of the present invention may have a configuration in which the conductive adhesive tape 72 is not provided and the soft conductive member 70 and the lead wire 76 are in direct contact and electrically connected.
  • the contact between the soft conductive member 70 and the conductive wire 76 can be reliably maintained, and the soft conductive member 70 and the conductive wire 76 can be kept in contact with each other. Stable conduction can be obtained by reducing the resistance between the conductors 76 .
  • the soft conductive member 70 and the electrode layer are not adhered with a conductive adhesive tape or the like.
  • a pulling force is applied to the conductive wire 76
  • a pulling force is also applied to the soft conductive member 70 connected to the conductive wire 76 . Since the electrode layer is very thin, if the electrode layer and the soft conductive member 70 are adhered, the electrode layer adhered to the soft conductive member 70 will be damaged when the soft conductive member 70 is pulled. There is a risk.
  • the shape of the opening surface of the hole 31 of the protective layer is not limited, and may be various shapes such as circular, elliptical, rectangular, polygonal, and irregular. A circular shape is preferable from the viewpoint of ease of formation.
  • the size of the opening surface of the hole 31 is not particularly limited as long as it is a size that can ensure electrical connection between the soft conductive member 70 and the electrode layer and allows the piezoelectric film to operate properly.
  • the equivalent circle diameter of the opening surface of the hole is preferably 0.5 mm to 20 mm, more preferably 1.5 mm to 8 mm, and even more preferably 2 mm to 3 mm.
  • the size and shape of the soft conductive member 70 in plan view are not particularly limited as long as they can fill the holes 31 of the protective layer and can ensure electrical connection with the electrode layer. It is preferable that the size of the soft conductive member 70 approximately match the size and shape of the hole 31 of the protective layer.
  • the thickness of the soft conductive member 70 before being covered with the sealing member 74 is preferably greater than the thickness of the protective layer.
  • the thickness of the soft conductive member 70 before being covered with the sealing member 74 is preferably 1.1 times or more, more preferably 1.5 to 125 times the thickness of the protective layer. 1.5 times to 25 times is more preferable.
  • the conductive wires 76 electrically connected to the lower electrode layer 24 via the soft conductive member and the conductive adhesive tape are arranged so as not to overlap each other in the plane direction. As a result, it is possible to prevent the conductive wire 76 on the upper electrode layer 26 side and the conductive wire 76 on the lower electrode layer 24 side from coming into contact with each other and causing a short circuit.
  • each of the upper protective layer 30 and the lower protective layer 28 has one hole, and the electrode layer and the conductive wire 76 are connected through the flexible conductive member 70 arranged in each hole.
  • the electrode layer and the conductive wire 76 are connected through the flexible conductive member 70 arranged in each hole.
  • it is configured to be electrically connected, it is not limited to this. It is good also as a structure connected to. That is, each electrode layer may be configured to be electrically connected to the conducting wire 76 at two or more locations.
  • Such a piezoelectric film 10 is used, for example, in various acoustic devices (acoustic equipment) such as speakers, microphones, and pickups used in musical instruments such as guitars to generate (reproduce) sounds by vibrating in response to electrical signals. It is also used to convert sound vibrations into electrical signals.
  • the piezoelectric film can also be used for pressure sensors, power generation elements, and the like.
  • the piezoelectric layer 20 may be a layer made of a known piezoelectric material.
  • the piezoelectric layer 20 is preferably a polymeric composite piezoelectric body containing piezoelectric particles 36 in a matrix 34 containing a polymeric material.
  • the material for the matrix 34 (matrix and binder) of the polymer composite piezoelectric material constituting the piezoelectric layer 20 it is preferable to use a polymer material having viscoelasticity at room temperature.
  • "ordinary temperature” refers to a temperature range of about 0 to 50.degree.
  • the piezoelectric film 10 of the present invention is suitably used for speakers having flexibility, such as speakers for flexible displays.
  • the polymeric composite piezoelectric material (piezoelectric layer 20) used in the flexible speaker preferably satisfies the following requirements. Therefore, it is preferable to use a polymeric material having viscoelasticity at room temperature as a material that satisfies the following requirements.
  • (ii) Sound quality Speakers vibrate piezoelectric particles at frequencies in the audio band of 20 Hz to 20 kHz, and the vibration energy causes the entire polymer composite piezoelectric material (piezoelectric film) to vibrate as one to reproduce sound. be. Therefore, the polymer composite piezoelectric body is required to have appropriate hardness in order to increase the transmission efficiency of vibration energy. In addition, if the frequency characteristics of the speaker are smooth, the amount of change in sound quality when the lowest resonance frequency changes as the curvature changes becomes small. Therefore, the loss tangent of the polymer composite piezoelectric body is required to be moderately large.
  • the polymer composite piezoelectric body is required to behave hard against vibrations of 20 Hz to 20 kHz and softly against vibrations of several Hz or less. Also, the loss tangent of the polymer composite piezoelectric body is required to be moderately large with respect to vibrations of all frequencies of 20 kHz or less.
  • polymer solids have a viscoelastic relaxation mechanism, and as the temperature rises or the frequency decreases, large-scale molecular motion causes a decrease (relaxation) in the storage elastic modulus (Young's modulus) or a maximum loss elastic modulus (absorption). is observed as Among them, the relaxation caused by the micro-Brownian motion of the molecular chains in the amorphous region is called principal dispersion, and a very large relaxation phenomenon is observed.
  • the temperature at which this primary dispersion occurs is the glass transition point (Tg), and the viscoelastic relaxation mechanism appears most prominently.
  • the polymer composite piezoelectric body (piezoelectric layer 20), by using a polymer material having a glass transition point at room temperature, in other words, a polymer material having viscoelasticity at room temperature, as a matrix, vibration of 20 Hz to 20 kHz is hard, and a polymer composite piezoelectric material that behaves softly against slow vibrations of several Hz or less is realized.
  • a polymeric material having a glass transition temperature of normal temperature, ie, 0 to 50° C. at a frequency of 1 Hz for the matrix of the polymeric composite piezoelectric material in order that this behavior can be favorably expressed.
  • the polymeric material having viscoelasticity at room temperature various known materials can be used as long as they have dielectric properties.
  • the polymeric material used has a maximum loss tangent value of 0.5 or more at a frequency of 1 Hz according to a dynamic viscoelasticity test at room temperature, that is, at 0° C. to 50° C.
  • the polymer material preferably has a storage modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 100 MPa or more at 0°C and 10 MPa or less at 50°C.
  • E' storage modulus
  • the polymer material has a dielectric constant of 10 or more at 25°C.
  • the polymer material in consideration of ensuring good moisture resistance, etc., it is also suitable for the polymer material to have a dielectric constant of 10 or less at 25°C.
  • Polymer materials that satisfy these conditions include cyanoethylated polyvinyl alcohol (cyanoethylated PVA), polyvinyl acetate, polyvinylidene chloride core acrylonitrile, polystyrene-vinylpolyisoprene block copolymer, polyvinylmethylketone, and polybutyl. Methacrylate and the like are exemplified. Commercially available products such as Hybler 5127 (manufactured by Kuraray Co., Ltd.) can also be suitably used as these polymer materials.
  • Hybler 5127 manufactured by Kuraray Co., Ltd.
  • the polymer material it is preferable to use a material having a cyanoethyl group, and it is particularly preferable to use cyanoethylated PVA. These polymer materials may be used singly or in combination (mixed).
  • the matrix 34 using such a polymer material may use a plurality of polymer materials together, if necessary. That is, for the purpose of adjusting the dielectric properties and mechanical properties of the matrix 34, in addition to the polymer material having viscoelasticity at room temperature, other dielectric polymer materials may be added as necessary. .
  • dielectric polymer materials examples include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and polyvinylidene fluoride-trifluoroethylene copolymer.
  • fluorine-based polymers such as polyvinylidene fluoride-tetrafluoroethylene copolymer, vinylidene cyanide-vinyl acetate copolymer, cyanoethylcellulose, cyanoethylhydroxysaccharose, cyanoethylhydroxycellulose, cyanoethylhydroxypullulan, cyanoethylmethacrylate, cyanoethylacrylate, cyanoethyl Cyano groups such as hydroxyethylcellulose, cyanoethylamylose, cyanoethylhydroxypropylcellulose, cyanoethyldihydroxypropylcellulose, cyanoethylhydroxypropylamylose, cyanoethylpolyacrylamide, cyanoethylpolyacrylate, cyanoethylpullulan, cyanoethylpolyhydroxymethylene, cyanoethylglycidolpullul
  • the dielectric polymer material added in addition to the polymer material having viscoelasticity at room temperature such as cyanoethylated PVA is not limited to one type, and plural types may be added.
  • the matrix 34 also contains thermoplastic resins such as vinyl chloride resin, polyethylene, polystyrene, methacrylic resin, polybutene, and isobutylene, and phenol for the purpose of adjusting the glass transition point.
  • Thermosetting resins such as resins, urea resins, melamine resins, alkyd resins, and mica may be added.
  • a tackifier such as rosin ester, rosin, terpene, terpene phenol, and petroleum resin may be added for the purpose of improving adhesiveness.
  • the ratio of the material to the matrix 34 is 30% by mass or less. preferably.
  • the characteristics of the polymer material to be added can be expressed without impairing the viscoelastic relaxation mechanism in the matrix 34, so that the dielectric constant can be increased, the heat resistance can be improved, and the adhesion between the piezoelectric particles 36 and the electrode layer can be improved.
  • the piezoelectric layer 20 is a polymeric composite piezoelectric body containing piezoelectric particles 36 in such a matrix 34 .
  • the piezoelectric particles 36 are made of ceramic particles having a perovskite or wurtzite crystal structure.
  • ceramic particles constituting the piezoelectric particles 36 include lead zirconate titanate (PZT), lead zirconate lanthanate titanate (PLZT), barium titanate (BaTiO 3 ), zinc oxide (ZnO), and A solid solution (BFBT) of barium titanate and bismuth ferrite (BiFe 3 ) is exemplified. Only one kind of these piezoelectric particles 36 may be used, or a plurality of kinds thereof may be used together (mixed).
  • the particle size of such piezoelectric particles 36 is not limited, and may be appropriately selected according to the size and application of the polymer composite piezoelectric material (piezoelectric film 10).
  • the particle size of the piezoelectric particles 36 is preferably 1 to 10 ⁇ m. By setting the particle diameter of the piezoelectric particles 36 within this range, favorable results can be obtained in that the polymer composite piezoelectric body (piezoelectric film 10) can achieve both high piezoelectric characteristics and flexibility.
  • the piezoelectric particles 36 in the piezoelectric layer 20 are uniformly and regularly dispersed in the matrix 34 in FIG. 2, the present invention is not limited to this. That is, the piezoelectric particles 36 in the piezoelectric layer 20 may be randomly dispersed in the matrix 34, preferably uniformly dispersed.
  • the piezoelectric layer 20 (polymer composite piezoelectric material) there is no restriction on the quantitative ratio between the matrix 34 and the piezoelectric particles 36 in the piezoelectric layer 20. It may be appropriately set according to the application of the composite piezoelectric material and the properties required for the polymer composite piezoelectric material.
  • the volume fraction of the piezoelectric particles 36 in the piezoelectric layer 20 is preferably 30% to 80%, more preferably 50% or more, and therefore 50% to 80% is even more preferable.
  • the thickness of the piezoelectric layer 20 is not limited, and may be appropriately set according to the application of the polymer composite piezoelectric material, the properties required for the polymer composite piezoelectric material, and the like.
  • the thickness of the piezoelectric layer 20 is preferably 10-300 ⁇ m, more preferably 20-200 ⁇ m, even more preferably 30-150 ⁇ m. By setting the thickness of the piezoelectric layer 20 within the above range, it is possible to obtain favorable results in terms of ensuring both rigidity and appropriate flexibility.
  • the illustrated piezoelectric film 10 has a lower electrode layer 24 on one surface of the piezoelectric layer 20, a lower protective layer 28 on the surface thereof, and a lower protective layer 28 on the surface of the piezoelectric layer 20. It has an upper electrode layer 26 and an upper protective layer 30 on its surface.
  • the upper electrode layer 26 and the lower electrode layer 24 form an electrode pair.
  • the piezoelectric film 10 has a piezoelectric layer 20 sandwiched between electrode pairs, that is, an upper electrode layer 26 and a lower electrode layer 24 , and this laminate sandwiched between a lower protective layer 28 and an upper protective layer 30 . have a configuration.
  • the region sandwiched between the upper electrode layer 26 and the lower electrode layer 24 expands and contracts according to the applied voltage.
  • the lower protective layer 28 and the upper protective layer 30 serve to cover the upper electrode layer 26 and the lower electrode layer 24 and to give the piezoelectric layer 20 appropriate rigidity and mechanical strength. That is, in the piezoelectric film 10, the piezoelectric layer 20 composed of the matrix 34 and the piezoelectric particles 36 exhibits excellent flexibility against slow bending deformation. May lack mechanical strength.
  • the piezoelectric film 10 is provided with a lower protective layer 28 and an upper protective layer 30 to compensate.
  • various sheet-like materials can be used.
  • various resin films are preferably exemplified.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PS polystyrene
  • PC polycarbonate
  • PPS polyphenylene sulfite
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • PEI polyethylene terephthalate
  • PI polyimide
  • PEN polyethylene naphthalate
  • TAC triacetyl cellulose
  • cyclic olefin resins and the like are preferably used.
  • the thicknesses of the lower protective layer 28 and the upper protective layer 30 are also not limited. Also, although the thicknesses of the lower protective layer 28 and the upper protective layer 30 are basically the same, they may be different. Here, if the rigidity of the lower protective layer 28 and the upper protective layer 30 is too high, not only will the expansion and contraction of the piezoelectric layer 20 be restricted, but also the flexibility will be impaired. Therefore, the thinner the lower protective layer 28 and the upper protective layer 30 are, the better, except for cases where mechanical strength and good handling properties as a sheet-like article are required.
  • the thickness of the lower protective layer 28 and the upper protective layer 30 is preferably 3 ⁇ m to 100 ⁇ m, more preferably 3 ⁇ m to 50 ⁇ m, still more preferably 3 ⁇ m to 30 ⁇ m, and particularly preferably 4 ⁇ m to 10 ⁇ m.
  • the thickness of the lower protective layer 28 and the upper protective layer 30 is not more than twice the thickness of the piezoelectric layer 20, it is possible to ensure both rigidity and appropriate flexibility. favorable results can be obtained.
  • the thickness of the piezoelectric layer 20 is 50 ⁇ m and the lower protective layer 28 and the upper protective layer 30 are made of PET, the thicknesses of the lower protective layer 28 and the upper protective layer 30 are preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. , 25 ⁇ m or less.
  • a lower electrode layer 24 is formed between the piezoelectric layer 20 and the lower protective layer 28, and an upper electrode layer 26 is formed between the piezoelectric layer 20 and the upper protective layer 30, respectively.
  • a lower electrode layer 24 and an upper electrode layer 26 are provided for applying a drive voltage to the piezoelectric layer 20 .
  • the materials for forming the lower electrode layer 24 and the upper electrode layer 26 are not limited, and various conductors can be used. Specifically, carbon, palladium, iron, tin, aluminum, nickel, platinum, gold, silver, copper, titanium, chromium, molybdenum, etc., alloys thereof, laminates and composites of these metals and alloys, and Examples include indium tin oxide. Among them, copper, aluminum, gold, silver, platinum, and indium tin oxide are preferably exemplified as the lower electrode layer 24 and the upper electrode layer 26 .
  • the method of forming the lower electrode layer 24 and the upper electrode layer 26 is not limited. Various known methods, such as the method of applying foil, can be used.
  • thin films of copper, aluminum, etc. formed by vacuum deposition are preferably used as the lower electrode layer 24 and the upper electrode layer 26, for the reason that the flexibility of the piezoelectric film 10 can be ensured.
  • a copper thin film formed by vacuum deposition is particularly preferably used.
  • the thicknesses of the lower electrode layer 24 and the upper electrode layer 26 are not limited. In addition, although the thicknesses of the lower electrode layer 24 and the upper electrode layer 26 are basically the same, they may be different.
  • the lower electrode layer 24 and the upper electrode layer 26 are preferably thin film electrodes.
  • the thickness of the lower electrode layer 24 and the upper electrode layer 26 is thinner than that of the protective layer, preferably 0.05 ⁇ m to 10 ⁇ m, more preferably 0.05 ⁇ m to 5 ⁇ m, further preferably 0.08 ⁇ m to 3 ⁇ m, further preferably 0.1 ⁇ m to 0.1 ⁇ m. 2 ⁇ m is particularly preferred.
  • the piezoelectric film 10 if the product of the thickness of the lower electrode layer 24 and the upper electrode layer 26 and the Young's modulus is less than the product of the thickness of the lower protective layer 28 and the upper protective layer 30 and the Young's modulus, This is preferable because it does not greatly impair flexibility.
  • the lower protective layer 28 and the upper protective layer 30 are made of PET (Young's modulus: about 6.2 GPa) and the lower electrode layer 24 and the upper electrode layer 26 are made of copper (Young's modulus: about 130 GPa)
  • the lower protective layer Assuming that the thickness of the layer 28 and the upper protective layer 30 is 25 ⁇ m, the thickness of the lower electrode layer 24 and the upper electrode layer 26 is preferably 1.2 ⁇ m or less, more preferably 0.3 ⁇ m or less, especially 0.1 ⁇ m or less. is preferred.
  • the piezoelectric film 10 preferably has a maximum value of loss tangent (Tan ⁇ ) at a frequency of 1 Hz by dynamic viscoelasticity measurement at room temperature, and more preferably has a maximum value of 0.1 or more at room temperature.
  • Tan ⁇ loss tangent
  • the piezoelectric film 10 preferably has a storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 10 GPa to 30 GPa at 0°C and 1 GPa to 10 GPa at 50°C. Note that this condition applies to the piezoelectric layer 20 as well. This allows the piezoelectric film 10 to have a large frequency dispersion in the storage modulus (E'). That is, it can act hard against vibrations of 20 Hz to 20 kHz and soft against vibrations of several Hz or less.
  • E' storage elastic modulus
  • the piezoelectric film 10 has a product of thickness and storage elastic modulus at a frequency of 1 Hz measured by dynamic viscoelasticity measurement at 0° C. of 1.0 ⁇ 10 5 to 2.0 ⁇ 10 6 (1.0E+05 to 2.0 ⁇ 10 6 ). 0E+06) N/m, preferably 1.0 ⁇ 10 5 to 1.0 ⁇ 10 6 (1.0E+05 to 1.0E+06) N/m at 50°C. Note that this condition applies to the piezoelectric layer 20 as well. As a result, the piezoelectric film 10 can have appropriate rigidity and mechanical strength within a range that does not impair flexibility and acoustic properties.
  • the piezoelectric film 10 preferably has a loss tangent of 0.05 or more at 25° C. and a frequency of 1 kHz in a master curve obtained from dynamic viscoelasticity measurement. Note that this condition applies to the piezoelectric layer 20 as well. As a result, the frequency characteristics of the speaker using the piezoelectric film 10 are smoothed, and the change in sound quality when the lowest resonance frequency f 0 changes as the curvature of the speaker changes can be reduced.
  • the storage elastic modulus (Young's modulus) and loss tangent of the piezoelectric film 10, piezoelectric layer 20, etc. may be measured by known methods.
  • the dynamic viscoelasticity measuring device DMS6100 manufactured by SII Nanotechnology Co., Ltd. manufactured by SII Nanotechnology Co., Ltd. (manufactured by SII Nanotechnology Co., Ltd.) may be used for measurement.
  • the measurement frequency is 0.1 Hz to 20 Hz (0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, 10 Hz and 20 Hz), and the measurement temperature is -50 to 150 ° C. , a heating rate of 2° C./min (in a nitrogen atmosphere), a sample size of 40 mm ⁇ 10 mm (including the clamping area), and a distance between chucks of 20 mm.
  • the conductive adhesive tape 72 has an adhesive layer on one surface of a conductive sheet, which is a sheet-shaped object made of a conductive metal material. Copper, aluminum, gold, silver and the like are preferably exemplified as the material of the conductive sheet.
  • the adhesive layer of the conductive adhesive tape 72 may be any material as long as it can adhere the conductive sheet and the protective layer.
  • the material of the adhesive layer is suitably exemplified by a conductive acrylic adhesive material.
  • the shape and size of the conductive adhesive tape 72 in plan view are not particularly limited.
  • the conductive adhesive tape 72 may have any shape and size as long as it can cover the soft conductive member 70 , can be connected to the lead wire 76 , and does not restrict the driving of the piezoelectric film 10 .
  • the thickness of the conductive adhesive tape 72 is not particularly limited as long as it can ensure electrical connection with the soft conductive member 70 and the lead wire 76 and does not restrict the driving of the piezoelectric film 10 .
  • the sealing member 74 is an insulating sheet-like member.
  • the material of the sealing member 74 is exemplified by polyimide, heat-resistant PET, and the like.
  • the shape and size of the sealing member 74 in plan view are not particularly limited.
  • the shape and size of the sealing member 74 is such that it can cover at least a portion of the soft conductive member 70 and the conductive adhesive tape 72 to fix the soft conductive member 70 and the conductive wire 76 and does not restrict the driving of the piezoelectric film 10. and size.
  • the sealing member 74 preferably covers the entire surface of the soft conductive member 70 and preferably covers the entire surface of the conductive adhesive tape 72 .
  • the thickness of the sealing member 74 is not particularly limited as long as it does not restrict the driving of the piezoelectric film 10 .
  • the sealing member 74 may have an adhesive layer, or may be adhered to the protective layer with an adhesive or the like.
  • the conducting wire 76 is a sheet-like or wire-like object made of a conductive metal material. Copper, aluminum, gold, silver, etc. are preferably exemplified as the material of the conductor wire 76 .
  • the shape and size of the conducting wire 76 are not particularly limited.
  • the conductive wire 76 may have any shape and size as long as it can be electrically connected to the soft conductive member 70 directly or via the conductive adhesive tape 72 and can be used as an extraction electrode.
  • FIG. 1 An example of a method for manufacturing the piezoelectric film 10 will be described below with reference to FIGS. 4 to 10.
  • FIG. 1 An example of a method for manufacturing the piezoelectric film 10 will be described below with reference to FIGS. 4 to 10.
  • a sheet-like object 10a having a lower electrode layer 24 formed on a lower protective layer 28 is prepared.
  • This sheet-like object 10a may be produced by forming a copper thin film or the like as the lower electrode layer 24 on the surface of the lower protective layer 28 by vacuum deposition, sputtering, plating, or the like.
  • the lower protective layer 28 with a separator temporary support
  • PET or the like having a thickness of 25 ⁇ m to 100 ⁇ m can be used.
  • the separator may be removed after the upper electrode layer 26 and the upper protective layer 30 are thermocompressed and before laminating any member on the lower protective layer 28 .
  • a coating material is prepared by dissolving a polymer material as a matrix material in an organic solvent, adding piezoelectric particles 36 such as PZT particles, and stirring and dispersing the mixture.
  • Organic solvents other than the above substances are not limited and various organic solvents can be used.
  • the paint is cast (applied) on the sheet-like material 10a and dried by evaporating the organic solvent.
  • the laminate 10b having the lower electrode layer 24 on the lower protective layer 28 and the piezoelectric layer 20 on the lower electrode layer 24 is produced.
  • the lower electrode layer 24 refers to the electrode on the base material side when the piezoelectric layer 20 is applied, and does not indicate the vertical positional relationship in the laminate.
  • a dielectric polymer material may be added to the matrix 34 in addition to the viscoelastic material such as cyanoethylated PVA.
  • the polymeric materials to be added to the coating material described above may be dissolved.
  • the piezoelectric layer 20 is preferably subjected to polarization treatment (poling). conduct.
  • the method of polarization treatment of the piezoelectric layer 20 is not limited, and known methods can be used.
  • the surface of the piezoelectric layer 20 may be smoothed by using a heating roller or the like, which is a calendering treatment. By performing this calendering process, the thermocompression bonding process, which will be described later, can be performed smoothly.
  • the sheet-like object 10c having the upper electrode layer 26 formed on the upper protective layer 30 is prepared.
  • This sheet-like object 10c may be produced by forming a copper thin film or the like as the upper electrode layer 26 on the surface of the upper protective layer 30 by vacuum deposition, sputtering, plating, or the like.
  • the upper electrode layer 26 faces the piezoelectric layer 20, and the sheet-like material 10c is laminated on the laminate 10b for which the polarization treatment of the piezoelectric layer 20 has been completed.
  • the laminated body of the laminated body 10b and the sheet-like material 10c is thermocompression bonded by a hot press device, a pair of heated rollers, or the like, with the upper protective layer 30 and the lower protective layer 28 sandwiched therebetween.
  • a laminate in which electrode layers and protective layers are laminated on both sides of the piezoelectric layer 20 is produced.
  • the produced laminate may be cut into a desired shape according to various uses.
  • Such a laminate may be produced using a cut sheet-like sheet material, or may be produced by roll to roll (hereinafter also referred to as RtoR).
  • a hole is provided in the protective layer of the laminate, a soft conductive member is filled in the hole, and a conductive adhesive tape is used to connect the conductive wire, and then the connection is sealed with a sealing member.
  • holes 31 are formed in the upper protective layer 30 .
  • holes are formed in the lower protective layer 28 (not shown).
  • the holes 31 may be formed by a method using laser processing (carbon dioxide laser or the like), a method of cutting the protective layer in the depth direction by press processing, and then peeling off the protective layer, or the like.
  • the soft conductive member 70 is arranged in the holes 31 as shown in FIG.
  • the soft conductive member 70 is preliminarily processed so that its size in plan view is equal to or smaller than the size of the hole 31 .
  • the thickness d2 of the soft conductive member 70 is thicker than the thickness d1 of the protective layer.
  • a conductive adhesive tape 72 is laminated on the protective layer so as to cover the soft conductive member 70 . Furthermore, a conductive wire 76 is arranged on the conductive adhesive tape 72 .
  • a sealing member 74 is laminated on the conductive adhesive tape 72 and the conductor 76 as shown in FIG.
  • the sealing member 74 is adhered to the protective layer with an adhesive, an adhesive, or the like.
  • the piezoelectric film of the present invention is produced through the above steps.
  • the piezoelectric film 10 when a voltage is applied to the lower electrode layer 24 and the upper electrode layer 26, the piezoelectric particles 36 expand and contract in the polarization direction according to the applied voltage. As a result, the piezoelectric film 10 (piezoelectric layer 20) shrinks in the thickness direction. At the same time, due to the Poisson's ratio, the piezoelectric film 10 also expands and contracts in the in-plane direction. This expansion and contraction is about 0.01 to 0.1%. In addition, it expands and contracts isotropically in all directions in the in-plane direction.
  • the thickness of the piezoelectric layer 20 is preferably about 10-300 ⁇ m. Therefore, the expansion and contraction in the thickness direction is as small as about 0.3 ⁇ m at maximum.
  • the piezoelectric film 10 that is, the piezoelectric layer 20
  • the piezoelectric film 10 has a size much larger than its thickness in the planar direction. Therefore, for example, if the length of the piezoelectric film 10 is 20 cm, the piezoelectric film 10 expands and contracts by about 0.2 mm at maximum due to voltage application.
  • the piezoelectric film 10 when pressure is applied to the piezoelectric film 10, the action of the piezoelectric particles 36 generates electric power.
  • the piezoelectric film 10 can be used for various applications such as speakers, microphones, and pressure sensors, as described above.
  • a general piezoelectric film made of a polymeric material such as PVDF has in-plane anisotropy in piezoelectric properties, and anisotropy in the amount of expansion and contraction in the plane direction when a voltage is applied.
  • a piezoelectric layer composed of a polymer composite piezoelectric material containing piezoelectric particles in a matrix containing a polymer material has no in-plane anisotropy in the piezoelectric characteristics and is isotropic in all directions in the in-plane direction.
  • stretches to Such a piezoelectric film 10 that expands and contracts isotropically two-dimensionally can vibrate with a greater force than when a general piezoelectric film such as PVDF that expands and contracts greatly in only one direction is laminated. , can produce a louder and more beautiful sound.
  • the piezoelectric film of the present invention can be used as a speaker of the display device. is also possible.
  • the piezoelectric film 10 when used for a speaker, the film-shaped piezoelectric film 10 itself may vibrate to generate sound.
  • the piezoelectric film 10 may be attached to a diaphragm and used as an exciter that vibrates the diaphragm by the vibration of the piezoelectric film 10 to generate sound.
  • the piezoelectric film 10 of the present invention works well as a piezoelectric vibrating element for vibrating an object to be vibrated, such as a diaphragm, by forming a laminated piezoelectric element in which a plurality of sheets are laminated.
  • a laminated piezoelectric element in which piezoelectric films 10 are laminated may be attached to a diaphragm, and a speaker that outputs sound by vibrating the diaphragm with the laminate of piezoelectric films 10 may be used. That is, in this case, the laminate of the piezoelectric films 10 acts as a so-called exciter that outputs sound by vibrating the diaphragm.
  • the individual piezoelectric films 10 expand and contract in the plane direction, and the expansion and contraction of each piezoelectric film 10 causes the entire laminate of the piezoelectric films 10 to expand and contract in the plane direction. do.
  • the expansion and contraction of the laminated piezoelectric element in the planar direction bends the diaphragm to which the laminate is attached, and as a result, the diaphragm vibrates in the thickness direction. This vibration in the thickness direction causes the diaphragm to generate sound.
  • the diaphragm vibrates according to the magnitude of the driving voltage applied to the piezoelectric film 10 and generates sound according to the driving voltage applied to the piezoelectric film 10 . Therefore, at this time, the piezoelectric film 10 itself does not output sound.
  • the laminated piezoelectric element in which the piezoelectric films 10 are laminated has high rigidity, and the expansion/contraction force of the laminate as a whole is large.
  • the laminated piezoelectric element in which the piezoelectric film 10 is laminated can sufficiently flex the diaphragm with a large force and sufficiently vibrate the diaphragm in the thickness direction. to make the diaphragm generate sound.
  • the number of laminated piezoelectric films 10 is not limited. Just do it. It should be noted that a single piezoelectric film 10 can be used as a similar exciter (piezoelectric vibrating element) as long as it has sufficient stretching force.
  • the vibration plate that is vibrated by the laminated piezoelectric element in which the piezoelectric film 10 is laminated there are no restrictions on the vibration plate that is vibrated by the laminated piezoelectric element in which the piezoelectric film 10 is laminated, and various sheet-like objects (plate-like objects, films) can be used.
  • sheet-like objects plate-like objects, films
  • resin films such as polyethylene terephthalate (PET)
  • foamed plastics such as polystyrene foam
  • paper materials such as cardboard, glass plates, and wood.
  • various devices such as display devices such as organic electroluminescence displays and liquid crystal displays may be used as the diaphragm as long as they can be bent sufficiently.
  • the adjacent piezoelectric films 10 are adhered with an adhesive layer (adhesive). Also, the laminated piezoelectric element and the diaphragm are preferably adhered with an adhesive layer.
  • the sticking layer may be made of a pressure-sensitive adhesive or an adhesive.
  • an adhesive layer is used which, after application, results in a solid and hard adhesive layer. The above points are the same for a laminated body formed by folding a long piezoelectric film 10 described later.
  • the polarization direction of each laminated piezoelectric film 10 is not limited.
  • the piezoelectric film 10 of the present invention is preferably polarized in the thickness direction. Accordingly, the polarization direction of the piezoelectric film 10 referred to herein is the polarization direction in the thickness direction. Therefore, in the laminated piezoelectric element, all the piezoelectric films 10 may have the same polarization direction, or there may be piezoelectric films having different polarization directions.
  • the piezoelectric films 10 In the laminated piezoelectric element in which the piezoelectric films 10 are laminated, it is preferable to laminate the piezoelectric films 10 so that the polarization directions of adjacent piezoelectric films 10 are opposite to each other.
  • the polarity of the voltage applied to the piezoelectric layer 20 depends on the polarization direction of the piezoelectric layer 20 . Therefore, regardless of whether the polarization direction is from the upper electrode layer 26 to the lower electrode layer 24 or from the lower electrode layer 24 to the upper electrode layer 26, the polarity and The polarity of the lower electrode layer 24 is made the same.
  • the laminated piezoelectric element in which the piezoelectric films 10 are laminated may have a configuration in which a plurality of piezoelectric films 10 are laminated by folding the piezoelectric films 10 one or more times, preferably a plurality of times.
  • the configuration in which the piezoelectric film 10 is folded and laminated has the following advantages.
  • the laminated piezoelectric element can be configured with only one long piezoelectric film 10 . Therefore, in the configuration in which the long piezoelectric film 10 is folded and laminated, only one power source is required for applying the driving voltage, and the electrode may be led out from the piezoelectric film 10 at one point. Furthermore, in the structure in which the long piezoelectric films 10 are folded and laminated, the polarization directions of adjacent piezoelectric films 10 are inevitably opposite to each other.
  • the piezoelectric film of the present invention and the above-described laminated piezoelectric element can be used for various sensors such as sound wave sensors, ultrasonic sensors, pressure sensors, tactile sensors, strain sensors and vibration sensors (especially infrastructure inspection such as crack detection and foreign matter detection).
  • acoustic devices such as microphones, pickups, speakers and exciters
  • specific applications include noise cancellers (used in cars, trains, airplanes, robots, etc.), artificial vocal cords, pests and Buzzers for preventing vermin intrusion, furniture, wallpaper, photographs, helmets, goggles, headrests, signage, robots, etc.), haptics used for applications such as automobiles, smartphones, smart watches, games, etc., ultrasonic probes and ultrasonic transducers such as hydrophones, actuators used for preventing adhesion of water drops, transportation, stirring, dispersion, polishing, etc., damping materials (dampers) used for containers, vehicles, buildings, sports equipment such as skis and rackets, and roads , floors, mattresses, chairs, shoes, tires, wheels, and personal computer keyboards.
  • Example 1 A sheet 10a and a sheet 10c were prepared by vacuum-depositing a 0.1 ⁇ m thick copper thin film on a 4 ⁇ m thick PET film. That is, in this example, the upper electrode layer 26 and the lower electrode layer 24 are 0.1 ⁇ m-thick copper-deposited thin films, and the upper protective layer 30 and the lower protective layer 28 are 4 ⁇ m-thick PET films. In addition, in order to obtain good handling during the process, a PET film with a separator (temporary support PET) having a thickness of 50 ⁇ m was used, and the separator of each protective layer was removed after the sheet-like material 10c was thermocompressed. rice field.
  • a separator temporary support PET
  • cyanoethylated PVA (CR-V manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in methyl ethyl ketone (MEK) at the following composition ratio.
  • PZT particles were added to this solution in the following compositional ratio and dispersed with a propeller mixer (rotation speed: 2000 rpm) to prepare a paint for forming the piezoelectric layer 20 .
  • the PZT particles used were obtained by sintering commercially available PZT raw material powder at 1000 to 1200° C. and then pulverizing and classifying the sintered particles to an average particle size of 5 ⁇ m.
  • the previously prepared paint for forming the piezoelectric layer 20 was applied using a slide coater.
  • the paint was applied so that the thickness of the coating film after drying was 20 ⁇ m.
  • the sheet material 10a coated with the paint was dried by heating on a hot plate at 120° C. to evaporate the MEK, thereby forming the laminate 10b.
  • the sheet-like object 10c was laminated on the laminated body 10b with the upper electrode layer 26 (copper thin film side) side facing the piezoelectric layer 20, and was thermocompression bonded at 120°C.
  • the piezoelectric layer 20, the upper electrode layer 26 and the upper protective layer 30, and the piezoelectric layer 20, the lower electrode layer 24 and the lower protective layer 28 are adhered.
  • a voltage was applied between the lower electrode layer 24 and the upper electrode layer 26 to subject the piezoelectric layer 20 to electrical polarization treatment.
  • the electric polarization treatment was performed by setting the temperature of the piezoelectric layer 20 to 100° C. on a hot plate and applying a DC voltage of 6 kV between the lower electrode layer 24 and the upper electrode layer 26 .
  • the soft conductive member 70 As the soft conductive member 70, a conductive cloth of Sui-10-511M (woven cloth) manufactured by Seiren Co., Ltd. and having a thickness of 100 ⁇ m was prepared. This conductive cloth was cut out to have a diameter of 5 mm in plan view, and was placed in the hole of the protective layer.
  • Sui-10-511M woven cloth
  • the conductive adhesive tape 72 60382 manufactured by Tesa Tape Co., Ltd. was cut into a size of 10 mm x 10 mm.
  • the conducting wire 76 a wire 76 made of copper and having a size of 12 mm ⁇ 15 mm was prepared.
  • the sealing member 74 a 650R made by Teraoka Seisakusho Co., Ltd. cut out to a size of 15 mm ⁇ 10 mm was used.
  • a conductive adhesive tape 72 was adhered to the protective layer so as to cover the entire surface of the conductive cloth (holes).
  • a part of the conducting wire 76 is placed in contact with the conductive adhesive tape 72 , and a sealing member 74 is placed so as to cover the entire surface of the conductive cloth and the conductive adhesive tape 72 . was attached to the protective layer.
  • the sealing member 74 was adhered so as to compress the conductive cloth in the thickness direction.
  • a piezoelectric film was produced as described above.
  • Example 2 A piezoelectric film was produced in the same manner as in Example 1, except that the conductive adhesive tape 72 was not used. That is, the conductive wire 76 was partially in contact with the conductive cloth, and the sealing member 74 was adhered to the protective layer so as to cover the contact position between the conductive cloth and the conductive wire 76, thereby producing the piezoelectric film.
  • Example 3 A piezoelectric film was produced in the same manner as in Example 1, except that the sealing member 74 was not provided.
  • Example 4 A piezoelectric film was produced in the same manner as in Example 1 except that the conductive adhesive tape 72 and the sealing member 74 were not provided. In addition, the conducting wire 76 was fixed to the protective layer using an adhesive tape at a position other than the position in contact with the conductive cloth.
  • Example 5 A piezoelectric film was produced in the same manner as in Example 4, except that a 70 ⁇ m-thick Si-80-301 (nonwoven fabric) conductive cloth manufactured by Seiren Co., Ltd. was used as the soft conductive member.
  • Example 6 A piezoelectric film was produced in the same manner as in Example 4, except that a 100 ⁇ m-thick plain-woven wire mesh ⁇ 0.05 ⁇ 200 m/s (woven fabric) manufactured by Okutani Wire Net Mfg. Co., Ltd. was used as the soft conductive member.
  • Example 7 A piezoelectric film was produced in the same manner as in Example 4, except that a 100 ⁇ m-thick metal cloth of copper fiber nonwoven fabric manufactured by Nikko Techno Co., Ltd. was used as the soft conductive member.
  • Example 8 A piezoelectric film was produced in the same manner as in Example 4, except that SUI-70-5005A conductive urethane foam and conductive cloth having a thickness of 500 ⁇ m manufactured by Seiren Co., Ltd. were used as the soft conductive member.
  • Example 9 A piezoelectric film was produced in the same manner as in Example 4, except that the diameter of the conductive cloth in plan view was 2 mm.
  • Example 1 A piezoelectric film was produced in the same manner as in Example 4, except that a conductive paste was used instead of the soft conductive member.
  • Dotite D550 manufactured by Fujikura Kasei Co., Ltd. was used as the conductive paste. Also, the conductive paste was applied so as to fill the holes of the protective layer.
  • Example 2 A piezoelectric film was produced in the same manner as in Example 4, except that solder was used instead of the soft conductive member.
  • the electrical resistance of the piezoelectric film was measured 24 hours after it was produced using an LCR meter.
  • a lead wire for resistance measurement was attached in the same manner as in each example and comparative example on the same surface as each lead wire attachment surface for evaluation. At this time, the mounting position was set so that the distance between the centers of the holes in the protective layer was 30 mm.
  • the measured resistance values were evaluated according to the following criteria. ⁇ A: Less than 1 ⁇ ⁇ B: 1 ⁇ or more and less than 5 ⁇ ⁇ C: 5 ⁇ or more
  • the piezoelectric film was bent along a ⁇ 40 mm round bar so that the center of the hole formed in the protective layer was the bending center. At that time, it was confirmed whether the electrode was bent following the shape of a round bar, and whether the electrode returned to its original shape after being unbent and stretched was confirmed. A was given when the film was bent in the same manner as the piezoelectric film when bent and returned to its original state when stretched, and C was given when it did not bend when bent and did not stretch when stretched.
  • the examples of the present invention have higher flexibility, higher bending durability, and higher stability of the amount of the conducting member than the comparative examples, that is, sufficient conduction is stable. I know you can get it.
  • the conductive paste layer to be formed varied due to variations in concentration, so the amount of the conductive member was not stable. Therefore, sufficient conduction may not be obtained.
  • the flexibility was lowered due to the hardness of the solder, and the electrode layer was damaged after repeated bending, resulting in an increase in the resistance value.
  • Example 1 From the comparison between Example 1 and Examples 2 and 4, it can be seen that the resistance can be reduced by connecting the soft conductive member and the conductive wire via the conductive adhesive tape.
  • Example 1 In addition, from the comparison between Example 1 and Examples 3 and 4, it was found that when the piezoelectric film was repeatedly bent due to the presence of the sealing member, the positions of the respective members were displaced and the conductive member and the electrode layer were displaced. It can be seen that the contact area can be prevented from becoming smaller due to a change in the contact due to the pressure between the conductor and the lead wire being not maintained, and stable conduction can be obtained. From the above, the effect of the present invention is clear.
  • acoustic equipment such as speakers and microphones
  • pressure sensors e.g., pressure sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Laminated Bodies (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

Provided is a highly-flexible piezoelectric film capable of sufficiently ensuring conduction through an electrode layer. The piezoelectric film comprises a piezoelectric layer, electrode layers respectively formed on both sides of the piezoelectric layer, and protective layers, each laminated on the surface of each electrode layer on the reverse side of the surface on the piezoelectric layer side, wherein one protective layer has a hole portion that passes through to an electrode layer from the surface and has a flexible conductive member that is disposed inside the hole portion and includes at least one of a conductive fabric, a metal fabric and a conductive urethane foam which electrically connects the electrode layer and a conductor.

Description

圧電フィルムpiezoelectric film
 本発明は、圧電フィルムに関する。 The present invention relates to piezoelectric films.
 液晶ディスプレイや有機ELディスプレイなど、ディスプレイの薄型化に対応して、これらの薄型ディスプレイに用いられるスピーカーにも軽量化および薄型化が要求されている。さらに、可撓性を有するフレキシブルディスプレイにおいて、軽量性および可撓性を損なうことなくスピーカーをフレキシブルディスプレイに一体化するために、スピーカーには可撓性も要求されている。このような軽量かつ薄型で可撓性を有するスピーカーとして、印加電圧に応答して伸縮する性質を有するシート状の圧電フィルム(電気音響変換フィルム)を採用することが考えられている。 In response to the thinning of displays such as liquid crystal displays and organic EL displays, the speakers used in these thin displays are also required to be lighter and thinner. Furthermore, in a flexible display having flexibility, the speaker is also required to be flexible in order to integrate the speaker into the flexible display without impairing light weight and flexibility. As such a lightweight, thin and flexible speaker, it is considered to employ a sheet-like piezoelectric film (electroacoustic conversion film) having a property of expanding and contracting in response to an applied voltage.
 このような可撓性を有するシート状の圧電フィルムとして、圧電層の両面に電極層および保護層を有する圧電フィルムが提案されている。 A piezoelectric film having electrode layers and protective layers on both sides of a piezoelectric layer has been proposed as such a flexible sheet-like piezoelectric film.
 例えば、特許文献1には、誘電性を有する層と、誘電性を有する層(圧電層)の両面に形成される薄膜電極と、両方の薄膜電極の表面に形成される保護層とを有し、さらに、保護層の少なくとも一方が、周辺部よりも膜厚が薄い薄層部を有する電気音響変換フィルムが記載されている。 For example, Patent Document 1 discloses a dielectric layer, thin film electrodes formed on both sides of the dielectric layer (piezoelectric layer), and protective layers formed on the surfaces of both thin film electrodes. Furthermore, an electroacoustic conversion film is disclosed in which at least one of the protective layers has a thin layer portion thinner than the peripheral portion.
 このような電気音響変換フィルムにおいて、電極層に電圧を印加して電気音響変換フィルムを振動させるためには、電極層の厚さを非常に薄くする必要がある。例えば、電極層は、厚さ1μm以下の蒸着膜などが適している。 In such an electroacoustic conversion film, it is necessary to make the thickness of the electrode layer very thin in order to vibrate the electroacoustic conversion film by applying a voltage to the electrode layer. For example, a deposited film having a thickness of 1 μm or less is suitable for the electrode layer.
 一方、電気音響変換フィルムをスピーカ等として実装するためには、電極層を引き出して、此処に配線を接続する必要がある。
 しかしながら、蒸着膜のような薄い電極層は、電気音響変換フィルムの面外に引き出すことは困難である。また、蒸着膜のような薄い電極を、配線との接続のために外部に剥き出しにして、この状態で保管すると、保管環境によっては電極が酸化して、導電性が低下してしまう。
On the other hand, in order to mount the electroacoustic conversion film as a speaker or the like, it is necessary to pull out the electrode layer and connect wiring there.
However, it is difficult to extract a thin electrode layer such as a deposited film out of the plane of the electroacoustic conversion film. In addition, if a thin electrode such as a deposited film is exposed to the outside for connection with wiring and stored in this state, the electrode may be oxidized depending on the storage environment, resulting in a decrease in conductivity.
 これに対して、保護層に孔部を設けて、この孔部に導電材料を挿入し、導電材料に引出し配線を接続することが提案されている。 On the other hand, it has been proposed to provide a hole in the protective layer, insert a conductive material into the hole, and connect the lead wire to the conductive material.
 例えば、特許文献1では、保護層に凹部を設け、この凹部に導電材料を挿入し、この導電材料に電極層と外部の装置とを電気的に接続するための引出し配線を接続する構成が記載されている。これにより、電極層と引出し配線との電気的接続を確実にでき、また、電極層は全面的に保護層に覆われているので、酸化等によって電極層が劣化することを防止できることが記載されている。 For example, Patent Document 1 describes a configuration in which a recess is provided in a protective layer, a conductive material is inserted into the recess, and a lead wiring for electrically connecting an electrode layer and an external device is connected to the conductive material. It is It is described that, as a result, the electrical connection between the electrode layer and the lead wiring can be ensured, and the electrode layer can be prevented from being deteriorated due to oxidation or the like because the electrode layer is entirely covered with the protective layer. ing.
特開2016-015354号公報JP 2016-015354 A
 特許文献1には、保護層に設けた孔部内に導電性フィラーを含有する導電性ペーストおよび金属部材等を挿入して電極層と配線とを電気的に接続することが記載されている。 Patent Document 1 describes electrically connecting an electrode layer and a wiring by inserting a conductive paste containing a conductive filler, a metal member, or the like into a hole provided in a protective layer.
 導電性ペーストを用いる場合には、導電性ペーストの塗料を孔部内に塗布した後、乾燥させて用いるが、塗布時の導電性フィラーの分散状態によっては、導電性フィラーの量が少なくなり、乾燥後の導電性ペーストの厚みが保護層よりも薄くなってしまい、フィラーと電極層および/または配線との接触面積が下り、配線との十分な導通が得られないおそれがあるという問題があった。 When a conductive paste is used, the paint of the conductive paste is applied to the inside of the hole and then dried before use. There is a problem that the thickness of the conductive paste afterward becomes thinner than the protective layer, and the contact area between the filler and the electrode layer and/or the wiring decreases, and sufficient conduction with the wiring may not be obtained. .
 また、固体の金属部材を用いた場合には、圧電フィルムの可撓性が低くなってしまうという問題があった。半田を用いて、電極層と配線とを電気的に接続することも考えられるが、硬化後の半田は可撓性が低いため、圧電フィルムの可撓性が低くなってしまうという問題があった。 Also, when a solid metal member is used, there is a problem that the flexibility of the piezoelectric film is lowered. It is conceivable to use solder to electrically connect the electrode layer and the wiring. .
 本発明の課題は、このような従来技術の問題点を解決することにあり、高い可撓性を有し、電極層への導通を十分に確保できる圧電フィルムを提供することにある。 An object of the present invention is to solve the problems of the prior art, and to provide a piezoelectric film that has high flexibility and can sufficiently ensure electrical connection to the electrode layer.
 上述した課題を解決するために、本発明は、以下の構成を有する。
 [1] 圧電層、圧電層の両面に形成される電極層、および、電極層の、圧電層側の面とは反対側の面に積層される保護層を有する圧電フィルムであって、
 保護層は、表面から電極層まで貫通する孔部を有し、
 孔部内に配置され電極層と導線とを電気的に接続する、導電布、金属布および導電性ウレタンフォームの少なくとも1つを含む軟性導電部材を有する、圧電フィルム。
 [2] 軟性導電部材と導線との接続位置を覆う封止部材を有する、[1]に記載の圧電フィルム。
 [3] 封止部材で覆う前の軟性導電部材の厚さが、保護層の厚さよりも厚い、[2]に記載の圧電フィルム。
 [4] 軟性導電部材と導線との間に配置される導電性粘着テープを有する、[1]~[3]のいずれかに記載の圧電フィルム。
 [5] 圧電層は、高分子材料を含むマトリックス中に圧電体粒子を含む高分子複合圧電体からなる、[1]~[4]のいずれかに記載の圧電フィルム。
In order to solve the problems described above, the present invention has the following configurations.
[1] A piezoelectric film having a piezoelectric layer, electrode layers formed on both sides of the piezoelectric layer, and a protective layer laminated on a surface of the electrode layer opposite to the surface of the electrode layer,
The protective layer has a hole penetrating from the surface to the electrode layer,
A piezoelectric film having a soft conductive member including at least one of a conductive cloth, a metal cloth, and a conductive urethane foam disposed in the hole and electrically connecting the electrode layer and the conductive wire.
[2] The piezoelectric film according to [1], which has a sealing member that covers the connection position between the soft conductive member and the lead wire.
[3] The piezoelectric film according to [2], wherein the thickness of the soft conductive member before being covered with the sealing member is thicker than the thickness of the protective layer.
[4] The piezoelectric film according to any one of [1] to [3], which has a conductive adhesive tape placed between the soft conductive member and the conductor.
[5] The piezoelectric film according to any one of [1] to [4], wherein the piezoelectric layer is composed of a polymeric composite piezoelectric body containing piezoelectric particles in a matrix containing a polymeric material.
 本発明によれば、高い可撓性を有し、電極層への導通を十分に確保できる圧電フィルムを提供することができる。 According to the present invention, it is possible to provide a piezoelectric film that has high flexibility and can sufficiently ensure electrical connection to the electrode layer.
本発明の圧電フィルムの一例を模式的に示す平面図である。1 is a plan view schematically showing an example of the piezoelectric film of the present invention; FIG. 図1のA-A線断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1; 図1のB-B線断面図である。FIG. 2 is a cross-sectional view taken along line BB of FIG. 1; 圧電フィルムの作製方法の一例を説明するための概念図である。It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film. 圧電フィルムの作製方法の一例を説明するための概念図である。It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film. 圧電フィルムの作製方法の一例を説明するための概念図である。It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film. 圧電フィルムの作製方法の一例を説明するための概念図である。It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film. 圧電フィルムの作製方法の一例を説明するための概念図である。It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film. 圧電フィルムの作製方法の一例を説明するための概念図である。It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film. 圧電フィルムの作製方法の一例を説明するための概念図である。It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film.
 以下、本発明の圧電フィルムについて、添付の図面に示される好適実施形態を基に、詳細に説明する。 The piezoelectric film of the present invention will be described in detail below based on preferred embodiments shown in the accompanying drawings.
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
The description of the constituent elements described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
[圧電フィルム]
 本発明の圧電フィルムは、
 圧電層、圧電層の両面に形成される電極層、および、電極層の、圧電層側の面とは反対側の面に積層される保護層を有する圧電フィルムであって、
 保護層は、表面から電極層まで貫通する孔部を有し、
 孔部内に配置され電極層と導線とを電気的に接続する、導電布、金属布および導電ウレタンフォームの少なくとも1つを含む軟性導電部材を有する、圧電フィルムである。
[Piezoelectric film]
The piezoelectric film of the present invention is
A piezoelectric film having a piezoelectric layer, electrode layers formed on both sides of the piezoelectric layer, and a protective layer laminated on a surface of the electrode layer opposite to the surface of the electrode layer,
The protective layer has a hole penetrating from the surface to the electrode layer,
A piezoelectric film having a soft conductive member including at least one of a conductive cloth, a metal cloth and a conductive urethane foam disposed in a hole and electrically connecting an electrode layer and a conductive wire.
 図1に、本発明の圧電フィルムの一例を模式的に表す平面図を示す。図2に、図1の圧電フィルムのA-A線断面図を示す。図3に、図1の圧電フィルムのB-B線断面の一部を拡大した断面図を示す。 FIG. 1 shows a plan view schematically showing an example of the piezoelectric film of the present invention. FIG. 2 shows a cross-sectional view of the piezoelectric film of FIG. 1 taken along the line AA. FIG. 3 shows an enlarged cross-sectional view of a part of the piezoelectric film of FIG. 1 taken along line BB.
 図1~図3に示す圧電フィルム10は、圧電性を有するシート状物である圧電層20と、圧電層20の一方の面に積層される下部電極層24と、下部電極層24に積層される下部保護層28と、圧電層20の他方の面に積層される上部電極層26と、上部電極層26に積層される上部保護層30と、軟性導電部材70と、導電性粘着テープ72と、封止部材74と、導線76と、を有する。 The piezoelectric film 10 shown in FIGS. 1 to 3 includes a piezoelectric layer 20 which is a sheet-like material having piezoelectric properties, a lower electrode layer 24 laminated on one side of the piezoelectric layer 20, and a lower electrode layer 24 laminated on the lower electrode layer 24. an upper protective layer 26 laminated on the other surface of the piezoelectric layer 20; an upper protective layer 30 laminated on the upper electrode layer 26; a soft conductive member 70; , a sealing member 74 and a conductor 76 .
 図2に示すように、圧電層20は、高分子材料を含むマトリックス34中に、圧電体粒子36を含むものである。また、下部電極層24および上部電極層26は、本発明における電極層である。また、下部保護層28および上部保護層30は、本発明における保護層である。
 後述するが、圧電フィルム10(圧電層20)は、好ましい態様として、厚さ方向に分極されている。
As shown in FIG. 2, the piezoelectric layer 20 includes piezoelectric particles 36 in a matrix 34 containing polymeric material. Also, the lower electrode layer 24 and the upper electrode layer 26 are electrode layers in the present invention. Also, the lower protective layer 28 and the upper protective layer 30 are protective layers in the present invention.
As will be described later, the piezoelectric film 10 (piezoelectric layer 20) is preferably polarized in the thickness direction.
 図3に示すように、上部保護層30は表面から上部電極層26まで貫通する孔部31を有する。すなわち、孔部31は、上部電極層26とは反対側の表面から上部電極層26側の界面まで上部保護層30を貫通して形成されている。図1に示すように、孔部31は、面方向において、上部保護層30の端部近傍に形成されている。
 図示は省略するが、下部保護層28も同様に表面から下部電極層24まで貫通する孔部を有する。すなわち、下部保護層28の孔部は、下部電極層24とは反対側の表面から下部電極層24側の界面まで下部保護層28を貫通して形成されている。
As shown in FIG. 3, the upper protective layer 30 has holes 31 penetrating from the surface to the upper electrode layer 26 . That is, the hole 31 is formed through the upper protective layer 30 from the surface opposite to the upper electrode layer 26 to the interface on the upper electrode layer 26 side. As shown in FIG. 1, the hole 31 is formed near the end of the upper protective layer 30 in the plane direction.
Although not shown, the lower protective layer 28 also has a hole penetrating from the surface to the lower electrode layer 24 in the same manner. That is, the hole portion of the lower protective layer 28 is formed through the lower protective layer 28 from the surface opposite to the lower electrode layer 24 to the interface on the lower electrode layer 24 side.
 軟性導電部材70は、孔部31内に充填され、孔部31内で上部電極層26と接触して、上部電極層26と電気的に接続されている。また、図3に示す例では、軟性導電部材70は、上部電極層26とは反対側の面が、好ましい態様として有する導電性粘着テープ72と接触して電気的に接続されている。 The soft conductive member 70 is filled in the hole 31 , is in contact with the upper electrode layer 26 inside the hole 31 , and is electrically connected to the upper electrode layer 26 . In the example shown in FIG. 3, the soft conductive member 70 is electrically connected to the conductive adhesive tape 72 provided in a preferred embodiment by contacting the surface opposite to the upper electrode layer 26 .
 軟性導電部材70は、導電布、金属布および導電性ウレタンフォームの少なくとも1つを含むものである。すなわち、軟性導電部材70は、導電布からなるものであってもよく、金属布からなるものであってもよく、導電性ウレタンフォームからなるものであってもよく、あるいは、導電布と導電性ウレタンフォームとの組み合わせ、金属布と導電性ウレタンフォームとの組み合わせ、および、導電布と金属布との組み合わせのいずれかであってもよく、あるいは、導電布、金属布および導電性ウレタンフォームを組み合わせたものであってもよい。例えば、軟性導電部材70は、導電性ウレタンフォームの両面に導電布を積層した構成であってもよい。 The soft conductive member 70 includes at least one of conductive cloth, metal cloth and conductive urethane foam. That is, the soft conductive member 70 may be made of a conductive cloth, a metal cloth, a conductive urethane foam, or a conductive cloth and a conductive material. Any of a combination with urethane foam, a combination of metal cloth and conductive urethane foam, and a combination of conductive cloth and metal cloth may be used, or a combination of conductive cloth, metal cloth and conductive urethane foam may be used. It can be anything. For example, the soft conductive member 70 may have a configuration in which conductive cloth is laminated on both sides of conductive urethane foam.
 導電布は、例えば、樹脂製の糸の表面をめっき等により金属膜でコーティングした糸で織った織布あるいは不織布である。導電布としては、種々の公知の導電布を用いることができる。例えば、導電布としては、PETからなる糸の表面をCuめっき、または、Niめっきした導電布が挙げられる。具体的には、導電布として、セーレン株式会社製Sui-10-511Mを用いることができる。 A conductive cloth is, for example, a woven or non-woven fabric woven from resin threads coated with a metal film by plating or the like. Various known conductive cloths can be used as the conductive cloth. For example, as the conductive cloth, a conductive cloth obtained by plating the surface of a thread made of PET with Cu or Ni is exemplified. Specifically, Sui-10-511M manufactured by Seiren Co., Ltd. can be used as the conductive cloth.
 本発明において、導電布は、抵抗が低く、かつ、柔軟性に富むものを用いることが好ましい。導電布の表面抵抗率としては、0.1Ω/sq.以下が好ましく、0.05Ω/sq.以下がより好ましい。また、導電布の厚みとしては、500μm以下が好ましく、100μm以下がより好ましい。 In the present invention, it is preferable to use a conductive cloth with low resistance and high flexibility. The surface resistivity of the conductive cloth is 0.1Ω/sq. The following is preferable, and 0.05Ω/sq. The following are more preferred. Moreover, as thickness of an electrically conductive cloth, 500 micrometers or less are preferable and 100 micrometers or less are more preferable.
 金属布は、金属糸で織った織布あるいは不織布である。金属布としては、種々の公知の金属布を用いることができる。一例として、金属布として、株式会社奥谷金網製作所社製平織金網Φ0.05×200m/sを用いることができる。 A metal cloth is a woven or non-woven fabric woven with metal threads. Various known metal cloths can be used as the metal cloth. As an example, a plain weave wire mesh Φ0.05×200 m/s manufactured by Okutani Wire Net Mfg. Co., Ltd. can be used as the metal cloth.
 金属布の材料としては、銅が好ましい。また、金属布の1辺(1インチ)当たりの目数としては、100以上が好ましく、200以上がより好ましい。 Copper is preferable as the material for the metal cloth. The number of stitches per side (1 inch) of the metal cloth is preferably 100 or more, more preferably 200 or more.
 導電性ウレタンフォームは、軟質のウレタンフォームにカーボンブラックなどの導電性粒子を担持させたものである。導電性ウレタンフォームとしては、種々の公知の導電性ウレタンフォームを用いることができる。  Conductive urethane foam is made by supporting conductive particles such as carbon black on soft urethane foam. Various known conductive urethane foams can be used as the conductive urethane foam.
 導電性ウレタンフォームは、抵抗が低く、かつ、柔軟性に富むものを用いることが好ましい。導電性ウレタンフォームの表面抵抗率としては、0.1Ω/sq.以下が好ましく、0.05Ω/sq.以下がより好ましい。また、導電性ウレタンフォームの厚みとしては、500μm以下が好ましく、100μm以下がより好ましい。 It is preferable to use conductive urethane foam that has low resistance and is highly flexible. The surface resistivity of the conductive urethane foam is 0.1Ω/sq. The following is preferable, and 0.05Ω/sq. The following are more preferred. Also, the thickness of the conductive urethane foam is preferably 500 μm or less, more preferably 100 μm or less.
 図3に示すように、導電性粘着テープ72は、面方向において、上部保護層30の孔部31と重複する位置に貼着される。すなわち、導電性粘着テープ72は、孔部31内に配置される軟性導電部材70に接触して電気的に接続される。 As shown in FIG. 3, the conductive adhesive tape 72 is adhered to a position overlapping the hole 31 of the upper protective layer 30 in the surface direction. That is, the conductive adhesive tape 72 contacts and is electrically connected to the soft conductive member 70 arranged in the hole 31 .
 導電性粘着テープ72は、導電箔の少なくとも一方の面に粘着層が設けられたもので、粘着層側を上部保護層30に向けて積層されることで上部保護層30に貼着されている。また、導電性粘着テープ72は、導電箔の両面に粘着層が設けられていてもよく、その場合には、一方の粘着層側を上部保護層30に向けて積層されることで上部保護層30に貼着され、他方の粘着層には導線76が貼着される。 The conductive adhesive tape 72 has an adhesive layer provided on at least one surface of a conductive foil, and is attached to the upper protective layer 30 by being laminated with the adhesive layer facing the upper protective layer 30 . . In addition, the conductive adhesive tape 72 may be provided with adhesive layers on both sides of the conductive foil. 30, and the conductive wire 76 is adhered to the other adhesive layer.
 導電性粘着テープ72の上部保護層30とは反対側の面には導線76が配置される。 A conductive wire 76 is arranged on the surface of the conductive adhesive tape 72 opposite to the upper protective layer 30 .
 導線76は、導電性を有するシート状あるいはワイヤー状の部材である。導線76は、導電性粘着テープ72を介して軟性導電部材70に電気的に接続される。また、導線76として上述した軟性導電部材を用いてもよい。 The conducting wire 76 is a conductive sheet-like or wire-like member. Conductive wire 76 is electrically connected to soft conductive member 70 via conductive adhesive tape 72 . Also, the above-described soft conductive member may be used as the lead wire 76 .
 封止部材74は、絶縁性のシート状の部材であり、面方向において、軟性導電部材70、導電性粘着テープ72、および、導線76が積層する位置の少なくとも一部を覆うように上部保護層30上に積層される。図3に示す例では、封止部材74は、軟性導電部材70および導電性粘着テープ72の全面を覆うように積層されている。封止部材74によって軟性導電部材70、導電性粘着テープ72、および、導線76を固定することができる。 The sealing member 74 is an insulating sheet-like member, and is covered with an upper protective layer so as to cover at least a part of the positions where the flexible conductive member 70, the conductive adhesive tape 72, and the conductive wire 76 are laminated in the surface direction. 30 is laminated on. In the example shown in FIG. 3, the sealing member 74 is laminated so as to cover the entire surfaces of the soft conductive member 70 and the conductive adhesive tape 72 . A sealing member 74 can fix the soft conductive member 70 , the conductive adhesive tape 72 , and the lead wire 76 .
 図示は省略するが、下部保護層28側も同様に、下部保護層28の孔部内に、軟性導電部材70が充填され、軟性導電部材70を覆うように、導電性粘着テープ72が下部保護層28に貼着され、導線76が導電性粘着テープ72の上に配置されて軟性導電部材70と電気的に接続されて、封止部材74が、軟性導電部材70、導電性粘着テープ72および導線76が積層する位置の少なくとも一部を覆うように積層される。 Although illustration is omitted, the holes of the lower protective layer 28 are similarly filled with the soft conductive member 70 on the lower protective layer 28 side, and the conductive adhesive tape 72 is attached to the lower protective layer 28 so as to cover the soft conductive member 70 . 28, the conductive wire 76 is placed on the conductive adhesive tape 72 and electrically connected to the soft conductive member 70, and the sealing member 74 is formed by the soft conductive member 70, the conductive adhesive tape 72 and the conductive wire. It is laminated so as to cover at least part of the position where 76 is laminated.
 このように圧電フィルム10において、導線76は導電性粘着テープ72と電気的に接続されており、導電性粘着テープ72は軟性導電部材70と電気的に接続されており、軟性導電部材70は電極層と電気的に接続されている。そのため、導線76を引出し配線として利用することができ、導線76に配線を接続することができる。あるいは、導線76を配線として利用することができる。 Thus, in the piezoelectric film 10, the conductor wire 76 is electrically connected to the conductive adhesive tape 72, the conductive adhesive tape 72 is electrically connected to the soft conductive member 70, and the soft conductive member 70 is the electrode. electrically connected to the layer. Therefore, the conducting wire 76 can be used as a lead wire, and wiring can be connected to the conducting wire 76 . Alternatively, the conductor 76 can be used as wiring.
 ここで、前述のとおり、保護層に設けた孔部内に導電性フィラーを含有する導電性ペーストを充填して電極層と配線とを電気的に接続する構成とした場合には、塗布時の導電性フィラーの分散状態によっては、導電性フィラーの量が少なくなり、乾燥後の導電性ペーストの厚みが保護層よりも薄くなってしまう等のため、配線との十分な導通が得られないおそれがあるという問題があった。 Here, as described above, when the conductive paste containing the conductive filler is filled in the holes provided in the protective layer to electrically connect the electrode layer and the wiring, the conductive paste at the time of application Depending on the dispersion state of the conductive filler, the amount of the conductive filler may decrease, and the thickness of the conductive paste after drying may become thinner than the protective layer, resulting in insufficient electrical connection with the wiring. There was a problem.
 また、保護層に設けた孔部内に固体の金属部材、あるいは、半田を充填して電極層と配線とを電気的に接続する構成とした場合には、圧電フィルムの可撓性が低くなってしまうという問題があった。 Further, in the case where the hole provided in the protective layer is filled with a solid metal member or solder to electrically connect the electrode layer and the wiring, the flexibility of the piezoelectric film becomes low. There was a problem of hoarding.
 これに対して、本発明の圧電フィルム10は、保護層の孔部に導電布、金属布および導電性ウレタンフォームの少なくとも1つを含む軟性導電部材70を充填して、軟性導電部材70を介して電極層と導線76とを電気的に接続する。そのため、導電性フィラーの分散状態等の影響がないため、電極層と導線76とを確実に導通させることができる。また、軟性導電部材70は、固体の金属部材、あるいは、半田に比べて柔軟性を有しているため、圧電フィルムの可撓性を損なうことがなく、高い可撓性を有する圧電フィルムとすることができる。 On the other hand, in the piezoelectric film 10 of the present invention, the holes of the protective layer are filled with a soft conductive member 70 containing at least one of conductive cloth, metal cloth and conductive urethane foam, and the soft conductive member 70 is inserted between the holes. to electrically connect the electrode layer and the conductor 76 . Therefore, since there is no influence of the dispersed state of the conductive filler, the electrical connection between the electrode layer and the conductor wire 76 can be ensured. In addition, since the soft conductive member 70 is more flexible than a solid metal member or solder, the piezoelectric film has high flexibility without impairing the flexibility of the piezoelectric film. be able to.
 ここで、図3に示す例では、軟性導電部材70、導電性粘着テープ72、および、導線76を覆うように上部保護層30上に貼着される封止部材74を有する構成としたがこれに限定はされない。例えば、本発明の圧電フィルムは、封止部材74を有さず、導電性粘着テープ72が両面に粘着層を有し、導電性粘着テープ72に導線76が貼着される構成であってもよい。 Here, in the example shown in FIG. 3, the structure having the soft conductive member 70, the conductive adhesive tape 72, and the sealing member 74 adhered on the upper protective layer 30 so as to cover the conductive wire 76 is adopted. is not limited to For example, the piezoelectric film of the present invention does not have the sealing member 74, the conductive adhesive tape 72 has adhesive layers on both sides, and the conducting wire 76 is attached to the conductive adhesive tape 72. good.
 あるいは、本発明の圧電フィルムは、封止部材74を有さず、軟性導電部材70を覆わない位置で導線76を覆うように保護層に貼着される固定部材を有する構成であってもよい。 Alternatively, the piezoelectric film of the present invention may have a configuration in which the sealing member 74 is not provided and the fixing member is adhered to the protective layer so as to cover the conductive wire 76 at a position not covering the soft conductive member 70 . .
 なお、軟性導電部材70、導電性粘着テープ72、および、導線76を覆うように上部保護層30上に貼着される封止部材74を有することで、導線76を軟性導電部材70(導電性粘着テープ72)に押し付けて、接触面積を増やすことができ、軟性導電部材70(電極層)と導線76との間で安定した導通を得ることができる。また、封止部材74を有することで、圧電フィルムが湾曲された際などに、軟性導電部材70、導電性粘着テープ72、および、導線76が位置ズレして、接触面積が小さくなることを防止でき、安定した導通を得ることができる。 In addition, by having the soft conductive member 70, the conductive adhesive tape 72, and the sealing member 74 adhered onto the upper protective layer 30 so as to cover the conductive wire 76, the conductive wire 76 can be replaced by the soft conductive member 70 (conductive By pressing it against the adhesive tape 72 ), the contact area can be increased, and stable electrical connection can be obtained between the soft conductive member 70 (electrode layer) and the lead wire 76 . In addition, by having the sealing member 74, when the piezoelectric film is bent, the positions of the soft conductive member 70, the conductive adhesive tape 72, and the lead wire 76 are displaced and the contact area is prevented from becoming small. and stable conduction can be obtained.
 また、図3に示す例では、軟性導電部材70と導線76との間に配置される導電性粘着テープ72を有する構成としたがこれに限定はされない。例えば、本発明の圧電フィルムは、導電性粘着テープ72を有さず、軟性導電部材70と導線76とが直接接触して電気的に接続される構成であってもよい。 Also, in the example shown in FIG. 3, the configuration is such that the conductive adhesive tape 72 is arranged between the soft conductive member 70 and the lead wire 76, but the configuration is not limited to this. For example, the piezoelectric film of the present invention may have a configuration in which the conductive adhesive tape 72 is not provided and the soft conductive member 70 and the lead wire 76 are in direct contact and electrically connected.
 なお、軟性導電部材70と導線76との間に配置される導電性粘着テープ72を有することで、軟性導電部材70と導線76との接触を確実に保持することができ、軟性導電部材70と導線76との間の抵抗を低減して、安定した導通を得ることができる。 By having the conductive adhesive tape 72 arranged between the soft conductive member 70 and the conductive wire 76, the contact between the soft conductive member 70 and the conductive wire 76 can be reliably maintained, and the soft conductive member 70 and the conductive wire 76 can be kept in contact with each other. Stable conduction can be obtained by reducing the resistance between the conductors 76 .
 また、軟性導電部材70と電極層とは、導電性粘着テープ等によって接着されないのが好ましい。軟性導電部材70と電極層とが接着されると、導線76に引っ張る力が加わった際などに、導線76に接続される軟性導電部材70にも引っ張る力が加わる。電極層は非常に薄いため、電極層と軟性導電部材70とが接着されていると、軟性導電部材70が引っ張られた際に、軟性導電部材70に接着されている電極層が破損してしまうおそれがある。 Also, it is preferable that the soft conductive member 70 and the electrode layer are not adhered with a conductive adhesive tape or the like. When the soft conductive member 70 and the electrode layer are adhered to each other, when a pulling force is applied to the conductive wire 76 , a pulling force is also applied to the soft conductive member 70 connected to the conductive wire 76 . Since the electrode layer is very thin, if the electrode layer and the soft conductive member 70 are adhered, the electrode layer adhered to the soft conductive member 70 will be damaged when the soft conductive member 70 is pulled. There is a risk.
 また、保護層の孔部31の開口面の形状には限定はなく、円形状、楕円形状、矩形状、多角形状、不定形状等の種々の形状とすることができる。形成の容易性等の観点から円形状が好ましい。 Also, the shape of the opening surface of the hole 31 of the protective layer is not limited, and may be various shapes such as circular, elliptical, rectangular, polygonal, and irregular. A circular shape is preferable from the viewpoint of ease of formation.
 また、孔部31の開口面の大きさとしては、軟性導電部材70と電極層との電気的接続が確保でき、圧電フィルムが適正に動作できる大きさであれば特に限定はない。孔部の開口面の円相当直径は、0.5mm~20mmが好ましく、1.5mm~8mmがより好ましく、2mm~3mmがさらに好ましい。 Further, the size of the opening surface of the hole 31 is not particularly limited as long as it is a size that can ensure electrical connection between the soft conductive member 70 and the electrode layer and allows the piezoelectric film to operate properly. The equivalent circle diameter of the opening surface of the hole is preferably 0.5 mm to 20 mm, more preferably 1.5 mm to 8 mm, and even more preferably 2 mm to 3 mm.
 また、軟性導電部材70の、平面視における大きさおよび形状は、保護層の孔部31に充填でき、電極層との電気的接続が確保できれば特に限定はない。軟性導電部材70の大きさは、保護層の孔部31の大きさおよび形状と略一致することが好ましい。 In addition, the size and shape of the soft conductive member 70 in plan view are not particularly limited as long as they can fill the holes 31 of the protective layer and can ensure electrical connection with the electrode layer. It is preferable that the size of the soft conductive member 70 approximately match the size and shape of the hole 31 of the protective layer.
 また、封止部材74で覆う前の軟性導電部材70の厚さは、保護層の厚さよりも厚いことが好ましい。軟性導電部材70の厚さを、保護層の厚さよりも厚くして、封止部材74で軟性導電部材70を押し付けるように取り付けることで、軟性導電部材70と導線76、および、軟性導電部材70と電極層とを確実に接触させることができ、安定した導通を得ることができる。 Also, the thickness of the soft conductive member 70 before being covered with the sealing member 74 is preferably greater than the thickness of the protective layer. By making the thickness of the soft conductive member 70 thicker than the thickness of the protective layer and attaching the soft conductive member 70 so as to press it with the sealing member 74, the soft conductive member 70, the lead wire 76, and the soft conductive member 70 and the electrode layer can be reliably brought into contact with each other, and stable conduction can be obtained.
 安定した導通を得る観点から、封止部材74で覆う前の軟性導電部材70の厚さは、保護層の厚さの1.1倍以上が好ましく、1.5倍~125倍がより好ましく、1.5倍~25倍がさらに好ましい。 From the viewpoint of obtaining stable conduction, the thickness of the soft conductive member 70 before being covered with the sealing member 74 is preferably 1.1 times or more, more preferably 1.5 to 125 times the thickness of the protective layer. 1.5 times to 25 times is more preferable.
 ここで、図1に示す例においては、上部保護層30側で軟性導電部材70および導電性粘着テープ72を介して上部電極層26と電気的に接続される導線76と、下部保護層28側で軟性導電部材および導電性粘着テープを介して下部電極層24と電気的に接続される導線76とは、好ましい態様として、面方向の位置が重畳しないように配置されている。これによって、上部電極層26側の導線76と、下部電極層24側の導線76とが接触して短絡することを抑制できる。 Here, in the example shown in FIG. 1, a conductor 76 electrically connected to the upper electrode layer 26 via the soft conductive member 70 and the conductive adhesive tape 72 on the side of the upper protective layer 30 and a conductor 76 on the side of the lower protective layer 28 In a preferred embodiment, the conductive wires 76 electrically connected to the lower electrode layer 24 via the soft conductive member and the conductive adhesive tape are arranged so as not to overlap each other in the plane direction. As a result, it is possible to prevent the conductive wire 76 on the upper electrode layer 26 side and the conductive wire 76 on the lower electrode layer 24 side from coming into contact with each other and causing a short circuit.
 また、図1に示す例では、上部保護層30および下部保護層28のそれぞれに1つの孔部を有し、各孔部内に配置される軟性導電部材70を介して電極層と導線76とが電気的に接続される構成としたがこれに限定はされず、各保護層が2以上の孔部を有し、各孔部で軟性導電部材70を介して電極層と導線76とが電気的に接続される構成としてもよい。すなわち、各電極層は2箇所以上で導線76と電気的に接続される構成であってもよい。 In the example shown in FIG. 1, each of the upper protective layer 30 and the lower protective layer 28 has one hole, and the electrode layer and the conductive wire 76 are connected through the flexible conductive member 70 arranged in each hole. Although it is configured to be electrically connected, it is not limited to this. It is good also as a structure connected to. That is, each electrode layer may be configured to be electrically connected to the conducting wire 76 at two or more locations.
 このような圧電フィルム10は、一例として、スピーカー、マイクロフォン、および、ギター等の楽器に用いられるピックアップなどの各種の音響デバイス(音響機器)において、電気信号に応じた振動による音の発生(再生)や、音による振動を電気信号に変換するために利用される。また、圧電フィルムは、これ以外にも、感圧センサおよび発電素子等にも利用可能である。 Such a piezoelectric film 10 is used, for example, in various acoustic devices (acoustic equipment) such as speakers, microphones, and pickups used in musical instruments such as guitars to generate (reproduce) sounds by vibrating in response to electrical signals. It is also used to convert sound vibrations into electrical signals. In addition, the piezoelectric film can also be used for pressure sensors, power generation elements, and the like.
 以下、本発明の圧電フィルムの各構成要素について説明する。 Each component of the piezoelectric film of the present invention will be described below.
〔圧電層〕
 圧電層20は、公知の圧電体からなる層であればよい。本発明において、圧電層20は、高分子材料を含むマトリックス34に、圧電体粒子36を含む高分子複合圧電体であるのが好ましい。
[Piezoelectric layer]
The piezoelectric layer 20 may be a layer made of a known piezoelectric material. In the present invention, the piezoelectric layer 20 is preferably a polymeric composite piezoelectric body containing piezoelectric particles 36 in a matrix 34 containing a polymeric material.
 圧電層20を構成する高分子複合圧電体のマトリックス34(マトリックス兼バインダ)の材料として、常温で粘弾性を有する高分子材料を用いるのが好ましい。なお、本明細書において、「常温」とは、0~50℃程度の温度域を指す。 As the material for the matrix 34 (matrix and binder) of the polymer composite piezoelectric material constituting the piezoelectric layer 20, it is preferable to use a polymer material having viscoelasticity at room temperature. In this specification, "ordinary temperature" refers to a temperature range of about 0 to 50.degree.
 本発明の圧電フィルム10は、フレキシブルディスプレイ用のスピーカーなど、フレキシブル性を有するスピーカー等に好適に用いられる。ここで、フレキシブル性を有するスピーカーに用いられる高分子複合圧電体(圧電層20)は、次の用件を具備したものであるのが好ましい。従って、以下の要件を具備する材料として、常温で粘弾性を有する高分子材料を用いるのが好ましい。 The piezoelectric film 10 of the present invention is suitably used for speakers having flexibility, such as speakers for flexible displays. Here, the polymeric composite piezoelectric material (piezoelectric layer 20) used in the flexible speaker preferably satisfies the following requirements. Therefore, it is preferable to use a polymeric material having viscoelasticity at room temperature as a material that satisfies the following requirements.
 (i) 可撓性
 例えば、携帯用として新聞や雑誌のように書類感覚で緩く撓めた状態で把持する場合、絶えず外部から、数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けることになる。この時、高分子複合圧電体が硬いと、その分大きな曲げ応力が発生し、マトリックスと圧電体粒子との界面で亀裂が発生し、やがて破壊に繋がる恐れがある。従って、高分子複合圧電体には適度な柔らかさが求められる。また、歪みエネルギーを熱として外部へ拡散できれば応力を緩和することができる。従って、高分子複合圧電体の損失正接が適度に大きいことが求められる。
 (ii) 音質
 スピーカーは、20Hz~20kHzのオーディオ帯域の周波数で圧電体粒子を振動させ、その振動エネルギーによって高分子複合圧電体(圧電フィルム)全体が一体となって振動することで音が再生される。従って、振動エネルギーの伝達効率を高めるために高分子複合圧電体には適度な硬さが求められる。また、スピーカーの周波数特性が平滑であれば、曲率の変化に伴い最低共振周波数が変化した際の音質の変化量も小さくなる。従って、高分子複合圧電体の損失正接は適度に大きいことが求められる。
(i) Flexibility For example, when gripping a loosely bent state like a document like a newspaper or magazine for portable use, it is constantly subjected to a relatively slow and large bending deformation of several Hz or less from the outside. become. At this time, if the polymer composite piezoelectric material is hard, a correspondingly large bending stress is generated, and cracks occur at the interface between the matrix and the piezoelectric particles, which may eventually lead to destruction. Therefore, the polymer composite piezoelectric body is required to have appropriate softness. Moreover, stress can be relieved if strain energy can be diffused to the outside as heat. Therefore, it is required that the loss tangent of the polymer composite piezoelectric material is appropriately large.
(ii) Sound quality Speakers vibrate piezoelectric particles at frequencies in the audio band of 20 Hz to 20 kHz, and the vibration energy causes the entire polymer composite piezoelectric material (piezoelectric film) to vibrate as one to reproduce sound. be. Therefore, the polymer composite piezoelectric body is required to have appropriate hardness in order to increase the transmission efficiency of vibration energy. In addition, if the frequency characteristics of the speaker are smooth, the amount of change in sound quality when the lowest resonance frequency changes as the curvature changes becomes small. Therefore, the loss tangent of the polymer composite piezoelectric body is required to be moderately large.
 以上をまとめると、高分子複合圧電体は、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことが求められる。また、高分子複合圧電体の損失正接は、20kHz以下の全ての周波数の振動に対して、適度に大きいことが求められる。 In summary, the polymer composite piezoelectric body is required to behave hard against vibrations of 20 Hz to 20 kHz and softly against vibrations of several Hz or less. Also, the loss tangent of the polymer composite piezoelectric body is required to be moderately large with respect to vibrations of all frequencies of 20 kHz or less.
 一般に、高分子固体は粘弾性緩和機構を有しており、温度上昇あるいは周波数の低下とともに大きなスケールの分子運動が貯蔵弾性率(ヤング率)の低下(緩和)あるいは損失弾性率の極大(吸収)として観測される。その中でも、非晶質領域の分子鎖のミクロブラウン運動によって引き起こされる緩和は、主分散と呼ばれ、非常に大きな緩和現象が見られる。この主分散が起きる温度がガラス転移点(Tg)であり、最も粘弾性緩和機構が顕著に現れる。 In general, polymer solids have a viscoelastic relaxation mechanism, and as the temperature rises or the frequency decreases, large-scale molecular motion causes a decrease (relaxation) in the storage elastic modulus (Young's modulus) or a maximum loss elastic modulus (absorption). is observed as Among them, the relaxation caused by the micro-Brownian motion of the molecular chains in the amorphous region is called principal dispersion, and a very large relaxation phenomenon is observed. The temperature at which this primary dispersion occurs is the glass transition point (Tg), and the viscoelastic relaxation mechanism appears most prominently.
 高分子複合圧電体(圧電層20)において、ガラス転移点が常温にある高分子材料、言い換えると、常温で粘弾性を有する高分子材料をマトリックスに用いることで、20Hz~20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞う高分子複合圧電体が実現する。特に、この振舞いが好適に発現する等の点で、周波数1Hzでのガラス転移温度が常温、すなわち、0~50℃にある高分子材料を、高分子複合圧電体のマトリックスに用いるのが好ましい。 In the polymer composite piezoelectric body (piezoelectric layer 20), by using a polymer material having a glass transition point at room temperature, in other words, a polymer material having viscoelasticity at room temperature, as a matrix, vibration of 20 Hz to 20 kHz is hard, and a polymer composite piezoelectric material that behaves softly against slow vibrations of several Hz or less is realized. In particular, it is preferable to use a polymeric material having a glass transition temperature of normal temperature, ie, 0 to 50° C. at a frequency of 1 Hz, for the matrix of the polymeric composite piezoelectric material in order that this behavior can be favorably expressed.
 常温で粘弾性を有する高分子材料としては、誘電性を有するものであれば、公知の各種のものが利用可能である。好ましくは、高分子材料は、常温、すなわち、0℃~50℃において、動的粘弾性試験による周波数1Hzにおける損失正接の極大値が、0.5以上である高分子材料を用いる。これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に、最大曲げモーメント部におけるマトリックスと圧電体粒子との界面の応力集中が緩和され、良好な可撓性が得られる。 As the polymeric material having viscoelasticity at room temperature, various known materials can be used as long as they have dielectric properties. Preferably, the polymeric material used has a maximum loss tangent value of 0.5 or more at a frequency of 1 Hz according to a dynamic viscoelasticity test at room temperature, that is, at 0° C. to 50° C. As a result, when the polymer composite piezoelectric body is slowly bent by an external force, the stress concentration at the interface between the matrix and the piezoelectric particles at the maximum bending moment portion is relaxed, and good flexibility is obtained.
 また、高分子材料は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において100MPa以上、50℃において10MPa以下、であるのが好ましい。これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に発生する曲げモーメントが低減できると同時に、20Hz~20kHzの音響振動に対しては硬く振る舞うことができる。 In addition, the polymer material preferably has a storage modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 100 MPa or more at 0°C and 10 MPa or less at 50°C. As a result, the bending moment generated when the polymeric composite piezoelectric body is slowly bent by an external force can be reduced, and at the same time, it can behave rigidly against acoustic vibrations of 20 Hz to 20 kHz.
 また、高分子材料は、比誘電率が25℃において10以上有ると、より好適である。これにより、高分子複合圧電体に電圧を印加した際に、マトリックス中の圧電体粒子にはより高い電界が掛かるため、大きな変形量が期待できる。 Further, it is more preferable that the polymer material has a dielectric constant of 10 or more at 25°C. As a result, when a voltage is applied to the polymer composite piezoelectric material, a higher electric field is applied to the piezoelectric particles in the matrix, so a large amount of deformation can be expected.
 しかしながら、その反面、良好な耐湿性の確保等を考慮すると、高分子材料は、比誘電率が25℃において10以下であるのも、好適である。 However, on the other hand, in consideration of ensuring good moisture resistance, etc., it is also suitable for the polymer material to have a dielectric constant of 10 or less at 25°C.
 このような条件を満たす高分子材料としては、シアノエチル化ポリビニルアルコール(シアノエチル化PVA)、ポリ酢酸ビニル、ポリビニリデンクロライドコアクリロニトリル、ポリスチレン-ビニルポリイソプレンブロック共重合体、ポリビニルメチルケトン、および、ポリブチルメタクリレート等が例示される。また、これらの高分子材料としては、ハイブラー5127(クラレ社製)などの市販品も、好適に利用可能である。なかでも、高分子材料としては、シアノエチル基を有する材料を用いることが好ましく、シアノエチル化PVAを用いるのが特に好ましい。なお、これらの高分子材料は、1種のみを用いてもよく、複数種を併用(混合)して用いてもよい。 Polymer materials that satisfy these conditions include cyanoethylated polyvinyl alcohol (cyanoethylated PVA), polyvinyl acetate, polyvinylidene chloride core acrylonitrile, polystyrene-vinylpolyisoprene block copolymer, polyvinylmethylketone, and polybutyl. Methacrylate and the like are exemplified. Commercially available products such as Hybler 5127 (manufactured by Kuraray Co., Ltd.) can also be suitably used as these polymer materials. Among them, as the polymer material, it is preferable to use a material having a cyanoethyl group, and it is particularly preferable to use cyanoethylated PVA. These polymer materials may be used singly or in combination (mixed).
 このような高分子材料を用いるマトリックス34は、必要に応じて、複数の高分子材料を併用してもよい。すなわち、マトリックス34には、誘電特性や機械的特性の調節等を目的として、常温で粘弾性を有する高分子材料に加え、必要に応じて、その他の誘電性高分子材料を添加しても良い。 The matrix 34 using such a polymer material may use a plurality of polymer materials together, if necessary. That is, for the purpose of adjusting the dielectric properties and mechanical properties of the matrix 34, in addition to the polymer material having viscoelasticity at room temperature, other dielectric polymer materials may be added as necessary. .
 添加可能な誘電性高分子材料としては、一例として、ポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、ポリフッ化ビニリデン-トリフルオロエチレン共重合体およびポリフッ化ビニリデン-テトラフルオロエチレン共重合体等のフッ素系高分子、シアン化ビニリデン-酢酸ビニル共重合体、シアノエチルセルロース、シアノエチルヒドロキシサッカロース、シアノエチルヒドロキシセルロース、シアノエチルヒドロキシプルラン、シアノエチルメタクリレート、シアノエチルアクリレート、シアノエチルヒドロキシエチルセルロース、シアノエチルアミロース、シアノエチルヒドロキシプロピルセルロース、シアノエチルジヒドロキシプロピルセルロース、シアノエチルヒドロキシプロピルアミロース、シアノエチルポリアクリルアミド、シアノエチルポリアクリレート、シアノエチルプルラン、シアノエチルポリヒドロキシメチレン、シアノエチルグリシドールプルラン、シアノエチルサッカロースおよびシアノエチルソルビトール等のシアノ基またはシアノエチル基を有するポリマー、ならびに、ニトリルゴムやクロロプレンゴム等の合成ゴム等が例示される。中でも、シアノエチル基を有する高分子材料は、好適に利用される。 Examples of dielectric polymer materials that can be added include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and polyvinylidene fluoride-trifluoroethylene copolymer. and fluorine-based polymers such as polyvinylidene fluoride-tetrafluoroethylene copolymer, vinylidene cyanide-vinyl acetate copolymer, cyanoethylcellulose, cyanoethylhydroxysaccharose, cyanoethylhydroxycellulose, cyanoethylhydroxypullulan, cyanoethylmethacrylate, cyanoethylacrylate, cyanoethyl Cyano groups such as hydroxyethylcellulose, cyanoethylamylose, cyanoethylhydroxypropylcellulose, cyanoethyldihydroxypropylcellulose, cyanoethylhydroxypropylamylose, cyanoethylpolyacrylamide, cyanoethylpolyacrylate, cyanoethylpullulan, cyanoethylpolyhydroxymethylene, cyanoethylglycidolpullulan, cyanoethylsaccharose and cyanoethylsorbitol. Alternatively, polymers having cyanoethyl groups, and synthetic rubbers such as nitrile rubber and chloroprene rubber are exemplified. Among them, polymer materials having cyanoethyl groups are preferably used.
 また、圧電層20のマトリックス34において、シアノエチル化PVA等の常温で粘弾性を有する高分子材料に加えて添加される誘電性高分子材料は、1種に限定はされず、複数種を添加してもよい。 Further, in the matrix 34 of the piezoelectric layer 20, the dielectric polymer material added in addition to the polymer material having viscoelasticity at room temperature such as cyanoethylated PVA is not limited to one type, and plural types may be added. may
 また、マトリックス34には、誘電性高分子材料以外にも、ガラス転移点を調節する目的で、塩化ビニル樹脂、ポリエチレン、ポリスチレン、メタクリル樹脂、ポリブテン、および、イソブチレン等の熱可塑性樹脂、ならびに、フェノール樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、および、マイカ等の熱硬化性樹脂を添加しても良い。さらに、粘着性を向上する目的で、ロジンエステル、ロジン、テルペン、テルペンフェノール、および、石油樹脂等の粘着付与剤を添加しても良い。 In addition to the dielectric polymer material, the matrix 34 also contains thermoplastic resins such as vinyl chloride resin, polyethylene, polystyrene, methacrylic resin, polybutene, and isobutylene, and phenol for the purpose of adjusting the glass transition point. Thermosetting resins such as resins, urea resins, melamine resins, alkyd resins, and mica may be added. Furthermore, a tackifier such as rosin ester, rosin, terpene, terpene phenol, and petroleum resin may be added for the purpose of improving adhesiveness.
 圧電層20のマトリックス34において、シアノエチル化PVA等の粘弾性を有する高分子材料以外の材料を添加する際の添加量には、特に限定は無いが、マトリックス34に占める割合で30質量%以下とするのが好ましい。これにより、マトリックス34における粘弾性緩和機構を損なうことなく、添加する高分子材料の特性を発現できるため、高誘電率化、耐熱性の向上、圧電体粒子36および電極層との密着性向上等の点で好ましい結果を得ることができる。 When adding a material other than a polymer material having viscoelasticity such as cyanoethylated PVA to the matrix 34 of the piezoelectric layer 20, there is no particular limitation on the amount of the material added, but the ratio of the material to the matrix 34 is 30% by mass or less. preferably. As a result, the characteristics of the polymer material to be added can be expressed without impairing the viscoelastic relaxation mechanism in the matrix 34, so that the dielectric constant can be increased, the heat resistance can be improved, and the adhesion between the piezoelectric particles 36 and the electrode layer can be improved. favorable results can be obtained in terms of
 圧電層20は、このようなマトリックス34に、圧電体粒子36を含む、高分子複合圧電体である。 The piezoelectric layer 20 is a polymeric composite piezoelectric body containing piezoelectric particles 36 in such a matrix 34 .
 圧電体粒子36は、ペロブスカイト型またはウルツ鉱型の結晶構造を有するセラミックス粒子からなるものである。圧電体粒子36を構成するセラミックス粒子としては、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン酸鉛(PLZT)、チタン酸バリウム(BaTiO3)、酸化亜鉛(ZnO)、および、チタン酸バリウムとビスマスフェライト(BiFe3)との固溶体(BFBT)等が例示される。これらの圧電体粒子36は、1種のみを用いてもよく、複数種を併用(混合)して用いてもよい。 The piezoelectric particles 36 are made of ceramic particles having a perovskite or wurtzite crystal structure. Examples of ceramic particles constituting the piezoelectric particles 36 include lead zirconate titanate (PZT), lead zirconate lanthanate titanate (PLZT), barium titanate (BaTiO 3 ), zinc oxide (ZnO), and A solid solution (BFBT) of barium titanate and bismuth ferrite (BiFe 3 ) is exemplified. Only one kind of these piezoelectric particles 36 may be used, or a plurality of kinds thereof may be used together (mixed).
 このような圧電体粒子36の粒径には制限はなく、高分子複合圧電体(圧電フィルム10)のサイズおよび用途等に応じて、適宜、選択すれば良い。圧電体粒子36の粒径は、1~10μmが好ましい。圧電体粒子36の粒径をこの範囲とすることにより、高分子複合圧電体(圧電フィルム10)が高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。 The particle size of such piezoelectric particles 36 is not limited, and may be appropriately selected according to the size and application of the polymer composite piezoelectric material (piezoelectric film 10). The particle size of the piezoelectric particles 36 is preferably 1 to 10 μm. By setting the particle diameter of the piezoelectric particles 36 within this range, favorable results can be obtained in that the polymer composite piezoelectric body (piezoelectric film 10) can achieve both high piezoelectric characteristics and flexibility.
 なお、図2においては、圧電層20中の圧電体粒子36は、マトリックス34中に、均一かつ規則性を持って分散されているが、本発明は、これに制限はされない。すなわち、圧電層20中の圧電体粒子36は、好ましくは均一に分散されていれば、マトリックス34中に不規則に分散されていてもよい。 Although the piezoelectric particles 36 in the piezoelectric layer 20 are uniformly and regularly dispersed in the matrix 34 in FIG. 2, the present invention is not limited to this. That is, the piezoelectric particles 36 in the piezoelectric layer 20 may be randomly dispersed in the matrix 34, preferably uniformly dispersed.
 圧電層20(高分子複合圧電体)において、圧電層20中におけるマトリックス34と圧電体粒子36との量比には、制限はなく、圧電層20の面方向の大きさおよび厚さ、高分子複合圧電体の用途、ならびに、高分子複合圧電体に要求される特性等に応じて、適宜、設定すればよい。圧電層20中における圧電体粒子36の体積分率は、30~80%が好ましく、50%以上がより好ましく、従って、50~80%とするのが、さらに好ましい。マトリックス34と圧電体粒子36との量比を上記範囲とすることにより、高い圧電特性と可撓性とを両立できる等の点で好ましい結果を得ることができる。 In the piezoelectric layer 20 (polymer composite piezoelectric material), there is no restriction on the quantitative ratio between the matrix 34 and the piezoelectric particles 36 in the piezoelectric layer 20. It may be appropriately set according to the application of the composite piezoelectric material and the properties required for the polymer composite piezoelectric material. The volume fraction of the piezoelectric particles 36 in the piezoelectric layer 20 is preferably 30% to 80%, more preferably 50% or more, and therefore 50% to 80% is even more preferable. By setting the amount ratio between the matrix 34 and the piezoelectric particles 36 within the above range, favorable results can be obtained in terms of achieving both high piezoelectric properties and flexibility.
 圧電層20の厚さには制限はなく、高分子複合圧電体の用途、および、高分子複合圧電体に要求される特性等に応じて、適宜、設定すればよい。圧電層20が厚いほど、いわゆるシート状物のコシの強さなどの剛性等の点では有利であるが、同じ量だけ圧電層20を伸縮させるために必要な電圧(電位差)は大きくなる。圧電層20の厚さは、10~300μmが好ましく、20~200μmがより好ましく、30~150μmがさらに好ましい。圧電層20の厚さを、上記範囲とすることにより、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。 The thickness of the piezoelectric layer 20 is not limited, and may be appropriately set according to the application of the polymer composite piezoelectric material, the properties required for the polymer composite piezoelectric material, and the like. The thicker the piezoelectric layer 20 is, the more advantageous it is in terms of stiffness, such as stiffness of the so-called sheet, but the voltage (potential difference) required to expand and contract the piezoelectric layer 20 by the same amount is increased. The thickness of the piezoelectric layer 20 is preferably 10-300 μm, more preferably 20-200 μm, even more preferably 30-150 μm. By setting the thickness of the piezoelectric layer 20 within the above range, it is possible to obtain favorable results in terms of ensuring both rigidity and appropriate flexibility.
〔電極層および保護層〕
 図2に示すように、図示例の圧電フィルム10は、圧電層20の一面に、下部電極層24を有し、その表面に下部保護層28を有し、圧電層20の他方の面に、上部電極層26を有し、その表面に上部保護層30を有してなる構成を有する。ここで、上部電極層26と下部電極層24とが電極対を形成する。
[Electrode layer and protective layer]
As shown in FIG. 2, the illustrated piezoelectric film 10 has a lower electrode layer 24 on one surface of the piezoelectric layer 20, a lower protective layer 28 on the surface thereof, and a lower protective layer 28 on the surface of the piezoelectric layer 20. It has an upper electrode layer 26 and an upper protective layer 30 on its surface. Here, the upper electrode layer 26 and the lower electrode layer 24 form an electrode pair.
 すなわち、圧電フィルム10は、圧電層20の両面を電極対、すなわち、上部電極層26および下部電極層24で挟持し、この積層体を、下部保護層28および上部保護層30で挟持してなる構成を有する。
 このように、圧電フィルム10において、上部電極層26および下部電極層24で挾持された領域は、印加された電圧に応じて伸縮される。
That is, the piezoelectric film 10 has a piezoelectric layer 20 sandwiched between electrode pairs, that is, an upper electrode layer 26 and a lower electrode layer 24 , and this laminate sandwiched between a lower protective layer 28 and an upper protective layer 30 . have a configuration.
Thus, in the piezoelectric film 10, the region sandwiched between the upper electrode layer 26 and the lower electrode layer 24 expands and contracts according to the applied voltage.
 下部保護層28および上部保護層30は、上部電極層26および下部電極層24を被覆すると共に、圧電層20に適度な剛性と機械的強度を付与する役目を担っている。すなわち、圧電フィルム10において、マトリックス34と圧電体粒子36とからなる圧電層20は、ゆっくりとした曲げ変形に対しては、非常に優れた可撓性を示す一方で、用途によっては、剛性や機械的強度が不足する場合がある。圧電フィルム10は、それを補うために下部保護層28および上部保護層30が設けられる。 The lower protective layer 28 and the upper protective layer 30 serve to cover the upper electrode layer 26 and the lower electrode layer 24 and to give the piezoelectric layer 20 appropriate rigidity and mechanical strength. That is, in the piezoelectric film 10, the piezoelectric layer 20 composed of the matrix 34 and the piezoelectric particles 36 exhibits excellent flexibility against slow bending deformation. May lack mechanical strength. The piezoelectric film 10 is provided with a lower protective layer 28 and an upper protective layer 30 to compensate.
 下部保護層28および上部保護層30には、制限はなく、各種のシート状物が利用可能であり、一例として、各種の樹脂フィルムが好適に例示される。中でも、優れた機械的特性および耐熱性を有するなどの理由により、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)、および、環状オレフィン系樹脂等からなる樹脂フィルムが、好適に利用される。 There are no restrictions on the lower protective layer 28 and the upper protective layer 30, and various sheet-like materials can be used. As an example, various resin films are preferably exemplified. Among them, polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyphenylene sulfite (PPS), polymethyl methacrylate (PMMA), due to their excellent mechanical properties and heat resistance. ), polyetherimide (PEI), polyimide (PI), polyethylene naphthalate (PEN), triacetyl cellulose (TAC), cyclic olefin resins, and the like are preferably used.
 下部保護層28および上部保護層30の厚さにも、制限はない。また、下部保護層28および上部保護層30の厚さは、基本的に同じであるが、異なってもよい。ここで、下部保護層28および上部保護層30の剛性が高過ぎると、圧電層20の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、機械的強度やシート状物としての良好なハンドリング性が要求される場合を除けば、下部保護層28および上部保護層30は、薄いほど有利である。 The thicknesses of the lower protective layer 28 and the upper protective layer 30 are also not limited. Also, although the thicknesses of the lower protective layer 28 and the upper protective layer 30 are basically the same, they may be different. Here, if the rigidity of the lower protective layer 28 and the upper protective layer 30 is too high, not only will the expansion and contraction of the piezoelectric layer 20 be restricted, but also the flexibility will be impaired. Therefore, the thinner the lower protective layer 28 and the upper protective layer 30 are, the better, except for cases where mechanical strength and good handling properties as a sheet-like article are required.
 下部保護層28および上部保護層30の厚さは、3μm~100μmが好ましく、3μm~50μmがより好ましく、3μm~30μmがさらに好ましく、4μm~10μmが特に好ましい。 The thickness of the lower protective layer 28 and the upper protective layer 30 is preferably 3 μm to 100 μm, more preferably 3 μm to 50 μm, still more preferably 3 μm to 30 μm, and particularly preferably 4 μm to 10 μm.
 ここで、圧電フィルム10においては、下部保護層28および上部保護層30の厚さが、圧電層20の厚さの2倍以下であれば、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。例えば、圧電層20の厚さが50μmで下部保護層28および上部保護層30がPETからなる場合、下部保護層28および上部保護層30の厚さは、100μm以下が好ましく、50μm以下がより好ましく、25μm以下がさらに好ましい。 Here, in the piezoelectric film 10, if the thickness of the lower protective layer 28 and the upper protective layer 30 is not more than twice the thickness of the piezoelectric layer 20, it is possible to ensure both rigidity and appropriate flexibility. favorable results can be obtained. For example, when the thickness of the piezoelectric layer 20 is 50 μm and the lower protective layer 28 and the upper protective layer 30 are made of PET, the thicknesses of the lower protective layer 28 and the upper protective layer 30 are preferably 100 μm or less, more preferably 50 μm or less. , 25 μm or less.
 圧電フィルム10において、圧電層20と下部保護層28との間には下部電極層24が、圧電層20と上部保護層30との間には上部電極層26が、それぞれ形成される。下部電極層24および上部電極層26は、圧電層20に駆動電圧を印加するために設けられる。 In the piezoelectric film 10, a lower electrode layer 24 is formed between the piezoelectric layer 20 and the lower protective layer 28, and an upper electrode layer 26 is formed between the piezoelectric layer 20 and the upper protective layer 30, respectively. A lower electrode layer 24 and an upper electrode layer 26 are provided for applying a drive voltage to the piezoelectric layer 20 .
 本発明において、下部電極層24および上部電極層26の形成材料には制限はなく、各種の導電体が利用可能である。具体的には、炭素、パラジウム、鉄、錫、アルミニウム、ニッケル、白金、金、銀、銅、チタン、クロムおよびモリブデン等、これらの合金、これらの金属および合金の積層体および複合体、ならびに、酸化インジウムスズ等が例示される。中でも、銅、アルミニウム、金、銀、白金、および、酸化インジウムスズは、下部電極層24および上部電極層26として好適に例示される。 In the present invention, the materials for forming the lower electrode layer 24 and the upper electrode layer 26 are not limited, and various conductors can be used. Specifically, carbon, palladium, iron, tin, aluminum, nickel, platinum, gold, silver, copper, titanium, chromium, molybdenum, etc., alloys thereof, laminates and composites of these metals and alloys, and Examples include indium tin oxide. Among them, copper, aluminum, gold, silver, platinum, and indium tin oxide are preferably exemplified as the lower electrode layer 24 and the upper electrode layer 26 .
 また、下部電極層24および上部電極層26の形成方法にも制限はなく、真空蒸着およびスパッタリング等の気相堆積法(真空成膜法)、めっきによる成膜、ならびに、上記材料で形成された箔を貼着する方法等、公知の方法が、各種、利用可能である。 In addition, the method of forming the lower electrode layer 24 and the upper electrode layer 26 is not limited. Various known methods, such as the method of applying foil, can be used.
 中でも特に、圧電フィルム10の可撓性が確保できる等の理由で、真空蒸着によって成膜された銅およびアルミニウム等の薄膜は、下部電極層24および上部電極層26として、好適に利用される。その中でも特に、真空蒸着による銅の薄膜は、好適に利用される。 Among others, thin films of copper, aluminum, etc. formed by vacuum deposition are preferably used as the lower electrode layer 24 and the upper electrode layer 26, for the reason that the flexibility of the piezoelectric film 10 can be ensured. Among them, a copper thin film formed by vacuum deposition is particularly preferably used.
 下部電極層24および上部電極層26の厚さには、制限はない。また、下部電極層24および上部電極層26の厚さは、基本的に同じであるが、異なってもよい。 The thicknesses of the lower electrode layer 24 and the upper electrode layer 26 are not limited. In addition, although the thicknesses of the lower electrode layer 24 and the upper electrode layer 26 are basically the same, they may be different.
 ここで、前述の下部保護層28および上部保護層30と同様に、下部電極層24および上部電極層26の剛性が高過ぎると、圧電層20の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、下部電極層24および上部電極層26は、電気抵抗が高くなり過ぎない範囲であれば、薄いほど有利である。すなわち、下部電極層24および上部電極層26は、薄膜電極であるのが好ましい。 Here, similarly to the lower protective layer 28 and the upper protective layer 30 described above, if the rigidity of the lower electrode layer 24 and the upper electrode layer 26 is too high, not only will the expansion and contraction of the piezoelectric layer 20 be restricted, but also the flexibility will be impaired. be Therefore, the thinner the lower electrode layer 24 and the upper electrode layer 26, the better, as long as the electrical resistance does not become too high. That is, the lower electrode layer 24 and the upper electrode layer 26 are preferably thin film electrodes.
 下部電極層24および上部電極層26の厚さは、保護層よりも薄く、0.05μm~10μmが好ましく、0.05μm~5μmがより好ましく、0.08μm~3μmがさらに好ましく、0.1μm~2μmが特に好ましい。 The thickness of the lower electrode layer 24 and the upper electrode layer 26 is thinner than that of the protective layer, preferably 0.05 μm to 10 μm, more preferably 0.05 μm to 5 μm, further preferably 0.08 μm to 3 μm, further preferably 0.1 μm to 0.1 μm. 2 μm is particularly preferred.
 ここで、圧電フィルム10においては、下部電極層24および上部電極層26の厚さと、ヤング率との積が、下部保護層28および上部保護層30の厚さとヤング率との積を下回れば、可撓性を大きく損なうことがないため、好適である。 Here, in the piezoelectric film 10, if the product of the thickness of the lower electrode layer 24 and the upper electrode layer 26 and the Young's modulus is less than the product of the thickness of the lower protective layer 28 and the upper protective layer 30 and the Young's modulus, This is preferable because it does not greatly impair flexibility.
 例えば、下部保護層28および上部保護層30がPET(ヤング率:約6.2GPa)で、下部電極層24および上部電極層26が銅(ヤング率:約130GPa)からなる組み合わせの場合、下部保護層28および上部保護層30の厚さが25μmだとすると、下部電極層24および上部電極層26の厚さは、1.2μm以下が好ましく、0.3μm以下がより好ましく、中でも0.1μm以下とするのが好ましい。 For example, when the lower protective layer 28 and the upper protective layer 30 are made of PET (Young's modulus: about 6.2 GPa) and the lower electrode layer 24 and the upper electrode layer 26 are made of copper (Young's modulus: about 130 GPa), the lower protective layer Assuming that the thickness of the layer 28 and the upper protective layer 30 is 25 μm, the thickness of the lower electrode layer 24 and the upper electrode layer 26 is preferably 1.2 μm or less, more preferably 0.3 μm or less, especially 0.1 μm or less. is preferred.
 圧電フィルム10は、動的粘弾性測定による周波数1Hzでの損失正接(Tanδ)の極大値が常温に存在するのが好ましく、0.1以上となる極大値が常温に存在するのがより好ましい。これにより、圧電フィルム10が外部から数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けたとしても、歪みエネルギーを効果的に熱として外部へ拡散できるため、マトリックスと圧電体粒子との界面で亀裂が発生するのを防ぐことができる。 The piezoelectric film 10 preferably has a maximum value of loss tangent (Tan δ) at a frequency of 1 Hz by dynamic viscoelasticity measurement at room temperature, and more preferably has a maximum value of 0.1 or more at room temperature. As a result, even if the piezoelectric film 10 is subjected to a relatively slow and large bending deformation of several Hz or less from the outside, the strain energy can be effectively diffused to the outside as heat. can prevent cracks from forming.
 圧電フィルム10は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃で10GPa~30GPa、50℃で1GPa~10GPaであるのが好ましい。なお、この条件に関しては、圧電層20も同様である。これにより、圧電フィルム10が貯蔵弾性率(E’)に大きな周波数分散を有することができる。すなわち、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことができる。 The piezoelectric film 10 preferably has a storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 10 GPa to 30 GPa at 0°C and 1 GPa to 10 GPa at 50°C. Note that this condition applies to the piezoelectric layer 20 as well. This allows the piezoelectric film 10 to have a large frequency dispersion in the storage modulus (E'). That is, it can act hard against vibrations of 20 Hz to 20 kHz and soft against vibrations of several Hz or less.
 また、圧電フィルム10は、厚さと動的粘弾性測定による周波数1Hzでの貯蔵弾性率との積が、0℃において1.0×105~2.0×106(1.0E+05~2.0E+06)N/m、50℃において1.0×105~1.0×106(1.0E+05~1.0E+06)N/m、であるのが好ましい。なお、この条件に関しては、圧電層20も同様である。これにより、圧電フィルム10が可撓性および音響特性を損なわない範囲で、適度な剛性と機械的強度を備えることができる。 In addition, the piezoelectric film 10 has a product of thickness and storage elastic modulus at a frequency of 1 Hz measured by dynamic viscoelasticity measurement at 0° C. of 1.0×10 5 to 2.0×10 6 (1.0E+05 to 2.0×10 6 ). 0E+06) N/m, preferably 1.0×10 5 to 1.0×10 6 (1.0E+05 to 1.0E+06) N/m at 50°C. Note that this condition applies to the piezoelectric layer 20 as well. As a result, the piezoelectric film 10 can have appropriate rigidity and mechanical strength within a range that does not impair flexibility and acoustic properties.
 さらに、圧電フィルム10は、動的粘弾性測定から得られたマスターカーブにおいて、25℃、周波数1kHzにおける損失正接が、0.05以上であるのが好ましい。なお、この条件に関しては、圧電層20も同様である。これにより、圧電フィルム10を用いたスピーカーの周波数特性が平滑になり、スピーカーの曲率の変化に伴い最低共振周波数f0が変化した際の音質の変化を小さくできる。 Furthermore, the piezoelectric film 10 preferably has a loss tangent of 0.05 or more at 25° C. and a frequency of 1 kHz in a master curve obtained from dynamic viscoelasticity measurement. Note that this condition applies to the piezoelectric layer 20 as well. As a result, the frequency characteristics of the speaker using the piezoelectric film 10 are smoothed, and the change in sound quality when the lowest resonance frequency f 0 changes as the curvature of the speaker changes can be reduced.
 なお、本発明において、圧電フィルム10および圧電層20等の貯蔵弾性率(ヤング率)および損失正接は、公知の方法で測定すればよい。一例として、エスアイアイ・ナノテクノロジー社製(SIIナノテクノロジー社製)の動的粘弾性測定装置DMS6100を用いて測定すればよい。 In the present invention, the storage elastic modulus (Young's modulus) and loss tangent of the piezoelectric film 10, piezoelectric layer 20, etc. may be measured by known methods. As an example, the dynamic viscoelasticity measuring device DMS6100 manufactured by SII Nanotechnology Co., Ltd. (manufactured by SII Nanotechnology Co., Ltd.) may be used for measurement.
 測定条件としては、一例として、測定周波数は0.1Hz~20Hz(0.1Hz、0.2Hz、0.5Hz、1Hz、2Hz、5Hz、10Hzおよび20Hz)が、測定温度は-50~150℃が、昇温速度は2℃/分(窒素雰囲気中)が、サンプルサイズは40mm×10mm(クランプ領域込み)が、チャック間距離は20mmが、それぞれ、例示される。 As an example of the measurement conditions, the measurement frequency is 0.1 Hz to 20 Hz (0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, 10 Hz and 20 Hz), and the measurement temperature is -50 to 150 ° C. , a heating rate of 2° C./min (in a nitrogen atmosphere), a sample size of 40 mm×10 mm (including the clamping area), and a distance between chucks of 20 mm.
〔導電性粘着テープ〕
 導電性粘着テープ72は、導電性を有する金属材料で形成されるシート状物である導電性シートの一方の表面に粘着層を有するものである。導電性シートの材料は、銅、アルミニウム、金および銀等が好適に例示される。
 導電性粘着テープ72の粘着層は、導電性シートと保護層とを接着できるものであればよい。粘着層の材料は、導電性アクリル粘着材が好適に例示される。
[Conductive adhesive tape]
The conductive adhesive tape 72 has an adhesive layer on one surface of a conductive sheet, which is a sheet-shaped object made of a conductive metal material. Copper, aluminum, gold, silver and the like are preferably exemplified as the material of the conductive sheet.
The adhesive layer of the conductive adhesive tape 72 may be any material as long as it can adhere the conductive sheet and the protective layer. The material of the adhesive layer is suitably exemplified by a conductive acrylic adhesive material.
 また、導電性粘着テープ72の平面視における形状および大きさには特に限定はない。導電性粘着テープ72の形状および大きさは、軟性導電部材70を覆うことができ、導線76と接続可能で、かつ、圧電フィルム10の駆動を拘束しない形状および大きさであればよい。 Also, the shape and size of the conductive adhesive tape 72 in plan view are not particularly limited. The conductive adhesive tape 72 may have any shape and size as long as it can cover the soft conductive member 70 , can be connected to the lead wire 76 , and does not restrict the driving of the piezoelectric film 10 .
 また、導電性粘着テープ72の厚さにも特に限定はなく、軟性導電部材70および導線76との電気的接続を確保でき、かつ、圧電フィルム10の駆動を拘束しない厚さであればよい。 Also, the thickness of the conductive adhesive tape 72 is not particularly limited as long as it can ensure electrical connection with the soft conductive member 70 and the lead wire 76 and does not restrict the driving of the piezoelectric film 10 .
〔封止部材〕
 封止部材74は、絶縁性のシート状の部材である。封止部材74の材料は、ポリイミド、耐熱PET等が例示される。
[Sealing member]
The sealing member 74 is an insulating sheet-like member. The material of the sealing member 74 is exemplified by polyimide, heat-resistant PET, and the like.
 また、封止部材74の平面視における形状および大きさには特に限定はない。封止部材74の形状および大きさは、軟性導電部材70および導電性粘着テープ72の少なくとも一部を覆って軟性導電部材70および導線76を固定でき、かつ、圧電フィルム10の駆動を拘束しない形状および大きさであればよい。前述のとおり、封止部材74は、軟性導電部材70の全面を覆うのが好ましく、また、導電性粘着テープ72の全面を覆うのが好ましい。 Also, the shape and size of the sealing member 74 in plan view are not particularly limited. The shape and size of the sealing member 74 is such that it can cover at least a portion of the soft conductive member 70 and the conductive adhesive tape 72 to fix the soft conductive member 70 and the conductive wire 76 and does not restrict the driving of the piezoelectric film 10. and size. As described above, the sealing member 74 preferably covers the entire surface of the soft conductive member 70 and preferably covers the entire surface of the conductive adhesive tape 72 .
 また、封止部材74の厚さにも特に限定はなく、圧電フィルム10の駆動を拘束しない厚さであればよい。 Also, the thickness of the sealing member 74 is not particularly limited as long as it does not restrict the driving of the piezoelectric film 10 .
 封止部材74は粘着層を有するものであってもよいし、接着剤等によって保護層に接着されてもよい。 The sealing member 74 may have an adhesive layer, or may be adhered to the protective layer with an adhesive or the like.
〔導線〕
 導線76は、導電性を有する金属材料で形成されるシート状あるいはワイヤー状の物である。導線76の材料は、銅、アルミニウム、金および銀等が好適に例示される。
[Conducting wire]
The conducting wire 76 is a sheet-like or wire-like object made of a conductive metal material. Copper, aluminum, gold, silver, etc. are preferably exemplified as the material of the conductor wire 76 .
 導線76の形状および大きさには特に限定はない。導線76の形状および大きさは、軟性導電部材70と直接、あるいは、導電性粘着テープ72を介して電気的に接続でき、引出し電極として利用可能な形状および大きさであればよい。 The shape and size of the conducting wire 76 are not particularly limited. The conductive wire 76 may have any shape and size as long as it can be electrically connected to the soft conductive member 70 directly or via the conductive adhesive tape 72 and can be used as an extraction electrode.
 以下、図4~図10を参照して、圧電フィルム10の製造方法の一例を説明する。 An example of a method for manufacturing the piezoelectric film 10 will be described below with reference to FIGS. 4 to 10. FIG.
 まず、図4に示すように、下部保護層28の上に下部電極層24が形成されたシート状物10aを準備する。このシート状物10aは、下部保護層28の表面に、真空蒸着、スパッタリング、および、めっき等によって、下部電極層24として銅薄膜等を形成して作製すればよい。 First, as shown in FIG. 4, a sheet-like object 10a having a lower electrode layer 24 formed on a lower protective layer 28 is prepared. This sheet-like object 10a may be produced by forming a copper thin film or the like as the lower electrode layer 24 on the surface of the lower protective layer 28 by vacuum deposition, sputtering, plating, or the like.
 下部保護層28が非常に薄く、ハンドリング性が悪い時などは、必要に応じて、セパレータ(仮支持体)付きの下部保護層28を用いても良い。なお、セパレータとしては、厚さ25μm~100μmのPET等を用いることができる。セパレータは、上部電極層26および上部保護層30を熱圧着した後、下部保護層28に何らかの部材を積層する前に、取り除けばよい。 When the lower protective layer 28 is very thin and has poor handling properties, the lower protective layer 28 with a separator (temporary support) may be used as necessary. As the separator, PET or the like having a thickness of 25 μm to 100 μm can be used. The separator may be removed after the upper electrode layer 26 and the upper protective layer 30 are thermocompressed and before laminating any member on the lower protective layer 28 .
 一方で、有機溶媒に、マトリックスの材料となる高分子材料を溶解し、さらに、PZT粒子等の圧電体粒子36を添加し、攪拌して分散してなる塗料を調製する。上記物質以外の有機溶媒としては制限はなく各種の有機溶媒が利用可能である。 On the other hand, a coating material is prepared by dissolving a polymer material as a matrix material in an organic solvent, adding piezoelectric particles 36 such as PZT particles, and stirring and dispersing the mixture. Organic solvents other than the above substances are not limited and various organic solvents can be used.
 シート状物10aを準備し、かつ、塗料を調製したら、この塗料をシート状物10aにキャスティング(塗布)して、有機溶媒を蒸発して乾燥する。これにより、図5に示すように、下部保護層28の上に下部電極層24を有し、下部電極層24の上に圧電層20を形成してなる積層体10bを作製する。なお、下部電極層24とは、圧電層20を塗布する際の基材側の電極を差し、積層体における上下の位置関係を示すものではない。 After the sheet-like material 10a is prepared and the paint is prepared, the paint is cast (applied) on the sheet-like material 10a and dried by evaporating the organic solvent. As a result, as shown in FIG. 5, the laminate 10b having the lower electrode layer 24 on the lower protective layer 28 and the piezoelectric layer 20 on the lower electrode layer 24 is produced. The lower electrode layer 24 refers to the electrode on the base material side when the piezoelectric layer 20 is applied, and does not indicate the vertical positional relationship in the laminate.
 この塗料のキャスティング方法には制限はなく、スライドコータおよびドクターナイフ等の公知の方法(塗布装置)が、全て、利用可能である。 There are no restrictions on the method of casting this paint, and all known methods (coating devices) such as slide coaters and doctor knives can be used.
 上述したように、圧電フィルム10において、マトリックス34には、シアノエチル化PVA等の粘弾性材料以外にも、誘電性の高分子材料を添加しても良い。マトリックス34に、これらの高分子材料を添加する際には、上述した塗料に添加する高分子材料を溶解すればよい。 As described above, in the piezoelectric film 10, a dielectric polymer material may be added to the matrix 34 in addition to the viscoelastic material such as cyanoethylated PVA. When these polymeric materials are added to the matrix 34, the polymeric materials to be added to the coating material described above may be dissolved.
 下部保護層28の上に下部電極層24を有し、下部電極層24の上に圧電層20を形成してなる積層体10bを作製したら、好ましくは、圧電層20の分極処理(ポーリング)を行う。 After manufacturing the laminate 10b having the lower electrode layer 24 on the lower protective layer 28 and the piezoelectric layer 20 formed on the lower electrode layer 24, the piezoelectric layer 20 is preferably subjected to polarization treatment (poling). conduct.
 圧電層20の分極処理の方法には、制限はなく、公知の方法が利用可能である。なお、この分極処理の前に、圧電層20の表面を加熱ローラ等を用いて平滑化する、カレンダー処理を施してもよい。このカレンダー処理を施すことで、後述する熱圧着工程がスムーズに行える。 The method of polarization treatment of the piezoelectric layer 20 is not limited, and known methods can be used. Before this polarization treatment, the surface of the piezoelectric layer 20 may be smoothed by using a heating roller or the like, which is a calendering treatment. By performing this calendering process, the thermocompression bonding process, which will be described later, can be performed smoothly.
 このようにして積層体10bの圧電層20の分極処理を行う一方で、上部保護層30の上に上部電極層26が形成されたシート状物10cを、準備する。このシート状物10cは、上部保護層30の表面に、真空蒸着、スパッタリング、めっき等によって上部電極層26として銅薄膜等を形成して、作製すればよい。 While the piezoelectric layer 20 of the laminate 10b is subjected to polarization treatment in this manner, the sheet-like object 10c having the upper electrode layer 26 formed on the upper protective layer 30 is prepared. This sheet-like object 10c may be produced by forming a copper thin film or the like as the upper electrode layer 26 on the surface of the upper protective layer 30 by vacuum deposition, sputtering, plating, or the like.
 次いで、図6に示すように、上部電極層26を圧電層20に向けて、シート状物10cを、圧電層20の分極処理を終了した積層体10bに積層する。 Next, as shown in FIG. 6, the upper electrode layer 26 faces the piezoelectric layer 20, and the sheet-like material 10c is laminated on the laminate 10b for which the polarization treatment of the piezoelectric layer 20 has been completed.
 さらに、この積層体10bとシート状物10cとの積層体を、上部保護層30と下部保護層28とを挟持するようにして、加熱プレス装置や加熱ローラ対等で熱圧着する。 Furthermore, the laminated body of the laminated body 10b and the sheet-like material 10c is thermocompression bonded by a hot press device, a pair of heated rollers, or the like, with the upper protective layer 30 and the lower protective layer 28 sandwiched therebetween.
 以上の工程によって、圧電層20の両面に電極層および保護層が積層された積層体が作製される。作製された積層体は、各種用途に合わせて、所望の形状に裁断されてもよい。 Through the above steps, a laminate in which electrode layers and protective layers are laminated on both sides of the piezoelectric layer 20 is produced. The produced laminate may be cut into a desired shape according to various uses.
 このような積層体は、カットシート状のシート状物を用いて製造を行っても良いし、ロール・トゥ・ロール(Roll to Roll 以下、RtoRともいう)によって作製されてもよい。 Such a laminate may be produced using a cut sheet-like sheet material, or may be produced by roll to roll (hereinafter also referred to as RtoR).
 次に、この積層体の保護層に孔部を設け、軟性導電部材を充填して導電性粘着テープを介して導線を接続した後、封止部材で接続部を封止する。 Next, a hole is provided in the protective layer of the laminate, a soft conductive member is filled in the hole, and a conductive adhesive tape is used to connect the conductive wire, and then the connection is sealed with a sealing member.
 具体的には、まず、図7に示すように、上部保護層30に孔部31を形成する。同様に、下部保護層28に孔部を形成する(図示せず)。
 孔部31の形成は、レーザー加工(炭酸ガスレーザーなど)による方法、プレス加工により保護層に深さ方向に切り込みを入れてから保護層を剥離させる方法等によって行えばよい。
Specifically, first, as shown in FIG. 7, holes 31 are formed in the upper protective layer 30 . Similarly, holes are formed in the lower protective layer 28 (not shown).
The holes 31 may be formed by a method using laser processing (carbon dioxide laser or the like), a method of cutting the protective layer in the depth direction by press processing, and then peeling off the protective layer, or the like.
 保護層に孔部を設けた後には、図8に示すように、孔部31内に軟性導電部材70を配置する。軟性導電部材70は、平面視における大きさが予め孔部31の大きさ以下に加工されている。また、前述のとおり、好ましくは、軟性導電部材70の厚さd2は、保護層の厚さd1よりも厚いものが用いられる。 After forming the holes in the protective layer, the soft conductive member 70 is arranged in the holes 31 as shown in FIG. The soft conductive member 70 is preliminarily processed so that its size in plan view is equal to or smaller than the size of the hole 31 . Moreover, as described above, preferably, the thickness d2 of the soft conductive member 70 is thicker than the thickness d1 of the protective layer.
 次に、図9に示すように、軟性導電部材70を覆うように、導電性粘着テープ72を保護層上に積層する。さらに、導電性粘着テープ72の上に導線76を配置する。 Next, as shown in FIG. 9, a conductive adhesive tape 72 is laminated on the protective layer so as to cover the soft conductive member 70 . Furthermore, a conductive wire 76 is arranged on the conductive adhesive tape 72 .
 保護層上に導電性粘着テープ72を積層した後には、図10に示すように、封止部材74を導電性粘着テープ72および導線76の上に積層する。封止部材74は、接着剤および粘着剤等によって保護層に接着される。 After laminating the conductive adhesive tape 72 on the protective layer, a sealing member 74 is laminated on the conductive adhesive tape 72 and the conductor 76 as shown in FIG. The sealing member 74 is adhered to the protective layer with an adhesive, an adhesive, or the like.
 以上の工程によって、本発明の圧電フィルムが作製される。 The piezoelectric film of the present invention is produced through the above steps.
 このような圧電フィルム10は、下部電極層24および上部電極層26に電圧を印加すると、印加した電圧に応じて圧電体粒子36が分極方向に伸縮する。その結果、圧電フィルム10(圧電層20)が厚さ方向に収縮する。同時に、ポアゾン比の関係で、圧電フィルム10は、面内方向にも伸縮する。この伸縮は、0.01~0.1%程度である。なお、面内方向では全方向に等方的に伸縮する。 In such a piezoelectric film 10, when a voltage is applied to the lower electrode layer 24 and the upper electrode layer 26, the piezoelectric particles 36 expand and contract in the polarization direction according to the applied voltage. As a result, the piezoelectric film 10 (piezoelectric layer 20) shrinks in the thickness direction. At the same time, due to the Poisson's ratio, the piezoelectric film 10 also expands and contracts in the in-plane direction. This expansion and contraction is about 0.01 to 0.1%. In addition, it expands and contracts isotropically in all directions in the in-plane direction.
 上述したように、圧電層20の厚さは、好ましくは10~300μm程度である。従って、厚さ方向の伸縮は、最大でも0.3μm程度と非常に小さい。 As described above, the thickness of the piezoelectric layer 20 is preferably about 10-300 μm. Therefore, the expansion and contraction in the thickness direction is as small as about 0.3 μm at maximum.
 これに対して、圧電フィルム10すなわち圧電層20は、面方向には、厚さよりもはるかに大きなサイズを有する。従って、例えば、圧電フィルム10の長さが20cmであれば、電圧の印加によって、最大で0.2mm程度、圧電フィルム10は伸縮する。 On the other hand, the piezoelectric film 10, that is, the piezoelectric layer 20, has a size much larger than its thickness in the planar direction. Therefore, for example, if the length of the piezoelectric film 10 is 20 cm, the piezoelectric film 10 expands and contracts by about 0.2 mm at maximum due to voltage application.
 また、圧電フィルム10に圧力を加えると、圧電体粒子36の作用によって、電力を発生する。これを利用することで、圧電フィルム10は、上述のように、スピーカー、マイクロフォン、および、感圧センサ等の各種の用途に利用可能である。 Also, when pressure is applied to the piezoelectric film 10, the action of the piezoelectric particles 36 generates electric power. By utilizing this, the piezoelectric film 10 can be used for various applications such as speakers, microphones, and pressure sensors, as described above.
 ここで、PVDF等の高分子材料からなる一般的な圧電フィルムは、圧電特性に面内異方性を有し、電圧を印加された場合の面方向の伸縮量に異方性がある。 Here, a general piezoelectric film made of a polymeric material such as PVDF has in-plane anisotropy in piezoelectric properties, and anisotropy in the amount of expansion and contraction in the plane direction when a voltage is applied.
 これに対して、高分子材料を含むマトリックス中に圧電体粒子を含む高分子複合圧電体からなる圧電層は、圧電特性に面内異方性がなく、面内方向では全方向に等方的に伸縮する。このような等方的に二次元的に伸縮する圧電フィルム10によれば、一方向にしか大きく伸縮しないPVDF等の一般的な圧電フィルムを積層した場合に比べ、大きな力で振動することができ、より大きく、かつ、美しい音を発生できる。 On the other hand, a piezoelectric layer composed of a polymer composite piezoelectric material containing piezoelectric particles in a matrix containing a polymer material has no in-plane anisotropy in the piezoelectric characteristics and is isotropic in all directions in the in-plane direction. stretches to Such a piezoelectric film 10 that expands and contracts isotropically two-dimensionally can vibrate with a greater force than when a general piezoelectric film such as PVDF that expands and contracts greatly in only one direction is laminated. , can produce a louder and more beautiful sound.
 また、例えば、本発明の圧電フィルムを可撓性を有する有機エレクトロルミネセンスディスプレイおよび可撓性を有する液晶ディスプレイ等の可撓性を有する表示デバイスに貼着することで、表示デバイスのスピーカーとして用いることも可能である。 Further, for example, by attaching the piezoelectric film of the present invention to a flexible display device such as a flexible organic electroluminescence display and a flexible liquid crystal display, the film can be used as a speaker of the display device. is also possible.
 また、例えば、圧電フィルム10をスピーカーに用いる場合は、フィルム状の圧電フィルム10自体の振動によって音を発生するものとして用いてもよい。あるいは、圧電フィルム10は、振動板に貼り付けて、圧電フィルム10の振動によって振動板を振動させて音を発生するエキサイターとして用いてもよい。 Further, for example, when the piezoelectric film 10 is used for a speaker, the film-shaped piezoelectric film 10 itself may vibrate to generate sound. Alternatively, the piezoelectric film 10 may be attached to a diaphragm and used as an exciter that vibrates the diaphragm by the vibration of the piezoelectric film 10 to generate sound.
 また、本発明の圧電フィルム10は、複数枚を積層した積層圧電素子とすることにより、振動板等の被振動体を振動させる圧電振動素子としても、良好に作用する。 In addition, the piezoelectric film 10 of the present invention works well as a piezoelectric vibrating element for vibrating an object to be vibrated, such as a diaphragm, by forming a laminated piezoelectric element in which a plurality of sheets are laminated.
 一例として、圧電フィルム10を積層した積層圧電素子を振動板に貼着して、圧電フィルム10の積層体によって振動板を振動させて音を出力するスピーカーとしてもよい。すなわち、この場合には、圧電フィルム10の積層体を、振動板を振動させることで音を出力する、いわゆるエキサイターとして作用させる。 As an example, a laminated piezoelectric element in which piezoelectric films 10 are laminated may be attached to a diaphragm, and a speaker that outputs sound by vibrating the diaphragm with the laminate of piezoelectric films 10 may be used. That is, in this case, the laminate of the piezoelectric films 10 acts as a so-called exciter that outputs sound by vibrating the diaphragm.
 圧電フィルム10を積層した積層圧電素子に駆動電圧を印加することで、個々の圧電フィルム10が面方向に伸縮し、各圧電フィルム10の伸縮によって、圧電フィルム10の積層体全体が面方向に伸縮する。積層圧電素子の面方向の伸縮によって、積層体が貼着された振動板が撓み、その結果、振動板が、厚さ方向に振動する。この厚さ方向の振動によって、振動板は、音を発生する。振動板は、圧電フィルム10に印加した駆動電圧の大きさに応じて振動して、圧電フィルム10に印加した駆動電圧に応じた音を発生する。従って、この際には、圧電フィルム10自身は、音を出力しない。 By applying a driving voltage to the laminated piezoelectric element in which the piezoelectric films 10 are laminated, the individual piezoelectric films 10 expand and contract in the plane direction, and the expansion and contraction of each piezoelectric film 10 causes the entire laminate of the piezoelectric films 10 to expand and contract in the plane direction. do. The expansion and contraction of the laminated piezoelectric element in the planar direction bends the diaphragm to which the laminate is attached, and as a result, the diaphragm vibrates in the thickness direction. This vibration in the thickness direction causes the diaphragm to generate sound. The diaphragm vibrates according to the magnitude of the driving voltage applied to the piezoelectric film 10 and generates sound according to the driving voltage applied to the piezoelectric film 10 . Therefore, at this time, the piezoelectric film 10 itself does not output sound.
 1枚毎の圧電フィルム10の剛性が低く、伸縮力は小さくても、圧電フィルム10を積層した積層圧電素子は、剛性が高くなり、積層体全体としては伸縮力は大きくなる。その結果、圧電フィルム10を積層した積層圧電素子は、振動板がある程度の剛性を有するものであっても、大きな力で振動板を十分に撓ませて、厚さ方向に振動板を十分に振動させて、振動板に音を発生させることができる。 Even if the rigidity of each piezoelectric film 10 is low and the expansion/contraction force is small, the laminated piezoelectric element in which the piezoelectric films 10 are laminated has high rigidity, and the expansion/contraction force of the laminate as a whole is large. As a result, even if the diaphragm has a certain degree of rigidity, the laminated piezoelectric element in which the piezoelectric film 10 is laminated can sufficiently flex the diaphragm with a large force and sufficiently vibrate the diaphragm in the thickness direction. to make the diaphragm generate sound.
 圧電フィルム10を積層した積層圧電素子において、圧電フィルム10の積層枚数には、制限はなく、例えば振動させる振動板の剛性等に応じて、十分な振動量が得られる枚数を、適宜、設定すればよい。なお、十分な伸縮力を有するものであれば、1枚の圧電フィルム10を、同様のエキサイタ(圧電振動素子)として用いることも可能である。 In the laminated piezoelectric element in which the piezoelectric films 10 are laminated, the number of laminated piezoelectric films 10 is not limited. Just do it. It should be noted that a single piezoelectric film 10 can be used as a similar exciter (piezoelectric vibrating element) as long as it has sufficient stretching force.
 圧電フィルム10を積層した積層圧電素子で振動させる振動板にも、制限はなく、各種のシート状物(板状物、フィルム)が利用可能である。一例として、ポリエチレンテレフタレート(PET)等からなる樹脂フィルム、発泡ポリスチレン等からなる発泡プラスチック、段ボール材等の紙材、ガラス板、および、木材等が例示される。さらに、十分に撓ませることができるものであれば、振動板として、有機エレクトロルミネセンスディスプレイおよび液晶ディスプレイなどの表示デバイス等の各種の機器(デバイス)を用いてもよい。 There are no restrictions on the vibration plate that is vibrated by the laminated piezoelectric element in which the piezoelectric film 10 is laminated, and various sheet-like objects (plate-like objects, films) can be used. Examples include resin films such as polyethylene terephthalate (PET), foamed plastics such as polystyrene foam, paper materials such as cardboard, glass plates, and wood. Furthermore, various devices such as display devices such as organic electroluminescence displays and liquid crystal displays may be used as the diaphragm as long as they can be bent sufficiently.
 圧電フィルム10を積層した積層圧電素子は、隣接する圧電フィルム10同士を、貼着層(貼着剤)で貼着するのが好ましい。また、積層圧電素子と振動板も、貼着層で貼着するのが好ましい。 In the laminated piezoelectric element in which the piezoelectric films 10 are laminated, it is preferable that the adjacent piezoelectric films 10 are adhered with an adhesive layer (adhesive). Also, the laminated piezoelectric element and the diaphragm are preferably adhered with an adhesive layer.
 貼着層には制限はなく、貼着対象となる物同士を貼着できるものが、各種、利用可能である。従って、貼着層は、粘着剤からなるものでも接着剤からなるものでもよい。好ましくは、貼着後に固体で硬い貼着層が得られる、接着剤からなる接着層を用いる。以上の点に関しては、後述する長尺な圧電フィルム10を折り返してなる積層体でも、同様である。 There are no restrictions on the adhesive layer, and various types of materials that can be used to attach objects to be attached can be used. Therefore, the sticking layer may be made of a pressure-sensitive adhesive or an adhesive. Preferably, an adhesive layer is used which, after application, results in a solid and hard adhesive layer. The above points are the same for a laminated body formed by folding a long piezoelectric film 10 described later.
 圧電フィルム10を積層した積層圧電素子において、積層する各圧電フィルム10の分極方向には、制限はない。なお、後述するように、本発明の圧電フィルム10は、好ましくは厚さ方向に分極される。これに応じて、此処で言う圧電フィルム10の分極方向とは、厚さ方向の分極方向である。従って、積層圧電素子において、分極方向は、全ての圧電フィルム10で同方向であってもよく、分極方向が異なる圧電フィルムが存在してもよい。 In the laminated piezoelectric element in which the piezoelectric films 10 are laminated, the polarization direction of each laminated piezoelectric film 10 is not limited. As will be described later, the piezoelectric film 10 of the present invention is preferably polarized in the thickness direction. Accordingly, the polarization direction of the piezoelectric film 10 referred to herein is the polarization direction in the thickness direction. Therefore, in the laminated piezoelectric element, all the piezoelectric films 10 may have the same polarization direction, or there may be piezoelectric films having different polarization directions.
 圧電フィルム10を積層した積層圧電素子においては、隣接する圧電フィルム10同士で、分極方向が互いに逆になるように、圧電フィルム10を積層するのが好ましい。圧電フィルム10において、圧電層20に印加する電圧の極性は、圧電層20の分極方向に応じたものとなる。従って、分極方向が上部電極層26から下部電極層24に向かう場合でも、下部電極層24から上部電極層26に向かう場合でも、積層される全ての圧電フィルム10において、上部電極層26の極性および下部電極層24の極性を、同極性にする。従って、隣接する圧電フィルム10同士で、分極方向を互いに逆にすることで、隣接する圧電フィルム10の電極層同士が接触しても、接触する電極層は同極性であるので、ショート(短絡)する恐れがない。 In the laminated piezoelectric element in which the piezoelectric films 10 are laminated, it is preferable to laminate the piezoelectric films 10 so that the polarization directions of adjacent piezoelectric films 10 are opposite to each other. In the piezoelectric film 10 , the polarity of the voltage applied to the piezoelectric layer 20 depends on the polarization direction of the piezoelectric layer 20 . Therefore, regardless of whether the polarization direction is from the upper electrode layer 26 to the lower electrode layer 24 or from the lower electrode layer 24 to the upper electrode layer 26, the polarity and The polarity of the lower electrode layer 24 is made the same. Therefore, by reversing the polarization directions of the adjacent piezoelectric films 10, even if the electrode layers of the adjacent piezoelectric films 10 are in contact with each other, the contacting electrode layers have the same polarity, so a short circuit occurs. there is no fear of
 圧電フィルム10を積層した積層圧電素子は、圧電フィルム10を、1回以上、好ましくは複数回、折り返すことで、複数の圧電フィルム10を積層した構成でもよい。圧電フィルム10を折り返して積層した構成は、以下のような利点を有する。 The laminated piezoelectric element in which the piezoelectric films 10 are laminated may have a configuration in which a plurality of piezoelectric films 10 are laminated by folding the piezoelectric films 10 one or more times, preferably a plurality of times. The configuration in which the piezoelectric film 10 is folded and laminated has the following advantages.
 カットシート状の圧電フィルム10を、複数枚、積層した積層体では、1枚の圧電フィルム毎に、上部電極層26および下部電極層24を、駆動電源に接続する必要がある。これに対して、長尺な圧電フィルム10を折り返して積層した構成では、一枚の長尺な圧電フィルム10のみで積層圧電素子を構成できる。そのため、長尺な圧電フィルム10を折り返して積層した構成では、駆動電圧を印加するための電源が1個で済み、さらに、圧電フィルム10からの電極の引き出しも、1か所でよい。さらに、長尺な圧電フィルム10を折り返して積層した構成では、必然的に、隣接する圧電フィルム10同士で、分極方向が互いに逆になる。 In a laminate in which a plurality of cut sheet-like piezoelectric films 10 are laminated, it is necessary to connect the upper electrode layer 26 and the lower electrode layer 24 to the drive power source for each piezoelectric film. On the other hand, in the structure in which the long piezoelectric film 10 is folded and laminated, the laminated piezoelectric element can be configured with only one long piezoelectric film 10 . Therefore, in the configuration in which the long piezoelectric film 10 is folded and laminated, only one power source is required for applying the driving voltage, and the electrode may be led out from the piezoelectric film 10 at one point. Furthermore, in the structure in which the long piezoelectric films 10 are folded and laminated, the polarization directions of adjacent piezoelectric films 10 are inevitably opposite to each other.
 なお、このような、高分子複合圧電体からなる圧電層の両面に電極層および保護層を設けた圧電フィルムを積層した積層圧電素子に関しては、国際公開第2020/095812号および国際公開第2020/179353号等に記載されている。 Regarding such a laminated piezoelectric element in which piezoelectric films having electrode layers and protective layers provided on both sides of a piezoelectric layer made of a polymer composite piezoelectric body are laminated, International Publication No. 2020/095812 and International Publication No. 2020/ 179353 and the like.
 本発明の圧電フィルムおよび上述した積層圧電素子は、例えば、音波センサー、超音波センサー、圧力センサー、触覚センサー、歪みセンサーおよび振動センサー等の各種センサー(特に、ひび検知等のインフラ点検や異物混入検知等の製造現場検査に有用である)、マイクロフォン、ピックアップ、スピーカーおよびエキサイター等の音響デバイス(具体的な用途としては、ノイズキャンセラー(車、電車、飛行機、ロボット等に使用)、人工声帯、害虫・害獣侵入防止用ブザー、家具、壁紙、写真、ヘルメット、ゴーグル、ヘッドレスト、サイネージ、ロボットなどが例示される)、自動車、スマートフォン、スマートウォッチ、ゲーム等に適用して用いるハプティクス、超音波探触子およびハイドロホン等の超音波トランスデューサ、水滴付着防止、輸送、攪拌、分散、研磨等に用いるアクチュエータ、容器、乗り物、建物、スキーおよびラケット等のスポーツ用具に用いる制振材(ダンパー)、ならびに、道路、床、マットレス、椅子、靴、タイヤ、車輪およびパソコンキーボード等に適用して用いる振動発電装置として好適に使用することができる。 The piezoelectric film of the present invention and the above-described laminated piezoelectric element can be used for various sensors such as sound wave sensors, ultrasonic sensors, pressure sensors, tactile sensors, strain sensors and vibration sensors (especially infrastructure inspection such as crack detection and foreign matter detection). etc.), acoustic devices such as microphones, pickups, speakers and exciters (specific applications include noise cancellers (used in cars, trains, airplanes, robots, etc.), artificial vocal cords, pests and Buzzers for preventing vermin intrusion, furniture, wallpaper, photographs, helmets, goggles, headrests, signage, robots, etc.), haptics used for applications such as automobiles, smartphones, smart watches, games, etc., ultrasonic probes and ultrasonic transducers such as hydrophones, actuators used for preventing adhesion of water drops, transportation, stirring, dispersion, polishing, etc., damping materials (dampers) used for containers, vehicles, buildings, sports equipment such as skis and rackets, and roads , floors, mattresses, chairs, shoes, tires, wheels, and personal computer keyboards.
 以上、本発明の圧電フィルムについて詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。 Although the piezoelectric film of the present invention has been described in detail above, the present invention is not limited to the above examples, and various improvements and modifications may be made without departing from the gist of the present invention. is.
 以下、本発明の具体的実施例を挙げ、本発明についてより詳細に説明する。なお、本発明はこの実施例に限定されるものでなく、以下の実施例に示す材料、使用量、割合、処理内容、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更することができる。 Hereinafter, the present invention will be described in more detail by giving specific examples of the present invention. The present invention is not limited to this example, and the materials, amounts used, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. can.
 [実施例1]
 厚さ4μmのPETフィルムに、厚さ0.1μmの銅薄膜を真空蒸着してなるシート状物10aおよびシート状物10cを用意した。すなわち、本例においては、上部電極層26および下部電極層24は、厚さ0.1μmの銅蒸着薄膜であり、上部保護層30および下部保護層28は厚さ4μmのPETフィルムとなる。なお、プロセス中、良好なハンドリングを得るために、PETフィルムには厚さ50μmのセパレータ(仮支持体 PET)付きのものを用い、シート状物10cの熱圧着後に、各保護層のセパレータを取り除いた。
[Example 1]
A sheet 10a and a sheet 10c were prepared by vacuum-depositing a 0.1 μm thick copper thin film on a 4 μm thick PET film. That is, in this example, the upper electrode layer 26 and the lower electrode layer 24 are 0.1 μm-thick copper-deposited thin films, and the upper protective layer 30 and the lower protective layer 28 are 4 μm-thick PET films. In addition, in order to obtain good handling during the process, a PET film with a separator (temporary support PET) having a thickness of 50 μm was used, and the separator of each protective layer was removed after the sheet-like material 10c was thermocompressed. rice field.
 まず、下記の組成比で、シアノエチル化PVA(CR-V 信越化学工業社製)をメチルエチルケトン(MEK)に溶解した。その後、この溶液に、PZT粒子を下記の組成比で添加して、プロペラミキサー(回転数2000rpm)で分散させて、圧電層20を形成するための塗料を調製した。 First, cyanoethylated PVA (CR-V manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in methyl ethyl ketone (MEK) at the following composition ratio. After that, PZT particles were added to this solution in the following compositional ratio and dispersed with a propeller mixer (rotation speed: 2000 rpm) to prepare a paint for forming the piezoelectric layer 20 .
・PZT粒子・・・・・・・・・・・300質量部
・シアノエチル化PVA・・・・・・・15質量部
・MEK・・・・・・・・・・・・・・85質量部
・PZT particles・・・・・・・・・・300 parts by mass ・Cyanoethylated PVA・・・・・・・・15 parts by mass ・MEK・・・・・・・・・・・・85 parts by mass
 なお、PZT粒子は、市販のPZT原料粉を1000~1200℃で焼結した後、これを平均粒径5μmになるように解砕および分級処理したものを用いた。 The PZT particles used were obtained by sintering commercially available PZT raw material powder at 1000 to 1200° C. and then pulverizing and classifying the sintered particles to an average particle size of 5 μm.
 先に準備したシート状物10aの下部電極層24(銅蒸着薄膜)の上に、スライドコータを用いて、先に調製した圧電層20を形成するための塗料を塗布した。なお、塗料は、乾燥後の塗膜の膜厚が20μmになるように、塗布した。次いで、シート状物10aの上に塗料を塗布した物を、120℃のホットプレート上で加熱乾燥することでMEKを蒸発させ、積層体10bを形成した。 On the lower electrode layer 24 (copper-deposited thin film) of the previously prepared sheet-like material 10a, the previously prepared paint for forming the piezoelectric layer 20 was applied using a slide coater. In addition, the paint was applied so that the thickness of the coating film after drying was 20 μm. Next, the sheet material 10a coated with the paint was dried by heating on a hot plate at 120° C. to evaporate the MEK, thereby forming the laminate 10b.
 積層体10bの上に、上部電極層26(銅薄膜側)側を圧電層20に向けてシート状物10cを積層し、120℃で熱圧着した。これによって、圧電層20と上部電極層26および上部保護層30と、圧電層20と下部電極層24および下部保護層28とを接着した。 The sheet-like object 10c was laminated on the laminated body 10b with the upper electrode layer 26 (copper thin film side) side facing the piezoelectric layer 20, and was thermocompression bonded at 120°C. Thus, the piezoelectric layer 20, the upper electrode layer 26 and the upper protective layer 30, and the piezoelectric layer 20, the lower electrode layer 24 and the lower protective layer 28 are adhered.
 次に、下部電極層24と上部電極層26との間に電圧を印加して、圧電層20に電気的分極処理を施した。なお、電気的分極処理は、ホットプレート上にて、圧電層20の温度を100℃として、下部電極層24と上部電極層26との間に6kVの直流電圧を印加して行った。 Next, a voltage was applied between the lower electrode layer 24 and the upper electrode layer 26 to subject the piezoelectric layer 20 to electrical polarization treatment. The electric polarization treatment was performed by setting the temperature of the piezoelectric layer 20 to 100° C. on a hot plate and applying a DC voltage of 6 kV between the lower electrode layer 24 and the upper electrode layer 26 .
 次に、下部保護層28および上部保護層30それぞれに、レーザー加工によって、直径5mmの保護層を貫通する孔部を形成した。 Next, in each of the lower protective layer 28 and the upper protective layer 30, holes penetrating through the protective layer with a diameter of 5 mm were formed by laser processing.
 軟性導電部材70として、厚さ100μmのセーレン株式会社製Sui-10-511M(織布)の導電布を準備した。この導電布を平面視における直径5mmに切り抜き、保護層の孔部に配置した。 As the soft conductive member 70, a conductive cloth of Sui-10-511M (woven cloth) manufactured by Seiren Co., Ltd. and having a thickness of 100 μm was prepared. This conductive cloth was cut out to have a diameter of 5 mm in plan view, and was placed in the hole of the protective layer.
 導電性粘着テープ72として、テサテープ社製60382を大きさ10mm×10mmに切り抜いたものを用いた。また、導線76として、材質:銅、大きさ12mm×15mmを準備した。また、封止部材74として、株式会社寺岡製作所製650Rを大きさ15mm×10mmに切り抜いたものを用いた。 As the conductive adhesive tape 72, 60382 manufactured by Tesa Tape Co., Ltd. was cut into a size of 10 mm x 10 mm. Also, as the conducting wire 76, a wire 76 made of copper and having a size of 12 mm×15 mm was prepared. As the sealing member 74, a 650R made by Teraoka Seisakusho Co., Ltd. cut out to a size of 15 mm×10 mm was used.
 導電性粘着テープ72を導電布(孔部)を全面覆うように保護層に貼着した。次に、導線76の一部が導電性粘着テープ72に接触するように配置し、導電布、および、導電性粘着テープ72を全面覆うように封止部材74を配置して、封止部材74を保護層に貼着した。その際、導電布を厚さ方向に圧縮するようにして封止部材74を貼着した。以上により圧電フィルムを作製した。 A conductive adhesive tape 72 was adhered to the protective layer so as to cover the entire surface of the conductive cloth (holes). Next, a part of the conducting wire 76 is placed in contact with the conductive adhesive tape 72 , and a sealing member 74 is placed so as to cover the entire surface of the conductive cloth and the conductive adhesive tape 72 . was attached to the protective layer. At that time, the sealing member 74 was adhered so as to compress the conductive cloth in the thickness direction. A piezoelectric film was produced as described above.
 [実施例2]
 導電性粘着テープ72を有さない以外は、実施例1と同様にして圧電フィルムを作製した。すなわち、導線76の一部が導電布に接触するように配置し、導電布と導線76との接触位置を覆うように封止部材74を保護層に貼着し、圧電フィルムを作製した。
[Example 2]
A piezoelectric film was produced in the same manner as in Example 1, except that the conductive adhesive tape 72 was not used. That is, the conductive wire 76 was partially in contact with the conductive cloth, and the sealing member 74 was adhered to the protective layer so as to cover the contact position between the conductive cloth and the conductive wire 76, thereby producing the piezoelectric film.
 [実施例3]
 封止部材74を有さない以外は、実施例1と同様にして圧電フィルムを作製した。
[Example 3]
A piezoelectric film was produced in the same manner as in Example 1, except that the sealing member 74 was not provided.
 [実施例4]
 導電性粘着テープ72および封止部材74を有さない以外は、実施例1と同様にして圧電フィルムを作製した。なお、導線76は、導電布と接触する位置以外の位置で、粘着テープを用いて保護層に固定した。
[Example 4]
A piezoelectric film was produced in the same manner as in Example 1 except that the conductive adhesive tape 72 and the sealing member 74 were not provided. In addition, the conducting wire 76 was fixed to the protective layer using an adhesive tape at a position other than the position in contact with the conductive cloth.
 [実施例5]
 軟性導電部材として、厚さ70μmのセーレン社製Si-80-301(不織布)の導電布を用いた以外は実施例4と同様にして圧電フィルムを作製した。
[Example 5]
A piezoelectric film was produced in the same manner as in Example 4, except that a 70 μm-thick Si-80-301 (nonwoven fabric) conductive cloth manufactured by Seiren Co., Ltd. was used as the soft conductive member.
 [実施例6]
 軟性導電部材として、厚さ100μmの株式会社奥谷金網製作所社製平織金網Φ0.05×200m/s(織布)の金属布を用いた以外は実施例4と同様にして圧電フィルムを作製した。
[Example 6]
A piezoelectric film was produced in the same manner as in Example 4, except that a 100 μm-thick plain-woven wire mesh Φ0.05×200 m/s (woven fabric) manufactured by Okutani Wire Net Mfg. Co., Ltd. was used as the soft conductive member.
 [実施例7]
 軟性導電部材として、厚さ100μmの株式会社日工テクノ製銅繊維不織布の金属布を用いた以外は実施例4と同様にして圧電フィルムを作製した。
[Example 7]
A piezoelectric film was produced in the same manner as in Example 4, except that a 100 μm-thick metal cloth of copper fiber nonwoven fabric manufactured by Nikko Techno Co., Ltd. was used as the soft conductive member.
 [実施例8]
 軟性導電部材として、厚さ500μmの株式会社セーレン社製SUI-70-5005Aの導電性ウレタンフォーム+導電布を用いた以外は実施例4と同様にして圧電フィルムを作製した。
[Example 8]
A piezoelectric film was produced in the same manner as in Example 4, except that SUI-70-5005A conductive urethane foam and conductive cloth having a thickness of 500 μm manufactured by Seiren Co., Ltd. were used as the soft conductive member.
 [実施例9]
 平面視における導電布の直径を2mmとした以外は実施例4と同様にして圧電フィルムを作製した。
[Example 9]
A piezoelectric film was produced in the same manner as in Example 4, except that the diameter of the conductive cloth in plan view was 2 mm.
 [比較例1]
 軟性導電部材に代えて、導電性ペーストを用いた以外は実施例4と同様にして圧電フィルムを作製した。
[Comparative Example 1]
A piezoelectric film was produced in the same manner as in Example 4, except that a conductive paste was used instead of the soft conductive member.
 導電性ペーストとしては、藤倉化成株式会社製ドータイトD550を用いた。また、導電性ペーストは保護層の孔部を満たすように塗布した。 Dotite D550 manufactured by Fujikura Kasei Co., Ltd. was used as the conductive paste. Also, the conductive paste was applied so as to fill the holes of the protective layer.
 [比較例2]
 軟性導電部材に代えて、半田を用いた以外は実施例4と同様にして圧電フィルムを作製した。
[Comparative Example 2]
A piezoelectric film was produced in the same manner as in Example 4, except that solder was used instead of the soft conductive member.
 [評価]
 作製した圧電フィルムについて、以下の項目を評価した。
[evaluation]
The following items were evaluated for the produced piezoelectric film.
 [抵抗]
 圧電フィルムを作製から24時間経過後の電気抵抗をLCRメーターを用いて測定した。なお、評価にあたっては、評価用に各導線取付面と同じ面に、抵抗測定用の導線を各実施例および比較例と同様の形態で取り付けた。この際、取付位置は保護層の孔部の中心間距離が30mmとなる位置に設けた。測定した抵抗値を以下の基準で評価した。
・A:1Ω未満
・B:1Ω以上5Ω未満
・C:5Ω以上
[resistance]
The electrical resistance of the piezoelectric film was measured 24 hours after it was produced using an LCR meter. In the evaluation, a lead wire for resistance measurement was attached in the same manner as in each example and comparative example on the same surface as each lead wire attachment surface for evaluation. At this time, the mounting position was set so that the distance between the centers of the holes in the protective layer was 30 mm. The measured resistance values were evaluated according to the following criteria.
・A: Less than 1 Ω ・B: 1 Ω or more and less than 5 Ω ・C: 5 Ω or more
 [可撓性]
 保護層に空けた孔部の中心が折り曲げ中心となるように、圧電フィルムをΦ40mmの丸棒に沿わせて折り曲げた。その際、丸棒にならって屈曲されているか確認し、折り曲げを開放して伸ばした状態で電極が元の形状に戻っているかを確認した。屈曲時に圧電フィルム同様に屈曲し、伸ばした際に元の状態に戻ったものをAとし、屈曲時に曲がらない、伸ばした際に伸びないものについてはCとした。
[Flexibility]
The piezoelectric film was bent along a φ40 mm round bar so that the center of the hole formed in the protective layer was the bending center. At that time, it was confirmed whether the electrode was bent following the shape of a round bar, and whether the electrode returned to its original shape after being unbent and stretched was confirmed. A was given when the film was bent in the same manner as the piezoelectric film when bent and returned to its original state when stretched, and C was given when it did not bend when bent and did not stretch when stretched.
 [屈曲耐久性]
 圧電フィルムの作製から24時間経過後に保護層に空けた孔部の中心が折り曲げの中心となるように、Φ40mmの丸棒に沿わせて折り曲げた。折り曲げは繰り返し30回行った。その後、上記抵抗評価と同様に抵抗測定用の電極を取り付け、評価を行った。測定した抵抗値を以下の基準で評価した。
・A:1Ω未満
・B:1Ω以上5Ω未満
・C:5Ω以上
[Bending durability]
Twenty-four hours after the piezoelectric film was produced, it was bent along a round bar of φ40 mm so that the center of the hole formed in the protective layer was the center of the bending. The bending was repeated 30 times. Thereafter, an electrode for resistance measurement was attached in the same manner as in the above resistance evaluation, and evaluation was performed. The measured resistance values were evaluated according to the following criteria.
・A: Less than 1 Ω ・B: 1 Ω or more and less than 5 Ω ・C: 5 Ω or more
 [導電部材量の安定性]
 予め重量を測定しておいた圧電フィルムに対し、導電部材を保護層の孔部に供給後、導電部材が空気に露出した状態で24時間静置し、前後の重量を測定した。測定にあたっては30枚の重量測定を行い、30枚の測定平均をA、標準偏差をBとし、B/A(%)にて平均に対するばらつきの割合を以下の基準で評価した。導電性ペーストについては、十分に撹拌された状態の液と、撹拌後24時間静置し沈降が進んだ状態の液を再撹拌することなく使用した液にて、各15枚のサンプルを製作した。各液はチューブディスペンサを用いて液上面の液を吸い込み、供給した。
・A:10%未満
・C:10%以上
[Stability of amount of conductive material]
After the conductive member was supplied to the holes of the protective layer of the piezoelectric film whose weight had been measured in advance, the conductive member was allowed to stand for 24 hours while being exposed to the air, and the weight before and after was measured. In the measurement, the weight of 30 sheets was measured, the average of 30 sheets measured was A, the standard deviation was B, and the ratio of variation to the average was evaluated by B/A (%) according to the following criteria. For the conductive paste, 15 samples each were produced from the well-stirred liquid and the liquid that had been allowed to stand still for 24 hours after stirring and was used without re-stirring. . Each liquid was supplied by sucking the liquid on the liquid surface using a tube dispenser.
・A: Less than 10% ・C: 10% or more
 結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、本発明の実施例は比較例に比べて可撓性が高く、屈曲耐久性が高く、かつ、導通部材の量の安定性が高い、すわなち、十分な導通が安定して得られることがわかる。一方、比較例1は、形成される導電性ペーストの層が、濃度のばらつきによりばらつくため、導通部材の量の安定性が悪かった。そのため、十分な導通が得られない場合がある。また、比較例2は、半田の硬さによって可撓性が低くなり、また、折り曲げを繰り返し行った後に電極層が損傷して抵抗値が高くなった。 From Table 1, the examples of the present invention have higher flexibility, higher bending durability, and higher stability of the amount of the conducting member than the comparative examples, that is, sufficient conduction is stable. I know you can get it. On the other hand, in Comparative Example 1, the conductive paste layer to be formed varied due to variations in concentration, so the amount of the conductive member was not stable. Therefore, sufficient conduction may not be obtained. Moreover, in Comparative Example 2, the flexibility was lowered due to the hardness of the solder, and the electrode layer was damaged after repeated bending, resulting in an increase in the resistance value.
 また、実施例1と実施例2および4との対比から、軟性導電部材と導線とを導電性粘着テープを介して接続することにより、抵抗を低減することができることがわかる。 Also, from the comparison between Example 1 and Examples 2 and 4, it can be seen that the resistance can be reduced by connecting the soft conductive member and the conductive wire via the conductive adhesive tape.
 また、実施例1と実施例3および4との対比から、封止部材を有することにより、圧電フィルムの屈曲が繰り返された際などに、各部材が位置ズレして、導通部材と、電極層および導線との間の圧力が保持されず、当たりが変化して接触面積が小さくなることを防止でき、安定した導通を得ることができることがわかる。
 以上から本発明の効果は明らかである。
In addition, from the comparison between Example 1 and Examples 3 and 4, it was found that when the piezoelectric film was repeatedly bent due to the presence of the sealing member, the positions of the respective members were displaced and the conductive member and the electrode layer were displaced. It can be seen that the contact area can be prevented from becoming smaller due to a change in the contact due to the pressure between the conductor and the lead wire being not maintained, and stable conduction can be obtained.
From the above, the effect of the present invention is clear.
 スピーカーおよびマイクロフォン等の音響機器、ならびに、感圧センサなど、各種の用途に好適に利用可能である。 It can be suitably used for various purposes such as acoustic equipment such as speakers and microphones, and pressure sensors.
 10 圧電フィルム
 10a、10c シート状物
 10b 積層体
 20 圧電層
 24 下部電極層
 26 上部電極層
 28 下部保護層
 30 上部保護層
 31 孔部
 34 マトリックス
 36 圧電体粒子
 70 軟性導電部材
 72 導電性粘着テープ
 74 封止部材
 76 導線
REFERENCE SIGNS LIST 10 piezoelectric films 10a, 10c sheet 10b laminate 20 piezoelectric layer 24 lower electrode layer 26 upper electrode layer 28 lower protective layer 30 upper protective layer 31 hole 34 matrix 36 piezoelectric particles 70 soft conductive member 72 conductive adhesive tape 74 Sealing member 76 conducting wire

Claims (5)

  1.  圧電層、前記圧電層の両面に形成される電極層、および、前記電極層の、前記圧電層側の面とは反対側の面に積層される保護層を有する圧電フィルムであって、
     前記保護層は、表面から前記電極層まで貫通する孔部を有し、
     前記孔部内に配置され前記電極層と導線とを電気的に接続する、導電布、金属布および導電性ウレタンフォームの少なくとも1つを含む軟性導電部材を有する、圧電フィルム。
    A piezoelectric film having a piezoelectric layer, electrode layers formed on both sides of the piezoelectric layer, and a protective layer laminated on a surface of the electrode layer opposite to the surface of the electrode layer,
    The protective layer has a hole penetrating from the surface to the electrode layer,
    A piezoelectric film having a soft conductive member including at least one of a conductive cloth, a metal cloth, and a conductive urethane foam disposed in the hole and electrically connecting the electrode layer and the conductive wire.
  2.  前記軟性導電部材と前記導線との接続位置を覆う封止部材を有する、請求項1に記載の圧電フィルム。 The piezoelectric film according to claim 1, which has a sealing member that covers a connection position between the soft conductive member and the lead wire.
  3.  前記封止部材で覆う前の前記軟性導電部材の厚さが、前記保護層の厚さよりも厚い、請求項2に記載の圧電フィルム。 The piezoelectric film according to claim 2, wherein the thickness of the soft conductive member before being covered with the sealing member is thicker than the thickness of the protective layer.
  4.  前記軟性導電部材と前記導線との間に配置される導電性粘着テープを有する、請求項1~3のいずれか一項に記載の圧電フィルム。 The piezoelectric film according to any one of claims 1 to 3, having a conductive adhesive tape arranged between the soft conductive member and the conductor.
  5.  前記圧電層は、高分子材料を含むマトリックス中に圧電体粒子を含む高分子複合圧電体からなる、請求項1~4のいずれか一項に記載の圧電フィルム。 The piezoelectric film according to any one of claims 1 to 4, wherein the piezoelectric layer is composed of a polymer composite piezoelectric body containing piezoelectric particles in a matrix containing a polymer material.
PCT/JP2022/003906 2021-03-11 2022-02-02 Piezoelectric film WO2022190715A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023505209A JPWO2022190715A1 (en) 2021-03-11 2022-02-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-039014 2021-03-11
JP2021039014 2021-03-11

Publications (1)

Publication Number Publication Date
WO2022190715A1 true WO2022190715A1 (en) 2022-09-15

Family

ID=83226702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003906 WO2022190715A1 (en) 2021-03-11 2022-02-02 Piezoelectric film

Country Status (3)

Country Link
JP (1) JPWO2022190715A1 (en)
TW (1) TW202236704A (en)
WO (1) WO2022190715A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4061008A4 (en) * 2019-11-12 2023-08-02 FUJIFILM Corporation Piezoelectric element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015354A (en) * 2014-06-30 2016-01-28 富士フイルム株式会社 Electroacoustic conversion film and conduction method of the same
WO2017073317A1 (en) * 2015-10-27 2017-05-04 株式会社村田製作所 Piezoelectric device and method for manufacturing piezoelectric device
WO2019093092A1 (en) * 2017-11-09 2019-05-16 株式会社村田製作所 Piezoelectric component, sensor, and actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015354A (en) * 2014-06-30 2016-01-28 富士フイルム株式会社 Electroacoustic conversion film and conduction method of the same
WO2017073317A1 (en) * 2015-10-27 2017-05-04 株式会社村田製作所 Piezoelectric device and method for manufacturing piezoelectric device
WO2019093092A1 (en) * 2017-11-09 2019-05-16 株式会社村田製作所 Piezoelectric component, sensor, and actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4061008A4 (en) * 2019-11-12 2023-08-02 FUJIFILM Corporation Piezoelectric element
US11895463B2 (en) 2019-11-12 2024-02-06 Fujifilm Corporation Piezoelectric element

Also Published As

Publication number Publication date
TW202236704A (en) 2022-09-16
JPWO2022190715A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
JP7137690B2 (en) Piezoelectric Films, Laminated Piezoelectric Elements and Electroacoustic Transducers
JP7265625B2 (en) Electroacoustic conversion film and electroacoustic transducer
JP7166428B2 (en) Electroacoustic transducer
WO2020261822A1 (en) Piezoelectric film
TW202118314A (en) Piezoelectric film and manufacturing method of piezoelectric film
TWI827851B (en) Polymer composite piezoelectric body, and piezoelectric film
JP7259075B2 (en) Piezoelectric element
WO2021157288A1 (en) Piezoelectric film
WO2022190715A1 (en) Piezoelectric film
JP7177268B2 (en) Polymer Composite Piezoelectric Materials and Piezoelectric Films
JP7137689B2 (en) Piezoelectric Films, Laminated Piezoelectric Elements and Electroacoustic Transducers
JP7288508B2 (en) piezoelectric film
WO2023047958A1 (en) Multilayer piezoelectric element and electroacoustic transducer
JP7286790B2 (en) Piezoelectric element
JP7217807B2 (en) piezoelectric film
WO2022190807A1 (en) Piezoelectric film and laminated piezoelectric element
WO2023153280A1 (en) Piezoelectric film and laminated piezoelectric element
WO2023286544A1 (en) Piezoelectric film
WO2023153126A1 (en) Piezoelectric element and electroacoustic transducer
WO2023053750A1 (en) Piezoelectric element, and electro-acoustic converter
WO2024180931A1 (en) Multilayer piezoelectric element and electroacoustic transducer
WO2024062863A1 (en) Piezoelectric film
WO2023188929A1 (en) Piezoelectric film, piezoelectric element, and electroacoustic transducer
WO2022215524A1 (en) Piezoelectric film
WO2023053751A1 (en) Piezoelectric element, and electro-acoustic converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766681

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023505209

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766681

Country of ref document: EP

Kind code of ref document: A1