WO2022190324A1 - Moving system and management device - Google Patents

Moving system and management device Download PDF

Info

Publication number
WO2022190324A1
WO2022190324A1 PCT/JP2021/009875 JP2021009875W WO2022190324A1 WO 2022190324 A1 WO2022190324 A1 WO 2022190324A1 JP 2021009875 W JP2021009875 W JP 2021009875W WO 2022190324 A1 WO2022190324 A1 WO 2022190324A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
specific space
map
information
area
Prior art date
Application number
PCT/JP2021/009875
Other languages
French (fr)
Japanese (ja)
Inventor
琢也 小田
浩二 河口
秀一郎 鬼頭
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2021/009875 priority Critical patent/WO2022190324A1/en
Priority to JP2023505016A priority patent/JPWO2022190324A1/ja
Publication of WO2022190324A1 publication Critical patent/WO2022190324A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • This specification discloses a mobile system and a management device.
  • a projector that is installed on the ceiling projects a guidance image including a guidance line that guides an automatic guided vehicle onto the road surface, and an in-vehicle camera analyzes and guides the image of the road surface.
  • An automated guided vehicle that detects a guide line in an image and moves along the guide line has been proposed (see, for example, Patent Document 1).
  • This system enables automatic guided vehicles to move without laying guidance lines.
  • a map is updated based on this data and the tasks are executed. It has been proposed (see, for example, Patent Document 2).
  • the system claims to be able to move items using updated maps.
  • JP 2020-46835 A U.S. Publication No. 2016/129592 JP 2019-131392 A JP 2019-061452 A JP 2017-021791 A JP 2018-120491 A
  • the projector fixed to the ceiling can automatically move an automatic moving device loaded with articles without laying a guide line on the road surface. Improvement was desired. Further, the systems of Patent Documents 2 to 6 take into consideration a flat map, and do not take into consideration terrain having a sloped road surface, for example. In an automatic mobile device, there are cases where sensors detect obstacles existing on the road surface on which it is moving. In addition, when the automatic moving device reaches an uphill inclined surface, the inclined surface may be erroneously detected as an obstacle.
  • the present disclosure has been made to solve such problems, and the main purpose thereof is to provide a movement system and a management device that can further improve the degree of freedom of movement of an automatic movement system that conveys articles. and Another main object of the present invention is to provide a movement system and a management device that can automatically move within a three-dimensional specific space with simpler processing.
  • the locomotion system disclosed herein comprises: A movement system used in a delivery system that has an automatic movement system that automatically moves an article within a specific space and that delivers the article, a loading unit capable of loading the article; a projection unit that projects the guide line read and moved by the automatic movement system onto a projection plane existing in the specific space; a drive unit for moving the movement system; a control unit that controls the projection unit; is provided.
  • the driving unit can guide a moving body that automatically moves within a specific space. Therefore, in this moving system, the degree of freedom of movement of the moving system for transporting articles can be further improved.
  • FIG. 1 is a schematic explanatory diagram showing an example of a delivery system 10;
  • FIG. FIG. 2 is an explanatory diagram showing an example of a distribution center 20;
  • 4 is an explanatory diagram of an automatic moving device 40 connected to a carriage 12;
  • FIG. FIG. 4 is an explanatory diagram showing an example of information stored in a storage unit 73;
  • 4 is an explanatory diagram showing an example of map data 80 derived from map information 26.
  • FIG. 4 is a flowchart showing an example of an automatic mobile device guidance processing routine;
  • FIG. 4 is an explanatory diagram of the process of guiding the automatic moving device 40 to the delivery vehicle 60;
  • 4 is a flowchart showing an example of a row movement processing routine;
  • FIG. 10 is an explanatory diagram of an example in which the automatic moving device 40 moves in a row; 4 is a flowchart showing an example of a measurement data processing routine; FIG. 4 is an explanatory diagram of an example of detection of an obstacle on a sloped road surface by the automatic moving device 40; 4 is a flowchart showing an example of a map information update processing routine;
  • FIG. 1 is a schematic explanatory diagram showing an example of a delivery system 10. As shown in FIG. 2A and 2B are explanatory diagrams showing an example of the distribution center 20. FIG. 2A is a plan view, and FIG. 2B is a side view.
  • FIG. 3 is an explanatory diagram showing an example of automatic moving devices 40A to 40D.
  • FIG. 3A is an explanatory diagram of an automatic mobile device 40A having AGV (Automatic Guided Vehicle) and AMR (Autonomous Mobile Robot) functions.
  • FIG. 3B is an explanatory diagram of an automatic moving device 40B having an AGV function.
  • FIG. 3C is an explanatory diagram of an automatic moving device 40C having the AMR function.
  • FIG. 3A is an explanatory diagram of an automatic mobile device 40A having AGV (Automatic Guided Vehicle) and AMR (Autonomous Mobile Robot) functions.
  • FIG. 3B is an explanatory diagram of an automatic moving device 40B having an AGV function.
  • FIG. 3C is
  • 3D is an explanatory diagram of an automatic moving device 40D having AGV and AMR functions, with the projection unit 47 omitted.
  • 4A and 4B are explanatory diagrams of the automatic moving device 40 connected to the carriage 12.
  • FIG. 4A is a front view
  • FIG. 4B is a plan view.
  • FIG. 5 is an explanatory diagram showing an example of information stored in the storage unit 73.
  • the delivery system 10 is a system that has an automatic movement device 40 of the movement system 11 that automatically moves an article within a specific space, and performs processing for delivering this article.
  • the moving system 11 is composed of vehicles such as an automatic moving device 40 and a delivery vehicle 60 for moving articles.
  • the automatic moving devices 40A to 40D are collectively referred to as an automatic moving device 40.
  • FIG. This delivery system 10 will be described as an example in which goods are transported using a truck 12, but the system is not particularly limited to this, and the truck 12 may be omitted or other components may be used.
  • the "goods” are not particularly limited as long as they are delivered. Fresh produce, etc.
  • examples of the "delivery source” and “delivery destination” include a distribution center that collects and delivers goods, a warehouse that stores goods, and a store that sells goods.
  • the "specific space” includes, for example, the cargo room of a mobile vehicle that delivers goods, an elevator for work, and the like.
  • Examples of mobile vehicles include vehicles such as delivery vans 60 and trains, ships, and aircraft.
  • the delivery system 10 that delivers products such as daily necessities and perishables from a distribution center 20 as a delivery source to a store 50 as a delivery destination by a delivery vehicle 60 will be mainly described here.
  • the left-right direction, the front-back direction, and the up-down direction are explained as shown in each figure.
  • the delivery system 10 includes a physical distribution PC 21, a store PC 51, an automatic mobile device 40, and a management server 70, as shown in FIG.
  • the physical distribution PC 21 is installed in the physical distribution center 20 and is configured as a management device for managing merchandise in the physical distribution center 20 .
  • This physical distribution PC 21 includes a control section 22 , a storage section 23 and a communication section 28 .
  • the control unit 22 has a CPU and controls the entire device.
  • the storage unit 23 stores various application programs and various data files.
  • the storage unit 23 stores delivery management information 24, position information 25, map information 26, and the like.
  • the delivery management information 24 is information used for managing delivery of articles.
  • the location information 25 is information including the location of the automatic mobile device 40 and the location of the delivery vehicle 60 located in the distribution center 20 .
  • the map information 26 is map information of the distribution center 20 .
  • the communication unit 28 wirelessly communicates with an external device such as the automatic mobile device 40 .
  • the communication unit 28 exchanges information with the management server 70 and the store
  • the carriage 12 includes a placement section 13 and casters 14 .
  • the mounting section 13 is a flat plate-like member on which articles are mounted.
  • the casters 14 have wheels for running the carriage 12 and are arranged on the lower surface side of the placing section 13 .
  • This carriage 12 may be a car carriage.
  • the distribution center 20 is a place where goods are accumulated and delivered to stores 50 and other distribution centers 20 in various places.
  • the distribution center 20 has one or more automatic moving devices 40 that can automatically move the carriages 12 .
  • This distribution center 20 has, for example, an inclined road surface 18 in a specific area of the floor surface, and the automatic movement device 40 automatically moves in different movement areas in the height direction.
  • workers, arm robots (not shown), and the like carry out work of placing articles on carts 12 corresponding to delivery destinations.
  • the automatic moving device 40 stacks the carriages 12 whose delivery destinations are specified, and carries them in and out.
  • the delivery vehicle 60 loads the carriage 12 in the cargo room 61 at the distribution center 20, delivers the articles to the delivery destination, and returns the empty carriage 12 to the distribution center 20.
  • the distribution center 20 is provided with one or more area detection devices 29 for detecting the positions of the cart 12, the automatic moving device 40, the delivery vehicle 60, and the like.
  • the area detection device 29 may be a non-contact sensor or a camera.
  • the automatic moving device 40 is a vehicle as a moving body possessed by the moving system 11 that automatically moves the carriage 12 .
  • This automatic moving device 40 enters the space between the casters 14 on the lower surface side of the mounting portion 13 of the truck 12, lifts the mounting portion 13 from below by the loading portion 43, and connects to the truck 12. to move.
  • This automatic moving device 40 may be an AGV that moves along a line formed on the road surface, or an AMR that senses the surroundings and moves along a free route. As shown in FIG.
  • the automatic moving device 40 includes a vehicle body portion 40a, a movement control portion 41, a storage portion 42, a loading portion 43, wheels 44, a movement driving portion 45, a detection portion 46, a projection It has a section 47 , a reading section 48 and a communication section 49 .
  • the movement control unit 41 is a controller that controls the entire automatic movement device 40 .
  • the movement control section 41 outputs control signals and the like to the stacking section 43 , movement drive section 45 and communication section 49 , and inputs signals from the detection section 46 , reading section 48 and communication section 49 .
  • the movement control unit 41 grasps the movement direction, the movement distance, the current position, and the like of the automatic moving device 40 based on the driving state of the movement driving unit 45 and the like.
  • the movement control unit 41 controls movement and stoppage of the automatic movement device 40 based on information from the detection unit 46 .
  • the storage unit 42 stores various application programs and various data files.
  • the storage unit 42 stores, for example, position information including the positions of the delivery source and the delivery destination where the cart 12 is moved, map information of the distribution center 20, and the like. Positional information and map information are acquired from the physical distribution PC 21 by communication.
  • the loading section 43 is connected to the carriage 12 by projecting upward from the vehicle body section 40a of the automatic moving device 40 and pressing the lower surface of the mounting section 13 (see FIG. 4).
  • the automatic moving device 40 has four wheels 44 and moves by rotating the wheels 44 .
  • the movement drive unit 45 is a motor that is connected to each wheel 44 and drives the automatic movement device 40 to travel by rotating the connected wheels 44 .
  • the detection unit 46 detects objects existing around the automatic moving device 40 and the distance therebetween.
  • the detection unit 46 detects the existence of an object, its distance, and the like by irradiating the surroundings with light such as laser light, sound waves, and the like, and detecting reflected waves.
  • the detection unit 46 is a sensor that detects an object existing in the vicinity of the vehicle body 40a, and in the AMR, a sensor that can detect obstacles, walls, and the like existing in a wider area.
  • the projection unit 47 is a unit that projects the guide line read and moved by the automatic movement device 40 onto a projection plane existing within a specific space.
  • the projection unit 47 projects the guide line onto, for example, a floor surface as a projection surface (see FIG. 10 described later).
  • the "projection plane” may be a road surface on which the automatic moving device 40 runs, or a wall surface existing in a specific space.
  • the reading unit 48 is a unit that reads guidance lines formed on the floor.
  • the reading unit 48 may be, for example, an imaging unit that captures an image, and may analyze the captured image to detect the guide line.
  • the communication unit 49 is an interface for wirelessly exchanging information with an external device such as the physical distribution PC 21 .
  • the movement control unit 41 exchanges information with the physical distribution PC 21 via the communication unit 49 .
  • the automatic moving device 40 may be provided with a detection unit 46, a projection unit 47, and a reading unit 48 on at least two surfaces, a front portion and a rear portion on the opposite side.
  • the automatic moving device 40A has the functions of AGV and AMR. Move to the target position along the guidance line. Further, when functioning as an AMR, the automatic moving device 40A moves to the target position based on the map information stored in the storage unit 42 while detecting obstacles with the detecting unit 46 .
  • the automatic moving device 40B shown in FIG. 3B has only the AGV function.
  • the automatic moving device 40C shown in FIG. 3C omits the reading unit 48 and has only the AMR function.
  • an automatic movement device 40D shown in FIG. 3D omits the projection unit 47 and has AGV and AMR functions.
  • the automatic moving device 40 may have a configuration in which the projection unit 47 is omitted from the automatic moving device 40B and the automatic moving device 40C.
  • the delivery system 10 and the moving system 11 may have an automatic moving device 40 and a delivery vehicle 60 having functions as required.
  • the store 50 displays and sells the delivered items.
  • the store 50 has one or more automatic moving devices 40 and can automatically move the trolley 12 .
  • the store 50 has display shelves 59 for displaying articles, and workers display articles on the display shelves.
  • the store PC 51 is installed in the store 50 and is configured as a management device that manages products in the store 50 and the like.
  • the store PC 51 includes a control section 52 , a storage section 53 and a communication section 58 .
  • the control unit 52 has a CPU and controls the entire device.
  • the storage unit 53 stores various application programs and various data files.
  • the storage unit 53 stores delivery management information 54, position information 55, map information 56, and the like.
  • the delivery management information 54 is information used for managing delivery of articles.
  • the position information 55 is information including the position of the automatic mobile device 40 placed in the store 50 and the position of the delivery vehicle 60 .
  • the map information 56 is map information of the store 50 .
  • the communication unit 58 wirelessly communicates with an external device such as the automatic mobile device 40 .
  • the communication unit 58 exchanges information with the management server 70 and the physical distribution PC 21 via the network 15 .
  • the storage unit 53 stores merchandise management information that associates articles with display shelves, position information, map information that is used by the automatic moving device 40, and the like.
  • the storage unit 53 may store the same content as the information stored in the physical distribution PC 21 .
  • the delivery vehicle 60 is a vehicle of the mobile system 11 that carries one or more carts 12 to deliver goods.
  • the delivery vehicle 60 delivers articles between delivery bases.
  • the "delivery base” includes the distribution center 20 and the store 50 where goods are accumulated.
  • the delivery vehicle 60 includes a luggage compartment 61, a tail gate 62, a tail lift 63, a moving section 64, a projecting section 65, a driving section 66, and a control device 68.
  • the luggage compartment 61 is a specific space for stacking the trucks 12 and also a loading section for loading the trucks 12 .
  • the tailgate 62 is provided at the rear portion of the vehicle, and opens and closes the luggage compartment 61 by means of a closing door.
  • the tail lift 63 loads the trolley 12, workers, etc. on the workbench which becomes horizontal when the closed door is opened, and moves the workbench up and down between the floor surface of the luggage compartment 61 and the traveling surface of the delivery vehicle 60. It is.
  • the tail gate 62, the tail lift 63, etc. can be mechanically operated by a motor, hydraulic pressure, or the like.
  • the moving part 64 is configured as a slider that moves the projection part 65 .
  • the moving unit 64 moves the projecting unit 65 between an in-vehicle projection position where the image is projected inside the luggage compartment 61 and an outside projection position where the image is projected outside the luggage compartment 61 .
  • the projection unit 65 is a unit that projects the guide line read and moved by the automatic moving device 40 onto a projection plane that exists within a specific space.
  • the projection surface is the floor surface inside the luggage compartment 61, the floor surface outside the luggage compartment 61, and the like.
  • the drive unit 66 is a drive source including an engine and a motor, and moves the delivery vehicle 60 by rotationally driving wheels.
  • the control device 68 is a controller that controls each device of the delivery vehicle 60, and includes a CPU and a storage unit. The control device 68 exchanges information with external devices such as the physical distribution PC 21 and the management server 70 by radio or the like via a communication unit (not shown).
  • the movement system 11 may have a delivery vehicle 60 that automatically moves between delivery bases by unmanned operation, or may have a delivery vehicle 60 that is driven by a work vehicle and moves between delivery bases.
  • the automatically moving delivery vehicle 60 is provided with a detection unit in the same manner as the automatic moving device 40, and the control device 68 drives the drive unit 66 to detect the obstacles by the detection unit, while the obstacles are stored in the storage unit. Move to the target position based on the map information.
  • the goods are delivered by the truck delivery vehicle 60, but the delivery is not limited to this, and may be carried out by a mobile transport such as a train, a ship, or an aircraft.
  • the management server 70 is a device that manages the delivery system 10 .
  • the management server 70 includes a management control section 72 , a storage section 73 and a communication section 78 .
  • the management control unit 72 has a CPU and controls the entire apparatus.
  • the storage unit 73 stores various application programs and various data files.
  • the storage unit 73 stores delivery management information 74 used for managing the delivery of goods, location information 75 including the location of the automatic mobile device 40 and the location of the delivery vehicle 60 located in the distribution center 20 and the store 50, Map information 76 of the distribution center 20 and the store 50 and the like are stored.
  • the delivery management information 24, the delivery management information 54, and the delivery management information 74 include mutually related information. Contains information.
  • the location information 25, 55, 75 and the map information 26, 56, 76 similarly contain information related to each other.
  • the delivery management information 74 includes delivery information that associates delivery destinations with items, correspondence information that associates items with carts 12 on which items are loaded, and the like.
  • the map information 76 includes identification information (ID) of the map, information of the entire area of the map, correction information for reducing the difference value between the measured value of the specific space and the reference map, It includes sloped road area information about the area where the sloped road surface 18 exists, and obstacle area information indicating the area of the obstacle existing in the specific space.
  • the obstacle area information includes information such as the position and size of an obstacle that hinders the movement of the automatic mobile device 40 existing in the distribution center 20, as well as the device and time that detected it.
  • the obstacle area information is sequentially updated based on the detection results from the automatic moving device 40 that moves on the floor.
  • the obstacle information included in the obstacle area information is erased when the obstacle is subsequently removed.
  • the map information 76, the map information 26, 56, etc. are updated at any time by reflecting the measurement results of the automatic moving device 40 and the like.
  • FIG. 6 is an explanatory diagram showing an example of map data 80 derived from the map information 26.
  • the map data 80 includes information such as an obstacle area 81 into which the automatic moving device 40 cannot enter, an inclined road surface area 82, and the like.
  • the management control unit 72 may acquire map information 26 and 56 created and updated by the physical distribution PC 21 or the store PC 51 through communication, for example.
  • the communication unit 78 exchanges information with external devices such as the distribution PC 21 and the store PC 51 via the network 15 .
  • FIG. 7 is a flowchart showing an example of an automatic mobile device guidance processing routine executed by the control device 68 of the delivery vehicle 60.
  • FIG. 8A and 8B are explanatory diagrams of the process of guiding the automatic moving device 40 to the delivery vehicle 60.
  • FIG. 8A is a diagram of the guidance line 91 projected onto the projection area 90, and FIG. FIG.
  • FIG. 8C is a diagram for guiding the automatic moving device 40 in the luggage compartment 61.
  • the automatic mobile device guidance processing routine is stored in the storage unit of the control device 68 and executed after the delivery vehicle 60 arrives at the distribution center 20 .
  • the CPU of the control device 68 acquires the position of the delivery vehicle 60 from the physical distribution PC 21 (S100), moves the projection unit 65 to the projection position outside the vehicle to the moving unit 64 (S110), and moves the carriage 12 into the cargo room.
  • 61 is acquired (S120).
  • the control device 68 acquires the delivery vehicle 60 and the coordinates of the position of the delivery vehicle 60 detected by the area detection device 29 via the physical distribution PC 21 .
  • the control device 68 creates a guidance image connecting the positions of the automatic moving device 40 and the delivery vehicle 60 (S130).
  • the guide image includes an image of the guide line 91 read by the reading unit 48 .
  • the control device 68 projects the guide line 91 as the guide image onto the floor as the projection surface (S140, see FIG. 8A).
  • the automatic moving device 40 reads a guiding line 91 present in the projection area 90 and moves along it to the tail lift 63 (FIG. 8B).
  • the control device 68 determines whether or not the automatic moving device 40 has reached the tail lift 63 (S150). That is, the control device 68 updates the position of the automatic moving device 40, creates a guidance image, and projects a guidance line 91 on the road surface.
  • the control device 68 raises the tail lift 63 (S160), moves the projection unit 65 to the in-vehicle projection position (S170), and moves the automatic moving device 40.
  • a guidance image that guides the vehicle to the target position is created (S180), and the guidance image is projected onto the floor surface in the vehicle, which is the projection surface (S190).
  • the automatic moving device 40 reads the guide line 93 existing in the projection area 92, moves along the guide line 93 (FIG. 8C), and when the target position is reached, the cart 12 is lowered.
  • a travel path on which the casters 14 travel is formed at a position higher than the road surface of the automatic moving device 40.
  • the control device 68 waits until the automatic moving device 40 lowers the truck 12 at the target position and reaches the tail lift 63 (S200). At this time, the control device 68 projects a guide line 93 along which the automatic moving device 40 is guided to the tail lift 63 on the floor surface of the vehicle interior.
  • the control device 68 lowers the tail lift 63 (S210), moves the projection unit 65 to the projection position outside the vehicle (S220), and delivers the automatic moving device 40.
  • a guidance image that guides the user to a target position outside the vehicle 60 is created (S230), and this guidance image is projected onto the road surface, which is the projection surface (S240).
  • the automatic moving device 40 reads the guide line 91 existing in the projection area 90 and moves out of the delivery vehicle 60 along this line.
  • the control device 68 determines whether or not the automatic moving device 40 has moved to the target position outside the vehicle (S250).
  • the control device 68 determines whether or not there is an automatic mobile device 40 to be guided next (S260). When there is 40, the processing after S100 is executed. On the other hand, when there is no automatic moving device 40 to be guided next in S260, the control device 68 terminates this routine.
  • the stop position of the delivery vehicle 60 may change from time to time.
  • the automatic moving device 40 can be more accurately guided to the luggage compartment 61 by the delivery vehicle 60 projecting the guide line.
  • the automatic moving device 40 to be guided is described as having an AGV function, but this automatic moving device 40 may be an automatic moving device 40D in which the projection unit 47 is omitted.
  • the automatic movement device 40 also has an AMR function, and for example, it may automatically move to the guidance start position in FIG. 8A, and in FIG. It may be automatically moved.
  • FIG. 9 is an explanatory diagram showing an example of a platoon movement processing routine executed by the movement control unit 41 of the automatic moving device 40.
  • FIG. 10 is an explanatory diagram of an example of platoon movement of the automatic movement device 40 .
  • the platoon movement processing routine is stored in the storage unit 42 of the automatic moving device 40 and executed when platoon movement is required.
  • the automatic moving device 40 as AMR moves at the head and the automatic moving devices 40 as multiple AGVs move following it.
  • the leading automatic moving device 40 may further have the AGV function, and one or more following automatic moving devices 40 may further have the AMR function.
  • the movement control unit 41 first acquires information on the destination position and map information from the distribution PC 21 (S300). Next, the movement control unit 41 causes the movement driving unit 45 to drive the wheels 44 so as to move to the target position (S310). At this time, the movement control unit 41 sets the movement route using the map information, and drives and controls the movement driving unit 45 to move along the set movement route. Subsequently, the movement control unit 41 creates a guidance image to be followed by the subsequent automatic movement device 40 (S320), and causes the projection unit 47 to project the guidance image backward in the movement direction onto the road surface as a projection surface. (S330). The movement control unit 41 creates a guidance image including a straight-ahead guide line when the aircraft is going straight (see FIG. 10).
  • the movement control unit 41 creates a guidance image including a guidance line curving to the left when the self-machine turns to the left and moves. Also, when the aircraft turns to the right and moves, a guidance image including a guidance line that curves to the right is created.
  • the subsequent automatic movement device 40 moves along the guide line read by the reading section 48 . Further, the subsequent automatic movement device 40 further creates a guidance image for the subsequent automatic movement device 40, and causes the projection unit 47 to project the projection image including the guidance line 95 onto the road surface in the projection area 94 (see FIG. 10). ). Then, the movement control unit 41 determines whether or not the destination has been reached (S340), and when the destination has not been reached, the processing after S310 is repeatedly executed. When the target position is reached in S340, this routine ends. In this manner, the automatic moving device 40 can use the projection unit 47 to cause another automatic moving device 40 to follow.
  • FIG. 11 is a flow chart showing an example of a measurement data processing routine executed by the movement control section 41 of the automatic movement device 40.
  • FIG. 12 is an explanatory diagram of an example in which the automatic moving device 40 detects an obstacle on a sloped road surface.
  • the measurement data processing routine is stored in the storage unit 42 and executed when the automatic moving device 40 moves. This measurement data processing routine is executed in parallel with the process of moving the automatic moving device 40 to the destination, the work on the carriage 12, and the like.
  • the movement control unit 41 acquires the map information 26 from the physical distribution PC 21 (S400).
  • the map information 26 may be transmitted from the management server 70 to the automatic mobile device 40 via the physical distribution PC 21 .
  • the movement control unit 41 acquires the current position and acquires the measurement result by the detection unit 46 (410).
  • the movement control unit 41 may acquire the current position from the distance and direction in which the body part 40a has moved from the initial position. Further, the movement control unit 41 obtains the presence of an object such as a wall or an obstacle existing in the specific space and the distance to the object as a measurement result based on the reflected wave measured by the detection unit 46, for example.
  • the movement control unit 41 determines whether there is a difference value between the map data included in the map information 26 stored in the storage unit 42 and the measured data (S420).
  • the movement control unit 41 excludes objects that are determined to be obstacles, and determines whether or not there is a difference value with respect to the size of the specific space, such as the distance between walls. Note that the movement control unit 41 determines that there is no difference value when the difference value is within the measurement error range. When there is a difference value, the movement control section 41 transmits the measurement data to the physical distribution PC 21 (S430). The measurement data is used for updating the map information 26 and the map information 76 in the physical distribution PC 21 and the management server 70 .
  • the movement control unit 41 determines whether or not an object has been detected within the specific space (S440).
  • the movement control unit 41 detects an object when, for example, a reflected wave is obtained at a distance sufficiently close to the wall in the direction along the traveling direction.
  • the movement control unit 41 determines whether or not the distance to the object is equal to or greater than a predetermined distance (S450). It is assumed that this predetermined distance is empirically set to a close distance at which the presence of an object can be reliably determined.
  • the movement control unit 41 executes exclusion determination processing for determining whether or not the detected object is an obstacle (S460-500).
  • the movement control unit 41 determines that the current position of the own aircraft is outside the area of the inclined road surface 18, and that the detected object is inside the area of the inclined road surface 18. It is determined whether or not there is (S460). When a negative determination is made in S460, the movement control unit 41 determines whether or not the current position of the aircraft is within the area of the inclined road surface 18 and the detected object is outside the area of the inclined road surface 18 (S470). ). If an affirmative determination is made in S460 or if an affirmative determination is made in S470, the movement control unit 41 performs exclusion processing to exclude the detected object from obstacles (S480). That is, the movement control unit 41 does not treat the detected object as an obstacle.
  • the automatic moving device 40 when the automatic moving device 40 is within the area of the sloped road surface 18, the automatic moving device 40 may detect the sloped road surface below as an object. Further, when the automatic moving device 40 is outside the area of the sloped road surface 18, the automatic moving device 40 may detect an upwardly inclined road surface as an object. In this exclusion process, by using information on the position of the vehicle itself and the area of the sloped road surface 18, it is possible to exclude such erroneous detection without using a three-dimensional map or the like, which imposes a large processing load.
  • the movement control unit 41 sets the detected object as an obstacle (S490), and transfers the obstacle to the physical distribution PC 21. Report (S500). That is, the movement control unit 41 treats the detected object as an obstacle when the current position of the aircraft is outside the area of the inclined road surface 18 and the detected object is outside the area of the inclined road surface 18 . Further, when the current position of the aircraft is within the area of the inclined road surface 18 and the detected object is within the area of the inclined road surface 18, the movement control unit 41 treats the detected object as an obstacle.
  • the movement control unit 41 determines whether an obstacle in the map data has been detected (S510). Since an obstacle may disappear from the road surface by being removed or by moving by itself, the movement control unit 41 determines the presence or absence of this obstacle. When no obstacle existing in the map data is detected, the movement control unit 41 transmits a report to the effect that no obstacle exists to the physical distribution PC 21 (S520). The physical distribution PC 21 receiving this report updates the map information 26 and transmits the updated map information to each automatic mobile device 40 .
  • the movement control unit 41 determines whether or not its own work has been completed (S530). The movement control unit 41 makes this determination based on whether or not the target position has been reached and the truck 12 has been loaded or unloaded as necessary. When the work of the machine itself has not been completed, the movement control unit 41 executes the processes after S400. On the other hand, when the work of the machine itself is completed, the movement control section 41 terminates this routine. In this way, the automatic moving device 40 sequentially measures the information of the specific space and transmits the information to the physical distribution PC 21 when it moves. Information on the specific space may be sent to the management server 70 via the physical distribution PC 21 .
  • FIG. 13 is a flow chart showing an example of a map information update processing routine executed by the management control unit 72 of the management server 70. As shown in FIG. This routine is stored in the storage unit 73 and executed when the delivery system 10 is in operation.
  • the CPU of the management control unit 72 determines whether measurement data has been obtained from the automatic moving device 40 or the like (S600). It is determined whether or not a predetermined number or more of the measurement data of the measurement points to be measured are within the same range (S610). When there are more than a predetermined number of corresponding obtained data within the same range, the management control unit 72 sets a correction value for correcting the map to the measurement data, which is the measurement result (S620). This measurement data is obtained when there is a difference value between the map data and the measurement result. When a predetermined number of measurement results within the same range are reported, the management control unit 72 determines that the measurement data is correct, and reflects the measurement data in the map information.
  • the "predetermined number” may be empirically determined to be a number (eg, 3, 5, 10, etc.) that can determine that the measurement result is correct.
  • the “same range” may include, for example, not only exactly the same value but also a difference in the degree of measurement error of the detection unit 46 .
  • the management control unit 72 sets a correction value for correcting the map to an intermediate value of the difference values (S630). For example, when the distance set in the map is 500 mm and the measurement data is 490 mm, the management control unit 72 sets a correction value of 495 mm. In this case, when there are two pieces of measurement data of 490 mm, the management control section 72 sets a correction value to 493.3 mm.
  • the management control unit 72 determines whether or not the report on the obstacle has been obtained (S640). Reflect (S650). When an obstacle is newly reported, the management control unit 72 executes processing to add the obstacle to the map, and when the obstacle is removed, executes processing to delete the obstacle on the map. do.
  • the management control unit 72 determines whether or not it is time to send the map information (S660). Among them, the information of the applicable map is transmitted to the applicable terminal (S670). The management control unit 72 determines whether or not it is the transmission timing based on a request from a terminal such as the physical distribution PC 21 . After S670, or when it is not time to send the map information in S660, the management control unit 72 determines whether or not all processing has been completed (S660). 72 executes the processing after S600. The management control unit 72 determines that all the processes are not completed when the delivery system 10 is in operation. On the other hand, when all the processes are completed in S660, this routine ends. In this way, the management server 70 updates the correction of the map and the presence or absence of obstacles using the measurement results of the automatic moving device 40 .
  • the distribution center 20, the store 50, the cargo room 61, and the delivery base in the present embodiment correspond to the specific space
  • the automatic moving devices 40 and 40A to 40D correspond to the moving bodies
  • the delivery vehicle 60 corresponds to the delivery vehicle
  • the automatic moving devices 40, 40A to 40D and the delivery vehicle 60 correspond to the moving system 11
  • the loading section 43 and the luggage compartment 61 correspond to the loading section
  • the projecting section 47 and the projecting section 65 correspond to the projecting section
  • move and drive The part 45 and the driving part 66 correspond to the driving part
  • the movement control part 41 and the control device 68 correspond to the control part and the processing part.
  • the detection unit 46 corresponds to the detection unit
  • the reading unit 48 corresponds to the reading unit
  • the guide lines 91 and 93 correspond to the guide lines
  • the road surface and the floor surface correspond to the projection surface
  • the management server 70 and other The physical distribution PC 21 and the store PC 51 correspond to the management device
  • the storage section 23, the storage section 53 and the storage section 73 correspond to the storage section
  • the communication section 28, the communication section 58 and the communication section 78 correspond to the communication section
  • the control section 22, the control unit 52 and the management control unit 72 correspond to the correction unit.
  • the automatic moving device 40 of the present embodiment described above includes a loading unit 43 capable of loading articles, and a projection unit 47 for projecting a guide line read and moved by the automatic moving device 40 onto a projection plane existing in a specific space. , a movement driving unit 45 for moving the automatic movement device 40 and a movement control unit 41 for controlling the projection unit 47 .
  • the vehicle body portion 40a moved by the movement driving portion 45 is provided with the projection portion 47, and while moving, the guide line 95 used by the other automatic moving device 40 can be projected onto the projection plane. can. Therefore, in this automatic moving device 40, the degree of freedom of movement of the automatic moving device 40 for conveying articles can be further improved.
  • the luggage compartment 61 as a loading unit capable of loading articles, and the projection unit that projects the guide line read by the automatic moving device 40 and moved onto a projection plane existing in a specific space.
  • a drive unit 66 that moves the delivery vehicle 60
  • a control device 68 that controls the projection unit 65 .
  • a projection unit 65 is provided on the vehicle body that is moved by the drive unit 66, and the guide lines 91 and 93 used by the automatic moving device 40 can be projected onto the projection plane while moving. Therefore, with this delivery vehicle 60, the degree of freedom of movement of the automatic moving device 40 for transporting articles can be further improved.
  • the movement control section 41 may control the movement driving section 45 to automatically move the automatic moving device 40 within the specific space.
  • This automatic moving device 40 can move automatically under the control of the movement control section 41, like the other automatic moving devices 40.
  • the control device 68 may control the drive unit 66 to automatically move the delivery vehicle 60 between delivery bases.
  • the movement control unit 41 causes the projection unit 47 to project a guide line 95 along which the other automatic movement device 40 follows the automatic movement device 40 onto the projection plane. In this automatic moving device 40, a plurality of automatic moving devices 40 can follow and move.
  • the automatic moving device 40 has a reading unit 47 that reads the guide line projected on the projection plane, and the movement control unit 41 drives the other automatic moving device 40 to move along the projected guide line 95.
  • the unit 45 may be controlled. This automatic moving device 40 can move along the guide line 95 in the same manner as the other automatic moving devices 40 .
  • the control device 68 causes the projection section 65 to project the guide line 91 connecting the current position of the other automatic moving device 40 and the luggage compartment 61 as the loading section onto the projection plane.
  • This delivery vehicle 60 can guide another automatic moving device 40 to its luggage compartment 61 .
  • the automatic moving device 40 also includes a detection unit 46 for detecting obstacles existing in the specific space, a current position of the automatic moving device 40 in the specific space, a map of the specific space, and a map of the specific space. Based on area information, which is information on the area of the inclined road surface, exclusion processing is performed so that the detection result detected by the detection unit 46 is not treated as an obstacle, and the movement control unit 41 drives the movement based on the exclusion processing.
  • the automatic movement device 40 is automatically moved within the specific space.
  • the inclined road surface 18 may be detected as an obstacle in a specific space where the inclined road surface 18 exists.
  • this automatic moving device 40 by adding the information of the sloped road surface 18 to the map, exclusion of obstacles can be determined without performing complicated analysis using three-dimensional map data or the like. Therefore, the automatic moving device 40 can automatically move within a three-dimensional specific space with simpler processing.
  • the movement control unit 41 performs exclusion processing when the current position of the automatic movement device 40 is outside the area of the inclined road surface 18 and the obstacle detected by the detection unit 46 is in the area of the inclined road surface 18 . Further, when the current position of the automatic moving device 40 is within the area of the inclined road surface 18 and the obstacle detected by the detection unit 46 is outside the area of the inclined road surface 18, the movement control unit 41 performs exclusion processing. With this automatic moving device 40, the exclusion process can be performed more appropriately based on the positional relationship between the current position and the inclined road surface 18. FIG. Further, the movement control unit 41 performs extra processing when the distance to the obstacle detected by the detection unit 46 is equal to or greater than a predetermined distance.
  • exclusion processing can be performed more appropriately using the distance to the detection result of the detection unit. Furthermore, when the current position of the automatic moving device 40 is outside the area of the inclined road surface 18 and the obstacle detected by the detection unit 46 is outside the area of the inclined road surface 18, the movement control unit 41 regards the detection result as an obstacle. deal. Further, when the current position of the automatic moving device 40 is within the area of the inclined road surface 18 and the obstacle detected by the detection unit 46 is within the area of the inclined road surface 18, the movement control unit 41 displays the detection result as an obstacle. treated as The automatic moving device 40 can more appropriately detect obstacles from the positional relationship between the current position and the inclined road surface 18 .
  • the management server 70 stores area information, which is information about the area of the sloped road surface 18 existing in the specific space, in the storage unit 73, and transmits the map and the area information to any of the automatic moving devices 40 described above. and In this management server 70, by using the information of the sloping road surface 18 existing in the specific space, the automatic moving device 40 can automatically move within the three-dimensional specific space with simpler processing.
  • the management server 70 corrects the map of the specific space between the difference values. Execute correction processing. Then, the communication unit 49 transmits the corrected map to the automatic moving device 40 . While the measurement result of the automatic moving device 40 may be more accurate than the map information of the specific space, it may not be more accurate.
  • the management server 70 can further improve the accuracy by correcting the map of the specific space between the difference values. In particular, acquiring a plurality of measurement results can further improve the accuracy. In this management server 70, by using a map whose accuracy has been improved by correction, the automatic moving device 40 can automatically move within the specific space more reliably.
  • the management control unit 72 corrects the map of the specific space so as to match the measurement results.
  • the map of the specific space is corrected so as to match the measurement result, so that the automatic moving device 40 can automatically move within the specific space more reliably.
  • the delivery vehicle 60 uses the projection unit 65 to guide the automatic moving device 40, and the automatic moving device 40 uses the projection unit 47 to guide the other automatic moving device.
  • the automatic moving device 40 uses the area information of the inclined road surface 18 to remove obstacles in the specific space, and the automatic moving device 40 performs processing to update the map information based on the measurement data.
  • the delivery vehicle 60 projects the guide line 91 using the projection unit 65 to guide the automatic moving device 40, but this may be omitted.
  • the automatic moving device 40 is supposed to follow the other automatic moving device 40 by the guide line 95, but this may be omitted.
  • the automatic moving device 40 uses the information of the inclined road surface 18 to perform exclusion processing that does not treat the detection result as an obstacle, but this may be omitted. Also, when there is a difference value between the measurement data of the automatic moving device 40 and the map of the specific space, the management server 70 makes corrections between the difference values, but this may be omitted. By executing any of the processes described above, the delivery system 10 can obtain an effect corresponding to the executed process.
  • the delivery vehicle 60 projects the guide line 91 connecting the current position of the automatic moving device 40 and the luggage compartment 61 as the loading unit.
  • 40 may project a guide line 95 between its own loading unit 43 and the current position of another automatic moving device 40 .
  • This automatic moving device 40 can guide another automatic moving device 40 .
  • the automatic moving device 40 performs exclusion processing when the distance to the object detected by the detection unit 46 is greater than or equal to a predetermined distance, but this processing may be omitted.
  • the movement control unit 41 may add other conditions as conditions for executing the exclusion process.
  • exclusion processing is executed to exclude the detected object from the obstacles based on whether the automatic moving device 40 or the detected object is on the inclined road surface 18.
  • the automatic moving device 40 includes a sensor (for example, a gyro sensor) that detects the inclination of the body part 40a, and map information, the inclination of the own machine, the position of the own machine, and the position and distance of the detected object. may be used to determine whether or not the detected object is the road surface by calculation. This automatic moving device 40 can more reliably detect obstacles.
  • the present disclosure has been described as the delivery system 10 and the mobile system 11 in the above-described embodiment, the present disclosure is not particularly limited to this, and may be a management device used in the delivery system.
  • the distribution PC 21, the store PC 51, and the management server 70 mutually use the position information and the map information.
  • the physical distribution PC 21 may be used alone, or the location information 55 and the map information 56 may be handled by the store PC 51 alone. Location information and map information can be used completely at the place where they are used.
  • the mobile system 11 of the present disclosure may be configured as follows.
  • the movement system 11 has an automatic movement device 40 as a moving body that automatically moves an article within a specific space, and is a movement system that delivers this article, and detects obstacles that exist within the specific space.
  • the movement control unit 41 as a processing unit that performs an exclusion process that does not treat the detection result detected by the detection unit 46 as an obstacle based on the area information that is information on the area of .
  • this movement system 11 by adding information about the sloped road surface to the map, it is possible to determine whether to exclude obstacles or the like without performing complicated analysis using three-dimensional map data or the like. It is possible to automatically move within a three-dimensional specific space by processing.
  • the management device of the present disclosure is a management device used in a delivery system 10 having an automatic moving device 40 as a moving body that automatically moves an item within a specific space and a moving system 11 that delivers the item.
  • a storage unit that stores a map of the specific space and area information that is information about the area of the sloped road existing in the specific space; and may be provided.
  • this management device in the mobile system 11, by adding the information of the sloped road surface to the map, it is possible to judge exclusion of obstacles without performing complicated analysis using three-dimensional map data or the like. , can automatically move within a three-dimensional specific space with simpler processing.
  • the management device of the present disclosure is a management device used in a delivery system 10 having an automatic moving device 40 as a moving body that automatically moves an item within a specific space and a moving system 11 that delivers the item. , when there is a difference value between the measurement result in the specific space obtained from the automatic moving device 40 and the map of this specific space, a correction process is executed to correct the map of the specific space between the difference values. and a communication unit that transmits the map after correction processing to any of the automatic moving devices 40 described above.
  • the map of the specific space is used between the difference values. The accuracy can be further improved by correcting.
  • the movement system and management device of the present disclosure can be used in the technical field of distribution systems for delivering goods.

Abstract

A moving system according to the present disclosure, which includes a moving body for automatically moving articles in a specific space and delivers the articles, is provided with: a loading unit which can load articles; a projection unit which projects, onto a projection surface that exists in the specific space, a guide line that is read by the moving body when the moving body moves; a drive unit which moves the moving body; and a control unit which controls the projection unit.

Description

移動システム及び管理装置Mobile system and management device
 本明細書は、移動システム及び管理装置を開示する。 This specification discloses a mobile system and a management device.
 従来、物品を自動移動するシステムにおいて、天井に設置されており、無人搬送車を誘導する誘導ラインを含む誘導画像を路面に投影するプロジェクタと、車載カメラによって撮像された路面の画像を解析し誘導画像中の誘導ラインを検出しこの誘導ラインに沿って移動する無人搬送車と、を備えたものが提案されている(例えば、特許文献1参照)。このシステムでは、誘導ラインを敷設することなく無人搬送車を移動することができるとしている。また、物品を自動移動するシステムにおいて、1以上のロボットデバイスが1以上のタスクを実行する際に、タスクを発展させるデータを受信するとこのデータに基づいてマップをアップデートしてタスクを実行するものが提案されている(例えば、特許文献2参照)。このシステムでは、更新されたマップを用いて物品を移動することができるとしている。また、物品を自動移動するシステムとしては、物品を搬送する自動搬送車を備え、検出した情報に基づいて、マップを更新したり、障害物として他の自動搬送車の移動に活用するものが提案されている(例えば、特許文献3~6など参照)。 Conventionally, in a system that automatically moves goods, a projector that is installed on the ceiling projects a guidance image including a guidance line that guides an automatic guided vehicle onto the road surface, and an in-vehicle camera analyzes and guides the image of the road surface. An automated guided vehicle that detects a guide line in an image and moves along the guide line has been proposed (see, for example, Patent Document 1). This system enables automatic guided vehicles to move without laying guidance lines. Also, in a system for automatically moving articles, when one or more robot devices execute one or more tasks, when data for developing the tasks is received, a map is updated based on this data and the tasks are executed. It has been proposed (see, for example, Patent Document 2). The system claims to be able to move items using updated maps. In addition, as a system for automatically moving items, we have proposed a system that has an automatic guided vehicle that transports items, updates the map based on the detected information, and uses it as an obstacle to move other automatic guided vehicles. (See, for example, Patent Documents 3 to 6).
特開2020-46835号公報JP 2020-46835 A 米国公開公報第2016/129592号U.S. Publication No. 2016/129592 特開2019-131392号公報JP 2019-131392 A 特開2019-061452号公報JP 2019-061452 A 特開2017-021791号公報JP 2017-021791 A 特開2018-120491号公報JP 2018-120491 A
 しかしながら、特許文献1のシステムでは、天井に固定されたプロジェクタにより、路面に誘導ラインを敷設することなく、物品を積載した自動移動装置を自動移動することができるが、まだ十分でなく、更なる改良が望まれていた。また、特許文献2~6のシステムでは、平面のマップを考慮しており、例えば、傾斜路面を有するような地形を考慮していなかった。自動移動装置においては、移動する路面に存在する障害物をセンサで検出する場合があるが、例えば、自動移動装置が傾斜面を下る際には、自動移動装置が下方を向くため、路面を障害物として誤検出することがあり、また、自動移動装置が上り坂の傾斜面に達する際は、傾斜面を障害物として誤検出することがあった。 However, in the system of Patent Document 1, the projector fixed to the ceiling can automatically move an automatic moving device loaded with articles without laying a guide line on the road surface. Improvement was desired. Further, the systems of Patent Documents 2 to 6 take into consideration a flat map, and do not take into consideration terrain having a sloped road surface, for example. In an automatic mobile device, there are cases where sensors detect obstacles existing on the road surface on which it is moving. In addition, when the automatic moving device reaches an uphill inclined surface, the inclined surface may be erroneously detected as an obstacle.
 本開示は、このような課題を解決するためになされたものであり、物品を搬送する自動移動システムの移動の自由度をより向上することができる移動システム及び管理装置を提供することを主目的とする。また、より簡素な処理で三次元的な特定空間内を自動移動することができる移動システム及び管理装置を提供することを主目的とする。 The present disclosure has been made to solve such problems, and the main purpose thereof is to provide a movement system and a management device that can further improve the degree of freedom of movement of an automatic movement system that conveys articles. and Another main object of the present invention is to provide a movement system and a management device that can automatically move within a three-dimensional specific space with simpler processing.
 本開示は、上述の主目的を達成するために以下の手段を採った。 This disclosure has taken the following means to achieve the above-mentioned main objectives.
 本明細書で開示する移動システムは、
 物品を特定空間内で自動移動する自動移動システムを有し該物品を配送する配送システムに用いられる移動システムであって、
 前記物品を積載可能な積載部と、
 前記自動移動システムが読み取って移動する誘導ラインを前記特定空間内に存在する投影面に投影させる投影部と、
 前記移動システムを移動させる駆動部と、
 前記投影部を制御する制御部と、
 を備えたものである。
The locomotion system disclosed herein comprises:
A movement system used in a delivery system that has an automatic movement system that automatically moves an article within a specific space and that delivers the article,
a loading unit capable of loading the article;
a projection unit that projects the guide line read and moved by the automatic movement system onto a projection plane existing in the specific space;
a drive unit for moving the movement system;
a control unit that controls the projection unit;
is provided.
 この移動システムでは、駆動部によって特定空間内で自動移動する移動体を誘導することができる。したがって、この移動システムでは、物品を搬送する移動システムの移動の自由度をより向上することができる。 In this movement system, the driving unit can guide a moving body that automatically moves within a specific space. Therefore, in this moving system, the degree of freedom of movement of the moving system for transporting articles can be further improved.
配送システム10の一例を示す概略説明図。1 is a schematic explanatory diagram showing an example of a delivery system 10; FIG. 物流センター20の一例を示す説明図。FIG. 2 is an explanatory diagram showing an example of a distribution center 20; 自動移動装置40A~40Dの一例を示す説明図。Explanatory drawing showing an example of automatic moving devices 40A to 40D. 台車12と接続した自動移動装置40の説明図。4 is an explanatory diagram of an automatic moving device 40 connected to a carriage 12; FIG. 記憶部73に記憶された情報の一例を示す説明図。FIG. 4 is an explanatory diagram showing an example of information stored in a storage unit 73; マップ情報26から導かれるマップデータ80の一例を示す説明図。4 is an explanatory diagram showing an example of map data 80 derived from map information 26. FIG. 自動移動装置誘導処理ルーチンの一例を表すフローチャート。4 is a flowchart showing an example of an automatic mobile device guidance processing routine; 自動移動装置40を配送車60へ誘導する処理の説明図。FIG. 4 is an explanatory diagram of the process of guiding the automatic moving device 40 to the delivery vehicle 60; 隊列移動処理ルーチンの一例を表すフローチャート。4 is a flowchart showing an example of a row movement processing routine; 自動移動装置40が隊列移動する一例の説明図。FIG. 10 is an explanatory diagram of an example in which the automatic moving device 40 moves in a row; 測定データ処理ルーチンの一例を表すフローチャート。4 is a flowchart showing an example of a measurement data processing routine; 自動移動装置40が傾斜路面で障害物を検出する一例の説明図。FIG. 4 is an explanatory diagram of an example of detection of an obstacle on a sloped road surface by the automatic moving device 40; マップ情報更新処理ルーチンの一例を表すフローチャート。4 is a flowchart showing an example of a map information update processing routine;
 本開示の実施形態を図面を用いて説明する。図1は、配送システム10の一例を示す概略説明図である。図2は、物流センター20の一例を示す説明図であり、図2Aが平面図、図2Bが側面図である。図3は、自動移動装置40A~40Dの一例を示す説明図である。図3Aは、AGV(Automatic Guided Vehicle)及びAMR(Autonomous Mobile Robot)の機能を有する自動移動装置40Aの説明図である。図3Bは、AGVの機能を有する自動移動装置40Bの説明図である。図3Cは、AMRの機能を有する自動移動装置40Cの説明図である。図3Dは、投影部47を省略したAGV及びAMRの機能を有する自動移動装置40Dの説明図である。図4は、台車12と接続した自動移動装置40の説明図であり、図4Aが正面図、図4Bが平面図である。図5は、記憶部73に記憶された情報の一例を示す説明図である。配送システム10は、物品を特定空間内で自動移動する移動システム11の自動移動装置40を有し、この物品を配送する処理を行うシステムである。移動システム11は、例えば、自動移動装置40や配送車60などの物品を移動する車両によって構成されている。なお、本実施形態では、自動移動装置40A~40Dを自動移動装置40と総称する。この配送システム10は、物品の輸送を台車12を利用して行うものを一例として説明するが、特にこれに限定せず、台車12を省略したり、他の構成物を用いるものとしてもよい。ここで、「物品」としては、配送するものであれば特に限定されず、例えば、機械や装置、装置のユニット、部品などを含む産業品や、一般に日用的に用いられる生活用品、食品や生鮮品などが挙げられる。また、「配送元」や「配送先」としては、例えば、物品を集積、配送する物流センターや物品を保管する倉庫、物品を販売する店舗などが挙げられる。また、「特定空間」としては、例えば上記配送元や配送先のほか、物品を配送する移動輸送体の荷室や作業用エレベータなども含む。移動輸送体としては、配送車60や列車などの車両、船舶、航空機などが挙げられる。ここでは、説明の便宜のため、配送元としての物流センター20から配送先の店舗50へ配送車60により生活用品や生鮮品などの商品を配送する配送システム10を主として説明する。なお、本実施形態において、左右方向、前後方向及び上下方向は、各図に示した通りとして説明する。 An embodiment of the present disclosure will be described with reference to the drawings. FIG. 1 is a schematic explanatory diagram showing an example of a delivery system 10. As shown in FIG. 2A and 2B are explanatory diagrams showing an example of the distribution center 20. FIG. 2A is a plan view, and FIG. 2B is a side view. FIG. 3 is an explanatory diagram showing an example of automatic moving devices 40A to 40D. FIG. 3A is an explanatory diagram of an automatic mobile device 40A having AGV (Automatic Guided Vehicle) and AMR (Autonomous Mobile Robot) functions. FIG. 3B is an explanatory diagram of an automatic moving device 40B having an AGV function. FIG. 3C is an explanatory diagram of an automatic moving device 40C having the AMR function. FIG. 3D is an explanatory diagram of an automatic moving device 40D having AGV and AMR functions, with the projection unit 47 omitted. 4A and 4B are explanatory diagrams of the automatic moving device 40 connected to the carriage 12. FIG. 4A is a front view, and FIG. 4B is a plan view. FIG. 5 is an explanatory diagram showing an example of information stored in the storage unit 73. As shown in FIG. The delivery system 10 is a system that has an automatic movement device 40 of the movement system 11 that automatically moves an article within a specific space, and performs processing for delivering this article. The moving system 11 is composed of vehicles such as an automatic moving device 40 and a delivery vehicle 60 for moving articles. In this embodiment, the automatic moving devices 40A to 40D are collectively referred to as an automatic moving device 40. FIG. This delivery system 10 will be described as an example in which goods are transported using a truck 12, but the system is not particularly limited to this, and the truck 12 may be omitted or other components may be used. Here, the "goods" are not particularly limited as long as they are delivered. Fresh produce, etc. Also, examples of the "delivery source" and "delivery destination" include a distribution center that collects and delivers goods, a warehouse that stores goods, and a store that sells goods. In addition to the above delivery source and delivery destination, the "specific space" includes, for example, the cargo room of a mobile vehicle that delivers goods, an elevator for work, and the like. Examples of mobile vehicles include vehicles such as delivery vans 60 and trains, ships, and aircraft. For the convenience of explanation, the delivery system 10 that delivers products such as daily necessities and perishables from a distribution center 20 as a delivery source to a store 50 as a delivery destination by a delivery vehicle 60 will be mainly described here. In addition, in this embodiment, the left-right direction, the front-back direction, and the up-down direction are explained as shown in each figure.
 配送システム10は、図1に示すように、物流PC21と、店舗PC51と、自動移動装置40と、管理サーバ70とを含んで構成されている。物流PC21は、物流センター20に配設され、物流センター20での商品管理などを行う管理装置として構成されている。この物流PC21は、制御部22と、記憶部23と、通信部28とを備えている。制御部22は、CPUを有し、装置全体の制御を司る。記憶部23は、各種アプリケーションプログラムや各種データファイルを記憶する。記憶部23には、配送管理情報24や、位置情報25、マップ情報26などが記憶されている。配送管理情報24は、物品の配送を管理するのに用いられる情報である。位置情報25は、物流センター20に配置された自動移動装置40の位置や配送車60の位置を含む情報である。マップ情報26は、物流センター20のマップの情報である。通信部28は、自動移動装置40などの外部機器と無線で通信を行う。通信部28は、ネットワーク15を介して管理サーバ70や店舗PC51と情報のやりとりを行う。 The delivery system 10 includes a physical distribution PC 21, a store PC 51, an automatic mobile device 40, and a management server 70, as shown in FIG. The physical distribution PC 21 is installed in the physical distribution center 20 and is configured as a management device for managing merchandise in the physical distribution center 20 . This physical distribution PC 21 includes a control section 22 , a storage section 23 and a communication section 28 . The control unit 22 has a CPU and controls the entire device. The storage unit 23 stores various application programs and various data files. The storage unit 23 stores delivery management information 24, position information 25, map information 26, and the like. The delivery management information 24 is information used for managing delivery of articles. The location information 25 is information including the location of the automatic mobile device 40 and the location of the delivery vehicle 60 located in the distribution center 20 . The map information 26 is map information of the distribution center 20 . The communication unit 28 wirelessly communicates with an external device such as the automatic mobile device 40 . The communication unit 28 exchanges information with the management server 70 and the store PC 51 via the network 15 .
 台車12は、載置部13とキャスター14とを備えている。載置部13は、物品を積載する平板状の部材である。キャスター14は、台車12を走行させる車輪を有し、載置部13の下面側に配設されている。この台車12は、かご台車としてもよい。 The carriage 12 includes a placement section 13 and casters 14 . The mounting section 13 is a flat plate-like member on which articles are mounted. The casters 14 have wheels for running the carriage 12 and are arranged on the lower surface side of the placing section 13 . This carriage 12 may be a car carriage.
 物流センター20は、物品を集積し、各地の店舗50や他の物流センター20へ物品を配送する場所である。物流センター20には、図2に示すように、1以上の自動移動装置40を有しており、台車12を自動移動することができる。この物流センター20は、例えば、床面の特定の領域に傾斜路面18を有しており、自動移動装置40は、高さ方向に異なる移動領域で自動移動を行う。この物流センター20では、作業者や図示しないアームロボットなどが、配送先に応じた台車12に物品を載せる作業を行う。自動移動装置40は、配送先が特定されている台車12を集積したり、搬入、搬出する作業を行う。配送車60は、物流センター20で台車12を荷室61に積載して配送先へ物品を配送し、空の台車12を物流センター20へ返却する。この物流センター20には、集積された台車12や、自動移動装置40、配送車60などの位置を検出する1以上の領域検出装置29が配設されている。領域検出装置29は、非接触式センサとしてもよいし、カメラとしてもよい。 The distribution center 20 is a place where goods are accumulated and delivered to stores 50 and other distribution centers 20 in various places. As shown in FIG. 2, the distribution center 20 has one or more automatic moving devices 40 that can automatically move the carriages 12 . This distribution center 20 has, for example, an inclined road surface 18 in a specific area of the floor surface, and the automatic movement device 40 automatically moves in different movement areas in the height direction. In this distribution center 20, workers, arm robots (not shown), and the like carry out work of placing articles on carts 12 corresponding to delivery destinations. The automatic moving device 40 stacks the carriages 12 whose delivery destinations are specified, and carries them in and out. The delivery vehicle 60 loads the carriage 12 in the cargo room 61 at the distribution center 20, delivers the articles to the delivery destination, and returns the empty carriage 12 to the distribution center 20.例文帳に追加The distribution center 20 is provided with one or more area detection devices 29 for detecting the positions of the cart 12, the automatic moving device 40, the delivery vehicle 60, and the like. The area detection device 29 may be a non-contact sensor or a camera.
 自動移動装置40は、台車12を自動移動する移動システム11が有する移動体としての車両である。この自動移動装置40は、台車12の載置部13の下面側においてキャスター14の間の空間に入り込み、載置部13を下方から積載部43で持ち上げるようにして台車12に接続し、台車12を移動させる。この自動移動装置40は、路面に形成された線に沿って移動するAGVとしてもよいし、周囲を検知して自由なルートで移動するAMRとしてもよい。自動移動装置40は、図3に示すように、車体部40aと、移動制御部41と、記憶部42と、積載部43と、車輪44と、移動駆動部45と、検出部46と、投影部47と、読取部48と、通信部49とを有する。移動制御部41は、自動移動装置40の装置全体を制御するコントローラである。この移動制御部41は、積載部43や移動駆動部45、通信部49へ制御信号などを出力すると共に、検出部46や読取部48、通信部49からの信号を入力する。移動制御部41は、移動駆動部45の駆動状態などに基づいて自動移動装置40の移動方向や移動距離、現在位置などを把握する。移動制御部41は、検出部46からの情報に基づいて、自動移動装置40の移動や停止を制御する。記憶部42は、各種アプリケーションプログラムや各種データファイルを記憶する。記憶部42には、例えば、台車12を移動する配送元や配送先の位置を含む位置情報や、物流センター20のマップ情報などが記憶される。位置情報やマップ情報は、物流PC21から通信で取得する。積載部43は、自動移動装置40の車体部40aに対して上方にせり出して載置部13の下面を押圧することにより、台車12と接続するものである(図4参照)。自動移動装置40は、4輪の車輪44を有しており、車輪44の回転駆動によって移動する。移動駆動部45は、それぞれの車輪44に接続され、接続された車輪44を回転駆動することにより自動移動装置40を走行駆動するモータである。検出部46は、自動移動装置40の周囲に存在する物体やその距離を検出するものである。検出部46は、例えば、レーザなどの光や音波などを周囲に照射し、反射波を検出することによって物体の存在やその距離などを検出する。検出部46は、AGVにおいては、車体部40aの近傍に存在する物体を検知するセンサとし、AMRにおいては、より広範囲の領域に存在する障害物や壁などまで検知可能なセンサとする。投影部47は、自動移動装置40が読み取って移動する誘導ラインを特定空間内に存在する投影面に投影させるユニットである。投影部47は、例えば、投影面としての床面に誘導ラインを投影させる(後述図10参照)。ここで、「投影面」としては、自動移動装置40が走行する路面としてもよいし、特定空間に存在する壁面としてもよい。読取部48は、床面に形成された誘導ラインを読み取るユニットである。この読取部48は、例えば、画像を撮像する撮像部とし、撮像した画像を解析して誘導ラインを検出するものとしてもよい。通信部49は、物流PC21などの外部機器と無線で情報のやりとりを行うインターフェイスである。移動制御部41は、通信部49を介して物流PC21と情報のやりとりを行う。自動移動装置40は、前方部とその反対側の後方部の少なくとも2面に、検出部46、投影部47及び読取部48を備えるものとしてもよい。図3Aに示す自動移動装置40Aは、AGV及びAMRの機能を有するものであり、AGVとして機能する際は、検出部46を用いて車体部40a近傍の障害物を検出し、読取部48で読み取った誘導ラインに沿って目的位置へ移動する。また、自動移動装置40Aは、AMRとして機能する際は、検出部46によって障害物を検出しながら、記憶部42に記憶されたマップ情報に基づいて目的位置へ移動する。図3Bに示す自動移動装置40Bは、AGVの機能のみを有する。また、図3Cに示す自動移動装置40Cは、読取部48を省略し、AMRの機能のみを有する。また、図3Dに示す自動移動装置40Dは、投影部47を省略し、AGV及びAMRの機能を有する。なお、自動移動装置40には、自動移動装置40Bや自動移動装置40Cが投影部47を省略した構成を有するものがあってもよい。配送システム10や移動システム11においては、必要に応じた機能を有する自動移動装置40や配送車60を有するものとすればよい。 The automatic moving device 40 is a vehicle as a moving body possessed by the moving system 11 that automatically moves the carriage 12 . This automatic moving device 40 enters the space between the casters 14 on the lower surface side of the mounting portion 13 of the truck 12, lifts the mounting portion 13 from below by the loading portion 43, and connects to the truck 12. to move. This automatic moving device 40 may be an AGV that moves along a line formed on the road surface, or an AMR that senses the surroundings and moves along a free route. As shown in FIG. 3, the automatic moving device 40 includes a vehicle body portion 40a, a movement control portion 41, a storage portion 42, a loading portion 43, wheels 44, a movement driving portion 45, a detection portion 46, a projection It has a section 47 , a reading section 48 and a communication section 49 . The movement control unit 41 is a controller that controls the entire automatic movement device 40 . The movement control section 41 outputs control signals and the like to the stacking section 43 , movement drive section 45 and communication section 49 , and inputs signals from the detection section 46 , reading section 48 and communication section 49 . The movement control unit 41 grasps the movement direction, the movement distance, the current position, and the like of the automatic moving device 40 based on the driving state of the movement driving unit 45 and the like. The movement control unit 41 controls movement and stoppage of the automatic movement device 40 based on information from the detection unit 46 . The storage unit 42 stores various application programs and various data files. The storage unit 42 stores, for example, position information including the positions of the delivery source and the delivery destination where the cart 12 is moved, map information of the distribution center 20, and the like. Positional information and map information are acquired from the physical distribution PC 21 by communication. The loading section 43 is connected to the carriage 12 by projecting upward from the vehicle body section 40a of the automatic moving device 40 and pressing the lower surface of the mounting section 13 (see FIG. 4). The automatic moving device 40 has four wheels 44 and moves by rotating the wheels 44 . The movement drive unit 45 is a motor that is connected to each wheel 44 and drives the automatic movement device 40 to travel by rotating the connected wheels 44 . The detection unit 46 detects objects existing around the automatic moving device 40 and the distance therebetween. The detection unit 46 detects the existence of an object, its distance, and the like by irradiating the surroundings with light such as laser light, sound waves, and the like, and detecting reflected waves. In the AGV, the detection unit 46 is a sensor that detects an object existing in the vicinity of the vehicle body 40a, and in the AMR, a sensor that can detect obstacles, walls, and the like existing in a wider area. The projection unit 47 is a unit that projects the guide line read and moved by the automatic movement device 40 onto a projection plane existing within a specific space. The projection unit 47 projects the guide line onto, for example, a floor surface as a projection surface (see FIG. 10 described later). Here, the "projection plane" may be a road surface on which the automatic moving device 40 runs, or a wall surface existing in a specific space. The reading unit 48 is a unit that reads guidance lines formed on the floor. The reading unit 48 may be, for example, an imaging unit that captures an image, and may analyze the captured image to detect the guide line. The communication unit 49 is an interface for wirelessly exchanging information with an external device such as the physical distribution PC 21 . The movement control unit 41 exchanges information with the physical distribution PC 21 via the communication unit 49 . The automatic moving device 40 may be provided with a detection unit 46, a projection unit 47, and a reading unit 48 on at least two surfaces, a front portion and a rear portion on the opposite side. The automatic moving device 40A shown in FIG. 3A has the functions of AGV and AMR. Move to the target position along the guidance line. Further, when functioning as an AMR, the automatic moving device 40A moves to the target position based on the map information stored in the storage unit 42 while detecting obstacles with the detecting unit 46 . The automatic moving device 40B shown in FIG. 3B has only the AGV function. Also, the automatic moving device 40C shown in FIG. 3C omits the reading unit 48 and has only the AMR function. Also, an automatic movement device 40D shown in FIG. 3D omits the projection unit 47 and has AGV and AMR functions. Note that the automatic moving device 40 may have a configuration in which the projection unit 47 is omitted from the automatic moving device 40B and the automatic moving device 40C. The delivery system 10 and the moving system 11 may have an automatic moving device 40 and a delivery vehicle 60 having functions as required.
 店舗50は、配送された物品を陳列して販売する。店舗50は、1以上の自動移動装置40を有しており、台車12を自動移動することができる。店舗50は、物品を陳列する陳列棚59を有しており、作業者がこの陳列棚へ物品を陳列する。 The store 50 displays and sells the delivered items. The store 50 has one or more automatic moving devices 40 and can automatically move the trolley 12 . The store 50 has display shelves 59 for displaying articles, and workers display articles on the display shelves.
 店舗PC51は、店舗50に配設され、店舗50での商品管理などを行う管理装置として構成されている。この店舗PC51は、制御部52と、記憶部53と、通信部58とを備えている。制御部52は、CPUを有し、装置全体の制御を司る。記憶部53は、各種アプリケーションプログラムや各種データファイルを記憶するものである。記憶部53には、配送管理情報54や、位置情報55、マップ情報56などが記憶されている。配送管理情報54は、物品の配送を管理するのに用いられる情報である。位置情報55は、店舗50に配置された自動移動装置40の位置や配送車60の位置を含む情報である。マップ情報56は、店舗50のマップの情報である。通信部58は、自動移動装置40などの外部機器と無線で通信を行うものである。また、通信部58は、ネットワーク15を介して管理サーバ70や物流PC21と情報のやりとりを行う。記憶部53には、物品と陳列棚とを対応付けた商品管理情報や、位置情報、自動移動装置40が利用するマップ情報などが記憶される。記憶部53には、物流PC21に記憶された情報と同様の内容を記憶するものとしてもよい。 The store PC 51 is installed in the store 50 and is configured as a management device that manages products in the store 50 and the like. The store PC 51 includes a control section 52 , a storage section 53 and a communication section 58 . The control unit 52 has a CPU and controls the entire device. The storage unit 53 stores various application programs and various data files. The storage unit 53 stores delivery management information 54, position information 55, map information 56, and the like. The delivery management information 54 is information used for managing delivery of articles. The position information 55 is information including the position of the automatic mobile device 40 placed in the store 50 and the position of the delivery vehicle 60 . The map information 56 is map information of the store 50 . The communication unit 58 wirelessly communicates with an external device such as the automatic mobile device 40 . Also, the communication unit 58 exchanges information with the management server 70 and the physical distribution PC 21 via the network 15 . The storage unit 53 stores merchandise management information that associates articles with display shelves, position information, map information that is used by the automatic moving device 40, and the like. The storage unit 53 may store the same content as the information stored in the physical distribution PC 21 .
 配送車60は、1以上の台車12を積載して物品を配送する移動システム11が有する車両である。配送車60は、配送拠点間で物品の配送を行う。ここで、「配送拠点」とは、物品を集積する物流センター20や店舗50などが含まれる。この配送車60は、図1に示すように、荷室61と、テールゲート62と、テールリフト63と、移動部64と、投影部65と、駆動部66と、制御装置68とを備えている。荷室61は、台車12を集積する特定空間であり、台車12を積載する積載部でもある。テールゲート62は、車両後部に設けられており、閉鎖扉によって荷室61を開放、閉鎖する。テールリフト63は、閉鎖扉の解放時に水平となる作業台に台車12や作業者などを積載して荷室61の床面と配送車60の走行面との間でこの作業台を上下動するものである。この配送車60は、テールゲート62、テールリフト63などがモータや油圧などによって機械動作することが可能になっている。移動部64は、投影部65を移動するスライダとして構成されている。移動部64は、荷室61内で画像を投影する車内投影位置と、荷室61の外に画像を投影する車外投影位置との間で投影部65を移動する。投影部65は、自動移動装置40が読み取って移動する誘導ラインを特定空間内に存在する投影面に投影させるユニットである。投影面は、荷室61内部の床面のほか、荷室61の外部の床面などである。駆動部66は、エンジンやモータなどを含む駆動源であり、車輪を回転駆動させることによって、配送車60を移動させる。制御装置68は、配送車60の各装置を制御するコントローラであり、CPUや記憶部を備えている。制御装置68は、図示しない通信部を介して、無線などによって、物流PC21や管理サーバ70などの外部機器と情報のやりとりを行う。移動システム11は、配送拠点間を無人運転により自動移動する配送車60を有するものとしてもよいし、作業車が運転して配送拠点間を移動する配送車60を有するものとしてもよい。自動移動する配送車60では、自動移動装置40と同様に検出部を備えるものとし、制御装置68は、駆動部66を駆動し、検出部によって障害物を検出しながら、記憶部に記憶されたマップ情報に基づいて目的位置へ移動する。なお、本実施形態では、物品の配送をトラックの配送車60で行うものとしたが、特にこれに限定されず、列車や、船舶、航空機などの移動輸送体で行うものとしてもよい。 The delivery vehicle 60 is a vehicle of the mobile system 11 that carries one or more carts 12 to deliver goods. The delivery vehicle 60 delivers articles between delivery bases. Here, the "delivery base" includes the distribution center 20 and the store 50 where goods are accumulated. As shown in FIG. 1, the delivery vehicle 60 includes a luggage compartment 61, a tail gate 62, a tail lift 63, a moving section 64, a projecting section 65, a driving section 66, and a control device 68. there is The luggage compartment 61 is a specific space for stacking the trucks 12 and also a loading section for loading the trucks 12 . The tailgate 62 is provided at the rear portion of the vehicle, and opens and closes the luggage compartment 61 by means of a closing door. The tail lift 63 loads the trolley 12, workers, etc. on the workbench which becomes horizontal when the closed door is opened, and moves the workbench up and down between the floor surface of the luggage compartment 61 and the traveling surface of the delivery vehicle 60. It is. In the delivery vehicle 60, the tail gate 62, the tail lift 63, etc. can be mechanically operated by a motor, hydraulic pressure, or the like. The moving part 64 is configured as a slider that moves the projection part 65 . The moving unit 64 moves the projecting unit 65 between an in-vehicle projection position where the image is projected inside the luggage compartment 61 and an outside projection position where the image is projected outside the luggage compartment 61 . The projection unit 65 is a unit that projects the guide line read and moved by the automatic moving device 40 onto a projection plane that exists within a specific space. The projection surface is the floor surface inside the luggage compartment 61, the floor surface outside the luggage compartment 61, and the like. The drive unit 66 is a drive source including an engine and a motor, and moves the delivery vehicle 60 by rotationally driving wheels. The control device 68 is a controller that controls each device of the delivery vehicle 60, and includes a CPU and a storage unit. The control device 68 exchanges information with external devices such as the physical distribution PC 21 and the management server 70 by radio or the like via a communication unit (not shown). The movement system 11 may have a delivery vehicle 60 that automatically moves between delivery bases by unmanned operation, or may have a delivery vehicle 60 that is driven by a work vehicle and moves between delivery bases. The automatically moving delivery vehicle 60 is provided with a detection unit in the same manner as the automatic moving device 40, and the control device 68 drives the drive unit 66 to detect the obstacles by the detection unit, while the obstacles are stored in the storage unit. Move to the target position based on the map information. In this embodiment, the goods are delivered by the truck delivery vehicle 60, but the delivery is not limited to this, and may be carried out by a mobile transport such as a train, a ship, or an aircraft.
 管理サーバ70は、配送システム10の管理を行う装置である。この管理サーバ70は、管理制御部72と、記憶部73と、通信部78とを備えている。管理制御部72は、CPUを有し、装置全体の制御を司る。記憶部73は、各種アプリケーションプログラムや各種データファイルを記憶するものである。記憶部73には、物品の配送を管理するのに用いられる配送管理情報74や、物流センター20や店舗50に配置された自動移動装置40の位置や配送車60の位置を含む位置情報75、物流センター20や店舗50のマップ情報76などが記憶される。なお、配送管理情報24と配送管理情報54と配送管理情報74とは、相互に関連する情報を含み、配送管理情報24や配送管理情報54には、配送管理情報74のうちその場所に応じた情報が含まれている。位置情報25,55,75や、マップ情報26、56,76も同様に、相互に関連する情報を含む。配送管理情報74には、配送先と物品とを対応付けた配送情報や、物品を積載した台車12と物品とを対応付けた対応情報などを含む。マップ情報76には、図5に示すように、マップの識別情報(ID)、マップの全体領域の情報、特定空間を実測した測定値と基準のマップとの差異値を低減する補正情報と、傾斜路面18が存在する領域に関する傾斜路面の領域情報と、特定空間内に存在する障害物の領域を示す障害物の領域情報などが含まれる。障害物の領域情報は、物流センター20内に存在する、自動移動装置40の移動を阻害する障害物の位置や大きさのほか、それを検出した装置や時刻などの情報が含まれる。障害物の領域情報は、フロアを移動する自動移動装置40からの検出結果に基づいて逐次更新される。障害物の領域情報に含まれる障害物の情報は、その後、撤去されると、消去される。このマップ情報76やマップ情報26,56などは、自動移動装置40などの測定結果を反映して随時更新される。図6は、マップ情報26から導かれるマップデータ80の一例を示す説明図である。マップデータ80には、自動移動装置40が進入出来ない障害物領域81や、傾斜路面領域82などの情報が含まれている。管理制御部72は、例えば、物流PC21や店舗PC51で作成、更新されたマップ情報26,56を通信で取得するものとしてもよい。通信部78は、ネットワーク15を介して物流PC21や店舗PC51などの外部機器と情報のやりとりを行うものである。 The management server 70 is a device that manages the delivery system 10 . The management server 70 includes a management control section 72 , a storage section 73 and a communication section 78 . The management control unit 72 has a CPU and controls the entire apparatus. The storage unit 73 stores various application programs and various data files. The storage unit 73 stores delivery management information 74 used for managing the delivery of goods, location information 75 including the location of the automatic mobile device 40 and the location of the delivery vehicle 60 located in the distribution center 20 and the store 50, Map information 76 of the distribution center 20 and the store 50 and the like are stored. The delivery management information 24, the delivery management information 54, and the delivery management information 74 include mutually related information. Contains information. The location information 25, 55, 75 and the map information 26, 56, 76 similarly contain information related to each other. The delivery management information 74 includes delivery information that associates delivery destinations with items, correspondence information that associates items with carts 12 on which items are loaded, and the like. As shown in FIG. 5, the map information 76 includes identification information (ID) of the map, information of the entire area of the map, correction information for reducing the difference value between the measured value of the specific space and the reference map, It includes sloped road area information about the area where the sloped road surface 18 exists, and obstacle area information indicating the area of the obstacle existing in the specific space. The obstacle area information includes information such as the position and size of an obstacle that hinders the movement of the automatic mobile device 40 existing in the distribution center 20, as well as the device and time that detected it. The obstacle area information is sequentially updated based on the detection results from the automatic moving device 40 that moves on the floor. The obstacle information included in the obstacle area information is erased when the obstacle is subsequently removed. The map information 76, the map information 26, 56, etc. are updated at any time by reflecting the measurement results of the automatic moving device 40 and the like. FIG. 6 is an explanatory diagram showing an example of map data 80 derived from the map information 26. As shown in FIG. The map data 80 includes information such as an obstacle area 81 into which the automatic moving device 40 cannot enter, an inclined road surface area 82, and the like. The management control unit 72 may acquire map information 26 and 56 created and updated by the physical distribution PC 21 or the store PC 51 through communication, for example. The communication unit 78 exchanges information with external devices such as the distribution PC 21 and the store PC 51 via the network 15 .
 次に、このように構成された配送システム10において、物流センター20に配送車60が到着し、自動移動装置40が台車12を移動する処理について説明する。ここでは、AGVとして機能する自動移動装置40が配送車60の荷室61へ台車12を移動する処理を具体例として説明する。図7は、配送車60の制御装置68が実行する自動移動装置誘導処理ルーチンの一例を表すフローチャートである。図8は、自動移動装置40を配送車60へ誘導する処理の説明図であり、図8Aが投影領域90に誘導ライン91を投影した図、図8Bが、自動移動装置40をテールリフト63へ誘導する図、図8Cが自動移動装置40を荷室61内で誘導する図である。自動移動装置誘導処理ルーチンは、制御装置68が有する記憶部に記憶され、物流センター20に配送車60が到着したのち実行される。このルーチンを開始すると制御装置68のCPUは、物流PC21から配送車60の位置を取得し(S100)、投影部65を車外投影位置へ移動部64に移動させ(S110)、台車12を荷室61へ運ぶ自動移動装置40の位置を取得する(S120)。制御装置68は、配送車60及び配送車60の位置を領域検出装置29により検出された座標を物流PC21を介して取得するものとする。 Next, in the delivery system 10 configured in this way, the process of the delivery vehicle 60 arriving at the distribution center 20 and the automatic moving device 40 moving the carriage 12 will be described. Here, a process of moving the cart 12 to the luggage compartment 61 of the delivery vehicle 60 by the automatic moving device 40 functioning as an AGV will be described as a specific example. FIG. 7 is a flowchart showing an example of an automatic mobile device guidance processing routine executed by the control device 68 of the delivery vehicle 60. As shown in FIG. 8A and 8B are explanatory diagrams of the process of guiding the automatic moving device 40 to the delivery vehicle 60. FIG. 8A is a diagram of the guidance line 91 projected onto the projection area 90, and FIG. FIG. 8C is a diagram for guiding the automatic moving device 40 in the luggage compartment 61. FIG. The automatic mobile device guidance processing routine is stored in the storage unit of the control device 68 and executed after the delivery vehicle 60 arrives at the distribution center 20 . When this routine is started, the CPU of the control device 68 acquires the position of the delivery vehicle 60 from the physical distribution PC 21 (S100), moves the projection unit 65 to the projection position outside the vehicle to the moving unit 64 (S110), and moves the carriage 12 into the cargo room. 61 is acquired (S120). The control device 68 acquires the delivery vehicle 60 and the coordinates of the position of the delivery vehicle 60 detected by the area detection device 29 via the physical distribution PC 21 .
 次に、制御装置68は、自動移動装置40と配送車60との位置を結ぶ誘導画像を作成する(S130)。誘導画像には、読取部48が読み取る誘導ライン91の画像が含まれている。次に、制御装置68は、誘導画像としての誘導ライン91を投影面としての床面へ投影させる(S140、図8A参照)。自動移動装置40は、投影領域90に存在する誘導ライン91を読み取り、これに沿ってテールリフト63まで移動する(図8B)。制御装置68は、自動移動装置40がテールリフト63に到達したか否かを判定し(S150)、自動移動装置40がテールリフト63に到達していないときには、S120以降の処理を実行する。即ち、制御装置68は、自動移動装置40の位置を更新し、誘導画像を作成し、路面に誘導ライン91を投影する。 Next, the control device 68 creates a guidance image connecting the positions of the automatic moving device 40 and the delivery vehicle 60 (S130). The guide image includes an image of the guide line 91 read by the reading unit 48 . Next, the control device 68 projects the guide line 91 as the guide image onto the floor as the projection surface (S140, see FIG. 8A). The automatic moving device 40 reads a guiding line 91 present in the projection area 90 and moves along it to the tail lift 63 (FIG. 8B). The control device 68 determines whether or not the automatic moving device 40 has reached the tail lift 63 (S150). That is, the control device 68 updates the position of the automatic moving device 40, creates a guidance image, and projects a guidance line 91 on the road surface.
 一方、S150で自動移動装置40がテールリフト63に到達すると、制御装置68は、テールリフト63を上昇させ(S160)、投影部65を車内投影位置へ移動させ(S170)、自動移動装置40の目的位置へ誘導する誘導画像を作成し(S180)、誘導画像を投影面である車内床面へ投影させる(S190)。自動移動装置40は、投影領域92に存在する誘導ライン93を読み取り、誘導ライン93に沿って移動し(図8C)、目的位置へ到達すると、台車12を下ろす処理を行う。荷室61には、自動移動装置40の路面よりも高い位置にキャスター14が走行する走行路が形成されており、積載部43を下降するとキャスター14が走行路上に支持され、台車12が荷室61内に保持される。次に、制御装置68は、自動移動装置40が目的位置で台車12を下ろし、テールリフト63上へ到達するまで待機する(S200)。このとき、制御装置68は、自動移動装置40がテールリフト63に誘導される誘導ライン93を車内床面に投影させる。 On the other hand, when the automatic moving device 40 reaches the tail lift 63 in S150, the control device 68 raises the tail lift 63 (S160), moves the projection unit 65 to the in-vehicle projection position (S170), and moves the automatic moving device 40. A guidance image that guides the vehicle to the target position is created (S180), and the guidance image is projected onto the floor surface in the vehicle, which is the projection surface (S190). The automatic moving device 40 reads the guide line 93 existing in the projection area 92, moves along the guide line 93 (FIG. 8C), and when the target position is reached, the cart 12 is lowered. In the luggage compartment 61, a travel path on which the casters 14 travel is formed at a position higher than the road surface of the automatic moving device 40. When the loading unit 43 is lowered, the casters 14 are supported on the travel path, and the carriage 12 moves into the luggage compartment. 61. Next, the control device 68 waits until the automatic moving device 40 lowers the truck 12 at the target position and reaches the tail lift 63 (S200). At this time, the control device 68 projects a guide line 93 along which the automatic moving device 40 is guided to the tail lift 63 on the floor surface of the vehicle interior.
 S200で、自動移動装置40がテールリフト63に到達すると、制御装置68は、テールリフト63を下降し(S210)、投影部65を車外投影位置へ移動させ(S220)、自動移動装置40を配送車60の車外の目的位置へ誘導する誘導画像を作成し(S230)、この誘導画像を投影面である路面に投影させる(S240)。自動移動装置40は、投影領域90に存在する誘導ライン91を読み取り、これに沿って配送車60の車外へ移動する。制御装置68は、自動移動装置40が車外の目的位置へ移動したか否かを判定し(S250)、自動移動装置40が目的位置へ至っていないときには、S230以降の処理を実行する。一方、自動移動装置40が車外の目的位置へ移動したときには、制御装置68は、次に誘導すべき自動移動装置40があるか否かを判定し(S260)、次に誘導すべき自動移動装置40があるときには、S100以降の処理を実行する。一方、S260で次に誘導すべき自動移動装置40がないときには、制御装置68は、このルーチンを終了する。配送車60の停車位置は、その時々によって変化することがある。ここでは、配送車60が誘導ラインを投影することによって、自動移動装置40をより的確に荷室61へ誘導することができるのである。なお、ここでは、誘導される自動移動装置40は、AGVの機能を有するものとして説明したが、この自動移動装置40は、投影部47を省略した自動移動装置40Dとしてもよい。また、自動移動装置40は、AMRの機能をも有し、例えば、図8Aの誘導開始位置まで自動移動してもよいし、図8Cにおいて、投影部65による誘導ライン93の投影を省略し、自動移動するものとしてもよい。 In S200, when the automatic moving device 40 reaches the tail lift 63, the control device 68 lowers the tail lift 63 (S210), moves the projection unit 65 to the projection position outside the vehicle (S220), and delivers the automatic moving device 40. A guidance image that guides the user to a target position outside the vehicle 60 is created (S230), and this guidance image is projected onto the road surface, which is the projection surface (S240). The automatic moving device 40 reads the guide line 91 existing in the projection area 90 and moves out of the delivery vehicle 60 along this line. The control device 68 determines whether or not the automatic moving device 40 has moved to the target position outside the vehicle (S250). On the other hand, when the automatic mobile device 40 has moved to the target position outside the vehicle, the control device 68 determines whether or not there is an automatic mobile device 40 to be guided next (S260). When there is 40, the processing after S100 is executed. On the other hand, when there is no automatic moving device 40 to be guided next in S260, the control device 68 terminates this routine. The stop position of the delivery vehicle 60 may change from time to time. Here, the automatic moving device 40 can be more accurately guided to the luggage compartment 61 by the delivery vehicle 60 projecting the guide line. Here, the automatic moving device 40 to be guided is described as having an AGV function, but this automatic moving device 40 may be an automatic moving device 40D in which the projection unit 47 is omitted. In addition, the automatic movement device 40 also has an AMR function, and for example, it may automatically move to the guidance start position in FIG. 8A, and in FIG. It may be automatically moved.
 次に、自動移動装置40が実行する隊列移動について説明する。ここでは、移動システム11の有する自動移動装置40が投影部47を用いて、他の自動移動装置40を追従させる処理について説明する。図9は、自動移動装置40の移動制御部41が実行する隊列移動処理ルーチンの一例を示す説明図である。図10は、自動移動装置40が隊列移動する一例の説明図である。隊列移動処理ルーチンは、自動移動装置40の記憶部42に記憶され、隊列移動を要する際に実行される。ここでは、先頭をAMRとしての自動移動装置40が移動し、それに追従して複数のAGVとしての自動移動装置40が移動する場合を説明する。なお、先頭の自動移動装置40は、AGVの機能を更に有してもよいし、追従する1以上の自動移動装置40は、AMRの機能を更に有してもよい。 Next, platoon movement executed by the automatic movement device 40 will be described. Here, a process in which the automatic moving device 40 of the moving system 11 uses the projection unit 47 to cause another automatic moving device 40 to follow will be described. FIG. 9 is an explanatory diagram showing an example of a platoon movement processing routine executed by the movement control unit 41 of the automatic moving device 40. As shown in FIG. FIG. 10 is an explanatory diagram of an example of platoon movement of the automatic movement device 40 . The platoon movement processing routine is stored in the storage unit 42 of the automatic moving device 40 and executed when platoon movement is required. Here, a case will be described in which the automatic moving device 40 as AMR moves at the head and the automatic moving devices 40 as multiple AGVs move following it. The leading automatic moving device 40 may further have the AGV function, and one or more following automatic moving devices 40 may further have the AMR function.
 このルーチンを開始すると、移動制御部41は、まず、目的位置の情報及びマップ情報を物流PC21から取得する(S300)。次に、移動制御部41は、目的位置へ移動するよう移動駆動部45により車輪44を駆動させる(S310)。このとき、移動制御部41は、マップ情報を用いて移動経路を設定し、設定した移動経路に沿って移動するよう移動駆動部45を駆動制御する。続いて、移動制御部41は、後続の自動移動装置40が追従する誘導画像を作成し(S320)、投影部47により、移動方向の後方に向けて誘導画像を投影面としての路面に投影させる(S330)。移動制御部41は、自機が直進する場合は、直進する誘導ラインを含む誘導画像を作成する(図10参照)。また、移動制御部41は、自機が左方向へ曲がって移動する際には、左にカーブする誘導ラインを含む誘導画像を作成する。また、自機が右方向へ曲がって移動する際には、右にカーブする誘導ラインを含む誘導画像を作成する。後続の自動移動装置40は、読取部48で読み取った誘導ラインに沿って移動する。また、後続の自動移動装置40は、更に後続の自動移動装置40に対して誘導画像を作成し、投影部47により投影領域94に誘導ライン95を含む投影画像を路面へ投影させる(図10参照)。そして、移動制御部41は、目的地に到着したか否かを判定し(S340)、目的地へ到着していないときには、S310以降の処理を繰り返し実行する。S340で目的位置へ到着したときには、このルーチンを終了する。このように、自動移動装置40は、投影部47を用いて、他の自動移動装置40を追従させることができる。 When this routine starts, the movement control unit 41 first acquires information on the destination position and map information from the distribution PC 21 (S300). Next, the movement control unit 41 causes the movement driving unit 45 to drive the wheels 44 so as to move to the target position (S310). At this time, the movement control unit 41 sets the movement route using the map information, and drives and controls the movement driving unit 45 to move along the set movement route. Subsequently, the movement control unit 41 creates a guidance image to be followed by the subsequent automatic movement device 40 (S320), and causes the projection unit 47 to project the guidance image backward in the movement direction onto the road surface as a projection surface. (S330). The movement control unit 41 creates a guidance image including a straight-ahead guide line when the aircraft is going straight (see FIG. 10). Further, the movement control unit 41 creates a guidance image including a guidance line curving to the left when the self-machine turns to the left and moves. Also, when the aircraft turns to the right and moves, a guidance image including a guidance line that curves to the right is created. The subsequent automatic movement device 40 moves along the guide line read by the reading section 48 . Further, the subsequent automatic movement device 40 further creates a guidance image for the subsequent automatic movement device 40, and causes the projection unit 47 to project the projection image including the guidance line 95 onto the road surface in the projection area 94 (see FIG. 10). ). Then, the movement control unit 41 determines whether or not the destination has been reached (S340), and when the destination has not been reached, the processing after S310 is repeatedly executed. When the target position is reached in S340, this routine ends. In this manner, the automatic moving device 40 can use the projection unit 47 to cause another automatic moving device 40 to follow.
 続いて、移動システム11の有する自動移動装置40が路面上に障害物が存在するかを検出する処理について説明する。図11は、自動移動装置40の移動制御部41が実行する測定データ処理ルーチンの一例を表すフローチャートである。図12は、自動移動装置40が傾斜路面で障害物を検出する一例の説明図である。ここでは、物流センター20内を自動移動装置40が移動する際に障害物を検出する処理を具体例として説明する。測定データ処理ルーチンは、記憶部42に記憶され、自動移動装置40が移動する際に実行される。この測定データ処理ルーチンは、自動移動装置40の目的地への移動処理及び台車12に対する作業などと並行して実行される。このルーチンを開始すると、移動制御部41は、マップ情報26を物流PC21から取得する(S400)。マップ情報26は、管理サーバ70から物流PC21を介して自動移動装置40へ送信されるものとしてもよい。 Next, the process of detecting whether an obstacle exists on the road surface by the automatic moving device 40 of the moving system 11 will be described. FIG. 11 is a flow chart showing an example of a measurement data processing routine executed by the movement control section 41 of the automatic movement device 40. As shown in FIG. FIG. 12 is an explanatory diagram of an example in which the automatic moving device 40 detects an obstacle on a sloped road surface. Here, processing for detecting an obstacle when the automatic moving device 40 moves within the distribution center 20 will be described as a specific example. The measurement data processing routine is stored in the storage unit 42 and executed when the automatic moving device 40 moves. This measurement data processing routine is executed in parallel with the process of moving the automatic moving device 40 to the destination, the work on the carriage 12, and the like. When starting this routine, the movement control unit 41 acquires the map information 26 from the physical distribution PC 21 (S400). The map information 26 may be transmitted from the management server 70 to the automatic mobile device 40 via the physical distribution PC 21 .
 次に、移動制御部41は、現在位置を取得すると共に検出部46による測定結果を取得する(410)。移動制御部41は、初期位置からの車体部40aの移動した距離及び方向から現在位置を取得するものとしてもよい。また、移動制御部41は、例えば、検出部46が測定した反射波に基づいて特定空間内に存在する壁や障害物などの物体の存在及びその物体までの距離を測定結果として得る。次に、移動制御部41は、記憶部42に記憶しているマップ情報26に含まれるマップデータと測定したデータとに差異値があるか否かを判定する(S420)。移動制御部41は、例えば、障害物と判定される物体は除外し、壁と壁との間の距離など、特定空間のサイズなどに対して差異値があるか否かを判定する。なお、移動制御部41は、差異値が測定誤差の範囲内であるときには差異値がないものと判定する。移動制御部41は、差異値があるときには、測定データを物流PC21へ送信する(S430)。測定データは、物流PC21や管理サーバ70においてマップ情報26やマップ情報76の更新に用いられる。 Next, the movement control unit 41 acquires the current position and acquires the measurement result by the detection unit 46 (410). The movement control unit 41 may acquire the current position from the distance and direction in which the body part 40a has moved from the initial position. Further, the movement control unit 41 obtains the presence of an object such as a wall or an obstacle existing in the specific space and the distance to the object as a measurement result based on the reflected wave measured by the detection unit 46, for example. Next, the movement control unit 41 determines whether there is a difference value between the map data included in the map information 26 stored in the storage unit 42 and the measured data (S420). For example, the movement control unit 41 excludes objects that are determined to be obstacles, and determines whether or not there is a difference value with respect to the size of the specific space, such as the distance between walls. Note that the movement control unit 41 determines that there is no difference value when the difference value is within the measurement error range. When there is a difference value, the movement control section 41 transmits the measurement data to the physical distribution PC 21 (S430). The measurement data is used for updating the map information 26 and the map information 76 in the physical distribution PC 21 and the management server 70 .
 S430のあと、またはS420で測定データとマップデータとの間に差異値がないときには、移動制御部41は、特定空間内に物体を検出したか否かを判定する(S440)。移動制御部41は、進行方向に沿う方向において、壁よりも十分近い距離で反射波が得られた場合などに、物体を検出する。物体を検出したときには、移動制御部41は、物体までの距離が所定距離以上あるか否かを判定する(S450)。この所定距離は、物体の存在を確実に判定することができる至近距離に経験的に設定されているものとする。検出した物体までの距離が所定距離以上であるときには、移動制御部41は、検出した物体が障害物であるか否かを判定する除外可否判定処理を実行する(S460~500)。 After S430, or when there is no difference value between the measurement data and the map data in S420, the movement control unit 41 determines whether or not an object has been detected within the specific space (S440). The movement control unit 41 detects an object when, for example, a reflected wave is obtained at a distance sufficiently close to the wall in the direction along the traveling direction. When detecting an object, the movement control unit 41 determines whether or not the distance to the object is equal to or greater than a predetermined distance (S450). It is assumed that this predetermined distance is empirically set to a close distance at which the presence of an object can be reliably determined. When the distance to the detected object is equal to or greater than the predetermined distance, the movement control unit 41 executes exclusion determination processing for determining whether or not the detected object is an obstacle (S460-500).
 除外可否判定処理では、移動制御部41は、まず、測定結果及びマップ情報に基づいて、自機の現在位置が傾斜路面18の領域外にあり、検出された物体が傾斜路面18の領域内にあるか否かを判定する(S460)。S460で否定判定されると、移動制御部41は、自機の現在位置が傾斜路面18の領域内にあり、検出された物体が傾斜路面18の領域外にあるか否かを判定する(S470)。S460で肯定判定されるか、S470で肯定判定されたときには、移動制御部41は、検出された物体を障害物から除外する除外処理を行う(S480)。即ち、移動制御部41は、検出された物体を障害物として扱わない。図12に示すように、自動移動装置40は、自機が傾斜路面18の領域内にあるとき、傾斜した下方の路面を物体として検出することがある。また、自動移動装置40は、自機が傾斜路面18の領域外にあるとき、上方に傾斜した路面を物体として検出することがある。この除外処理では、自機の位置と傾斜路面18の領域の情報を用いることによって、処理負荷の大きい三次元マップなどを用いずに、このような誤検出を除外することができる。 In the exclusion determination process, first, based on the measurement result and the map information, the movement control unit 41 determines that the current position of the own aircraft is outside the area of the inclined road surface 18, and that the detected object is inside the area of the inclined road surface 18. It is determined whether or not there is (S460). When a negative determination is made in S460, the movement control unit 41 determines whether or not the current position of the aircraft is within the area of the inclined road surface 18 and the detected object is outside the area of the inclined road surface 18 (S470). ). If an affirmative determination is made in S460 or if an affirmative determination is made in S470, the movement control unit 41 performs exclusion processing to exclude the detected object from obstacles (S480). That is, the movement control unit 41 does not treat the detected object as an obstacle. As shown in FIG. 12, when the automatic moving device 40 is within the area of the sloped road surface 18, the automatic moving device 40 may detect the sloped road surface below as an object. Further, when the automatic moving device 40 is outside the area of the sloped road surface 18, the automatic moving device 40 may detect an upwardly inclined road surface as an object. In this exclusion process, by using information on the position of the vehicle itself and the area of the sloped road surface 18, it is possible to exclude such erroneous detection without using a three-dimensional map or the like, which imposes a large processing load.
 S470で否定判定され、またはS450で検出された物体までの距離が所定距離以上でないときには、移動制御部41は、検出された物体を障害物に設定し(S490)、この障害物を物流PC21へ報告する(S500)。即ち、移動制御部41は、自機の現在位置が傾斜路面18の領域外にあり且つ検出された物体が傾斜路面18の領域外にあるときには検出した物体を障害物として扱う。また、移動制御部41は、自機の現在位置が傾斜路面18の領域内にあり且つ検出された物体が傾斜路面18の領域内にあるときには検出した物体を障害物として扱う。 When a negative determination is made in S470, or when the distance to the object detected in S450 is less than the predetermined distance, the movement control unit 41 sets the detected object as an obstacle (S490), and transfers the obstacle to the physical distribution PC 21. Report (S500). That is, the movement control unit 41 treats the detected object as an obstacle when the current position of the aircraft is outside the area of the inclined road surface 18 and the detected object is outside the area of the inclined road surface 18 . Further, when the current position of the aircraft is within the area of the inclined road surface 18 and the detected object is within the area of the inclined road surface 18, the movement control unit 41 treats the detected object as an obstacle.
 S500のあと、または、S480のあと、あるいはS440で物体を検出していないときには、移動制御部41は、マップデータにある障害物を検出したか否かを判定する(S510)。障害物は、撤去されるか、自ら移動することなどによって、路面に存在しなくなる場合があるため、移動制御部41は、この障害物の有無を判定する。マップデータに存在する障害物を検出しなかったときには、移動制御部41は、障害物が存在しない旨の報告を物流PC21へ送信する(S520)。この報告を受けた物流PC21は、マップ情報26を更新し、更新したマップ情報を各自動移動装置40へ送信する。 After S500, after S480, or when no object is detected in S440, the movement control unit 41 determines whether an obstacle in the map data has been detected (S510). Since an obstacle may disappear from the road surface by being removed or by moving by itself, the movement control unit 41 determines the presence or absence of this obstacle. When no obstacle existing in the map data is detected, the movement control unit 41 transmits a report to the effect that no obstacle exists to the physical distribution PC 21 (S520). The physical distribution PC 21 receiving this report updates the map information 26 and transmits the updated map information to each automatic mobile device 40 .
 S520のあと、またはS510で障害物を検出したときには、移動制御部41は、自機の作業が完了したか否かを判定する(S530)。移動制御部41は、目的位置へ到達し、必要に応じて台車12の積み上げまたは積み降ろしを行ったか否かに基づいてこの判定を行う。自機の作業が完了していないときには、移動制御部41は、S400以降の処理を実行する。一方、自機の作業が完了したときには、移動制御部41は、このルーチンを終了する。このように、自動移動装置40は、自機が移動する際に、特定空間の情報を逐次測定し、物流PC21へ送信する。なお、特定空間の情報は、物流PC21を介して管理サーバ70へ送られるものとしてもよい。 After S520, or when an obstacle is detected in S510, the movement control unit 41 determines whether or not its own work has been completed (S530). The movement control unit 41 makes this determination based on whether or not the target position has been reached and the truck 12 has been loaded or unloaded as necessary. When the work of the machine itself has not been completed, the movement control unit 41 executes the processes after S400. On the other hand, when the work of the machine itself is completed, the movement control section 41 terminates this routine. In this way, the automatic moving device 40 sequentially measures the information of the specific space and transmits the information to the physical distribution PC 21 when it moves. Information on the specific space may be sent to the management server 70 via the physical distribution PC 21 .
 次に、管理サーバ70がマップ情報76を更新する処理について説明する。なお、ここでは、マップ情報の更新を管理サーバ70が行うものとして説明するが、物流PC21や店舗PC51など、他の管理装置でマップ情報26,56の更新を行うものとしてもよい。このとき、物流センター20では、物流PC21がマップ情報26の更新を行い、物流センター20でこの更新処理を完結するものとしてもよい。また、店舗50では、店舗PC51がマップ情報56の更新を行い、店舗50でこの更新処理を完結するものとしてもよい。図13は、管理サーバ70の管理制御部72が実行するマップ情報更新処理ルーチンの一例を表すフローチャートである。このルーチンは、記憶部73に記憶され、配送システム10が運用されているときに実行される。 Next, the process by which the management server 70 updates the map information 76 will be described. Here, it is assumed that the map information is updated by the management server 70, but the map information 26, 56 may be updated by another management device such as the distribution PC 21 or the store PC 51. FIG. At this time, in the distribution center 20, the distribution PC 21 may update the map information 26, and the distribution center 20 may complete this updating process. Further, in the store 50, the store PC 51 may update the map information 56, and the store 50 may complete this update process. FIG. 13 is a flow chart showing an example of a map information update processing routine executed by the management control unit 72 of the management server 70. As shown in FIG. This routine is stored in the storage unit 73 and executed when the delivery system 10 is in operation.
 このルーチンを開始すると、管理制御部72のCPUは、測定データを自動移動装置40などから取得したか否かを判定し(S600)、測定データを取得したときには、測定データを保存すると共に、該当する測定箇所の測定データが所定数以上同一範囲内にあるか否かを判定する(S610)。該当する取得データが所定数以上同一範囲内にあるときには、管理制御部72は、測定結果である測定データにマップを補正する補正値を設定する(S620)。この測定データは、マップデータと測定結果との間に差異値がある際に取得するものである。管理制御部72は、同一範囲内にある測定結果が所定数報告された場合、この測定データが正しいものと判定し、測定データをマップ情報に反映させる。ここで、「所定数」とは、例えば、測定結果が正しいと判定できる数(例えば、3や5、10など)に経験的に定められているものとしてもよい。また、「同一範囲」には、例えば、完全な同一値のほか、検出部46の有する測定誤差程度の相違は含まれるものとしてもよい。 When this routine is started, the CPU of the management control unit 72 determines whether measurement data has been obtained from the automatic moving device 40 or the like (S600). It is determined whether or not a predetermined number or more of the measurement data of the measurement points to be measured are within the same range (S610). When there are more than a predetermined number of corresponding obtained data within the same range, the management control unit 72 sets a correction value for correcting the map to the measurement data, which is the measurement result (S620). This measurement data is obtained when there is a difference value between the map data and the measurement result. When a predetermined number of measurement results within the same range are reported, the management control unit 72 determines that the measurement data is correct, and reflects the measurement data in the map information. Here, the "predetermined number" may be empirically determined to be a number (eg, 3, 5, 10, etc.) that can determine that the measurement result is correct. In addition, the “same range” may include, for example, not only exactly the same value but also a difference in the degree of measurement error of the detection unit 46 .
 S610で該当する測定データが所定数以上同一範囲内にないときには、管理制御部72は、差異値の中間値にマップを補正する補正値を設定する(S630)。管理制御部72は、例えば、マップに設定されている距離が500mmであり、測定データが490mmである場合は、495mmとなるような補正値を設定する。この場合において、490mmの測定データが2つあるときは、管理制御部72は、493.3mmとなるような補正値を設定する。S630のあと、またはS620のあと、管理制御部72は、障害物に関する報告を取得したか否かを判定し(S640)、障害物に関する報告を取得したときには、該当するマップに障害物の現状を反映させる(S650)。管理制御部72は、障害物が新たに報告された場合は、マップにその障害物を加える処理を実行し、障害物が撤去された場合は、マップにあるその障害物を削除する処理を実行する。 When it is determined in S610 that the number of relevant measurement data is not within the same range for a predetermined number or more, the management control unit 72 sets a correction value for correcting the map to an intermediate value of the difference values (S630). For example, when the distance set in the map is 500 mm and the measurement data is 490 mm, the management control unit 72 sets a correction value of 495 mm. In this case, when there are two pieces of measurement data of 490 mm, the management control section 72 sets a correction value to 493.3 mm. After S630 or S620, the management control unit 72 determines whether or not the report on the obstacle has been obtained (S640). Reflect (S650). When an obstacle is newly reported, the management control unit 72 executes processing to add the obstacle to the map, and when the obstacle is removed, executes processing to delete the obstacle on the map. do.
 そして、S650のあと、またはS640で障害物に関する報告がないときには、管理制御部72は、マップ情報の送信タイミングであるか否かを判定し(S660)、送信タイミングであるときには、マップ情報76のうち該当するマップの情報を該当する端末へ送信する(S670)。管理制御部72は、物流PC21などの端末の依頼に基づいて送信タイミングであるか否かの判定を行う。S670のあと、またはS660でマップ情報の送信タイミングでないときには、管理制御部72は、全ての処理を完了したか否かを判定し(S660)、全ての処理を完了していないときには、管理制御部72は、S600以降の処理を実行する。管理制御部72は、配送システム10が稼働しているときは、全ての処理が完了していないものと判定する。一方、S660で全ての処理が完了したときには、このルーチンを終了する。このように、管理サーバ70は、マップの補正や障害物の有無などを自動移動装置40の測定結果を用いて更新する。 Then, after S650, or when there is no report on obstacles in S640, the management control unit 72 determines whether or not it is time to send the map information (S660). Among them, the information of the applicable map is transmitted to the applicable terminal (S670). The management control unit 72 determines whether or not it is the transmission timing based on a request from a terminal such as the physical distribution PC 21 . After S670, or when it is not time to send the map information in S660, the management control unit 72 determines whether or not all processing has been completed (S660). 72 executes the processing after S600. The management control unit 72 determines that all the processes are not completed when the delivery system 10 is in operation. On the other hand, when all the processes are completed in S660, this routine ends. In this way, the management server 70 updates the correction of the map and the presence or absence of obstacles using the measurement results of the automatic moving device 40 .
 ここで、本実施形態の構成要素と本開示の構成要素との対応関係を明らかにする。本実施形態の物流センター20、店舗50、荷室61及び配送拠点間が特定空間に相当し、自動移動装置40,40A~40Dが移動体に相当し、配送車60が配送車に相当し、自動移動装置40,40A~40Dや配送車60が移動システム11に相当し、積載部43や荷室61が積載部に相当し、投影部47や投影部65が投影部に相当し、移動駆動部45や駆動部66が駆動部に相当し、移動制御部41や制御装置68が制御部及び処理部に相当する。また、検出部46が検出部に相当し、読取部48が読取部に相当し、誘導ライン91,93が誘導ラインに相当し、路面や床面が投影面に相当し、管理サーバ70のほか物流PC21や店舗PC51が管理装置に相当し、記憶部23、記憶部53及び記憶部73が記憶部に相当し、通信部28、通信部58及び通信部78が通信部に相当し、制御部22、制御部52及び管理制御部72が補正部に相当する。 Here, the correspondence between the components of the present embodiment and the components of the present disclosure will be clarified. The distribution center 20, the store 50, the cargo room 61, and the delivery base in the present embodiment correspond to the specific space, the automatic moving devices 40 and 40A to 40D correspond to the moving bodies, the delivery vehicle 60 corresponds to the delivery vehicle, The automatic moving devices 40, 40A to 40D and the delivery vehicle 60 correspond to the moving system 11, the loading section 43 and the luggage compartment 61 correspond to the loading section, the projecting section 47 and the projecting section 65 correspond to the projecting section, and move and drive. The part 45 and the driving part 66 correspond to the driving part, and the movement control part 41 and the control device 68 correspond to the control part and the processing part. Further, the detection unit 46 corresponds to the detection unit, the reading unit 48 corresponds to the reading unit, the guide lines 91 and 93 correspond to the guide lines, the road surface and the floor surface correspond to the projection surface, and the management server 70 and other The physical distribution PC 21 and the store PC 51 correspond to the management device, the storage section 23, the storage section 53 and the storage section 73 correspond to the storage section, the communication section 28, the communication section 58 and the communication section 78 correspond to the communication section, and the control section 22, the control unit 52 and the management control unit 72 correspond to the correction unit.
 以上説明した本実施形態の自動移動装置40では、物品を積載可能な積載部43と、自動移動装置40が読み取って移動する誘導ラインを特定空間内に存在する投影面に投影させる投影部47と、自動移動装置40を移動させる移動駆動部45と、投影部47を制御する移動制御部41とを備える。この自動移動装置40では、移動駆動部45によって移動する車体部40aに投影部47が設けられており、移動しながら、他の自動移動装置40が用いる誘導ライン95を投影面へ投影することができる。したがって、この自動移動装置40では、物品を搬送する自動移動装置40の移動の自由度をより向上することができる。 The automatic moving device 40 of the present embodiment described above includes a loading unit 43 capable of loading articles, and a projection unit 47 for projecting a guide line read and moved by the automatic moving device 40 onto a projection plane existing in a specific space. , a movement driving unit 45 for moving the automatic movement device 40 and a movement control unit 41 for controlling the projection unit 47 . In this automatic moving device 40, the vehicle body portion 40a moved by the movement driving portion 45 is provided with the projection portion 47, and while moving, the guide line 95 used by the other automatic moving device 40 can be projected onto the projection plane. can. Therefore, in this automatic moving device 40, the degree of freedom of movement of the automatic moving device 40 for conveying articles can be further improved.
 また、本実施形態の配送車60では、物品を積載可能な積載部としての荷室61と、自動移動装置40が読み取って移動する誘導ラインを特定空間内に存在する投影面に投影させる投影部65と、配送車60を移動させる駆動部66と、投影部65を制御する制御装置68とを備える。この配送車6040では、駆動部66によって移動する車体に投影部65が設けられており、移動しながら、自動移動装置40が用いる誘導ライン91,93を投影面へ投影することができる。したがって、この配送車60では、物品を搬送する自動移動装置40の移動の自由度をより向上することができる。 In addition, in the delivery vehicle 60 of the present embodiment, the luggage compartment 61 as a loading unit capable of loading articles, and the projection unit that projects the guide line read by the automatic moving device 40 and moved onto a projection plane existing in a specific space. 65 , a drive unit 66 that moves the delivery vehicle 60 , and a control device 68 that controls the projection unit 65 . In this delivery vehicle 6040, a projection unit 65 is provided on the vehicle body that is moved by the drive unit 66, and the guide lines 91 and 93 used by the automatic moving device 40 can be projected onto the projection plane while moving. Therefore, with this delivery vehicle 60, the degree of freedom of movement of the automatic moving device 40 for transporting articles can be further improved.
 また、移動制御部41は、移動駆動部45を制御し、自動移動装置40を特定空間内で自動移動させるものとしてもよい。この自動移動装置40では、他の自動移動装置40と同様に、移動制御部41の制御により、自動移動することができる。また、制御装置68は、駆動部66を制御し、配送車60を配送拠点間で自動移動させるものとしてもよい。また、移動制御部41は、他の自動移動装置40が自動移動装置40のあとを追従する誘導ライン95を投影部47によって投影面に投影させる。この自動移動装置40では、複数の自動移動装置40を追従させて移動することができる。更に、自動移動装置40は、投影面に投影された誘導ラインを読み取る読取部47を備え、移動制御部41は、他の自動移動装置40が投影した誘導ライン95に沿って移動するよう移動駆動部45を制御するものとしてもよい。この自動移動装置40では、他の自動移動装置40と同様に誘導ライン95に沿って移動することができる。 Further, the movement control section 41 may control the movement driving section 45 to automatically move the automatic moving device 40 within the specific space. This automatic moving device 40 can move automatically under the control of the movement control section 41, like the other automatic moving devices 40. FIG. Further, the control device 68 may control the drive unit 66 to automatically move the delivery vehicle 60 between delivery bases. In addition, the movement control unit 41 causes the projection unit 47 to project a guide line 95 along which the other automatic movement device 40 follows the automatic movement device 40 onto the projection plane. In this automatic moving device 40, a plurality of automatic moving devices 40 can follow and move. Furthermore, the automatic moving device 40 has a reading unit 47 that reads the guide line projected on the projection plane, and the movement control unit 41 drives the other automatic moving device 40 to move along the projected guide line 95. The unit 45 may be controlled. This automatic moving device 40 can move along the guide line 95 in the same manner as the other automatic moving devices 40 .
 また、制御装置68は、他の自動移動装置40の現在位置と積載部としての荷室61を結ぶ誘導ライン91を投影部65によって投影面に投影させる。この配送車60では、他の自動移動装置40を自己の荷室61へ誘導することができる。また、自動移動装置40は、特定空間内に存在する障害物を検出する検出部46と、この自動移動装置40の特定空間内での現在位置と、特定空間のマップと、特定空間中に存在する傾斜路面の領域の情報である領域情報と、に基づいて、検出部46で検出された検出結果を障害物として扱わない除外処理を行い、移動制御部41は、除外処理に基づいて移動駆動部45を制御し、自動移動装置40を特定空間内で自動移動させる。例えば、検出部46を有する自動移動装置40では、傾斜路面18が存在する特定空間において、この傾斜路面18が障害物として検出されることがある。この自動移動装置40では、マップに傾斜路面18の情報を付記することによって、三次元のマップデータなどを用いて複雑な解析を行うことなく、障害物の除外などを判定することができる。したがって、この自動移動装置40では、より簡素な処理で三次元的な特定空間内を自動移動することができる。 In addition, the control device 68 causes the projection section 65 to project the guide line 91 connecting the current position of the other automatic moving device 40 and the luggage compartment 61 as the loading section onto the projection plane. This delivery vehicle 60 can guide another automatic moving device 40 to its luggage compartment 61 . The automatic moving device 40 also includes a detection unit 46 for detecting obstacles existing in the specific space, a current position of the automatic moving device 40 in the specific space, a map of the specific space, and a map of the specific space. Based on area information, which is information on the area of the inclined road surface, exclusion processing is performed so that the detection result detected by the detection unit 46 is not treated as an obstacle, and the movement control unit 41 drives the movement based on the exclusion processing. By controlling the unit 45, the automatic movement device 40 is automatically moved within the specific space. For example, in the automatic moving device 40 having the detection unit 46, the inclined road surface 18 may be detected as an obstacle in a specific space where the inclined road surface 18 exists. In this automatic moving device 40, by adding the information of the sloped road surface 18 to the map, exclusion of obstacles can be determined without performing complicated analysis using three-dimensional map data or the like. Therefore, the automatic moving device 40 can automatically move within a three-dimensional specific space with simpler processing.
 また、移動制御部41は、自動移動装置40の現在位置が傾斜路面18の領域外にあり且つ検出部46で検出された障害物が傾斜路面18の領域にあるときには除外処理を行う。また、移動制御部41は、自動移動装置40の現在位置が傾斜路面18の領域内にあり且つ検出部46で検出された障害物が傾斜路面18の領域外にあるときには除外処理を行う。この自動移動装置40では、現在位置と傾斜路面18との位置関係から、除外処理をより適正に行うことができる。また、移動制御部41は、検出部46に検出された障害物までの距離が所定距離以上であるときには徐外処理を行う。この移動システムでは、検出部の検出結果への距離を用いて、除外処理をより適正に行うことができる。更に、移動制御部41は、自動移動装置40の現在位置が傾斜路面18の領域外にあり且つ検出部46で検出された障害物が傾斜路面18の領域外にあるときには検出結果を障害物として扱う。また、移動制御部41は、自動移動装置40の現在位置が傾斜路面18の領域内にあり且つ検出部46で検出された障害物が傾斜路面18の領域内にあるときには、検出結果を障害物として扱う。自動移動装置40では、現在位置と傾斜路面18との位置関係から、障害物をより適正に検出することができる。 Further, the movement control unit 41 performs exclusion processing when the current position of the automatic movement device 40 is outside the area of the inclined road surface 18 and the obstacle detected by the detection unit 46 is in the area of the inclined road surface 18 . Further, when the current position of the automatic moving device 40 is within the area of the inclined road surface 18 and the obstacle detected by the detection unit 46 is outside the area of the inclined road surface 18, the movement control unit 41 performs exclusion processing. With this automatic moving device 40, the exclusion process can be performed more appropriately based on the positional relationship between the current position and the inclined road surface 18. FIG. Further, the movement control unit 41 performs extra processing when the distance to the obstacle detected by the detection unit 46 is equal to or greater than a predetermined distance. In this moving system, exclusion processing can be performed more appropriately using the distance to the detection result of the detection unit. Furthermore, when the current position of the automatic moving device 40 is outside the area of the inclined road surface 18 and the obstacle detected by the detection unit 46 is outside the area of the inclined road surface 18, the movement control unit 41 regards the detection result as an obstacle. deal. Further, when the current position of the automatic moving device 40 is within the area of the inclined road surface 18 and the obstacle detected by the detection unit 46 is within the area of the inclined road surface 18, the movement control unit 41 displays the detection result as an obstacle. treated as The automatic moving device 40 can more appropriately detect obstacles from the positional relationship between the current position and the inclined road surface 18 .
 また、管理サーバ70は、特定空間中に存在する傾斜路面18の領域の情報である領域情報を記憶部73に記憶し、マップ及び領域情報を上述したいずれかの自動移動装置40へ送信する通信部と、を備えたものである。この管理サーバ70では、特定空間中に存在する傾斜路面18の情報を利用することによって、自動移動装置40がより簡素な処理で三次元的な特定空間内を自動移動することができる。 In addition, the management server 70 stores area information, which is information about the area of the sloped road surface 18 existing in the specific space, in the storage unit 73, and transmits the map and the area information to any of the automatic moving devices 40 described above. and In this management server 70, by using the information of the sloping road surface 18 existing in the specific space, the automatic moving device 40 can automatically move within the three-dimensional specific space with simpler processing.
 また、管理サーバ70は、自動移動装置40から取得した特定空間内の測定結果と、この特定空間のマップとの間に差異値があるときには、特定空間のマップをこの差異値の間に補正する補正処理を実行する。そして、通信部49は、補正処理後のマップを自動移動装置40へ送信する。自動移動装置40の測定結果は、特定空間のマップの情報に比して正確である場合がある一方、正確ではない場合もありえる。この管理サーバ70では、特定空間のマップを差異値の間に補正することによって、その確度をより高めることができる。特に、複数の測定結果を取得すれば、よりその確度を高めることができる。この管理サーバ70では、補正でその確度をより高めたマップを利用することによって、自動移動装置40がより確実に特定空間内を自動移動することができる。また、管理制御部72は、自動移動装置40から取得した特定空間内の測定結果が所定数以上同一範囲内にあるときには、特定空間のマップをこの測定結果にあうよう補正する。この管理サーバ70では、測定結果に正確性が認められたときに、特定空間のマップを測定結果にあうよう補正するため、自動移動装置40がより確実に特定空間内を自動移動することができる。 Further, when there is a difference value between the measurement result in the specific space acquired from the automatic moving device 40 and the map of the specific space, the management server 70 corrects the map of the specific space between the difference values. Execute correction processing. Then, the communication unit 49 transmits the corrected map to the automatic moving device 40 . While the measurement result of the automatic moving device 40 may be more accurate than the map information of the specific space, it may not be more accurate. The management server 70 can further improve the accuracy by correcting the map of the specific space between the difference values. In particular, acquiring a plurality of measurement results can further improve the accuracy. In this management server 70, by using a map whose accuracy has been improved by correction, the automatic moving device 40 can automatically move within the specific space more reliably. Further, when the measurement results in the specific space obtained from the automatic moving device 40 are within the same range for a predetermined number or more, the management control unit 72 corrects the map of the specific space so as to match the measurement results. In this management server 70, when the accuracy of the measurement result is recognized, the map of the specific space is corrected so as to match the measurement result, so that the automatic moving device 40 can automatically move within the specific space more reliably. .
 なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present disclosure is by no means limited to the above-described embodiments, and can be implemented in various forms as long as they fall within the technical scope of the present disclosure.
 例えば、上述した実施形態では、配送システム10では、配送車60が投影部65を用いて自動移動装置40を誘導する処理を行い、自動移動装置40が投影部47を用いて他の自動移動装置40を誘導する処理を行い、自動移動装置40が傾斜路面18の領域情報を用いて特定空間内の障害物の除外処理を行い、自動移動装置40による測定データによりマップ情報を更新する処理を行うものとしたが、これら1以上を独立して行うものとしてもよい。例えば、配送車60は、投影部65を用いて誘導ライン91を投影し、自動移動装置40を誘導するものとしたが、これを省略してもよい。また、自動移動装置40は、誘導ライン95により他の自動移動装置40を追従させるものとしたがこれを省略してもよい。また、自動移動装置40は、傾斜路面18の情報を用いて検出結果を障害物として取り扱わない除外処理を行うものとしたが、これを省略してもよい。また、管理サーバ70は、自動移動装置40の測定データと特定空間のマップとの間に差異値があるときには、この差異値の間に補正するものとしたが、これを省略してもよい。配送システム10は、上記いずれかの処理を実行すれば、実行した処理に応じた効果を得ることができる。 For example, in the above-described embodiment, in the delivery system 10, the delivery vehicle 60 uses the projection unit 65 to guide the automatic moving device 40, and the automatic moving device 40 uses the projection unit 47 to guide the other automatic moving device. 40, the automatic moving device 40 uses the area information of the inclined road surface 18 to remove obstacles in the specific space, and the automatic moving device 40 performs processing to update the map information based on the measurement data. However, one or more of these may be performed independently. For example, the delivery vehicle 60 projects the guide line 91 using the projection unit 65 to guide the automatic moving device 40, but this may be omitted. Further, the automatic moving device 40 is supposed to follow the other automatic moving device 40 by the guide line 95, but this may be omitted. Further, the automatic moving device 40 uses the information of the inclined road surface 18 to perform exclusion processing that does not treat the detection result as an obstacle, but this may be omitted. Also, when there is a difference value between the measurement data of the automatic moving device 40 and the map of the specific space, the management server 70 makes corrections between the difference values, but this may be omitted. By executing any of the processes described above, the delivery system 10 can obtain an effect corresponding to the executed process.
 また、上述した実施形態では、配送車60が自動移動装置40の現在位置と積載部としての荷室61とを結ぶ誘導ライン91を投影させるものとしたが、これに限定されず、自動移動装置40が自機の積載部43と他の自動移動装置40の現在位置との間に誘導ライン95を投影させるものとしてもよい。この自動移動装置40では、他の自動移動装置40を誘導することができる。 In the above-described embodiment, the delivery vehicle 60 projects the guide line 91 connecting the current position of the automatic moving device 40 and the luggage compartment 61 as the loading unit. 40 may project a guide line 95 between its own loading unit 43 and the current position of another automatic moving device 40 . This automatic moving device 40 can guide another automatic moving device 40 .
 上述した実施形態では、自動移動装置40は、検出部46に検出された物体までの距離が所定距離以上あるときには、除外処理を行うものとしたが、この処理を省略してもよい。なお、移動制御部41は、除外処理を実行する条件として、他の条件を加えてもよい。 In the above-described embodiment, the automatic moving device 40 performs exclusion processing when the distance to the object detected by the detection unit 46 is greater than or equal to a predetermined distance, but this processing may be omitted. Note that the movement control unit 41 may add other conditions as conditions for executing the exclusion process.
 上述した実施形態では、自動移動装置40や検出した物体が傾斜路面18にいるかいないかに基づいて検出した物体を障害物から除外する除外処理を実行するものとしたが、特これに限定されず、例えば、自動移動装置40が車体部40aの傾きを検出するセンサ(例えば、ジャイロセンサなど)を備え、マップ情報と、自機の傾きと、自機の位置と、検出された物体の位置及び距離とを用い、検出された物体が路面であるか否かを計算によって求めて判定するものとしてもよい。この自動移動装置40では、より確実に障害物を検出することができる。 In the above-described embodiment, exclusion processing is executed to exclude the detected object from the obstacles based on whether the automatic moving device 40 or the detected object is on the inclined road surface 18. However, the present invention is not particularly limited to this. For example, the automatic moving device 40 includes a sensor (for example, a gyro sensor) that detects the inclination of the body part 40a, and map information, the inclination of the own machine, the position of the own machine, and the position and distance of the detected object. may be used to determine whether or not the detected object is the road surface by calculation. This automatic moving device 40 can more reliably detect obstacles.
 上述した実施形態では、本開示を配送システム10や移動システム11として説明したが、特にこれに限定されず、配送システムに用いられる管理装置としてもよい。また、上述した実施形態では、物流PC21、店舗PC51及び管理サーバ70において、位置情報やマップ情報を相互に利用するものとして説明したが、特にこれに限定されず、位置情報25やマップ情報26を物流PC21のみで扱ってもよいし、位置情報55やマップ情報56を店舗PC51のみで扱ってもよい。位置情報やマップ情報は、利用される場所で完結して利用することができる。 Although the present disclosure has been described as the delivery system 10 and the mobile system 11 in the above-described embodiment, the present disclosure is not particularly limited to this, and may be a management device used in the delivery system. In the above-described embodiment, the distribution PC 21, the store PC 51, and the management server 70 mutually use the position information and the map information. The physical distribution PC 21 may be used alone, or the location information 55 and the map information 56 may be handled by the store PC 51 alone. Location information and map information can be used completely at the place where they are used.
 ここで、本開示の移動システム11は、以下のように構成してもよい。例えば、移動システム11は、物品を特定空間内で自動移動する移動体としての自動移動装置40を有し、この物品を配送する移動システムであって、特定空間内に存在する障害物を検出する検出部46と、特定空間内で自動移動装置40を移動させる移動駆動部45と、自動移動装置40の特定空間内での現在位置と、特定空間のマップと、特定空間中に存在する傾斜路面の領域の情報である領域情報と、に基づいて、検出部46で検出された検出結果を障害物として扱わない除外処理を行う処理部としての移動制御部41と、を備えたものとしてもよい。この移動システム11では、マップに傾斜路面の情報を付記することによって、三次元のマップデータなどを用いて複雑な解析を行うことなく、障害物の除外などを判定することができ、より簡素な処理で三次元的な特定空間内を自動移動することができる。 Here, the mobile system 11 of the present disclosure may be configured as follows. For example, the movement system 11 has an automatic movement device 40 as a moving body that automatically moves an article within a specific space, and is a movement system that delivers this article, and detects obstacles that exist within the specific space. A detection unit 46, a movement driving unit 45 that moves the automatic moving device 40 within the specific space, the current position of the automatic moving device 40 within the specific space, a map of the specific space, and a sloped road surface existing in the specific space. and the movement control unit 41 as a processing unit that performs an exclusion process that does not treat the detection result detected by the detection unit 46 as an obstacle based on the area information that is information on the area of . In this movement system 11, by adding information about the sloped road surface to the map, it is possible to determine whether to exclude obstacles or the like without performing complicated analysis using three-dimensional map data or the like. It is possible to automatically move within a three-dimensional specific space by processing.
 また、本開示の管理装置は、物品を特定空間内で自動移動する移動体としての自動移動装置40を有しこの物品を配送する移動システム11を有する配送システム10に用いられる管理装置であって、特定空間のマップと、特定空間中に存在する傾斜路面の領域の情報である領域情報と、を記憶する記憶部と、マップ及び領域情報を上述のいずれかの自動移動装置40へ送信する通信部と、を備えたものとしてもよい。この管理装置では、移動システム11において、マップに傾斜路面の情報を付記することによって、三次元のマップデータなどを用いて複雑な解析を行うことなく、障害物の除外などを判定することができ、より簡素な処理で三次元的な特定空間内を自動移動することができる。 Further, the management device of the present disclosure is a management device used in a delivery system 10 having an automatic moving device 40 as a moving body that automatically moves an item within a specific space and a moving system 11 that delivers the item. , a storage unit that stores a map of the specific space and area information that is information about the area of the sloped road existing in the specific space; and may be provided. In this management device, in the mobile system 11, by adding the information of the sloped road surface to the map, it is possible to judge exclusion of obstacles without performing complicated analysis using three-dimensional map data or the like. , can automatically move within a three-dimensional specific space with simpler processing.
 あるいは、本開示の管理装置は、物品を特定空間内で自動移動する移動体としての自動移動装置40を有しこの物品を配送する移動システム11を有する配送システム10に用いられる管理装置であって、自動移動装置40から取得した特定空間内の測定結果と、この特定空間のマップとの間に差異値があるときには、特定空間のマップをこの差異値の間に補正する補正処理を実行する補正部と、補正処理後のマップを上述のいずれかの自動移動装置40へ送信する通信部と、を備えたものとしてもよい。この管理装置では、特定空間のマップの情報に比して正確である場合がある一方、正確ではない場合もありえる自動移動装置の測定結果を用いる際に、特定空間のマップを差異値の間に補正することによって、その確度をより高めることができる。 Alternatively, the management device of the present disclosure is a management device used in a delivery system 10 having an automatic moving device 40 as a moving body that automatically moves an item within a specific space and a moving system 11 that delivers the item. , when there is a difference value between the measurement result in the specific space obtained from the automatic moving device 40 and the map of this specific space, a correction process is executed to correct the map of the specific space between the difference values. and a communication unit that transmits the map after correction processing to any of the automatic moving devices 40 described above. In this management device, when using the measurement result of the automatic mobile device, which may be more accurate than the information of the map of the specific space, but may not be accurate, the map of the specific space is used between the difference values. The accuracy can be further improved by correcting.
 本開示の移動システム及び管理装置は、物品を配送する流通システムの技術分野に利用可能である。 The movement system and management device of the present disclosure can be used in the technical field of distribution systems for delivering goods.
10 配送システム、11 移動システム、12 台車、13 積載部、14 キャスター、15 ネットワーク、18 傾斜路面、20 物流センター、21 物流PC、22 制御部、23 記憶部、24 配送管理情報、25 位置情報、26 マップ情報、28 通信部、29 領域検出装置、40,40A~40D 自動移動装置、40a 車体部、41 移動制御部、42 記憶部、43 積載部、44 車輪、45 移動駆動部、46 検出部、47 投影部、48 読取部、49 通信部、50 店舗、51 店舗PC、52 制御部、53 記憶部、54 配送管理情報、55 位置情報、56 マップ情報、58 通信部、59 陳列棚、60 配送車、61 荷室、62 テールゲート、63 テールリフト、64 移動部、65 投影部、66 駆動部、68 制御装置、70 管理サーバ、72 管理制御部、73 記憶部、74 配送管理情報、75 位置情報、76 マップ情報、78 通信部、80 マップデータ、81 障害物領域、82 傾斜路面領域、 90,92,94 投影領域、91,93,95 誘導ライン。 10 delivery system, 11 movement system, 12 truck, 13 loading section, 14 caster, 15 network, 18 sloped surface, 20 distribution center, 21 distribution PC, 22 control section, 23 storage section, 24 delivery management information, 25 location information, 26 map information, 28 communication unit, 29 area detection device, 40, 40A to 40D automatic movement device, 40a body unit, 41 movement control unit, 42 storage unit, 43 loading unit, 44 wheels, 45 movement driving unit, 46 detection unit , 47 projection unit, 48 reading unit, 49 communication unit, 50 store, 51 store PC, 52 control unit, 53 storage unit, 54 delivery management information, 55 location information, 56 map information, 58 communication unit, 59 display shelf, 60 Delivery vehicle, 61 luggage compartment, 62 tailgate, 63 tail lift, 64 moving unit, 65 projection unit, 66 drive unit, 68 control device, 70 management server, 72 management control unit, 73 storage unit, 74 delivery management information, 75 Position information, 76 Map information, 78 Communication unit, 80 Map data, 81 Obstacle area, 82 Inclined road surface area, 90, 92, 94 Projection area, 91, 93, 95 Guidance line.

Claims (16)

  1.  物品を特定空間内で自動移動する移動体を有し該物品を配送する移動システムであって、
     前記物品を積載可能な積載部と、
     前記移動体が読み取って移動する誘導ラインを前記特定空間内に存在する投影面に投影させる投影部と、
     前記移動体を移動させる駆動部と、
     前記投影部を制御する制御部と、
     を備えた移動システム。
    A movement system that has a moving body that automatically moves an article within a specific space and that delivers the article,
    a loading unit capable of loading the article;
    a projection unit for projecting a guide line read and moved by the moving object onto a projection plane existing in the specific space;
    a driving unit that moves the moving body;
    a control unit that controls the projection unit;
    movement system with
  2.  前記移動体は、前記駆動部を備え、前記誘導ラインを読み取って移動する自動移動装置であり、
     前記移動システムは、前記積載部と、前記投影部と、前記制御部とを備える配送車を有する、請求項1に記載の移動システム。
    The moving body is an automatic moving device that includes the driving unit and moves by reading the guide line,
    2. The mobile system according to claim 1, wherein said mobile system has a delivery vehicle comprising said loading unit, said projection unit, and said control unit.
  3.  前記制御部は、前記駆動部を制御し、前記移動体を前記特定空間内及び/又は配送拠点間で自動移動させる、請求項1に記載の移動システム。 The movement system according to claim 1, wherein the control unit controls the driving unit to automatically move the moving object within the specific space and/or between delivery bases.
  4.  前記制御部は、他の前記移動体が前記移動体のあとを追従する前記誘導ラインを前記投影部によって前記投影面に投影させる、請求項3に記載の移動システム。 4. The movement system according to claim 3, wherein the control unit causes the projection unit to project the guide line along which the other moving object follows the moving object onto the projection plane.
  5.  請求項3又は4に記載の移動システムであって、
     前記投影面に投影された前記誘導ラインを読み取る読取部、を備え、
     前記制御部は、他の装置が投影した前記誘導ラインに沿って移動するよう前記駆動部を制御する、移動システム。
    A mobile system according to claim 3 or 4,
    a reading unit that reads the guidance line projected onto the projection plane;
    The movement system, wherein the controller controls the drive to move along the guidance line projected by another device.
  6.  前記制御部は、他の前記移動体の現在位置と前記積載部とを結ぶ前記誘導ラインを前記投影部によって前記投影面に投影させる、請求項1~5のいずれか1項に記載の移動システム。 6. The movement system according to any one of claims 1 to 5, wherein the control unit causes the projection unit to project the guide line connecting the current position of the other moving body and the loading unit onto the projection plane. .
  7.  請求項1~6のいずれか1項に記載の移動システムであって、
     前記特定空間内に存在する障害物を検出する検出部と、
     該移動体の前記特定空間内での現在位置と、前記特定空間のマップと、前記特定空間中に存在する傾斜路面の領域の情報である領域情報と、に基づいて、前記検出部で検出された検出結果を障害物として扱わない除外処理を行う処理部と、を備え、
     前記制御部は、前記処理部の処理に基づいて前記駆動部を制御し、前記移動体を前記特定空間内で自動移動させる、移動システム。
    The mobile system according to any one of claims 1 to 6,
    a detection unit that detects obstacles present in the specific space;
    detected by the detection unit based on the current position of the moving body in the specific space, a map of the specific space, and area information that is information about a sloped road surface area existing in the specific space; and a processing unit that performs an exclusion process that does not treat the detection result as an obstacle,
    The moving system, wherein the control unit controls the driving unit based on the processing of the processing unit to automatically move the moving body within the specific space.
  8.  物品を特定空間内で自動移動する移動体を有し該物品を配送する移動システムであって、
     前記特定空間内に存在する障害物を検出する検出部と、
     前記特定空間内で前記移動体を移動させる駆動部と、
     前記移動体の前記特定空間内での現在位置と、前記特定空間のマップと、前記特定空間中に存在する傾斜路面の領域の情報である領域情報と、に基づいて、前記検出部で検出された検出結果を障害物として扱わない除外処理を行う処理部と、
     を備えた移動システム。
    A movement system that has a moving body that automatically moves an article within a specific space and that delivers the article,
    a detection unit that detects obstacles present in the specific space;
    a driving unit that moves the moving body within the specific space;
    detected by the detection unit based on the current position of the moving body in the specific space, a map of the specific space, and area information that is information about a sloped road surface area existing in the specific space; a processing unit that performs an exclusion process that does not treat the detection result as an obstacle;
    movement system with
  9.  前記処理部は、前記移動体の現在位置が前記傾斜路面の領域外にあり且つ前記検出部で検出された障害物が前記傾斜路面の領域にあるときには前記除外処理を行い、及び/又は、前記移動体の現在位置が前記傾斜路面の領域内にあり且つ前記検出部で検出された障害物が前記傾斜路面の領域外にあるときには前記除外処理を行う、請求項7又は8に記載の移動システム。 The processing unit performs the exclusion process when the current position of the moving object is outside the area of the inclined road surface and the obstacle detected by the detection unit is in the area of the inclined road surface, and/or 9. The mobile system according to claim 7, wherein the exclusion process is performed when the current position of the moving object is within the area of the inclined road surface and the obstacle detected by the detection unit is outside the area of the inclined road surface. .
  10.  前記処理部は、前記検出部に検出された障害物までの距離が所定距離以上であるときには前記徐外処理を行う、請求項7~9のいずれか1項に記載の移動システム。 The mobile system according to any one of claims 7 to 9, wherein the processing unit performs the extra processing when the distance to the obstacle detected by the detection unit is equal to or greater than a predetermined distance.
  11.  前記処理部は、前記移動体の現在位置が前記傾斜路面の領域外にあり且つ前記検出部で検出された障害物が前記傾斜路面の領域外にあるときには前記検出結果を障害物として扱い、且つ前記移動体の現在位置が前記傾斜路面の領域内にあり且つ前記検出部で検出された障害物が前記傾斜路面の領域内にあるときには前記検出結果を障害物として扱う、請求項7~10のいずれか1項に記載の移動システム。 the processing unit treats the detection result as an obstacle when the current position of the moving body is outside the area of the inclined road surface and the obstacle detected by the detection unit is outside the area of the inclined road surface; 11. The detection result is treated as an obstacle when the current position of said moving object is within said sloped road area and said obstacle detected by said detection unit is within said sloped road area. A movement system according to any one of the preceding claims.
  12.  前記移動体は、前記投影部を備えている、請求項1~11のいずれか1項に記載の移動システム。 The mobile system according to any one of claims 1 to 11, wherein the mobile body comprises the projection unit.
  13.  物品を特定空間内で自動移動する移動体を有し該物品を配送する移動システムを有する配送システムに用いられる管理装置であって、
     前記特定空間のマップと、前記特定空間中に存在する傾斜路面の領域の情報である領域情報と、を記憶する記憶部と、
     前記マップ及び前記領域情報を請求項1~12のいずれか1項に記載の移動体へ送信する通信部と、
     を備えた管理装置。
    A management device used in a delivery system having a moving body for automatically moving an item within a specific space and a moving system for delivering the item,
    a storage unit that stores a map of the specific space and area information that is information about a sloped road surface area existing in the specific space;
    a communication unit that transmits the map and the area information to the mobile object according to any one of claims 1 to 12;
    management device with
  14.  請求項13に記載の管理装置であって、
     前記移動体から取得した前記特定空間内の測定結果と、該特定空間のマップとの間に差異値があるときには、前記特定空間のマップを該差異値の間に補正する補正処理を実行する補正部、を備え、
     前記通信部は、前記補正処理後のマップを前記移動体へ送信する、管理装置。
    14. A management device according to claim 13,
    Correction for executing a correction process for correcting the map of the specific space between the difference values when there is a difference value between the measurement result in the specific space acquired from the moving body and the map of the specific space. has a part,
    The management device, wherein the communication unit transmits the map after the correction processing to the moving object.
  15.  物品を特定空間内で自動移動する移動体を有し該物品を配送する移動システムを有する配送システムに用いられる管理装置であって、
     前記移動体から取得した前記特定空間内の測定結果と、該特定空間のマップとの間に差異値があるときには、前記特定空間のマップを該差異値の間に補正する補正処理を実行する補正部と、
     前記補正処理後のマップを請求項1~12のいずれか1項に記載の移動体へ送信する通信部と、
     を備えた管理装置。
    A management device used in a delivery system having a moving body for automatically moving an item within a specific space and a moving system for delivering the item,
    Correction for executing a correction process for correcting the map of the specific space between the difference values when there is a difference value between the measurement result in the specific space acquired from the moving body and the map of the specific space. Department and
    a communication unit that transmits the corrected map to the moving object according to any one of claims 1 to 12;
    management device with
  16.  前記補正部は、前記移動体から取得した前記特定空間内の測定結果が所定数以上同一範囲内にあるときには、前記特定空間のマップを該測定結果にあうよう補正する、請求項14又は15に記載の管理装置。 16. The correcting unit corrects the map of the specific space to match the measurement results when a predetermined number or more of the measurement results in the specific space acquired from the moving body are within the same range. Management equipment as described.
PCT/JP2021/009875 2021-03-11 2021-03-11 Moving system and management device WO2022190324A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/009875 WO2022190324A1 (en) 2021-03-11 2021-03-11 Moving system and management device
JP2023505016A JPWO2022190324A1 (en) 2021-03-11 2021-03-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/009875 WO2022190324A1 (en) 2021-03-11 2021-03-11 Moving system and management device

Publications (1)

Publication Number Publication Date
WO2022190324A1 true WO2022190324A1 (en) 2022-09-15

Family

ID=83226546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009875 WO2022190324A1 (en) 2021-03-11 2021-03-11 Moving system and management device

Country Status (2)

Country Link
JP (1) JPWO2022190324A1 (en)
WO (1) WO2022190324A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079869A (en) * 2008-08-25 2010-04-08 Murata Machinery Ltd Autonomous moving apparatus
JP2014078254A (en) * 2009-08-31 2014-05-01 Neato Robotics Inc Method and apparatus for simultaneous localization and mapping of mobile robot environment
JP2017015409A (en) * 2015-06-26 2017-01-19 シャープ株式会社 Road surface detection device, mobile body, road surface detection method, and road surface detection program
JP2017130098A (en) * 2016-01-21 2017-07-27 シャープ株式会社 Autonomous travelling device
JP2020052629A (en) * 2018-09-26 2020-04-02 三菱ロジスネクスト株式会社 Carrier system
EP3705971A1 (en) * 2019-03-08 2020-09-09 Fq Ip Ab Virtual coupling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079869A (en) * 2008-08-25 2010-04-08 Murata Machinery Ltd Autonomous moving apparatus
JP2014078254A (en) * 2009-08-31 2014-05-01 Neato Robotics Inc Method and apparatus for simultaneous localization and mapping of mobile robot environment
JP2017015409A (en) * 2015-06-26 2017-01-19 シャープ株式会社 Road surface detection device, mobile body, road surface detection method, and road surface detection program
JP2017130098A (en) * 2016-01-21 2017-07-27 シャープ株式会社 Autonomous travelling device
JP2020052629A (en) * 2018-09-26 2020-04-02 三菱ロジスネクスト株式会社 Carrier system
EP3705971A1 (en) * 2019-03-08 2020-09-09 Fq Ip Ab Virtual coupling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIMURA NOBUKATA, JUN OTA: "Unknown object detection using floor height map for mobile robots on indoor floor with non-horizontal partial areas", JOURNAL OF THE ROBOTICS SOCIETY OF JAPAN, vol. 34, no. 10, 1 January 2016 (2016-01-01), pages 699 - 710, XP055969661 *

Also Published As

Publication number Publication date
JPWO2022190324A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
US10875448B2 (en) Visually indicating vehicle caution regions
JP2010530837A (en) Automatic loading system and loading method for carrier
JP2018090084A (en) Coupling device, coupling travel gear and autonomous travel gear
CN111771175B (en) Travel control system for carrier vehicle and travel control method for carrier vehicle
JP2022518012A (en) Autonomous broadcasting system for self-driving cars
CN113387302A (en) Arithmetic device, movement control system, control device, mobile body, arithmetic method, and computer-readable storage medium
CN116745226A (en) Transport vehicle and method for transporting a load unit to a vehicle
JP7318244B2 (en) AUTONOMOUS MOBILE DEVICE, PROGRAM AND METHOD OF SELECTING OBJECT TO TRANSFER BY AUTONOMOUS MOBILE DEVICE
US20240053754A1 (en) Conveyance system and conveyance control method
WO2022190324A1 (en) Moving system and management device
JP7380350B2 (en) Autonomous running device, autonomous running control method, and autonomous running control program
JP7112803B1 (en) Transport system and transport control method
JP7095301B2 (en) Travel control system for transport vehicles and travel control methods for transport vehicles
CN115712287A (en) Cargo handling system based on AGV conveyer
JP7339532B2 (en) loading and unloading system
JP7300413B2 (en) Control device, moving body, movement control system, control method and program
CN114265374A (en) System and method for AGV to access van truck goods
JP2011243129A (en) Transportation vehicle system
WO2024024059A1 (en) Control device, delivery system, and information processing method
WO2022038784A1 (en) Control device, delivery system, and control method
CN111766856A (en) Automatic guide transport vehicle, auxiliary positioning method and system thereof and vehicle-mounted controller
EP4201843A1 (en) Cart alignment device, delivery system, and control method
JP7464319B2 (en) Transport system and transport control method
JP2022156698A (en) Cargo handling vehicle, cargo handling system, and control program of cargo handling vehicle
JP7301409B2 (en) Transport system and transport control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930177

Country of ref document: EP

Kind code of ref document: A1