WO2022190256A1 - In-subject information acquisition device, inspection system, control method, and program - Google Patents

In-subject information acquisition device, inspection system, control method, and program Download PDF

Info

Publication number
WO2022190256A1
WO2022190256A1 PCT/JP2021/009511 JP2021009511W WO2022190256A1 WO 2022190256 A1 WO2022190256 A1 WO 2022190256A1 JP 2021009511 W JP2021009511 W JP 2021009511W WO 2022190256 A1 WO2022190256 A1 WO 2022190256A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
unit
operation mode
image data
wireless communication
Prior art date
Application number
PCT/JP2021/009511
Other languages
French (fr)
Japanese (ja)
Inventor
正一 天野
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to PCT/JP2021/009511 priority Critical patent/WO2022190256A1/en
Publication of WO2022190256A1 publication Critical patent/WO2022190256A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present disclosure relates to an intra-subject information acquisition device, an examination system, a control method, and a program.
  • a capsule endoscope that is introduced into a subject and performs imaging is known.
  • a capsule endoscope has an imaging function and a wireless communication function inside a capsule-shaped casing that is sized to be introduced into the digestive tract of a subject. After being swallowed by the subject, such a capsule endoscope captures images while moving in the digestive tract by peristaltic motion or the like, sequentially generates image data of the interior of the subject's organs, and wirelessly transmits the image data. The wirelessly transmitted image data is received by a receiving device provided outside the subject.
  • the image data received by the receiving device is captured by an image display device such as a work station, and subjected to predetermined image processing to display an in-vivo image of the subject as a still image or moving image.
  • an operator such as a doctor can observe the in-vivo image of the subject as a still image or a moving image.
  • the distance from the imaging unit to the imaging target (the inner wall of the organ) is short when passing through a narrow organ such as the esophagus. Therefore, the illumination light easily reaches the object to be imaged, and as a result, the reflected light from the object to be imaged becomes bright.
  • the capsule endoscope is passing through a large organ such as the stomach, the distance from the imaging unit to the imaging target is long, so it is difficult for the illumination light to reach the imaging target. The reflected light from is dark.
  • the capsule endoscope has a problem that the intensity level of the image data, that is, the brightness level of the in-vivo image corresponding to the image data differs depending on the part being passed.
  • Japanese Patent Laid-Open No. 2002-200001 discloses that the frame rate of the image sensor is changed by changing the frame rate and the imaging period according to the amount of light received by the image sensor (that is, the intensity of the image data output by the image sensor). It is disclosed to perform control.
  • Patent Document 1 when the distance from the capsule endoscope to the object to be imaged is short, the amount of light received by the image sensor increases, and the intensity of the image data does not exceed a predetermined range. By increasing the frame rate of the device, the imaging period per frame is shortened and the amount of light received by the imaging device is reduced. On the contrary, in Patent Document 1, when the distance from the capsule endoscope to the object to be imaged is long, the amount of light received by the image sensor decreases, and the frame rate is adjusted so that the intensity of the image data does not fall below a predetermined range. By lowering it, the imaging period per frame is lengthened and the amount of light received by the imaging device is increased.
  • the frame rate of the imaging device is controlled based on the intensity of the image data, and the imaging period per frame is adjusted to correspond to the image data.
  • the brightness level of the in-vivo image is kept within a certain range.
  • Patent Document 1 when changing the frame rate and the imaging period, the imaging period for imaging the imaging target and the wireless communication transmission period for wirelessly transmitting the image data output by the imaging element to the external receiving device is not considered at all. Therefore, in Patent Document 1 described above, if the imaging period of the imaging device is set long for the purpose of increasing the amount of light received by the imaging device, the imaging period of the imaging device and the transmission period for wirelessly transmitting image data , and the imaging device and the wireless communication unit operate at the same time. As a result, in Patent Document 1 described above, the peak current becomes high and the power consumption accumulated in the capsule endoscope temporarily increases. The voltage drop caused by the sudden increase may prevent the image data from being transmitted to the receiving device.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to provide an intra-subject information acquisition apparatus capable of suppressing a temporary increase in power consumption while controlling brightness suitable for an observation site. , inspection system, control method and program.
  • an intra-subject information acquisition apparatus includes an illumination unit that irradiates illumination light toward a subject, and receives light reflected within the subject.
  • a wireless communication unit that wirelessly transmits the image data generated by the imaging unit; an amount of illumination light emitted by the illumination unit; and an amount of light received by the imaging unit.
  • the operation mode of the imaging unit is set to the first operation mode, and the an imaging control unit that causes the imaging unit to perform imaging by switching between a second operation mode in which an imaging frame rate is lower than that in the first operation mode and an imaging period for one frame is longer than that in the first operation mode; , a transmission period during which the wireless communication unit transmits the image data and an imaging period during which the imaging unit captures images, and the period is a fixed time from a predetermined reference timing regardless of an operation mode at the time of imaging. and a wireless control unit that transmits the image data to the wireless communication unit at the elapsed timing.
  • the intra-subject information acquisition apparatus further includes a reference signal generation unit that generates a reference signal having a predetermined cycle at predetermined intervals, and the wireless control unit generates the reference signal.
  • the image data is transmitted to the wireless communication unit at a timing after a certain period of time has elapsed from the rising timing.
  • the imaging control unit determines that either one of the light emission amount and the light reception amount is less than the threshold value by the first determination unit. when the imaging unit is caused to perform imaging in the second operation mode, and when the first determination unit determines that one of the amount of light emission and the amount of received light is not less than the threshold value, the imaging unit An image is captured in the first operation mode.
  • the first determination unit determines whether the amount of light emitted or the amount of light received each time the wireless communication unit transmits the image data. It is determined whether one of them is less than the threshold.
  • the in-vivo information acquisition apparatus includes a battery that supplies power, and whether or not to suppress power consumption of the battery based on power information indicating at least the remaining amount of the battery. and a second determination unit that determines the light emission by the first determination unit when the second determination unit determines that the power consumption of the battery is to be suppressed.
  • the operation mode of the imaging unit is switched to a third operation mode in which the imaging frame rate is lower than that of the first operation mode, and the When the imaging unit is caused to capture an image, and the second determination unit determines to suppress the power consumption of the battery, the first determination unit determines that one of the light emission amount and the light reception amount is less than the threshold value.
  • the operation mode is switched to a fourth operation mode in which the imaging frame rate is lower than that of the second operation mode, and the imaging unit is caused to perform imaging.
  • the wireless control unit causes the wireless communication unit to start transmitting the image data generated by the imaging unit in the first operation mode.
  • the transmission start timing for starting transmission of image data to the wireless communication unit and the transmission start timing for starting transmission of the image data generated by the imaging unit in the fourth operation mode to the wireless communication unit are described above.
  • the image data is transmitted to the wireless communication unit so that the timing after a certain period of time has passed is the same.
  • the threshold can be changed according to a user's operation.
  • the wireless control unit transmits operation identification information indicating an operation mode of the imaging unit when transmitting the image data to the wireless communication unit.
  • the image data is associated with the image data and transmitted to the wireless communication unit.
  • an inspection system is introduced into a subject so that it can be introduced into a subject, and includes an intra-subject information acquiring device that transmits image data obtained by capturing an image of the inside of the subject; and a receiving device for receiving the image data, wherein the intra-subject information acquisition device includes an illumination unit that irradiates illumination light toward the subject, and an illumination unit that receives light reflected from the subject.
  • an imaging unit that captures an image and generates the image data
  • a wireless communication unit that wirelessly transmits the image data generated by the imaging unit
  • a first determination unit that determines whether or not one of them is less than a threshold
  • an imaging control unit for switching between a second operation mode in which an imaging frame rate is lower than that in the operation mode of (1) and an imaging period for one frame is longer than that in the first operation mode, and causing the imaging unit to perform imaging;
  • a transmission period during which the wireless communication unit transmits the image data and an imaging period during which the imaging unit captures images are different periods, and a predetermined time has elapsed from a predetermined reference timing regardless of the operation mode at the time of imaging.
  • a wireless control unit configured to transmit the image data to the wireless communication unit at a timing.
  • a control method includes an illumination unit that irradiates illumination light toward a subject, an imaging unit that captures an image by receiving light reflected in the subject, and generates image data; and a wireless communication unit that wirelessly transmits the image data generated by the imaging unit.
  • An imaging control step of causing the imaging unit to perform imaging by switching between a second operation mode in which an imaging frame rate is lower than that in the first operation mode and an imaging period for one frame is longer than that in the first operation mode.
  • the program according to the present disclosure includes an illumination unit that irradiates illumination light toward a subject, an imaging unit that performs imaging by receiving light reflected in the subject, and generates image data; and a wireless communication unit that wirelessly transmits the image data generated by the imaging unit, wherein either one of the amount of illumination light emitted by the illumination unit and the amount of light received by the imaging unit is less than a threshold.
  • a first determination step for determining whether or not the operation mode of the imaging unit is set to a first operation mode based on the determination result of the first determination step; an image capturing control step of switching between a second operation mode in which an image capturing frame rate is lowered and an image capturing period of one frame is longer than that of the first operation mode, and causing the image capturing unit to perform image capturing;
  • a transmission period for transmitting image data and an imaging period for imaging by the imaging unit are different periods, and the image data is transmitted at a timing after a predetermined time has passed from a predetermined reference timing, regardless of the operation mode at the time of imaging. to the wireless communication unit.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an inspection system according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the capsule endoscope according to Embodiment 1 of the present disclosure.
  • 3 is a block diagram illustrating functional configurations of a control unit, a wireless communication unit, and a power supply unit according to Embodiment 1 of the present disclosure;
  • FIG. 4 is a timing chart comparing operation timings of two operation modes executable by the capsule endoscope according to the first embodiment of the present disclosure.
  • FIG. 5 is a timing chart showing operations in a first operation mode, which is one of the operation modes executable by the capsule endoscope according to Embodiment 1 of the present disclosure.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an inspection system according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the capsule endoscope according to Embodiment 1 of the present disclosure.
  • FIG. 6 is a timing chart showing operations in a second operation mode, which is one of the operation modes executable by the capsule endoscope according to Embodiment 1 of the present disclosure.
  • FIG. 7 is a timing chart showing switching timings of operation modes of the capsule endoscope according to the first embodiment of the present disclosure.
  • FIG. 8 is a flowchart illustrating an overview of processing executed by the capsule endoscope according to the first embodiment of the present disclosure;
  • FIG. 9 is a block diagram illustrating a functional configuration of a capsule endoscope according to Embodiment 2 of the present disclosure;
  • FIG. 10 is a timing chart illustrating operations in a third operation mode, which is one of operation modes executable by the capsule endoscope according to Embodiment 2 of the present disclosure.
  • FIG. 11 is a timing chart illustrating operations in a fourth operation mode, which is one of operation modes executable by the capsule endoscope according to the second embodiment of the present disclosure.
  • FIG. 12 is a flowchart illustrating an outline of processing executed by the capsule endoscope according to the second embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an inspection system according to Embodiment 1.
  • the examination system 1 shown in FIG. 1 includes a capsule endoscope 10 that is introduced into a subject 2 such as a patient to perform imaging, generates image data, and wirelessly transmits the image data, and wirelessly transmits the image data from the capsule endoscope 10 .
  • a receiving device 4 for receiving the obtained image data via a receiving antenna unit 3 attached to the subject 2; and an image display device 5 for displaying an image.
  • the capsule endoscope 10 After being introduced into the subject 2 by oral ingestion or the like, the capsule endoscope 10 moves inside the digestive tract and is finally discharged to the outside of the subject 2 . During this time, the capsule endoscope 10 moves inside the organ (gastrointestinal tract) by peristaltic motion, images the interior of the subject 2, sequentially generates images, and wirelessly transmits the images. A detailed configuration of the capsule endoscope 10 will be described later.
  • the receiving antenna unit 3 has a plurality of receiving antennas 3a to 3h.
  • Each of the receiving antennas 3a to 3h is realized by using a loop antenna, for example, and is detachably attached to a predetermined position on the external surface of the subject 2.
  • FIG. Specifically, each of the receiving antennas 3a to 3h is detachably attached to a position corresponding to each organ in the subject 2, which is the passage area of the capsule endoscope 10.
  • FIG. Although each of the receiving antennas 3a to 3h is detachably attached to the subject 2 in FIG. 1, the number of antennas to be attached to the subject 2 can be changed as appropriate.
  • each of the receiving antennas 3a to 3h is individually and detachably attached. There may be.
  • the receiving device 4 receives image data wirelessly transmitted from the capsule endoscope 10 via each of the receiving antennas 3a to 3h.
  • the receiving device 4 performs predetermined processing on the image data received from the capsule endoscope 10, and stores the image data and related information related to the image data in an internal memory.
  • the receiving device 4 has a display section for displaying the reception state of the image data wirelessly transmitted from the capsule endoscope 10 and an input section such as operation buttons and a touch panel for operating the receiving device 4 .
  • the image display device 5 is configured using, for example, a workstation or personal computer.
  • the image display device 5 acquires the image data stored in the memory of the receiving device 4 and related information related to the image data via the cradle 4a to which the receiving device 4 is attached.
  • the image display device 5 performs predetermined image processing on the image data acquired from the receiving device 4 to generate an in-vivo image of the inside of the subject 2 and displays it on the screen.
  • the cradle 4a is connected to the USB port of the image display device 5, and the reception device 4 is connected to the cradle 4a, whereby the reception device 4 and the image display device 5 are connected. It is configured to transfer image data to the image display device 5 .
  • FIG. 2 is a schematic diagram showing a schematic configuration of the capsule endoscope 10. As shown in FIG.
  • the capsule endoscope 10 includes a capsule housing 11, which is an exterior case formed in a size that facilitates introduction into the internal organs of the subject 2, and light that illuminates the interior of the subject.
  • an illumination unit 12 that generates light
  • an imaging unit 13 that captures an image by receiving light reflected in the subject and outputs image data (image signal), and processes the image data input from the imaging unit 13.
  • a control unit 14 that controls each component of the capsule endoscope 10, a wireless communication unit 15 that performs modulation processing and the like on image data output from the imaging unit 13 and wirelessly transmits the data
  • a power supply unit 16 that supplies power to each component of the endoscope 10 and an oscillator 17 that generates a clock signal for operating each component of the capsule endoscope 10 are provided.
  • the capsule-shaped housing 11 consists of a cylindrical housing 111, a dome-shaped housing 112, and a dome-shaped housing 113.
  • Capsule-shaped housing 11 is realized by covering both open ends of cylindrical housing 111 with dome-shaped housing 112 and dome-shaped housing 113 .
  • the cylindrical housing 111 and the dome-shaped housing 113 are colored housings that are substantially opaque to visible light.
  • the dome-shaped housing 112 is a dome-shaped optical member that is transparent to light in a predetermined wavelength band such as visible light.
  • Capsule-type housing 11 configured in this manner liquid-tightly encloses lighting unit 12, imaging unit 13, control unit 14, wireless communication unit 15, power supply unit 16, and oscillation unit 17.
  • the illumination unit 12 is composed of a light-emitting element such as an LED (Light Emitting Diode) or an LD (Laser Diode).
  • the illumination unit 12 illuminates the subject with illumination light by emitting white light or the like under the control of the control unit 14 .
  • the illumination unit 12 irradiates illumination light through the dome-shaped housing 112 onto the subject within the imaging field of the imaging element 132 .
  • the imaging unit 13 has an optical system 131 such as a condenser lens, and an imaging device 132 such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor.
  • the optical system 131 collects the reflected light from the field of view of the imaging element 132 , which is the light reflected by the illumination unit 12 irradiating the subject, and forms an image on the imaging surface of the imaging element 132 .
  • the imaging element 132 generates image data by receiving reflected light from the imaging field on its imaging surface and performing photoelectric conversion processing, and outputs this image data.
  • a monocular system for imaging one end in the long axis La direction of the capsule endoscope 10 is used.
  • the optical axes of the two imaging units 13 are substantially parallel to or substantially coincident with the long axis La of the capsule housing 11, and the imaging fields of view are directed in opposite directions. It should be placed so that it faces That is, in the compound-eye capsule endoscope 10, the imaging surfaces of the imaging elements 132 in each of the two imaging units 13 may be arranged so as to be orthogonal to the long axis La.
  • the control unit 14 controls the operation of each component within the capsule endoscope 10, and also controls the input/output of signals between these components.
  • the control unit 14 is configured using a memory and a processor having hardware such as an FPGA (Field-Programmable Gate Array). A detailed functional configuration of the control unit 14 will be described later.
  • the wireless communication unit 15 performs modulation processing, etc. on the image data input from the control unit 14 to generate wireless data, and transmits this wireless data to the outside.
  • the wireless communication unit 15 is configured using a wireless communication module that performs modulation processing and the like, a transmitting antenna, and the like.
  • the power supply unit 16 has a power storage unit such as a button battery or a capacitor, and a switch unit such as a magnetic switch or an optical switch.
  • the power supply unit 16 switches between on and off states according to a magnetic field applied from the outside.
  • the power supply unit 16 supplies power from the storage unit to each component of the capsule endoscope 10 when in the ON state, and stops power supply to each component of the capsule endoscope 10 when in the OFF state. do.
  • the power supply unit 16 supplies power to each of the illumination unit 12, the imaging unit 13, the control unit 14, the wireless communication unit 15, and the oscillation unit 17 when in the ON state, and supplies power to each of the capsule unit 17 in the OFF state. Power supply to each component of the type endoscope 10 is stopped.
  • the oscillator 17 generates and outputs a first imaging CLK signal (clock signal) that serves as a reference for the operation of each component of the capsule endoscope 10 .
  • the oscillator 17 is configured using a crystal oscillator or the like.
  • the capsule endoscope 10 As an example of the configuration of the capsule endoscope 10, a configuration in which the capsule endoscope 10 is passively moved by peristaltic motion of the subject has been described. Alternatively, it may be configured to be movable within the subject 2 by guidance from the outside. For example, in the capsule endoscope 10 in which a permanent magnet is provided inside, the inside of the subject 2 is guided by a magnetic field generated outside the subject 2 acting on the permanent magnet provided inside. It may be moved within the specimen 2 .
  • FIG. 3 is a block diagram showing functional configurations of the control unit 14, the wireless communication unit 15, and the power supply unit 16. As shown in FIG.
  • the control unit 14 includes a reference signal generation unit 141, a second imaging clock generation unit 142, a switching unit 143, a first output buffer 144, a radio clock signal generation unit 145, It has a second output buffer 146 , an image memory section 147 , a first determination section 148 , an imaging control section 149 and a wireless control section 150 .
  • the reference signal generation unit 141 Based on the first imaging CLK signal input from the oscillator 17, the reference signal generation unit 141 generates a reference signal for driving the imaging control unit 149 and the wireless control unit 150 every predetermined period.
  • the generated reference signal is output to imaging control section 149 and radio control section 150 .
  • the second imaging clock generation unit 142 generates a second imaging CLK signal obtained by dividing the frequency of the first imaging CLK signal to a predetermined frequency based on the first imaging CLK signal input from the oscillation unit 17. and outputs this second imaging CLK signal to the switching unit 143 .
  • the second imaging clock generation unit 142 generates a second imaging CLK signal having a frequency obtained by dividing the first imaging CLK signal by two, and outputs the second imaging CLK signal to the switching unit 143 .
  • the switching unit 143 selects either the first imaging CLK signal input from the oscillation unit 17 or the second imaging CLK signal input from the second imaging clock generation unit 142. One of them is output to the first output buffer 144 .
  • the first output buffer 144 selects either the first imaging CLK signal or the second imaging CLK signal input from the switching unit 143 and outputs the signal to the imaging unit 13 . Output.
  • the wireless clock signal generation unit 145 generates a reference wireless CLK signal by dividing the frequency of the first imaging CLK signal into a predetermined frequency based on the first imaging CLK signal input from the oscillation unit 17. Outputs the reference radio CLK signal to the second output buffer 146 . Specifically, the wireless clock signal generator 145 generates a reference wireless CLK signal having a frequency obtained by dividing the frequency of the first imaging CLK signal by 8, and outputs the reference wireless CLK signal to the second output buffer 146 .
  • the second output buffer 146 outputs a radio CLK signal obtained by amplifying the reference radio CLK signal input from the radio clock signal generation section 145 to the radio communication section 15 .
  • the image memory section 147 stores the image data input from the imaging section 13 by sequentially writing them. Specifically, the image memory unit 147 sequentially writes the image data input from the imaging unit 13 based on the write signal (W) that instructs the writing of the image data input from the imaging control unit 149. do. Further, under the control of the wireless control unit 150 , the image memory unit 147 reads the stored image data and outputs it to the wireless communication unit 15 and the first determination unit 148 . Specifically, the image memory unit 147 sequentially reads the image data to be stored based on a read signal (R) input from the wireless control unit 150 and instructs to read the image data, and the wireless communication unit 15 and the first to the determination unit 148 of.
  • R read signal
  • the first determination unit 148 determines whether one of the amount of illumination light emitted by the illumination unit 12 and the amount of light received by the imaging unit 13 (image sensor 132) is less than a threshold value, and captures the determination result. Output to control unit 149 and radio control unit 150 . Specifically, the first determination unit 148 determines whether the amount of light received by the imaging unit 13 (image sensor 132) is less than the threshold, and determines whether the amount of light received by the imaging unit 13 (image sensor 132) is less than the threshold. Otherwise, an operation mode instruction signal is output to the imaging control unit 149 and the wireless control unit 150 to cause the imaging unit 13 to perform imaging in the first operation mode.
  • the first determination unit 148 instructs the imaging control unit 149 and the wireless control unit 150 to set the imaging unit 13 in the second operation mode.
  • An operation mode instruction signal for imaging is output.
  • the first determination unit 148 sets the threshold based on the power information input from the power supply unit 16 . Specifically, the first determination unit 148 sets the threshold according to the remaining battery level included in the power information input from the power supply unit 16 . Note that the threshold can be appropriately changed by the user.
  • the threshold is set by providing a receiving mechanism inside the capsule endoscope 10 for receiving a wireless signal from an external device arranged outside the subject 2, and generating a signal that changes to a value desired by the user. It may be changed by transmitting from an external device to the capsule endoscope 10 and rewriting. Furthermore, the threshold may be set by the manufacturer to a threshold desired by the user at the stage of manufacturing the capsule endoscope 10 .
  • the imaging control unit 149 controls driving of each of the illumination unit 12 and the imaging unit 13 based on the reference signal input from the reference signal generation unit 141 . Further, the imaging control unit 149 sets the operation mode of the imaging unit 13 to the first operation mode based on the reference signal input from the reference signal generation unit 141 and the determination result of the first determination unit 148 .
  • the imaging unit 13 is caused to perform imaging by switching between a second operation mode in which the imaging frame rate is lower than that in the operation mode and the imaging period for one frame is longer than in the first operation mode.
  • the imaging control unit 149 when the imaging control unit 149 causes the imaging unit 13 to perform imaging in the first operation mode, the imaging control unit 149 outputs the imaging CLK selection signal to the switching unit 143 , thereby inputting the first CLK input from the oscillation unit 17 . to output the imaging CLK signal. Further, the imaging control unit 149 outputs an imaging clock enable signal to the first output buffer 144 in synchronization with the rise timing of the reference signal, thereby sending the operation CLK signal (first 1 imaging CLK signal) is output. In addition, when the imaging control unit 149 causes the imaging unit 13 to perform imaging in the second operation mode, the imaging control unit 149 outputs the imaging CLK selection signal to the switching unit 143 . A second imaging CLK signal is output. Furthermore, the imaging control unit 149 outputs an operation CLK signal (second imaging CLK signal) is output. Furthermore, the imaging control unit 149 causes the illumination unit 12 to emit illumination light by outputting a light emission instruction signal to the illumination unit 12 according to the reference signal.
  • the wireless control unit 150 determines that the transmission period during which the wireless communication unit 15 transmits image data and the imaging period during which the imaging unit 13 performs imaging are different periods, and regardless of the operation mode at the time of imaging, a predetermined reference
  • the image data is transmitted to the wireless communication unit 15 at a timing after a certain period of time has passed from the timing.
  • the wireless control unit 150 causes the transmission period during which the wireless communication unit 15 transmits image data and the imaging period during which the imaging unit 13 captures images. It is a period in which the image data generated by the imaging unit 13 in the first operation mode is transmitted to the wireless communication unit 15 at the transmission start timing, and the image data generated by the imaging unit 13 in the second operation mode is transmitted wirelessly.
  • the imaging period during which the imaging unit 13 takes an image is a period from the start time when exposure of the imaging device 132 of the imaging unit 13 is started to the end time when reading of image data from each pixel of the imaging device 132 is finished.
  • the wireless control unit 150 controls the transmission period during which the wireless communication unit 15 transmits image data and the imaging period during which the imaging unit 13 captures images.
  • the wireless communication unit 15 is controlled so that the image data is transmitted by the wireless communication unit 15 .
  • the wireless control unit 150 Based on the reference signal generated by the reference signal generating unit 141, the wireless control unit 150 outputs the wireless clock enable signal to the second output buffer 146, and outputs the wireless CLK signal to the second output buffer 146. is output, the image data is transmitted to the wireless communication unit 15 . More specifically, the wireless control unit 150 outputs the wireless clock enable signal as a second output at a timing that does not overlap with the imaging period during which the imaging unit 13 takes an image and a predetermined time has passed since the rising timing of the reference signal. The image data is transmitted to the wireless communication unit 15 by outputting to the buffer 146 and causing the second output buffer 146 to output the wireless CLK signal.
  • the wireless control unit 150 causes the wireless communication unit 15 to transmit operation identification information indicating the operation mode of the imaging unit 13 in association with the image data.
  • the imaging period of the imaging unit 13 is defined as the period from the start time when the imaging element 132 starts to be exposed to the end time when the reading of image data from each pixel of the imaging element 132 ends.
  • it may be an illumination period during which the illumination unit 12 emits illumination light.
  • the wireless communication unit 15 transmits image data according to the wireless CLK signal input from the second output buffer 146.
  • the wireless communication unit 15 has a wireless transmission unit 151 and a wireless antenna 152 .
  • the wireless transmission unit 151 modulates the image data input from the image memory unit 147 and transmits the image data subjected to the modulation processing to the outside via the wireless antenna 152 .
  • the wireless transmission unit 151 is configured using, for example, a communication module or the like.
  • the power supply unit 16 has a battery 161 and a power supply monitoring unit 162 .
  • the battery 161 is configured using a button battery or the like.
  • the power monitoring unit 162 monitors at least the remaining amount of the battery 161 and outputs the monitoring result to the first determination unit 148 .
  • the power supply monitoring unit 162 is configured using a coulometer or the like.
  • FIG. 4 is a timing chart comparing operation timings of two operation modes executable by the capsule endoscope 10 .
  • FIG. 5 is a timing chart showing operations in the first operation mode, which is one of the operation modes that can be executed by the capsule endoscope 10.
  • FIG. 6 is a timing chart showing operations in the second operation mode, which is one of the operation modes that the capsule endoscope 10 can execute.
  • the upper side shows the operation timing when the operation mode of the capsule endoscope 10 is the first operation mode
  • the lower side shows the operation timing when the operation mode of the capsule endoscope 10 is the second operation mode. shows the operation timing in the case of Furthermore, in FIG. 4, the upper side shows the operation timing when the operation mode of the capsule endoscope 10 is the first operation mode, and the lower side shows the operation timing when the operation mode of the capsule endoscope 10 is the second operation mode. shows the operation timing in the case of Furthermore, in FIG.
  • the first operation mode will be explained.
  • the frame rate of the image pickup unit 13 (image pickup device 132) is set higher and the image pickup period of the image pickup unit 13 is set shorter than in the second operation mode. It's a pattern.
  • the imaging control unit 149 sets the capture rate of the imaging device 132 to 32 fps, and 32 fps at the capture rate In response to the rising timing of the reference signal (the pulse is in a HIGH state), the image pickup unit 13 is caused to pick up images four times per second, and the rest of the capture rate frames are stopped. That is, in the first operation mode, based on the reference signal generated by the reference signal generation unit 141, the imaging control unit 149 causes the imaging unit 13 to perform imaging at intervals of 4 fps, and one imaging period is 31 fps. .Control to take an image in 3 msec.
  • the imaging control unit 149 sequentially reads image data captured by the imaging unit 13 and stores the data in the image memory unit 147 .
  • the wireless control unit 150 transmits the signal to the second buffer 146 wirelessly after a certain time T1 has passed from the rise timing of the reference signal generated by the reference signal generation unit 141 (the pulse is in a HIGH state). While outputting the enable signal, based on the reference signal generated by the reference signal generation unit 141 , the image data stored in the image memory unit 147 are sequentially read out and the wireless communication unit 15 is caused to perform modulation processing. send to.
  • the first operation mode performs imaging at a high frame rate in a bright imaging scene (for example, the esophagus and the small intestine) in the first half of the examination of the subject 2 by the capsule endoscope 10, and the idle period of the imaging unit 13 is reduced.
  • a bright imaging scene for example, the esophagus and the small intestine
  • the second operation mode will be explained. As shown in FIGS. 4 to 6, in the second operation mode, the frame rate of the image pickup unit 13 (image pickup device 132) is lower than that in the first operation mode, and the image pickup period of the image pickup unit 13 (image pickup device 132 is This is a control pattern in which the exposure period) is set long.
  • the imaging control unit 149 sets the capture rate of the imaging device 132 to 16 fps, and Control is performed so that the image capturing unit 13 is caused to capture images twice per second and the rest of the frames at the capture rate are paused according to the rise timing of the reference signal (the pulse is in a HIGH state) within 16 fps at the capture rate. That is, in the second operation mode, based on the reference signal generated by the reference signal generation unit 141, the imaging control unit 149 causes the imaging unit 13 to perform imaging at intervals of 2 fps, and one imaging period is 62 fps. .Control to image at 5 msec.
  • the imaging control unit 149 sequentially reads image data captured by the imaging unit 13 and stores the data in the image memory unit 147 .
  • the wireless control unit 150 transmits the signal to the second buffer 146 wirelessly after a certain time T1 has passed from the rise timing of the reference signal generated by the reference signal generation unit 141 (the pulse is in a HIGH state). While outputting the enable signal, based on the reference signal generated by the reference signal generation unit 141 , the image data stored in the image memory unit 147 are sequentially read out and the wireless communication unit 15 is caused to perform modulation processing. send to.
  • a bright in-vivo image is acquired by imaging at a low frame rate in a dark imaging scene (for example, the stomach and duodenum) in the first half of the examination of the subject 2 by the capsule endoscope 10. do.
  • a dark imaging scene for example, the stomach and duodenum
  • the imaging control unit 149 controls the imaging period of the imaging unit 13 and the wireless communication of the wireless communication unit 15 based on the reference signal generated by the reference signal generation unit 141 . and are different from each other. Further, in the first operation mode and the second operation mode, the wireless control unit 150 transmits the image data to the wireless communication unit 15 after a predetermined time T1 has elapsed from the rise of the reference signal. .
  • the receiving device 4 In order for the receiving device 4 to reliably receive the image data from the capsule endoscope 10, the receiving device 4 must store the transmission start timing of the image data from the capsule endoscope 10. must. As a result, conventionally, when image data are transmitted at mutually different timings, it is necessary for the reception device 4 to reset the timing at which wireless communication from the capsule endoscope 10 is started every time the operation mode is switched. was there.
  • the wireless control unit 150 transmits image data.
  • the reception timing for the reception device 4 to receive the image data by wireless communication is set again. No need.
  • the receiving device 4 can reduce the processing load and can be realized with a simple configuration.
  • FIG. 7 is a timing chart showing switching timings of the operation modes of the capsule endoscope 10 . Also, with reference to FIG. 7, the timing of switching the operation mode of the capsule endoscope 10 from the first operation mode to the second operation mode will be described.
  • the upper side shows an example of the operation timing of the conventional technology
  • the lower side shows the switching timing of the operation mode of the capsule endoscope 10 according to the first embodiment.
  • FIG. 7 shows the imaging operation timing of the conventional technology
  • (b) shows the wireless transmission timing of the conventional technology
  • (c) shows the reference signal of the capsule endoscope 10
  • (d ) indicates the capture rate of the imaging unit 13
  • (e) indicates the imaging period
  • (f) indicates the imaging CLK signal (first imaging CLK signal or second imaging CLK signal)
  • (g) indicates the image.
  • (h) indicates the read timing of the image memory unit 147
  • (i) indicates the brightness integration and threshold comparison by the first determination unit 148
  • (j) indicates the inside of the capsule.
  • the mode of operation of the scope 10 is indicated, (l) indicating the radio transmission period and (m) indicating the radio CLK signal.
  • image data is transmitted in the same imaging period while imaging at 2 fps.
  • the imaging control unit 149 changes the operation mode of the capsule endoscope 10 according to the rise timing of the reference signal generated by the reference signal generation unit 141. Switch to the second mode of operation. In this case, the imaging control unit 149 sets the imaging period of the imaging unit 13 longer by switching the frame rate of the imaging unit 13 (imaging element 132) from 4 fps to 2 fps. Thereafter, the wireless control unit 150 reads the image data captured by the imaging unit 13 at the previous rise timing of the reference signal from the image memory unit 147 and transmits the image data after a lapse of a certain time T1 from the rise timing of the next reference signal.
  • image data is transmitted according to the rising timing of the reference signal, which is the same as the imaging timing of the imaging unit 13, so a voltage drop occurs.
  • the capsule endoscope 10 causes the wireless control unit 150 to reproduce the image data captured by the imaging unit 13 at the timing of the previous rise of the reference signal after a predetermined time T1 has elapsed from the timing of the next rise of the reference signal. Since the data is read from the memory unit 147 and transmitted, voltage drop can be prevented.
  • the capsule endoscope 10 performs imaging control.
  • the unit 149 switches the operation mode of the capsule endoscope 10 from the second operation mode to the first operation mode according to the rise timing of the reference signal generated by the reference signal generation unit 141 .
  • the wireless control unit 150 reads out the image data from the image memory unit 147 and wirelessly transmits the image data after a predetermined time T1 has elapsed from the rising timing of the reference signal, which is the same as the image capturing timing when the image capturing unit 13 captured the image data.
  • T1 a predetermined time
  • FIG. 8 is a flowchart showing an overview of the processing executed by the capsule endoscope 10. As shown in FIG.
  • the imaging control unit 149 initializes the control pattern of the imaging unit 13 (step S101). Specifically, based on the reference signal input from the reference signal generation unit 141, the imaging control unit 149 controls the switching unit 143 to output the first imaging CLK signal input from the oscillation unit 17. Thereby, the operation mode of the imaging unit 13 is set to the first operation mode.
  • the imaging control unit 149 causes the imaging unit 13 to start imaging based on the reference signal input from the reference signal generation unit 141 (step S102).
  • the imaging control unit 149 temporarily stores the image data generated by the imaging unit 13 by writing it in the image memory unit 147 .
  • the wireless control section 150 reads the image data from the image memory section 147 and outputs it to the wireless communication section 15 (step S103).
  • the wireless control unit 150 outputs the image data to the wireless communication unit 15 every time T1 elapses from the rise timing of the reference signal.
  • the image data is output to the wireless communication unit 15 at every predetermined time T1 from the rise timing of the reference signal after the imaging unit 13 finishes imaging. do.
  • the first determination unit 148 determines whether or not the received light amount of the in-vivo image corresponding to the image data read from the image memory unit 147 is less than the threshold (step S104).
  • the capsule endoscope 10 determines that the received light amount of the in-vivo image corresponding to the image data read from the image memory unit 147 is less than the threshold (step S104: Yes)
  • the capsule endoscope 10 the process proceeds to step S105, which will be described later.
  • the first determination unit 148 determines that the amount of received light of the in-vivo image corresponding to the image data read out from the image memory unit 147 is not less than the threshold (step S104: No)
  • the scope 10 proceeds to step S106, which will be described later.
  • step S105 the imaging control unit 149 switches the operation mode of the imaging unit 13 from the first operation mode to the second operation mode. Specifically, the imaging control unit 149 controls the switching unit 143 so that the second imaging CLK signal generated by the second imaging clock generation unit 142 is output to the imaging unit 13. . As a result, the operation mode of the capsule endoscope 10 is switched from the first operation mode to the second operation mode.
  • step S105 the capsule endoscope 10 proceeds to step S108, which will be described later.
  • step S106 the first determination unit 148 determines whether or not the operation mode of the imaging unit 13 is the first operation mode.
  • the capsule endoscope 10 proceeds to step S108, which will be described later.
  • the capsule endoscope 10 proceeds to step S107, which will be described later. Transition.
  • step S107 the imaging control unit 149 switches the operation mode of the imaging unit 13 from the second operation mode to the first operation mode. Specifically, the imaging control unit 149 switches the operation mode of the imaging unit 13 to the first operation mode by controlling the switching unit 143 to output the first imaging CLK signal input from the oscillation unit 17. set.
  • step S107 the capsule endoscope 10 proceeds to step S108.
  • step S108 if the observation of the subject 2 is finished (step S108: Yes), the capsule endoscope 10 finishes this process. On the other hand, if the observation of the subject is not finished (step S108: No), the capsule endoscope 10 returns to step S102 described above.
  • the imaging control unit 149 sets the operation mode of the imaging unit 13 to the first operation mode based on the determination result of the first determination unit 148. Since the imaging unit 13 performs imaging by switching between the second operation mode in which the imaging frame rate is lowered and the imaging period for one frame is longer than the first operation mode, the operation mode is set according to the imaging conditions of the observation site. can be imaged.
  • the transmission period during which the wireless communication unit 15 transmits image data and the imaging period during which the imaging unit 13 performs imaging are different periods, and regardless of the operation mode at the time of imaging, Since image data is transmitted to the wireless communication unit 15 at a timing after a certain period of time has passed from a predetermined reference timing, the imaging unit 13 and the wireless communication unit 15 do not operate at the same time, resulting in a temporary increase in power consumption. can be prevented, and a voltage drop caused by an increase in current consumption can be prevented.
  • the transmission period during which the wireless communication unit 15 transmits image data and the imaging period during which the imaging unit 13 performs imaging are different periods, and regardless of the operation mode at the time of imaging, Since the image data is transmitted to the wireless communication unit 15 at a timing after a certain period of time has elapsed from the predetermined reference timing, there is no need to change the setting of the timing at which the receiving device 4 receives the image data for each control pattern. 4 processing load can be reduced.
  • the first determination unit 148 determines whether or not the received light amount (luminance value) of the in-vivo image corresponding to the image data generated by the imaging unit 13 is equal to or greater than the threshold. However, without being limited to this, it may be determined whether or not the amount of illumination light emitted by the illumination unit 12 is equal to or greater than a threshold value. In this case, the first determination unit 148 determines the amount of light emitted by the illumination unit 12 based on the instruction signal from the imaging control unit 149 for instructing the illumination unit 12 to emit light or the irradiation time of the illumination light emitted by the illumination unit 12. It may be determined whether or not the amount of emitted light is equal to or greater than a threshold.
  • the operation mode of the capsule endoscope is switched to either the first operation mode or the second operation mode based on the brightness value of the in-vivo image corresponding to the image data.
  • the remaining battery level is further used to subdivide the operation modes of the capsule endoscope.
  • the operation mode of the capsule endoscope is set to either a third operation mode or a fourth operation mode, which will be described later. switch. Therefore, the capsule endoscope according to the second embodiment differs from the capsule endoscope 10 of the examination system 1 according to the first embodiment described above.
  • a capsule endoscope according to the second embodiment will be described below. Further, the same reference numerals are assigned to the same configurations as those of the inspection system 1 according to the first embodiment described above, and detailed description thereof will be omitted.
  • FIG. 9 is a block diagram showing the functional configuration of the capsule endoscope.
  • a capsule endoscope 10A shown in FIG. 9 includes a controller 14A instead of the controller 14 of the capsule endoscope 10 according to the first embodiment.
  • the control unit 14A further includes a second determination unit 200 in addition to the configuration of the control unit 14 according to the first embodiment described above.
  • the control unit 14A includes an imaging control unit 210 instead of the imaging control unit 149 of the control unit 14 according to the first embodiment described above.
  • the control section 14A further includes a second determination section 200 .
  • the second determination unit 200 determines whether or not to suppress the power consumption of the battery 161 based on the battery information indicating at least the remaining amount of the battery 161 input from the power supply monitoring unit 162, and images the determination result. Output to control unit 210 . Specifically, the second determination unit 200 determines whether the remaining amount of the battery 161 is less than a threshold based on at least the battery information indicating the remaining amount of the battery 161 input from the power monitoring unit 162. and outputs the determination result to the imaging control unit 210 .
  • the power information includes the remaining amount of power of the battery 161, the voltage value, the elapsed time from the activation of the capsule endoscope 10A, and the like.
  • the imaging control unit 210 determines whether the light emission amount of the illumination unit 12 or the light reception amount of the imaging unit 13 is determined by the first determination unit 148 . When it is determined that one is not less than the threshold, the operation mode of the imaging unit 13 is switched to a third operation mode having a lower imaging frame rate than the first operation mode, and the imaging unit 13 is caused to take an image. Furthermore, when the second determination unit 200 determines that the power consumption of the battery 161 should be suppressed, the imaging control unit 210 causes the first determination unit 148 to determine the amount of light emitted by the illumination unit 12 and the amount of light received by the imaging unit 13. When it is determined that either one of them is less than the threshold, the operation mode is switched to the fourth operation mode having a lower imaging frame rate than the second operation mode, and the imaging unit 13 is caused to take an image.
  • FIG. 10 is a timing chart showing operations in the third operation mode, which is one of the operation modes that can be executed by the capsule endoscope 10A.
  • FIG. 11 is a timing chart showing operations in a fourth operation mode, which is one of the operation modes executable by the capsule endoscope 10A. 10 and 11, the operation mode set by the imaging control unit 210 when the second determination unit 200 determines that the remaining amount of the battery 161 is equal to or less than the threshold will be described.
  • the third operation mode reduces the frame rate of the image pickup unit 13 (image pickup device 132) from that in the first operation mode described above, while reducing the image pickup period of the image pickup unit 13 (the exposure of the image pickup device 132). period) is set to be the same as in the first operation mode.
  • the imaging control unit 210 sets the capture rate of the imaging device 132 to 32 fps, and the rising timing of the reference signal ( pulse is in a HIGH state), the imaging unit 13 is caused to capture images twice per second, and control is performed to pause the remaining capture rate frames. That is, in the third operation mode, based on the reference signal generated by the reference signal generation unit 141, the imaging control unit 210 causes the imaging unit 13 to perform imaging at intervals of 2 fps, and one imaging period is 31 .Control to take an image in 3 msec.
  • the imaging control unit 210 sequentially reads image data captured by the imaging unit 13 and stores the data in the image memory unit 147 .
  • the wireless control unit 150 sends a signal to the second buffer 146 wirelessly after a certain time T1 has passed from the rising timing of the reference signal generated by the reference signal generating unit 141 (the pulse is in a HIGH state). While outputting the enable signal, based on the reference signal generated by the reference signal generation unit 141 , the image data stored in the image memory unit 147 are sequentially read out and the wireless communication unit 15 is caused to perform modulation processing. send to.
  • the third operation mode performs imaging at a frame rate as high as possible while reducing power consumption in a bright imaging scene (for example, large intestine mucosa) in the latter half of the examination of the subject 2 by the capsule endoscope 10 .
  • a bright imaging scene for example, large intestine mucosa
  • the fourth operation mode reduces the frame rate of the image pickup unit 13 (image pickup device 132) from that of the third operation mode described above, while increasing the image pickup period of the image pickup unit 13 (image pickup device 132). This is a control pattern in which the exposure period) is set to be the same as in the second operation mode.
  • the imaging control unit 149 sets the capture rate of the imaging device 132 to 16 fps, and the capture rate is set to 16 fps according to the rising timing of the reference signal (the pulse is in a HIGH state). Then, control is performed such that the imaging unit 13 is caused to capture images only once per second, and the rest of the frames of the capture rate are paused. That is, in the fourth operation mode, based on the reference signal generated by the reference signal generation unit 141, the imaging control unit 210 causes the imaging unit 13 to perform imaging at a frame rate of 1 fps, and one imaging period is set to 62.5 msec. to control imaging.
  • the imaging control unit 149 sequentially reads image data captured by the imaging unit 13 and stores the data in the image memory unit 147 .
  • the wireless control unit 150 transmits the signal to the second buffer 146 wirelessly after a certain time T1 has passed from the rising timing of the reference signal generated by the reference signal generation unit 141 (the pulse is in a HIGH state). While outputting the enable signal, based on the reference signal generated by the reference signal generation unit 141 , the image data stored in the image memory unit 147 are sequentially read out and the wireless communication unit 15 is caused to perform modulation processing. send to.
  • the fourth operation mode reduces power consumption by further lowering the frame rate in a dark imaging scene (for example, a distant view of the large intestine) in the latter half of the examination of the subject 2 by the capsule endoscope 10, while reducing brightness.
  • a dark imaging scene for example, a distant view of the large intestine
  • In-vivo images can be obtained without problems.
  • the image pickup control unit 210 operates based on the reference signal generated by the reference signal generation unit 141. Therefore, the imaging period of the imaging unit 13 and the wireless communication period of the wireless communication unit 15 are made different from each other. Further, in the first to fourth operation modes, the wireless control unit 150 transmits the image data to the wireless communication unit 15 after a predetermined time T1 has elapsed from the rise of the reference signal. . As a result, even when the imaging timing of the imaging unit 13 by the imaging control unit 210 is switched, the capsule endoscope 10 allows the wireless control unit 150 to synchronize the transmission timing of the image data from the rise of the reference signal.
  • the receiving device 4 can reduce the processing load and can be realized with a simple configuration.
  • the third operation mode when the amount of light received by the imaging unit 13 is sufficient and the remaining amount of the battery 161 is equal to or less than the threshold, the number of images captured per second is higher than that in the first operation mode.
  • the power consumption of the battery 161 is suppressed by changing the number of times from four to two.
  • the fourth operation mode is set when the remaining amount of the battery 161 is equal to or less than the threshold value, compared to the second operation mode.
  • the power consumption of the battery 161 is suppressed by reducing the number of imaging times per second from two to one.
  • FIG. 12 is a flowchart showing an overview of the processing executed by the capsule endoscope 10A.
  • steps S201 to S207 correspond to steps S101 to S107 in FIG. 8 described above, respectively.
  • the second determination unit 200 determines whether or not to suppress the power consumption of the battery 161 based on the battery information indicating at least the remaining amount of the battery 161 input from the power supply monitoring unit 162. Specifically, the second determination unit 200 determines whether or not the remaining amount of the battery 161 is equal to or less than a threshold based on the power information of the battery 161 input from the power supply monitoring unit 162. When the remaining amount is equal to or less than the threshold, it is determined that the power consumption of the battery 161 should be suppressed.
  • the power information includes the remaining amount of power of the battery 161, the voltage value, the elapsed time from the activation of the capsule endoscope 10A, and the like.
  • step S208: Yes the capsule endoscope 10A proceeds to step S210, which will be described later.
  • step S208: No the capsule endoscope 10A proceeds to step S209, which will be described later.
  • step S209 if the observation of the subject 2 is finished (step S209: Yes), the capsule endoscope 10A finishes this process. On the other hand, if the observation of the subject is not finished (step S209: No), the capsule endoscope 10A returns to step S202 described above.
  • step S210 the imaging control unit 210 performs setting for switching the operation mode of the imaging unit 13 to the third operation mode. Specifically, the imaging control unit 210 switches the operation mode of the imaging unit 13 to the third operation mode by controlling the switching unit 143 to output the first imaging CLK signal input from the oscillation unit 17. Make settings to switch.
  • the capsule endoscope 10A Since it can be estimated that the distance to the object to be imaged (the inner wall of the organ) is short and the illumination light easily reaches the object to be imaged, consumption of the battery 161 is avoided by setting the frame rate to 2 fps.
  • the imaging control unit 210 causes the imaging unit 13 to start imaging based on the reference signal input from the reference signal generation unit 141 (step S211).
  • the imaging control unit 210 temporarily stores the image data generated by the imaging unit 13 by writing it in the image memory unit 147 .
  • the wireless control section 150 reads image data from the image memory section 147 and transmits it to the wireless communication section 15 (step S212).
  • the wireless control unit 150 causes the wireless communication unit 15 to transmit the image data every time T1 elapses from the rise timing of the reference signal.
  • the image data is transmitted to the wireless communication unit 15 every predetermined time T1 from the rising timing of the reference signal after the imaging unit 13 finishes imaging.
  • the first determination unit 148 determines whether or not the received light amount of the in-vivo image corresponding to the image data stored in the image memory unit 147 is less than the threshold (step S213).
  • the first determination unit 148 determines that the received light amount of the in-vivo image corresponding to the image data stored in the image memory unit 147 is less than the threshold (step S213: Yes)
  • the capsule endoscope 10 The process proceeds to step S214, which will be described later.
  • step S213 determines that the received light amount of the in-vivo image corresponding to the image data stored in the image memory unit 147 is not less than the threshold (step S213: No)
  • capsule endoscopy The mirror 10 proceeds to step S215, which will be described later.
  • step S214 the imaging control unit 210 switches the operation mode of the imaging unit 13 from the third operation mode to the fourth operation mode. Specifically, the imaging control unit 210 controls the switching unit 143 so that the second imaging CLK signal generated by the second imaging clock generation unit 142 is output to the imaging unit 13. . As a result, the operation mode of the capsule endoscope 10A is switched from the third operation mode to the fourth operation mode. In this case, when the capsule endoscope 10A is passing through an organ such as the large intestine, it is difficult for the illumination light from the illumination unit 12 to reach the imaging target because the distance to the imaging target is long. The reflected light from is dark.
  • the imaging control unit 210 switches the control pattern to the fourth operation mode having a lower imaging frame rate and a longer imaging period (exposure time) than the third operation mode.
  • the wireless control unit 150 determines that the period during which the image data generated by the imaging unit 13 is wirelessly transmitted is the same as in the third operation mode.
  • the wireless communication unit 15 is caused to perform wireless transmission so as not to overlap with the imaging period (exposure period).
  • step S215 the first determination unit 148 determines whether or not the operation mode of the imaging unit 13 is the third operation mode.
  • the capsule endoscope 10A proceeds to step S217, which will be described later.
  • step S215: No the capsule endoscope 10A proceeds to step S216, which will be described later. Transition.
  • step S216 the imaging control unit 210 performs setting for switching the operation mode of the imaging unit 13 from the fourth operation mode to the third operation mode. Specifically, the imaging control unit 210 switches the operation mode of the imaging unit 13 to the first operation mode by controlling the switching unit 143 to output the first imaging CLK signal input from the oscillation unit 17. set.
  • step S216 the capsule endoscope 10A proceeds to step S217.
  • step S217 if the observation of the subject 2 is finished (step S217: Yes), the capsule endoscope 10A finishes this process. On the other hand, if the observation of the subject is not finished (step S217: No), the capsule endoscope 10A returns to step SS211 described above.
  • the first determination unit 148 determines that the amount of light emitted by the illumination unit 12 is reduced. and the amount of light received by the imaging unit 13 is determined not to be less than the threshold, the operation mode of the imaging unit 13 is switched to a third operation mode having a lower imaging frame rate than the first operation mode to perform imaging.
  • the first determination unit 148 determines which of the light emission amount of the illumination unit 12 and the light reception amount of the imaging unit 13 is determined.
  • the imaging unit 13 switches to the fourth operation mode, which has a lower imaging frame rate than the second operation mode and the same one-frame imaging period as the third operation mode. to take an image.
  • the capsule endoscope 10A can be ejected from the subject 2 and the subject 2 can be observed even when the battery 161 is running low.
  • Various inventions can be formed by appropriately combining a plurality of components disclosed in the inspection systems according to the first and second embodiments of the present disclosure described above. For example, some components may be deleted from all the components described in the inspection systems according to the first and second embodiments of the present disclosure described above. Furthermore, the components described in the inspection systems according to the first and second embodiments of the present disclosure described above may be combined as appropriate.
  • the above-described "unit” can be read as “means” or “circuit”.
  • the control unit can be read as control means or a control circuit.

Abstract

Provided are: an in-subject information acquisition device that is capable of suppressing temporary increases in electricity consumption while setting a brightness appropriate for an observed region; an inspection system; a control method; and a program. The in-subject information acquisition device comprises: an imaging control unit 149 that switches the operating mode of an imaging unit 13 between a first operating mode and a second operating mode in which the imaging frame rate is lower than that in the first operating mode and the imaging period per frame is longer than that in the first operating mode on the basis of an assessment result from a first assessment unit 148, and causes the imaging unit 13 to capture images; and a wireless control unit 150 that causes a wireless communication unit 15 to transmit image data at a timing at which a transmission period in which the wireless communication unit 15 transmits image data and an imaging period in which the imaging unit 13 captures images are different periods, and a certain length of time has passed after a predetermined reference timing, regardless of the operating mode at the time of image capturing.

Description

被検体内情報取得装置、検査システム、制御方法およびプログラムIntra-subject information acquisition device, inspection system, control method and program
 本開示は、被検体内情報取得装置、検査システム、制御方法およびプログラムに関する。 The present disclosure relates to an intra-subject information acquisition device, an examination system, a control method, and a program.
 内視鏡分野においては、被検体内に導入されて撮像を行うカプセル型内視鏡が知られている。カプセル型内視鏡は、被検体の消化管内に導入可能な大きさに形成されたカプセル形状をなす筐体の内部に撮像機能および無線通信機能を備える。このようなカプセル型内視鏡は、被検体に嚥下された後、蠕動運動等によって消化管内を移動しながら撮像を行い、被検体の臓器内部の画像データを順次生成して無線送信する。無線送信された画像データは、被検体外に設けられた受信装置によって受信される。受信装置で受信された画像データは、ワークステーション等の画像表示装置に取り込まれて所定の画像処理が施されて被検体の体内画像を静止画または動画として表示される。それにより、医者等の術者は、被検体の体内画像を静止画または動画として観察することができる。  In the field of endoscopy, a capsule endoscope that is introduced into a subject and performs imaging is known. A capsule endoscope has an imaging function and a wireless communication function inside a capsule-shaped casing that is sized to be introduced into the digestive tract of a subject. After being swallowed by the subject, such a capsule endoscope captures images while moving in the digestive tract by peristaltic motion or the like, sequentially generates image data of the interior of the subject's organs, and wirelessly transmits the image data. The wirelessly transmitted image data is received by a receiving device provided outside the subject. The image data received by the receiving device is captured by an image display device such as a work station, and subjected to predetermined image processing to display an in-vivo image of the subject as a still image or moving image. Thereby, an operator such as a doctor can observe the in-vivo image of the subject as a still image or a moving image.
 ところで、カプセル型内視鏡は、被検体内の観察を行っている場合において、食道のような狭い臓器内を通過しているとき、撮像部から撮像対象(臓器の内壁)までの距離が近いため、照明光が撮像対象に届き易く、その結果、撮像対象からの反射光が明るくなる。反対に、カプセル型内視鏡は、胃のような広い臓器内を通過している場合、撮像部から撮像対象までの距離が遠いため、照明光が撮像対象に届き難く、その結果、撮像対象からの反射光が暗くなる。 By the way, when a capsule endoscope is used to observe the inside of a subject, the distance from the imaging unit to the imaging target (the inner wall of the organ) is short when passing through a narrow organ such as the esophagus. Therefore, the illumination light easily reaches the object to be imaged, and as a result, the reflected light from the object to be imaged becomes bright. On the other hand, when the capsule endoscope is passing through a large organ such as the stomach, the distance from the imaging unit to the imaging target is long, so it is difficult for the illumination light to reach the imaging target. The reflected light from is dark.
 このように、カプセル内視鏡検査では、被検体内の臓器の部位によって、撮像対象からの反射光の光量にバラツキが生じる。このため、カプセル型内視鏡は、通過中の部位により、画像データの強度レベル、即ち、画像データに対応する体内画像の輝度レベルに差が生じる問題があった。 In this way, in capsule endoscopy, the amount of reflected light from the object to be imaged varies depending on the part of the organ in the subject. Therefore, the capsule endoscope has a problem that the intensity level of the image data, that is, the brightness level of the in-vivo image corresponding to the image data differs depending on the part being passed.
 このような問題に対し、特許文献1には、撮像素子の受光量(即ち、撮像素子が出力した画像データの強度)に応じてフレームレートおよび撮像期間を変更することで、撮像素子のフレームレート制御を行うことが開示されている。 In order to solve such a problem, Japanese Patent Laid-Open No. 2002-200001 discloses that the frame rate of the image sensor is changed by changing the frame rate and the imaging period according to the amount of light received by the image sensor (that is, the intensity of the image data output by the image sensor). It is disclosed to perform control.
 具体的には、特許文献1では、カプセル型内視鏡から撮像対象までの距離が近い場合、撮像素子の受光量が大きくなることで、画像データの強度が所定範囲を超えないように、撮像素子のフレームレートを高くすることによって、1フレーム当たりの撮像期間を短くして、撮像素子の受光量を減少させる。反対に、特許文献1では、カプセル型内視鏡から撮像対象までの距離が遠い場合、撮像素子の受光量が小さくなることで、画像データの強度が所定範囲を下回らないように、フレームレートを低くすることによって、1フレーム当たりの撮像期間を長くして、撮像素子の受光量を増加させる。 Specifically, in Patent Document 1, when the distance from the capsule endoscope to the object to be imaged is short, the amount of light received by the image sensor increases, and the intensity of the image data does not exceed a predetermined range. By increasing the frame rate of the device, the imaging period per frame is shortened and the amount of light received by the imaging device is reduced. On the contrary, in Patent Document 1, when the distance from the capsule endoscope to the object to be imaged is long, the amount of light received by the image sensor decreases, and the frame rate is adjusted so that the intensity of the image data does not fall below a predetermined range. By lowering it, the imaging period per frame is lengthened and the amount of light received by the imaging device is increased.
 このように、特許文献1では、カプセル型内視鏡に対し、画像データの強度に基づいて、撮像素子のフレームレートを制御し、1フレーム当たりの撮像期間を調整することで、画像データに対応する体内画像の輝度レベルを一定の範囲に収めている。 As described above, in Patent Document 1, for a capsule endoscope, the frame rate of the imaging device is controlled based on the intensity of the image data, and the imaging period per frame is adjusted to correspond to the image data. The brightness level of the in-vivo image is kept within a certain range.
国際公開第2016/084500号公報International Publication No. 2016/084500
 ところで、上述した特許文献1では、フレームレートおよび撮像期間を変更する際に、撮像対象を撮像する撮像期間および撮像素子が出力した画像データを外部の受信装置に無線送信する無線通信の送信期間については何ら考慮されていない。従って、上述した特許文献1では、撮像素子の受光量の増加を目的として、仮に撮像素子の撮像期間を長く設定するように制御した場合、撮像素子の撮像期間と画像データを無線送信する送信期間の送信タイミングとが重複し、撮像素子と無線通信部とが同時に動作する。この結果、上述した特許文献1では、ピーク電流が高くなってカプセル型内視鏡内に蓄積された電力の浪費が一時的に大きくなるうえ、電力の浪費が一時的に増加すると、消費電流の急な増加で生じる電圧降下によって、画像データを受信装置へ送信できない可能性がある。 By the way, in the above-mentioned Patent Document 1, when changing the frame rate and the imaging period, the imaging period for imaging the imaging target and the wireless communication transmission period for wirelessly transmitting the image data output by the imaging element to the external receiving device is not considered at all. Therefore, in Patent Document 1 described above, if the imaging period of the imaging device is set long for the purpose of increasing the amount of light received by the imaging device, the imaging period of the imaging device and the transmission period for wirelessly transmitting image data , and the imaging device and the wireless communication unit operate at the same time. As a result, in Patent Document 1 described above, the peak current becomes high and the power consumption accumulated in the capsule endoscope temporarily increases. The voltage drop caused by the sudden increase may prevent the image data from being transmitted to the receiving device.
 本開示は、上記に鑑みてなされたものであって、その目的は、観察部位に適した明るさの制御をしつつ、一時的な電力浪費の増加を抑えることができる被検体内情報取得装置、検査システム、制御方法およびプログラムを提供することにある。 The present disclosure has been made in view of the above, and an object of the present disclosure is to provide an intra-subject information acquisition apparatus capable of suppressing a temporary increase in power consumption while controlling brightness suitable for an observation site. , inspection system, control method and program.
 上述した課題を解決し、目的を達成するために、本開示に係る被検体内情報取得装置は、被検体に向けて照明光を照射する照明部と、前記被検体内において反射した光を受光することにより撮像を行い、画像データを生成する撮像部と、前記撮像部が生成した前記画像データを無線送信する無線通信部と、前記照明部における照明光の発光量および前記撮像部の受光量のいずれか一方が閾値未満であるか否かを判定する第1の判定部と、前記第1の判定部の判定結果に基づいて、前記撮像部の動作モードを第1の動作モードと、前記第1の動作モードよりも撮像フレームレートを低くし、1フレームの撮像期間を前記第1の動作モードよりも長くした第2の動作モードと、を切り替えて前記撮像部に撮像させる撮像制御部と、前記無線通信部が前記画像データを送信する送信期間と、前記撮像部が撮像する撮像期間と、が異なる期間であり、かつ、撮像時の動作モードに関わらず、所定の基準タイミングから一定時間経過したタイミングに前記画像データを前記無線通信部に送信させる無線制御部と、を備える。 In order to solve the above-described problems and achieve the object, an intra-subject information acquisition apparatus according to the present disclosure includes an illumination unit that irradiates illumination light toward a subject, and receives light reflected within the subject. a wireless communication unit that wirelessly transmits the image data generated by the imaging unit; an amount of illumination light emitted by the illumination unit; and an amount of light received by the imaging unit. is less than a threshold value; and based on the determination result of the first determination unit, the operation mode of the imaging unit is set to the first operation mode, and the an imaging control unit that causes the imaging unit to perform imaging by switching between a second operation mode in which an imaging frame rate is lower than that in the first operation mode and an imaging period for one frame is longer than that in the first operation mode; , a transmission period during which the wireless communication unit transmits the image data and an imaging period during which the imaging unit captures images, and the period is a fixed time from a predetermined reference timing regardless of an operation mode at the time of imaging. and a wireless control unit that transmits the image data to the wireless communication unit at the elapsed timing.
 また、本開示に係る被検体内情報取得装置は、上記開示において、所定の周期を有する基準信号を所定の間隔で生成する基準信号生成部をさらに備え、前記無線制御部は、前記基準信号の立ち上がりタイミングから一定時間経過したタイミングに、前記画像データを前記無線通信部に送信させる。 Further, in the above disclosure, the intra-subject information acquisition apparatus according to the present disclosure further includes a reference signal generation unit that generates a reference signal having a predetermined cycle at predetermined intervals, and the wireless control unit generates the reference signal. The image data is transmitted to the wireless communication unit at a timing after a certain period of time has elapsed from the rising timing.
 また、本開示に係る被検体内情報取得装置は、上記開示において、前記撮像制御部は、前記第1の判定部によって前記発光量および前記受光量のいずれか一方が前記閾値未満であると判定した場合、前記撮像部を前記第2の動作モードによって撮像させる一方、前記第1の判定部によって前記発光量および前記受光量のいずれか一方が前記閾値未満でないと判定した場合、前記撮像部を前記第1の動作モードによって撮像させる。 Further, in the intra-subject information acquisition apparatus according to the present disclosure, in the above disclosure, the imaging control unit determines that either one of the light emission amount and the light reception amount is less than the threshold value by the first determination unit. when the imaging unit is caused to perform imaging in the second operation mode, and when the first determination unit determines that one of the amount of light emission and the amount of received light is not less than the threshold value, the imaging unit An image is captured in the first operation mode.
 また、本開示に係る被検体内情報取得装置は、上記開示において、前記第1の判定部は、前記無線通信部が前記画像データを送信する毎に、前記発光量および前記受光量のいずれか一方が前記閾値未満であるか否かを判定する。 Further, in the intra-subject information acquisition apparatus according to the present disclosure, in the above disclosure, the first determination unit determines whether the amount of light emitted or the amount of light received each time the wireless communication unit transmits the image data. It is determined whether one of them is less than the threshold.
 また、本開示に係る被検体内情報取得装置は、上記開示において、電力を供給する電池と、少なくとも前記電池の残量を示す電力情報に基づいて、前記電池の消費電力を抑制するか否かを判定する第2の判定部と、をさらに備え、前記撮像制御部は、前記第2の判定部によって前記電池の消費電力を抑制すると判定された場合において、前記第1の判定部によって前記発光量および前記受光量のいずれか一方が前記閾値未満でないと判定したとき、前記撮像部の動作モードを、前記第1の動作モードよりも前記撮像フレームレートが低い第3の動作モードに切り替えて前記撮像部に撮像させる一方、前記第2の判定部によって前記電池の消費電力を抑制すると判定された場合において、前記第1の判定部によって前記発光量および前記受光量のいずれか一方が前記閾値未満であると判定したとき、前記第2の動作モードよりも前記撮像フレームレートが低い第4の動作モードに切り替えて前記撮像部に撮像させる。 Further, in the above disclosure, the in-vivo information acquisition apparatus according to the present disclosure includes a battery that supplies power, and whether or not to suppress power consumption of the battery based on power information indicating at least the remaining amount of the battery. and a second determination unit that determines the light emission by the first determination unit when the second determination unit determines that the power consumption of the battery is to be suppressed. When it is determined that one of the amount and the amount of received light is not less than the threshold value, the operation mode of the imaging unit is switched to a third operation mode in which the imaging frame rate is lower than that of the first operation mode, and the When the imaging unit is caused to capture an image, and the second determination unit determines to suppress the power consumption of the battery, the first determination unit determines that one of the light emission amount and the light reception amount is less than the threshold value. When it is determined that it is, the operation mode is switched to a fourth operation mode in which the imaging frame rate is lower than that of the second operation mode, and the imaging unit is caused to perform imaging.
 また、本開示に係る被検体内情報取得装置は、上記開示において、前記無線制御部は、前記撮像部が前記第1の動作モードで生成した前記画像データを前記無線通信部に送信を開始させる送信開始タイミングと、前記撮像部が前記第2の動作モードで生成した前記画像データを前記無線通信部に送信を開始させる送信開始タイミングと、前記撮像部が前記第3の動作モードで生成した前記画像データを前記無線通信部に送信を開始させる送信開始タイミングと、前記撮像部が前記第4の動作モードで生成した前記画像データを前記無線通信部に送信を開始させる送信開始タイミングと、が前記一定時間経過したタイミングが同じとなるように、前記画像データを前記無線通信部に送信させる。 Further, in the intra-subject information acquiring apparatus according to the present disclosure, in the above disclosure, the wireless control unit causes the wireless communication unit to start transmitting the image data generated by the imaging unit in the first operation mode. transmission start timing, transmission start timing for causing the wireless communication unit to start transmitting the image data generated by the image capturing unit in the second operation mode, and the image data generated by the image capturing unit in the third operation mode; The transmission start timing for starting transmission of image data to the wireless communication unit and the transmission start timing for starting transmission of the image data generated by the imaging unit in the fourth operation mode to the wireless communication unit are described above. The image data is transmitted to the wireless communication unit so that the timing after a certain period of time has passed is the same.
 また、本開示に係る被検体内情報取得装置は、上記開示において、前記閾値は、ユーザ操作に応じて変更可能である。 Further, in the intra-subject information acquiring apparatus according to the present disclosure, the threshold can be changed according to a user's operation.
 また、本開示に係る被検体内情報取得装置は、上記開示において、前記無線制御部は、前記画像データを前記無線通信部に送信させる際に、前記撮像部の動作モードを示す動作識別情報を前記画像データに関連付けて前記無線通信部に送信させる。 Further, in the intra-subject information acquisition apparatus according to the present disclosure, in the above disclosure, the wireless control unit transmits operation identification information indicating an operation mode of the imaging unit when transmitting the image data to the wireless communication unit. The image data is associated with the image data and transmitted to the wireless communication unit.
 また、本開示に係る検査システムは、被検体内に導入可能に導入され、前記被検体内を撮像した画像データを送信する被検体内情報取得装置と、前記被検体内情報取得装置から送信された前記画像データを受信する受信装置と、を備え、前記被検体内情報取得装置は、前記被検体に向けて照明光を照射する照明部と、前記被検体において反射した光を受光することにより撮像を行い、前記画像データを生成する撮像部と、前記撮像部が生成した前記画像データを無線送信する無線通信部と、前記照明部における照明光の発光量および前記撮像部の受光量のいずれか一方が閾値未満であるか否かを判定する第1の判定部と、前記第1の判定部の判定結果に基づいて、前記撮像部の動作モードを第1の動作モードと、前記第1の動作モードよりも撮像フレームレートを低くし、1フレームの撮像期間を前記第1の動作モードよりも長くした第2の動作モードと、を切り替えて前記撮像部に撮像させる撮像制御部と、前記無線通信部が前記画像データを送信する送信期間と、前記撮像部が撮像する撮像期間と、が異なる期間であり、かつ、撮像時の動作モードに関わらず、所定の基準タイミングから一定時間経過したタイミングに前記画像データを前記無線通信部に送信させる無線制御部と、を備える。 Further, an inspection system according to the present disclosure is introduced into a subject so that it can be introduced into a subject, and includes an intra-subject information acquiring device that transmits image data obtained by capturing an image of the inside of the subject; and a receiving device for receiving the image data, wherein the intra-subject information acquisition device includes an illumination unit that irradiates illumination light toward the subject, and an illumination unit that receives light reflected from the subject. an imaging unit that captures an image and generates the image data; a wireless communication unit that wirelessly transmits the image data generated by the imaging unit; a first determination unit that determines whether or not one of them is less than a threshold; an imaging control unit for switching between a second operation mode in which an imaging frame rate is lower than that in the operation mode of (1) and an imaging period for one frame is longer than that in the first operation mode, and causing the imaging unit to perform imaging; A transmission period during which the wireless communication unit transmits the image data and an imaging period during which the imaging unit captures images are different periods, and a predetermined time has elapsed from a predetermined reference timing regardless of the operation mode at the time of imaging. and a wireless control unit configured to transmit the image data to the wireless communication unit at a timing.
 また、本開示に係る制御方法は、被検体に向けて照明光を照射する照明部と、前記被検体内において反射した光を受光することにより撮像を行い、画像データを生成する撮像部と、前記撮像部が生成した前記画像データを無線送信する無線通信部と、を備える被検体内情報取得装置が実行する制御方法であって、前記照明部における照明光の発光量および前記撮像部の受光量のいずれか一方が閾値未満であるか否かを判定する第1の判定ステップと、前記第1の判定ステップの判定結果に基づいて、前記撮像部の動作モードを第1の動作モードと、前記第1の動作モードよりも撮像フレームレートを低くし、1フレームの撮像期間を前記第1の動作モードよりも長くした第2の動作モードと、を切り替えて前記撮像部に撮像させる撮像制御ステップと、前記無線通信部が前記画像データを送信する送信期間と、前記撮像部が撮像する撮像期間と、が異なる期間であり、かつ、撮像時の動作モードに関わらず、所定の基準タイミングから一定時間経過したタイミングに前記画像データを前記無線通信部に送信させる無線制御ステップと、を含む。 Further, a control method according to the present disclosure includes an illumination unit that irradiates illumination light toward a subject, an imaging unit that captures an image by receiving light reflected in the subject, and generates image data; and a wireless communication unit that wirelessly transmits the image data generated by the imaging unit. a first determination step of determining whether any one of the amounts is less than a threshold; and setting the operation mode of the imaging unit to the first operation mode based on the determination result of the first determination step; An imaging control step of causing the imaging unit to perform imaging by switching between a second operation mode in which an imaging frame rate is lower than that in the first operation mode and an imaging period for one frame is longer than that in the first operation mode. and a transmission period during which the wireless communication unit transmits the image data and an imaging period during which the imaging unit captures images, and are constant from a predetermined reference timing regardless of the operation mode at the time of imaging. and a wireless control step of causing the wireless communication unit to transmit the image data at a timing after a lapse of time.
 また、本開示に係るプログラムは、被検体に向けて照明光を照射する照明部と、前記被検体内において反射した光を受光することにより撮像を行い、画像データを生成する撮像部と、前記撮像部が生成した前記画像データを無線送信する無線通信部と、を備える被検体内情報取得装置に、前記照明部における照明光の発光量および前記撮像部の受光量のいずれか一方が閾値未満であるか否かを判定する第1の判定ステップと、前記第1の判定ステップの判定結果に基づいて、前記撮像部の動作モードを第1の動作モードと、前記第1の動作モードよりも撮像フレームレートを低くし、1フレームの撮像期間を前記第1の動作モードよりも長くした第2の動作モードと、を切り替えて前記撮像部に撮像させる撮像制御ステップと、前記無線通信部が前記画像データを送信する送信期間と、前記撮像部が撮像する撮像期間と、が異なる期間であり、かつ、撮像時の動作モードに関わらず、所定の基準タイミングから一定時間経過したタイミングに前記画像データを前記無線通信部に送信させる無線制御ステップと、を実行させる。 Further, the program according to the present disclosure includes an illumination unit that irradiates illumination light toward a subject, an imaging unit that performs imaging by receiving light reflected in the subject, and generates image data; and a wireless communication unit that wirelessly transmits the image data generated by the imaging unit, wherein either one of the amount of illumination light emitted by the illumination unit and the amount of light received by the imaging unit is less than a threshold. a first determination step for determining whether or not the operation mode of the imaging unit is set to a first operation mode based on the determination result of the first determination step; an image capturing control step of switching between a second operation mode in which an image capturing frame rate is lowered and an image capturing period of one frame is longer than that of the first operation mode, and causing the image capturing unit to perform image capturing; A transmission period for transmitting image data and an imaging period for imaging by the imaging unit are different periods, and the image data is transmitted at a timing after a predetermined time has passed from a predetermined reference timing, regardless of the operation mode at the time of imaging. to the wireless communication unit.
 本開示によれば、観察部位に適した明るさの制御をしつつ、一時的な電力浪費の増加を抑えることできるという効果を奏する。 According to the present disclosure, it is possible to suppress a temporary increase in power consumption while controlling the brightness suitable for the observation site.
図1は、本開示の実施の形態1に係る検査システムの概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of an inspection system according to Embodiment 1 of the present disclosure. 図2は、本開示の実施の形態1に係るカプセル型内視鏡の概略構成を示す模式図である。FIG. 2 is a schematic diagram showing a schematic configuration of the capsule endoscope according to Embodiment 1 of the present disclosure. 図3は、本開示の実施の形態1に係る制御部、無線通信部および電源部の機能構成を示すブロック図である。3 is a block diagram illustrating functional configurations of a control unit, a wireless communication unit, and a power supply unit according to Embodiment 1 of the present disclosure; FIG. 図4は、本開示の実施の形態1に係るカプセル型内視鏡が実行可能な2つの動作モードの各々の動作タイミングを比較したタイミングチャートである。FIG. 4 is a timing chart comparing operation timings of two operation modes executable by the capsule endoscope according to the first embodiment of the present disclosure. 図5は、本開示の実施の形態1に係るカプセル型内視鏡が実行可能な動作モードの1つである第1の動作モードの動作を示すタイミングチャートである。FIG. 5 is a timing chart showing operations in a first operation mode, which is one of the operation modes executable by the capsule endoscope according to Embodiment 1 of the present disclosure. 図6は、本開示の実施の形態1に係るカプセル型内視鏡が実行可能な動作モードの1つである第2の動作モードの動作を示すタイミングチャートである。FIG. 6 is a timing chart showing operations in a second operation mode, which is one of the operation modes executable by the capsule endoscope according to Embodiment 1 of the present disclosure. 図7は、本開示の実施の形態1に係るカプセル型内視鏡の動作モードの切り替わりタイミングを示すタイミングチャートである。FIG. 7 is a timing chart showing switching timings of operation modes of the capsule endoscope according to the first embodiment of the present disclosure. 図8は、本開示の実施の形態1に係るカプセル型内視鏡が実行する処理の概要を示すフローチャートである。FIG. 8 is a flowchart illustrating an overview of processing executed by the capsule endoscope according to the first embodiment of the present disclosure; 図9は、本開示の実施の形態2に係るカプセル型内視鏡の機能構成を示すブロック図である。FIG. 9 is a block diagram illustrating a functional configuration of a capsule endoscope according to Embodiment 2 of the present disclosure; 図10は、本開示の実施の形態2に係るカプセル型内視鏡が実行可能な動作モードの1つである第3の動作モードの動作を示すタイミングチャートである。FIG. 10 is a timing chart illustrating operations in a third operation mode, which is one of operation modes executable by the capsule endoscope according to Embodiment 2 of the present disclosure. 図11は、本開示の実施の形態2に係るカプセル型内視鏡が実行可能な動作モードの1つである第4の動作モードの動作を示すタイミングチャートである。FIG. 11 is a timing chart illustrating operations in a fourth operation mode, which is one of operation modes executable by the capsule endoscope according to the second embodiment of the present disclosure. 図12は、本開示の実施の形態2に係るカプセル型内視鏡が実行する処理の概要を示すフローチャートである。FIG. 12 is a flowchart illustrating an outline of processing executed by the capsule endoscope according to the second embodiment of the present disclosure;
 以下に、本開示を実施するための形態を図面とともに詳細に説明する。なお、以下の実施の形態により本開示が限定されるものでない。また、以下の説明において参照する各図は、本開示の内容を理解でき得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎない。即ち、本開示は、各図で例示された形状、大きさ、および位置関係のみに限定されるものでない。さらに、図面の記載において、同一の部分には同一の符号を付して説明する。さらにまた、本開示に係る検査システムの一例として、被検体内情報取得装置として機能するカプセル型内視鏡を備える検査システムについて説明する。 Below, the form for carrying out the present disclosure will be described in detail together with the drawings. It should be noted that the present disclosure is not limited by the following embodiments. In addition, each drawing referred to in the following description only schematically shows the shape, size, and positional relationship to the extent that the contents of the present disclosure can be understood. That is, the present disclosure is not limited only to the shapes, sizes, and positional relationships illustrated in each drawing. Furthermore, in the description of the drawings, the same parts are denoted by the same reference numerals. Furthermore, as an example of an inspection system according to the present disclosure, an inspection system including a capsule endoscope that functions as an intra-subject information acquisition device will be described.
(実施の形態1)
 〔検査システムの概略構成〕
 図1は、実施の形態1に係る検査システムの概略構成を示す模式図である。図1に示す検査システム1は、患者等の被検体2内に導入されて撮像を行い、画像データを生成して無線送信するカプセル型内視鏡10と、カプセル型内視鏡10から無線送信された画像データを、被検体2に装着された受信アンテナユニット3を介して受信する受信装置4と、受信装置4から画像データを取得して所定の画像処理を施し、画像データに対応する体内画像を表示する画像表示装置5と、を備える。
(Embodiment 1)
[Schematic configuration of inspection system]
FIG. 1 is a schematic diagram showing a schematic configuration of an inspection system according to Embodiment 1. FIG. The examination system 1 shown in FIG. 1 includes a capsule endoscope 10 that is introduced into a subject 2 such as a patient to perform imaging, generates image data, and wirelessly transmits the image data, and wirelessly transmits the image data from the capsule endoscope 10 . a receiving device 4 for receiving the obtained image data via a receiving antenna unit 3 attached to the subject 2; and an image display device 5 for displaying an image.
 カプセル型内視鏡10は、経口摂取等によって被検体2内に導入された後、消化管内部を移動し、最終的に被検体2の外部に排出される。その間、カプセル型内視鏡10は、臓器(消化管)内部を蠕動運動によって移動しつつ、被検体2内を撮像して画像を順次生成し、無線送信する。なお、カプセル型内視鏡10の詳細な構成は、後述する。 After being introduced into the subject 2 by oral ingestion or the like, the capsule endoscope 10 moves inside the digestive tract and is finally discharged to the outside of the subject 2 . During this time, the capsule endoscope 10 moves inside the organ (gastrointestinal tract) by peristaltic motion, images the interior of the subject 2, sequentially generates images, and wirelessly transmits the images. A detailed configuration of the capsule endoscope 10 will be described later.
 受信アンテナユニット3は、複数の受信アンテナ3a~3hを有する。受信アンテナ3a~3hの各々は、例えばループアンテナを用いて実現され、被検体2の体外表面上の所定位置に着脱取り付けられる。具体的には、受信アンテナ3a~3hの各々は、カプセル型内視鏡10の通過領域である被検体2内の各臓器に対応した位置に着脱自在に取り付けられる。なお、図1では、受信アンテナ3a~3hの各々を被検体2に着脱自在に取り付けいたが、被検体2に取り付ける数を適宜変更することができる。さらに、図1では、受信アンテナ3a~3hの各々が個別に着脱自在に取り付けられていたが、例えば受信アンテナ3a~3hの各々が予め被検体2に装着可能なシート上に取り付けられたものであってもよい。 The receiving antenna unit 3 has a plurality of receiving antennas 3a to 3h. Each of the receiving antennas 3a to 3h is realized by using a loop antenna, for example, and is detachably attached to a predetermined position on the external surface of the subject 2. FIG. Specifically, each of the receiving antennas 3a to 3h is detachably attached to a position corresponding to each organ in the subject 2, which is the passage area of the capsule endoscope 10. FIG. Although each of the receiving antennas 3a to 3h is detachably attached to the subject 2 in FIG. 1, the number of antennas to be attached to the subject 2 can be changed as appropriate. Furthermore, in FIG. 1, each of the receiving antennas 3a to 3h is individually and detachably attached. There may be.
 受信装置4は、受信アンテナ3a~3hの各々を経由して、カプセル型内視鏡10から無線送信された画像データを受信する。受信装置4は、カプセル型内視鏡10から受信した画像データに対して所定の処理を施したうえで、内蔵するメモリに画像データおよび、この画像データに関連する関連情報を記憶する。受信装置4には、カプセル型内視鏡10から無線送信された画像データの受信状態を表示する表示部および受信装置4を操作するための操作ボタンやタッチパネル等の入力部を有する。 The receiving device 4 receives image data wirelessly transmitted from the capsule endoscope 10 via each of the receiving antennas 3a to 3h. The receiving device 4 performs predetermined processing on the image data received from the capsule endoscope 10, and stores the image data and related information related to the image data in an internal memory. The receiving device 4 has a display section for displaying the reception state of the image data wirelessly transmitted from the capsule endoscope 10 and an input section such as operation buttons and a touch panel for operating the receiving device 4 .
 画像表示装置5は、例えばワークステーションまたはパーソナルコンピュータを用いて構成される。画像表示装置5は、受信装置4が装着されたクレードル4aを経由して、受信装置4のメモリに記憶された画像データおよび、この画像データに関連する関連情報の取り込みを行う。画像表示装置5は、受信装置4から取り込んだ画像データに対して、所定の画像処理を施すことにより、被検体2内の体内画像を生成して画面に表示する。なお、図1においては、画像表示装置5のUSBポートにクレードル4aを接続し、このクレードル4aに受信装置4を接続することにより受信装置4と画像表示装置5とを接続し、受信装置4から画像表示装置5に画像データを転送する構成としている。 The image display device 5 is configured using, for example, a workstation or personal computer. The image display device 5 acquires the image data stored in the memory of the receiving device 4 and related information related to the image data via the cradle 4a to which the receiving device 4 is attached. The image display device 5 performs predetermined image processing on the image data acquired from the receiving device 4 to generate an in-vivo image of the inside of the subject 2 and displays it on the screen. In FIG. 1, the cradle 4a is connected to the USB port of the image display device 5, and the reception device 4 is connected to the cradle 4a, whereby the reception device 4 and the image display device 5 are connected. It is configured to transfer image data to the image display device 5 .
 〔カプセル型内視鏡の概略構成〕
 次に、カプセル型内視鏡10の概略構成について説明する。図2は、カプセル型内視鏡10の概略構成を示す模式図である。
[Schematic configuration of capsule endoscope]
Next, a schematic configuration of the capsule endoscope 10 will be described. FIG. 2 is a schematic diagram showing a schematic configuration of the capsule endoscope 10. As shown in FIG.
 図2に示すように、カプセル型内視鏡10は、被検体2の臓器内部に導入し易い大きさに形成された外装ケースであるカプセル型筐体11と、被検体内を照明する光を発生する照明部12と、被検体内において反射した光を受光することにより撮像を行い、画像データ(画像信号)を出力する撮像部13と、撮像部13から入力された画像データを処理するとともに、カプセル型内視鏡10の各構成部を制御する制御部14と、撮像部13から出力された画像データに対して変調処理等を行って無線送信する無線通信部15と、カプセル型内視鏡10の各構成部に電力を供給する電源部16と、カプセル型内視鏡10の各部を動作させるためのクロック信号を生成する発振部17と、を備える。 As shown in FIG. 2, the capsule endoscope 10 includes a capsule housing 11, which is an exterior case formed in a size that facilitates introduction into the internal organs of the subject 2, and light that illuminates the interior of the subject. an illumination unit 12 that generates light, an imaging unit 13 that captures an image by receiving light reflected in the subject and outputs image data (image signal), and processes the image data input from the imaging unit 13. , a control unit 14 that controls each component of the capsule endoscope 10, a wireless communication unit 15 that performs modulation processing and the like on image data output from the imaging unit 13 and wirelessly transmits the data, and a capsule endoscope. A power supply unit 16 that supplies power to each component of the endoscope 10 and an oscillator 17 that generates a clock signal for operating each component of the capsule endoscope 10 are provided.
 カプセル型筐体11は、筒状筐体111と、ドーム状筐体112と、ドーム状筐体113と、から成る。カプセル型筐体11は、筒状筐体111の両側開口端をドーム状筐体112およびドーム状筐体113によって塞ぐことによって実現される。筒状筐体111およびドーム状筐体113は、可視光に対して略不透明な有色の筐体である。一方、ドーム状筐体112は、可視光等の所定波長帯域の光に対して透明な、ドーム形状をなす光学部材である。このように構成されたカプセル型筐体11は、照明部12と、撮像部13と、制御部14と、無線通信部15、電源部16、発振部17と、を液密に内包する。 The capsule-shaped housing 11 consists of a cylindrical housing 111, a dome-shaped housing 112, and a dome-shaped housing 113. Capsule-shaped housing 11 is realized by covering both open ends of cylindrical housing 111 with dome-shaped housing 112 and dome-shaped housing 113 . The cylindrical housing 111 and the dome-shaped housing 113 are colored housings that are substantially opaque to visible light. On the other hand, the dome-shaped housing 112 is a dome-shaped optical member that is transparent to light in a predetermined wavelength band such as visible light. Capsule-type housing 11 configured in this manner liquid-tightly encloses lighting unit 12, imaging unit 13, control unit 14, wireless communication unit 15, power supply unit 16, and oscillation unit 17. FIG.
 照明部12は、LED(Light Emitting Diode)またはLD(Laser Diode)等の発光素子からなる。照明部12は、制御部14の制御のもと、白色光等を発光することによって被検体に照明光を照明する。具体的には、照明部12は、撮像素子132の撮像視野内の被検体に、ドーム状筐体112越しに照明光を照射する。 The illumination unit 12 is composed of a light-emitting element such as an LED (Light Emitting Diode) or an LD (Laser Diode). The illumination unit 12 illuminates the subject with illumination light by emitting white light or the like under the control of the control unit 14 . Specifically, the illumination unit 12 irradiates illumination light through the dome-shaped housing 112 onto the subject within the imaging field of the imaging element 132 .
 撮像部13は、集光レンズ等の光学系131と、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサまたはCCD(Charge Coupled Device)イメージセンサ等からなる撮像素子132と、を有する。光学系131は、照明部12が被検体に照射することによって反射した反射光であって、撮像素子132の撮像視野からの反射光を集光し、撮像素子132の撮像面に結像させる。撮像素子132は、撮像視野からの反射光を撮像面において受光して光電変換処理を行うことによって画像データを生成し、この画像データを出力する。 The imaging unit 13 has an optical system 131 such as a condenser lens, and an imaging device 132 such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor. The optical system 131 collects the reflected light from the field of view of the imaging element 132 , which is the light reflected by the illumination unit 12 irradiating the subject, and forms an image on the imaging surface of the imaging element 132 . The imaging element 132 generates image data by receiving reflected light from the imaging field on its imaging surface and performing photoelectric conversion processing, and outputs this image data.
 なお、実施の形態1においては、カプセル型内視鏡10の長軸La方向の一方の端部を撮像する単眼式を用いるが、長軸La方向の両端(前方および後方)を撮像する複眼式を用いても良い。この複眼式のカプセル型内視鏡10では、2つの撮像部13の各々の光軸がカプセル型筐体11の長軸Laと略平行または略一致し、かつ、各撮像視野が互いに反対方向を向くように配置するとよい。即ち、複眼式のカプセル型内視鏡10では、2つの撮像部13の各々における撮像素子132の撮像面が長軸Laに対して直交させて配置すればよい。 In the first embodiment, a monocular system for imaging one end in the long axis La direction of the capsule endoscope 10 is used. may be used. In this compound-eye capsule endoscope 10, the optical axes of the two imaging units 13 are substantially parallel to or substantially coincident with the long axis La of the capsule housing 11, and the imaging fields of view are directed in opposite directions. It should be placed so that it faces That is, in the compound-eye capsule endoscope 10, the imaging surfaces of the imaging elements 132 in each of the two imaging units 13 may be arranged so as to be orthogonal to the long axis La.
 制御部14は、カプセル型内視鏡10内の各構成部の動作を制御するとともに、これらの各構成部間における信号の入出力を制御する。制御部14は、メモリと、FPGA(Field-Programmable Gate Array)等のハードウェアを有するプロセッサと、を用いて構成される。なお、制御部14の詳細な機能構成は、後述する。 The control unit 14 controls the operation of each component within the capsule endoscope 10, and also controls the input/output of signals between these components. The control unit 14 is configured using a memory and a processor having hardware such as an FPGA (Field-Programmable Gate Array). A detailed functional configuration of the control unit 14 will be described later.
 無線通信部15は、制御部14から入力された画像データを対して変調処理等を施して無線データを生成し、この無線データを外部に向けて送信する。無線通信部15は、変調処理等を行う無線通信モジュールおよび送信アンテナ等を用いて構成される。 The wireless communication unit 15 performs modulation processing, etc. on the image data input from the control unit 14 to generate wireless data, and transmits this wireless data to the outside. The wireless communication unit 15 is configured using a wireless communication module that performs modulation processing and the like, a transmitting antenna, and the like.
 電源部16は、ボタン型電池またはキャパシタ等の蓄電部と、磁気スイッチまたは光スイッチ等のスイッチ部と、を有する。電源部16は、磁気スイッチを有する構成とした場合、外部から印加された磁界によって電源のオンオフ状態を切り替える。電源部16は、オン状態の場合、蓄電部の電力をカプセル型内視鏡10の各構成部に供給し、オフ状態の場合、カプセル型内視鏡10の各構成部への電力供給を停止する。具体的には、電源部16は、オン状態の場合、照明部12、撮像部13、制御部14、無線通信部15および発振部17の各々に電力を供給し、オフ状態のときに、カプセル型内視鏡10の各構成部への電力供給を停止する。 The power supply unit 16 has a power storage unit such as a button battery or a capacitor, and a switch unit such as a magnetic switch or an optical switch. When the power supply unit 16 is configured to have a magnetic switch, the power supply unit 16 switches between on and off states according to a magnetic field applied from the outside. The power supply unit 16 supplies power from the storage unit to each component of the capsule endoscope 10 when in the ON state, and stops power supply to each component of the capsule endoscope 10 when in the OFF state. do. Specifically, the power supply unit 16 supplies power to each of the illumination unit 12, the imaging unit 13, the control unit 14, the wireless communication unit 15, and the oscillation unit 17 when in the ON state, and supplies power to each of the capsule unit 17 in the OFF state. Power supply to each component of the type endoscope 10 is stopped.
 発振部17は、カプセル型内視鏡10の各構成部の動作の基準となる第1の撮像CLK信号(クロック信号)を生成して出力する。発振部17は、水晶発振器等を用いて構成される。 The oscillator 17 generates and outputs a first imaging CLK signal (clock signal) that serves as a reference for the operation of each component of the capsule endoscope 10 . The oscillator 17 is configured using a crystal oscillator or the like.
 なお、図2においては、カプセル型内視鏡10の構成例として、被検体の蠕動運動によって受動的に移動する構成を説明したが、自身の駆動力により被検体2内を移動可能な構成、または外部からの誘導により被検体2内を移動可能な構成としてもよい。例えば、内部に永久磁石を設けたカプセル型内視鏡10では、被検体2の外部において生成した磁界によって内部に設けられた永久磁石に作用させることにより、被検体2内を誘導することによって被検体2内を移動させてもよい。 In FIG. 2, as an example of the configuration of the capsule endoscope 10, a configuration in which the capsule endoscope 10 is passively moved by peristaltic motion of the subject has been described. Alternatively, it may be configured to be movable within the subject 2 by guidance from the outside. For example, in the capsule endoscope 10 in which a permanent magnet is provided inside, the inside of the subject 2 is guided by a magnetic field generated outside the subject 2 acting on the permanent magnet provided inside. It may be moved within the specimen 2 .
 〔制御部、無線通信部および電源部の機能構成〕
 次に、上述した制御部14、無線通信部15および電源部16の機能構成について説明する。図3は、制御部14、無線通信部15および電源部16の機能構成を示すブロック図である。
[Functional configuration of control unit, wireless communication unit and power supply unit]
Next, functional configurations of the control unit 14, the wireless communication unit 15, and the power supply unit 16 described above will be described. FIG. 3 is a block diagram showing functional configurations of the control unit 14, the wireless communication unit 15, and the power supply unit 16. As shown in FIG.
 まず、制御部14について説明する。図3に示すように、制御部14は、基準信号生成部141と、第2の撮像クロック生成部142と、切替部143と、第1の出力バッファ144と、無線クロック信号生成部145と、第2の出力バッファ146と、画像メモリ部147と、第1の判定部148と、撮像制御部149と、無線制御部150と、を有する。 First, the control unit 14 will be explained. As shown in FIG. 3, the control unit 14 includes a reference signal generation unit 141, a second imaging clock generation unit 142, a switching unit 143, a first output buffer 144, a radio clock signal generation unit 145, It has a second output buffer 146 , an image memory section 147 , a first determination section 148 , an imaging control section 149 and a wireless control section 150 .
 基準信号生成部141は、発振部17から入力される第1の撮像CLK信号に基づいて、所定の期間毎に撮像制御部149および無線制御部150を駆動するための基準信号を生成し、この生成した基準信号を撮像制御部149および無線制御部150へ出力する。 Based on the first imaging CLK signal input from the oscillator 17, the reference signal generation unit 141 generates a reference signal for driving the imaging control unit 149 and the wireless control unit 150 every predetermined period. The generated reference signal is output to imaging control section 149 and radio control section 150 .
 第2の撮像クロック生成部142は、発振部17から入力される第1の撮像CLK信号に基づいて、第1の撮像CLK信号の周波数を所定の周波数に分周した第2の撮像CLK信号を生成し、この第2の撮像CLK信号を切替部143へ出力する。具体的には、第2の撮像クロック生成部142は、第1の撮像CLK信号を2分周した周波数を有する第2の撮像CLK信号を生成して切替部143へ出力する。 The second imaging clock generation unit 142 generates a second imaging CLK signal obtained by dividing the frequency of the first imaging CLK signal to a predetermined frequency based on the first imaging CLK signal input from the oscillation unit 17. and outputs this second imaging CLK signal to the switching unit 143 . Specifically, the second imaging clock generation unit 142 generates a second imaging CLK signal having a frequency obtained by dividing the first imaging CLK signal by two, and outputs the second imaging CLK signal to the switching unit 143 .
 切替部143は、撮像制御部149の制御のもと、発振部17から入力される第1の撮像CLK信号および第2の撮像クロック生成部142から入力された第2の撮像CLK信号のどちらか一方を第1の出力バッファ144へ出力する。 Under the control of the imaging control unit 149, the switching unit 143 selects either the first imaging CLK signal input from the oscillation unit 17 or the second imaging CLK signal input from the second imaging clock generation unit 142. One of them is output to the first output buffer 144 .
 第1の出力バッファ144は、撮像制御部149の制御のもと、切替部143から入力された第1の撮像CLK信号および第2の撮像CLK信号のどちらか一方を選択して撮像部13へ出力する。 Under the control of the imaging control unit 149 , the first output buffer 144 selects either the first imaging CLK signal or the second imaging CLK signal input from the switching unit 143 and outputs the signal to the imaging unit 13 . Output.
 無線クロック信号生成部145は、発振部17から入力される第1の撮像CLK信号に基づいて、第1の撮像CLK信号の周波数を所定の周波数に分周した基準無線CLK信号を生成し、この基準無線CLK信号を第2の出力バッファ146へ出力する。具体的には、無線クロック信号生成部145は、第1の撮像CLK信号の周波数を8分周した周波数を有する基準無線CLK信号を生成して第2の出力バッファ146へ出力する。 The wireless clock signal generation unit 145 generates a reference wireless CLK signal by dividing the frequency of the first imaging CLK signal into a predetermined frequency based on the first imaging CLK signal input from the oscillation unit 17. Outputs the reference radio CLK signal to the second output buffer 146 . Specifically, the wireless clock signal generator 145 generates a reference wireless CLK signal having a frequency obtained by dividing the frequency of the first imaging CLK signal by 8, and outputs the reference wireless CLK signal to the second output buffer 146 .
 第2の出力バッファ146は、無線制御部150の制御のもと、無線クロック信号生成部145から入力された基準無線CLK信号を増幅した無線CLK信号を無線通信部15へ出力する。 Under the control of the radio control section 150 , the second output buffer 146 outputs a radio CLK signal obtained by amplifying the reference radio CLK signal input from the radio clock signal generation section 145 to the radio communication section 15 .
 画像メモリ部147は、撮像制御部149の制御のもと、撮像部13から入力された画像データを順次書き込むことによって記憶する。具体的には、画像メモリ部147は、撮像制御部149から入力される画像データの書き込みを指示する書き込み信号(W)に基づいて、撮像部13から入力された画像データを順次書き込むことによって記憶する。また、画像メモリ部147は、無線制御部150の制御のもと、記憶する画像データを読み出して無線通信部15および第1の判定部148へ出力する。具体的には、画像メモリ部147は、無線制御部150から入力される画像データの読み出しを指示する読み出し信号(R)に基づいて、記憶する画像データを順次読み出して無線通信部15および第1の判定部148へ出力する。 Under the control of the imaging control section 149, the image memory section 147 stores the image data input from the imaging section 13 by sequentially writing them. Specifically, the image memory unit 147 sequentially writes the image data input from the imaging unit 13 based on the write signal (W) that instructs the writing of the image data input from the imaging control unit 149. do. Further, under the control of the wireless control unit 150 , the image memory unit 147 reads the stored image data and outputs it to the wireless communication unit 15 and the first determination unit 148 . Specifically, the image memory unit 147 sequentially reads the image data to be stored based on a read signal (R) input from the wireless control unit 150 and instructs to read the image data, and the wireless communication unit 15 and the first to the determination unit 148 of.
 第1の判定部148と、照明部12における照明光の発光量および撮像部13(撮像素子132)の受光量のいずれか一方が閾値未満であるか否かを判定し、この判定結果を撮像制御部149および無線制御部150へ出力する。具体的には、第1の判定部148は、撮像部13(撮像素子132)の受光量が閾値未満であるか否かを判定し、撮像部13(撮像素子132)の受光量が閾値未満でない場合、撮像制御部149および無線制御部150に撮像部13を第1の動作モードで撮像させる動作モード指示信号を出力する。これに対して、第1の判定部148は、撮像部13(撮像素子132)の受光量が閾値未満でない場合、撮像制御部149および無線制御部150に撮像部13を第2の動作モードで撮像させる動作モード指示信号を出力する。また、第1の判定部148は、電源部16から入力される電力情報に基づいて、閾値を設定する。具体的には、第1の判定部148は、電源部16から入力される電力情報に含まれる電池の残量に応じて、閾値を設定する。なお、閾値は、ユーザにより適宜変更可能である。例えば、閾値は、カプセル型内視鏡10に、被検体2の外部に配置される外部装置からの無線信号を受信する受信機構を内部に設け、ユーザが所望する値に変更するような信号を外部装置からカプセル型内視鏡10に送信して書き換えることによって変更してもよい。さらに、閾値は、カプセル型内視鏡10を製造する段階で、製造者がユーザの所望する閾値に設定するようにしてもよい。 The first determination unit 148 determines whether one of the amount of illumination light emitted by the illumination unit 12 and the amount of light received by the imaging unit 13 (image sensor 132) is less than a threshold value, and captures the determination result. Output to control unit 149 and radio control unit 150 . Specifically, the first determination unit 148 determines whether the amount of light received by the imaging unit 13 (image sensor 132) is less than the threshold, and determines whether the amount of light received by the imaging unit 13 (image sensor 132) is less than the threshold. Otherwise, an operation mode instruction signal is output to the imaging control unit 149 and the wireless control unit 150 to cause the imaging unit 13 to perform imaging in the first operation mode. On the other hand, when the amount of light received by the imaging unit 13 (imaging element 132) is not less than the threshold, the first determination unit 148 instructs the imaging control unit 149 and the wireless control unit 150 to set the imaging unit 13 in the second operation mode. An operation mode instruction signal for imaging is output. Also, the first determination unit 148 sets the threshold based on the power information input from the power supply unit 16 . Specifically, the first determination unit 148 sets the threshold according to the remaining battery level included in the power information input from the power supply unit 16 . Note that the threshold can be appropriately changed by the user. For example, the threshold is set by providing a receiving mechanism inside the capsule endoscope 10 for receiving a wireless signal from an external device arranged outside the subject 2, and generating a signal that changes to a value desired by the user. It may be changed by transmitting from an external device to the capsule endoscope 10 and rewriting. Furthermore, the threshold may be set by the manufacturer to a threshold desired by the user at the stage of manufacturing the capsule endoscope 10 .
 撮像制御部149は、基準信号生成部141から入力される基準信号に基づいて、照明部12および撮像部13の各々の駆動を制御する。また、撮像制御部149は、基準信号生成部141から入力される基準信号および第1の判定部148の判定結果に基づいて、撮像部13の動作モードを第1の動作モードと、第1の動作モードよりも撮像フレームレートを低くし、1フレームの撮像期間を第1の動作モードよりも長くした第2の動作モードと、を切り替えて撮像部13に撮像させる。具体的には、撮像制御部149は、撮像部13の動作モードを第1の動作モードで撮像させる場合、切替部143に撮像CLK選択信号を出力することによって発振部17から入力された第1の撮像CLK信号を出力させる。さらに、撮像制御部149は、基準信号の立ち上がりタイミングに合わせて第1の出力バッファ144に撮像クロックイネーブル信号を出力することによって第1の出力バッファ144に撮像部13に向けて動作CLK信号(第1の撮像CLK信号)を出力させる。また、撮像制御部149は、撮像部13の動作モードを第2の動作モードで撮像させる場合、切替部143に撮像CLK選択信号を出力することによって第2の撮像クロック生成部142から入力された第2の撮像CLK信号を出力させる。さらに、撮像制御部149は、基準信号の立ち上がりタイミングに合わせて第1の出力バッファ144にCLK制御信号を出力することによって第1の出力バッファ144に撮像部13に向けて動作CLK信号(第2の撮像CLK信号)を出力させる。さらにまた、撮像制御部149は、基準信号に従って、発光指示信号を照明部12へ出力させることによって、照明部12に照明光を照射させる。 The imaging control unit 149 controls driving of each of the illumination unit 12 and the imaging unit 13 based on the reference signal input from the reference signal generation unit 141 . Further, the imaging control unit 149 sets the operation mode of the imaging unit 13 to the first operation mode based on the reference signal input from the reference signal generation unit 141 and the determination result of the first determination unit 148 . The imaging unit 13 is caused to perform imaging by switching between a second operation mode in which the imaging frame rate is lower than that in the operation mode and the imaging period for one frame is longer than in the first operation mode. Specifically, when the imaging control unit 149 causes the imaging unit 13 to perform imaging in the first operation mode, the imaging control unit 149 outputs the imaging CLK selection signal to the switching unit 143 , thereby inputting the first CLK input from the oscillation unit 17 . to output the imaging CLK signal. Further, the imaging control unit 149 outputs an imaging clock enable signal to the first output buffer 144 in synchronization with the rise timing of the reference signal, thereby sending the operation CLK signal (first 1 imaging CLK signal) is output. In addition, when the imaging control unit 149 causes the imaging unit 13 to perform imaging in the second operation mode, the imaging control unit 149 outputs the imaging CLK selection signal to the switching unit 143 . A second imaging CLK signal is output. Furthermore, the imaging control unit 149 outputs an operation CLK signal (second imaging CLK signal) is output. Furthermore, the imaging control unit 149 causes the illumination unit 12 to emit illumination light by outputting a light emission instruction signal to the illumination unit 12 according to the reference signal.
 無線制御部150は、無線通信部15が画像データを送信する送信期間と、撮像部13が撮像する撮像期間と、が異なる期間であり、かつ、撮像時の動作モードに関わらず、所定の基準タイミングから一定時間経過したタイミングに画像データを無線通信部15に送信させる。具体的には、無線制御部150は、基準信号生成部141が生成する基準信号に基づいて、無線通信部15が画像データを送信する送信期間と、撮像部13が撮像する撮像期間とが重ならない期間であり、撮像部13が第1の動作モードで生成した画像データを無線通信部15に送信を開始させる送信開始タイミングと、撮像部13が第2の動作モードで生成した画像データを無線通信部15に送信を開始させる送信開始タイミングと、を基準信号の立ち上がりタイミングから一定時間経過したときに、画像データを無線通信部15に送信させる。ここで、撮像部13が撮像する撮像期間とは、撮像部13の撮像素子132の露光を開始する開始時刻から撮像素子132の各画素から画像データの読み出しが終了する終了時刻までの期間である。即ち、無線制御部150は、基準信号生成部141が生成する基準信号に基づいて、無線通信部15が画像データを送信する送信期間と、撮像部13が撮像する撮像期間とが重複しない期間に画像データが無線通信部15によって送信させるように無線通信部15を制御する。具体的には、無線制御部150は、基準信号生成部141が生成する基準信号に基づいて、無線クロックイネーブル信号を第2の出力バッファ146へ出力し、第2の出力バッファ146に無線CLK信号を出力させることによって、画像データを無線通信部15に送信させる。より具体的には、無線制御部150は、撮像部13が撮像する撮像期間と重ならないタイミングであって、基準信号の立ち上がりタイミングから所定時間経過したタイミングに、無線クロックイネーブル信号を第2の出力バッファ146へ出力し、第2の出力バッファ146に無線CLK信号を出力させることによって、画像データを無線通信部15に送信させる。さらに、無線制御部150は、画像データを無線通信部15に送信させる際に、撮像部13の動作モードを示す動作識別情報を画像データに関連付けて無線通信部15に送信させる。これにより、ユーザは、画像表示装置5で画像の読影を行う際に、各画像でどのような撮像状況で撮像された画像であるかを理解することができる。なお、実施の形態1では、撮像素子132の露光を開始する開始時刻から撮像素子132の各画素から画像データの読み出しが終了する終了時刻までの期間を撮像部13の撮像期間として説明するが、例えば照明部12が照明光を照射する照明期間であってもよい。 The wireless control unit 150 determines that the transmission period during which the wireless communication unit 15 transmits image data and the imaging period during which the imaging unit 13 performs imaging are different periods, and regardless of the operation mode at the time of imaging, a predetermined reference The image data is transmitted to the wireless communication unit 15 at a timing after a certain period of time has passed from the timing. Specifically, based on the reference signal generated by the reference signal generation unit 141, the wireless control unit 150 causes the transmission period during which the wireless communication unit 15 transmits image data and the imaging period during which the imaging unit 13 captures images. It is a period in which the image data generated by the imaging unit 13 in the first operation mode is transmitted to the wireless communication unit 15 at the transmission start timing, and the image data generated by the imaging unit 13 in the second operation mode is transmitted wirelessly. A transmission start timing for causing the communication unit 15 to start transmission, and a wireless communication unit 15 for transmitting image data when a predetermined time has passed from the rising timing of the reference signal. Here, the imaging period during which the imaging unit 13 takes an image is a period from the start time when exposure of the imaging device 132 of the imaging unit 13 is started to the end time when reading of image data from each pixel of the imaging device 132 is finished. . That is, based on the reference signal generated by the reference signal generation unit 141, the wireless control unit 150 controls the transmission period during which the wireless communication unit 15 transmits image data and the imaging period during which the imaging unit 13 captures images. The wireless communication unit 15 is controlled so that the image data is transmitted by the wireless communication unit 15 . Specifically, based on the reference signal generated by the reference signal generating unit 141, the wireless control unit 150 outputs the wireless clock enable signal to the second output buffer 146, and outputs the wireless CLK signal to the second output buffer 146. is output, the image data is transmitted to the wireless communication unit 15 . More specifically, the wireless control unit 150 outputs the wireless clock enable signal as a second output at a timing that does not overlap with the imaging period during which the imaging unit 13 takes an image and a predetermined time has passed since the rising timing of the reference signal. The image data is transmitted to the wireless communication unit 15 by outputting to the buffer 146 and causing the second output buffer 146 to output the wireless CLK signal. Furthermore, when transmitting image data to the wireless communication unit 15 , the wireless control unit 150 causes the wireless communication unit 15 to transmit operation identification information indicating the operation mode of the imaging unit 13 in association with the image data. As a result, when the user interprets images on the image display device 5, the user can understand under what imaging conditions each image was captured. In the first embodiment, the imaging period of the imaging unit 13 is defined as the period from the start time when the imaging element 132 starts to be exposed to the end time when the reading of image data from each pixel of the imaging element 132 ends. For example, it may be an illumination period during which the illumination unit 12 emits illumination light.
 無線通信部15は、無線制御部150の制御のもと、第2の出力バッファ146から入力される無線CLK信号に従って、画像データを送信する。無線通信部15は、無線送信部151と、無線アンテナ152と、を有する。無線送信部151は、画像メモリ部147から入力される画像データに対して変調処理等を行い、この変調処理等を行った画像データを、無線アンテナ152を経由して外部へ送信する。無線送信部151は、例えば通信モジュール等を用いて構成される。 Under the control of the wireless control unit 150, the wireless communication unit 15 transmits image data according to the wireless CLK signal input from the second output buffer 146. The wireless communication unit 15 has a wireless transmission unit 151 and a wireless antenna 152 . The wireless transmission unit 151 modulates the image data input from the image memory unit 147 and transmits the image data subjected to the modulation processing to the outside via the wireless antenna 152 . The wireless transmission unit 151 is configured using, for example, a communication module or the like.
 電源部16は、電池161と、電源監視部162と、を有する。電池161は、ボタン電池等を用いて構成される。電源監視部162は、少なくとも電池161の残量を監視し、この監視結果を第1の判定部148へ出力する。なお、電源監視部162は、電量計等を用いて構成される。 The power supply unit 16 has a battery 161 and a power supply monitoring unit 162 . The battery 161 is configured using a button battery or the like. The power monitoring unit 162 monitors at least the remaining amount of the battery 161 and outputs the monitoring result to the first determination unit 148 . Note that the power supply monitoring unit 162 is configured using a coulometer or the like.
 〔カプセル型内視鏡の動作タイミング〕
 次に、カプセル型内視鏡10の動作タイミングについて説明する。図4は、カプセル型内視鏡10が実行可能な2つの動作モードの各々の動作タイミングを比較したタイミングチャートである。図5は、カプセル型内視鏡10が実行可能な動作モードの1つである第1の動作モードの動作を示すタイミングチャートである。図6は、カプセル型内視鏡10が実行可能な動作モードの1つである第2の動作モードの動作を示すタイミングチャートである。
[Operation timing of capsule endoscope]
Next, operation timing of the capsule endoscope 10 will be described. FIG. 4 is a timing chart comparing operation timings of two operation modes executable by the capsule endoscope 10 . FIG. 5 is a timing chart showing operations in the first operation mode, which is one of the operation modes that can be executed by the capsule endoscope 10. FIG. FIG. 6 is a timing chart showing operations in the second operation mode, which is one of the operation modes that the capsule endoscope 10 can execute.
 また、図4では、上段側をカプセル型内視鏡10の動作モードが第1の動作モードの場合の動作タイミングを示し、下段側をカプセル型内視鏡10の動作モードが第2の動作モードの場合の動作タイミングを示す。さらに、図4では、上段から順に、(a)が基準信号を示し、(b)が第1の動作モードのキャプチャーレートを示し、(c)が第1の動作モードの撮像期間を示し、(d)第1の撮像CLK信号を示し、(e)が第1の動作モードの画像メモリ部147の動作タイミングを示し、(g)が第1の動作モードの無線送信期間を示し、(g)が第1の動作モードの無線CLK信号を示し、(h)が第2の動作モードのキャプチャーレートを示し、(i)第2の動作モードの撮像期間を示し、(j)が第2の撮像CLK信号を示し、(k)が第2の動作モードの画像メモリ部147の動作タイミングを示し、(l)が第2の動作モードの無線送信期間を示し、(m)が第2の動作モードの無線CLK信号を示す。また、図5では、(a)~(g)が図4の(a)~(g)と同様であり、図6では、(a)および(h)~(m)が図4の(a)および(h)~(m)が同様である。 In addition, in FIG. 4, the upper side shows the operation timing when the operation mode of the capsule endoscope 10 is the first operation mode, and the lower side shows the operation timing when the operation mode of the capsule endoscope 10 is the second operation mode. shows the operation timing in the case of Furthermore, in FIG. 4, in order from the top, (a) indicates the reference signal, (b) indicates the capture rate in the first operation mode, (c) indicates the imaging period in the first operation mode, ( d) shows the first imaging CLK signal, (e) shows the operation timing of the image memory unit 147 in the first operation mode, (g) shows the wireless transmission period in the first operation mode, (g) indicates the wireless CLK signal for the first operating mode, (h) indicates the capture rate for the second operating mode, (i) indicates the imaging period for the second operating mode, (j) indicates the second imaging CLK signal, (k) the operation timing of the image memory unit 147 in the second operation mode, (l) the wireless transmission period in the second operation mode, and (m) the second operation mode. wireless CLK signal. 5, (a) to (g) are the same as (a) to (g) in FIG. 4, and (a) and (h) to (m) are the same as (a) to (g) in FIG. ) and (h) to (m) are the same.
 〔第1の動作モードについて〕
 まず、第1の動作モードについて説明する。第1の動作モードは、図4~図6に示すように、第2の動作モードより撮像部13(撮像素子132)のフレームレートを高く、かつ、撮像部13の撮像期間を短く設定した制御パターンである。
[Regarding the first operation mode]
First, the first operation mode will be explained. In the first operation mode, as shown in FIGS. 4 to 6, the frame rate of the image pickup unit 13 (image pickup device 132) is set higher and the image pickup period of the image pickup unit 13 is set shorter than in the second operation mode. It's a pattern.
 具体的には、図4の(a)~(c)に示すように、第1の動作モードは、撮像制御部149が撮像素子132のキャプチャーレートを32fpsに設定し、かつ、キャプチャーレートにおける32fpsのうち基準信号の立ち上がりタイミング(パルスがHIGH状態)に応じて、撮像部13に1秒間あたり4回撮像させ、残りのキャプチャーレートのフレームを休止させる制御を行う。即ち、第1の動作モードは、撮像制御部149が基準信号生成部141によって生成された基準信号に基づいて、撮像部13のフレームレートを4fpsの間隔で撮像させつつ、1つの撮像期間を31.3msecで撮像させる制御を行う。 Specifically, as shown in (a) to (c) of FIG. 4, in the first operation mode, the imaging control unit 149 sets the capture rate of the imaging device 132 to 32 fps, and 32 fps at the capture rate In response to the rising timing of the reference signal (the pulse is in a HIGH state), the image pickup unit 13 is caused to pick up images four times per second, and the rest of the capture rate frames are stopped. That is, in the first operation mode, based on the reference signal generated by the reference signal generation unit 141, the imaging control unit 149 causes the imaging unit 13 to perform imaging at intervals of 4 fps, and one imaging period is 31 fps. .Control to take an image in 3 msec.
 さらに、第1の動作モードは、撮像制御部149が撮像部13によって撮像された画像データを順次読み出して画像メモリ部147に記憶させる。 Furthermore, in the first operation mode, the imaging control unit 149 sequentially reads image data captured by the imaging unit 13 and stores the data in the image memory unit 147 .
 続いて、第1の動作モードは、無線制御部150が基準信号生成部141によって生成された基準信号の立ち上がりタイミング(パルスがHIGH状態)から一定時間T1経過した後に、第2のバッファ146に無線イネーブル信号を出力しつつ、基準信号生成部141によって生成された基準信号に基づいて、画像メモリ部147に記憶された画像データを順次読み出して無線通信部15に変調処理を施させて受信装置4に向けて送信させる。 Subsequently, in the first operation mode, the wireless control unit 150 transmits the signal to the second buffer 146 wirelessly after a certain time T1 has passed from the rise timing of the reference signal generated by the reference signal generation unit 141 (the pulse is in a HIGH state). While outputting the enable signal, based on the reference signal generated by the reference signal generation unit 141 , the image data stored in the image memory unit 147 are sequentially read out and the wireless communication unit 15 is caused to perform modulation processing. send to.
 このように第1の動作モードは、カプセル型内視鏡10による被検体2の検査前半における明るい撮影シーン(例えば食道や小腸)において、高いフレームレートで撮像を行い、撮像部13の休止期間を長く取ることで、消費電力の削減を図る。 As described above, the first operation mode performs imaging at a high frame rate in a bright imaging scene (for example, the esophagus and the small intestine) in the first half of the examination of the subject 2 by the capsule endoscope 10, and the idle period of the imaging unit 13 is reduced. By taking a long time, we aim to reduce power consumption.
 〔第2の動作モード〕
 次に、第2の動作モードについて説明する。第2の動作モードは、図4~図6に示すように、第1の動作モードより撮像部13(撮像素子132)のフレームレートを低く、かつ、撮像部13の撮像期間(撮像素子132の露光期間)を長く設定した制御パターンである。
[Second Operation Mode]
Next, the second operation mode will be explained. As shown in FIGS. 4 to 6, in the second operation mode, the frame rate of the image pickup unit 13 (image pickup device 132) is lower than that in the first operation mode, and the image pickup period of the image pickup unit 13 (image pickup device 132 is This is a control pattern in which the exposure period) is set long.
 具体的には、図4の(a)、(h)、(i)に示すように、第2の動作モードは、撮像制御部149が撮像素子132のキャプチャーレートを16fpsに設定し、かつ、キャプチャーレートにおける16fpsのうち基準信号の立ち上がりタイミング(パルスがHIGH状態)に応じて、撮像部13に1秒間あたり2回撮像させ、残りのキャプチャーレートのフレームを休止させる制御を行う。即ち、第2の動作モードは、撮像制御部149が基準信号生成部141によって生成された基準信号に基づいて、撮像部13のフレームレートを2fpsの間隔で撮像させつつ、1つの撮像期間を62.5msecで撮像させる制御を行う。 Specifically, as shown in (a), (h), and (i) of FIG. 4, in the second operation mode, the imaging control unit 149 sets the capture rate of the imaging device 132 to 16 fps, and Control is performed so that the image capturing unit 13 is caused to capture images twice per second and the rest of the frames at the capture rate are paused according to the rise timing of the reference signal (the pulse is in a HIGH state) within 16 fps at the capture rate. That is, in the second operation mode, based on the reference signal generated by the reference signal generation unit 141, the imaging control unit 149 causes the imaging unit 13 to perform imaging at intervals of 2 fps, and one imaging period is 62 fps. .Control to image at 5 msec.
 さらに、第2の動作モードは、撮像制御部149が撮像部13によって撮像された画像データを順次読み出して画像メモリ部147に記憶させる。 Furthermore, in the second operation mode, the imaging control unit 149 sequentially reads image data captured by the imaging unit 13 and stores the data in the image memory unit 147 .
 続いて、第2の動作モードは、無線制御部150が基準信号生成部141によって生成された基準信号の立ち上がりタイミング(パルスがHIGH状態)から一定時間T1経過した後に、第2のバッファ146に無線イネーブル信号を出力しつつ、基準信号生成部141によって生成された基準信号に基づいて、画像メモリ部147に記憶された画像データを順次読み出して無線通信部15に変調処理を施させて受信装置4に向けて送信させる。 Subsequently, in the second operation mode, the wireless control unit 150 transmits the signal to the second buffer 146 wirelessly after a certain time T1 has passed from the rise timing of the reference signal generated by the reference signal generation unit 141 (the pulse is in a HIGH state). While outputting the enable signal, based on the reference signal generated by the reference signal generation unit 141 , the image data stored in the image memory unit 147 are sequentially read out and the wireless communication unit 15 is caused to perform modulation processing. send to.
 このように第2の動作モードは、カプセル型内視鏡10による被検体2の検査前半における暗い撮影シーン(例えば胃や十二指腸)において、低いフレームレートで撮像を行うことによって、明るい体内画像を取得する。 Thus, in the second operation mode, a bright in-vivo image is acquired by imaging at a low frame rate in a dark imaging scene (for example, the stomach and duodenum) in the first half of the examination of the subject 2 by the capsule endoscope 10. do.
 さらに、第1の動作モードおよび第2の動作モードは、撮像制御部149が基準信号生成部141によって生成された基準信号に基づいて、撮像部13の撮像期間と、無線通信部15の無線通信期間と、を互いに異ならせる。さらに、第1の動作モードおよび第2の動作モードは、無線制御部150が画像データを送信する送信タイミングを互いに基準信号の立ち上がりから一定時間T1経過後に、画像データを無線通信部15に送信させる。 Furthermore, in the first operation mode and the second operation mode, the imaging control unit 149 controls the imaging period of the imaging unit 13 and the wireless communication of the wireless communication unit 15 based on the reference signal generated by the reference signal generation unit 141 . and are different from each other. Further, in the first operation mode and the second operation mode, the wireless control unit 150 transmits the image data to the wireless communication unit 15 after a predetermined time T1 has elapsed from the rise of the reference signal. .
 ところで、従来では、受信装置4がカプセル型内視鏡10からの画像データを確実に受信するため、受信装置4がカプセル型内視鏡10からの画像データの送信開始タイミングを記憶しておかなければならない。この結果、従来では、互いに異なるタイミングで画像データを送信する場合、受信装置4がカプセル型内視鏡10からの無線通信が開始されるタイミングを動作モードが切り替わる毎に受信パターンを設定し直す必要があった。 By the way, conventionally, in order for the receiving device 4 to reliably receive the image data from the capsule endoscope 10, the receiving device 4 must store the transmission start timing of the image data from the capsule endoscope 10. must. As a result, conventionally, when image data are transmitted at mutually different timings, it is necessary for the reception device 4 to reset the timing at which wireless communication from the capsule endoscope 10 is started every time the operation mode is switched. was there.
 これに対して、上述した第1の動作モードおよび第2の動作モードは、撮像制御部149による撮像部13の撮像タイミングが切り替わった場合であっても、無線制御部150が画像データを送信する送信タイミングを互いに基準信号の立ち上がりから一定時間T1経過した後に、画像データを無線通信部15に同じ周期で送信させるため、受信装置4が画像データを無線通信で受信する受信タイミングの設定をし直す必要がない。この結果、受信装置4は、処理の負荷を低減することができるうえ、簡易な構成で実現することができる。 On the other hand, in the first operation mode and the second operation mode described above, even when the imaging timing of the imaging unit 13 by the imaging control unit 149 is switched, the wireless control unit 150 transmits image data. In order to transmit the image data to the wireless communication unit 15 at the same cycle after the predetermined time T1 has passed since the rise of the reference signal, the reception timing for the reception device 4 to receive the image data by wireless communication is set again. No need. As a result, the receiving device 4 can reduce the processing load and can be realized with a simple configuration.
 〔動作モードの切替タイミング〕
 次に、カプセル型内視鏡10の動作モードの切り替わりタイミングについて説明する。図7は、カプセル型内視鏡10の動作モードの切り替わりタイミングを示すタイミングチャートである。また、図7では、カプセル型内視鏡10の動作モードが第1の動作モードから第2の動作モードに切り替えるタイミングについて説明する。
[Operation mode switching timing]
Next, the switching timing of the operation mode of the capsule endoscope 10 will be described. FIG. 7 is a timing chart showing switching timings of the operation modes of the capsule endoscope 10 . Also, with reference to FIG. 7, the timing of switching the operation mode of the capsule endoscope 10 from the first operation mode to the second operation mode will be described.
 また、図7において、上段側が従来技術の動作タイミングの一例を示し、下段側が実施の形態1に係るカプセル型内視鏡10の動作モードの切り替わりタイミングを示す。なお、図7において、(a)が従来技術の撮像動作タイミングを示し、(b)が従来技術の無線送信タイミングを示し、(c)がカプセル型内視鏡10の基準信号を示し、(d)が撮像部13のキャプチャーレートを示し、(e)が撮像期間を示し、(f)が撮像CLK信号(第1の撮像CLK信号または第2の撮像CLK信号)を示し、(g)が画像メモリ部147の書き込みタイミングを示し、(h)が画像メモリ部147の読み出しタイミングを示し、(i)が第1の判定部148による明るさ積分、閾値比較を示し、(j)がカプセル型内視鏡10の動作モードを示し、(l)が無線送信期間を示し、(m)が無線CLK信号を示す。 In addition, in FIG. 7, the upper side shows an example of the operation timing of the conventional technology, and the lower side shows the switching timing of the operation mode of the capsule endoscope 10 according to the first embodiment. In FIG. 7, (a) shows the imaging operation timing of the conventional technology, (b) shows the wireless transmission timing of the conventional technology, (c) shows the reference signal of the capsule endoscope 10, and (d ) indicates the capture rate of the imaging unit 13, (e) indicates the imaging period, (f) indicates the imaging CLK signal (first imaging CLK signal or second imaging CLK signal), and (g) indicates the image. (h) indicates the read timing of the image memory unit 147, (i) indicates the brightness integration and threshold comparison by the first determination unit 148, and (j) indicates the inside of the capsule. The mode of operation of the scope 10 is indicated, (l) indicating the radio transmission period and (m) indicating the radio CLK signal.
 図7の(a)および(b)に示すように、従来技術では、2fpsで撮像しつつ、同じ撮像期間で画像データを送信している。 As shown in (a) and (b) of FIG. 7, in the conventional technology, image data is transmitted in the same imaging period while imaging at 2 fps.
 これに対して、図7の(i)おうおび(j)に示すように、カプセル型内視鏡10は、動作モードが第1の動作モードの場合において、第1の判定部148が画像データに基づく明るさの積分値が閾値未満であると判定したとき、撮像制御部149が基準信号生成部141によって生成された基準信号の立ち上がりタイミングに応じて、カプセル型内視鏡10の動作モードを第2の動作モードに切り替える。この場合、撮像制御部149は、撮像部13(撮像素子132)のフレームレートを4fpsから2fpsに切り替えることによって、撮像部13の撮像期間を長く設定する。その後、無線制御部150は、次の基準信号の立ち上がりタイミングから一定時間T1経過後に、前の基準信号の立ち上がりタイミングで撮像部13が撮像した画像データを画像メモリ部147から読み出して送信する。 On the other hand, as shown in (i) and (j) of FIG. 7, when the operation mode of the capsule endoscope 10 is the first operation mode, the first determination unit 148 determines whether the image data is less than the threshold value, the imaging control unit 149 changes the operation mode of the capsule endoscope 10 according to the rise timing of the reference signal generated by the reference signal generation unit 141. Switch to the second mode of operation. In this case, the imaging control unit 149 sets the imaging period of the imaging unit 13 longer by switching the frame rate of the imaging unit 13 (imaging element 132) from 4 fps to 2 fps. Thereafter, the wireless control unit 150 reads the image data captured by the imaging unit 13 at the previous rise timing of the reference signal from the image memory unit 147 and transmits the image data after a lapse of a certain time T1 from the rise timing of the next reference signal.
 従来技術では、撮像部13が撮像した撮像タイミングと同じ基準信号の立ち上がりタイミングに従って、画像データを送信しているため、電圧降下が生じてします。これに対して、カプセル型内視鏡10は、無線制御部150が次の基準信号の立ち上がりタイミングから一定時間T1経過後に、前の基準信号の立ち上がりタイミングで撮像部13が撮像した画像データを画像メモリ部147から読み出して送信するため、電圧降下が生じることを防止することができる。 In the conventional technology, image data is transmitted according to the rising timing of the reference signal, which is the same as the imaging timing of the imaging unit 13, so a voltage drop occurs. On the other hand, the capsule endoscope 10 causes the wireless control unit 150 to reproduce the image data captured by the imaging unit 13 at the timing of the previous rise of the reference signal after a predetermined time T1 has elapsed from the timing of the next rise of the reference signal. Since the data is read from the memory unit 147 and transmitted, voltage drop can be prevented.
 続いて、カプセル型内視鏡10は、動作モードが第2の動作モードの場合において、第1の判定部148が画像データに基づく明るさの積分値が閾値未満でないと判定したとき、撮像制御部149が基準信号生成部141によって生成された基準信号の立ち上がりタイミングに応じて、カプセル型内視鏡10の動作モードを第2の動作モードから第1の動作モードに切り替える。さらに、無線制御部150は、撮像部13が画像データを撮像した撮像タイミングと同じ基準信号の立ち上がりタイミングから一定時間T1経過後に画像データを画像メモリ部147から読み出して無線送信させる。この結果、カプセル型内視鏡10は、従来技術と比して、画像データを1フレーム分多く送信することができる。 Subsequently, when the operation mode is the second operation mode and the first determination unit 148 determines that the integrated brightness value based on the image data is not less than the threshold value, the capsule endoscope 10 performs imaging control. The unit 149 switches the operation mode of the capsule endoscope 10 from the second operation mode to the first operation mode according to the rise timing of the reference signal generated by the reference signal generation unit 141 . Further, the wireless control unit 150 reads out the image data from the image memory unit 147 and wirelessly transmits the image data after a predetermined time T1 has elapsed from the rising timing of the reference signal, which is the same as the image capturing timing when the image capturing unit 13 captured the image data. As a result, the capsule endoscope 10 can transmit one frame more image data than the conventional technology.
 〔カプセル型内視鏡の処理〕
 次に、カプセル型内視鏡10が実行する処理について説明する。図8は、カプセル型内視鏡10が実行する処理の概要を示すフローチャートである。
[Processing of Capsule Endoscope]
Next, processing executed by the capsule endoscope 10 will be described. FIG. 8 is a flowchart showing an overview of the processing executed by the capsule endoscope 10. As shown in FIG.
 図8に示すように、まず、撮像制御部149は、撮像部13の制御パターンを初期設定する(ステップS101)。具体的には、撮像制御部149は、基準信号生成部141から入力された基準信号に基づいて、切替部143が発振部17から入力される第1の撮像CLK信号を出力するように制御することによって撮像部13の動作モードを第1の動作モードに設定する。 As shown in FIG. 8, first, the imaging control unit 149 initializes the control pattern of the imaging unit 13 (step S101). Specifically, based on the reference signal input from the reference signal generation unit 141, the imaging control unit 149 controls the switching unit 143 to output the first imaging CLK signal input from the oscillation unit 17. Thereby, the operation mode of the imaging unit 13 is set to the first operation mode.
 続いて、撮像制御部149は、基準信号生成部141から入力された基準信号に基づいて、撮像部13の撮像を開始させる(ステップS102)。この場合、撮像制御部149は、撮像部13が生成した画像データを画像メモリ部147に書き込むことによって一時的に記憶させる。 Subsequently, the imaging control unit 149 causes the imaging unit 13 to start imaging based on the reference signal input from the reference signal generation unit 141 (step S102). In this case, the imaging control unit 149 temporarily stores the image data generated by the imaging unit 13 by writing it in the image memory unit 147 .
 その後、無線制御部150は、基準信号生成部141から入力された基準信号に基づいて、画像メモリ部147から画像データを読み出して無線通信部15に出力する(ステップS103)。この場合、無線制御部150は、カプセル型内視鏡10の動作モードが第1の動作モードのとき、基準信号の立ち上がりタイミングから一定時間T1経過毎に画像データを無線通信部15に出力する一方、カプセル型内視鏡10の動作モードが第2の動作モードのとき、撮像部13の撮像が終了した後の基準信号の立ち上がりタイミングから一定時間T1経過毎に画像データを無線通信部15に出力する。 After that, based on the reference signal input from the reference signal generation section 141, the wireless control section 150 reads the image data from the image memory section 147 and outputs it to the wireless communication section 15 (step S103). In this case, when the operation mode of the capsule endoscope 10 is the first operation mode, the wireless control unit 150 outputs the image data to the wireless communication unit 15 every time T1 elapses from the rise timing of the reference signal. , when the operation mode of the capsule endoscope 10 is the second operation mode, the image data is output to the wireless communication unit 15 at every predetermined time T1 from the rise timing of the reference signal after the imaging unit 13 finishes imaging. do.
 続いて、第1の判定部148は、画像メモリ部147から読み出された画像データに対応する体内画像の受光量が閾値未満であるか否かを判定する(ステップS104)。第1の判定部148によって画像メモリ部147から読み出された画像データに対応する体内画像の受光量が閾値未満であると判定された場合(ステップS104:Yes)、カプセル型内視鏡10は、後述するステップS105へ移行する。これに対して、第1の判定部148によって画像メモリ部147から読み出された画像データに対応する体内画像の受光量が閾値未満でないと判定された場合(ステップS104:No)、カプセル型内視鏡10は、後述するステップS106へ移行する。 Subsequently, the first determination unit 148 determines whether or not the received light amount of the in-vivo image corresponding to the image data read from the image memory unit 147 is less than the threshold (step S104). When the first determination unit 148 determines that the received light amount of the in-vivo image corresponding to the image data read from the image memory unit 147 is less than the threshold (step S104: Yes), the capsule endoscope 10 , the process proceeds to step S105, which will be described later. On the other hand, if the first determination unit 148 determines that the amount of received light of the in-vivo image corresponding to the image data read out from the image memory unit 147 is not less than the threshold (step S104: No), The scope 10 proceeds to step S106, which will be described later.
 ステップS105において、撮像制御部149は、撮像部13の動作モードを第1の動作モードから第2の動作モードに切り替える。具体的には、撮像制御部149は、切替部143を制御することによって、第2の撮像クロック生成部142によって生成された第2の撮像CLK信号を撮像部13に出力されるように制御する。この結果、カプセル型内視鏡10は、動作モードが第1の動作モードから第2の動作モードに切り替わる。ステップS105の後、カプセル型内視鏡10は、後述するステップS108へ移行する。 In step S105, the imaging control unit 149 switches the operation mode of the imaging unit 13 from the first operation mode to the second operation mode. Specifically, the imaging control unit 149 controls the switching unit 143 so that the second imaging CLK signal generated by the second imaging clock generation unit 142 is output to the imaging unit 13. . As a result, the operation mode of the capsule endoscope 10 is switched from the first operation mode to the second operation mode. After step S105, the capsule endoscope 10 proceeds to step S108, which will be described later.
 ステップS106において、第1の判定部148は、撮像部13の動作モードが第1の動作モードであるか否かを判定する。第1の判定部148によって撮像部13の動作モードが第1の動作モードであると判定された場合(ステップS106:Yes)、カプセル型内視鏡10は、後述するステップS108へ移行する。これに対して、第1の判定部148によって撮像部13の動作モードが第1の動作モードでないと判定された場合(ステップS106:No)、カプセル型内視鏡10は、後述するステップS107へ移行する。 In step S106, the first determination unit 148 determines whether or not the operation mode of the imaging unit 13 is the first operation mode. When the first determination unit 148 determines that the operation mode of the imaging unit 13 is the first operation mode (step S106: Yes), the capsule endoscope 10 proceeds to step S108, which will be described later. On the other hand, if the first determination unit 148 determines that the operation mode of the imaging unit 13 is not the first operation mode (step S106: No), the capsule endoscope 10 proceeds to step S107, which will be described later. Transition.
 ステップS107において、撮像制御部149は、撮像部13の動作モードを第2の動作モードから第1の動作モードに切り替える。具体的には、撮像制御部149は、切替部143が発振部17から入力される第1の撮像CLK信号を出力するように制御することによって撮像部13の動作モードを第1の動作モードに設定する。ステップS107の後、カプセル型内視鏡10は、ステップS108へ移行する。 In step S107, the imaging control unit 149 switches the operation mode of the imaging unit 13 from the second operation mode to the first operation mode. Specifically, the imaging control unit 149 switches the operation mode of the imaging unit 13 to the first operation mode by controlling the switching unit 143 to output the first imaging CLK signal input from the oscillation unit 17. set. After step S107, the capsule endoscope 10 proceeds to step S108.
 ステップS108において、被検体2の観察を終了する場合(ステップS108:Yes)、カプセル型内視鏡10は、本処理を終了する。これに対して、被検体の観察を終了しない場合(ステップS108:No)、カプセル型内視鏡10は、上述したステップS102へ戻る。 In step S108, if the observation of the subject 2 is finished (step S108: Yes), the capsule endoscope 10 finishes this process. On the other hand, if the observation of the subject is not finished (step S108: No), the capsule endoscope 10 returns to step S102 described above.
 以上説明した実施の形態1によれば、撮像制御部149が第1の判定部148の判定結果に基づいて、撮像部13の動作モードを第1の動作モードと、第1の動作モードよりも撮像フレームレートを低くし、1フレームの撮像期間を第1の動作モードよりも長くした第2の動作モードと、を切り替えて撮像部13に撮像させるため、観察部位の撮像条件に合わせた動作モードで撮像することができる。 According to the first embodiment described above, the imaging control unit 149 sets the operation mode of the imaging unit 13 to the first operation mode based on the determination result of the first determination unit 148. Since the imaging unit 13 performs imaging by switching between the second operation mode in which the imaging frame rate is lowered and the imaging period for one frame is longer than the first operation mode, the operation mode is set according to the imaging conditions of the observation site. can be imaged.
 また、実施の形態1によれば、無線通信部15が画像データを送信する送信期間と、撮像部13が撮像する撮像期間と、が異なる期間であり、かつ、撮像時の動作モードに関わらず、所定の基準タイミングから一定時間経過したタイミングに画像データを無線通信部15に送信させるため、撮像部13と、無線通信部15と、が同時に動作しないことによって、一時的な電力の浪費の増大を防ぎ、消費電流の増加で生じる電圧降下を防止することができる。 Further, according to Embodiment 1, the transmission period during which the wireless communication unit 15 transmits image data and the imaging period during which the imaging unit 13 performs imaging are different periods, and regardless of the operation mode at the time of imaging, Since image data is transmitted to the wireless communication unit 15 at a timing after a certain period of time has passed from a predetermined reference timing, the imaging unit 13 and the wireless communication unit 15 do not operate at the same time, resulting in a temporary increase in power consumption. can be prevented, and a voltage drop caused by an increase in current consumption can be prevented.
 また、実施の形態1によれば、無線通信部15が画像データを送信する送信期間と、撮像部13が撮像する撮像期間と、が異なる期間であり、かつ、撮像時の動作モードに関わらず、所定の基準タイミングから一定時間経過したタイミングに画像データを無線通信部15に送信させるため、受信装置4が画像データを受信するタイミングの設定を制御パターンごとに変更する必要がないため、受信装置4の処理の負荷を軽減することができる。 Further, according to Embodiment 1, the transmission period during which the wireless communication unit 15 transmits image data and the imaging period during which the imaging unit 13 performs imaging are different periods, and regardless of the operation mode at the time of imaging, Since the image data is transmitted to the wireless communication unit 15 at a timing after a certain period of time has elapsed from the predetermined reference timing, there is no need to change the setting of the timing at which the receiving device 4 receives the image data for each control pattern. 4 processing load can be reduced.
 なお、実施の形態1によれば、第1の判定部148が撮像部13によって生成された画像データに対応する体内画像の受光量(輝度値)が閾値以上であるか否かを判定したが、これに限定されることなく、照明部12が照射する照明光の発光量が閾値以上であるか否かを判定してもよい。この場合、第1の判定部148は、撮像制御部149が照明部12に発光量を指示する指示信号または照明部12が照射する照明光の照射時間に基づいて、照明部12が照射する照明光の発光量が閾値以上であるか否かを判定するようにしてもよい。 According to Embodiment 1, the first determination unit 148 determines whether or not the received light amount (luminance value) of the in-vivo image corresponding to the image data generated by the imaging unit 13 is equal to or greater than the threshold. However, without being limited to this, it may be determined whether or not the amount of illumination light emitted by the illumination unit 12 is equal to or greater than a threshold value. In this case, the first determination unit 148 determines the amount of light emitted by the illumination unit 12 based on the instruction signal from the imaging control unit 149 for instructing the illumination unit 12 to emit light or the irradiation time of the illumination light emitted by the illumination unit 12. It may be determined whether or not the amount of emitted light is equal to or greater than a threshold.
(実施の形態2)
 次に、実施の形態2について説明する。上述した実施の形態1では、画像データに対応する体内画像の輝度値に基づいて、カプセル型内視鏡の動作モードを第1動作モードおよび第2動作モードのどちらか一方に切り替えていたが、実施の形態2では、電池の残量をさらに用いて、カプセル型内視鏡の動作モードをさらに細分化させる。具体的には、実施の形態2では、電池の残量が閾値以下となった場合、カプセル型内視鏡の動作モードを後述する第3の動作モードおよび第4の動作モードのいずれか一方に切り替える。このため、実施の形態2に係るカプセル型内視鏡は、上述した実施の形態1に係る検査システム1のカプセル型内視鏡10と異なる。以下においては、実施の形態2に係るカプセル型内視鏡について説明する。さらに、上述した実施の形態1に係る検査システム1と同一の構成には同一の符号を付して詳細な説明を省略する。
(Embodiment 2)
Next, Embodiment 2 will be described. In the first embodiment described above, the operation mode of the capsule endoscope is switched to either the first operation mode or the second operation mode based on the brightness value of the in-vivo image corresponding to the image data. In the second embodiment, the remaining battery level is further used to subdivide the operation modes of the capsule endoscope. Specifically, in the second embodiment, when the remaining battery level becomes equal to or less than the threshold, the operation mode of the capsule endoscope is set to either a third operation mode or a fourth operation mode, which will be described later. switch. Therefore, the capsule endoscope according to the second embodiment differs from the capsule endoscope 10 of the examination system 1 according to the first embodiment described above. A capsule endoscope according to the second embodiment will be described below. Further, the same reference numerals are assigned to the same configurations as those of the inspection system 1 according to the first embodiment described above, and detailed description thereof will be omitted.
 〔カプセル型内視鏡の構成〕
 図9は、カプセル型内視鏡の機能構成を示すブロック図である。図9に示すカプセル型内視鏡10Aは、上述した実施の形態1に係るカプセル型内視鏡10の制御部14に代えて、制御部14Aを備える。さらに、制御部14Aは、上述した実施の形態1に係る制御部14の構成に加えて、第2の判定部200をさらに備える。さらに、制御部14Aは、上述した実施の形態1に係る制御部14の撮像制御部149に代えて、撮像制御部210を備える。さらに、制御部14Aは、第2の判定部200をさらに備える。
[Configuration of Capsule Endoscope]
FIG. 9 is a block diagram showing the functional configuration of the capsule endoscope. A capsule endoscope 10A shown in FIG. 9 includes a controller 14A instead of the controller 14 of the capsule endoscope 10 according to the first embodiment. Furthermore, the control unit 14A further includes a second determination unit 200 in addition to the configuration of the control unit 14 according to the first embodiment described above. Furthermore, the control unit 14A includes an imaging control unit 210 instead of the imaging control unit 149 of the control unit 14 according to the first embodiment described above. Furthermore, the control section 14A further includes a second determination section 200 .
 第2の判定部200は、電源監視部162から入力される少なくとも電池161の残量を示す電池情報に基づいて、電池161の消費電力を抑制するか否かを判定し、この判定結果を撮像制御部210へ出力する。具体的には、第2の判定部200は、電源監視部162から入力される少なくとも電池161の残量を示す電池情報に基づいて、電池161の残量が閾値未満であるか否かを判定し、この判定結果を撮像制御部210へ出力する。ここで、電力情報には、電池161の電力の残量、電圧値、カプセル型内視鏡10Aが起動された時刻からの経過時間等を含む。 The second determination unit 200 determines whether or not to suppress the power consumption of the battery 161 based on the battery information indicating at least the remaining amount of the battery 161 input from the power supply monitoring unit 162, and images the determination result. Output to control unit 210 . Specifically, the second determination unit 200 determines whether the remaining amount of the battery 161 is less than a threshold based on at least the battery information indicating the remaining amount of the battery 161 input from the power monitoring unit 162. and outputs the determination result to the imaging control unit 210 . Here, the power information includes the remaining amount of power of the battery 161, the voltage value, the elapsed time from the activation of the capsule endoscope 10A, and the like.
 撮像制御部210は、第2の判定部200によって電池161の消費電力を抑制すると判定された場合において、第1の判定部148によって照明部12の発光量および撮像部13の受光量のいずれか一方が閾値未満でないと判定されたとき、撮像部13の動作モードを、第1の動作モードよりも撮像フレームレートが低い第3の動作モードに切り替えて撮像部13に撮像させる。さらに、撮像制御部210は、第2の判定部200によって電池161の消費電力を抑制すると判定された場合において、第1の判定部148によって照明部12の発光量および撮像部13の受光量のいずれか一方が閾値未満であると判定したとき、第2の動作モードよりも撮像フレームレートが低い第4の動作モードに切り替えて撮像部13に撮像させる。 When the second determination unit 200 determines that the power consumption of the battery 161 should be suppressed, the imaging control unit 210 determines whether the light emission amount of the illumination unit 12 or the light reception amount of the imaging unit 13 is determined by the first determination unit 148 . When it is determined that one is not less than the threshold, the operation mode of the imaging unit 13 is switched to a third operation mode having a lower imaging frame rate than the first operation mode, and the imaging unit 13 is caused to take an image. Furthermore, when the second determination unit 200 determines that the power consumption of the battery 161 should be suppressed, the imaging control unit 210 causes the first determination unit 148 to determine the amount of light emitted by the illumination unit 12 and the amount of light received by the imaging unit 13. When it is determined that either one of them is less than the threshold, the operation mode is switched to the fourth operation mode having a lower imaging frame rate than the second operation mode, and the imaging unit 13 is caused to take an image.
 〔カプセル型内視鏡の動作タイミング〕
 次に、カプセル型内視鏡10Aの動作タイミングについて説明する。図10は、カプセル型内視鏡10Aが実行可能な動作モードの1つである第3の動作モードの動作を示すタイミングチャートである。図11は、カプセル型内視鏡10Aが実行可能な動作モードの1つである第4の動作モードの動作を示すタイミングチャートである。なお、図10および図11においては、第2の判定部200によって電池161の残量が閾値以下となったと判定された場合に撮像制御部210が設定する動作モードについて説明する。
[Operation timing of capsule endoscope]
Next, operation timing of the capsule endoscope 10A will be described. FIG. 10 is a timing chart showing operations in the third operation mode, which is one of the operation modes that can be executed by the capsule endoscope 10A. FIG. 11 is a timing chart showing operations in a fourth operation mode, which is one of the operation modes executable by the capsule endoscope 10A. 10 and 11, the operation mode set by the imaging control unit 210 when the second determination unit 200 determines that the remaining amount of the battery 161 is equal to or less than the threshold will be described.
 また、図10および図11において、上段側から順に、(a)が基準信号を示し、(b)が撮像部13のキャプチャーレートを示し、(c)が撮像部13の撮像期間を示し(d)撮像部13の撮像CLK信号(第1の撮像CLK信号または第2の撮像CLK信号)を示し、(e)が画像メモリ部147の動作タイミングを示し、(f)が無線送信期間を示し、(g)が無線CLK信号を示す。 10 and 11, (a) indicates the reference signal, (b) indicates the capture rate of the imaging unit 13, and (c) indicates the imaging period of the imaging unit 13 (d ) indicates the imaging CLK signal (first imaging CLK signal or second imaging CLK signal) of the imaging unit 13, (e) indicates the operation timing of the image memory unit 147, (f) indicates the wireless transmission period, (g) shows the wireless CLK signal.
 〔第3の動作モードについて〕
 まず、第3の動作モードについて説明する。第3の動作モードは、図10に示すように、上述した第1の動作モードより撮像部13(撮像素子132)のフレームレートを低くしつつ、撮像部13の撮像期間(撮像素子132の露光期間)を第1の動作モードと同じに設定した制御パターンである。
[Regarding the third operation mode]
First, the third operation mode will be explained. As shown in FIG. 10, the third operation mode reduces the frame rate of the image pickup unit 13 (image pickup device 132) from that in the first operation mode described above, while reducing the image pickup period of the image pickup unit 13 (the exposure of the image pickup device 132). period) is set to be the same as in the first operation mode.
 具体的には、図10に示すように、第3の動作モードは、撮像制御部210が撮像素子132のキャプチャーレートを32fpsに設定し、かつ、キャプチャーレートにおける32fpsのうち基準信号の立ち上がりタイミング(パルスがHIGH状態)に応じて、撮像部13に1秒間あたり2回撮像させ、残りのキャプチャーレートのフレームを休止させる制御を行う。即ち、第3の動作モードは、撮像制御部210が基準信号生成部141によって生成された基準信号に基づいて、撮像部13のフレームレートを2fpsの間隔で撮像させつつ、1つの撮像期間を31.3msecで撮像させる制御を行う。 Specifically, as shown in FIG. 10, in the third operation mode, the imaging control unit 210 sets the capture rate of the imaging device 132 to 32 fps, and the rising timing of the reference signal ( pulse is in a HIGH state), the imaging unit 13 is caused to capture images twice per second, and control is performed to pause the remaining capture rate frames. That is, in the third operation mode, based on the reference signal generated by the reference signal generation unit 141, the imaging control unit 210 causes the imaging unit 13 to perform imaging at intervals of 2 fps, and one imaging period is 31 .Control to take an image in 3 msec.
 さらに、第3の動作モードは、撮像制御部210が撮像部13によって撮像された画像データを順次読み出して画像メモリ部147に記憶させる。 Furthermore, in the third operation mode, the imaging control unit 210 sequentially reads image data captured by the imaging unit 13 and stores the data in the image memory unit 147 .
 続いて、第3の動作モードは、無線制御部150が基準信号生成部141によって生成された基準信号の立ち上がりタイミング(パルスがHIGH状態)から一定時間T1経過した後に、第2のバッファ146に無線イネーブル信号を出力しつつ、基準信号生成部141によって生成された基準信号に基づいて、画像メモリ部147に記憶された画像データを順次読み出して無線通信部15に変調処理を施させて受信装置4に向けて送信させる。 Subsequently, in the third operation mode, the wireless control unit 150 sends a signal to the second buffer 146 wirelessly after a certain time T1 has passed from the rising timing of the reference signal generated by the reference signal generating unit 141 (the pulse is in a HIGH state). While outputting the enable signal, based on the reference signal generated by the reference signal generation unit 141 , the image data stored in the image memory unit 147 are sequentially read out and the wireless communication unit 15 is caused to perform modulation processing. send to.
 このように、第3の動作モードは、カプセル型内視鏡10による被検体2の検査後半における明るい撮影シーン(例えば大腸粘膜)において、消費電力を下げつつ、できるだけ高いフレームレートで撮像を行う。 In this way, the third operation mode performs imaging at a frame rate as high as possible while reducing power consumption in a bright imaging scene (for example, large intestine mucosa) in the latter half of the examination of the subject 2 by the capsule endoscope 10 .
 〔第4の動作モード〕
 次に、第4の動作モードについて説明する。第4の動作モードは、図11に示すように、上述した第3の動作モードより撮像部13(撮像素子132)のフレームレートをさらに低くしつつ、撮像部13の撮像期間(撮像素子132の露光期間)を第2の動作モードと同じに設定した制御パターンである。
[Fourth Operation Mode]
Next, the fourth operation mode will be explained. As shown in FIG. 11, the fourth operation mode reduces the frame rate of the image pickup unit 13 (image pickup device 132) from that of the third operation mode described above, while increasing the image pickup period of the image pickup unit 13 (image pickup device 132). This is a control pattern in which the exposure period) is set to be the same as in the second operation mode.
 具体的には、第4の動作モードは、撮像制御部149が撮像素子132のキャプチャーレートを16fpsに設定し、かつ、キャプチャーレートにおける16fpsのうち基準信号の立ち上がりタイミング(パルスがHIGH状態)に応じて、撮像部13に1秒間あたり1回だけ撮像させ、残りのキャプチャーレートのフレームを休止させる制御を行う。即ち、第4の動作モードは、撮像制御部210が基準信号生成部141によって生成された基準信号に基づいて、撮像部13のフレームレートを1fpsで撮像させつつ、1つの撮像期間を62.5msecで撮像させる制御を行う。 Specifically, in the fourth operation mode, the imaging control unit 149 sets the capture rate of the imaging device 132 to 16 fps, and the capture rate is set to 16 fps according to the rising timing of the reference signal (the pulse is in a HIGH state). Then, control is performed such that the imaging unit 13 is caused to capture images only once per second, and the rest of the frames of the capture rate are paused. That is, in the fourth operation mode, based on the reference signal generated by the reference signal generation unit 141, the imaging control unit 210 causes the imaging unit 13 to perform imaging at a frame rate of 1 fps, and one imaging period is set to 62.5 msec. to control imaging.
 さらに、第4の動作モードは、撮像制御部149が撮像部13によって撮像された画像データを順次読み出して画像メモリ部147に記憶させる。 Furthermore, in the fourth operation mode, the imaging control unit 149 sequentially reads image data captured by the imaging unit 13 and stores the data in the image memory unit 147 .
 続いて、第4の動作モードは、無線制御部150が基準信号生成部141によって生成された基準信号の立ち上がりタイミング(パルスがHIGH状態)から一定時間T1経過した後に、第2のバッファ146に無線イネーブル信号を出力しつつ、基準信号生成部141によって生成された基準信号に基づいて、画像メモリ部147に記憶された画像データを順次読み出して無線通信部15に変調処理を施させて受信装置4に向けて送信させる。 Subsequently, in the fourth operation mode, the wireless control unit 150 transmits the signal to the second buffer 146 wirelessly after a certain time T1 has passed from the rising timing of the reference signal generated by the reference signal generation unit 141 (the pulse is in a HIGH state). While outputting the enable signal, based on the reference signal generated by the reference signal generation unit 141 , the image data stored in the image memory unit 147 are sequentially read out and the wireless communication unit 15 is caused to perform modulation processing. send to.
 このように、第4の動作モードは、カプセル型内視鏡10による被検体2の検査後半における暗い撮影シーン(例えば大腸遠景)において、フレームレートをさらに下げて消費電力を削減しつつ、明るさ的に問題がない体内画像を得ることができる。 As described above, the fourth operation mode reduces power consumption by further lowering the frame rate in a dark imaging scene (for example, a distant view of the large intestine) in the latter half of the examination of the subject 2 by the capsule endoscope 10, while reducing brightness. In-vivo images can be obtained without problems.
 さらに、第3の動作モードおよび第4の動作モードは、上述した第1の動作モードおよび第2の動作モードと同様に、撮像制御部210が基準信号生成部141によって生成された基準信号に基づいて、撮像部13の撮像期間と無線通信部15の無線通信期間とを互いに異ならせる。さらに、第1の動作モード~第4の動作モードは、無線制御部150が画像データを送信する送信タイミングを互いに基準信号の立ち上がりから一定時間T1経過後に、画像データを無線通信部15に送信させる。これにより、カプセル型内視鏡10は、撮像制御部210による撮像部13の撮像タイミングが切り替わった場合であっても、無線制御部150が画像データを送信する送信タイミングを互いに基準信号の立ち上がりから一定時間T1経過後に、画像データを無線通信部15に送信させるため、受信装置4が画像データを無線通信で受信する受信タイミングの設定をし直す必要がない。この結果、受信装置4は、処理の負荷を低減することができるうえ、簡易な構成で実現することができる。 Further, in the third operation mode and the fourth operation mode, similar to the above-described first operation mode and second operation mode, the image pickup control unit 210 operates based on the reference signal generated by the reference signal generation unit 141. Therefore, the imaging period of the imaging unit 13 and the wireless communication period of the wireless communication unit 15 are made different from each other. Further, in the first to fourth operation modes, the wireless control unit 150 transmits the image data to the wireless communication unit 15 after a predetermined time T1 has elapsed from the rise of the reference signal. . As a result, even when the imaging timing of the imaging unit 13 by the imaging control unit 210 is switched, the capsule endoscope 10 allows the wireless control unit 150 to synchronize the transmission timing of the image data from the rise of the reference signal. Since the image data is transmitted to the wireless communication unit 15 after the predetermined time T1 has elapsed, there is no need to reset the reception timing for the reception device 4 to receive the image data by wireless communication. As a result, the receiving device 4 can reduce the processing load and can be realized with a simple configuration.
 さらに、第3の動作モードは、撮像部13の受光量が十分な状態である場合において、電池161の残量が閾値以下であるとき、第1の動作モードと比して1秒間あたりの撮像回数を4回から2回とすることによって、電池161の消費電力を抑制する。さらにまた、第4の動作モードは、撮像部13の受光量が十分な状態でない場合であっても、あっても、電池161の残量が閾値以下であるとき、第2の動作モードと比して1秒間あたりの撮像回数を2回から1回とすることによって、電池161の消費電力を抑制する。 Furthermore, in the third operation mode, when the amount of light received by the imaging unit 13 is sufficient and the remaining amount of the battery 161 is equal to or less than the threshold, the number of images captured per second is higher than that in the first operation mode. The power consumption of the battery 161 is suppressed by changing the number of times from four to two. Furthermore, even if the amount of light received by the imaging unit 13 is not sufficient, the fourth operation mode is set when the remaining amount of the battery 161 is equal to or less than the threshold value, compared to the second operation mode. The power consumption of the battery 161 is suppressed by reducing the number of imaging times per second from two to one.
 〔カプセル型内視鏡の処理〕
 図12は、カプセル型内視鏡10Aが実行する処理の概要を示すフローチャートである。図12において、ステップS201~ステップS207は、上述した図8のステップS101~ステップS107それぞれに対応する。
[Processing of Capsule Endoscope]
FIG. 12 is a flowchart showing an overview of the processing executed by the capsule endoscope 10A. In FIG. 12, steps S201 to S207 correspond to steps S101 to S107 in FIG. 8 described above, respectively.
 ステップS208において、第2の判定部200は、電源監視部162から入力される少なくとも電池161の残量を示す電池情報に基づいて、電池161の消費電力を抑制するか否かを判定する。具体的には、第2の判定部200は、電源監視部162から入力される電池161の電力情報に基づいて、電池161の残量が閾値以下であるか否かを判定し、電池161の残量が閾値以下である場合、電池161の消費電力を抑制すると判定する一方、電池161の残量が閾値以下でない場合、電池161の消費電力を抑制しないと判定する。ここで、電力情報には、電池161の電力の残量、電圧値、カプセル型内視鏡10Aが起動された時刻からの経過時間等を含む。第2の判定部200によって電池161の消費電力を抑制すると判定された場合(ステップS208:Yes)、カプセル型内視鏡10Aは、後述するステップS210へ移行する。これに対して、第2の判定部200によって電池161の消費電力を抑制しないと判定された場合(ステップS208:No)、カプセル型内視鏡10Aは、後述するステップS209へ移行する。 In step S208, the second determination unit 200 determines whether or not to suppress the power consumption of the battery 161 based on the battery information indicating at least the remaining amount of the battery 161 input from the power supply monitoring unit 162. Specifically, the second determination unit 200 determines whether or not the remaining amount of the battery 161 is equal to or less than a threshold based on the power information of the battery 161 input from the power supply monitoring unit 162. When the remaining amount is equal to or less than the threshold, it is determined that the power consumption of the battery 161 should be suppressed. Here, the power information includes the remaining amount of power of the battery 161, the voltage value, the elapsed time from the activation of the capsule endoscope 10A, and the like. When the second determination unit 200 determines to suppress the power consumption of the battery 161 (step S208: Yes), the capsule endoscope 10A proceeds to step S210, which will be described later. On the other hand, if the second determination unit 200 determines not to suppress the power consumption of the battery 161 (step S208: No), the capsule endoscope 10A proceeds to step S209, which will be described later.
 ステップS209において、被検体2の観察を終了する場合(ステップS209:Yes)、カプセル型内視鏡10Aは、本処理を終了する。これに対して、被検体の観察を終了しない場合(ステップS209:No)、カプセル型内視鏡10Aは、上述したステップS202へ戻る。 In step S209, if the observation of the subject 2 is finished (step S209: Yes), the capsule endoscope 10A finishes this process. On the other hand, if the observation of the subject is not finished (step S209: No), the capsule endoscope 10A returns to step S202 described above.
 ステップS210において、撮像制御部210は、撮像部13の動作モードを第3の動作モードに切り替える設定を行う。具体的には、撮像制御部210は、切替部143が発振部17から入力される第1の撮像CLK信号を出力するように制御することによって撮像部13の動作モードを第3の動作モードに切り替える設定を行う。これにより、カプセル型内視鏡10Aは、電池161の残量が閾値以下である場合において、撮像部13が生成した画像データに対応する体内画像の受光量(輝度値)が閾値以上のとき、撮像対象(臓器の内壁)までの距離が近く、照明光が撮像対象に届き易いと推定することができるので、フレームレートを2fpsとして、電池161の消費を回避する。 In step S210, the imaging control unit 210 performs setting for switching the operation mode of the imaging unit 13 to the third operation mode. Specifically, the imaging control unit 210 switches the operation mode of the imaging unit 13 to the third operation mode by controlling the switching unit 143 to output the first imaging CLK signal input from the oscillation unit 17. Make settings to switch. As a result, when the amount of light received (brightness value) of the in-vivo image corresponding to the image data generated by the imaging unit 13 is equal to or greater than the threshold when the remaining amount of the battery 161 is equal to or less than the threshold, the capsule endoscope 10A Since it can be estimated that the distance to the object to be imaged (the inner wall of the organ) is short and the illumination light easily reaches the object to be imaged, consumption of the battery 161 is avoided by setting the frame rate to 2 fps.
 続いて、撮像制御部210は、基準信号生成部141から入力された基準信号に基づいて、撮像部13の撮像を開始させる(ステップS211)。この場合、撮像制御部210は、撮像部13が生成した画像データを画像メモリ部147に書き込むことによって一時的に記憶させる。 Subsequently, the imaging control unit 210 causes the imaging unit 13 to start imaging based on the reference signal input from the reference signal generation unit 141 (step S211). In this case, the imaging control unit 210 temporarily stores the image data generated by the imaging unit 13 by writing it in the image memory unit 147 .
 その後、無線制御部150は、基準信号生成部141から入力された基準信号に基づいて、画像メモリ部147から画像データを読み出して無線通信部15に送信させる(ステップS212)。この場合、無線制御部150は、カプセル型内視鏡10の動作モードが第3の動作モードのとき、基準信号の立ち上がりタイミングから一定時間T1経過毎に画像データを無線通信部15に送信させる一方、カプセル型内視鏡10の動作モードが第4の動作モードのとき、撮像部13の撮像が終了した後の基準信号の立ち上がりタイミングから一定時間T1経過毎に画像データを無線通信部15に送信させる。 After that, based on the reference signal input from the reference signal generation section 141, the wireless control section 150 reads image data from the image memory section 147 and transmits it to the wireless communication section 15 (step S212). In this case, when the operation mode of the capsule endoscope 10 is the third operation mode, the wireless control unit 150 causes the wireless communication unit 15 to transmit the image data every time T1 elapses from the rise timing of the reference signal. , when the operation mode of the capsule endoscope 10 is the fourth operation mode, the image data is transmitted to the wireless communication unit 15 every predetermined time T1 from the rising timing of the reference signal after the imaging unit 13 finishes imaging. Let
 続いて、第1の判定部148は、画像メモリ部147に記憶された画像データに対応する体内画像の受光量が閾値未満であるか否かを判定する(ステップS213)。第1の判定部148によって画像メモリ部147に記憶された画像データに対応する体内画像の受光量が閾値未満であると判定された場合(ステップS213:Yes)、カプセル型内視鏡10は、後述するステップS214へ移行する。これに対して、第1の判定部148によって画像メモリ部147に記憶された画像データに対応する体内画像の受光量が閾値未満でないと判定された場合(ステップS213:No)、カプセル型内視鏡10は、後述するステップS215へ移行する。 Subsequently, the first determination unit 148 determines whether or not the received light amount of the in-vivo image corresponding to the image data stored in the image memory unit 147 is less than the threshold (step S213). When the first determination unit 148 determines that the received light amount of the in-vivo image corresponding to the image data stored in the image memory unit 147 is less than the threshold (step S213: Yes), the capsule endoscope 10 The process proceeds to step S214, which will be described later. On the other hand, if the first determination unit 148 determines that the received light amount of the in-vivo image corresponding to the image data stored in the image memory unit 147 is not less than the threshold (step S213: No), capsule endoscopy The mirror 10 proceeds to step S215, which will be described later.
 ステップS214において、撮像制御部210は、撮像部13の動作モードを第3の動作モードから第4の動作モードに切り替える。具体的には、撮像制御部210は、切替部143を制御することによって、第2の撮像クロック生成部142によって生成された第2の撮像CLK信号を撮像部13に出力されるように制御する。この結果、カプセル型内視鏡10Aは、動作モードが第3の動作モードから第4の動作モードに切り替わる。この場合、カプセル型内視鏡10Aが大腸のような臓器内を通過している場合、撮像対象までの距離が遠いために照明部12の照明光が撮像対象に届き難く、この結果、撮像対象からの反射光は暗くなる。このような撮像条件では、撮像部13が生成した画像データに対応する体内画像の強度が予め設定された閾値未満となる。このため、撮像制御部210は、第3の動作モードより撮像フレームレートが低く、かつ撮像期間(露光時間)が長い第4の動作モードへと制御パターンを切り替える。この場合、無線制御部150は、第4の動作モードの場合であっても、第3の動作モードと同様に、撮像部13から生成された画像データを無線送信する期間が、撮像部13の撮像期間(露光期間)と重複しないように、無線通信部15に無線送信させる。ステップS214の後、カプセル型内視鏡10Aは、後述するステップS217へ移行する。 In step S214, the imaging control unit 210 switches the operation mode of the imaging unit 13 from the third operation mode to the fourth operation mode. Specifically, the imaging control unit 210 controls the switching unit 143 so that the second imaging CLK signal generated by the second imaging clock generation unit 142 is output to the imaging unit 13. . As a result, the operation mode of the capsule endoscope 10A is switched from the third operation mode to the fourth operation mode. In this case, when the capsule endoscope 10A is passing through an organ such as the large intestine, it is difficult for the illumination light from the illumination unit 12 to reach the imaging target because the distance to the imaging target is long. The reflected light from is dark. Under such imaging conditions, the intensity of the in-vivo image corresponding to the image data generated by the imaging unit 13 is less than the preset threshold. Therefore, the imaging control unit 210 switches the control pattern to the fourth operation mode having a lower imaging frame rate and a longer imaging period (exposure time) than the third operation mode. In this case, even in the fourth operation mode, the wireless control unit 150 determines that the period during which the image data generated by the imaging unit 13 is wirelessly transmitted is the same as in the third operation mode. The wireless communication unit 15 is caused to perform wireless transmission so as not to overlap with the imaging period (exposure period). After step S214, the capsule endoscope 10A proceeds to step S217, which will be described later.
 ステップS215において、第1の判定部148は、撮像部13の動作モードが第3の動作モードであるか否かを判定する。第1の判定部148によって撮像部13の動作モードが第3の動作モードであると判定された場合(ステップS215:Yes)、カプセル型内視鏡10Aは、後述するステップS217へ移行する。これに対して、第1の判定部148によって撮像部13の動作モードが第3の動作モードでないと判定された場合(ステップS215:No)、カプセル型内視鏡10Aは、後述するステップS216へ移行する。 In step S215, the first determination unit 148 determines whether or not the operation mode of the imaging unit 13 is the third operation mode. When the first determination unit 148 determines that the operation mode of the imaging unit 13 is the third operation mode (step S215: Yes), the capsule endoscope 10A proceeds to step S217, which will be described later. On the other hand, if the first determination unit 148 determines that the operation mode of the imaging unit 13 is not the third operation mode (step S215: No), the capsule endoscope 10A proceeds to step S216, which will be described later. Transition.
 ステップS216において、撮像制御部210は、撮像部13の動作モードを第4の動作モードから第3の動作モードに切り替える設定を行う。具体的には、撮像制御部210は、切替部143が発振部17から入力される第1の撮像CLK信号を出力するように制御することによって撮像部13の動作モードを第1の動作モードに設定する。ステップS216の後、カプセル型内視鏡10Aは、ステップS217へ移行する。 In step S216, the imaging control unit 210 performs setting for switching the operation mode of the imaging unit 13 from the fourth operation mode to the third operation mode. Specifically, the imaging control unit 210 switches the operation mode of the imaging unit 13 to the first operation mode by controlling the switching unit 143 to output the first imaging CLK signal input from the oscillation unit 17. set. After step S216, the capsule endoscope 10A proceeds to step S217.
 ステップS217において、被検体2の観察を終了する場合(ステップS217:Yes)、カプセル型内視鏡10Aは、本処理を終了する。これに対して、被検体の観察を終了しない場合(ステップS217:No)、カプセル型内視鏡10Aは、上述したステップSS211へ戻る。 At step S217, if the observation of the subject 2 is finished (step S217: Yes), the capsule endoscope 10A finishes this process. On the other hand, if the observation of the subject is not finished (step S217: No), the capsule endoscope 10A returns to step SS211 described above.
 以上説明した実施の形態2によれば、撮像制御部210が第2の判定部200によって電池161の消費電力を抑制すると判定された場合において、第1の判定部148によって照明部12の発光量および撮像部13の受光量のいずれか一方が閾値未満でないと判定されたとき、撮像13部の動作モードを、第1の動作モードよりも撮像フレームレートが低い第3の動作モードに切り替えて撮像部13に撮像させる一方、第2の判定部200によって電池161の消費電力を抑制すると判定された場合において、第1の判定部148によって照明部12の発光量および撮像部13の受光量のいずれか一方が閾値未満であると判定されたとき、第2の動作モードよりも撮像フレームレートが低く、1フレームの撮像期間が第3の動作モードと同じ第4の動作モードに切り替えて撮像部13に撮像させる。この結果、電池161の残量が少なくなった場合であっても、カプセル型内視鏡10Aが被検体2内から排出され、被検体2の観察を行うことができる。 According to the second embodiment described above, when the second determination unit 200 determines that the power consumption of the battery 161 is to be suppressed, the first determination unit 148 determines that the amount of light emitted by the illumination unit 12 is reduced. and the amount of light received by the imaging unit 13 is determined not to be less than the threshold, the operation mode of the imaging unit 13 is switched to a third operation mode having a lower imaging frame rate than the first operation mode to perform imaging. When the second determination unit 200 determines that the power consumption of the battery 161 should be suppressed while causing the unit 13 to capture an image, the first determination unit 148 determines which of the light emission amount of the illumination unit 12 and the light reception amount of the imaging unit 13 is determined. When one of them is determined to be less than the threshold, the imaging unit 13 switches to the fourth operation mode, which has a lower imaging frame rate than the second operation mode and the same one-frame imaging period as the third operation mode. to take an image. As a result, the capsule endoscope 10A can be ejected from the subject 2 and the subject 2 can be observed even when the battery 161 is running low.
(その他の実施の形態)
 上述した本開示の実施の形態1,2に係る検査システムに開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、上述した本開示の実施の形態1,2に係る検査システムに記載した全構成要素からいくつかの構成要素を削除してもよい。さらに、上述した本開示の実施の形態1,2に係る検査システムで説明した構成要素を適宜組み合わせてもよい。
(Other embodiments)
Various inventions can be formed by appropriately combining a plurality of components disclosed in the inspection systems according to the first and second embodiments of the present disclosure described above. For example, some components may be deleted from all the components described in the inspection systems according to the first and second embodiments of the present disclosure described above. Furthermore, the components described in the inspection systems according to the first and second embodiments of the present disclosure described above may be combined as appropriate.
 また、本開示の実施の形態1,2に係る検査システムでは、上述してきた「部」は、「手段」や「回路」などに読み替えることができる。例えば、制御部は、制御手段や制御回路に読み替えることができる。 Also, in the inspection systems according to the first and second embodiments of the present disclosure, the above-described "unit" can be read as "means" or "circuit". For example, the control unit can be read as control means or a control circuit.
 なお、本明細書におけるフローチャートの説明では、「まず」、「その後」、「続いて」等の表現を用いてステップ間の処理の前後関係を明示していたが、本発明を実施するために必要な処理の順序は、それらの表現によって一意的に定められるわけではない。即ち、本明細書で記載したフローチャートにおける処理の順序は、矛盾のない範囲で変更することができる。 In addition, in the description of the flowcharts in this specification, expressions such as "first", "after", and "following" were used to clarify the context of the processing between steps. The required order of processing is not uniquely defined by those representations. That is, the order of processing in the flow charts described herein may be changed within a consistent range.
 以上、本願の実施の形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、本開示の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。 As described above, some of the embodiments of the present application have been described in detail based on the drawings, but these are examples, and various modifications, It is possible to carry out the invention in other forms with modifications.
 1 検査システム
 2 被検体
 3 受信アンテナユニット
 3a~3h 受信アンテナ
 4 受信装置
 4a クレードル
 5 画像表示装置
 10,10A カプセル型内視鏡
 11 カプセル型筐体
 12 照明部
 13 撮像部
 14,14A 制御部
 15 無線通信部
 16 電源部
 17 発振部
 111 筒状筐体
 112 ドーム状筐体
 113 ドーム状筐体
 131 光学系
 132 撮像素子
 141 基準信号生成部
 142 第2の撮像クロック生成部
 143 切替部
 144 第1の出力バッファ
 145 無線クロック信号生成部
 146 第2の出力バッファ
 147 画像メモリ部
 148 第1の判定部
 149,210 撮像制御部
 150 無線制御部
 151 無線送信部
 152 無線アンテナ
 161 電池
 162 電源監視部
 200 第2の判定部
1 Inspection System 2 Subject 3 Receiving Antenna Unit 3a to 3h Receiving Antenna 4 Receiving Device 4a Cradle 5 Image Display Device 10, 10A Capsule Endoscope 11 Capsule Housing 12 Illumination Unit 13 Imaging Unit 14, 14A Control Unit 15 Wireless Communication Unit 16 Power Supply Unit 17 Oscillation Unit 111 Cylindrical Case 112 Dome-Shaped Case 113 Dome-Shaped Case 131 Optical System 132 Imaging Device 141 Reference Signal Generation Section 142 Second Imaging Clock Generation Section 143 Switching Section 144 First Output Buffer 145 Radio Clock Signal Generation Section 146 Second Output Buffer 147 Image Memory Section 148 First Determination Section 149, 210 Imaging Control Section 150 Radio Control Section 151 Radio Transmission Section 152 Radio Antenna 161 Battery 162 Power Supply Monitoring Section 200 Second Judging part

Claims (11)

  1.  被検体に向けて照明光を照射する照明部と、
     前記被検体内において反射した光を受光することにより撮像を行い、画像データを生成する撮像部と、
     前記撮像部が生成した前記画像データを無線送信する無線通信部と、
     前記照明部における照明光の発光量および前記撮像部の受光量のいずれか一方が閾値未満であるか否かを判定する第1の判定部と、
     前記第1の判定部の判定結果に基づいて、前記撮像部の動作モードを第1の動作モードと、前記第1の動作モードよりも撮像フレームレートを低くし、1フレームの撮像期間を前記第1の動作モードよりも長くした第2の動作モードと、を切り替えて前記撮像部に撮像させる撮像制御部と、
     前記無線通信部が前記画像データを送信する送信期間と、前記撮像部が撮像する撮像期間と、が異なる期間であり、かつ、撮像時の動作モードに関わらず、所定の基準タイミングから一定時間経過したタイミングに前記画像データを前記無線通信部に送信させる無線制御部と、
     を備える、
     被検体内情報取得装置。
    an illumination unit that irradiates illumination light toward a subject;
    an imaging unit that performs imaging by receiving light reflected in the subject and generates image data;
    a wireless communication unit that wirelessly transmits the image data generated by the imaging unit;
    a first determination unit that determines whether one of the amount of light emitted by the illumination unit and the amount of light received by the imaging unit is less than a threshold;
    Based on the determination result of the first determination unit, the operation mode of the imaging unit is set to the first operation mode, the imaging frame rate is set lower than that of the first operation mode, and the one-frame imaging period is set to the first operation mode. an imaging control unit that switches between a second operation mode longer than the first operation mode and causes the imaging unit to take an image;
    A transmission period during which the wireless communication unit transmits the image data and an imaging period during which the imaging unit captures images are different periods, and a predetermined time has elapsed from a predetermined reference timing regardless of the operation mode at the time of imaging. a wireless control unit for transmitting the image data to the wireless communication unit at the timing;
    comprising a
    Intra-subject information acquisition device.
  2.  請求項1に記載の被検体内情報取得装置であって、
     所定の周期を有する基準信号を所定の間隔で生成する基準信号生成部をさらに備え、
     前記無線制御部は、
     前記基準信号の立ち上がりタイミングから一定時間経過したタイミングに、前記画像データを前記無線通信部に送信させる、
     被検体内情報取得装置。
    The intra-subject information acquisition device according to claim 1,
    further comprising a reference signal generation unit that generates a reference signal having a predetermined period at predetermined intervals;
    The wireless control unit
    causing the wireless communication unit to transmit the image data at a timing after a predetermined time has elapsed from the rising timing of the reference signal;
    Intra-subject information acquisition device.
  3.  請求項1または2に記載の被検体内情報取得装置であって、
     前記撮像制御部は、
     前記第1の判定部によって前記発光量および前記受光量のいずれか一方が前記閾値未満であると判定した場合、前記撮像部を前記第2の動作モードによって撮像させる一方、
     前記第1の判定部によって前記発光量および前記受光量のいずれか一方が前記閾値未満でないと判定した場合、前記撮像部を前記第1の動作モードによって撮像させる、
     被検体内情報取得装置。
    The intra-subject information acquisition device according to claim 1 or 2,
    The imaging control unit is
    When the first determination unit determines that one of the light emission amount and the light reception amount is less than the threshold value, causing the imaging unit to perform imaging in the second operation mode,
    When the first determination unit determines that one of the light emission amount and the light reception amount is not less than the threshold value, causing the imaging unit to perform imaging in the first operation mode;
    Intra-subject information acquisition device.
  4.  請求項1~3のいずれか一つに記載の被検体内情報取得装置であって、
     前記第1の判定部は、
     前記無線通信部が前記画像データを送信する毎に、前記発光量および前記受光量のいずれか一方が前記閾値未満であるか否かを判定する、
     被検体内情報取得装置。
    The intra-subject information acquisition device according to any one of claims 1 to 3,
    The first determination unit is
    Determining whether one of the light emission amount and the light reception amount is less than the threshold each time the wireless communication unit transmits the image data,
    Intra-subject information acquisition device.
  5.  請求項1~4のいずれか一つに記載の被検体内情報取得装置であって、
     電力を供給する電池と、
     少なくとも前記電池の残量を示す電力情報に基づいて、前記電池の消費電力を抑制するか否かを判定する第2の判定部と、
     をさらに備え、
     前記撮像制御部は、
     前記第2の判定部によって前記電池の消費電力を抑制すると判定された場合において、前記第1の判定部によって前記発光量および前記受光量のいずれか一方が前記閾値未満でないと判定されたとき、前記撮像部の動作モードを、前記第1の動作モードよりも前記撮像フレームレートが低く、1フレームの撮像期間が前記第1の動作モードと同じ第3の動作モードに切り替えて前記撮像部に撮像させる一方、
     前記第2の判定部によって前記電池の消費電力を抑制すると判定された場合において、前記第1の判定部によって前記発光量および前記受光量のいずれか一方が前記閾値未満であると判定されたとき、前記第2の動作モードよりも前記撮像フレームレートが低く、1フレームの撮像期間が前記第3の動作モードと同じ第4の動作モードに切り替えて前記撮像部に撮像させる、
     被検体内情報取得装置。
    The intra-subject information acquisition device according to any one of claims 1 to 4,
    a battery for powering;
    a second determination unit that determines whether or not to suppress the power consumption of the battery based on at least the power information indicating the remaining amount of the battery;
    further comprising
    The imaging control unit is
    When the second determination unit determines that the power consumption of the battery is suppressed, and the first determination unit determines that one of the light emission amount and the light reception amount is not less than the threshold value, The operation mode of the imaging unit is switched to a third operation mode in which the imaging frame rate is lower than that in the first operation mode and the imaging period of one frame is the same as the first operation mode, and the imaging unit picks up an image. while letting
    When the first determination unit determines that one of the light emission amount and the light reception amount is less than the threshold value when the second determination unit determines that the power consumption of the battery is to be suppressed switching to a fourth operation mode in which the imaging frame rate is lower than that in the second operation mode and the imaging period of one frame is the same as in the third operation mode, and causes the imaging unit to perform imaging;
    Intra-subject information acquisition device.
  6.  請求項5に記載の被検体内情報取得装置であって、
     前記無線制御部は、
     前記撮像部が前記第1の動作モードで生成した前記画像データを前記無線通信部に送信を開始させる送信開始タイミングと、前記撮像部が前記第2の動作モードで生成した前記画像データを前記無線通信部に送信を開始させる送信開始タイミングと、前記撮像部が前記第3の動作モードで生成した前記画像データを前記無線通信部に送信を開始させる送信開始タイミングと、前記撮像部が前記第4の動作モードで生成した前記画像データを前記無線通信部に送信を開始させる送信開始タイミングと、が前記一定時間経過したタイミングが同じとなるように、前記画像データを前記無線通信部に送信させる、
     被検体内情報取得装置。
    The intra-subject information acquisition device according to claim 5,
    The wireless control unit
    a transmission start timing for starting transmission of the image data generated by the imaging unit in the first operation mode to the wireless communication unit; a transmission start timing for causing the communication unit to start transmission; a transmission start timing for causing the wireless communication unit to start transmitting the image data generated by the imaging unit in the third operation mode; transmitting the image data to the wireless communication unit so that the transmission start timing for starting transmission of the image data generated in the operation mode of (1) to the wireless communication unit is the same as the timing after the predetermined time has elapsed;
    Intra-subject information acquisition device.
  7.  請求項1~6のいずれか一つに記載の被検体内情報取得装置であって、
     前記閾値は、
     ユーザ操作に応じて変更可能である、
     被検体内情報取得装置。
    The intra-subject information acquisition device according to any one of claims 1 to 6,
    The threshold is
    can be changed according to user operation,
    Intra-subject information acquisition device.
  8.  請求項1~7のいずれか一つに記載の被検体内情報取得装置であって、
     前記無線制御部は、
     前記画像データを前記無線通信部に送信させる際に、前記撮像部の動作モードを示す動作識別情報を前記画像データに関連付けて前記無線通信部に送信させる、
     被検体内情報取得装置。
    The intra-subject information acquisition device according to any one of claims 1 to 7,
    The wireless control unit
    When the image data is transmitted to the wireless communication unit, operation identification information indicating an operation mode of the imaging unit is associated with the image data and transmitted to the wireless communication unit.
    Intra-subject information acquisition device.
  9.  被検体内に導入可能に導入され、前記被検体内を撮像した画像データを送信する被検体内情報取得装置と、
     前記被検体内情報取得装置から送信された前記画像データを受信する受信装置と、
     を備え、
     前記被検体内情報取得装置は、
     前記被検体に向けて照明光を照射する照明部と、
     前記被検体において反射した光を受光することにより撮像を行い、前記画像データを生成する撮像部と、
     前記撮像部が生成した前記画像データを無線送信する無線通信部と、
     前記照明部における照明光の発光量および前記撮像部の受光量のいずれか一方が閾値未満であるか否かを判定する第1の判定部と、
     前記第1の判定部の判定結果に基づいて、前記撮像部の動作モードを第1の動作モードと、前記第1の動作モードよりも撮像フレームレートを低くし、1フレームの撮像期間を前記第1の動作モードよりも長くした第2の動作モードと、を切り替えて前記撮像部に撮像させる撮像制御部と、
     前記無線通信部が前記画像データを送信する送信期間と、前記撮像部が撮像する撮像期間と、が異なる期間であり、かつ、撮像時の動作モードに関わらず、所定の基準タイミングから一定時間経過したタイミングに前記画像データを前記無線通信部に送信させる無線制御部と、
     を備える、
     検査システム。
    an intra-subject information acquisition device that is introduceably introduced into a subject and that transmits image data obtained by imaging the inside of the subject;
    a receiving device that receives the image data transmitted from the intra-subject information acquisition device;
    with
    The in-vivo information acquisition device includes:
    an illumination unit that irradiates illumination light toward the subject;
    an imaging unit that performs imaging by receiving light reflected from the subject and generates the image data;
    a wireless communication unit that wirelessly transmits the image data generated by the imaging unit;
    a first determination unit that determines whether one of the amount of light emitted by the illumination unit and the amount of light received by the imaging unit is less than a threshold;
    Based on the determination result of the first determination unit, the operation mode of the imaging unit is set to the first operation mode, the imaging frame rate is set lower than that of the first operation mode, and the one-frame imaging period is set to the first operation mode. an imaging control unit that switches between a second operation mode longer than the first operation mode and causes the imaging unit to take an image;
    A transmission period during which the wireless communication unit transmits the image data and an imaging period during which the imaging unit captures images are different periods, and a predetermined time has elapsed from a predetermined reference timing regardless of the operation mode at the time of imaging. a wireless control unit for transmitting the image data to the wireless communication unit at the timing;
    comprising
    inspection system.
  10.  被検体に向けて照明光を照射する照明部と、前記被検体内において反射した光を受光することにより撮像を行い、画像データを生成する撮像部と、前記撮像部が生成した前記画像データを無線送信する無線通信部と、を備える被検体内情報取得装置が実行する制御方法であって、
     前記照明部における照明光の発光量および前記撮像部の受光量のいずれか一方が閾値未満であるか否かを判定する第1の判定ステップと、
     前記第1の判定ステップの判定結果に基づいて、前記撮像部の動作モードを第1の動作モードと、前記第1の動作モードよりも撮像フレームレートを低くし、1フレームの撮像期間を前記第1の動作モードよりも長くした第2の動作モードと、を切り替えて前記撮像部に撮像させる撮像制御ステップと、
     前記無線通信部が前記画像データを送信する送信期間と、前記撮像部が撮像する撮像期間と、が異なる期間であり、かつ、撮像時の動作モードに関わらず、所定の基準タイミングから一定時間経過したタイミングに前記画像データを前記無線通信部に送信させる無線制御ステップと、
     を含む、
     制御方法。
    an illumination unit that irradiates illumination light toward a subject; an imaging unit that captures an image by receiving light reflected within the subject and generates image data; and the image data generated by the imaging unit. A control method executed by an in-vivo information acquiring apparatus comprising a wireless communication unit that performs wireless transmission,
    a first determination step of determining whether one of the amount of light emitted by the illumination unit and the amount of light received by the imaging unit is less than a threshold;
    Based on the determination result of the first determination step, the operation mode of the imaging unit is set to the first operation mode, the imaging frame rate is set lower than that of the first operation mode, and the one-frame imaging period is set to the first operation mode. an image capturing control step of switching between a second operation mode longer than the first operation mode and allowing the image capturing unit to capture an image;
    A transmission period during which the wireless communication unit transmits the image data and an imaging period during which the imaging unit captures images are different periods, and a predetermined time has elapsed from a predetermined reference timing regardless of the operation mode at the time of imaging. a wireless control step of transmitting the image data to the wireless communication unit at the timing;
    including,
    control method.
  11.  被検体に向けて照明光を照射する照明部と、前記被検体内において反射した光を受光することにより撮像を行い、画像データを生成する撮像部と、前記撮像部が生成した前記画像データを無線送信する無線通信部と、を備える被検体内情報取得装置に、
     前記照明部における照明光の発光量および前記撮像部の受光量のいずれか一方が閾値未満であるか否かを判定する第1の判定ステップと、
     前記第1の判定ステップの判定結果に基づいて、前記撮像部の動作モードを第1の動作モードと、前記第1の動作モードよりも撮像フレームレートを低くし、1フレームの撮像期間を前記第1の動作モードよりも長くした第2の動作モードと、を切り替えて前記撮像部に撮像させる撮像制御ステップと、
     前記無線通信部が前記画像データを送信する送信期間と、前記撮像部が撮像する撮像期間と、が異なる期間であり、かつ、撮像時の動作モードに関わらず、所定の基準タイミングから一定時間経過したタイミングに前記画像データを前記無線通信部に送信させる無線制御ステップと、
     を実行させる、
     プログラム。
    an illumination unit that irradiates illumination light toward a subject; an imaging unit that captures an image by receiving light reflected within the subject and generates image data; and the image data generated by the imaging unit. a wireless communication unit that performs wireless transmission;
    a first determination step of determining whether one of the amount of light emitted by the illumination unit and the amount of light received by the imaging unit is less than a threshold;
    Based on the determination result of the first determination step, the operation mode of the imaging unit is set to the first operation mode, the imaging frame rate is set lower than that of the first operation mode, and the one-frame imaging period is set to the first operation mode. an image capturing control step of switching between a second operation mode longer than the first operation mode and allowing the image capturing unit to capture an image;
    A transmission period during which the wireless communication unit transmits the image data and an imaging period during which the imaging unit captures images are different periods, and a predetermined time has elapsed from a predetermined reference timing regardless of the operation mode at the time of imaging. a wireless control step of transmitting the image data to the wireless communication unit at the timing;
    to run
    program.
PCT/JP2021/009511 2021-03-10 2021-03-10 In-subject information acquisition device, inspection system, control method, and program WO2022190256A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/009511 WO2022190256A1 (en) 2021-03-10 2021-03-10 In-subject information acquisition device, inspection system, control method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/009511 WO2022190256A1 (en) 2021-03-10 2021-03-10 In-subject information acquisition device, inspection system, control method, and program

Publications (1)

Publication Number Publication Date
WO2022190256A1 true WO2022190256A1 (en) 2022-09-15

Family

ID=83226408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009511 WO2022190256A1 (en) 2021-03-10 2021-03-10 In-subject information acquisition device, inspection system, control method, and program

Country Status (1)

Country Link
WO (1) WO2022190256A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004321605A (en) * 2003-04-25 2004-11-18 Olympus Corp Capsule-type endoscope apparatus
JP2004535878A (en) * 2001-07-26 2004-12-02 ギブン・イメージング・リミテッド Apparatus and method for controlling the gain of an illumination or imager in an in vivo imaging device
JP2008183049A (en) * 2007-01-26 2008-08-14 Matsushita Electric Ind Co Ltd Imaging device, and capsule type endoscopic camera
WO2008143246A1 (en) * 2007-05-22 2008-11-27 Olympus Corporation Encapsulated medical device and encapsulated medical system
JP2009131320A (en) * 2007-11-28 2009-06-18 Olympus Medical Systems Corp System for acquiring reagent in-vivo information and reagent-insertable apparatus
JP2012157559A (en) * 2011-02-01 2012-08-23 Fujifilm Corp Electronic endoscope system
WO2016021044A1 (en) * 2014-08-08 2016-02-11 オリンパス株式会社 Capsule endoscope, capsule endoscopic system, and method for controlling capsule endoscope
JP2016054878A (en) * 2014-09-09 2016-04-21 オリンパス株式会社 Endoscope apparatus
WO2017047112A1 (en) * 2015-09-17 2017-03-23 オリンパス株式会社 Capsule endoscope system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004535878A (en) * 2001-07-26 2004-12-02 ギブン・イメージング・リミテッド Apparatus and method for controlling the gain of an illumination or imager in an in vivo imaging device
JP2004321605A (en) * 2003-04-25 2004-11-18 Olympus Corp Capsule-type endoscope apparatus
JP2008183049A (en) * 2007-01-26 2008-08-14 Matsushita Electric Ind Co Ltd Imaging device, and capsule type endoscopic camera
WO2008143246A1 (en) * 2007-05-22 2008-11-27 Olympus Corporation Encapsulated medical device and encapsulated medical system
JP2009131320A (en) * 2007-11-28 2009-06-18 Olympus Medical Systems Corp System for acquiring reagent in-vivo information and reagent-insertable apparatus
JP2012157559A (en) * 2011-02-01 2012-08-23 Fujifilm Corp Electronic endoscope system
WO2016021044A1 (en) * 2014-08-08 2016-02-11 オリンパス株式会社 Capsule endoscope, capsule endoscopic system, and method for controlling capsule endoscope
JP2016054878A (en) * 2014-09-09 2016-04-21 オリンパス株式会社 Endoscope apparatus
WO2017047112A1 (en) * 2015-09-17 2017-03-23 オリンパス株式会社 Capsule endoscope system

Similar Documents

Publication Publication Date Title
US8866893B2 (en) Imaging apparatus
US8622892B2 (en) In-vivo image acquiring apparatus and in-vivo image acquiring system
JP2001245844A (en) Capsule endoscope
JP2007082664A (en) Capsule endoscope
JP2004535878A5 (en)
JP2004536648A (en) Apparatus and method for in vivo imaging
EP2735261A1 (en) Imaging system
US20090099418A1 (en) In-vivo information acquiring apparatus and power supply control method
EP2033568A1 (en) Intra-specimen introducing device
WO2015182185A1 (en) Capsule endoscope apparatus
JP4555604B2 (en) Capsule endoscope and capsule endoscope system
WO2022190256A1 (en) In-subject information acquisition device, inspection system, control method, and program
JP2008183049A (en) Imaging device, and capsule type endoscopic camera
JP6230511B2 (en) Endoscope device
US10188266B2 (en) Endoscopic imaging device for reducing data amount of image signal
JP2006075331A (en) Imaging apparatus for endoscope
JP2006288831A (en) Apparatus introduced into subject
JP4656824B2 (en) Wireless in-vivo information acquisition device
JP4383134B2 (en) Wireless in-vivo information acquisition device
WO2016084500A1 (en) Capsule endoscope, capsule endoscope activation system, and examination system
WO2018084025A1 (en) Capsule endoscope, receiving device, method for operating capsule endoscope, and program for operating capsule endoscope
JP2006305322A (en) Capsule endoscope system
JP4656825B2 (en) In-subject introduction apparatus and wireless in-subject information acquisition system
JP2001286439A (en) Portable endoscope
JP2019201757A (en) Capsule type endoscope, capsule type endoscope system, and transmission method of capsule type endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930113

Country of ref document: EP

Kind code of ref document: A1