WO2022188682A1 - 数据接收方法、接收装置以及相关设备 - Google Patents

数据接收方法、接收装置以及相关设备 Download PDF

Info

Publication number
WO2022188682A1
WO2022188682A1 PCT/CN2022/078936 CN2022078936W WO2022188682A1 WO 2022188682 A1 WO2022188682 A1 WO 2022188682A1 CN 2022078936 W CN2022078936 W CN 2022078936W WO 2022188682 A1 WO2022188682 A1 WO 2022188682A1
Authority
WO
WIPO (PCT)
Prior art keywords
data frame
lfms
reflected
offset
mixed signal
Prior art date
Application number
PCT/CN2022/078936
Other languages
English (en)
French (fr)
Inventor
王优
李蔚
冯圣文
郭强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22766208.7A priority Critical patent/EP4297295A4/en
Publication of WO2022188682A1 publication Critical patent/WO2022188682A1/zh
Priority to US18/464,148 priority patent/US20230421260A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]

Definitions

  • the present application relates to the field of optical communication, and in particular, to a data receiving method, a receiving apparatus, and related equipment.
  • the signal generated by the east terminal and the signal generated by the west terminal share the same optical fiber and use the same communication frequency band. Therefore, the overall communication capacity of the system can be doubled.
  • the mixed signal includes not only the signal generated by the westbound terminal, but also the reflected crosstalk signal of the signal generated by the eastbound terminal itself. Since the signal generated by the westbound terminal and the reflected crosstalk signal belong to the same communication frequency band, the eastbound terminal cannot eliminate the reflected crosstalk signal by filtering. To this end, the reflected crosstalk signal can be reconstructed from the signal generated by the eastbound terminal itself. The reconstructed reflected crosstalk signal is then eliminated in the mixed signal to obtain the signal generated by the westbound terminal.
  • the present application provides a data receiving method, a receiving device and related equipment, which can eliminate the reconstructed data frame of the first reflected data frame in the mixed signal by the first offset, reduce the influence of time difference, and improve the communication quality.
  • a first aspect of the present application provides a method for reducing reflection crosstalk.
  • the method includes: the first device sends a first data frame to the second device, where the first data frame includes a chirp sequence LFMS a1. After that, the first device receives the mixed signal, and the mixed signal includes the first reflected data frame of the first data frame and the second data frame sent by the second device.
  • the first device acquires a first offset according to the LFMS a1 in the first reflected data frame, where the first offset is an offset between the first reflected data frame and the second data frame in the time domain. After acquiring the first offset, the first device obtains a reconstructed data frame of the first reflected data frame according to the first data frame.
  • the first device eliminates the reconstructed data frame of the first reflected data frame in the mixed signal according to the first offset to obtain the first initial signal of the second data frame.
  • the first device may eliminate the reconstructed data frame in the mixed signal when the offset between the reconstructed data frame of the first reflected data frame and the second data frame is the first offset.
  • the first device performs subsequent digital signal processing on the first initial signal. For example, carrier phase recovery, channel equalization, etc.
  • the first device obtains the first offset through the LFMS a1 in the first reflected data frame, that is, determines the time difference between the first reflected data frame and the second data frame in the mixed signal. And, the first device eliminates the reconstructed data frame of the first reflected data frame in the mixed signal according to the first offset. Therefore, the influence of the time difference is reduced, thereby improving the communication quality.
  • the second data frame includes LFMS a3
  • the first device obtains the first delay according to the LFMS a1 in the first reflected data frame, and the first delay is used to characterize the reception by the first device The time difference between the moment of the first reflected data frame and the reference moment.
  • the first device obtains the second time delay according to the LFMS a3 in the second data frame, and the second time delay is used to represent the time difference between the time when the first device receives the second data frame and the reference time.
  • the first offset is equal to the difference between the first delay and the second delay.
  • the reference time is the time when the first device sends the first data frame.
  • the first device performs fractional Fourier transform of the angle a1 on the K first sequences to obtain K first functions. Then, the first device obtains the maximum modulus values of the K first functions respectively, and obtains the K maximum modulus values.
  • the K first sequences are K sequence blocks that the mixed signal is divided into in the time domain and have the same length as the LFMS a1, where K is an integer greater than 1.
  • the first delay is equal to the difference between the reference moment and the start moment of the first target sequence in the K first sequences, and the first target sequence corresponds to the maximum value among the K maximum modulus values.
  • the first data frame further includes LFMS a2, and the second data frame further includes LFMS a4.
  • the first device performs fractional Fourier transform of the angle a2 on the H second sequences to obtain H second functions. Then, the first device obtains the maximum modulus values of the H second functions respectively, and obtains the H maximum modulus values.
  • the H second sequences are H sequence blocks that the mixed signal is divided into in the time domain and have the same length as the LFMS a2, and H is an integer greater than 1.
  • the first device performs the fractional Fourier transform of the angle a2 on the LFMS a2 to obtain the a2 shock function, the abscissa of the maximum modulus value of the a2 shock function is U3, the abscissa of the second target modulus value is U4, and the second target modulus
  • the first device obtains the first correction value according to ⁇ U a1 and ⁇ U a2 .
  • the first device corrects the first delay according to the first correction value.
  • the accuracy of the first time delay can be improved, that is, the accuracy of the first offset obtained according to the first time delay is improved.
  • Accuracy can be understood as how similar the acquired value is to the actual value.
  • the higher the accuracy of the first offset the better the effect of eliminating and reconstructing the data frame, and the higher the quality of the obtained signal. Therefore, the influence of the first offset can be further reduced, and the communication quality can be improved.
  • the first offset is equal to a difference between the corrected first delay and the second delay.
  • ⁇ t1 is the first correction value
  • ⁇ f a is the frequency offset between the first data frame and the first reflected data frame
  • a1 is the angle of the LFMS a1
  • a2 is the angle of the LFMS a2.
  • the first correction value in the present application considers the influence of frequency offset, so the accuracy of the first time delay can be further improved, and the communication quality can be improved.
  • LFMS a1 and LFMS a3 are the same, and LFMS a4 and LFMS a2 are the same.
  • LFMS a1 and LFMS a2 overlap, and LFMS a3 and LFMS a4 overlap.
  • LFMS a1 and LFMS a3 do not overlap, and the sum of the frequency ranges of LFMS a1 and LFMS a3 is equal to the frequency range of the payload of the first data frame or the second data frame.
  • the LFMS a1 and/or the LFMS a2 precedes the payload of the first data frame.
  • the first device may first receive the first target sequence and/or the second target sequence in the first reflected data frame, and then receive the payload.
  • the first target sequence includes part or all of the LFMS a1 in the first reflection data frame
  • the second target sequence includes part or all of the LFMS a2 in the first reflection data frame.
  • the first device may start to calculate the first offset. Therefore, the speed at which the first device acquires the first offset can be increased, that is, the delay between the first device and the second device can be reduced.
  • LFMS a1 and LFMS a2 do not overlap, and the payloads of LFMS a1, LFMS a2 and the first data frame do not overlap.
  • the first data frame further includes LFMS b1.
  • the method further includes: obtaining, by the first device, carrier phase information of the first reflected data frame according to the LFMS b1 in the first reflected data frame.
  • the first device obtains a reconstructed data frame of the first reflected data frame based on the first data frame and the carrier phase information.
  • the first data frame sent by the first device may be affected by carrier phase information (noise and frequency offset). Therefore, the accuracy of the reconstructed data frame of the first reflected data frame can be improved by performing reconstruction using the carrier phase information.
  • the higher the accuracy of the reconstructed data frame of the first reflected data frame the better the effect of eliminating the reconstructed data frame, and the higher the quality of the obtained signal. Therefore, the communication quality can be further improved.
  • the method before the first device obtains the carrier phase information of the first reflected data frame according to the LFMS b1 in the first reflected data frame, the method further includes: the first device compares the LFMS b1 The fractional Fourier transform of the angle b1 is performed to obtain the b1 shock function, and the abscissa of the maximum modulus value of the b1 shock function is ⁇ U b1 .
  • the first device uses ⁇ f b to frequency offset the LFMS b1 in the first reflected data frame.
  • the frequency of the signal light may change, that is, there is a frequency offset between the first reflected data frame and the first data frame.
  • the first device in the present application first obtains the first reflected data frame and the frequency offset value ⁇ f b of the first data frame, and then performs frequency offset on the first reflected data frame through ⁇ f b . After the frequency offset, the first reflected The carrier phase information is extracted from the data frame. Therefore, the degree of compatibility between the carrier phase information and the first data frame in frequency can be improved, that is, the accuracy of the reconstructed data frame of the first reflected data frame can be improved. Therefore, the communication quality can be further improved.
  • the first device intercepts the first reflected data frame in the mixed signal.
  • the first device filters out the LFMS b1 in the first reflected data frame.
  • the first device performs fractional Fourier transform on the LFMS b1 in the first reflection data frame to obtain a b1 impulse function.
  • the first device performs an inverse fractional Fourier transform on the target impulse function to obtain the LFMS b2, where the target impulse function is the part of the b1 impulse function including the maximum modulus value.
  • the first device frequency offsets the LFMS b2 by ⁇ f b .
  • the first device divides LFMS b2 and LFMS b1 to obtain a complex function; the first device obtains carrier phase information of the complex function.
  • the time range of LFMS b1 and the time range of the first data frame overlap, and the time range of the first data frame is equal to the time range of the payload of the first data frame and the time range of LFMS a1, LFMS a2 the sum of the time ranges.
  • the frequency interval between the LFMS b1 and the payload of the first data frame is greater than the first threshold.
  • the first device can filter out the LFMS b1 in the first reflected data frame in the frequency domain, and affects the accuracy of the carrier phase information extracted subsequently. Therefore, the present application can improve the accuracy of the acquired carrier phase information, that is, the accuracy of the subsequent reconstructed reconstructed data frame. Therefore, the present application can further improve the communication quality.
  • the mixed signal further includes a second reflected data frame of the first data frame.
  • the first device acquires a second offset according to the LFMS a1 in the first reflected data frame, where the second offset is an offset between the second reflected data frame and the second data frame in the time domain.
  • the first device obtains a reconstructed data frame of the second reflected data frame according to the first data frame.
  • the first device eliminates the reconstructed data frame of the second reflected data frame in the first initial signal according to the second offset to obtain a second initial signal of the second data frame.
  • the mixed signal may include multiple reflected crosstalk signals of the first data frame. The first device not only eliminates the reconstructed data frame of the first reflected data frame in the mixed signal, but also eliminates the reconstructed data frame of the second reflected data frame in the obtained first initial signal. Therefore, the quality of the resulting signal can be further improved.
  • the power of the second reflected data frame is smaller than the power of the first reflected data frame.
  • the second reflected data frame is first eliminated, and then the first data frame is eliminated.
  • the present application can improve the quality of the finally obtained second initial signal. Therefore, the present application can further improve the quality of the obtained signal.
  • a second aspect of the present application provides a receiving apparatus.
  • the receiving apparatus includes: a sending module configured to send a first data frame to the second device, where the first data frame includes a linear frequency modulation sequence LFMS a1.
  • the receiving module is configured to receive a mixed signal, where the mixed signal includes a first reflected data frame of the first data frame and a second data frame sent by the second device.
  • the processing module is configured to obtain a first offset according to the LFMS a1 in the first reflection data frame, where the first offset is the offset between the first reflection data frame and the second data frame in the time domain.
  • the reconstruction module is configured to obtain a reconstructed data frame of the first reflected data frame according to the first data frame.
  • the elimination module is configured to eliminate the reconstructed data frame of the first reflected data frame in the mixed signal according to the first offset to obtain the first initial signal of the second data frame.
  • the second data frame includes an LFMS a3 processing module specifically configured to obtain the first delay according to the LFMS a1 in the first reflected data frame, and the first delay is used to characterize the first device The time difference between the time when the first reflected data frame is received and the reference time.
  • the processing module is specifically configured to obtain the second delay according to the LFMS a3 in the second data frame, and the second delay is used to represent the time difference between the moment when the first device receives the second data frame and the reference moment.
  • the first offset is equal to the difference between the first delay and the second delay.
  • the reference time is the time when the first device sends the first data frame.
  • the processing module is specifically configured to perform fractional Fourier transform of the angle a1 on the K first sequences to obtain the K maximum modulus values of the K first functions.
  • Each first function corresponds to a maximum modulus value.
  • the K first sequences are K sequence blocks that the mixed signal is divided into in the time domain and have the same length as the LFMS a1, where K is an integer greater than 1.
  • the first delay is equal to the difference between the reference moment and the start moment of the first target sequence in the K first sequences, and the first target sequence corresponds to the maximum value among the K maximum modulus values.
  • the first data frame further includes LFMS a2, and the second data frame further includes LFMS a4.
  • the processing module is also used to perform the fractional Fourier transform of the angle a1 on the LFMS a1 to obtain the a1 shock function.
  • the abscissa of the maximum modulus value of the a1 impact function is U1
  • the abscissa of the first target modulus value is U2
  • the a1 independent variable difference ⁇ U a1 U2 ⁇ U1.
  • the processing module is further configured to perform fractional Fourier transform of the angle a2 on the H second sequences to obtain H maximum modulus values of the H second functions. Each second function corresponds to a maximum modulo value.
  • the H second sequences are H sequence blocks that the mixed signal is divided into in the time domain and have the same length as the LFMS a2, and H is an integer greater than 1.
  • the processing module is also used to perform the fractional Fourier transform of the angle a2 on the LFMS a2 to obtain the a2 shock function.
  • the abscissa of the maximum modulus value of the a2 impact function is U3, and the abscissa of the second target modulus value is U4.
  • the processing module is further configured to obtain the first correction value according to ⁇ U a1 and ⁇ U a2 .
  • the processing module is further configured to correct the first time delay according to the first correction value.
  • the first offset is equal to a difference between the corrected first delay and the second delay.
  • ⁇ t1 is the first correction value
  • ⁇ f a is the frequency offset of the first data frame and the first reflected data frame.
  • a1 is the angle of LFMS a1 and a2 is the angle of LFMS a2.
  • LFMS a1 and LFMS a3 are the same, and LFMS a4 and LFMS a2 are the same.
  • LFMS a1 and LFMS a2 overlap, LFMS a3 and LFMS a4 overlap, LFMS a1 and LFMS a3 do not overlap, and the sum of the frequency ranges of LFMS a3 and LFMS a1 is equal to The frequency range of the payload of the first data frame or the second data frame.
  • the LFMS a1 and/or the LFMS a2 precedes the payload of the first data frame.
  • LFMS a1 and LFMS a2 do not overlap, and the payloads of LFMS a1, LFMS a2 and the first data frame do not overlap.
  • the first data frame further includes LFMS b1.
  • the processing module is further configured to obtain carrier phase information of the first reflected data frame according to the LFMS b1 in the first reflected data frame.
  • the reconstruction module is specifically configured to obtain a reconstructed data frame of the first reflected data frame based on the first data frame and the carrier phase information.
  • the processing module is further configured to perform fractional Fourier transform of the angle b1 on the LFMS b1 to obtain the b1 shock function, and the abscissa of the maximum modulus value of the b1 shock function is ⁇ U b1 .
  • the processing module is further configured to perform frequency offset on the LFMS b1 in the first reflected data frame by using ⁇ f b .
  • the processing module is specifically configured to intercept the first reflected data frame in the mixed signal; the processing module is specifically configured to filter out the LFMS b1 in the first reflected data frame; the processing module is specifically configured to It is used to perform fractional Fourier transform on the LFMS b1 in the first reflection data frame to obtain the b1 impulse function; the processing module is specifically used to perform inverse fractional Fourier transform on the target impulse function to obtain LFMS b2, the target The shock function is the part that includes the maximum modulus value in the shock function of b1; the processing module is specifically used to use ⁇ f b to perform frequency offset on LFMS b2; the processing module is specifically used to divide LFMS b2 and LFMS b1 to obtain a complex function; processing module Specifically, it is used to obtain the carrier phase information of the complex function.
  • the time range of the LFMS b1 and the time range of the first data frame overlap.
  • the time range of the first data frame is equal to the sum of the time range of the payload of the first data frame and the time ranges of LFMS a1 and LFMS a2.
  • the frequency interval between the LFMS b1 and the payload of the first data frame is greater than the first threshold.
  • the first threshold is greater than 1G.
  • the mixed signal further includes a second reflected data frame of the first data frame.
  • the processing module is further configured to obtain a second offset according to the LFMS a1 in the first reflection data frame, where the second offset is the offset between the second reflection data frame and the second data frame in the time domain.
  • the reconstruction module is further configured to obtain a reconstructed data frame of the second reflected data frame according to the first data frame.
  • the elimination module is further configured to eliminate the reconstructed data frame of the second reflected data frame in the first initial signal according to the second offset to obtain a second initial signal of the second data frame.
  • the power of the second reflected data frame is smaller than the power of the first reflected data frame.
  • a third aspect of the present application provides a receiving device.
  • the receiving device includes: a transceiver and a processor.
  • the transceiver is configured to send a first data frame to the second device, where the first data frame includes a chirp sequence LFMS a1.
  • the transceiver is further configured to receive a mixed signal, where the mixed signal includes a first reflected data frame of the first data frame and a second data frame sent by the second device.
  • the processor is configured to execute the method described in the first aspect or any optional manner of the first aspect according to the first data frame and the mixed signal.
  • a fourth aspect of the present application provides a chip.
  • the chip includes: one or more circuits and an interface; the interface is used for receiving a mixed signal, and the mixed signal includes a first reflected data frame of the first data frame and a second data frame sent by the second device.
  • One or more circuits are configured to perform the method described in the first aspect or any optional manner of the first aspect according to the first data frame and the mixed signal.
  • a fifth aspect of the present application provides a computer storage medium, characterized in that, the computer storage medium stores instructions, and when the instructions are executed on a computer, cause the computer to execute any of the first aspect or the first aspect.
  • the method of one embodiment is characterized in that, the computer storage medium stores instructions, and when the instructions are executed on a computer, cause the computer to execute any of the first aspect or the first aspect.
  • a sixth aspect of the present application provides a computer program product, characterized in that, when the computer program product is executed on a computer, the computer causes the computer to execute the method according to the first aspect or any one of the embodiments of the first aspect .
  • FIG. 1 is a schematic diagram of a network framework of a single-fiber bidirectional optical communication system
  • FIG. 2 is a schematic diagram of the structure of the mixed signal and the reflection reconstruction signal in the time domain
  • FIG. 3 is a schematic diagram of another network framework of the single-fiber bidirectional optical communication system provided in the application.
  • FIG. 5 is a schematic structural diagram of a transmitter provided in this application.
  • FIG. 6 is a schematic structural diagram of the first data frame provided in the application in the time domain
  • FIG. 7 is a schematic structural diagram of the first data frame provided in the application in the frequency domain
  • FIG. 8 is a schematic structural diagram of the first data frame and the second data frame provided in the application in the frequency domain;
  • FIG. 9 is another schematic structural diagram of the first data frame and the second data frame provided in the application in the frequency domain;
  • FIG. 11 is a schematic structural diagram of K first sequences provided in the application.
  • FIG. 12 is a schematic diagram of the waveforms of the LFMS provided in the application in the time domain, frequency domain and fractional domain;
  • FIG. 13 is a schematic structural diagram of the difference ⁇ U a1 of the a1 independent variable and the difference ⁇ U a2 of the a2 independent variable provided in the application in the fractional domain;
  • FIG. 14 is a schematic structural diagram of a receiving apparatus provided in an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a receiving device provided in an embodiment of the present application.
  • the present application provides a data receiving method, a receiving device and related equipment, which can eliminate the reconstructed data frame of the first reflected data frame in the mixed signal by the first offset, reduce the influence of time difference, and improve the communication quality. It should be understood that the use of "first”, “second”, etc. in the description of the embodiments of the present application is only for the purpose of distinguishing the description, and cannot be understood as indicating or implying relative importance, nor can it be understood as indicating or implying a sequence.
  • FIG. 1 is a schematic diagram of a network framework of a single-fiber bidirectional optical communication system.
  • the system includes a first device (also called an eastbound terminal), an amplifying device and a second device (also called a westbound terminal).
  • the first device includes a transmitter 101 , a circulator 103 and a receiver 102 .
  • the amplifying device includes a circulator 104 , an amplifier 105 , a circulator 106 and an amplifier 107 .
  • the second device includes a circulator 108 , a transmitter 109 and a receiver 110 .
  • the first device generates a first optical signal (also referred to as a first data frame) through the transmitter 101 , and after passing through the circulator 103 , the first optical signal is transmitted to the amplifying device through the optical fiber 1 . After passing through the circulator 104 in the amplifying device, the first optical signal passes through the amplifier 105 and the circulator 106 in sequence. The first optical signal output from the circulator 106 is transmitted through the optical fiber 2 to the circulator 108 of the second device, and enters the receiver 110 .
  • a first optical signal also referred to as a first data frame
  • the second optical signal (also referred to as the second data frame) generated by the transmitter 109 of the second device passes through the circulator 108 , the fiber 2 , the circulator 106 , the amplifier 107 , the circulator 104 , the fiber 1 , and the circulator 103 in sequence. and receiver 102.
  • the first device can not only receive the second optical signal sent by the second device, but also receive the reflected signal of the first optical signal.
  • the reflected signal produced by the Fresnel reflection of the connector end face of the optical fiber.
  • a reflected signal of the first optical signal will be generated.
  • the transmitted signal is looped back to the receiver 102 of the first device through the circulator 103 .
  • the first device cannot simply use filtering to eliminate the reflected signal.
  • One way to eliminate the reflected signal is to reconstruct the reflected signal by using the first optical signal to obtain the reflected reconstructed signal.
  • the reflected reconstructed signal is canceled in the mixed signal received by the first device.
  • FIG. 2 is a schematic structural diagram of the mixed signal and the reflected reconstructed signal in the time domain.
  • the second optical signal includes the second data frame
  • the reflected signal includes the reflected data frame
  • the transmitted reconstructed signal includes the reflected reconstructed data frame.
  • T2-T1 time difference between the second data frame and the transmitted data frame.
  • the present application provides a data receiving method.
  • the first data frame sent by the first device to the second device carries LFMS a1.
  • the mixed signal received by the first device includes the second data frame sent by the second device and the first reflected data frame of the first data frame.
  • the first reflected data frame is the reflected signal of the first data frame.
  • the first device acquires the first offset between the second data frame and the first reflected data frame according to the LFMS a1 in the first reflected data frame.
  • the first offset is the offset between the first reflected data frame and the second data frame in the time domain (it can be understood as the above-mentioned time difference T2-T1).
  • the first device eliminates the reconstructed data frame of the first reflected data frame in the mixed signal according to the first offset to obtain the first initial signal of the second data frame.
  • FIG. 3 is a schematic diagram of another network framework of the single-fiber bidirectional optical communication system provided in this application.
  • the system includes a first device, a loopback device and a second device.
  • the first device includes a transmitter 301 , a circulator 303 and a receiver 302 .
  • the loopback device includes a circulator 305 and an optical attenuator 306 .
  • the second device includes a circulator 307 , a transmitter 308 and a receiver 309 .
  • the first device generates the first optical signal through the transmitter 301 .
  • the first optical signal is transmitted to the optical coupler 304 through the optical fiber after passing through the circulator 303 .
  • the first optical signal enters the loopback device after passing through the optical coupler 304 .
  • the first optical signal enters the optical attenuator 306 through the circulator 305 . It is then returned to the circulator 305 by the optical attenuator 306 .
  • the first optical signal returned by the optical attenuator 306 is also referred to as a reflected signal of the first optical signal.
  • the reflected signal is returned to the receiver 302 of the first device through the optocoupler 304 .
  • the system shown in FIG. 3 can be used to simulate the process of eliminating the reflection and reconstructing the signal, and then test the results of the data receiving method.
  • FIG. 4 is a schematic flowchart of the data receiving method provided in this application. As shown in FIG. 4 , the data receiving method includes the following steps.
  • step 401 the first device sends a first data frame to the second device.
  • the first device includes a transmitter and a receiver.
  • FIG. 5 is a schematic structural diagram of the transmitter provided in this application.
  • the transmitter includes a laser 501 , a modulator 502 and an Arbitrary Waveform Generator (AWG) 503 .
  • the discrete signal is used to generate the payload and the discrete LFMS a1 signal is used to generate the LFMS a1.
  • This application does not limit the content carried in the payload, and therefore does not limit the discrete signal.
  • the transmitter first mixes the discrete signal and the discrete LFMS a1 signal to generate a digital signal corresponding to the first data frame.
  • AWG 503 converts the data signal to an analog signal and provides the analog signal to modulator 502.
  • the modulator 502 modulates the continuous laser light generated by the laser 501 according to the analog signal to generate a first optical signal.
  • the first optical signal includes one or more first data frames.
  • Linear frequency modulated sequence is essentially a special sequence whose frequency varies linearly with time, and its mathematical expression can be expressed by the following formula:
  • f 0 is the starting frequency of the LFMS
  • f M is the FM slope of the LFMS
  • the discrete LFMS a2 signal and the discrete LFMS b1 signal are further included in the digital signal.
  • the first data frame obtained according to the digital signal includes LFMS a1, LFMS a2 and LFMS b1.
  • FIG. 6 is a schematic structural diagram of the first data frame provided in this application in the time domain. As shown in Figure 6, the first data frame includes LFMS a1, LFMS a2 and LFMS b1. In the time domain, the range of LFMS a1 is equal to the range of LFMS a2. The sum of the range of LFMS a1, LFMS a2 and the range of Payload 11 is equal to the range of LFMS b1.
  • FIG. 6 is a schematic structural diagram of the first data frame provided in this application in the time domain. As shown in Figure 6, the first data frame includes LFMS a1, LFMS a2 and LFMS b1. In the time domain, the range of LFMS a1 is equal to the range of LF
  • the first data frame includes LFMS a1, LFMS a2 and LFMS b1.
  • the range of LFMS a1 is equal to the range of LFMS a2.
  • the range of LFMS a1 and the range of load 11 overlap.
  • the first threshold is 1.0GHz, or 1.5GHz, or 2.0GHz, or 2.5GHz.
  • FIG. 8 is a schematic structural diagram of the first data frame and the second data frame provided in the application in the frequency domain. As shown in FIG. 8 , the first data frame and the second data frame belong to the same channel. Therefore, in the frequency domain, the range of the payload 11 (Payload 11) of the first data frame is equal to the range of the payload 21 (Payload 21) of the second data frame.
  • FIG. 9 is another schematic structural diagram of the first data frame and the second data frame in the frequency domain provided in this application.
  • the load 21 in Fig. 9 is shifted to the left, so that the range of the load 21 and the range of the LFMS b1 overlap. Therefore, the range of the LFMS b1 in the first reflected data frame may also overlap with the range of the payload 21 . Also, because the power of the LFMS b1 in the first reflected data frame is smaller than the power of the payload 21 , the LFMS b1 in the first reflected data frame will be submerged by the payload 21 . Therefore, the defined interval Y is larger than the first threshold value.
  • the interval Y is smaller than the second threshold.
  • the second threshold is 2.5GHz, or 3.0GHz.
  • the frequency band range of a channel is 75 GHz
  • the frequency range of the payload is 64 GHz.
  • 1 LFMS b1 is included in the 5.5GHz range. That is, in 5.5GHz, two spaced regions need to exist.
  • One of the interval regions is interval Y.
  • the other interval is a channel isolation area, which can be specifically used to prevent the frequency shift of the laser of the first device.
  • the frequency of the laser may change by 2 to 3 GHz as the temperature changes.
  • the second threshold is 2.5GHz, the frequency range of the channel isolation region is 3GHz.
  • the frequency band of a channel is 50 GHz or 100 GHz, an appropriate second threshold can be derived according to the above method.
  • the above-mentioned first data frame in FIG. 6 or FIG. 7 is just an example. In practical applications, it can be adaptively changed.
  • LFMS a1 and LFMS a2 are not required to be seamlessly connected, that is, there may be a gap between LFMS a1 and LFMS a2.
  • LFMS a2 and payload 11 are not required to be seamlessly connected.
  • the range of LFMS b1 is larger than the range of load 11, but smaller than the sum of the range of LFMS a1, the range of LFMS a2 and the range of load 11.
  • LFMS a1 and LFMS a2 are completely aligned, that is, the range of LFMS a1 may not be equal to the range of LFMS a2.
  • LFMS a1, LFMS a2 are not required to be aligned with one side of the load 11.
  • the first device receives a mixed signal including a second data frame and a first reflected data frame of the first data frame.
  • the mixed signal can be represented as:
  • Rx(n) represents the mixed signal of the nth sampling point received by the first device
  • F i represents the ith reflection signal
  • S represents the second optical signal (also called the second data frame) sent by the second device.
  • Fiber ⁇ represents the influence of fiber transmission, mainly including the influence of dispersion, nonlinearity and birefringence. This application does not make relevant restrictions on this, and defaults to known quantities.
  • m i represents the time difference between the i-th reflected signal and the second data frame arriving at the first device.
  • the time difference in the formula is represented by the number of sampling points, and in the subsequent description, it will be directly represented by the duration.
  • the time difference is also called an offset.
  • the time difference between the first reflected signal (also called a first reflected data frame) and the second data frame arriving at the first device is called a first offset.
  • the first device may receive one or more reflected signals of the first optical signal, and the following description will be given by taking the mixed signal including one reflected signal (the first reflected data frame) as an example. It can be known from the above formula that the first device can obtain the second data frame by eliminating the first reflected data frame in the mixed signal. Therefore, the first device needs to reconstruct the first reflected data frame according to the first data frame to obtain a reconstructed data frame (also referred to as a first reconstructed data frame) of the first reflected data frame. The first device then eliminates the first reconstructed data frame in the mixed signal according to the first offset. Moreover, the higher the accuracy of the first reconstructed data frame, the better the restored second data frame. Accuracy in this application can be understood as the degree of similarity between the obtained value and the actual value. For example, the degree of similarity between the first reconstructed data frame and the first reflected data frame.
  • the second data frame includes LFMS a3.
  • LFMS a3 For the description of LFMS a3, reference may be made to the foregoing description of LFMS a1.
  • the second data frame further includes LFMS a4 and LFMS b3.
  • the relationship between LFMS a3, LFMS a4, LFMS b3, and the payload 21 (Payload 21) of the second data frame can refer to the relationship between LFMS a1, LFMS a2, LFMS b1, and the payload 11 of the first data frame.
  • the second data frame includes LFMS a3, LFMS a4, LFMS b3, and a payload 21 (Payload 21).
  • the range of load 21 is equal to the range of load 11.
  • LFMS b1 and LFMS b3 are located on either side of load 11 or load 21.
  • the range of LFMS a3 is equal to that of LFMS a4.
  • the sum of the range of LFMS a3 and the range of LFMS a1 is equal to the range of load 11 or load 21.
  • FIG. 10 is a schematic structural diagram of the mixed signal provided in this application in the time domain.
  • Figure 10 illustrates two first data frames and two second data frames.
  • the first data frame includes LFMS a1 (abbreviated as a1 in the figure), LFMS a2 (abbreviated as a2 in the figure), LFMS b1 (abbreviated as b1 in the figure) and payload.
  • One of the first data frames includes payload 11 (Payload 11), and the other first data frame includes payload 12 (Payload 12).
  • the second data frame includes LFMS a3 (abbreviated as a3 in the illustration), LFMS a4 (abbreviated as a4 in the illustration), LFMS b3 (abbreviated as b3 in the illustration) and payload.
  • One of the first data frames includes payload 11 (Payload 11), and the other first data frame includes payload 12 (Payload 12).
  • the mixed signal includes a first reflected data frame of the first data frame.
  • the first reflected data frame carries similar content to the first data frame.
  • the first reflected data frame includes LFMS a1, LFMS a2 and LFMS b1, the reflected signal of the payload 11. It is assumed that the moment when the first device sends the first data frame is the reference moment, and the reference moment is 0.
  • the moment when the first device receives the first reflected data frame is T1.
  • a first time delay T1 exists between the moment when the first device receives the first reflected data frame and the reference moment.
  • the related content of the second reflection data frame will be reflected in the subsequent description.
  • the mixed signal also includes a second frame of data. It is assumed that the moment when the second device sends the second data frame is also the reference moment. The moment when the first device receives the second data frame is T2. A second time delay T2 exists between the moment when the first device receives the second data frame and the reference moment.
  • step 403 the first device obtains the first offset according to the LFMS a1 in the first reflection data frame.
  • the fact that the first device obtains the first offset according to the LFMS a1 in the first reflection data frame can also be understood as the first device obtaining the first offset according to the LFMS a1 in the first reflection data frame and the LFMS a1 in the first data frame quantity.
  • the first offset is the difference in the time domain between the first reflected data frame and the second data frame in the mixed signal. That is, the first offset is equal to the difference between the first time delay T1 and the second time delay T2. Therefore, the first device needs to obtain the first delay T1 and the second delay T2 first, and then calculate the difference according to the first delay T1 and the second delay T2.
  • the first time delay T1 includes a rough first time delay T1 or a precise first time delay T1.
  • the first device may calculate the first offset according to the rough first delay T1 and the second delay T2, or may calculate the first offset according to the precise first delay T1 and the second delay T2.
  • FIG. 11 is a schematic structural diagram of the K first sequences provided in this application.
  • the first device divides the mixed signal into K sequence blocks with the same length as the LFMS a1 in the time domain, and obtains K first sequences, where K is an integer greater than 1.
  • This method does not need to use the second data frame in the mixed signal to calculate the first time delay T1, so the mixed signal in FIG. 11 does not reflect the relevant content of the second data frame.
  • K is 9.
  • the first device divides the mixed signal into 9 sequence blocks equal in length to LFMS a1. Each sequence block is called the first sequence.
  • the first device performs fractional Fourier transform of the angle a1 on the nine first sequences to obtain nine first functions.
  • the first device obtains the maximum modulus value of each first function, and obtains 9 maximum modulus values in total.
  • the first device determines the largest of the 9 largest modulo values, which is referred to as the first target modulo value.
  • the first sequence corresponding to the first target modulus value is referred to as the first target sequence.
  • the starting moment of the first target sequence is the first target moment.
  • the first time delay T1 is equal to the difference between the reference time and the first target time.
  • the maximum modulus value corresponding to the first sequence is the maximum value among the 9 maximum modulus values. That is, the fifth first sequence is the first target sequence, and the first target time is 4t1.
  • the rough first time delay T1 is equal to the difference between the first target time and the reference time, that is, the rough first time delay T1 is equal to 4t1.
  • the first device may also acquire the first time delay T1 in other ways.
  • the first device determines the first time delay T1 by using an optical time domain reflectometer.
  • the total length t is equal to the duration of one first data frame, the sum of the interval duration between data frames and the duration of one LFMS a1.
  • the above-mentioned interval duration (not shown in the drawings). It should be understood that the above-mentioned acquisition of the first time delay T1 is to determine the frame header position of the first reflected data frame.
  • the reference time is the time when the first device sends the first data frame.
  • the first device When the reference time is any time after the first device receives the first reflected data frame, the first device only needs to ensure that the total length t includes a complete reflected signal of LFMS a1, and the first device can use the above method to determine the first A frame header position of a reflected data frame.
  • the number of the first sequences divided by the first device can be reduced, and the time for the first device to obtain the first delay T1 can be accelerated. Therefore, the time delay between the first device and the second device can be reduced.
  • the first device may acquire the first time delay T1 according to the LFMS a2 in a similar manner. Specifically, as shown in FIG. 11 , the first device divides the mixed signal into H sequence blocks with the same length as LFMS a2 in the time domain, and obtains H second sequences, where H is an integer greater than 1. Since the duration of LFMS a2 is equal to the duration of LFMS a1, the first sequence is equal to the second sequence. Because the sixth second sequence contains most of the reflected signal of LFMS a2, the maximum modulus value corresponding to the second sequence is the maximum value among the 9 maximum modulus values.
  • the sixth second sequence is the second target sequence, and the second target time is 5t1.
  • the first device selects LFMS a2 or LFMS a1 to determine a rough first time delay T1.
  • the method for obtaining the rough first time delay T1 is described above. As shown in FIG. 11 , the rough first time delay T1 is 4t1, and there is a difference ⁇ t1 (also referred to as a first correction value) between 4t1 and T1.
  • the first device may correct the rough first time delay T1 by using the first correction value to obtain the precise first time delay T1.
  • the process of acquiring the first correction value by the first device will be described below.
  • FIG. 12 is a schematic diagram of waveforms of the LFMS provided in this application in the time domain, frequency domain and fractional domain.
  • the t-axis is the waveform diagram of LFMS in the time domain.
  • the U-axis is the waveform of LFMS in the fractional domain.
  • the ⁇ -axis is the waveform of LFMS in the fractional domain.
  • the waveform of the U-axis can be obtained.
  • the ordinate of the U axis is the modulo value.
  • the first device obtains the digital signal of the first data frame by using the discrete LFMS a1 signal and the discrete signal.
  • the first device retains a discrete LFMS a1 signal (hereinafter abbreviated as LFMS a1).
  • the first device performs fractional Fourier transform of the angle a1 on the LFMS a1 in the time domain to obtain the a1 shock function.
  • the abscissa of the maximum modulus value of the a1 shock function is U1.
  • the first device determines the first target modulus value.
  • the abscissa of the first target modulus value is U2.
  • the first device obtains the a2 argument difference ⁇ U a2 .
  • the first device divides the mixed signal into H sequence blocks with the same length as the LFMS a2 in the time domain, and obtains H second sequences, where H is an integer greater than 1.
  • the first device performs fractional Fourier transform of the angle a2 on the H second sequences to obtain H second functions.
  • the first device obtains the maximum modulus value of each second function, and obtains H maximum modulus values in total.
  • the first device determines the largest of the H largest modulus values, which is referred to as the second target modulus value.
  • the second sequence corresponding to the second target modulus value is called the second target sequence.
  • the abscissa of the second target sequence is U4.
  • the first device performs fractional Fourier transform of the angle a2 on the LFMS a2 to obtain the a2 shock function, and the abscissa of the maximum modulus value of the a2 shock function is U3.
  • the a2 argument difference value ⁇ U a2 U4 ⁇ U3.
  • the first device calculates according to the following formula
  • ⁇ U a1 ⁇ t1cos(a1)+ ⁇ f a sin(a1)
  • ⁇ U a2 ⁇ t1cos(a2)+ ⁇ f a sin(a2);
  • ⁇ t1 is the first correction value
  • ⁇ f a is the frequency offset between the first data frame and the first reflected data frame
  • a1 is the angle of the LFMS a1
  • a2 is the angle of the LFMS a2.
  • the first device uses the first correction value to correct the rough first time delay T1 to obtain the precise first time delay T1.
  • the duration of the LFMS a1 will affect the magnitude of the first correction value. Generally speaking, the smaller the duration of LFMS a1, the smaller the first correction value.
  • the first correction value may be smaller than a certain threshold. At this time, the first device may not correct the rough first time delay T1 by using the first correction value. That is, the first device may acquire the first offset according to the rough first time delay T1.
  • the process of acquiring the first time delay T1 by the first device is described above.
  • the first device can obtain the second time delay T2 according to LFMS a3 and LFMS a4.
  • the second time delay T2 may be a precise second time delay T2, or a rough second time delay T2. After that, the first device obtains the first offset according to the first delay T1 and the second delay T2.
  • step 404 the first device obtains a reconstructed data frame of the first reflected data frame according to the first data frame.
  • the present application hopes to obtain the carrier phase information in the first reflected data frame, and then use the carrier phase information to reconstruct the first reflected data frame to improve the accuracy of the first reconstructed data frame.
  • the first device carries the LFMS b1 in the first data frame, and subsequently obtains the carrier phase information through the LFMS b1 in the first reflected data frame.
  • obtaining the carrier phase information through the LFMS b1 in the first reflected data frame can also be understood as obtaining the carrier phase information through the LFMS b1 in the first reflected data frame and the LFMS b1 in the first data frame.
  • obtaining the carrier phase information through the LFMS b1 in the first reflected data frame can also be understood as obtaining the carrier phase information through the LFMS b1 in the first reflected data frame and the LFMS b1 in the first data frame.
  • the LFMS b1 For the description of the LFMS b1, reference may be made to the description in the aforementioned step 401. The following describes the flow of the first device acquiring the carrier phase information according to the LFMS b1.
  • the first device intercepts the first reflected data frame in the mixed signal in the time domain.
  • the first device filters out the LFMS b1 in the first reflected data frame in the frequency domain.
  • the first device performs fractional Fourier transform on the LFMS b1 in the first reflection data frame in the time domain to obtain the b1 impulse function.
  • the first device performs inverse fractional Fourier transform on the target impulse function to obtain LFMS b2.
  • the target shock function is the part of the b1 shock function including the maximum modulus value.
  • the abscissa of the b1 impulse function is the U axis
  • the ordinate is the modulus value.
  • the target shock function may be the portion corresponding to the abscissa 200 intercepted in the b1 shock function.
  • the target shock function is the portion of the b1 shock function between the abscissa 150 and the abscissa 250 .
  • the target shock function is the portion of the b1 shock function between the abscissa 180 and the abscissa 250 .
  • the first device performs fractional Fourier transform of the angle b1 on the LFMS b1 to obtain the b1 shock function, and the abscissa of the maximum modulus value of the b1 shock function is ⁇ U b1 .
  • the first device acquires the frequency offset value ⁇ f b according to ⁇ U b1 . Specifically, the first device obtains ⁇ f b according to the following formula:
  • ⁇ f b is the frequency offset value
  • b1 is the angle of LFMS b1.
  • the first device frequency offsets the LFMS b2 by ⁇ f b .
  • the first device divides LFMS b2 and LFMS b1 to obtain a complex function.
  • the first device acquires carrier phase information of a complex function. After that, the first device obtains the first reconstructed data frame based on the first data frame and the carrier phase information.
  • step 405 the first device removes the reconstructed data frame of the first reflected data frame in the mixed signal according to the first offset to obtain a first initial signal of the second data frame.
  • the first device obtains the first offset and the second time delay T2. Therefore, the first device may eliminate the first reconstructed data frame in the mixed signal under the condition that the offset between the first reconstructed data frame and the second data frame is the first offset.
  • the mixed signal further includes a second reflected data frame of the first data frame.
  • the time delay between the second reflected data frame and the reference moment is the third time delay T3.
  • the first device obtains the second offset according to the LFMS a1 in the first reflected data frame, and the second offset is the offset between the second reflected data frame and the second data frame in the time domain (the third time delay T3 and the second time delay T2).
  • the first device further obtains the reconstructed data frame of the second reflected data frame according to the first data frame, and eliminates the reconstructed data frame of the second reflected data frame in the first initial signal according to the second offset to obtain the second data frame the second initial signal.
  • the power of the second reflected data frame is smaller than the power of the first reflected data frame.
  • the first device first removes the reconstructed data frame of the first reflected data frame in the mixed signal to obtain the first initial signal. Then, the first device eliminates the reconstructed data frame of the second reflected data frame in the first initial signal to obtain a second initial signal. Wherein, compared with the first device, the reconstructed data frame of the first reflected data frame is eliminated in the mixed signal to obtain the first initial signal. The first device then reflects the reconstructed data frame of the first data frame in the first initial signal to obtain a second initial signal. The present application can improve the quality of the finally obtained second initial signal.
  • the carrier phase information extracted by the first device on the first reflected data frame and the second reflected data frame may be different. Therefore, even if the first device obtains the reconstructed data frame according to the first data frame, the reconstructed data frame of the first reflected data frame and the reconstructed data frame of the second reflected data frame may be different.
  • FIG. 14 is a schematic structural diagram of a receiving apparatus provided in an embodiment of the present application.
  • the receiving apparatus includes: a sending module 1401 , a receiving module 1402 , a processing module 1403 , a reconstruction module 1404 and a cancellation module 1405 .
  • the sending module 1401 is configured to send a first data frame to the second device, where the first data frame includes LFMS a1.
  • the receiving module 1402 is configured to receive a mixed signal, where the mixed signal includes a first reflected data frame of the first data frame and a second data frame sent by the second device.
  • the processing module 1403 is configured to obtain a first offset according to the LFMS a1 in the first reflection data frame, where the first offset is an offset between the first reflection data frame and the second data frame in the time domain.
  • the reconstruction module 1404 is configured to obtain a reconstructed data frame of the first reflected data frame according to the first data frame.
  • the elimination module 1405 is configured to eliminate the reconstructed data frame of the first reflected data frame in the mixed signal according to the first offset to obtain the first initial signal of the second data frame.
  • the modules in the receiving apparatus are specifically configured to perform all or part of the operations that can be performed by the first device in the above-mentioned embodiment corresponding to FIG. 4 .
  • FIG. 15 is a schematic structural diagram of a receiving device provided in an embodiment of the present application.
  • the receiving device includes a processor 1501 and a transceiver 1502 .
  • the processor 1501 and the transceiver 1502 are interconnected by wires.
  • the processor 1501 may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • the processor 1501 may further include hardware chips or other general-purpose processors.
  • the above-mentioned hardware chip may be an application specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the transceiver 1502 may be a fiber optic transceiver, a wireless radio frequency module, or the like.
  • the receiving device further includes a memory 1503 .
  • Memory 1503 may be volatile memory or nonvolatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the receiving device may be the corresponding first device in the foregoing embodiment in FIG. 4 .
  • the transceiver 1502 is specifically configured to send the first data frame to the second device, where the first data frame includes the LFMS a1.
  • the transceiver 1502 is further configured to receive a mixed signal, where the mixed signal includes a first reflected data frame of the first data frame and a second data frame sent by the second device.
  • the processor 1501 is configured to perform all or part of the operations that can be performed by the first device in the foregoing embodiment of FIG. 4 according to the first data frame and the mixed signal.
  • the present application also provides a digital processing chip.
  • the digital processing chip integrates circuits and one or more interfaces for implementing the functions of the processor 1501 described above.
  • the digital processing chip can perform the method steps of any one or more of the foregoing embodiments.
  • no memory is integrated in the digital processing chip, it can be connected with an external memory through an interface.
  • the digital processing chip implements the actions performed by the first device in the above embodiment according to the program codes stored in the external memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了一种数据接收方法,应用于同波、单纤双向光通信系统中。该方法包括:第一设备向第二设备发送第一数据帧,第一数据帧包括LFMS a1。第一设备接收混合信号,混合信号包括第一数据帧的第一反射数据帧和第二设备发送的第二数据帧。第一设备根据第一反射数据帧中的LFMS a1获取第一偏移量,根据第一数据帧得到第一反射数据帧的重构数据帧。第一设备根据第一偏移量在混合信号中消除第一反射数据帧的重构数据帧。本申请通过第一偏移量消除混合信号中的重构数据帧,可以降低第一反射数据帧和第二数据帧到达第一设备的时间差的影响,进而提高通信质量。

Description

数据接收方法、接收装置以及相关设备
本申请要求于2021年3月10日提交中国国家知识产权局、申请号为CN202110261186.6、申请名称为“数据接收方法、接收装置以及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及数据接收方法、接收装置以及相关设备。
背景技术
在同波的单纤双向光通信系统中,东向终端所产生的信号和西向终端所产生的信号共用同一根光纤,并且使用同一个通信频带。因此,可以使得系统的整体通信容量增加一倍。
但是,当系统存在光纤的连接头端面时,会产生菲涅尔反射。因此,对于东向终端接收的混合信号而言。混合信号不仅包括西向终端产生的信号,还包括东向终端自身产生的信号的反射串扰信号。由于西向终端产生的信号和反射串扰信号属于相同的通信频带,东向终端无法通过滤波的方式消除反射串扰信号。为此,可以通过东向终端自身产生的信号重构反射串扰信号。然后在混合信号中消除重构的反射串扰信号,得到西向终端产生的信号。
在实际应用中,反射串扰信号和西向终端产生的信号到达东向终端的时间可能存在时间差,该时间差会影响得到的信号的质量,降低通信质量。
发明内容
本申请提供了一种数据接收方法、接收装置以及相关设备,可以通过第一偏移量消除混合信号中第一反射数据帧的重构数据帧,降低时间差的影响,进而提高通信质量。
本申请第一方面提供了一种降低反射串扰的方法。该方法包括:第一设备向第二设备发送第一数据帧,第一数据帧包括线性调频序列LFMS a1。之后,第一设备接收混合信号,混合信号包括第一数据帧的第一反射数据帧和第二设备发送的第二数据帧。第一设备根据第一反射数据帧中的LFMS a1获取第一偏移量,第一偏移量是第一反射数据帧和第二数据帧在时域上的偏移量。在获取第一偏移量后,第一设备根据第一数据帧得到第一反射数据帧的重构数据帧。然后第一设备根据第一偏移量在混合信号中消除第一反射数据帧的重构数据帧,得到第二数据帧的第一初始信号。具体地,第一设备可以在第一反射数据帧的重构数据帧和第二数据帧的偏移量为第一偏移量的情况下,在混合信号中消除重构数据帧。之后,第一设备对第一初始信号进行后续的数字信号处理。例如载波相位恢复,信道均衡等。
在本申请中,第一设备通过第一反射数据帧中的LFMS a1获取了第一偏移量,即确定了混合信号中第一反射数据帧和第二数据帧的时间差。并且,第一设备根据第一偏移量在混合信号中消除第一反射数据帧的重构数据帧。因此,降低了时间差的影响,进而提高通 信质量。
在第一方面的一种可选方式中,第二数据帧包括LFMS a3,第一设备根据第一反射数据帧中的LFMS a1获取第一时延,第一时延用于表征第一设备接收第一反射数据帧的时刻和参考时刻的时间差。第一设备根据第二数据帧中的LFMS a3获取第二时延,第二时延用于表征第一设备接收第二数据帧的时刻和参考时刻的时间差。其中,第一偏移量等于第一时延和第二时延的差值。
在第一方面的一种可选方式中,参考时刻为第一设备发送第一数据帧的时刻。在第一方面的一种可选方式中,第一设备对K个第一序列进行角度a1的分数阶傅里叶变换,得到K个第一函数。然后第一设备分别获取K个第一函数的最大模值,得到K个最大模值。K个第一序列是混合信号在时域上被划分成的K个与LFMS a1长度相等的序列块,K为大于1的整数。其中,第一时延等于参考时刻和K个第一序列中的第一目标序列的起始时刻的差值,第一目标序列和K个最大模值中的最大值对应。
在第一方面的一种可选方式中,第一数据帧还包括LFMS a2,第二数据帧还包括LFMS a4。第一设备对LFMS a1进行角度a1的分数阶傅里叶变换,得到a1冲击函数,a1冲击函数的最大模值的横坐标为U1,第一目标模值的横坐标为U2,a1自变量差值ΔU a1=U2-U1。第一设备对H个第二序列进行角度a2的分数阶傅里叶变换,得到H个第二函数。然后第一设备分别获取H个第二函数的最大模值,得到H个最大模值。H个第二序列是混合信号在时域上被划分成的H个与LFMS a2长度相等的序列块,H为大于1的整数。第一设备对LFMS a2进行角度a2的分数阶傅里叶变换,得到a2冲击函数,a2冲击函数的最大模值的横坐标为U3,第二目标模值的横坐标为U4,第二目标模值是H个最大模值中的最大值,a2自变量差值ΔU a2=U4-U3。第一设备根据ΔU a1和ΔU a2获取第一修正值。第一设备根据第一修正值修正第一时延。其中,通过第一修正值修正第一时延,可以提高第一时延的准确性,即提高了根据第一时延获取的第一偏移量的准确性。准确性可以理解为获取值和实际值的相似程度。并且,第一偏移量的准确性越高,消除重构数据帧的效果越好,得到的信号的质量越高。因此,可以进一步降低第一偏移量的影响,提高通信质量。
在第一方面的一种可选方式中,第一偏移量等于修正后的第一时延和第二时延的差值。
在第一方面的一种可选方式中,第一设备根据以下公式获取第一修正值:ΔU a1=Δt1cos(a1)+Δf asin(a1),ΔU a2=Δt1cos(a2)+Δf asin(a2)。其中,Δt1为第一修正值,Δf a为第一数据帧和第一反射数据帧的频偏,a1是LFMS a1的角度,a2是LFMS a2的角度。其中,本申请中的第一修正值考虑了频率偏移的影响,因此可以进一步提高第一时延的准确性,提高通信质量。
在第一方面的一种可选方式中,LFMS a1和LFMS a3相同,LFMS a4和LFMS a2相同。
在第一方面的一种可选方式中,在频域上,LFMS a1和LFMS a2重叠,LFMS a3和LFMS a4重叠。LFMS a1和LFMS a3不重叠,LFMS a1和LFMS a3的频率范围之和等于第一数据帧或第二数据帧的载荷的频率范围。其中,通过限定上述内容,可以提高第一设备获取的第一时延和第二时延的准确性,即提高了第一偏移量准确性。因此,可以进一步降低第一偏移量的影响,提高通信质量。
在第一方面的一种可选方式中,在时域上,LFMS a1和/或LFMS a2在第一数据帧的载荷之前。其中,LFMS a1和/或LFMS a2在载荷之前,则第一设备可以先接收到第一反射数据帧中的第一目标序列和/或第二目标序列,后接收到载荷。第一目标序列包括第一反射数据帧中的部分或全部LFMS a1,第二目标序列包括第一反射数据帧中的部分或全部LFMS a2。第一设备在接收到第一目标序列和第二目标序列后,就可以开始进行第一偏移量的计算。因此,可以提高第一设备获取第一偏移量的速度,即降低了第一设备和第二设备之间的时延。
在第一方面的一种可选方式中,在时域上,LFMS a1和LFMS a2不重叠,LFMS a1,LFMS a2和第一数据帧的载荷不重叠。其中,通过限定上述内容,可以提高第一设备获取的第一时延准确性,即提高了第一偏移量的准确性。因此,可以进一步降低第一偏移量的影响,提高通信质量。
在第一方面的一种可选方式中,第一数据帧还包括LFMS b1。所述方法还包括:第一设备根据第一反射数据帧中的LFMS b1得到第一反射数据帧的载波相位信息。第一设备基于第一数据帧和载波相位信息,得到第一反射数据帧的重构数据帧。其中,在传输过程中,第一设备发送的第一数据帧会受到载波相位信息(噪声和频偏)的影响。因此,通过使用载波相位信息进行重构可以提高第一反射数据帧的重构数据帧的准确性。并且,第一反射数据帧的重构数据帧的准确性越高,消除重构数据帧的效果越好,得到的信号的质量越高。因此,可以进一步提高通信质量。
在第一方面的一种可选方式中,在第一设备根据第一反射数据帧中的LFMS b1得到第一反射数据帧的载波相位信息之前,所述方法还包括:第一设备对LFMS b1进行角度b1的分数阶傅里叶变换,得到b1冲击函数,b1冲击函数的最大模值的横坐标为ΔU b1。第一设备根据ΔU b1获取频偏值Δf b,其中,ΔU b1=Δf b×sin(b1),Δf b为Δf a经过修正后的频偏,b1是LFMS b1的角度。第一设备利用Δf b对第一反射数据帧中的LFMS b1进行频率偏移。其中,在信号光传输过程中,信号光的频率可能会发生改变,即第一反射数据帧和第一数据帧存在频率偏移。本申请中的第一设备先获取第一反射数据帧和第一数据帧的频偏值Δf b,然后通过Δf b对第一反射数据帧进行频率偏移,在频率偏移后的第一反射数据帧上提取载波相位信息。因此,可以提高载波相位信息和第一数据帧在频率上的相适应程度,即提高第一反射数据帧的重构数据帧的准确性。因此,可以进一步提高通信质量。
在第一方面的一种可选方式中,第一设备截取混合信号中的第一反射数据帧。第一设备滤出第一反射数据帧中的LFMS b1。第一设备对第一反射数据帧中的LFMS b1进行分数阶傅里叶变换,得到b1冲激函数。第一设备对目标冲激函数进行反分数阶傅里叶变换,得到LFMS b2,目标冲击函数为b1冲击函数中包括最大模值的部分。第一设备利用Δf b对LFMS b2进行频率偏移。第一设备对LFMS b2和LFMS b1做除法,得到复数函数;第一设备获取复数函数的载波相位信息。
在第一方面的一种可选方式中,LFMS b1的时间范围和第一数据帧的时间范围重叠,第一数据帧的时间范围等于第一数据帧的载荷的时间范围和LFMS a1,LFMS a2的时间范围之和。其中,通过限定上述内容,可以提高第一设备获取的载波相位信息的准确性,即提高了后续重构的重构数据帧的准确性。因此,可以进一步提高通信质量。
在第一方面的一种可选方式中,LFMS b1和第一数据帧的载荷的频率间隔大于第一阈值。其中,当LFMS b1和第一数据帧的载荷频域重叠时,因为第一反射数据帧中的LFMS b1的功率小于载荷功率,第一反射数据帧中的LFMS b1会被载荷淹没。因此。不利于第一设备在频域上滤出第一反射数据帧中的LFMS b1,影响后续提取的载波相位信息的准确性。因此,本申请可以提高获取的载波相位信息的准确性,即提高了后续重构的重构数据帧的准确性。因此,本申请可以进一步提高通信质量。
在第一方面的一种可选方式中,混合信号还包括第一数据帧的第二反射数据帧。第一设备根据第一反射数据帧中的LFMS a1获取第二偏移量,第二偏移量是第二反射数据帧和第二数据帧在时域上的偏移量。第一设备根据第一数据帧得到第二反射数据帧的重构数据帧。第一设备根据第二偏移量在第一初始信号中消除第二反射数据帧的重构数据帧,得到第二数据帧的第二初始信号。其中,混合信号中可能包括第一数据帧的多个反射串扰信号。第一设备不仅在混合信号中消除了第一反射数据帧的重构数据帧,还在得到的第一初始信号中消除第二反射数据帧的重构数据帧。因此,可以进一步提高得到的信号的质量。
在第一方面的一种可选方式中,第二反射数据帧的功率小于第一反射数据帧的功率。其中,相比于第一设备先消除第二反射数据帧,然后消除第一数据帧。本申请可以提高最终得到的第二初始信号的质量。因此,本申请可以进一步提高得到的信号的质量。
本申请第二方面提供了一种接收装置。接收装置包括:发送模块,用于向第二设备发送第一数据帧,第一数据帧包括线性调频序列LFMS a1。接收模块,用于接收混合信号,混合信号包括第一数据帧的第一反射数据帧和第二设备发送的第二数据帧。处理模块,用于根据第一反射数据帧中的LFMS a1获取第一偏移量,第一偏移量是第一反射数据帧和第二数据帧在时域上的偏移量。重构模块,用于根据第一数据帧得到第一反射数据帧的重构数据帧。消除模块,用于根据第一偏移量在混合信号中消除第一反射数据帧的重构数据帧,得到第二数据帧的第一初始信号。
在第二方面的一种可选方式中,第二数据帧包括LFMS a3处理模块具体用于根据第一反射数据帧中的LFMS a1获取第一时延,第一时延用于表征第一设备接收第一反射数据帧的时刻和参考时刻的时间差。处理模块具体用于根据第二数据帧中的LFMS a3获取第二时延,第二时延用于表征第一设备接收第二数据帧的时刻和参考时刻的时间差。其中,第一偏移量等于第一时延和第二时延的差值。
在第二方面的一种可选方式中,参考时刻为第一设备发送第一数据帧的时刻。
在第二方面的一种可选方式中,处理模块具体用于对K个第一序列进行角度a1的分数阶傅里叶变换,得到K个第一函数的K个最大模值。每个第一函数对应一个最大模值。K个第一序列是混合信号在时域上被划分成的K个与LFMS a1长度相等的序列块,K为大于1的整数。其中,第一时延等于参考时刻和K个第一序列中的第一目标序列的起始时刻的差值,第一目标序列和K个最大模值中的最大值对应。
在第二方面的一种可选方式中,第一数据帧还包括LFMS a2,第二数据帧还包括LFMS a4。处理模块还用于对LFMS a1进行角度a1的分数阶傅里叶变换,得到a1冲击函数。a1冲击函数的最大模值的横坐标为U1,第一目标模值的横坐标为U2,a1自变量差值ΔU a1=U2-U1。处理模块还用于对H个第二序列进行角度a2的分数阶傅里叶变换,得到H个第二 函数的H个最大模值。每个第二函数对应一个最大模值。H个第二序列是混合信号在时域上被划分成的H个与LFMS a2长度相等的序列块,H为大于1的整数。处理模块还用于对LFMS a2进行角度a2的分数阶傅里叶变换,得到a2冲击函数。a2冲击函数的最大模值的横坐标为U3,第二目标模值的横坐标为U4。第二目标模值是H个最大模值中的最大值,a2自变量差值ΔU a2=U4-U3。处理模块还用于根据ΔU a1和ΔU a2获取第一修正值。处理模块还用于根据第一修正值修正第一时延。
在第二方面的一种可选方式中,第一偏移量等于修正后的第一时延和第二时延的差值。
在第二方面的一种可选方式中,处理模块具体用于根据以下公式获取第一修正值:ΔU a1=Δt1cos(a1)+Δf asin(a1),ΔU a2=Δt1cos(a2)+Δf asin(a2)。其中,Δt1为第一修正值,Δf a为第一数据帧和第一反射数据帧的频偏。a1是LFMS a1的角度,a2是LFMS a2的角度。
在第二方面的一种可选方式中,LFMS a1和LFMS a3相同,LFMS a4和LFMS a2相同。
在第二方面的一种可选方式中,在频域上,LFMS a1和LFMS a2重叠,LFMS a3和LFMS a4重叠,LFMS a1和LFMS a3不重叠,LFMS a3和LFMS a1的频率范围之和等于第一数据帧或第二数据帧的载荷的频率范围。
在第二方面的一种可选方式中,在时域上,LFMS a1和/或LFMS a2在第一数据帧的载荷之前。
在第二方面的一种可选方式中,在时域上,LFMS a1和LFMS a2不重叠,LFMS a1,LFMS a2和第一数据帧的载荷不重叠。
在第二方面的一种可选方式中,第一数据帧还包括LFMS b1。处理模块还用于根据第一反射数据帧中的LFMS b1得到第一反射数据帧的载波相位信息。重构模块具体用于基于第一数据帧和载波相位信息,得到第一反射数据帧的重构数据帧。
在第二方面的一种可选方式中,处理模块还用于对LFMS b1进行角度b1的分数阶傅里叶变换,得到b1冲击函数,b1冲击函数的最大模值的横坐标为ΔU b1。处理模块还用于根据ΔU b1获取频偏值Δf b,其中,ΔU b1=Δf b×sin(b1),Δf b为Δf a经过修正后的频偏,b1是LFMS b1的角度。处理模块还用于利用Δf b对第一反射数据帧中的LFMS b1进行频率偏移。
在第二方面的一种可选方式中,处理模块具体用于截取所述混合信号中的第一反射数据帧;处理模块具体用于滤出第一反射数据帧中的LFMS b1;处理模块具体用于对第一反射数据帧中的LFMS b1进行分数阶傅里叶变换,得到b1冲激函数;处理模块具体用于对目标冲激函数进行反分数阶傅里叶变换,得到LFMS b2,目标冲击函数为b1冲击函数中包括最大模值的部分;处理模块具体用于利用Δf b对LFMS b2进行频率偏移;处理模块具体用于对LFMS b2和LFMS b1做除法,得到复数函数;处理模块具体用于获取复数函数的载波相位信息。
在第二方面的一种可选方式中,LFMS b1的时间范围和第一数据帧的时间范围重叠。第一数据帧的时间范围等于第一数据帧的载荷的时间范围和LFMS a1,LFMS a2的时间范围之和。
在第二方面的一种可选方式中,LFMS b1和第一数据帧的载荷的频率间隔大于第一阈值。
在第二方面的一种可选方式中,第一阈值大于1G。
在第二方面的一种可选方式中,混合信号还包括第一数据帧的第二反射数据帧。处理模块还用于根据第一反射数据帧中的LFMS a1获取第二偏移量,第二偏移量是第二反射数据帧和第二数据帧在时域上的偏移量。重构模块还用于根据第一数据帧得到第二反射数据帧的重构数据帧。消除模块还用于根据第二偏移量在第一初始信号中消除第二反射数据帧的重构数据帧,得到第二数据帧的第二初始信号。
在第二方面的一种可选方式中,第二反射数据帧的功率小于第一反射数据帧的功率。
本申请第三方面提供了一种接收设备。接收设备包括:收发器和处理器。收发器用于向第二设备发送第一数据帧,第一数据帧包括线性调频序列LFMS a1。收发器还用于接收混合信号,混合信号包括第一数据帧的第一反射数据帧和第二设备发送的第二数据帧。处理器用于根据第一数据帧和混合信号执行前述第一方面或第一方面中任意一种可选方式所述的方法。
本申请第四方面提供了一种芯片。芯片包括:一个或多个电路和接口;接口用于接收混合信号,混合信号包括第一数据帧的第一反射数据帧和第二设备发送的第二数据帧。一个或多个电路用于根据第一数据帧和混合信号执行前述第一方面或第一方面中任意一种可选方式所述的方法。
本申请第五方面提供了一种计算机存储介质,其特征在于,所述计算机存储介质中存储有指令,所述指令在计算机上执行时,使得所述计算机执行如第一方面或第一方面任意一种实施方式所述的方法。
本申请第六方面提供了一种计算机程序产品,其特征在于,所述计算机程序产品在计算机上执行时,使得所述计算机执行如第一方面或第一方面任意一种实施方式所述的方法。
附图说明
图1为单纤双向光通信系统的一个网络框架示意图;
图2为混合信号和反射重构信号在时域上的结构示意图;
图3为本申请中提供的单纤双向光通信系统的另一个网络框架示意图;
图4为本申请中提供的数据接收方法的流程示意图;
图5为本申请中提供的发射机的结构示意图;
图6为本申请中提供的第一数据帧在时域上的结构示意图;
图7为本申请中提供的第一数据帧在频域上的结构示意图;
图8为本申请中提供的第一数据帧和第二数据帧在频域上的一个结构示意图;
图9为本申请中提供的第一数据帧和第二数据帧在频域上的另一个结构示意图;
图10为本申请中提供的混合信号在时域上的一个结构示意图;
图11为本申请中提供的K个第一序列的结构示意图;
图12为本申请中提供的LFMS在时域,频域和分数域的波形示意图;
图13为本申请中提供的a1自变量差值ΔU a1和a2自变量差值ΔU a2在分数域的结构示意图;
图14为本申请实施例中提供的接收装置的一个结构示意图;
图15为本申请实施例中提供的接收设备的结构示意图。
具体实施方式
本申请提供了一种数据接收方法、接收装置以及相关设备,可以通过第一偏移量消除混合信号中第一反射数据帧的重构数据帧,降低时间差的影响,进而提高通信质量。应理解,本申请实施例的描述中使用“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请提供的方法、装置以及相关设备应用于光通信领域。具体地,可以应用于单纤双向光通信系统。图1为单纤双向光通信系统的一个网络框架示意图。如图1所示,系统包括第一设备(也称东向终端),放大设备和第二设备(也称西向终端)。第一设备包括发射机101,环形器103和接收机102。放大设备包括环形器104,放大器105,环形器106和放大器107。第二设备包括环形器108,发射机109和接收机110。
第一设备通过发射机101产生第一光信号(也称第一数据帧),第一光信号经过环形器103后,通过光纤1传输至放大设备。第一光信号经过放大设备中的环形器104后,依次经过放大器105和环形器106。从环形器106输出的第一光信号经过光纤2传输至第二设备的环形器108,进入接收机110。类似的,第二设备的发射机109产生的第二光信号(也称第二数据帧)依次经过环形器108,光纤2,环形器106,放大器107,环形器104,光纤1,环形器103和接收机102。
第一设备不仅可以接收到第二设备发送的第二光信号,还会接收到第一光信号的反射信号。例如,由光纤的连接头端面的菲涅尔反射产生的反射信号。例如光纤1和环形器103之间存在连接头端面。第一光信号通过环形器103进入光纤1时,会产生第一光信号的反射信号。发射信号通过环形器103环回至第一设备的接收机102。在同波的单纤双向光通信系统中,由于第一光信号和第二光信号的频带相同,则第一光信号的反射信号和第二光信号的频带相同。因此,第一设备无法简单的采用滤波的方式消除反射信号。
一种消除反射信号的方式是通过第一光信号重构反射信号,得到反射重构信号。在第一设备接收的混合信号中消除反射重构信号。
但是,第一设备接收的混合信号中,第二光信号和反射信号存在时间差。时间差会影响消除的结果,即影响得到的信号的质量。具体地,图2为混合信号和反射重构信号在时域上的结构示意图。如图2所示,第二光信号包括第二数据帧,反射信号包括反射数据帧,发射重构信号包括反射重构数据帧。第二数据帧和发射数据帧之间存在时间差T2-T1。因此,在混合信号中消除反射重构信号时,发射重构信号和混合信号中的第二数据帧也需要存在时间差T2-T1。否则会影响得到的信号的质量,降低通信质量。
为此,本申请提供了一种数据接收方法。在该方法中,第一设备向第二设备发送的第一数据帧中携带有LFMS a1。第一设备接收的混合信号包括第二设备发送的第二数据帧和第一数据帧的第一反射数据帧。第一反射数据帧是第一数据帧的反射信号。在第一设备接收到混合信号后,第一设备根据第一反射数据帧中的LFMS a1获取第二数据帧和第一反射数据帧的第一偏移量。第一偏移量是第一反射数据帧和第二数据帧在时域上的偏移量(可以理解为上述时间差T2-T1)。之后,第一设备根据第一偏移量在混合信号中消除第一反 射数据帧的重构数据帧,得到第二数据帧的第一初始信号。下面对数据接收方法的应用场景进行描述。
应理解,图1所示的网络框架示意图只是一个示例,本领域技术人员可以根据其技术原理进行适应性的改变。例如,环形器104和环形器106的方向为逆时针。例如,单纤双向光通信系统不包括放大设备。例如,图3为本申请中提供的单纤双向光通信系统的另一个网络框架示意图。如图3所示,系统包括第一设备,环回设备和第二设备。第一设备包括发射机301,环形器303和接收机302。环回设备包括环形器305,光衰减器306。第二设备包括环形器307,发射机308和接收机309。
第一设备通过发射机301产生第一光信号。第一光信号经过环形器303后通过光纤传输至光耦合器304。第一光信号经过光耦合器304后进入环回设备。之后,第一光信号经过环形器305进入光衰减器306。再由光衰减器306返回至环形器305。此时,由光衰减器306返回的第一光信号也称为第一光信号的反射信号。反射信号通过光耦合器304返回至第一设备的接收机302。通过设置光衰减器306的衰减程度,可以控制反射信号的功率。因此,图3所示的系统可以用于模拟消除反射重构信号的过程,进而对数据接收方法的结果进行测试。
关于其他的可能的应用场景,本申请不再一一列举。下面以图1中的应用场景为例,对本申请中的数据接收方法进行描述。图4为本申请中提供的数据接收方法的流程示意图。如图4所示,数据接收方法包括以下步骤。
在步骤401中,第一设备向第二设备发送第一数据帧。
第一设备包括发射机和接收机。图5为本申请中提供的发射机的结构示意图。如图5所示,发射机包括激光器501,调制器502和任意波形发生器(Arbitrary Waveform Generator,AWG)503。离散信号用于生成载荷,离散LFMS a1信号用于生成LFMS a1。本申请对载荷中携带内容不做限定,因此对于离散信号也不做相关限定。发射机先将离散信号和离散LFMS a1信号进行混合,生成第一数据帧对应的数字信号。AWG 503将数据信号转化为模拟信号,并将模拟信号提供给调制器502。调制器502根据模拟信号调制激光器501产生的连续激光,产生第一光信号。第一光信号包括一个或多个第一数据帧。
线性调频序列(linear frequency modulated sequence,LFMS)实质上是一个频率随着时间线性变化的特殊序列,其数学表达式可以由以下公式表示:
s(t)=exp[iπ(2f 0t+f Mt 2)]
其中,f 0是LFMS的起始频率,f M是LFMS的调频斜率。
在其他实施例中,数字信号中还包括离散LFMS a2信号和离散LFMS b1信号。此时,根据数字信号得到第一数据帧包括LFMS a1,LFMS a2和LFMS b1。图6为本申请中提供的第一数据帧在时域上的结构示意图。如图6所示,第一数据帧包括LFMS a1,LFMS a2和LFMS b1。在时域上,LFMS a1的范围等于LFMS a2的范围。LFMS a1,LFMS a2的范围和载荷11(Payload 11)的范围之和等于LFMS b1的范围。图7为本申请中提供的第一数据帧在频域上的结构示意图。如图7所示,第一数据帧包括LFMS a1,LFMS a2和LFMS b1。LFMS a1的范围等于LFMS a2的范围。LFMS a1的范围和载荷11的范围重叠。LFMS a1和载荷11之间存在间隔Y。间隔Y大于第一阈值。
在其他实施例中,第一阈值为1.0GHz,或1.5GHz,或2.0GHz,或2.5GHz。具体地,图8为本申请中提供的第一数据帧和第二数据帧在频域上的一个结构示意图。如图8所示,第一数据帧和第二数据帧属于同一个信道。因此,在频域上,第一数据帧的载荷11(Payload 11)的范围和第二数据帧的载荷21(Payload 21)的范围相等。但是,在实际应用中,发射第一数据帧的激光器和发射第二数据帧的激光器可能存在频偏。例如,图9为本申请中提供的第一数据帧和第二数据帧在频域上的另一个结构示意图。相对于图8,图9中的载荷21向左产生偏移,使得载荷21的范围和LFMS b1的范围存在重叠。因此,第一反射数据帧中的LFMS b1的范围也可能和载荷21的范围存在重叠。并且,因为第一反射数据帧中的LFMS b1的功率小于载荷21的功率,第一反射数据帧中的LFMS b1会被载荷21淹没。因此,限定间隔Y大于第一阈值。
进一步地,间隔Y小于第二阈值。第二阈值为2.5GHz,或3.0GHz。具体地,假设一个信道的频带范围为75GHz,载荷的频率范围为64GHz。此时,不同信道的载荷和载荷之间的频率范围为75/2–64/2=5.5G。其中,5.5GHz范围内包括1个LFMS b1。即在5.5GHz中需要存在2个间隔区域。其中一个间隔区域为间隔Y。另外一个间隔为信道隔离区,具体可以用于预防第一设备的激光器的频率偏移。一般情况下,激光器随着温度的改变,其频率可能改变2~3GHz。因此,信道隔离区至少需要预留3GHz的频率范围。5.5-3=2.5GHz。在第二阈值为2.5GHz时,信道隔离区的频率范围为3GHz。类似的,当一个信道的频带范围为50GHz或100GHz时,可以根据上述方法推导适当的第二阈值。
应理解,上述在图6或图7中的第一数据帧只是一个示例。在实际应用中,可以对其进行适应性的改变。例如,在时域上,不要求LFMS a1和LFMS a2无缝衔接,即LFMS a1和LFMS a2之间可以存在间隔。类似的,不要求LFMS a2和载荷11无缝衔接。又例如,在时域上,LFMS b1的范围大于载荷11的范围,但是小于LFMS a1,LFMS a2的范围和载荷11的范围之和。又例如,在频率上,不要求LFMS a1和LFMS a2完全对齐,即LFMS a1的范围可以不等于LFMS a2的范围。又例如,在频率上,不要求LFMS a1,LFMS a2与载荷11的一侧对齐。
在步骤402中,第一设备接收混合信号,混合信号包括第二数据帧和第一数据帧的第一反射数据帧。
混合信号可以表示为:
Figure PCTCN2022078936-appb-000001
其中,Rx(n)表示第一设备接收到的第n个采样点的混合信号,F i表示第i个反射信号,S代表第二设备发送的第二光信号(也称第二数据帧)。假设反射信号的第一光信号X i(也称第一数据帧)可以获知,那么可以将上式改写成:
Figure PCTCN2022078936-appb-000002
其中,Fiber{·}代表光纤传输的影响,主要包括色散,非线性和双折射的影响。本申请对此不进行相关限定,默认为已知量。
Figure PCTCN2022078936-appb-000003
代表第i个反射信号上携带的载波相位信息。m i代表第i个反射信号和第二数据帧抵达第一设备的时间差。公式中的时间差用采样点数进行 表示,在后续的描述中,将直接采用时长表示。时间差也称为偏移量,例如,第1个反射信号(也称第一反射数据帧)和第二数据帧抵达第一设备的时间差称为第一偏移量。
在实际应用中,第一设备可以接收到第一光信号的1个或多个反射信号,下面将以混合信号包括1个反射信号(第一反射数据帧)为例进行说明。通过上面的公式可知,第一设备在混合信号中消除第一反射数据帧,便可以得到第二数据帧。因此,第一设备需要根据第一数据帧重构第一反射数据帧,得到第一反射数据帧的重构数据帧(也称第一重构数据帧)。然后第一设备根据第一偏移量在混合信号中消除第一重构数据帧。并且,第一重构数据帧的准确性越高,还原的第二数据帧越好。本申请中的准确性可以理解为获取值和实际值的相似程度。例如第一重构数据帧和第一反射数据帧的相似程度。
第二数据帧包括LFMS a3。关于LFMS a3的描述可以参考前述对LFMS a1的描述。在其他实施例中,第二数据帧还包括LFMS a4和LFMS b3。在时域上,LFMS a3,LFMS a4,LFMS b3,和第二数据帧的载荷21(Payload 21)的关系可以参考LFMS a1,LFMS a2,LFMS b1,和第一数据帧的载荷11的关系。在频域上,如图9所示,第二数据帧包括LFMS a3,LFMS a4,LFMS b3,和载荷21(Payload 21)。载荷21的范围和载荷11的范围相等。LFMS b1和LFMS b3位于载荷11或载荷21的两侧。LFMS a3的范围和LFMS a4的范围相等。LFMS a3的范围和LFMS a1的范围之和等于载荷11或载荷21的范围。
图10为本申请中提供的混合信号在时域上的一个结构示意图。除了混合信号,图10示意了两个第一数据帧和两个第二数据帧。第一数据帧包括LFMS a1(图示中简写为a1),LFMS a2(图示中简写为a2),LFMS b1(图示中简写为b1)和载荷。其中一个第一数据帧包括载荷11(Payload 11),另一个第一数据帧包括载荷12(Payload 12)。第二数据帧包括LFMS a3(图示中简写为a3),LFMS a4(图示中简写为a4),LFMS b3(图示中简写为b3)和载荷。其中一个第一数据帧包括载荷11(Payload 11),另一个第一数据帧包括载荷12(Payload 12)。
混合信号包括第一数据帧的第一反射数据帧。第一反射数据帧携带有第一数据帧类似的内容。例如,第一反射数据帧包括LFMS a1,LFMS a2和LFMS b1,载荷11的反射信号。假设第一设备发送第一数据帧的时刻为参考时刻,参考时刻为0。第一设备接收到第一反射数据帧的时刻为T1。第一设备接收第一反射数据帧的时刻和参考时刻之间存在第一时延T1。第二反射数据帧的相关内容将会在后续的描述中体现。
混合信号还包括第二数据帧。假设第二设备发送第二数据帧的时刻也为参考时刻。第一设备接收到第二数据帧的时刻为T2。第一设备接收到第二数据帧的时刻和参考时刻之间存在第二时延T2。
在步骤403中,第一设备根据第一反射数据帧中的LFMS a1获取第一偏移量。
第一设备根据第一反射数据帧中的LFMS a1获取第一偏移量也可以理解为第一设备根据第一反射数据帧中的LFMS a1和第一数据帧中的LFMS a1获取第一偏移量。第一偏移量是混合信号中第一反射数据帧和第二数据帧在时域上的差值。即第一偏移量等于第一时延T1和第二时延T2的差值。因此,第一设备需要先获取第一时延T1和第二时延T2,再根据第一时延T1和第二时延T2计算差值。第一时延T1包括粗略的第一时延T1或精确的第一时延T1。第一设备可以根据粗略的第一时延T1和第二时延T2计算第一偏移量,也可以根 据精确的第一时延T1和第二时延T2计算第一偏移量。
下面对第一设备获取粗略的第一时延T1的过程进行描述。图11为本申请中提供的K个第一序列的结构示意图。第一设备时域上将混合信号划分为K个与LFMS a1长度相等的序列块,得到的K个第一序列,K为大于1的整数。该方法计算第一时延T1不需要使用混合信号中的第二数据帧,因此图11中的混合信号未体现第二数据帧的相关内容。如图11所示,假设K为9。第一设备从参考时刻0开始,将混合信号划分为9个与LFMS a1长度相等的序列块。每个序列块称为第一序列。每个第一序列的长度为t1,9个第一序列的总长度t=9t1。第一设备对9个第一序列进行角度a1的分数阶傅里叶变换,得到9个第一函数。第一设备获取每个第一函数的最大模值,共获得9个最大模值。然后,第一设备确定9个最大模值中的最大值,将其称为第一目标模值。并将第一目标模值对应的第一序列称为第一目标序列。第一目标序列的起始时刻为第一目标时刻。第一时延T1等于参考时刻和第一目标时刻的差值。如图11所示,因为第5个第一序列包含了大部分的LFMS a1的反射信号,该第一序列对应的最大模值为9个最大模值中的最大值。即第5个第一序列为第一目标序列,第一目标时刻为4t1。粗略的第一时延T1等于第一目标时刻和参考时刻的差值,即粗略的第一时延T1等于4t1。
应理解,上述只是通过第一反射数据帧中的LFMS a1获取第一时延T1的一种示例。在实际应用中,第一设备还可以通过其他方式获取第一时延T1。例如第一设备通过光时域反射仪确定第一时延T1。
在其他实施例中,总长度t等于1个第一数据帧的时长,数据帧之间的间隔时长和1个LFMS a1的时长之和。其中,在第一设备接收的不同第一数据帧之间,存在上述间隔时长(附图中未示出)。应理解,上述获取第一时延T1是为了确定第一反射数据帧的帧头位置。在图11中,参考时刻为第一设备发送第一数据帧的时刻。当参考时刻为第一设备接收到第一反射数据帧之后的任意时刻时,第一设备只需要保证总长度t包括1个完整的LFMS a1的反射信号,第一设备就可以采用上述方法确定第一反射数据帧的帧头位置。限定总长度t的长度,可以减少第一设备划分的第一序列的数量,加快第一设备获取第一时延T1的时间。因此,可以减少第一设备和第二设备之间的时延。
应理解,当第一数据帧包括LFMS a2时,第一设备可以采用类似的方式根据LFMS a2获取第一时延T1。具体地,如图11所示,第一设备时域上将混合信号划分为H个与LFMS a2长度相等的序列块,得到的H个第二序列,H为大于1的整数。由于LFMS a2的时长等于LFMS a1的时长,所以第一序列等于第二序列。因为第6个第二序列包含了大部分的LFMS a2的反射信号,该第二序列对应的最大模值为9个最大模值中的最大值。即第6个第二序列为第二目标序列,第二目标时刻为5t1。粗略的第一时延T1等于5t1减去LFMS a1的时长,即粗略的第一时延T1等于5t1-t1=4t1。当第一数据帧包括LFMS a2和LFMS a1时,第一设备选择LFMS a2或LFMS a1确定粗略的第一时延T1。
上面对获取粗略的第一时延T1的方法进行了描述。如图11所示,粗略的第一时延T1为4t1,4t1和T1之间存在差值Δt1(也称为第一修正值)。第一设备可以通过第一修正值对粗略的第一时延T1进行修正,得到精确的第一时延T1。下面对第一设备获取第一修正值的过程进行描述。
图12为本申请中提供的LFMS在时域,频域和分数域的波形示意图。t轴为LFMS在时域上的波形图。U轴为LFMS在分数域上的波形图。ω轴为LFMS在分数域上的波形图。t轴的LFMS经过角度a的分数阶傅里叶变换后,可以得到U轴的波形图。U轴的纵坐标为模值。在上述步骤401中,第一设备通过离散LFMS a1信号和离散信号得到了第一数据帧的数字信号。第一设备保留有离散LFMS a1信号(后续简称为LFMS a1)。第一设备对时域上的LFMS a1进行角度a1的分数阶傅里叶变换,得到a1冲击函数。a1冲击函数的最大模值的横坐标为U1。在上述获取粗略的第一时延T1的过程中,第一设备确定了第一目标模值。相应的,第一目标模值的横坐标为U2。图13为本申请中提供的a1自变量差值ΔU a1和a2自变量差值ΔU a2在分数域的结构示意图。如图13所示,a1自变量差值ΔU a1=U2-U1。
类似的,第一设备获取a2自变量差值ΔU a2。具体地,第一设备在时域上将混合信号划分为H个与LFMS a2长度相等的序列块,得到的H个第二序列,H为大于1的整数。第一设备对H个第二序列进行角度a2的分数阶傅里叶变换,得到H个第二函数。第一设备获取每个第二函数的最大模值,共获得H个最大模值。然后,第一设备确定H个最大模值中的最大值,将其称为第二目标模值。并将第二目标模值对应的第二序列称为第二目标序列。第二目标序列横坐标为U4。第一设备对LFMS a2进行角度a2的分数阶傅里叶变换,得到a2冲击函数,a2冲击函数的最大模值的横坐标为U3。如图13所示,a2自变量差值ΔU a2=U4-U3。
第一设备根据获取的ΔU a2和ΔU a1,根据以下公式计算
ΔU a1=Δt1cos(a1)+Δf asin(a1)
ΔU a2=Δt1cos(a2)+Δf asin(a2);
其中,Δt1为第一修正值,Δf a为第一数据帧和第一反射数据帧的频偏,a1是LFMS a1的角度,a2是LFMS a2的角度。
在第一设备获取第一修正值后,第一设备利用第一修正值对粗略的第一时延T1进行修正,得到精确的第一时延T1。
应理解,LFMS a1的时长会影响第一修正值的大小。一般来说,LFMS a1的时长越小,第一修正值越小。当LFMS a1的时长足够小时,第一修正值可以小于某个阈值。此时,第一设备可以不利用第一修正值对粗略的第一时延T1进行修正。即第一设备可以根据粗略的第一时延T1获取第一偏移量。
上面对第一设备获取第一时延T1的流程进行了描述。类似的,第一设备可以根据LFMS a3和LFMS a4获取第二时延T2。第二时延T2可以是精确的第二时延T2,也可以是粗略的第二时延T2。之后,第一设备根据第一时延T1和第二时延T2获取第一偏移量。
在步骤404中,第一设备根据第一数据帧得到第一反射数据帧的重构数据帧。
根据前面的描述可知,第一重构数据帧的准确性越高,越有利于提高得到的信号的质量。因此,本申请希望获取第一反射数据帧中的载波相位信息,然后利用载波相位信息对第一反射数据帧进行重构,提升第一重构数据帧的准确性。具体地,第一设备在第一数据帧中携带LFMS b1,后续通过第一反射数据帧中的LFMS b1获取载波相位信息。其中,通过第一反射数据帧中的LFMS b1获取载波相位信息也可以理解为通过第一反射数据帧中的LFMS b1和第一数据帧中的LFMS b1获取载波相位信息。关于LFMS b1的描述,可以参 考前述步骤401中的描述。下面对第一设备根据LFMS b1获取载波相位信息的流程进行相关描述。
第一设备在时域上截取混合信号中的第一反射数据帧。第一设备在频域上滤出第一反射数据帧中的LFMS b1。第一设备在时域上对第一反射数据帧中的LFMS b1进行分数阶傅里叶变换,得到b1冲激函数。第一设备对目标冲激函数进行反分数阶傅里叶变换,得到LFMS b2。其中,目标冲击函数为b1冲击函数中包括最大模值的部分。具体地,b1冲激函数的横坐标为U轴,纵坐标为模值。假设b1冲击函数在横坐标上的范围为0至500,b1冲击函数的最大模值的横坐标为200。此时,目标冲击函数可以是在b1冲击函数中截取的包括横坐标200对应的部分。例如,目标冲击函数为b1冲击函数在横坐标150至横坐标250之间的部分。例如,目标冲击函数为b1冲击函数在横坐标180至横坐标250之间的部分。第一设备对LFMS b1进行角度b1的分数阶傅里叶变换,得到b1冲击函数,b1冲击函数的最大模值的横坐标为ΔU b1。第一设备根据ΔU b1获取频偏值Δf b。具体地,第一设备根据以下公式获取Δf b
ΔU b1=Δf b×sin(b1)
其中,Δf b是频偏值,b1是LFMS b1的角度。第一设备利用Δf b对LFMS b2进行频率偏移。第一设备对LFMS b2和LFMS b1做除法,得到复数函数。第一设备获取复数函数的载波相位信息。之后,第一设备基于第一数据帧和载波相位信息,得到第一重构数据帧。
在步骤405中,第一设备根据第一偏移量在混合信号中消除第一反射数据帧的重构数据帧,得到第二数据帧的第一初始信号。
在上述步骤403中,第一设备获取了第一偏移量和第二时延T2。因此,第一设备可以在第一重构数据帧和第二数据帧的偏移量为第一偏移量的情况下,在混合信号中消除第一重构数据帧。
在其他实施例中,混合信号还包括第一数据帧的第二反射数据帧。如图10所示,第二反射数据帧和参考时刻之间的时延为第三时延T3。第一设备根据第一反射数据帧中的LFMS a1获取第二偏移量,第二偏移量是第二反射数据帧和第二数据帧在时域上的偏移量(第三时延T3和第二时延T2的差值)。具体的流程可以参考前述第一设备获取第一偏移量的相关描述。第一设备还根据第一数据帧得到第二反射数据帧的重构数据帧,根据第二偏移量在第一初始信号中消除第二反射数据帧的重构数据帧,得到第二数据帧的第二初始信号。
进一步地,第二反射数据帧的功率小于第一反射数据帧的功率。在申请实施例中,第一设备先在混合信号中消除第一反射数据帧的重构数据帧,得到第一初始信号。然后第一设备在第一初始信号中消除第二反射数据帧的重构数据帧,得到第二初始信号。其中,相比于第一设备先在混合信号中消除第一反射数据帧的重构数据帧,得到第一初始信号。然后第一设备在第一初始信号中第一反射数据帧的重构数据帧,得到第二初始信号。本申请可以提高最终得到的第二初始信号的质量。
应理解,当第一反射数据帧和第二反射数据帧之间存在时延时,第一设备在第一反射数据帧和第二反射数据帧上提取的载波相位信息可能不同。因此,即使第一设备都是根据第一数据帧得到重构数据帧,第一反射数据帧的重构数据帧和第二反射数据帧的重构数据 帧也可能不同。
上面对本申请中的数据接收方法进行了描述,下面对本申请中提供的接收装置行描述。图14为本申请实施例中提供的接收装置的一个结构示意图。如图14所示,接收装置包括:发送模块1401,接收模块1402,处理模块1403,重构模块1404和消除模块1405。其中,发送模块1401用于向第二设备发送第一数据帧,第一数据帧包括LFMS a1。接收模块1402用于接收混合信号,混合信号包括第一数据帧的第一反射数据帧和第二设备发送的第二数据帧。处理模块1403用于根据第一反射数据帧中的LFMS a1获取第一偏移量,第一偏移量是第一反射数据帧和第二数据帧在时域上的偏移量。重构模块1404用于根据第一数据帧得到第一反射数据帧的重构数据帧。消除模块1405用于根据第一偏移量在混合信号中消除第一反射数据帧的重构数据帧,得到第二数据帧的第一初始信号。
在其他实施例中,接收装置中的模块具体用于执行上述图4对应的实施例中第一设备可以执行的全部或部分操作。
下面对本申请实施例中的接收设备进行描述。图15所示,图15为本申请实施例中提供的接收设备的结构示意图。
接收设备包括处理器1501和收发器1502。该处理器1501和收发器1502通过线路互联。
处理器1501可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器1501还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。
收发器1502可以是光纤收发器,无线射频模块等。
可选地,接收设备还包括存储器1503。存储器1503可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。
接收设备可以是上述图4实施例中对应的第一设备。收发器1502具体用于向第二设备发送第一数据帧,第一数据帧包括LFMS a1。收发器1502还用于接收混合信号,混合信号包括第一数据帧的第一反射数据帧和第二设备发送的第二数据帧。处理器1501用于根据第一数据帧和混合信号执行前述图4实施例中第一设备可以执行的全部或部分操作。
本申请还提供一种数字处理芯片。该数字处理芯片中集成了用于实现上述处理器1501的功能的电路和一个或者多个接口。当该数字处理芯片中集成了存储器时,该数字处理芯片可以完成前述实施例中的任意一个或多个实施例的方法步骤。当该数字处理芯片中未集成存储器时,可以通过接口与外置的存储器连接。该数字处理芯片根据外置的存储器中存储的程序代码来实现上述实施例中第一设备执行的动作。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (24)

  1. 一种数据接收方法,其特征在于,包括:
    第一设备向第二设备发送第一数据帧,所述第一数据帧包括线性调频序列LFMS a1;
    所述第一设备接收混合信号,所述混合信号包括所述第一数据帧的第一反射数据帧和所述第二设备发送的第二数据帧;
    所述第一设备根据所述第一反射数据帧中的所述LFMS a1获取第一偏移量,所述第一偏移量是所述第一反射数据帧和所述第二数据帧在时域上的偏移量;
    所述第一设备根据所述第一数据帧得到所述第一反射数据帧的重构数据帧;
    所述第一设备根据所述第一偏移量在所述混合信号中消除所述第一反射数据帧的重构数据帧,得到所述第二数据帧的第一初始信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第二数据帧包括LFMS a3,所述第一设备根据所述第一反射数据帧中的所述LFMS a1获取第一偏移量包括:
    所述第一设备根据所述第一反射数据帧中的所述LFMS a1获取第一时延,所述第一时延用于表征所述第一设备接收所述第一反射数据帧的时刻和参考时刻的时间差;
    所述第一设备根据所述第二数据帧中的所述LFMS a3获取第二时延,所述第二时延用于表征所述第一设备接收所述第二数据帧的时刻和所述参考时刻的时间差;
    其中,所述第一偏移量等于所述第一时延和所述第二时延的差值。
  3. 根据权利要求2所述的方法,其特征在于,所述参考时刻为所述第一设备发送所述第一数据帧的时刻。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一设备根据所述第一反射数据帧中的所述LFMS a1获取第一时延包括:
    所述第一设备对K个第一序列进行角度a1的分数阶傅里叶变换,得到K个第一函数的K个最大模值,每个第一函数对应一个最大模值,所述K个第一序列是所述混合信号在时域上被划分成的K个与所述LFMS a1长度相等的序列块,所述K为大于1的整数;
    其中,所述第一时延等于所述参考时刻和所述K个第一序列中的第一目标序列的起始时刻的差值,所述第一目标序列和所述K个最大模值中的最大值对应。
  5. 根据权利要求4所述的方法,其特征在于,所述第一数据帧还包括LFMS a2,所述第二数据帧还包括LFMS a4;
    所述方法还包括:
    所述第一设备对所述LFMS a1进行角度a1的分数阶傅里叶变换,得到a1冲击函数,所述a1冲击函数的最大模值的横坐标为U1,所述第一目标模值的横坐标为U2,a1自变量差值ΔU a1=U2-U1;
    所述第一设备对H个第二序列进行角度a2的分数阶傅里叶变换,得到H个第二函数的H个最大模值,每个第二函数对应一个最大模值,所述H个第二序列是所述混合信号在时域上被划分成的H个与所述LFMS a2长度相等的序列块,所述H为大于1的整数;
    所述第一设备对所述LFMS a2进行角度a2的分数阶傅里叶变换,得到a2冲击函数,所述a2冲击函数的最大模值的横坐标为U3,第二目标模值的横坐标为U4,所述第二目标模值是所述H个最大模值中的最大值,a2自变量差值ΔU a2=U4-U3;
    所述第一设备根据所述ΔU a1和所述ΔU a2获取第一修正值;
    所述第一设备根据所述第一修正值修正所述第一时延。
  6. 根据权利要求5所述的方法,其特征在于,所述第一设备根据所述ΔU 1和所述ΔU 2获取所述第一修正值包括:
    所述第一设备根据以下公式获取所述第一修正值:
    ΔU a1=Δt1cos(a1)+Δf asin(a1)
    ΔU a2=Δt1cos(a2)+Δf asin(a2);
    其中,所述Δt1为所述第一修正值,所述Δf a为所述第一数据帧和所述第一反射数据帧的频偏,所述a1是所述LFMS a1的角度,所述a2是所述LFMS a2的角度。
  7. 根据权利要求5至6任意一项所述的方法,其特征在于,所述LFMS a1和所述LFMS a3相同,所述LFMS a4和所述LFMS a2相同。
  8. 根据权利要求5至7任意一项所述的方法,其特征在于,在频域上,所述LFMS a1和所述LFMS a2重叠,所述LFMS a3和所述LFMS a4重叠,所述LFMS a1和所述LFMS a3不重叠,所述LFMS a3和所述LFMS a1的频率范围之和等于所述第一数据帧或所述第二数据帧的载荷的频率范围。
  9. 根据权利要求1至8任意一项所述的方法,其特征在于,在时域上,所述LFMS a1和/或所述LFMS a2在所述第一数据帧的载荷之前。
  10. 根据权利要求1至9任意一项所述的方法,其特征在于,在时域上,所述LFMS a1和所述LFMS a2不重叠,所述LFMS a1,所述LFMS a2和所述第一数据帧的载荷不重叠。
  11. 根据权利要求1至10任意一项所述的方法,其特征在于,所述第一数据帧还包括LFMS b1;
    所述方法还包括:
    所述第一设备根据所述第一反射数据帧中的所述LFMS b1得到所述第一反射数据帧的载波相位信息;
    所述第一设备根据所述第一数据帧得到所述第一反射数据帧的重构数据帧包括:
    所述第一设备基于所述第一数据帧和所述载波相位信息,得到所述第一反射数据帧的重构数据帧。
  12. 根据权利要求11所述的方法,其特征在于,在所述第一设备根据所述第一反射数据帧中的所述LFMS b1得到所述第一反射数据帧的载波相位信息之前,所述方法还包括:
    所述第一设备对所述LFMS b1进行角度b1的分数阶傅里叶变换,得到b1冲击函数,所述b1冲击函数的最大模值的横坐标为ΔU b1
    所述第一设备根据所述ΔU b1获取频偏值Δf b,其中,ΔU b1=Δf b×sin(b1),所述Δf b为Δf a经过修正后的频偏,所述b1是所述LFMS b1的角度;
    所述第一设备利用所述Δf b对所述第一反射数据帧中的所述LFMS b1进行频率偏移。
  13. 根据权利要求12所述的方法,其特征在于,所述第一设备根据所述第一反射数据帧中的所述LFMS b1得到所述第一反射数据帧的载波相位信息包括:
    所述第一设备截取所述混合信号中的所述第一反射数据帧;
    所述第一设备滤出所述第一反射数据帧中的所述LFMS b1;
    所述第一设备对所述第一反射数据帧中的所述LFMS b1进行分数阶傅里叶变换,得到 b1冲激函数;
    所述第一设备对目标冲激函数进行反分数阶傅里叶变换,得到LFMS b2,所述目标冲击函数为所述b1冲击函数中包括最大模值的部分;
    所述第一设备利用所述Δf b对所述第一反射数据帧中的所述LFMS b1进行频率偏移包括:
    所述第一设备利用所述Δf b对所述LFMS b2进行频率偏移;
    所述第一设备对所述LFMS b2和所述LFMS b1做除法,得到复数函数;
    所述第一设备获取所述复数函数的所述载波相位信息。
  14. 根据权利要求12或13所述的方法,其特征在于,所述LFMS b1的时间范围和所述第一数据帧的时间范围重叠,所述第一数据帧的时间范围等于所述第一数据帧的载荷的时间范围和所述LFMS a1,所述LFMS a2的时间范围之和。
  15. 根据权利要求12至14任意一项所述的方法,其特征在于,所述LFMS b1和所述第一数据帧的载荷的频率间隔大于第一阈值。
  16. 根据权利要求1至15任意一项所述的方法,其特征在于,所述混合信号还包括所述第一数据帧的第二反射数据帧;
    所述方法还包括:
    所述第一设备根据所述LFMS a1获取第二偏移量,所述第二偏移量是所述第二反射数据帧和所述第二数据帧在时域上的偏移量;
    所述第一设备根据所述第一数据帧得到所述第二反射数据帧的重构数据帧;
    所述第一设备根据所述第二偏移量在所述第一初始信号中消除所述第二反射数据帧的重构数据帧,得到所述第二数据帧的第二初始信号。
  17. 一种接收装置,其特征在于,包括:
    发送模块,用于向第二设备发送第一数据帧,所述第一数据帧包括线性调频序列LFMS a1;
    接收模块,用于接收混合信号,所述混合信号包括所述第一数据帧的第一反射数据帧和所述第二设备发送的第二数据帧;
    处理模块,用于根据所述第一反射数据帧中的所述LFMS a1获取第一偏移量,所述第一偏移量是所述第一反射数据帧和所述第二数据帧在时域上的偏移量;
    重构模块,用于根据所述第一数据帧得到所述第一反射数据帧的重构数据帧;
    消除模块,用于根据所述第一偏移量在所述混合信号中消除所述第一反射数据帧的重构数据帧,得到所述第二数据帧的第一初始信号。
  18. 根据权利要求17所述的装置,其特征在于,所述第二数据帧包括LFMS a3
    所述处理模块具体用于根据所述第一反射数据帧中的所述LFMS a1获取第一时延,所述第一时延用于表征所述第一设备接收所述第一反射数据帧的时刻和参考时刻的时间差;
    所述处理模块具体用于根据所述第二数据帧中的所述LFMS a3获取第二时延,所述第二时延用于表征所述第一设备接收所述第二数据帧的时刻和所述参考时刻的时间差;
    其中,所述第一偏移量等于所述第一时延和所述第二时延的差值。
  19. 根据权利要求18所述的装置,其特征在于,
    所述处理模块具体用于对K个第一序列进行角度a1的分数阶傅里叶变换,得到K个第一函数的K个最大模值,每个第一函数对应一个最大模值,所述K个第一序列是所述混合信号在时域上被划分成的K个与所述LFMS a1长度相等的序列块,所述K为大于1的整数;
    其中,所述第一时延等于所述参考时刻和所述K个第一序列中的第一目标序列的起始时刻的差值,所述第一目标序列和所述K个最大模值中的最大值对应。
  20. 根据权利要求19所述的装置,其特征在于,所述第一数据帧还包括LFMS a2,所述第二数据帧还包括LFMS a4;
    所述处理模块还用于对所述LFMS a1进行角度a1的分数阶傅里叶变换,得到a1冲击函数,所述a1冲击函数的最大模值的横坐标为U1,所述第一目标模值的横坐标为U2,a1自变量差值ΔU a1=U2-U1;
    所述处理模块还用于对H个第二序列进行角度a2的分数阶傅里叶变换,得到H个第二函数的H个最大模值,每个第二函数对应一个最大模值,所述H个第二序列是所述混合信号在时域上被划分成的H个与所述LFMS a2长度相等的序列块,所述H为大于1的整数;
    所述处理模块还用于对所述LFMS a2进行角度a2的分数阶傅里叶变换,得到a2冲击函数,所述a2冲击函数的最大模值的横坐标为U3,第二目标模值的横坐标为U4,所述第二目标模值是所述H个最大模值中的最大值,a2自变量差值ΔU a2=U4-U3;
    所述处理模块还用于根据所述ΔU a1和所述ΔU a2获取第一修正值;
    所述处理模块还用于根据所述第一修正值修正所述第一时延。
  21. 根据权利要求17至20任意一项所述的装置,其特征在于,所述第一数据帧还包括LFMS b1;
    所述处理模块还用于根据所述第一反射数据帧中的所述LFMS b1得到所述第一反射数据帧的载波相位信息;
    所述重构模块具体用于混合所述第一数据帧和所述载波相位信息,得到所述第一反射数据帧的重构数据帧。
  22. 根据权利要求17至21任意一项所述的装置,其特征在于,所述混合信号还包括所述第一数据帧的第二反射数据帧;
    所述处理模块还用于根据所述第一反射数据帧中的所述LFMS a1获取第二偏移量,所述第二偏移量是所述第二反射数据帧和所述第二数据帧在时域上的偏移量;
    所述重构模块还用于根据所述第一数据帧得到所述第二反射数据帧的重构数据帧;
    所述消除模块还用于根据所述第二偏移量在所述第一初始信号中消除所述第二反射数据帧的重构数据帧,得到所述第二数据帧的第二初始信号。
  23. 一种接收设备,其特征在于,包括:收发器和处理器;
    所述收发器用于向第二设备发送第一数据帧,所述第一数据帧包括线性调频序列LFMS a1;
    所述收发器还用于接收混合信号,所述混合信号包括所述第一数据帧的第一反射数据帧和所述第二设备发送的第二数据帧;
    所述处理器用于根据所述第一数据帧和所述混合信号执行前述权利要求1至16中任意一项所述的方法。
  24. 一种芯片,其特征在于,包括:一个或多个电路和接口;
    所述接口用于接收混合信号,所述混合信号包括第一数据帧的第一反射数据帧和所述第二设备发送的第二数据帧;
    所述一个或多个电路用于根据所述第一数据帧和混合信号执行前述权利要求1至16中任意一项所述的方法。
PCT/CN2022/078936 2021-03-10 2022-03-03 数据接收方法、接收装置以及相关设备 WO2022188682A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22766208.7A EP4297295A4 (en) 2021-03-10 2022-03-03 DATA RECEIVING METHOD, RECEIVING APPARATUS AND ASSOCIATED DEVICE
US18/464,148 US20230421260A1 (en) 2021-03-10 2023-09-08 Data receiving method, receiving apparatus, and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110261186.6A CN115085812A (zh) 2021-03-10 2021-03-10 数据接收方法、接收装置以及相关设备
CN202110261186.6 2021-03-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/464,148 Continuation US20230421260A1 (en) 2021-03-10 2023-09-08 Data receiving method, receiving apparatus, and related device

Publications (1)

Publication Number Publication Date
WO2022188682A1 true WO2022188682A1 (zh) 2022-09-15

Family

ID=83226354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078936 WO2022188682A1 (zh) 2021-03-10 2022-03-03 数据接收方法、接收装置以及相关设备

Country Status (4)

Country Link
US (1) US20230421260A1 (zh)
EP (1) EP4297295A4 (zh)
CN (1) CN115085812A (zh)
WO (1) WO2022188682A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058457A1 (en) * 2003-09-15 2005-03-17 Macdougall Trevor Method and apparatus for optical noise cancellation
CN104320360A (zh) * 2014-10-16 2015-01-28 哈尔滨工程大学 一种基于分数阶傅里叶变换的线性调频信号时延估计方法
WO2016008159A1 (zh) * 2014-07-18 2016-01-21 华为技术有限公司 一种通信装置、系统及处理信号的方法
CN105594131A (zh) * 2013-11-29 2016-05-18 华为技术有限公司 减少通信系统自干扰信号的方法和装置
CN112202498A (zh) * 2020-09-14 2021-01-08 华中科技大学 单纤双向直调直检系统中反向瑞利散射的消除方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226839B (zh) * 2011-06-07 2012-10-03 北京理工大学 一种低采样率线扫频脉冲时延估计方法
US9998235B2 (en) * 2016-01-08 2018-06-12 Google Llc In-band optical interference mitigation for direct-detection optical communication systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058457A1 (en) * 2003-09-15 2005-03-17 Macdougall Trevor Method and apparatus for optical noise cancellation
CN105594131A (zh) * 2013-11-29 2016-05-18 华为技术有限公司 减少通信系统自干扰信号的方法和装置
WO2016008159A1 (zh) * 2014-07-18 2016-01-21 华为技术有限公司 一种通信装置、系统及处理信号的方法
CN104320360A (zh) * 2014-10-16 2015-01-28 哈尔滨工程大学 一种基于分数阶傅里叶变换的线性调频信号时延估计方法
CN112202498A (zh) * 2020-09-14 2021-01-08 华中科技大学 单纤双向直调直检系统中反向瑞利散射的消除方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4297295A4

Also Published As

Publication number Publication date
CN115085812A (zh) 2022-09-20
EP4297295A4 (en) 2024-07-24
EP4297295A1 (en) 2023-12-27
US20230421260A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
EP3151495B1 (en) Interference cancellation device and method
US10903866B1 (en) System for generating accurate reference signals for time-of-arrival based time synchronization
US11303485B2 (en) Signal acquisition method and device
KR100924172B1 (ko) 가변 대역폭 무선채널 측정 방법 및 이를 위한 송수신장치
US20070003280A1 (en) Method and system for determining receiver power for required bit error rate
CN112672416A (zh) 一种无源互调干扰对消中定时同步方法和装置
US10523271B2 (en) Cable modem echo cancellation training in full duplex coaxial networks
CN114667683A (zh) 一种干扰消除方法及装置
WO2022188682A1 (zh) 数据接收方法、接收装置以及相关设备
JP6397505B2 (ja) 圧縮センシングに基づく信号処理方法及び装置
US20240113921A1 (en) Transmit spur detection and mitigation for wireless communications devices
Ovchinnikov et al. Correction for dispersion distortions of frequency response of wideband HF radio channel with the use of the deconvolution method
CN113115429B (zh) 一种晶振频偏确定方法、装置及通信系统
JP3659912B2 (ja) 電波監視装置及びこの電波監視装置を用いた電波監視システム
KR101828914B1 (ko) 레이더 안테나에서의 반사파 이중 감쇄시스템
EP1766868B1 (en) System and method for detecting ingress in a signal transmission system
WO2023015556A1 (zh) 距离确定方法、装置、设备及存储介质
CN111294116B (zh) 一种线性调频信号处理方法、装置及设备
WO2020238780A1 (zh) 频率校准方法及装置、存储介质、电子装置
CN110493671B (zh) 时延调整值的获取方法及装置
JP4442390B2 (ja) 無線基地局試験装置及び無線基地局試験方法
CN110324095B (zh) 基于多模并发的干扰消除方法、装置、设备及存储介质
US20240322918A9 (en) System for generating accurate reference signals for time-of-arrival based time synchronization
CN114945117B (zh) 一种误码测试仪reset信号时序确定方法及相关组件
EP1075122A1 (fr) Mesure de la réponse impulsionnelle pour un code pseudo-aléatoire qui change en fonction du facteur de glissement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766208

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022766208

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022766208

Country of ref document: EP

Effective date: 20230919

NENP Non-entry into the national phase

Ref country code: DE