WO2022188328A1 - 一种旋转关节的光信号传输系统及方法 - Google Patents

一种旋转关节的光信号传输系统及方法 Download PDF

Info

Publication number
WO2022188328A1
WO2022188328A1 PCT/CN2021/107177 CN2021107177W WO2022188328A1 WO 2022188328 A1 WO2022188328 A1 WO 2022188328A1 CN 2021107177 W CN2021107177 W CN 2021107177W WO 2022188328 A1 WO2022188328 A1 WO 2022188328A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
tray
signal transmission
transmission system
optical
Prior art date
Application number
PCT/CN2021/107177
Other languages
English (en)
French (fr)
Inventor
阎岩
张嘉仪
郭语涵
任文豪
赵鑫磊
Original Assignee
陕西周源光子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西周源光子科技有限公司 filed Critical 陕西周源光子科技有限公司
Priority to US17/773,692 priority Critical patent/US20230305236A1/en
Publication of WO2022188328A1 publication Critical patent/WO2022188328A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
    • H04B10/803Free space interconnects, e.g. between circuit boards or chips
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3604Rotary joints allowing relative rotational movement between opposing fibre or fibre bundle ends
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections

Definitions

  • the present application belongs to the field of optical communication, and in particular relates to an optical signal transmission system of a rotary joint.
  • Information transmission equipment of rotary joints is generally used in slip ring equipment, information transmission of movable joints, and lidars of movable joints.
  • the electrical connection, power supply and signal transmission of the rotating end and the fixed end of the slip ring equipment are all carried out through the conductive slip ring.
  • the conductive slip ring contacts of the slip ring equipment and the ring body rub for a long time, resulting in the degradation of signal conduction performance, low reliability and poor anti-electromagnetic interference ability, which will cause the rapid attenuation of the high-speed digital signal transmitted through the slip ring, making the communication change. unreliable.
  • the optical fiber slip ring is a traditional conductive ring with an optical fiber rotating connector, and the flexible connection is made through a mechanical plug-in mechanism.
  • the optical fiber collimator, Dove prism, micro-precision shafting, mechanical connection and adjustment mechanism are used in the optical fiber slip ring.
  • the composition, especially for multi-channel fiber optic slip rings, is very expensive to manufacture. Fiber optic slip rings have the following advantages:
  • the current rotary joint optical signal transmission system has the following shortcomings:
  • the optical loss in one direction is large, and the wavelength is fixed due to the planning of the wavelength of the bidirectional beam, resulting in the change of the wavelength is not flexible enough, and the uplink and downlink links in the optical signal transmission system are asymmetrical .
  • an optical signal transmission system for a rotary joint includes: a hollow cylindrical rotor; a hollow cylindrical stator, which is connected to the rotor through a bearing;
  • the detector conditioning circuit components are respectively arranged on the inner surface of the rotor and the inner surface of the stator;
  • the same two beam-condensing optical path structures are respectively composed of a hollow conical body and a beam-condensing lens;
  • two trays are respectively fixed on the the inner space of the stator and the rotor; a number of optical signal sources; and two beam splitters, respectively arranged on the two trays;
  • the rotor and the stator are arranged opposite to each other, and the inner surfaces of the two form a closed cylinder
  • the opposite surfaces of the two trays fixed in the inner space of the rotor and the stator respectively form an optical signal transmission space with the inner surfaces of the stator and the rotor;
  • a beam-focusing optical path structure is
  • the optical signal source includes a light source, an electro-optical modulator, and a beam collimation/collimation system
  • the electro-optical modulator is configured to transmit to the light source according to the electrical signal data to be transmitted.
  • the beam carrier is modulated, and the beam collimation/collimation system is configured to collimate the modulated beam to reduce the divergence angle of the beam.
  • the hollow conical body is a metal structure
  • the outer surface has a metal coating with high reflectivity
  • the inner surface is blackened
  • the top of the hollow conical body is open and the bottom is open.
  • the opening is connected to the tray, and the central axis is on a straight line with the central axis of the opening condenser lens fixed at the top.
  • the spectroscope located on any tray is fixed on the any tray, and the center is located on the bottom surface of the hollow conical body of the focusing optical path structure on the any tray. center aligned.
  • the photodetector conditioning circuit assembly is configured to collect the optical signal, convert the optical signal into an electrical signal and amplify, and is composed of a focusing lens, a photoelectric responder integrated detector, and a focusing device.
  • the filter at the front of the lens and the electrical signal conditioning circuit are formed.
  • the number of the optical signal sources on the two trays is the same, and the number of the optical signal sources on the two trays is the same.
  • a certain circular cross-section in the transmission space is symmetrically arranged.
  • the inner core After the inner core passes through and is normally incident on the condenser lens on the tray for focusing, it passes through the optical signal transmission space to reach the outer surface of the conical body located on the other tray and is reflected to form a ring beam, which reaches the other tray side.
  • a photodetector conditioning circuit assembly is received.
  • any two optical signal sources emit light beams with different wavelengths.
  • the optical signal transmission system is an optical signal transmission system with multiple transceiver channels.
  • An optical signal transmission system for a rotary joint provided by the present application.
  • the rotary joint uses the above-mentioned optical signal transmission system, and a signal beam is generated by an optical signal source of the optical signal transmission system, so that the signal beam is transmitted between the rotor and the stator. Send, transmit and receive.
  • FIG. 1 is a schematic structural diagram of an optical signal transmission system of a rotary joint provided by the application in one embodiment
  • FIG. 2 is a schematic structural diagram of a hollow conical body.
  • FIG. 1 is a schematic structural diagram of an optical signal transmission system of a rotary joint provided by the present application in one embodiment.
  • the optical signal transmission system of the rotary joint includes: a hollow cylindrical rotor 105; a hollow cylindrical stator 104, which is rotatably connected to the rotor through a bearing 109; multiple groups of photodetector conditioning circuits
  • the assembly 103 includes a photodetector and a conditioning circuit, which are respectively arranged on the inner surfaces of the rotor 105 and the stator 104; two beam-condensing optical path structures are composed of a hollow conical body 106 without a bottom and a condenser lens 108; a number of optical signal sources 101; two trays (cone fixing brackets) 102, respectively fixed on the inner surfaces of the rotor 105 and the stator 104, and a beam-focusing optical path structure is respectively provided on the side of any tray 102 facing the other tray 102; and two beam splitters
  • the mirrors 107 includes
  • the rotor 105 is driven by a drive device (not shown) to rotate relative to the stator 104 in the circumferential direction
  • the stator may be driven by a drive device (not shown) to rotate relative to the rotor in the circumferential direction, as long as the stator and the rotor can rotate relative to each other. That's it.
  • the stator and the rotor may not rotate relative to each other.
  • the rotor 105 and the stator 104 are arranged opposite to each other in such a way that the axis lines are in the same straight line, and the inner diameters of the two are the same.
  • a closed cylindrical space is formed by the inner surfaces of the rotor 105 and the stator 104.
  • the opposing surfaces of the two trays 102 fixed to the inner spaces of the rotor 105 and the stator 104 and the inner surfaces of the stator 105 and the rotor 104 form an optical signal transmission space.
  • One of the beam-condensing optical path structures is provided at the center of the side of any tray 102 facing the other tray 102, and the two beam-condensing optical path structures are the same, and are symmetrical with respect to a certain circular cross-section in the optical signal transmission space,
  • This circular cross section is, for example, a cross section that is perpendicular to the axis lines of the rotor 105 and the stator 104 and passes through the midpoint of a line segment connecting the centers of the faces of the two trays 102 facing each other.
  • a plurality of the optical signal sources 101 and the spectroscopes 107 are arranged at the center of the other side of the tray 102 on the opposite side to the side on which the beam-condensing optical path structure is arranged, and the spectroscopes 107 are connected to any of the trays.
  • the number of optical signal sources 102 on the two trays is the same, and the spatial positions are set to be symmetrical with respect to a certain circular cross-section in the optical signal transmission space.
  • the optical signal emitted by the optical signal source 101 on the side of any tray 102 is combined into a beam of light by the beam splitter 107 arranged on the side of the tray 102 , and the combined beam is in the hollow cone of the beam-condensing optical path structure arranged on the tray 102
  • the inside of 106 passes through and is refracted by the condenser lens 108 and converged to obtain a hollow beam in the middle, which is transmitted in the optical signal transmission space and reaches the hollow cone 106 on another tray, and is surrounded by the hollow cone 106
  • the outer surface of the photodetector is reflected to form a ring-shaped light beam, and the light beam reaches the corresponding photodetector conditioning circuit assembly 103 , and the photodetector conditioning circuit assembly 103 collects and converts the optical signal into an electrical signal and amplifies it.
  • the photodetector conditioning circuit assembly 103 is composed of a focusing lens, a photoelectric responder integrated detector, a filter at
  • the optical signal source 101 includes a light source, an electro-optical modulator (driver), and a beam collimation/collimation system.
  • the electro-optic modulator is configured to modulate the light beam carrier emitted by the light source according to the electrical signal data to be transmitted.
  • the beam collimation/collimation system is configured to collimate the modulated beam to reduce the divergence angle of the beam, and the smaller the divergence angle of the beam, the better.
  • the light source is a light emitting diode (LED)
  • its modulation adopts LED current modulation
  • the light source is a laser light source, it is modulated as a common laser modulator.
  • the spectroscope 107 is combined with the optical signal source 101, and is fixed to the tray 102 by a connection mechanism not shown in the manner that the center of the spectroscope 107 is aligned with the center of the bottom surface of the hollow conical body 106 of the focusing optical path structure on the same tray. .
  • a wavelength separation antireflection coating and an antireflection coating are formed on the beam splitter 107, and multiple beam splitters 107 can be cascaded to perform multiple reflections, and then multiple beams can be combined by wavelength separation.
  • the hollow conical body 106 is a metal structure, and its outer surface 110 has a metal coating with high reflectivity (for example, the surface 110 is plated with metal chrome, the metal chrome is planed, and then gold-plated or aluminum), the inner surface 111 of which is blackened to suppress the generation of stray light.
  • the top of the hollow conical body 106 is open, the bottom is open and connected to the tray 102, and the central axis is on a straight line with the central axis of the condenser lens 108 fixed to the top opening.
  • the condenser lens 108 is made of BK7 glass, and an anti-reflection film is formed on the surface.
  • the top of the hollow conical body 106 is glued to the boss at the bottom of the condenser lens 108 and connected with a pressure ring.
  • the hollow cone 106 is combined with the condensing lens 108 to realize the separation of the transmission and reception beam channels.
  • Light beams from any optical signal source 101 eg, the lower optical signal source 101 in FIG. 1
  • the corresponding side beam splitter 107 eg, the lower beam splitter 107
  • the condensing lens 108 condenses the incident beam so that the center of the beam is hollow, so that as many beams as possible are projected on the outer surface of the hollow cone 106 on the other tray in the form of a light strip of a predetermined width, the predetermined width It is determined according to the design requirements of the optical signal transmission system of the rotary joint, the wavelength of the light used, the height of the rotor 105 and the height of the stator 104 in the axial direction, etc.
  • the surface area is such that the hollow conical body is only a tiny optical element that satisfies the optical processability.
  • the components on the "corresponding side” refer to the components on the same tray side, and also include the following cases, that is, if any tray is the tray on the stator side, the components on the corresponding side refer to the components on the stator side, If any tray is the tray on the rotor side, the element on the corresponding side refers to the element on the rotor side.
  • the condensing lens 108 is configured to condense the incident light beam into a central hollow light beam, and its specific shape and structure are not limited here.
  • the condenser lens 108 is a conical lens, and the range of its half cone angle ⁇ satisfies arctan(7/7) ⁇ arctan(0/7), according to the actual optical aperture processing capability and cone angle height Physical space size constraints to select.
  • the respective angles and sizes can be designed according to the above-mentioned relationship between the half cone angle of the hollow conical body and the condenser lens.
  • the condenser lens 108 it is also possible to not install the condenser lens 108, and only use the mm-level small holes of the hollow conical body on any tray to perform small hole diffraction to increase the light beam projected to the outer surface of the hollow conical body on the other tray, but this loss
  • the light energy is relatively large, which is suitable for transmission power links with a short distance, but not suitable for transmission power links with a long distance.
  • the photodetector conditioning circuit 103 component is set to focus the light beam, convert the optical signal into an electrical signal and amplify it, and is conditioned by the focusing lens, the photoelectric responder integrated detector, the filter at the front of the focusing lens and the electrical signal. circuit configuration.
  • the filter is a band-pass filter (OD (Optical Density: Optical Density) ⁇ 3), and its band-pass center wavelength corresponds one-to-one with the optical center wavelength output by the optical signal source.
  • the working process of the optical signal transmission system of the rotary joint is as follows: the light beams emitted from the multiple optical signal sources 101 on the side of any tray 102 are combined into a beam by the beam splitter 107 on the corresponding side;
  • the beam lens 108 is subjected to focusing treatment to form a hollow beam in the middle (ie, a hollow beam), which is then transmitted to the outer surface of the hollow conical body 106 on the other tray for reflection, and then reaches the photodetector and conditioning circuit on the other tray side. 103 is received.
  • one or more of the optical signal sources 101 on any of the trays 102 side may be provided, as long as the number of the optical signal sources 101 on the two trays 102 sides is the same.
  • two optical signal sources 101 emitting light beams of different wavelengths are arranged on any tray 102 to avoid wavelength interference between uplink and downlink of the same channel and between different channels.
  • the light beam emitted by the optical signal source 101 located on the same tray 102 side is synthesized into a beam of light by the beam splitter on the tray, and then passes through the hollow core of the hollow conical body 106 located on the tray 102 side and is normally incident on the tray.
  • the condenser lens 108 on the 102 side is refracted by the condenser lens 108 to form a hollow beam in the middle, and then passes through the optical signal transmission space and reaches the outer surface of the conical body 106 on the other tray 102 side, and is reflected to form a ring beam, It reaches the photodetector conditioning circuit assembly 103 on the side of the other tray 102.
  • the hollow beam in the middle formed by the condenser lens 108 on the side of the one tray 102 only a tiny part of it reaches the other tray after passing through the optical signal transmission space.
  • the surface of the condenser lens 108 on the 102 side and into the inner surface of the hollow cone 106 on the other tray is absorbed.
  • optical signal transmission system there are a plurality of the optical signal sources 101 on any one of the trays 102 , which can realize an optical signal transmission system with multiple transceiver channels.
  • the optical signal transmission system with multiple transceiver channels refers to having multiple transmitting units and multiple receiving units, and multiple transmitting units can transmit light beams with different wavelengths at the same time or time-sharing, and correspondingly, multiple receiving units can receive or time-sharing at the same time. Receive beams of different wavelengths.
  • the number of transceiver units is constrained by the internal space of the stator and the rotor.
  • the photodetector conditioning circuit components of the uplink and downlink can be set at different positions in the internal space of the stator and the rotor, when performing duplex optical transmission, the uplink .
  • the wavelengths of light waves in the downlink can be set to be different or the same.
  • the present application also provides an optical signal transmission method for a rotary joint.
  • the optical signal transmission method adopts the above-mentioned optical signal transmission system, and transmits, transmits and receives the signal beam between the rotor and the stator through the signal beam generated by the optical signal source in the optical signal transmission system.
  • the optical signal transmission system of the rotary joint provided by this application has symmetrical uplink and downlink links, small optical loss in any direction during duplex information transmission, simple optical path design and no wavelength planning problem, and can adapt to There is a need for a small space for installing the servo mechanism of the rotary joint.
  • optical signal transmission system provided by this application can realize duplex communication, and the related components in the system can be arranged symmetrically, and the restrictions on the installation of the transceiver components in the rotor and stator of the rotating joint are small; and it can be simply expanded into multiple 1-channel optical signal transmission system.
  • the relative positions of the beam-condensing optical circuit structure and the photodetector conditioning circuit assembly arranged on the rotor side are fixed, that is, the beam-condensing optical circuit structure and the photodetector conditioning circuit assembly rotate synchronously with the rotation of the rotor, and are
  • the light beam reflected by the hollow cone of the beam-condensing light path structure is annular, so the photodetector conditioning circuit assembly can well receive the light beam reflected by the hollow cone and convert and amplify the light beam.
  • the present application is applied to the field of optical communication, and provides an optical signal transmission system and an optical signal transmission method of a rotary joint, which can be easily expanded into an optical signal transmission system of multi-channel duplex communication without shaft wear and optical fiber coupling of optical fiber rotary joints. problem, reliable communication and long working life.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种旋转关节的光信号传输系统及方法,可实现多通道双工通信。两个相同的聚束光路结构分别由中空圆锥形体(106)和聚束透镜(108)构成。任一托盘(102)朝向另一托盘(102)的一面的中央位置设置有一聚束光路结构,两个聚束光路结构关于光信号传输空间中的某个圆形横截面对称;另一面的中央位置设置有光信号源(101)和分光镜(107)。任一托盘(102)上的光信号源(101)发射出的光信号经过分光镜(107)合成一束光束后,在中空圆锥形体(106)的内部穿过聚束透镜(108)进行聚束得到中间空心的光束后,传递到另一托盘(102)上的中空圆锥形体(106)的外表面发生反射,到达另一托盘(102)侧的光电探测器调理电路组件(103)而被接收。

Description

一种旋转关节的光信号传输系统及方法
相关申请的交叉引用
本申请要求于2021年03月10日提交中国专利局的申请号为202110262613.2、名称为“一种用于旋转关节的光信号传输系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于光通信领域,具体涉及一种旋转关节的光信号传输系统。
背景技术
旋转关节的信息传输设备一般应用在滑环设备、活动关节的信息传输以及活动关节的光雷达。滑环设备的旋转端和固定端的电气连接、供电、信号传输均是通过导电滑环来进行的。滑环设备的导电滑环触点与环体长期摩擦,导致信号传导性能下降、可靠性低、抗电磁干扰能力差,这将造成通过滑环的高速传输的数字信号急剧衰减,使得通信将变得不可靠。
光纤滑环是在传统的导电环中加装光纤旋转连接器,通过机械拔插机构进行柔性连接,光纤滑环中选用光纤准直器、道威棱镜、微型精密轴系、机械连接及调整机构组成,特别对于多通道光纤滑环制造成本非常高。光纤滑环具有以下优点:
(1)用光纤传递信号,无泄密,无电磁干扰,可以远距离传输;
(2)产生的灰尘少,寿命长;
(3)体积小、重量轻,不锈钢材料;
(4)损耗小(<1.0dB)、旋转速率高(1000rpm)。
但是由于多通道的光纤滑环之间轴系需要精密对准,而长时间齿轮的磨损将导致光纤收发对准精度降低,使得信息传输的可靠性下降。
当前旋转关节光信号传输系统存在以下不足:
1.空间光信息的双工信息传输过程中,其中一个方向光损耗大,存在因规划双向光束的波长而使波长固定,导致波长的变化不够灵活,光信号传输系统中上下行链路不对称。
2、存在齿轮长时间磨损而使光纤收发难以对准,进而造成光纤滑环使用寿命缩短。
发明内容
为了克服旋转关介光信号传输系统存在的上述不足,本申请提供的一种旋转关节 的光信号传输系统包括:中空圆柱形的转子;中空圆柱形的定子,通过轴承与所述转子连接;多组光电探测器调理电路组件,分别设置在所述转子的内表面和所述定子的内表面;相同的两个聚束光路结构,分别由中空圆锥形体和聚束透镜构成;两个托盘,分别固定于所述定子以及所述转子的内部空间;若干光信号源;以及两个分光镜,分别配置于所述两个托盘;所述转子和所述定子相对设置,两者的内表面构成封闭的圆柱形空间,分别固定在所述转子、所述定子的内部空间的所述两个托盘的彼此相对的面与所述定子、所述转子的内表面形成光信号传输空间;在任一托盘的朝向另一托盘的一面的中央位置设置有一聚束光路结构,两个束光路结构关于所述光信号传输空间中的某个圆形横截面对称;在所述任一托盘的设置有所述聚束光路结构的面的相反侧的另一面的中央位置设置有所述光信号源和所述分光镜,所述分光镜与所述任一托盘固定连接;任一托盘上的光信号源发射出的光信号经过设置于任一托盘上的分光镜合成一束光束后,在设置于任一托盘上的聚束光路结构中的中空圆锥形体的内部穿过被聚束透镜进行聚束得到中间空心的光束后,传递到另一托盘上的圆锥形体外的表面发生反射到达另一托盘侧的光电探测器调理电路组件而被接收。
可选的,在上述的光信号传输系统中,所述光信号源包括光源、电光调制器以及光束准直/准形系统,所述电光调制器设置为根据待传输的电信号数据对光源发出的光束载波进行调制,所述光束准直/准形系统设置为对调制后的光束进行准直以减小光束的发散角。
可选的,在上述的光信号传输系统中,所述中空圆锥形体是金属结构体,外表面具有高反射率的金属镀层,内表面进行了发黑处理,该中空圆锥形体的顶端开口、底部开口并与所述托盘连接,中心轴与固定在顶端的开口的聚束透镜的中心轴在一条直线上。
可选的,在上述的光信号传输系统中,位于任一托盘上的分光镜固定在所述任一托盘上,且中心与位于所述任一托盘上的聚焦光路结构的中空圆锥形体的底面的中心对齐。
可选的,在上述的光信号传输系统中,所述光电探测器调理电路组件设置为聚集光信号,将光信号转换成电信号并放大,由聚焦透镜、光电响应器一体化探测器、聚焦透镜前端的滤光片和电信号调理电路构成。
可选的,在上述的光信号传输系统中,所述任一托盘上的所述光信号源为一个或多个,两个托盘上的所述光信号源数量相同,且关于所述光信号传输空间中的某个圆形横截面对称布置,位于同一托盘上的光信号源发出的光束经过该托盘 上的分光镜合束为一束光束后,在位于该托盘上的中空圆锥形体的空内芯穿过并正入射到该托盘上的聚束透镜进行聚束后,经过光信号传输空间达到位于另一托盘上的圆锥形体的外表面被反射形成圆环光束,到达另一托盘侧的光电探测器调理电路组件而被接收。
可选的,在上述的光信号传输系统中,任意两个光信号源发出波长不同的光束。
可选的,在上述的光信号传输系统中,所述光信号传输系统为多收发通道的光信号传输系统。
本申请提供的一种旋转关节的光信号传输系统该旋转关节使用上述的光信号传输系统,通过该光信号传输系统的光信号源产生信号光束,使所述信号光束在转子与定子之间进行发送、传输和接收。
附图说明
为了更清楚地说明本申请的技术方案,下面将对其中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实现方式,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它相关的附图。
图1为本申请提供的旋转关节的光信号传输系统在一个实施例中的结构示意图;
图2为中空圆锥形体的结构示意图。
具体实施方式
下面将参照附图更详细地描述本申请的示例性实施例。虽然附图中显示了本申请的示例性实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本申请,并且能够将本申请的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
图1为本申请提供的旋转关节的光信号传输系统在一个实施例中的结构示意图。如图1所示,所述旋转关节的光信号传输系统,包括:中空圆柱形的转子105;中空圆柱形定子104,通过轴承109与所述转子可旋转地连接;多组光电探测器调理电路组件103,包括光电探测器和调理电路,分别设置在转子105和定子104的内表面;两个聚束光路结构,由不带底的中空圆锥形体106和聚束透镜108组成;若干光信号源101;两个托盘(圆锥固定托)102,分别固定于转子105以及定子104的内部表面,在任一托盘102的朝向另一托 盘102的一面上分别设置有一个聚束光路结构;以及两个分光镜107,结构相同,分别固定于各托盘102的固定有聚束光路结构的一侧的相反侧的另一面。
转子105被未图示的驱动装置的驱动而相对于定子104在周向上旋转,也可以是定子被未图示的驱动装置的驱动而相对于转子在周向上旋转,只要定子与转子能够相对旋转即可。另外,定子和转子也可以不相对旋转。
如图1所示,所述转子105、定子104以轴心线处于同一直线的方式相对设置,且两者的内径相同,由转子105、定子104的内表面共同构成一个封闭圆柱形空间,分别固定在所述转子105、定子104的内部空间的两个托盘102的彼此相对的面和所述定子105、转子104的内表面形成光信号传输空间。
任一托盘102的朝另一托盘102的一面的中央位置设有一个所述聚束光路结构,两个聚束光路结构相同,关于所述光信号传输空间中的某个圆形横截面对称,该圆形横截面例如为与转子105、定子104的轴心线垂直且经过连接两个托盘102的彼此相对的面的中心的线段的中点的截面。在托盘102的设置有所述聚束光路结构的一面的相反侧的另一面的中央位置设有若干所述光信号源101和所述分光镜107,所述分光镜107与所述任一托盘102固定连接。两个托盘上102的光信号源数量相同,且在空间位置上设置为关于所述光信号传输空间中的某个圆形横截面对称,该圆形横截面例如为与转子105、定子104的轴心线垂直且经过连接两个托盘102的彼此相对的面的中心的线段的中点的截面。任一托盘102侧的光信号源101发射出的光信号经过设置于该托盘102侧的分光镜107合成一束光束,合成的光束在设置于该托盘102上的聚束光路结构的中空圆锥形体106的内部穿过并被聚束透镜108折射而聚束,得到中间空心的光束,该中间空心的光束在光信号传输空间传递并到达另一托盘上的中空圆锥形体106,被中空圆锥形体106的外表面反射而形成环形的光束,该光束到达相应的光电探测器调理电路组件103,由所述光电探测器调理电路组件103对光信号进行聚集并转换成电信号且将其放大。所述光电探测器调理电路组件103由聚焦透镜、光电响应器一体化探测器、聚焦透镜前端的滤光片和电信号调理电路构成。
所述光信号源101包括光源、电光调制(驱动)器以及光束准直/准形系统。所述电光调制器设置为根据待传输的电信号数据对光源发出的光束载波进行调制。所述光束准直/准形系统设置为对调制后的光束进行准直以减小光束的发散角,光束的发散角越小越优选。当光源为发光二极管(LED)时,其调制采用LED电流调制;当光源为激光光源时,调制为普通的激光调制器。
所述分光镜107与光信号源101组合,以分光镜107的中心与同一托盘上的聚焦光路结构的中空圆锥形体106的底面的中心对齐的方式,通过未图示的连接机构固定在托盘102。
在所述分光镜107上形成有波长分离增透膜和增反膜,可以采用多个分光镜107进行 级联来进行多次反射,然后通过波长分离实现多个波束的合束。
如图2所示,所述中空圆锥形体106是金属结构体,其外表面110具有高反射率的金属镀层(例如,表面110镀金属铬,对金属铬进行刨平,然后在其上镀金或者铝),其内表面111进行了发黑处理,以抑制杂散光的产生。该中空圆锥形体106的顶端开口,底部开口并与托盘102连接,中心轴与固定在顶端开口的聚束透镜108的中心轴在一条直线上。聚束透镜108采用BK7玻璃制作,表面形成有增透膜。优选地,所述中空圆锥形体106的顶端与聚束透镜108的底部的凸台胶粘,并用压圈连接。中空圆锥形体106与聚束透镜108组合实现收发光束通道的分离。来自任一光信号源101(例如图1中的下侧的光信号源101)的光束从对应侧的分光镜107(例如下侧的分光镜107)在中空圆锥形体106的内部穿过而正入射到聚束透镜108。聚束透镜108对入射光束进行聚束,使得光束中间空心,使得尽可能多地光束以呈预定宽度的光带的方式投射到另一托盘上的中空圆锥形体106的外表面上,该预定宽度根据旋转关节的光信号传输系统的设计要求决定,因所使用的光的波长、转子105以及定子104的轴线方向上的高度等决定,优选该光带占用中空圆锥形体106的外表面较小的表面积,使得中空圆锥形体为仅满足光学可加工能力的微小光学元件即可。
在本说明中,“对应侧”的元件,指处于同一托盘侧的元件,也包括如下的情况,即,若任一托盘为定子侧的托盘,则对应侧的元件指位于定子侧的元件,若任一托盘为转子侧的托盘,则对应侧的元件指位于转子侧的元件。
所述聚束透镜108设置为将入射的光束聚束为中间空心的光束,这里不对其具体的形状、结构进行限定。在一个实施例中,所述聚束透镜108为圆锥透镜,其半锥角α的范围满足arctan(7/7)<α<arctan(0/7),根据实际光学孔径加工能力以及锥角高度物理空间尺寸的限制来选取。根据所述光信号源101包括的光束准直/准形系统的准直程度,作为所述圆锥透镜的聚束透镜108的底面直径设置为5mm,高度为7mm,半锥角α=arctan(2.5/7);所述中空圆锥形体106的半锥角β≈π/4+0.5×α=π/4+0.5×arctan(2.5/7),高度为4mm以上,底面直径为12mm以上,根据光束发散角以及实际物理尺寸的小型化,根据上述的中空圆锥形体与聚束透镜的半锥角关系设计各自的角度和尺寸即可。当然也可以不安装聚束透镜108,仅利用任一托盘上的中空圆锥形体的mm级小孔进行小孔衍射来增加投射到另一托盘上的中空圆锥形体的外表面的光束,但这样损耗光能量比较大,适于距离较近的传输功率链路,不适于距离较远的传输功率链路。
所述光电探测器调理电路103组件设置为对光束聚集,将光信号转换成电信号并将其放大,由聚焦透镜、光电响应器一体化探测器、聚焦透镜前端的滤光片和电信号调理电路构成。滤光片为带通滤波片(OD(Optical Density:光密度)≥3),其带通中心波长与光信号源输出的光中心波长一一对应。
所述旋转关节的光信号传输系统的工作过程为:任一托盘102侧的多个光信号源101中发出的光束被对应侧的分光镜107合成一束光束;合成的光束通过对应侧的聚束透镜108进行聚束处理形成为中间空心的光束(即空心光柱),然后传递到另一托盘上的中空圆锥形体106的外表面发生反射后,到达另一托盘侧的光电探测器及调理电路103被接收。
进一步地,任一所述托盘102侧的所述光信号源101可以设置一个,也可以设置多个,只要两个托盘102侧的所述光信号源101数量相同即可。在进行双工通信时,优选在任一托盘102设置发出不同波长的光束的两个光信号源101,避免同一通道的上、下行链路以及不同通道之间的波长干扰。位于同一托盘102侧的光信号源101发出的光束经过该托盘上的分光镜合成为一束光后,在位于该托盘102侧的中空圆锥形体106的空内芯中穿过正入射到该托盘102侧的聚束透镜108,被聚束透镜108折射而形成为中间空心的光束,然后经过光信号传输空间后到达另一托盘102侧的圆锥形体106的外表面,被反射形成圆环光束,到达另一托盘102侧的光电探测器调理电路组件103,另外,被一托盘102侧的聚束透镜108折射而形成的中间空心的光束,仅微小的部分经过光信号传输空间后到达另一托盘102侧的聚束透镜108的表面并进入位于所述另一托盘上的中空圆锥形体106的内表面而被吸收。
根据图1所述的光信号传输系统,任一所述托盘102侧的所述光信号源101为多个,能够实现多收发通道的光信号传输系统。所述多收发通道的光信号传输系统指具有多个发射单元和多个接收单元,并且多个发射单元可以同时发射或分时发射波长不同的光束,对应地多接收单元可以同时接收或分时接收不同波长的光束。收发单元数量受定子和转子的内部空间位置约束,由于上行、下行链路的光电探测器调理电路组件可以设置在定子和转子的内部空间不同的位置上,因此,进行双工光传输时,上行、下行链路中的光波波长可以设置为不同,也可以设置为相同。
与上述光信号传输系统相对应,本申请还提供一种旋转关节的光信号传输方法。该光信号传输方法采用上述光信号传输系统,通过该光信号传输系统中的光信号源产生的信号光束,并使所述信号光束在转子和定子之间进行发送、传输和接收。
以上所述的实施例只是本申请优选的具体实施方式,本领域的技术人员在本申请技术方案范围内进行的通常变化和替换都应包含在本申请的保护范围内。
本申请提供的技术方案与现有技术相比具有如下有益效果:
(1)、本申请提供的旋转关节的光信号传输系统,上下行链路对称,双工信息传输过程中任一个方向的光损耗小,光路设计简单且不存在波长的规划的问题,能够适应安装旋转关节的伺服机构的空间狭小的需要。
(2)、本申请提供的光信号传输系统能够实现双工通信,系统中相关组件可以对称布 置,对旋转关节的转子和定子中的收发组件的安装的限制小;且可以简单地拓展为多个通道的光信号传输系统。
(3)、不存在现有技术中光纤旋转关节的轴磨损和光纤耦合问题,延长了光信号传输系统的工作寿命。
(4)设置于转子侧的聚束光路结构和光电探测器调理电路组件的相对位置是固定的,即聚束光路结构和光电探测器调理电路组件随着转子的旋转而同步地旋转,且被聚束光路结构的中空圆锥形体反射的光束为环形,因此光电探测器调理电路组件能够良好地接收到中空圆锥形体反射的光束并进行转换以及放大。
工业实用性
本申请应用于光通信领域,提供一种旋转关节的光信号传输系统以及光信号传输方法,可容易地拓展成多通道双工通信的光信号传输系统,没有光纤旋转关节的轴磨损和光纤耦合问题,通信可靠且工作寿命长。

Claims (9)

  1. 一种旋转关节的光信号传输系统,包括:中空圆柱形的转子;中空圆柱形的定子,通过轴承与所述转子连接;多组光电探测器调理电路组件,分别设置在所述转子的内表面和所述定子的内表面;相同的两个聚束光路结构,分别由中空圆锥形体和聚束透镜构成;两个托盘,分别固定于所述定子以及所述转子的内部空间;若干光信号源;以及两个分光镜,分别配置于所述两个托盘;
    所述转子和所述定子相对设置,两者的内表面构成封闭的圆柱形空间,分别固定在所述转子、所述定子的内部空间的所述两个托盘的彼此相对的面与所述定子、所述转子的内表面形成光信号传输空间;
    在任一托盘的朝向另一托盘的一面的中央位置设置有一聚束光路结构,两个束光路结构关于所述光信号传输空间中的某个圆形横截面对称;在所述任一托盘的设置有所述聚束光路结构的面的相反侧的另一面的中央位置设置有所述光信号源和所述分光镜,所述分光镜与所述任一托盘固定连接;任一托盘上的光信号源发射出的光信号经过设置于任一托盘上的分光镜合成一束光束后,在设置于任一托盘上的聚束光路结构中的中空圆锥形体的内部穿过被聚束透镜进行聚束得到中间空心的光束后,传递到另一托盘上的圆锥形体外的表面发生反射到达另一托盘侧的光电探测器调理电路组件而被接收。
  2. 如权利要求1所述的光信号传输系统,其中,所述光信号源包括光源、电光调制器以及光束准直/准形系统,所述电光调制器设置为根据待传输的电信号数据对光源发出的光束载波进行调制,所述光束准直/准形系统设置为对调制后的光束进行准直以减小光束的发散角。
  3. 如权利要求1所述的光信号传输系统,其中,所述中空圆锥形体是金属结构体,外表面具有高反射率的金属镀层,内表面进行了发黑处理,该中空圆锥形体的顶端开口、底部开口并与所述托盘连接,中心轴与固定在顶端的开口的聚束透镜的中心轴在一条直线上。
  4. 如权利要求3所述的光信号传输系统,其中,位于任一托盘上的分光镜固定在所述任一托盘上,且中心与位于所述任一托盘上的聚焦光路结构的中空圆锥形体的底面的中心对齐。
  5. 如权利要求1至4中任一项所述的光信号传输系统,其中,所述光电探测器调理电路组件设置为聚集光信号,将光信号转换成电信号并放大,由聚焦透镜、光电响应器一体化探测器、聚焦透镜前端的滤光片和电信号调理电路构成。
  6. 如权利要求5所述的光信号传输系统,其中,所述任一托盘上的所述光信 号源为一个或多个,两个托盘上的所述光信号源数量相同,且关于所述光信号传输空间中的某个圆形横截面对称布置,
    位于同一托盘上的光信号源发出的光束经过该托盘上的分光镜合束为一束光束后,在位于该托盘上的中空圆锥形体的空内芯穿过并正入射到该托盘上的聚束透镜进行聚束后,经过光信号传输空间达到位于另一托盘上的圆锥形体的外表面被反射形成圆环光束,到达另一托盘侧的光电探测器调理电路组件而被接收。
  7. 如权利要求6所述的光信号传输系统,其中,任意两个光信号源发出波长不同的光束。
  8. 如权利要求6或7所述的光信号传输系统,其中,所述光信号传输系统为多收发通道的光信号传输系统。
  9. 一种旋转关节的光信号传输方法,该旋转关节使用权利要求1至8中任一项所述的光信号传输系统,通过该光信号传输系统的光信号源产生信号光束,使所述信号光束在转子与定子之间进行发送、传输和接收。
PCT/CN2021/107177 2021-03-10 2021-07-19 一种旋转关节的光信号传输系统及方法 WO2022188328A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/773,692 US20230305236A1 (en) 2021-03-10 2021-07-19 Optical Signal Transmission System and Method for Rotary Joints

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110262613.2 2021-03-10
CN202110262613 2021-03-10

Publications (1)

Publication Number Publication Date
WO2022188328A1 true WO2022188328A1 (zh) 2022-09-15

Family

ID=76041296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107177 WO2022188328A1 (zh) 2021-03-10 2021-07-19 一种旋转关节的光信号传输系统及方法

Country Status (3)

Country Link
US (1) US20230305236A1 (zh)
CN (1) CN112887030B (zh)
WO (1) WO2022188328A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112887030B (zh) * 2021-03-10 2022-06-07 陕西周源光子科技有限公司 一种用于旋转关节的光信号传输系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178515A (en) * 1978-05-12 1979-12-11 Lockheed Electronics Co., Inc. Optical signal communicating apparatus
US20120207430A1 (en) * 2011-02-16 2012-08-16 Hong Zhang Active off-axis fiber optic slip ring
CN108270486A (zh) * 2017-12-22 2018-07-10 西安空间无线电技术研究所 一种适用于旋转关节的新型光学通信系统及方法
CN110361814A (zh) * 2019-05-31 2019-10-22 天津大学 多通道离轴光纤旋转连接器
CN110417466A (zh) * 2019-07-12 2019-11-05 西安空间无线电技术研究所 一种适用于旋转关节的光通信多收发系统及方法
CN210670082U (zh) * 2019-12-25 2020-06-02 中国电子科技集团公司第三十四研究所 一种双旋转端的无线光通信系统
CN112887030A (zh) * 2021-03-10 2021-06-01 陕西周源光子科技有限公司 一种用于旋转关节的光信号传输系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4851521B2 (ja) * 2006-04-28 2012-01-11 ムーグ インコーポレーテッド 光ロータリ・ジョイント、光ロータリ・ジョイントを適切に位置合せする取付け方法、及び光ロータリ・ジョイントに使用される光反射体組立体
US20120237163A1 (en) * 2011-03-17 2012-09-20 Violante Louis D Photonic crystal based multi-channel rotary joint for electro-magnetic signals
CN110868257B (zh) * 2019-12-25 2024-04-19 中国电子科技集团公司第三十四研究所 一种双旋转端的无线光通信系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178515A (en) * 1978-05-12 1979-12-11 Lockheed Electronics Co., Inc. Optical signal communicating apparatus
US20120207430A1 (en) * 2011-02-16 2012-08-16 Hong Zhang Active off-axis fiber optic slip ring
CN108270486A (zh) * 2017-12-22 2018-07-10 西安空间无线电技术研究所 一种适用于旋转关节的新型光学通信系统及方法
CN110361814A (zh) * 2019-05-31 2019-10-22 天津大学 多通道离轴光纤旋转连接器
CN110417466A (zh) * 2019-07-12 2019-11-05 西安空间无线电技术研究所 一种适用于旋转关节的光通信多收发系统及方法
CN210670082U (zh) * 2019-12-25 2020-06-02 中国电子科技集团公司第三十四研究所 一种双旋转端的无线光通信系统
CN112887030A (zh) * 2021-03-10 2021-06-01 陕西周源光子科技有限公司 一种用于旋转关节的光信号传输系统及方法

Also Published As

Publication number Publication date
US20230305236A1 (en) 2023-09-28
CN112887030B (zh) 2022-06-07
CN112887030A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2019119993A1 (zh) 一种适用于旋转关节的新型光学通信系统及方法
US4519670A (en) Light-rotation coupling for a plurality of channels
WO2021197240A1 (zh) 多通道光接收模块
CN107924028B (zh) 光学旋转电气连接器
CN110417466B (zh) 一种适用于旋转关节的光通信多收发系统及方法
US9164247B2 (en) Apparatuses for reducing the sensitivity of an optical signal to polarization and methods of making and using the same
US10180543B2 (en) Optical path control system and optical module
US6462846B1 (en) Shared telescope optical communication terminal
CN108710177B (zh) 离轴光纤旋转连接器
WO2021051784A1 (zh) 数据传输装置、激光雷达及智能设备
WO2022188328A1 (zh) 一种旋转关节的光信号传输系统及方法
CN110320024B (zh) 一种适用于旋转关节的光学轴向测量系统及方法
CN110868257B (zh) 一种双旋转端的无线光通信系统
CN113067641B (zh) 一种非接触式滑环传输系统及相关光信号传输方法
WO2021068724A1 (zh) 数据传输装置、激光雷达及智能设备
CN110940282B (zh) 一种双波长激光接收光学系统及激光测距接收装置
CN109061810B (zh) 一种激光器组件以及相应的光模块
GB2163617A (en) Optical coupling device with rotating joint
CN220064444U (zh) 光发射组件和光模块
WO2022217764A1 (zh) 周视光探测装置及周视光收发系统
CN106501948B (zh) 一种双通道光学旋转耦合器
US11515941B2 (en) Free space optical communication terminal with dispersive optical component
CN219657907U (zh) 一种采用准直光路的信号传输装置
CN111045156B (zh) 一种多模光纤衰减器
JP2004271880A (ja) 結合レンズ、光コネクタ及び光通信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929797

Country of ref document: EP

Kind code of ref document: A1