WO2022188032A1 - 光通信系统和方法、光模块和应用于光模块的装置 - Google Patents

光通信系统和方法、光模块和应用于光模块的装置 Download PDF

Info

Publication number
WO2022188032A1
WO2022188032A1 PCT/CN2021/079770 CN2021079770W WO2022188032A1 WO 2022188032 A1 WO2022188032 A1 WO 2022188032A1 CN 2021079770 W CN2021079770 W CN 2021079770W WO 2022188032 A1 WO2022188032 A1 WO 2022188032A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
interface
unit
module
signal
Prior art date
Application number
PCT/CN2021/079770
Other languages
English (en)
French (fr)
Inventor
杨睿
陈琰琰
王自强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/079770 priority Critical patent/WO2022188032A1/zh
Priority to CN202180077667.XA priority patent/CN116458093A/zh
Priority to EP21929514.4A priority patent/EP4300849A4/en
Publication of WO2022188032A1 publication Critical patent/WO2022188032A1/zh
Priority to US18/464,196 priority patent/US20230421261A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25758Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/006Devices for generating or processing an RF signal by optical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present application relates to the field of optical communication, and more particularly, to an optical communication system and method, an optical module and a device applied to the optical module.
  • radio access network The deployment methods of radio access network (RAN) are divided into centralized radio access network (CRAN) and distributed radio access network (DRAN). Problems such as difficulty in site acquisition, high construction, operation and maintenance costs, and rising energy consumption are faced in network construction.
  • distributed unit DU distributed unit, DU
  • baseband unit baseband unit
  • BBU baseband unit
  • active antenna unit active antenna unit
  • radio remote unit remote radio unit
  • the present application provides an optical communication system and method, an optical module and a device applied to the optical module, which can save optical fiber resources.
  • an optical communication system including: N optical modules at the local end, and each optical module in the N optical modules at the local end includes a first optical interface and a second optical interface.
  • the first optical interface of the first optical module among the N optical modules at the local end is connected to the opposite end through an optical fiber link, and the second optical interface of the i-th optical module among the N optical modules at the local end is connected to the opposite end.
  • an optical module of the local end can be connected to a fronthaul interface of the local end, and by cascading multiple optical modules of the local end, only one optical fiber link (including one or more optical fibers) can be used. It realizes the communication between multiple fronthaul interfaces of the local end and the opposite end, thereby saving fiber resources.
  • the optical communication system provided by the present application does not need to introduce other components, such as passive multiplexers and demultiplexers, so the network construction cost can be saved.
  • each optical module of the N optical modules of the local end is connected to a fronthaul interface of the local end, and each optical module of the N optical modules of the local end Connect to a fronthaul interface on the local end.
  • the first optical module among the N optical modules of the local end is used for:
  • the electrical signal input by the fronthaul interface connected to the first optical module is converted into an optical signal of the first wavelength, and output to the opposite end through the first optical interface of the first optical module, and the second optical module
  • the optical signal input by the first optical interface to the second optical interface of the first optical module is output to the opposite end through the first optical interface of the first optical module, and,
  • the N+1th wavelength optical signal input from the opposite end to the first optical interface of the first optical module is converted into an electrical signal and output to the fronthaul interface connected to the first optical module, and the optical signal from the opposite end is converted into an electrical signal.
  • the optical signals of other wavelengths input to the first optical interface of the first optical module are output to the first optical interface of the second optical module through the second optical interface of the first optical module;
  • the jth optical module among the N optical modules of the local end is used for:
  • the optical signal input from the fronthaul interface connected to the jth optical module into an optical signal of the jth wavelength, and output it to the second optical signal of the j-1th optical module through the first optical interface of the jth optical module.
  • the optical signal input from the first optical interface of the j+1th optical module to the second optical interface of the jth optical module is output to the j-1th optical interface through the first optical interface of the jth optical module the second optical interface of the module, and,
  • the Nth optical module among the N optical modules of the local end is used for:
  • the optical signal of the 2Nth wavelength input to the first optical interface of the Nth optical module is converted into an electrical signal and output to the fronthaul interface connected to the Nth optical module.
  • the first wavelength, the second wavelength, and the 2Nth wavelength are different from each other.
  • the wavelength can be a specific value, or it can be a range of values.
  • the numerical ranges of the first wavelength, the second wavelength...the 2Nth wavelength do not overlap with each other. For example, taking N as 2, the first wavelength is 1271-1371 nm, the second wavelength is 1379.23-1432.41 nm, the third wavelength is 1529.55-1567.13 nm, and the fourth wavelength is 1865.25-1970.13 nm.
  • the wavelength division scheme and wavelength add/drop multiplexing of the optical layer can be realized, so that transparent transmission of protocols and rates can be realized.
  • the fronthaul interface may be a common public radio interface (common public radio interface, CPRI) or an enhanced common public radio interface (enhanced common public radio interface, eCPRI).
  • CPRI common public radio interface
  • eCPRI enhanced common public radio interface
  • the system further includes N optical modules at the opposite end, and each optical module in the N optical modules at the opposite end includes a first optical interface and a second optical module. optical interface.
  • first optical interface of the first optical module of the N optical modules of the opposite end is connected to the first optical interface of the first optical module of the N optical modules of the local end through the optical fiber link.
  • the second optical interface of the i-th optical module among the N optical modules at the opposite end is connected to the first optical interface of the i+1-th optical module among the N optical modules at the opposite end.
  • an optical module on the opposite end can be connected to a fronthaul interface on the opposite end, and by cascading multiple optical modules on the opposite end, multiple fronthaul interfaces on the local end and multiple fronthaul on the opposite end can be realized through only one optical fiber link. interface communication, thereby saving fiber resources.
  • this solution does not need to introduce other equipment, such as passive combiner and demultiplexer, so it can save the cost of network construction.
  • the local end includes one or more baseband modules of a base station
  • the opposite end includes one or more radio frequency modules of the base station
  • the The local end includes one or more radio frequency modules of the base station
  • the opposite end includes one or more baseband modules of the base station.
  • each optical module in the N optical modules of the local end is connected to a fronthaul interface of a baseband module of the local end, or,
  • Each of the N optical modules of the local end is connected to a fronthaul interface of a radio frequency module of the local end.
  • the transmitting unit is configured to convert an electrical signal input from a fronthaul interface connected to the kth optical module into an optical signal of a kth wavelength and transmit the first optical signal to the first optical interface.
  • the first optical unit is configured to forward the optical signal of the kth wavelength received from the transmitting unit to the first optical interface, and forward the optical signal of the kth wavelength received from the second optical unit to the first optical interface.
  • the second optical unit is configured to forward the optical signals of the k+1th wavelength to the Nth wavelength received from the second optical interface to the first optical unit, and forward the optical signals from the k+1th wavelength to the Nth wavelength to the receiving unit.
  • the receiving unit is configured to receive the optical signal of the k+Nth wavelength from the second optical unit, convert it into an electrical signal, and output it to the fronthaul interface connected to the kth optical module;
  • the first optical unit is configured to forward the optical signal of the kth wavelength received from the transmitting unit to the first optical interface, and forward the optical signal of the kth wavelength received from the first optical interface to the second optical unit.
  • the second optical unit is configured to forward the optical signal of the 2Nth wavelength received from the first optical unit to the receiving unit;
  • the receiving unit is configured to receive the optical signal of the 2Nth wavelength from the second optical unit, convert the optical signal into an electrical signal, and output it to the fronthaul interface connected to the kth optical module.
  • the optical module transmits the kth wavelength optical signal, receives the k+Nth wavelength optical signal, and forwards other signals passing through the first optical interface to the second optical interface, and other signals passing through the second optical interface to
  • the first optical interface can realize the wavelength division scheme and wavelength add/drop multiplexing of the optical layer, so as to realize transparent transmission of protocols and rates.
  • the first optical unit is configured to transmit the optical signal of the kth wavelength and reflect the optical signal of other wavelengths
  • the second optical unit is configured to transmit the optical signal of the kth wavelength.
  • the optical signal of the k+Nth wavelength reflects the optical signals of other wavelengths.
  • the first optical path and the second optical path are parallel, and the first optical path transmits the kth wavelength between the emission unit and the first optical unit
  • the optical path of the optical signal, the second optical path is the optical path for transmitting the optical signal of the k+Nth wavelength between the second optical unit and the receiving unit.
  • the packaging area of the optical module can be reduced.
  • the first optical unit includes a first filter
  • the second optical unit includes a second filter
  • both the first optical filter and the second optical filter are 45° optical filters.
  • the second optical unit further includes a first reflection mirror, and the first reflection mirror is used to transmit the light transmitted through the second filter.
  • the optical signal of the k+Nth wavelength is transmitted to the receiving unit.
  • the first optical path and the second optical path can be parallelized, so that the packaging area of the optical module can be reduced.
  • the transmitting unit, the first optical unit, the second optical unit and the receiving unit are packaged in a bi-directional optical transceiver. subassembly, BOSA).
  • the emitting unit is a laser.
  • an optical communication method including: connecting a first optical interface of a first optical module of the N optical modules of the local end to the opposite end through an optical fiber link; connecting the N optical modules of the local end
  • the second optical interface of the i-th optical module is connected to the first optical interface of the i+1-th optical module among the N optical modules of the local end, wherein each optical interface of the N optical modules of the local end is
  • an optical module of the local end can be connected to a fronthaul interface of the local end, and by cascading multiple optical modules of the local end, the communication between multiple fronthaul interfaces of the local end and the opposite end can be realized only through an optical fiber link , thereby saving fiber resources.
  • the method provided by the present application does not need to introduce other components, such as passive combiner and demultiplexer, so the network construction cost can be saved.
  • connecting the first optical interface of the first optical module of the N optical modules at the local end to the opposite end through an optical fiber link includes: connecting the N optical modules of the local end to the opposite end.
  • the first optical interface of the first optical module of the plurality of optical modules is connected to the first optical interface of the first optical module of the N optical modules of the opposite end through the optical fiber link;
  • the method further includes: connecting the pair of The second optical interface of the i-th optical module among the N optical modules at the end is connected to the first optical interface of the i+1-th optical module among the N optical modules at the opposite end, wherein the N optical modules at the opposite end
  • Each optical module in includes the first optical interface and the second optical interface.
  • the local end includes one or more baseband modules of a base station, and the opposite end includes one or more radio frequency modules of the base station, or the The local end includes one or more radio frequency modules of the base station, and the opposite end includes one or more baseband modules of the base station.
  • the local end includes one or more baseband modules of a base station, and the method further includes: converting each optical module of the N optical modules of the local end to optical The module is connected to a fronthaul interface of a baseband module, or the local end includes one or more radio frequency modules of the base station, and the method further includes: connecting each optical module of the N optical modules of the local end with a A fronthaul interface of the radio frequency module is connected.
  • an optical module including: a transmitting unit, a first optical unit, a second optical unit, a receiving unit, a first optical interface, and a second optical interface.
  • the transmitting unit, the first optical interface and the second optical unit are all coupled to the first optical unit, and the receiving unit and the second optical interface are all coupled to the second optical unit .
  • the transmitting unit is configured to convert the electrical signal input to the transmitting unit into a first optical signal and transmit the first optical signal to the first optical interface; the first optical unit is configured to transmit the first optical signal to the first optical interface.
  • An optical interface forwards the first optical signal received from the transmitting unit, forwards the optical signal received from the second optical unit to the first optical interface, and forwards the optical signal received from the second optical unit to the second optical unit the optical signal received by the first optical interface;
  • the second optical unit is configured to forward the optical signal received from the second optical interface to the first optical unit, and forward the optical signal received from the first optical unit to the receiving unit the received second optical signal, and forward the optical signal received from the first optical unit to the second optical interface;
  • the receiving unit is configured to receive the second optical signal from the second optical unit and transmit the received optical signal to the second optical interface.
  • the second optical signal is converted into an electrical signal for output.
  • the optical module provided by the present application transmits the first optical signal, receives the second optical signal, and forwards other signals passing through the first optical interface to the second optical interface, and other signals passing through the second optical interface to the first optical interface,
  • the wavelength division scheme and wavelength add/drop multiplexing of the optical layer can be realized, so that transparent transmission of protocols and rates can be realized.
  • the first optical unit is configured to transmit the first optical signal and reflect optical signals of other wavelengths
  • the second optical unit is configured to transmit the first optical signal The second optical signal reflects optical signals of other wavelengths.
  • the first optical path and the second optical path are parallel, and the first optical path is for transmitting the first light between the emission unit and the first optical unit The optical path of the signal, and the second optical path is the optical path for transmitting the second optical signal between the second optical unit and the receiving unit.
  • the packaging area of the optical module can be reduced.
  • the first optical unit includes a first filter
  • the second optical unit includes a second filter
  • the first filter and the second filter are both 45° filters.
  • the second optical unit further includes a first reflection mirror, and the first reflection mirror is used to reflect the light transmitted through the second filter.
  • the second optical signal is reflected to the receiving unit.
  • the first optical path and the second optical path can be parallelized, so that the packaging area of the optical module can be reduced.
  • the transmitting unit, the first optical unit, the second optical unit and the receiving unit are packaged in an integrated optical transceiver assembly BOSA.
  • the emitting unit is a laser.
  • a fourth aspect provides an apparatus applied to an optical module, the optical module includes a first optical interface and a second optical interface, including: the apparatus includes a transmitting unit, a first optical unit, a second optical unit and a receiving unit unit.
  • the transmitting unit, the first optical interface and the second optical unit are all coupled to the first optical unit, and the receiving unit and the second optical interface are all coupled to the second optical unit.
  • the transmitting unit is configured to convert the electrical signal input to the transmitting unit into a first optical signal and transmit the first optical signal to the first optical interface; the first optical unit is configured to transmit the first optical signal to the first optical interface.
  • An optical interface forwards the first optical signal received from the transmitting unit, forwards the optical signal received from the second optical unit to the first optical interface, and forwards the optical signal received from the second optical unit to the second optical unit the optical signal received by the first optical interface;
  • the second optical unit is configured to forward the optical signal received from the second optical interface to the first optical unit, and forward the optical signal received from the first optical unit to the receiving unit the received second optical signal, and forward the optical signal received from the first optical unit to the second optical interface;
  • the receiving unit is configured to receive the second optical signal from the second optical unit and transmit the received optical signal to the second optical interface.
  • the second optical signal is converted into an electrical signal for output.
  • the transceiver component provided by this application transmits the first optical signal, receives the second optical signal, and forwards other signals passing through the first optical interface to the second optical interface, and other signals passing through the second optical interface to the first optical interface,
  • the wavelength division scheme and wavelength add/drop multiplexing of the optical layer can be realized, so that transparent transmission of protocols and rates can be realized.
  • the first optical unit is configured to transmit the first optical signal and reflect optical signals of other wavelengths
  • the second optical unit is configured to transmit the first optical signal The second optical signal reflects optical signals of other wavelengths.
  • the first optical path and the second optical path are parallel, and the first optical path is for transmitting the first light between the emission unit and the first optical unit The optical path of the signal, and the second optical path is the optical path for transmitting the second optical signal between the second optical unit and the receiving unit.
  • the packaging area of the optical module can be reduced.
  • the first optical unit includes a first filter
  • the second optical unit includes a second filter
  • the first filter and the second filter are both 45° filters.
  • the second optical unit further includes a first reflection mirror, and the first reflection mirror is used to transmit the light transmitted through the second filter.
  • the second optical signal is reflected to the receiving unit.
  • the first optical path and the second optical path can be parallelized, so that the packaging area of the optical module can be reduced.
  • the emitting unit is a laser.
  • Figure 1 is a schematic diagram of the RAN structure in 4G and 5G.
  • Figure 2 is an optical fiber direct drive solution in a CRAN scenario.
  • FIG. 3 is a schematic diagram of an optical communication system provided by the present application.
  • FIG. 4 is a schematic diagram of an optical communication system provided by the present application.
  • FIG. 5 is a schematic structural diagram of an optical module provided by the present application.
  • FIG. 6 is a schematic structural diagram of an optical module provided by the present application.
  • FIG. 7 is a schematic structural diagram of an optical module provided by the present application.
  • FIG. 8 is a schematic flowchart of an optical communication method provided by the present application.
  • 4th generation (4th generation, 4G) systems such as long term evolution (long term evolution, LTE) systems
  • 5th generation, 5G systems such as new radio (NR), or other communication systems that may appear in the future.
  • 4th generation (4th generation, 4G) systems such as long term evolution (long term evolution, LTE) systems
  • 5th generation, 5G systems such as new radio (NR)
  • NR new radio
  • the base station can communicate with one or more terminals.
  • the base station may include one or more baseband modules, one or more radio frequency modules, and one or more antennas, and through the one or more baseband modules, the one or more radio frequency modules, and the one or more antennas, the base station Communication with one or more terminals can be achieved.
  • the baseband module can perform baseband processing, such as processing digital signals or baseband signals
  • the radio frequency module can perform radio frequency processing, such as performing mutual conversion between digital signals or baseband signals and radio frequency signals
  • the antenna can transmit or receive radio frequency signals.
  • the digital signal or baseband signal is processed by the baseband module, it is sent to the radio frequency module.
  • the radio frequency module can convert the digital signal or baseband signal into a radio frequency signal, and the antenna transmits the radio frequency signal; or, the antenna transmits the received radio frequency signal to the radio frequency
  • the radio frequency module can convert the radio frequency signal into a digital signal or a baseband signal, and the baseband module processes the digital signal or the baseband signal.
  • a baseband module may include one or more fronthaul interfaces
  • a radio frequency module may include one or more fronthaul interfaces.
  • One or more fronthaul interfaces on a baseband module can be connected with one or more fronthaul interfaces on a radio frequency module.
  • the above names such as fronthaul and fronthaul interface are for illustration only. It can be understood that the transmission between the baseband module and the radio frequency module may have other names, and the interface on the baseband module or the radio frequency module may have other names, which are not limited in the embodiments of this application. .
  • FIG. 1 shows a schematic diagram of the structure of a RAN base station in 4G and 5G.
  • a 4G RAN base station may include a baseband processing unit (baseband unit, BBU), a remote radio unit (remote radio unit, RRU), and an antenna, wherein the BBU corresponds to a baseband module, and the RRU corresponds to a radio frequency module.
  • BBU baseband processing unit
  • RRU remote radio unit
  • the transmission is called a prequel.
  • a 5G RAN base station may include a centralized unit (CU), a distributed unit (DU), an RRU, and an antenna, where the DU corresponds to the baseband module, and the RRU corresponds to the radio frequency module, where the transmission between the DU and the RRU is called Fronthaul, transmission between CU and DU is called midhaul.
  • the RRU and the antenna may be implemented by an active antenna unit (AAU). At this time, the AAU corresponds to the radio frequency module, and the transmission between the BBU and the AAU, or the transmission between the DU and the RRU can be called for the prequel.
  • Figure 2 shows an optical fiber direct drive solution in a CRAN scenario.
  • the optical fiber direct drive solution is to directly connect the BBU or DU with the RRU or AAU through an optical fiber link.
  • a BBU or DU may have one or more fronthaul interfaces, and each fronthaul interface may be connected to an optical module;
  • an RRU or AAU may have one or more fronthaul interfaces, and each fronthaul interface may be connected to an optical module.
  • the fronthaul interface may be CRPI or eCPRI, and the optical module is used to realize the conversion between optical signals and electrical signals.
  • the optical module connected to the fronthaul interface of the BBU or DU can be connected to the optical module connected to the fronthaul interface of the RRU or AAU through an optical fiber, thereby realizing the communication between the RRU or the AAU and the BBU or DU.
  • the present application provides an optical communication system and method, by cascading multiple optical modules at the local end, so that only one optical fiber link (which may include one or more optical fibers) can realize multiple optical modules at the local end.
  • the communication between the fronthaul interface and the peer end can save fiber resources.
  • “Local end” refers to the baseband module side, and correspondingly “peer end” refers to the radio frequency module side.
  • the “local end” refers to the side of the radio frequency module, and correspondingly, the “peer end” refers to the side of the baseband module.
  • Baseband module refers to a module or unit for performing baseband processing, or a module or unit for performing a part of baseband processing.
  • the baseband module is a BBU or DU, or the baseband module may be a part of the BBU or DU, and one BBU or DU may include one or more baseband modules.
  • Radio frequency module refers to a module or unit for performing radio frequency processing.
  • a radio frequency module may be an RRU or an AAU, or a radio frequency module may be a part of an RRU or an AAU, and one RRU or AAU may include one or more radio frequency modules.
  • FIG. 3 is a schematic diagram of an optical communication system provided by the present application.
  • the system 300 includes N optical modules at the local end, that is, optical modules 301(1) to 301(N), which can be denoted as the first optical module, the second optical module, ..., the Nth optical module .
  • An optical module of the local end may be connected to a fronthaul interface of the local end (the fronthaul interface may have other names, or may be called an interface, which is not limited in this embodiment of the present application).
  • Each optical module includes two optical interfaces, denoted as a first optical interface and a second optical interface.
  • the first optical interface of the first optical module among the N optical modules at the local end is connected to the opposite end through an optical fiber link, and the second optical interface of the i-th optical module among the N optical modules at the local end is connected to the N optical modules at the local end.
  • the first optical interface of the first optical module among the N optical modules at the local end is connected to the opposite end through the optical fiber link, and the second optical interface of the first optical module among the N optical modules at the local end is connected to the N optical modules at the local end.
  • the first optical interface of the second optical module in the optical modules is connected, and the second optical interface of the second optical module of the N optical modules of the local end is connected to the first optical interface of the third optical module of the N optical modules of the local end connected, ..., and so on.
  • first optical module at the local end is connected to the opposite end through an optical fiber link. It should be noted that the first optical module can be connected to the opposite end through links of other media. This embodiment of the application This is not limited.
  • the optical module 301(1) is connected to the fronthaul interface 302(1)
  • the optical module 301(2) is connected to the fronthaul interface 302(2), . . . , and so on, the optical module 301(N) Connect to fronthaul interface 302(N).
  • the first optical interface of the optical module 301(1) is connected to the opposite end through an optical fiber link
  • the second optical interface of the optical module 301(1) is connected to the first optical interface of the optical module 301(2)
  • the optical module 301(2) ) of the second optical interface is connected to the first optical interface of the optical module 301(3), . . . , and so on, the second optical interface of the optical module 301(N-1) is connected to the optical interface.
  • an optical module at the local end can be connected to a front-haul interface at the local end, and by cascading multiple optical modules at the local end, multiple front-haul interfaces at the local end can be connected to a pair of peers through only one optical fiber link. end-to-end communication, thereby saving fiber resources.
  • the optical communication system provided by the present application does not need to introduce other components, such as passive multiplexers and demultiplexers, so the network construction cost can be saved.
  • the opposite end may include one or more fronthaul interfaces and/or one or more optical modules, which will be described below with reference to two possible implementation manners. It can be understood that the present application does not limit the connection mode between the fronthaul interfaces of the opposite end and the connection mode between the fronthaul interface of the opposite end and the optical module of the opposite end.
  • a fronthaul interface at the opposite end can be connected to an optical module at the opposite end, and these optical modules at the opposite end can be connected to a passive wavelength combiner and demultiplexer.
  • the first optical interface of the first optical module among the N optical modules at the end is connected.
  • the system 300 may further include N optical modules at the opposite end, namely optical modules 311(1) to 311(N), and one optical module at the opposite end may be connected to a fronthaul interface at the opposite end.
  • the connection mode between the N optical modules at the opposite end is the same as the connection mode between the N optical modules at the local end.
  • each optical module includes a first optical interface and a second optical interface.
  • the first optical interface of the first optical module among the N optical modules at the opposite end is connected to the first optical interface of the first optical module among the N optical modules at the local end through an optical fiber, and the N optical modules at the opposite end
  • the second optical interface of the i-th optical module in is connected to the first optical interface of the i+1-th optical module among the N optical modules at the opposite end.
  • the first optical interface of the optical module 311(1) is connected to the first optical interface of the optical module 301(1) through the optical fiber link
  • the second optical interface of the optical module 311(1) is connected to the optical module 311(2)
  • the second optical interface of the optical module 311(2) is connected to the first optical interface of the optical module 311(3).
  • the two optical interfaces are connected to the first optical interface of the optical module 311(N).
  • an optical module at the opposite end can be connected to a fronthaul interface at the opposite end, and by cascading multiple optical modules at the opposite end, multiple fronthaul interfaces at the local end can be implemented only through one optical fiber link. Communication with multiple fronthaul interfaces on the opposite end saves fiber resources. Moreover, this solution does not need to introduce other equipment, such as passive combiner and demultiplexer, so it can save the cost of network construction.
  • the local end or the opposite end can use a single-core optical fiber jumper to realize the cascade connection between the optical modules, so that the corresponding relationship between the optical interfaces is simple and error-prone.
  • the local end may include one or more baseband modules of the base station, and the opposite end may include one or more radio frequency modules of the base station.
  • the opposite end may include one or more radio frequency modules of the base station, and the local end may include one or more baseband modules of the base station.
  • the N fronthaul interfaces connected to the N optical modules at the local end may be distributed on one baseband module or may be distributed on multiple baseband modules.
  • the N fronthaul interfaces connected to the N optical modules at the opposite end may be distributed on one radio frequency module, or may be distributed on multiple radio frequency modules.
  • a base station adopts the networking mode of 3-sector RF modules, it may require 3 pairs of optical modules to complete data transmission, and the 3 fronthaul interfaces connected to the 3 optical modules at the local end may be distributed on 2 baseband modules (for example, 2 The fronthaul interface is distributed on one baseband module, and the fronthaul interface is distributed on the other baseband module), and the 3 optical modules on the opposite end are distributed on 3 RF modules (for example, 3 optical modules and 3 RF modules) one-to-one correspondence).
  • 3 RF modules for example, 3 optical modules and 3 RF modules
  • the N fronthaul interfaces on the baseband module side can be distributed on two baseband modules, that is, each baseband module can have two fronthaul interfaces, and the N fronthaul interfaces on the RF module side can be distributed on two radios. On the module, that is, each RF module can have 2 fronthaul interfaces.
  • the N fronthaul interfaces connected to the N optical modules of the local end may be distributed on one radio frequency module, or may be distributed on multiple radio frequency modules.
  • the N fronthaul interfaces connected to the N optical modules at the opposite end may be distributed on one baseband module, or may be distributed on multiple baseband modules.
  • the fronthaul interface may be CPRI or eCPRI.
  • any optical module of the local end in the above-mentioned FIG. 3 is used to convert the electrical signal input by the fronthaul interface connected to the optical module into an optical signal of a specific wavelength (denoted as: the first optical signal) and pass the optical signal.
  • the first optical interface of the module is output, and the optical signal input from the first optical interface of other optical modules connected to the second optical interface of the optical module to the second optical interface of the optical module passes through the first optical interface of the optical module output.
  • optical signal of another specific wavelength of the first optical interface of the optical module (marked as: second Optical signal) is converted into electrical signal and output to the fronthaul interface connected to the optical module, and input from the optical fiber link or the second optical interface of other optical modules connected to the first optical interface of the optical module to the first optical interface of the module.
  • the optical signals of other wavelengths of the optical interface are output through the second optical interface of the optical module.
  • the wavelength in this embodiment of the present application may be a specific value, for example, the wavelength of the optical signal is 1271 nm, or may also be a range of values, such as 1271-1371 nm, that is, the wavelength of the optical signal floats within 1271-1371 nm.
  • the wavelengths of the corresponding first optical signal and the second optical signal are different.
  • the wavelengths of the first optical signals corresponding to the two optical modules are different, and the wavelengths of the second optical signals corresponding to the two optical modules are also different.
  • each of the N optical modules at the local end is connected to a fronthaul interface at the local end.
  • the first optical module among the N optical modules at the local end is used for:
  • the optical signal input to the second optical interface of the first optical module is output to the opposite end through the first optical interface of the first optical module, and,
  • the N+1 wavelength optical signal input from the opposite end to the first optical interface of the first optical module is converted into an electrical signal and output to the fronthaul interface connected to the first optical module, and the input from the opposite end to the first optical module is converted into an electrical signal.
  • Optical signals of other wavelengths of the first optical interface of an optical module are output to the first optical interface of the second optical module through the second optical interface of the first optical module.
  • the jth optical module among the N optical modules at the local end is used for:
  • the Nth optical module among the N optical modules at the local end is used for:
  • the optical signal of the 2Nth wavelength input to the first optical interface of the Nth optical module is converted into an electrical signal and output to the fronthaul interface connected to the Nth optical module.
  • the first optical signal and the second optical signal corresponding to the first optical module are the optical signal of the first wavelength and the optical signal of the N+1th wavelength respectively;
  • the first optical signal and the second optical signal are the optical signal of the second wavelength and the optical signal of the N+2th wavelength respectively;
  • the first optical signal and the second optical signal corresponding to the third optical module are the optical signal of the third wavelength and the The optical signal of the N+3th wavelength; and so on, the first optical signal and the second optical signal corresponding to the Nth optical module are the optical signal of the Nth wavelength and the optical signal of the 2Nth wavelength, respectively.
  • the optical module 301(1) is connected to the fronthaul interface 302(1)
  • the optical module 301(2) is connected to the fronthaul interface 302(2)
  • the optical module 301(3) is connected to the fronthaul interface 302(3)
  • the optical module 301(3) is connected to the fronthaul interface 302(3).
  • Module 301(4) is connected to fronthaul interface 302(4).
  • Table 1 shows the correspondence between the first optical signal transmitted by the N optical modules at the local end and the second optical signal received.
  • the electrical signal input by the fronthaul interface 302(4) to the optical module 301(4) is converted into an optical signal S4 (ie, the optical signal of the fourth wavelength) and output through the first optical interface of the optical module 301(4).
  • the optical signal S4 Since the first optical interface of the optical module 301(4) is connected to the second optical interface of the optical module 301(3), the optical signal S4 will be input to the second optical interface of the optical module 301(3).
  • the electrical signal input by the fronthaul interface 302(3) to the optical module 301(3) is converted into an optical signal S3 (ie, an optical signal of a third wavelength) and output through the first optical interface of the optical module 301(3).
  • the optical signal S4 input to the second optical interface of the optical module 301(3) will also be output through the first optical interface of the optical module 301(3). Since the first optical interface of the optical module 301(3) is connected to the second optical interface of the optical module 301(2), the optical signals S3 and S4 will be input to the second optical interface of the optical module 301(2).
  • the electrical signal input by the fronthaul interface 302(2) to the optical module 301(2) is converted into an optical signal S2 (ie, an optical signal of the second wavelength) and output through the first optical interface of the optical module 301(2).
  • the optical signals S3 and S4 input to the second optical interface of the optical module 301(2) will also be output through the first optical interface of the optical module 301(2). Since the first optical interface of the optical module 301(2) is connected to the second optical interface of the optical module 301(1), the optical signals S2, S3 and S4 will be input to the second optical interface of the optical module 301(1).
  • the electrical signal input by the fronthaul interface 302(1) to the optical module 301(1) is converted into an optical signal S1 (ie, an optical signal of a first wavelength) and output through the first optical interface of the optical module 301(1).
  • the optical signals S2, S3 and S4 input to the second optical interface of the optical module 301(1) will also be output through the first optical interface of the optical module 301(1). That is to say, the optical signals S1, S2, S3 and S4 will all be output through the first optical interface of the optical module 301(1) and transmitted to the opposite end through the optical fiber.
  • the wavelengths of the optical signals S1, S2, S3 and S4 are different from each other.
  • the optical signals S5, S6, S7 and S8 transmitted from the opposite end to the local end through the optical fiber link will be input to the first optical interface of the optical module 301(1).
  • the wavelengths of the optical signals S1 to S8 are different from each other.
  • the wavelength can be a specific numerical value, or can be a numerical value range, for details, please refer to the above description.
  • the wavelengths are in one numerical range, the numerical ranges of the wavelengths of the optical signals S1 to S8 do not overlap each other.
  • the optical module 301(1) can convert one of the optical signals S5, S6, S7 and S8 into an electrical signal and output it to the fronthaul interface 302(1) connected to it, and convert the optical signals S5, S6, S7 and S7 into an electrical signal. Other optical signals in S8 are output from its second optical interface.
  • the optical module 301(1) can convert the optical signal S5 (ie, the optical signal of the fifth wavelength) into an electrical signal and output it to the fronthaul interface 302(1) connected thereto, and convert the optical signal S6 , S7 and S8 output from their second optical interface.
  • the optical module 301(2) can convert one of the optical signals input from its first optical interface into an electrical signal and output it to the fronthaul interface 302(2) connected to it, and convert the other optical signals from its second optical signal to an electrical signal.
  • Optical interface output For example, as shown in the figure, the optical module 301(2) can convert the optical signal S6 (ie, the optical signal of the sixth wavelength) of the optical signals S6, S7 and S8 input from its first optical interface into an electrical signal and Output to the fronthaul interface 302(2) to which it is connected, and output the optical signals S7 and S8 from its second optical interface.
  • the optical module 301(3) can convert one of the optical signals input from its first optical interface into an electrical signal and output it to the fronthaul interface 302(3) connected to it, and convert the other optical signals from its second optical signal to an electrical signal.
  • Optical interface output For example, as shown in the figure, the optical module 301(3) can convert the optical signal S7 (ie, the optical signal of the seventh wavelength) of the optical signals S7 and S8 input from its first optical interface into an electrical signal and output it to The fronthaul interface 302(3) is connected to it, and outputs the optical signal S8 from its second optical interface.
  • the optical module 301(4) can convert the optical signal input from its first optical interface into an electrical signal and output it to the fronthaul interface 302(4) connected thereto.
  • the optical module 301(4) can convert the optical signal S8 (ie, the optical signal of the eighth wavelength) input from its first optical interface into an electrical signal and output it to the fronthaul interface 302 ( 4).
  • the optical module provided by the present application can not only realize the transmission and reception of the optical signal of the optical module itself (that is, the above-mentioned first optical signal and the above-mentioned second optical signal), but also can realize the optical signal of the port of the adjacent optical module cascaded with it. of Reuters. Moreover, since the wavelengths of the first optical signals emitted by the multiple optical modules are different, the multiple optical modules can be cascaded, so that the signal transmission between the local end and the opposite end can be realized through one optical fiber link.
  • any optical module at the opposite end in the foregoing FIG. 3 is the same as that of the optical module at the local end.
  • the wavelengths of the corresponding first optical signal and the second optical signal are different.
  • the wavelengths of the first optical signals corresponding to the two optical modules are different, and the wavelengths of the second optical signals are also different.
  • the wavelengths of the first optical signals corresponding to the two optical modules are different, and the wavelengths of the second optical signals are also different.
  • each of the N optical modules of the opposite end is connected to a fronthaul interface of the opposite end.
  • the first optical module among the N optical modules at the opposite end is used for:
  • the optical signal input by the optical interface to the second optical interface of the first optical module is output to the opposite end through the first optical interface of the first optical module, and,
  • the optical signal of the first wavelength input from the opposite end to the first optical interface of the first optical module is converted into an electrical signal and output to the fronthaul interface connected with the first optical module, and the first optical signal is input from the opposite end to the first optical module.
  • the optical signals of other wavelengths of the first optical interface of the module are output to the first optical interface of the second optical module through the second optical interface of the first optical module.
  • the jth optical module among the N optical modules at the opposite end is used for:
  • optical interface, j 2, 3, ..., N-1.
  • the Nth optical module among the N optical modules at the opposite end is used for:
  • the Nth wavelength optical signal input to the first optical interface of the Nth optical module is converted into an electrical signal and output to the fronthaul interface connected to the Nth optical module.
  • the first optical signal and the second optical signal corresponding to the first optical module are the optical signal of the N+1th wavelength and the optical signal of the first wavelength respectively;
  • the first optical signal and the second optical signal are the optical signal of the N+2th wavelength and the optical signal of the second wavelength respectively;
  • the first optical signal and the second optical signal corresponding to the third optical module are the light of the N+3th wavelength respectively signal and the optical signal of the third wavelength; and so on, the first optical signal and the second optical signal corresponding to the Nth optical module are the optical signal of the 2Nth wavelength and the optical signal of the Nth wavelength, respectively.
  • the optical module 311(1) is connected to the front-haul interface 312(1)
  • the optical module 311(2) is connected to the front-haul interface 312(2)
  • the optical module 311(3) is connected to the front-haul interface 312(3)
  • the optical module 311(3) is connected to the front-haul interface 312(3)
  • Module 311(4) is connected to fronthaul interface 312(4).
  • Table 2 shows the correspondence between the first optical signal transmitted by each optical module and the second optical signal received.
  • the electrical signals input by the fronthaul interfaces 312(4), 312(3), 312(2), and 312(1) to the optical modules connected thereto, respectively, are converted into optical signals S8 (ie, optical signals of the eighth wavelength) , S7 (ie, the optical signal at the seventh wavelength), S6 (ie, the optical signal at the sixth wavelength), and S5 (ie, the optical signal at the fifth wavelength).
  • the optical signal S8 is input to the second optical interface of the optical module 311(3) through the first optical interface of the optical module 311(4).
  • the optical signals S7 and S8 are input to the second optical interface of the optical module 311(2) through the first optical interface of the optical module 311(3).
  • the optical signals S6, S7 and S8 are input to the second optical interface of the optical module 311(1) through the first optical interface of the optical module 311(2).
  • the optical signals S5, S6, S7 and S8 are output through the first optical interface of the optical module 311(1) and transmitted to the first optical interface of the optical module 301(1) through the optical fiber.
  • the optical module 311(1) can convert the optical signals S1 (ie, the optical signal of the first wavelength), S2 (ie, the optical signal of the second wavelength), S3 (ie, the optical signal of the third wavelength) and S4 (ie, the optical signal of the third wavelength)
  • the optical signal S1 of the fourth wavelength optical signal) is converted into an electrical signal and output to the fronthaul interface 312(1) connected thereto, and the optical signals S2, S3 and S4 are output from its second optical interface.
  • the optical module 311(2) can convert the optical signal S2 in the optical signals S2, S3 and S4 input from its first optical interface into an electrical signal and output it to the fronthaul interface 312(2) connected to it, and convert the optical signal S3 into an electrical signal. and S4 output from its second optical interface.
  • the optical module 311(3) can convert the optical signal S3 of the optical signals S3 and S4 input from its first optical interface into an electrical signal and output it to the fronthaul interface 312(3) connected to it, and convert the optical signal S4 from its first optical interface.
  • the second optical interface outputs.
  • the optical module 311(4) can convert the optical signal S4 input from its first optical interface into an electrical signal and output it to the fronthaul interface 312(4) connected thereto.
  • Optical module number Paired optical module number 301(1) 311(1) 301(2) 311(2) 301(3) 311(3) 301(4) 311(4)
  • the correspondence between the optical modules at the local end and the optical modules at the opposite end shown in Table 3 is only an example, and in actual deployment, it is not necessary to deploy the optical modules according to the correspondence shown in Table 3.
  • the fronthaul interface A for example, the fronthaul interface (302(1)) of the local end to communicate with the fronthaul interface B (for example, the fronthaul interface 311(2)) of the opposite end, you can make the optical module connected to the fronthaul interface A.
  • the optical module A (eg, the optical module 301(1)) is matched with the optical module B (eg, the optical module 311(1)) connected to the fronthaul interface B, that is, the optical module A is designed to receive the optical signal emitted by the optical module B and Convert it into an electrical signal, and design the optical module B to receive the optical signal emitted by the optical module A and convert it into an electrical signal.
  • the first optical signal transmitted by each optical module and the second optical signal received and the corresponding relationship between the optical module at the local end and the optical module at the opposite end can be as follows: shown in Table 4.
  • the solution provided in this application can realize transparent transmission of protocols and rates through the wavelength division solution and wavelength add/drop multiplexing of the optical layer.
  • the optical module cascade is not sensitive to the wavelength sequence, the difficulty of deployment can be simplified.
  • FIG. 5 shows a schematic structural diagram of the optical module 400 .
  • the optical module 400 may be any one of the optical modules 301(1) to 301(N) and the optical modules 311(1) to 311(N).
  • any one of the optical modules 301(1) to 301(N) and the optical modules 311(1) to 311(N) may be implemented by the optical module 400 .
  • the optical module 400 includes a first optical interface 401 and a second optical interface 402 , a transmitting unit 403 , a first optical unit 404 , a second optical unit 405 and a receiving unit 406 .
  • the transmitting unit 403 , the first optical interface 401 and the second optical unit 405 are all coupled to the first optical unit 404
  • the receiving unit 406 and the second optical interface 402 are all coupled to the second optical unit 405 .
  • the transmitting unit 403 is configured to transmit the first optical signal to the first optical interface 401 .
  • the first optical unit 404 is configured to forward the first optical signal received from the transmitting unit 403 to the first optical interface 401, forward the optical signal received from the second optical unit 405 to the first optical interface 401, and forward the optical signal received from the second optical unit 405 to the first optical interface 401.
  • 405 forwards the optical signal received by the first optical interface 401 .
  • the second optical unit 405 is configured to forward the optical signal received from the second optical interface 402 to the first optical unit 404 , forward the second optical signal received from the first optical unit 401 to the receiving unit 406 , and forward the second optical signal to the second optical interface 402 Optical signal received from the first optical unit 401 .
  • the receiving unit 406 is configured to receive the second optical signal from the second optical unit 405 .
  • the first optical unit may also convert the electrical signal input to the transmitting unit 403 into a first optical signal, and then transmit the first optical signal to the first optical interface 401 .
  • the receiving unit 406 may also convert the second optical signal into an electrical signal for output.
  • the first optical signal is S1 and the second optical signal is S5 .
  • the first optical signal is S2 and the second optical signal is S6 .
  • the optical module provided by this application transmits the first optical signal, receives the second optical signal, and forwards other signals passing through the first optical interface to the second optical interface, and other signals passing through the second optical interface to the first optical interface
  • the interface can realize the wavelength division scheme and wavelength add/drop multiplexing of the optical layer, so as to realize the transparent transmission of the protocol and rate.
  • the communication between multiple fronthaul interfaces at the local end and multiple fronthaul interfaces at the opposite end can be realized through only one optical fiber link, thereby saving Fiber Resource.
  • the transmitting unit 403 and the receiving unit 406 may be connected with a fronthaul interface.
  • the fronthaul interface connected to the optical module 400 may be directly or indirectly connected to the transmitting unit 403 , for example, the fronthaul interface may be sequentially connected to the transmitting unit 403 through the transmitting end clock recovery unit and the driving unit.
  • the fronthaul interface may be sequentially connected to the transmitting unit 403 through the transmitting end clock recovery unit and the driving unit.
  • the embodiments of the present application do not limit them.
  • the transmitting unit 403 may be directly or indirectly connected to the fronthaul interface.
  • the transmitting unit 403 may be connected to the fronthaul interface through a clock recovery unit at the receiving end.
  • the embodiment of the present application does not limit this, and details are not repeated here.
  • the transmitting unit 403 may be any component or structure that can realize optical signal transmission.
  • the emitting unit 403 may be a laser.
  • the receiving unit 406 may be any component or structure that can realize optical signal reception, such as an avalanche photodiode (APD).
  • APD avalanche photodiode
  • the electrical signal input by the fronthaul interface connected to the optical module is converted into an optical signal of the kth wavelength and transmits the first optical signal to the first optical interface 401 .
  • the first optical unit 404 can forward the optical signal of the kth wavelength received from the transmitting unit 403 to the first optical interface 401 , and forward the k+1th wavelength to the Nth wavelength received from the second optical unit 405 to the first optical interface 401 . and forward the optical signals of the k+Nth wavelength to the 2Nth wavelength received from the first optical interface 401 to the second optical unit 405 .
  • the second optical unit 405 can forward the optical signals of the k+1th wavelength to the Nth wavelength received from the second optical interface 402 to the first optical unit 404 , and forward the k+th wavelength received from the first optical unit 404 to the receiving unit 406 .
  • the optical signals of the N wavelengths are forwarded to the second optical interface 402 and the optical signals of the k+N+1th wavelength to the 2Nth wavelength received from the first optical unit 404 are forwarded.
  • the receiving unit 406 may receive the optical signal of the k+Nth wavelength from the second optical unit 405, convert it into an electrical signal, and output it to the fronthaul interface connected to the kth optical module.
  • the first optical unit 404 can forward the optical signal of the kth wavelength received from the transmitting unit 403 to the first optical interface 401 , and forward the optical signal of the 2kth wavelength received from the first optical interface 401 to the second optical unit 405 .
  • the second optical unit 405 may forward the 2k-th wavelength optical signal received from the first optical unit 404 to the receiving unit 406 .
  • the receiving unit 406 is configured to receive the optical signal of the 2kth wavelength from the second optical unit 405, convert it into an electrical signal, and output it to the fronthaul interface connected to the kth optical module.
  • the electrical signal input by the interface is converted into an optical signal of the k+Nth wavelength and transmits the first optical signal to the first optical interface 401 .
  • the first optical unit 404 can forward the optical signal of the k+Nth wavelength received from the transmitting unit 403 to the first optical interface 401 , and forward the k+N+1th wavelength received from the second optical unit 405 to the first optical interface 401 .
  • the optical signal to the 2Nth wavelength is forwarded to the second optical unit 405 , and the optical signal of the kth wavelength to the Nth wavelength received from the first optical interface 401 is forwarded.
  • the second optical unit 405 can forward the k+N+1 th wavelength to the 2Nth optical signal received from the second optical interface 402 to the first optical unit 404 , and forward the k th optical signal received from the first optical unit 404 to the receiving unit 406
  • the optical signals of wavelengths are forwarded to the second optical interface 402 , and the optical signals of the k+1th wavelength to the Nth wavelength received from the first optical unit 404 are forwarded.
  • the receiving unit 406 can receive the optical signal of the kth wavelength from the second optical unit 405, convert it into an electrical signal, and output it to the fronthaul interface connected to the kth optical module.
  • the first optical unit 404 can forward the optical signal of wavelength 2 k received from the transmitting unit 403 to the first optical interface 401 , and forward the optical signal of wavelength k received from the first optical interface 401 to the second optical unit 405 .
  • the second optical unit 405 may forward the optical signal of the k-th wavelength received from the first optical unit 404 to the receiving unit 406 .
  • the receiving unit 406 is configured to receive the optical signal of the kth wavelength from the second optical unit 405, convert it into an electrical signal, and output it to the fronthaul interface connected to the kth optical module.
  • the transmitting unit 403 , the first optical unit 404 , the second optical unit 405 and the receiving unit 406 are packaged in the transceiver assembly 40 .
  • the transceiver assembly may be, for example, an integrated optical transceiver assembly BOSA.
  • the first optical unit 404 may select the first optical signal, for example, the first optical unit 404 is configured to transmit the first optical signal and reflect the optical signals of other wavelengths.
  • the second optical unit 405 can select the second optical signal, for example, the second optical unit 405 is used to transmit the second optical signal and reflect the optical signal of other wavelengths. It can be understood that the first optical unit 404 can select the first optical signal in other ways, and the second optical unit 405 can select the second signal in other ways, which is not limited in the embodiments of the application.
  • the first optical path and the second optical path are parallel.
  • the first optical path is an optical path in which the first optical signal emitted by the transmitting unit 403 is transmitted in a straight line
  • the second optical path is an optical path in which the second optical signal after passing through the second optical unit 405 is transmitted in a straight line.
  • the first optical path is the optical path for transmitting the optical signal of the first wavelength between the transmitting unit 403 and the first optical unit 404
  • the second optical path is the optical path for transmitting the optical signal of the second wavelength between the second optical unit 405 and the receiving unit 406 the light path.
  • the packaging area of the BOSA or the optical module can be reduced.
  • the first optical unit 404 may include a first filter 4041
  • the second optical unit 405 may include a second filter 4051 .
  • the first optical filter 4041 is used to transmit the first optical signal and reflect other optical signals
  • the second optical filter 4051 is used to transmit the second optical signal and reflect other optical signals.
  • the first optical signal is S1
  • the second optical signal is S5
  • the other optical signals are S6, S7 and S8.
  • the first optical signal is S2
  • the second optical signal is S6, and the other optical signals are S7 and S8.
  • the first filter 4041 and the second filter 4051 are both 45° filters.
  • the second optical unit 405 may further include a first reflecting mirror 4052 , and the first reflecting mirror 4052 is configured to transmit the second optical signal transmitted through the second optical filter 4051 to the receiving unit 406 .
  • the first optical path and the second optical path can be parallelized, so that the packaging area of the BOSA or the optical module can be reduced.
  • the present application also provides a device 40, the device 40 may be the BOSA shown in FIG. 5 to FIG. 7, the structure of the device 40 may refer to the BOSA shown in FIG. 5 to FIG. The function can refer to the above description, and will not be repeated here. It should be understood that the device 40 can be applied to the optical module 400 .
  • FIG. 8 is a schematic flowchart of an optical communication method 500 provided by the present application.
  • the method may include step S501.
  • S501 Connect the first optical interface of the first optical module of the N optical modules of the local end to the opposite end through the optical fiber link, and connect the second optical interface of the i-th optical module of the N optical modules of the local end to the optical module of the local end
  • an optical module at the local end can be connected to a fronthaul interface at the local end.
  • an optical module of the local end can be connected to a fronthaul interface of the local end, and by cascading multiple optical modules of the local end, the communication between multiple fronthaul interfaces of the local end and the opposite end can be realized only through an optical fiber link , thereby saving fiber resources.
  • the method provided by the present application does not need to introduce a passive wave combiner and demultiplexer, so the network construction cost can be saved.
  • connecting the first optical interface of the first optical module of the N optical modules of the local end to the opposite end through the optical fiber link includes: connecting the first optical interface of the first optical module of the N optical modules of the local end to the opposite end.
  • the optical interface is connected to the first optical interface of the first optical module among the N optical modules at the opposite end through the optical fiber link.
  • the method 500 may also include:
  • S502 Connect the first optical interface of the first optical module of the N optical modules at the opposite end to the first optical interface of the first optical module of the N optical modules at the local end through an optical fiber link, and connect the N optical modules of the opposite end to the first optical interface of the first optical module of the N optical modules at the local end.
  • the second optical interface of the i-th optical module in the module is connected to the first optical interface of the i+1-th optical module in the N optical modules of the opposite end, wherein each optical module of the N optical modules of the opposite end includes the an optical interface and a second optical interface.
  • an optical module at the opposite end may be connected to a fronthaul interface at the opposite end.
  • an optical module on the opposite end can be connected to a fronthaul interface on the opposite end, and by cascading multiple optical modules on the opposite end, multiple fronthaul interfaces on the local end and multiple fronthaul on the opposite end can be realized through only one optical fiber link. interface communication, thereby saving fiber resources.
  • this solution does not need to introduce other equipment, such as passive combiner and demultiplexer, so it can save the cost of network construction.
  • the method 500 may further include: connecting each optical module of the N optical modules at the local end with a fronthaul interface of a baseband module, or connecting each optical module of the N optical modules at the local end with a fronthaul interface.
  • a fronthaul interface of the radio frequency module is connected.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种光通信系统、光通信方法、光模块和应用于光模块的装置,通过将本端的多个光模块级联,使得仅通过一条光纤链路就可以实现本端的多个前传接口与对端的通信,从而节约了光纤资源。该光通信系统,包括:本端的N个光模块,每个光模块包括第一光接口和第二光接口。其中,本端的N个光模块中的第一光模块的第一光接口通过光纤与对端相连,本端的N个光模块中的第i光模块的第二光接口与本端的N个光模块中的第i+1光模块的第一光接口相连,i=1,2,……,N-1。

Description

光通信系统和方法、光模块和应用于光模块的装置 技术领域
本申请涉及光通信领域,并且更具体地,涉及一种光通信系统和方法、光模块和应用于光模块的装置。
背景技术
无线接入网(radio access network,RAN)的部署方式分为集中式无线接入网(centralized radio access network,CRAN)和分布式无线接入网(distributed radio access network,DRAN),其中CRAN可解决网络建设中面临的站址获取困难、建设运维成本高、能耗攀升等问题。在CRAN场景下,分布式单元DU(distributed unit,DU)或者基带单元(baseband unit,BBU)集中部署在中心机房,有源天线单元(active antenna unit,AAU)或者射频拉远单元(remote radio unit,RRU)分布在远端,一个DU或者BBU可通过光纤连接多个AAU或者RRU。
随着业务的持续增长,AAU或者RRU数量也会增加,要实现AAU或者RRU与DU或者BBU的连接将会消耗大量的光纤资源。CRAN场景下,如何节约光纤资源,是一个亟需解决的问题。
发明内容
本申请提供一种光通信系统和方法、光模块和应用于光模块的装置,能够节约光纤资源。
第一方面,提供了一种光通信系统,包括:本端的N个光模块,所述本端的N个光模块中的每个光模块包括第一光接口和第二光接口。其中,所述本端的N个光模块中的第一光模块的第一光接口通过光纤链路与对端相连,所述本端的N个光模块中的第i光模块的第二光接口与所述本端的N个光模块中的第i+1光模块的第一光接口相连,i=1,2,……,N-1。
本申请提供的光通信系统,本端的一个光模块可以连接本端的一个前传接口,通过将本端的多个光模块级联,使得仅通过一条光纤链路(包括一根或多根光纤)就可以实现本端的多个前传接口与对端的通信,从而节约了光纤资源。另外,本申请提供的光通信系统不需要引入其余元器件,比如无源合分波器,因此能够节约建网成本。
结合第一方面,在第一方面的某些实现方式中,所述本端的N个光模块中每个光模块与本端的一个前传接口连接,所述本端的N个光模块中每个光模块与本端的一个前传接口连接。所述本端的N个光模块中的第一光模块用于:
将与所述第一光模块连接的前传接口所输入的电信号转换为第一波长的光信号,并通过所述第一光模块的第一光接口输出至对端,将第二光模块的第一光接口输入至所述第一光模块的第二光接口的光信号通过所述第一光模块的第一光接口输出至对端,以及,
将从对端输入至所述第一光模块的第一光接口的第N+1波长的光信号转换为电信号并输出至与所述第一光模块连接的前传接口,并且,将从对端输入至所述第一光模块的第一光接口的其他波长的光信号通过所述第一光模块的第二光接口输出至第二光模块的第一光接口;
所述本端的N个光模块中的第j光模块用于:
将与所述第j光模块连接的前传接口所输入的电信号转换为第j波长的光信号,并通过所述第j光模块的第一光接口输出至第j-1光模块的第二光接口,将第j+1光模块的第一光接口输入至所述第j光模块的第二光接口的光信号通过所述第j光模块的第一光接口输出至第j-1光模块的第二光接口,以及,
将从第j-1光模块的第一光接口输入至所述第j光模块的第一光接口的第j+N波长的光信号转换为电信号并输出至与所述第j光模块连接的前传接口,并且,将从第j-1光模块的第一光接口输入至所述第j光模块的第一光接口的其他波长的光信号通过所述第j光模块的第二光接口输出至第j+1光模块的第一光接口,j=2,3,……,N-1;
所述本端的N个光模块中的第N光模块用于:
将与所述第N光模块连接的前传接口所输入的电信号转换为第N波长的光信号,并通过所述第N光模块的第一光接口输出至第N-1光模块的第二光接口,以及,
将输入至所述第N光模块的第一光接口的第2N波长的光信号转换为电信号并输出至与所述第N光模块连接的前传接口。
可选的,第一波长、第二波长···第2N波长各不相同。波长可以是一个具体的数值,或者可以为一个数值范围。当波长为一个数值范围时,第一波长、第二波长···第2N波长的数值范围相互之间不重叠。例如,以N为2举例,第一波长为1271~1371nm,第二波长为1379.23~1432.41nm,第三波长为1529.55~1567.13nm,第四波长为1865.25~1970.13nm。
基于该方案,可以实现光层的波分方案和波长分插复用,从而可以实现对协议和速率的透明传输。
可选地,所述前传接口可以是通用公共无线接口(common public radio interface,CPRI)或者增强的通用公共无线接口(enhanced common public radio interface,eCPRI)。
结合第一方面,在第一方面的某些实现方式中,所述系统还包括对端的N个光模块,所述对端的N个光模块中的每个光模块包括第一光接口和第二光接口。其中,所述对端的N个光模块中的第一光模块的第一光接口通过所述光纤链路与所述本端的N个光模块中的第一光模块的第一光接口相连。所述对端的N个光模块中的第i光模块的第二光接口与所述对端的N个光模块中的第i+1光模块的第一光接口相连。
基于该方案,对端的一个光模块可以连接对端的一个前传接口,通过将对端的多个光模块级联,使得仅通过一条光纤链路就可以实现本端的多个前传接口与对端的多个前传接口的通信,从而节约了光纤资源。并且,该方案不需要引入其他设备,比如无源合分波器,因此能够节约建网成本。
结合第一方面,在第一方面的某些实现方式中,所述本端包括基站的一个或者多个基带模块,所述对端包括所述基站的一个或者多个射频模块,或者,所述本端包括基站的一个或者多个射频模块,所述对端包括所述基站的一个或者多个基带模块。
结合第一方面,在第一方面的某些实现方式中,所述本端的N个光模块中的每个光模块与本端的一个基带模块的一个前传接口连接,或者,
所述本端的N个光模块中的每个光模块与本端的一个射频模块的一个前传接口连接,。
结合第一方面,在第一方面的某些实现方式中,所述本端的N个光模块中的第k光模块包括:发射单元、第一光学单元、第二光学单元和接收单元;其中,所述发射单元、所述第一光接口和所述第二光学单元均耦合至所述第一光学单元,所述接收单元和所述第二光接口均耦合至所述第二光学单元,k=1,2,……N。其中,所述发射单元用于将所述第k光模块连接的前传接口输入的电信号转换为第k波长的光信号并向所述第一光接口发射所述第一光信号。
在k≠N的情况下:
所述第一光学单元用于向所述第一光接口转发从所述发射单元接收的所述第k波长的光信号,向所述第一光接口转发从所述第二光学单元接收的第k+1波长至第N波长的光信号,且向所述第二光学单元转发从所述第一光接口接收的第k+N波长至第2N波长的光信号;
所述第二光学单元用于向所述第一光学单元转发从所述第二光接口接收的所述第k+1波长至所述第N波长的光信号,向所述接收单元转发从所述第一光学单元接收的所述第k+N波长的光信号,向所述第二光接口转发从所述第一光学单元接收的第k+N+1波长至所述第2N波长的光信号;
所述接收单元用于从所述第二光学单元接收所述第k+N波长的光信号,并转换为电信号输出至与所述第k光模块连接的前传接口;
在k=N的情况下:
所述第一光学单元用于向所述第一光接口转发从所述发射单元接收的所述第k波长的光信号,向所述第二光学单元转发从所述第一光接口接收的第2N波长的光信号;
所述第二光学单元用于向所述接收单元转发从所述第一光学单元接收的所述第2N波长的光信号;
所述接收单元用于从所述第二光学单元接收所述第2N波长的光信号,并转换为电信号输出至与所述第k光模块连接的前传接口。
基于该方案,该光模块通过发射第k波长光信号,接收第k+N波长的光信号,并转发其他经过第一光接口的信号至第二光接口,其他经过第二光接口的信号至第一光接口,可以实现光层的波分方案和波长分插复用,从而可以实现对协议和速率的透明传输。
结合第一方面,在第一方面的某些实现方式中,所述第一光学单元用于透射所述第k波长的光信号,反射其他波长的光信号,所述第二光学单元用于透射所述第k+N波长的光信号,反射其他波长的光信号。
结合第一方面,在第一方面的某些实现方式中,第一光路和第二光路平行,所述第一光路为所述发射单元与所述第一光学单元之间传输所述第k波长的光信号的光路,所述第二光路为所述第二光学单元与所述接收单元之间传输所述第k+N波长的光信号的光路。
基于该方案,通过将第一光路和第二光路设计为平行的光路,可以减小光模块的封装面积。
结合第一方面,在第一方面的某些实现方式中,所述第一光学单元包括第一滤光片,所述第二光学单元包括第二滤光片。
结合第一方面,在第一方面的某些实现方式中,所述第一滤光片和所述第二滤光片均为45°滤光片。
结合第一方面,在第一方面的某些实现方式中,所述第二光学单元还包括第一反射镜,所述第一反射镜用于将经过所述第二滤光片透射的所述第k+N波长的光信号发射至所述接收单元。
基于该方案,可以实现第一光路和第二光路平行,从而可以减小光模块的封装面积。
结合第一方面,在第一方面的某些实现方式中,所述发射单元、所述第一光学单元、所述第二光学单元和所述接收单元封装于光收发一体组件(bi-directional optical subassembly,BOSA)中。
结合第一方面,在第一方面的某些实现方式中,所述发射单元为激光器。
第二方面,提供了一种光通信方法,包括:将本端的N个光模块中的第一光模块的第一光接口通过光纤链路与对端相连;将所述本端的N个光模块中的第i光模块的第二光接口与所述本端的N个光模块中的第i+1光模块的第一光接口相连,其中,所述本端的N个光模块中的每个光模块包括所述第一光接口和所述第二光接口,i=1,2,……,N-1。
本申请提供的方法,本端的一个光模块可以连接本端的一个前传接口,通过将本端的多个光模块级联,使得仅通过一条光纤链路就可以实现本端的多个前传接口与对端的通信,从而节约了光纤资源。另外,本申请提供的方法不需要引入其余元器件,比如无源合分波器,因此能够节约建网成本。
结合第二方面,在第二方面的某些实现方式中,将本端的N个光模块中的第一光模块的第一光接口通过光纤链路与对端相连包括:将所述本端的N个光模块中的第一光模块的第一光接口通过所述光纤链路与对端的N个光模块中的第一光模块的第一光接口相连;所述方法还包括:将所述对端的N个光模块中的第i光模块的第二光接口与所述对端的N个光模块中的第i+1光模块的第一光接口相连,其中,所述对端的N个光模块中的每个光模块包括所述第一光接口和所述第二光接口。
结合第二方面,在第二方面的某些实现方式中,所述本端包括基站的一个或者多个基带模块,所述对端包括所述基站的一个或者多个射频模块,或者,所述本端包括基站的一个或者多个射频模块,所述对端包括所述基站的一个或者多个基带模块。
结合第二方面,在第二方面的某些实现方式中,所述本端包括基站的一个或者多个基带模块,所述方法还包括:将所述本端的N个光模块中的每个光模块与一个基带模块的一个前传接口相连,或者,所述本端包括基站的一个或者多个射频模块,所述方法还包括:将所述本端的N个光模块中的每个光模块与一个射频模块的一个前传接口相连。
关于第二方面的相应实现方式的有益效果,可以参见对第一方面的相应实现方式的有益效果的描述。
第三方面,提供了一种光模块,包括:发射单元、第一光学单元、第二光学单元、接收单元、第一光接口和第二光接口。其中,所述发射单元、所述第一光接口和所述第二光学单元均耦合至所述第一光学单元,所述接收单元和所述第二光接口均耦合至所述第二光学单元。所述发射单元用于将输入至所述发射单元的电信号转换为第一光信号并向所述第 一光接口发射所述第一光信号;所述第一光学单元用于向所述第一光接口转发从所述发射单元接收的所述第一光信号,向所述第一光接口转发从所述第二光学单元接收的光信号,且向所述第二光学单元转发从所述第一光接口接收的光信号;所述第二光学单元用于向所述第一光学单元转发从所述第二光接口接收的光信号,向所述接收单元转发从所述第一光学单元接收的第二光信号,向所述第二光接口转发从所述第一光学单元接收的光信号;所述接收单元用于从所述第二光学单元接收所述第二光信号并将所述第二光信号转换为电信号输出。
本申请所提供的光模块通过发射第一光信号,接收第二光信号,并转发其他经过第一光接口的信号至第二光接口,其他经过第二光接口的信号至第一光接口,可以实现光层的波分方案和波长分插复用,从而可以实现对协议和速率的透明传输。
结合第三方面,在第三方面的某些实现方式中,所述第一光学单元用于透射所述第一光信号,反射其他波长的光信号,所述第二光学单元用于透射所述第二光信号,反射其他波长的光信号。
结合第三方面,在第三方面的某些实现方式中,第一光路和第二光路平行,所述第一光路为所述发射单元与所述第一光学单元之间传输所述第一光信号的光路,所述第二光路为所述第二光学单元与所述接收单元之间传输所述第二光信号的光路。
基于该方案,通过将第一光路和第二光路设计为平行的光路,可以减小光模块的封装面积。
结合第三方面,在第三方面的某些实现方式中,所述第一光学单元包括第一滤光片,所述第二光学单元包括第二滤光片。
结合第三方面,在第三方面的某些实现方式中,所述第一滤光片和所述第二滤光片均为45°滤光片。
结合第三方面,在第三方面的某些实现方式中,所述第二光学单元还包括第一反射镜,所述第一反射镜用于将经过所述第二滤光片透射的所述第二光信号反射至所述接收单元。
基于该方案,可以实现第一光路和第二光路平行,从而可以减小光模块的封装面积。
结合第三方面,在第三方面的某些实现方式中,所述发射单元、所述第一光学单元、所述第二光学单元和所述接收单元封装于光收发一体组件BOSA中。
结合第三方面,在第三方面的某些实现方式中,所述发射单元为激光器。
第四方面,提供了一种应用于光模块的装置,所述光模块包括第一光接口和第二光接口,包括:所述装置包括发射单元、第一光学单元、第二光学单元和接收单元。所述发射单元、所述第一光接口和所述第二光学单元均耦合至所述第一光学单元,所述接收单元和所述第二光接口均耦合至所述第二光学单元。所述发射单元用于将输入至所述发射单元的电信号转换为第一光信号并向所述第一光接口发射所述第一光信号;所述第一光学单元用于向所述第一光接口转发从所述发射单元接收的所述第一光信号,向所述第一光接口转发从所述第二光学单元接收的光信号,且向所述第二光学单元转发从所述第一光接口接收的光信号;所述第二光学单元用于向所述第一光学单元转发从所述第二光接口接收的光信号,向所述接收单元转发从所述第一光学单元接收的第二光信号,向所述第二光接口转发从所述第一光学单元接收的光信号;所述接收单元用于从所述第二光学单元接收所述第二光信号并将所述第二光信号转换为电信号输出。
本申请所提供的收发组件通过发射第一光信号,接收第二光信号,并转发其他经过第一光接口的信号至第二光接口,其他经过第二光接口的信号至第一光接口,可以实现光层的波分方案和波长分插复用,从而可以实现对协议和速率的透明传输。
结合第四方面,在第四方面的某些实现方式中,所述第一光学单元用于透射所述第一光信号,反射其他波长的光信号,所述第二光学单元用于透射所述第二光信号,反射其他波长的光信号。
结合第四方面,在第四方面的某些实现方式中,第一光路和第二光路平行,所述第一光路为所述发射单元与所述第一光学单元之间传输所述第一光信号的光路,所述第二光路为所述第二光学单元与所述接收单元之间传输所述第二光信号的光路。
基于该方案,通过将第一光路和第二光路设计为平行的光路,可以减小光模块的封装面积。
结合第四方面,在第四方面的某些实现方式中,所述第一光学单元包括第一滤光片,所述第二光学单元包括第二滤光片。
结合第四方面,在第四方面的某些实现方式中,所述第一滤光片和所述第二滤光片均为45°滤光片。
结合第四方面,在第四方面的某些实现方式中,所述第二光学单元还包括第一反射镜,所述第一反射镜用于将经过所述第二滤光片透射的所述第二光信号反射至所述接收单元。
基于该方案,可以实现第一光路和第二光路平行,从而可以减小光模块的封装面积。
结合第四方面,在第四方面的某些实现方式中,所述发射单元为激光器。
附图说明
图1是4G和5G中的RAN结构示意图。
图2是CRAN场景下的一种光纤直驱方案。
图3是本申请提供的一种光通信系统的示意图。
图4是本申请提供的一种光通信系统的示意图。
图5是本申请提供的一种光模块的结构示意图。
图6是本申请提供的一种光模块的结构示意图。
图7是本申请提供的一种光模块的结构示意图。
图8是本申请提供的一种光通信方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第4代(4th generation,4G)系统,如长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)系统,如新无线(new radio,NR)、或者未来可能出现的其他通信系统等。
在上述通信系统中,基站可以与一个或者多个终端进行通信。基站可以包括一个或者多个基带模块、一个或者多个射频模块,以及一个或者多个天线,通过该一个或者多个基带模块、该一个或者多个射频模块,以及该一个或者多个天线,基站可以实现与一个或者多个终端之间的通信。
其中,基带模块可以进行基带处理,例如对数字信号或者基带信号进行处理,射频模块可以进行射频处理,例如进行数字信号或者基带信号与射频信号之间的相互转换,天线可以发射或者接收射频信号。例如,基带模块对数字信号或者基带信号处理后,发送给射频模块,射频模块可以将数字信号或者基带信号转换为射频信号,由天线发射射频信号;或者,天线将接收到的射频信号发送至射频模块,射频模块可以将射频信号转换为数字信号或者基带信号,基带模块对数字信号或者基带信号进行处理。
其中,基带模块和射频模块之间的传输可以称为前传。一个基带模块上可以包括一个或者多个前传接口,一个射频模块上可以包括一个或者多个前传接口。一个基带模块上的一个或者多个前传接口可以与一个射频模块上的一个或者多个前传接口连接。上述前传和前传接口等名称仅仅为示意,可以理解,基带模块和射频模块之间的传输可以有其他名称,基带模块或者射频模块上的接口可以具有其他名称,本申请实施例对此不做限定。
下面以4G和5G的基站为例进行说明。
图1示出了4G和5G中的RAN基站结构示意图。参见图1,4G RAN基站可以包括基带处理单元(baseband unit,BBU)、射频拉远单元(remote radio unit,RRU)和天线,其中,BBU对应基带模块,RRU对应射频模块,BBU和RRU之间的传输称为前传。5G RAN基站可以包括集中单元(centralized unit,CU)、分布单元(distributed unit,DU)、RRU和天线,其中,DU对应基带模块,RRU对应射频模块,其中,DU和RRU之间的传输称为前传,CU和DU之间的传输称为中传。在一种实施方式中,RRU和天线可以由有源天线单元(active antenna unit,AAU)实现,此时AAU对应射频模块,BBU与AAU之间的传输,或者DU与RRU之间的传输可以称为前传。
图2示出了CRAN场景下的一种光纤直驱方案。光纤直驱方案是将BBU或DU,与RRU或AAU通过光纤链路直接连接。参见图2,一个BBU或DU可具有一个或多个前传接口,每个前传接口可连接一个光模块;一个RRU或AAU可具有一个或多个前传接口,每个前传接口可连接一个光模块。其中,前传接口可以是CRPI或者eCPRI,光模块用于实现光信号和电信号之间的转换。BBU或DU的前传接口连接的光模块可通过光纤与RRU或者AAU的前传接口连接的光模块相连,从而实现RRU或AAU与BBU或DU的通信。
在图2示意的方案中,一个BBU或DU所连接的RRU或AAU越多,需要的光纤资源越多,建网成本就越高。为节约建网成本,需要减少光纤资源的使用。
有鉴于此,本申请提供了一种光通信系统和方法,通过将本端的多个光模块级联,使得仅通过一条光纤链路(可以包括一根或多跟光纤)就可以实现本端的多个前传接口与对端的通信,从而能够节约光纤资源。下面对本申请提供的方案进行说明。
首先,对于本申请提供的方案所涉及的几个术语,进行统一说明:
(1)“本端”是指基带模块侧,相应地“对端”是指射频模块侧。或者,“本端”是指射频模块侧,相应地“对端”是指基带模块侧。
(2)“基带模块”是指用于进行基带处理的模块或单元,或者用于进行一部分基带处理的模块或单元。比如,基带模块为BBU或者DU,或者基带模块可以是BBU或者DU的一部分,一个BBU或者DU可以包括一个或多个基带模块。
(3)“射频模块”是指用于进行射频处理的模块或单元。比如,射频模块可以是RRU或者AAU,或者射频模块可以是RRU或者AAU的一部分,一个RRU或者AAU可以包 括一个或者多个射频模块。
图3是本申请提供的一种光通信系统的示意图。如图3所示,该系统300包括本端的N个光模块,即光模块301(1)至301(N),可以记为第一光模块,第二光模块,……,第N光模块。本端的一个光模块可以连接本端的一个前传接口(前传接口可以有其他名称,或者可以称为接口,本申请实施例对此不作限定)。每个光模块包括两个光接口,记作:第一光接口和第二光接口。
本端的N个光模块中的第一光模块的第一光接口通过光纤链路与对端相连,本端的N个光模块中的第i光模块的第二光接口与本端的N个光模块中的第i+1光模块的第一光接口相连,i=1,2,……,N-1。
即,本端的N个光模块中的第一光模块的第一光接口通过光纤链路与对端相连,本端的N个光模块中的第一光模块的第二光接口与本端的N个光模块中的第二光模块的第一光接口相连,本端的N个光模块中的第二光模块的第二光接口与本端的N个光模块中的第三光模块的第一光接口相连,……,以此类推。
应理解,本申请以本端的第一光模块通过光纤链路与对端相连为例进行说明,需要说明的是,第一光模块可以通过其他介质的链路与对端相连,本申请实施例对此不作限定。
具体地,参见图3,光模块301(1)与前传接口302(1)连接,光模块301(2)与前传接口302(2)连接,……,以此类推,光模块301(N)与前传接口302(N)连接。光模块301(1)的第一光接口通过光纤链路与对端相连,光模块301(1)的第二光接口与光模块301(2)的第一光接口相连,光模块301(2)的第二光接口与光模块301(3)的第一光接口相连,……,以此类推,光模块301(N-1)的第二光接口与光模块301(N)的第一光接口相连。
本申请提供的光通信系统,本端的一个光模块可以连接本端的一个前传接口,通过将本端的多个光模块级联,使得仅通过一条光纤链路就可以实现本端的多个前传接口与对端的通信,从而节约了光纤资源。另外,本申请提供的光通信系统不需要引入其余元器件,比如无源合分波器,因此能够节约建网成本。
应理解,本申请对对端包括的组件以及组件与组件之间的连接关系不作限定。
可选地,对端可以包括一个或者多个前传接口和/或一个或者多个光模块,下面结合两种可能的实现方式进行说明。可以理解,本申请并不限定对端的前传接口之间的连接方式,以及对端的前传接口与对端的光模块之间的连接方式。
作为一种可能的实现方式,对端的一个前传接口可以连接对端的一个光模快,对端的这些光模块可以连接到一个无源合分波器,该无源合分波器通过光纤可与本端的N个光模块中的第一光模块的第一光接口连接。
作为另一种可能的实现方式,该系统300还可以包括对端的N个光模块,即光模块311(1)至311(N),对端的一个光模块可以连接对端的一个前传接口。并且,对端的N个光模块之间的连接方式与本端的N个光模块之间的连接方式相同。同样地,每个光模块包括第一光接口和第二光接口。
具体地,对端的N个光模块中的第一光模块的第一光接口通过光纤与本端的N个光模块中的第一光模块的第一光接口相连,并且,对端的N个光模块中的第i光模块的第二光接口与对端的N个光模块中的第i+1光模块的第一光接口相连。
参见图3,光模块311(1)的第一光接口通过光纤链路与光模块301(1)的第一光接口相连,光模块311(1)的第二光接口与光模块311(2)的第一光接口相连,光模块311(2)的第二光接口与光模块311(3)的第一光接口相连,……,以此类推,光模块311(N-1)的第二光接口与光模块311(N)的第一光接口相连。
基于上述另一种可能的实现方式,对端的一个光模块可以连接对端的一个前传接口,通过将对端的多个光模块级联,使得仅通过一条光纤链路就可以实现本端的多个前传接口与对端的多个前传接口的通信,从而节约了光纤资源。并且,该方案不需要引入其他设备,比如无源合分波器,因此能够节约建网成本。
可选的,本申请中本端或者对端,可以使用单芯光纤跳线就可以实现光模块之间的级联,从而使得光接口对应关系简单,不易出错。
可选地,本端可以包括基站的一个或者多个基带模块,对端可以包括基站的一个或者多个射频模块。或者,对端可以包括基站的一个或者多个射频模块,本端可以包括基站的一个或者多个基带模块。
应理解,在本端为基带模块侧的情况下,本端的N个光模块所连接的N个前传接口可以分布在一个基带模块上,也可以分布在多个基带模块上。相应地,对端的N个光模块所连接的N个前传接口可以分布在一个射频模块上,也可以分布在多个射频模块上。例如,一个基站采用3扇区射频模块的组网模式,可能需要3对光模块完成数据传输,本端的3个光模块连接的3个前传接口可能分布在2个基带模块上(例如,2个前传接口分布于其中1个基带模块上,1个前传接口分布于另1个基带模块上),对端的3个光模块分布在3个射频模块上(例如,3个光模块与3个射频模块一一对应)。又例如,N=4,基带模块侧的N个前传接口可以分布在2个基带模块上,即每个基带模块可以有2个前传接口,射频模块侧的N个前传接口可以分布在2个射频模块上,即每个射频模块可以有2个前传接口。
还应理解,在本端为射频模块侧的情况下,本端的N个光模块所连接的N个前传接口可以分布在一个射频模块上,也可以分布在多个射频模块上。相应地,对端的N个光模块所连接的N个前传接口可以分布在一个基带模块上,也可以分布在多个基带模块上。具体可以参考上一段的说明,不同之处在于本端和对端的位置互换了。
可选地,所述前传接口可以是CPRI或者eCPRI。
可选地,上述图3中的本端的任一光模块用于:将与该光模块连接的前传接口输入的电信号转换为一个特定波长的光信号(记作:第一光信号)并通过该光模块的第一光接口输出,将从该光模块的第二光接口连接的其他光模块的第一光接口输入至该光模块的第二光接口的光信号通过该光模块的第一光接口输出。以及,将从光纤链路或者该光模块的第一光接口连接的其他光模块的第二光接口输入至该光模块的第一光接口的另一特定波长的光信号(记作:第二光信号)转换为电信号并输出至与该光模块连接的前传接口,将从光纤链路或者该光模块的第一光接口连接的其他光模块的第二光接口输入至该模块的第一光接口的其他波长的光信号通过该光模块的第二光接口输出。
应理解,本申请实施例中波长可以是一个具体数值,比如光信号的波长为1271nm,或者也可以是一个数值范围,比如1271~1371nm,即光信号的波长在1271~1371nm内浮动。
其中,对于本端的N个光模块中的任一光模块,其对应的第一光信号和第二光信号的波长不同。并且,对于本端的N个光模块中的任意两个光模块,这两个光模块对应的第一光信号的波长不同,这两个光模块对应的第二光信号的波长也不相同。
具体来讲,本端的N个光模块中每个光模块与本端的一个前传接口连接。本端的N个光模块中的第一光模块用于:
将与第一光模块连接的前传接口所输入的电信号转换为第一波长的光信号,并通过第一光模块的第一光接口输出至对端,将第二光模块的第一光接口输入至第一光模块的第二光接口的光信号通过第一光模块的第一光接口输出至对端,以及,
将从对端输入至第一光模块的第一光接口的第N+1波长的光信号转换为电信号并输出至与第一光模块连接的前传接口,并且,将从对端输入至第一光模块的第一光接口的其他波长的光信号通过第一光模块的第二光接口输出至第二光模块的第一光接口。
本端的N个光模块中的第j光模块用于:
将与第j光模块连接的前传接口所输入的电信号转换为第j波长的光信号,并通过第j光模块的第一光接口输出至第j-1光模块的第二光接口,将第j+1光模块的第一光接口输入至第j光模块的第二光接口的光信号通过第j光模块的第一光接口输出至第j-1光模块的第二光接口,以及,
将从第j-1光模块的第一光接口输入至第j光模块的第一光接口的第j+N波长的光信号转换为电信号并输出至与第j光模块连接的前传接口,并且,将从第j-1光模块的第一光接口输入至第j光模块的第一光接口的其他波长的光信号通过第j光模块的第二光接口输出至第j+1光模块的第一光接口,j=2,3,……,N-1。
本端的N个光模块中的第N光模块用于:
将与第N光模块连接的前传接口所输入的电信号转换为第N波长的光信号,并通过第N光模块的第一光接口输出至第N-1光模块的第二光接口,以及,
将输入至第N光模块的第一光接口的第2N波长的光信号转换为电信号并输出至与第N光模块连接的前传接口。
可以理解,对于本端的N个模块,第一光模块对应的第一光学信号和第二光信号分别为第一波长的光信号和第N+1波长的光信号;第二光模块对应的第一光学信号和第二光信号分别为第二波长的光信号和第N+2波长的光信号;第三光模块对应的第一光学信号和第二光信号分别为第三波长的光信号和第N+3波长的光信号;以此类推,第N光模块对应的第一光学信号和第二光信号分别为第N波长的光信号和第2N波长的光信号。
下面以N=4为例,结合图4对上述方案进行说明。
参见图4,光模块301(1)与前传接口302(1)连接,光模块301(2)与前传接口302(2)连接,光模块301(3)与前传接口302(3)连接,光模块301(4)与前传接口302(4)连接。
本端的N个光模块发射的第一光信号和接收的第二光信号的对应关系如表1所示。
表1
光模块编号 第一光信号 第二光信号
301(1) S1 S5
301(2) S2 S6
301(3) S3 S7
301(4) S4 S8
具体地,前传接口302(4)输入至光模块301(4)的电信号被转换为光信号S4(即,第四波长的光信号)并通过光模块301(4)的第一光接口输出。由于光模块301(4)的第一光接口与光模块301(3)的第二光接口连接,因此光信号S4将输入至光模块301(3)的第二光接口。
前传接口302(3)输入至光模块301(3)的电信号被转换为光信号S3(即,第三波长的光信号)并通过光模块301(3)的第一光接口输出。并且,输入至光模块301(3)的第二光接口的光信号S4也将通过光模块301(3)的第一光接口输出。由于光模块301(3)的第一光接口与光模块301(2)的第二光接口连接,因此光信号S3和S4将输入至光模块301(2)的第二光接口。
前传接口302(2)输入至光模块301(2)的电信号被转换为光信号S2(即,第二波长的光信号)并通过光模块301(2)的第一光接口输出。并且,输入至光模块301(2)的第二光接口的光信号S3和S4也将通过光模块301(2)的第一光接口输出。由于光模块301(2)的第一光接口与光模块301(1)的第二光接口连接,因此光信号S2,S3和S4将输入至光模块301(1)的第二光接口。
前传接口302(1)输入至光模块301(1)的电信号被转换为光信号S1(即,第一波长的光信号)并通过光模块301(1)的第一光接口输出。并且,输入至光模块301(1)的第二光接口的光信号S2,S3和S4也将通过光模块301(1)的第一光接口输出。也就是说,光信号S1,S2,S3和S4都将通过光模块301(1)的第一光接口输出,并通过光纤传输至对端。其中,光信号S1,S2,S3和S4的波长各不相同。
对端通过光纤链路传输至本端的光信号S5,S6,S7和S8将输入至光模块301(1)的第一光接口。其中,光信号S1至S8的波长各不相同。波长可以是一个具体的数值,或者可以是一个数值范围,具体可以参考上文的描述。当波长为一个数值范围时,光信号S1至S8的波长的数值范围相互不重叠。
光模块301(1)可将光信号S5,S6,S7和S8中的其中一个光信号转换为电信号并输出至与其连接的前传接口302(1),并将光信号S5,S6,S7和S8中的其他光信号从其第二光接口输出。例如,如图所示,光模块301(1)可将光信号S5(即,第五波长的光信号)转换为电信号并输出至与其连接的前传接口302(1),并将光信号S6,S7和S8从其第二光接口输出。
光模块301(2)可将从其第一光接口输入的光信号中的其中一个光信号转换为电信号并输出至与其连接的前传接口302(2),并将其他光信号从其第二光接口输出。例如,如图所示,光模块301(2)可将从其第一光接口输入的光信号S6,S7和S8中的光信号S6(即,第六波长的光信号)转换为电信号并输出至与其连接的前传接口302(2),并将光信号S7和S8从其第二光接口输出。
光模块301(3)可将从其第一光接口输入的光信号中的其中一个光信号转换为电信号并输出至与其连接的前传接口302(3),并将其他光信号从其第二光接口输出。例如,如图所示,光模块301(3)可将从其第一光接口输入的光信号S7和S8中的光信号S7(即, 第七波长的光信号)转换为电信号并输出至与其连接的前传接口302(3),并将光信号S8从其第二光接口输出。
光模块301(4)可将从其第一光接口输入的光信号中转换为电信号并输出至与其连接的前传接口302(4)。例如,如图所示,光模块301(4)可将从其第一光接口输入的光信号S8(即,第八波长的光信号)转换为电信号并输出至与其连接的前传接口302(4)。
本申请提供的光模块不仅可以实现该光模块自身的光信号(即上述第一光信号和上述第二光信号)的收发,还可以实现与之级联的相邻光模块的端口的光信号的过路透传。并且,由于多个光模块发射的第一光信号的波长不同,因此可以将多个光模块级联,使得通过一条光纤链路就可以实现本端与对端之间的信号传输。
可选地,上述图3中的对端的任一光模块的作用和本端的光模块的作用相同。其中,对于对端的N个光模块中的任一光模块,其对应的第一光信号和第二光信号的波长不同。并且,对于对端的N个光模块中的任意两个光模块,这两个光模块对应的第一光信号的波长不同,第二光信号的波长也不相同。另外,对于本端的任意一个光模块和对端的任意一个光模块,这两个光模块对应的第一光信号的波长不同,第二光信号的波长也不相同。
具体地,对端的N个光模块中每个光模块与对端的一个前传接口连接。对端的N个光模块中的第一光模块用于:
将与第一光模块连接的前传接口所输入的电信号转换为第N+1波长的光信号,并通过第一光模块的第一光接口输出至对端,将第二光模块的第一光接口输入至第一光模块的第二光接口的光信号通过第一光模块的第一光接口输出至对端,以及,
将从对端输入至第一光模块的第一光接口的第一波长的光信号转换为电信号并输出至与第一光模块连接的前传接口,并且,将从对端输入至第一光模块的第一光接口的其他波长的光信号通过第一光模块的第二光接口输出至第二光模块的第一光接口。
对端的N个光模块中的第j光模块用于:
将与第j光模块连接的前传接口所输入的电信号转换为第j+N波长的光信号,并通过第j光模块的第一光接口输出至第j-1光模块的第二光接口,将第j+1光模块的第一光接口输入至第j光模块的第二光接口的光信号通过第j光模块的第一光接口输出至第j-1光模块的第二光接口,以及,
将从第j-1光模块的第一光接口输入至第j光模块的第一光接口的第j波长的光信号转换为电信号并输出至与第j光模块连接的前传接口,并且,将从第j-1光模块的第一光接口输入至第j光模块的第一光接口的其他波长的光信号通过第j光模块的第二光接口输出至第j+1光模块的第一光接口,j=2,3,……,N-1。
对端的N个光模块中的第N光模块用于:
将与第N光模块连接的前传接口所输入的电信号转换为第2N波长的光信号,并通过第N光模块的第一光接口输出至第N-1光模块的第二光接口,以及,
将输入至第N光模块的第一光接口的第N波长的光信号转换为电信号并输出至与第N光模块连接的前传接口。
可以理解,对于对端的N个模块,第一光模块对应的第一光学信号和第二光信号分别为第N+1波长的光信号和第一波长的光信号;第二光模块对应的第一光学信号和第二光信号分别为第N+2波长的光信号和第二波长的光信号;第三光模块对应的第一光学信号 和第二光信号分别为第N+3波长的光信号和第三波长的光信号;以此类推,第N光模块对应的第一光学信号和第二光信号分别为第2N波长的光信号和第N波长的光信号。
下面还是以N=4为例,结合图4对上述方案进行说明。
参见图4,光模块311(1)与前传接口312(1)连接,光模块311(2)与前传接口312(2)连接,光模块311(3)与前传接口312(3)连接,光模块311(4)与前传接口312(4)连接。
各个光模块发射的第一光信号和接收的第二光信号的对应关系如表2所示。
表2
光模块编号 第一光信号 第二光信号
311(1) S5 S1
311(2) S6 S2
311(3) S7 S3
311(4) S8 S4
具体地,前传接口312(4)、312(3)、312(2)和312(1)分别输入至与其连接光模块的电信号被转换为光信号S8(即,第八波长的光信号)、S7(即,第七波长的光信号)、S6(即,第六波长的光信号)和S5(即,第五波长的光信号)。光信号S8通过光模块311(4)的第一光接口输入至光模块311(3)的第二光接口。光信号S7和S8通过光模块311(3)的第一光接口输入至光模块311(2)的第二光接口。光信号S6,S7和S8通过光模块311(2)的第一光接口输入至光模块311(1)的第二光接口。光信号S5,S6,S7和S8通过光模块311(1)的第一光接口输出,并通过光纤传输至光模块301(1)的第一光接口。
光模块311(1)可将光信号S1(即,第一波长的光信号),S2(即,第二波长的光信号),S3(即,第三波长的光信号)和S4(即,第四波长的光信号)中光信号S1转换为电信号并输出至与其连接的前传接口312(1),并将光信号S2,S3和S4从其第二光接口输出。光模块311(2)可将从其第一光接口输入的光信号S2,S3和S4中的光信号S2转换为电信号并输出至与其连接的前传接口312(2),并将光信号S3和S4从其第二光接口输出。光模块311(3)可将从其第一光接口输入的光信号S3和S4中的光信号S3转换为电信号并输出至与其连接的前传接口312(3),并将光信号S4从其第二光接口输出。光模块311(4)可将从其第一光接口输入的光信号S4转换为电信号并输出至与其连接的前传接口312(4)。
可以理解,结合图4所示的本端和对端的光模块的光信号的收发关系,本端的光模块和对端的光模块的对应关系如表3所示。
表3
光模块编号 配对光模块编号
301(1) 311(1)
301(2) 311(2)
301(3) 311(3)
301(4) 311(4)
应理解,表3所示的本端的光模块和对端的光模块的对应关系仅是一种示例,在实际部署时,并不需要按照表3所示的对应关系进行光模块的部署。实际部署时,如果希望本端的前传接口A(例如,前传接口(302(1))和对端的前传接口B(如,前传接口311(2))通信,可以使与前传接口A连接的光模块A(如,光模块301(1))和与前传接口B连接的光模块B(如,光模块311(1))匹配,即,将光模块A设计为接收光模块B发射的光信号并将其转换为电信号,并光模块B设计为接收光模块A发射的光信号并将其转换为电信号即可。
还应理解,对于本端和对端均有N个光模块的情况,各个光模块发射的第一光信号和接收的第二光信号以及本端的光模块和对端的光模块的对应关系可以如表4所示。
表4
Figure PCTCN2021079770-appb-000001
综上,本申请提供的方案通过光层的波分方案和波长分插复用,可以实现对协议和速率的透明传输。另外,在插入损耗容许范围内,由于光模块级联对波长顺序不敏感,可以简化部署难度。
下面结合图5,对上文所述的光模块的结构进行说明。
图5示出了光模块400的结构示意图。应理解,该光模块400可以是光模块301(1)至301(N)以及光模块311(1)至311(N)中的任一光模块。或者说,光模块301(1)至301(N)以及光模块311(1)至311(N)中的任一光模块都可以由光模块400实现。
参见图5,该光模块400包括第一光接口401和第二光接口402、发射单元403、第一光学单元404、第二光学单元405和接收单元406。其中,发射单元403、第一光接口401和第二光学单元405均耦合至第一光学单元404,接收单元406和第二光接口402均耦合至第二光学单元405。
发射单元403,用于向第一光接口401发射第一光信号。
第一光学单元404,用于向第一光接口401转发从发射单元403接收的第一光信号,向第一光接口401转发从第二光学单元405接收的光信号,且向第二光学单元405转发第一光接口401接收的光信号。
第二光学单元405用于向第一光学单元404转发从第二光接口402接收的光信号,向接收单元406转发从第一光学单元401接收的第二光信号,向第二光接口402转发从第一光学单元401接收的光信号。
接收单元406,用于从第二光学单405接收第二光信号。
可选地,第一光学单元还可以将输入至该发射单元403的电信号转换为第一光信号,然后向第一光接口401发射第一光信号。
可选地,接收单元406还可以将第二光信号转换为电信号输出。
例如,以光模块400为图4所示的光模块301(1)为例,第一光信号为S1,第二光信号为S5。以光模块400为图4所示的光模块301(2)为例,第一光信号为S2,第二光信号为S6。
因此,本申请所提供的光模块通过发射第一光信号,接收第二光信号,并转发其他经过第一光接口的信号至第二光接口,其他经过第二光接口的信号至第一光接口,可以实现光层的波分方案和波长分插复用,从而可以实现对协议和速率的透明传输。另外,基于本申请提供的光模块,可以使得通过对多个光模块级联,使得仅通过一条光纤链路就可以实现本端的多个前传接口与对端的多个前传接口的通信,从而节约了光纤资源。
可以理解,发射单元403和接收单元406可以与一个前传接口连接。
应理解,与光模块400连接的该前传接口可以直接或间接的与发射单元403连接,比如,该前传接口可以依次通过发射端时钟恢复单元、驱动单元与发射单元403连接。关于发射端时钟恢复单元、驱动单元的具体作用和实现方式等,本申请实施例对此不作限定。
应理解,发射单元403可以直接或间接的与该前传接口连接,比如,发射单元403可以通过接收端时钟恢复单元与前传接口连接。关于接收端时钟恢复单元具体作用和实现方式等,本申请实施例对此不作限定,这里不再赘述。
应理解,发射单元403可以是任何可以实现光信号发射的部件或结构。比如,发射单元403可以是激光器。接收单元406可以是任何可以实现光信号接收的部件或结构,比如可以为雪崩光电二极管(avalanche photon diode,APD)。
本领域技术人员可以理解,当该光模块400为图3所示的本端的N个光模块中的第k(k=1,2,……N)光模块时,发射单元403可以将第k光模块连接的前传接口输入的电信号转换为第k波长的光信号并向第一光接口401发射第一光信号。
并且,在k≠N的情况下:
第一光学单元404可以向第一光接口401转发从发射单元403接收的第k波长的光信号,向第一光接口401转发从第二光学单元405接收的第k+1波长至第N波长的光信号,且向第二光学单元405转发从第一光接口401接收的第k+N波长至第2N波长的光信号。
第二光学单元405可以向第一光学单元404转发从第二光接口402接收的第k+1波长至第N波长的光信号,向接收单元406转发从第一光学单元404接收的第k+N波长的光信号,向第二光接口402转发从第一光学单元404接收的第k+N+1波长至第2N波长的光 信号。
接收单元406可以从第二光学单元405接收第k+N波长的光信号,并转换为电信号输出至与第k光模块连接的前传接口。
在k=N的情况下:
第一光学单元404可以向第一光接口401转发从发射单元403接收的第k波长的光信号,向第二光学单元405转发从第一光接口401接收的第2k波长的光信号。
第二光学单元405可以向接收单元406转发从第一光学单元404接收的第2k波长的光信号。
接收单元406用于从第二光学单元405接收第2k波长的光信号,并转换为电信号输出至与第k光模块连接的前传接口。
另外,当该光模块400为图3所示的对端的N个光模块中的第k(k=1,2,……N)光模块时,发射单元403可以将第k光模块连接的前传接口输入的电信号转换为第k+N波长的光信号并向第一光接口401发射第一光信号。
并且,在k≠N的情况下:
第一光学单元404可以向第一光接口401转发从发射单元403接收的第k+N波长的光信号,向第一光接口401转发从第二光学单元405接收的第k+N+1波长至第2N波长的光信号,且向第二光学单元405转发从第一光接口401接收的第k波长至第N波长的光信号。
第二光学单元405可以向第一光学单元404转发从第二光接口402接收的第k+N+1波长至第2N的光信号,向接收单元406转发从第一光学单元404接收的第k波长的光信号,向第二光接口402转发从第一光学单元404接收的第k+1波长至第N波长的光信号。
接收单元406可以从第二光学单元405接收第k波长的光信号,并转换为电信号输出至与第k光模块连接的前传接口。
在k=N的情况下:
第一光学单元404可以向第一光接口401转发从发射单元403接收的第2k波长的光信号,向第二光学单元405转发从第一光接口401接收的第k波长的光信号。
第二光学单元405可以向接收单元406转发从第一光学单元404接收的第k波长的光信号。
接收单元406用于从第二光学单元405接收第k波长的光信号,并转换为电信号输出至与第k光模块连接的前传接口。
在一种可能的实现方式中,发射单元403、第一光学单元404、第二光学单元405和接收单元406封装于收发组件40中。该收发组件例如可以是光收发一体组件BOSA。
应理解,上文中描述的关于光信号和电信号之间的转换操作也可以在BOSA以外执行。
示例性的,第一光学单元404可以选择第一光信号,例如,第一光学单元404用于透射第一光信号,反射其他波长的光信号。第二光学单元405可以选择第二光信号,例如,所述第二光学单元405用于透射第第二光信号,反射其他波长的光信号。可以理解,第一光学单元404可以通过其他方式选择第一光信号,第二光学单元405可以通过其他方式选择第二信号,申请实施例对此不作限定。
示例性的,第一光路和第二光路平行。其中,第一光路为发射单元403发射的第一光信号直线传输的光路,第二光路为经过第二光学单元405后的第二光信号直线传输的光路。或者说,第一光路为发射单元403与第一光学单元404之间传输第一波长的光信号的光路,第二光路为第二光学单元405与接收单元406之间传输第二波长的光信号的光路。
通过将第一光路和第二光路设计为平行的光路,可以减小BOSA或者光模块的封装面积。
可选地,参见图6,第一光学单元404可以包括第一滤光片4041,第二光学单元405可以包括第二滤光片4051。第一滤光片4041用于透射第一光信号,并反射其他光信号,第二滤光片4051用于透射第二光信号,并反射其他光信号。
例如,以光模块400为图4所示的光模块301(1)为例,第一光信号为S1,第二光信号为S5,其他光信号为S6,S7和S8。以光模块400为图4所示的光模块301(2)为例,第一光信号为S2,第二光信号为S6,其他光信号为S7和S8。
示例性的,第一滤光片4041和第二滤光片4051均为45°滤光片。
可选地,参见图7,第二光学单元405还可以包括第一反射镜4052,第一反射镜4052用于将经过第二滤光片4051透射的第二光信号发射至接收单元406。
通过这样的设计方式,可以实现第一光路和第二光路平行,从而可以减小BOSA或者光模块的封装面积。本申请还提供了一种装置40,该装置40可以是图5至图7所示的BOSA,该装置40的结构可以参见图5至图7所示的BOSA,该装置40中的各个单元的作用可以参见上文的说明,这里不再赘述。应理解,该装置40可以应用于光模块400中。
图8是本申请提供的一种光通信方法500的示意性流程图。该方法可以包括步骤S501。
S501,将本端的N个光模块中的第一光模块的第一光接口通过光纤链路与对端相连,将本端的N个光模块中的第i光模块的第二光接口与本端的N个光模块中的第i+1光模块的第一光接口相连,其中,本端的N个光模块中的每个光模块包括第一光接口和第二光接口,i=1,2,……,N-1。
应理解,本端的一个光模块可以连接一个本端的前传接口。
本申请提供的方法,本端的一个光模块可以连接本端的一个前传接口,通过将本端的多个光模块级联,使得仅通过一条光纤链路就可以实现本端的多个前传接口与对端的通信,从而节约了光纤资源。另外,本申请提供的方法不需要引入无源合分波器,因此能够节约建网成本。
可选地,将本端的N个光模块中的第一光模块的第一光接口通过光纤链路与对端相连包括:将所述本端的N个光模块中的第一光模块的第一光接口通过所述光纤链路与对端的N个光模块中的第一光模块的第一光接口相连。
该方法500还可以包括:
S502,将对端的N个光模块中的第一光模块的第一光接口通过光纤链路与本端的N个光模块中的第一光模块的第一光接口相连,将对端的N个光模块中的第i光模块的第二光接口与对端的N个光模块中的第i+1光模块的第一光接口相连,其中,对端的N个光模块中的每个光模块包括第一光接口和第二光接口。
应理解,对端的一个光模块可以连接对端的一个前传接口。
基于该方案,对端的一个光模块可以连接对端的一个前传接口,通过将对端的多个光 模块级联,使得仅通过一条光纤链路就可以实现本端的多个前传接口与对端的多个前传接口的通信,从而节约了光纤资源。并且,该方案不需要引入其他设备,比如无源合分波器,因此能够节约建网成本。
可选地,该方法500还可以包括:将本端的N个光模块中的每个光模块与一个基带模块的一个前传接口相连或者,将本端的N个光模块中的每个光模块与一个射频模块的一个前传接口相连。
应理解,光模块的作用以及其结构可以参见前文的说明,这里不再赘述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种光通信系统,其特征在于,包括:
    本端的N个光模块,所述本端的N个光模块中的每个光模块包括第一光接口和第二光接口;
    其中,所述本端的N个光模块中的第一光模块的第一光接口通过光纤链路与对端相连,
    所述本端的N个光模块中的第i光模块的第二光接口与所述本端的N个光模块中的第i+1光模块的第一光接口相连,i=1,2,……,N-1。
  2. 如权利要求1所述的系统,其特征在于,所述本端的N个光模块中每个光模块与本端的一个前传接口连接;
    所述本端的N个光模块中的第一光模块用于:
    将与所述第一光模块连接的前传接口所输入的电信号转换为第一波长的光信号,并通过所述第一光模块的第一光接口输出至对端,将第二光模块的第一光接口输入至所述第一光模块的第二光接口的光信号通过所述第一光模块的第一光接口输出至对端,以及,
    将从对端输入至所述第一光模块的第一光接口的第N+1波长的光信号转换为电信号并输出至与所述第一光模块连接的前传接口,并且,将从对端输入至所述第一光模块的第一光接口的其他波长的光信号通过所述第一光模块的第二光接口输出至第二光模块的第一光接口;
    所述本端的N个光模块中的第j光模块用于:
    将与所述第j光模块连接的前传接口所输入的电信号转换为第j波长的光信号,并通过所述第j光模块的第一光接口输出至第j-1光模块的第二光接口,将第j+1光模块的第一光接口输入至所述第j光模块的第二光接口的光信号通过所述第j光模块的第一光接口输出至第j-1光模块的第二光接口,以及,
    将从第j-1光模块的第一光接口输入至所述第j光模块的第一光接口的第j+N波长的光信号转换为电信号并输出至与所述第j光模块连接的前传接口,并且,将从第j-1光模块的第一光接口输入至所述第j光模块的第一光接口的其他波长的光信号通过所述第j光模块的第二光接口输出至第j+1光模块的第一光接口,j=2,3,……,N-1;
    所述本端的N个光模块中的第N光模块用于:
    将与所述第N光模块连接的前传接口所输入的电信号转换为第N波长的光信号,并通过所述第N光模块的第一光接口输出至第N-1光模块的第二光接口,以及,
    将输入至所述第N光模块的第一光接口的第2N波长的光信号转换为电信号并输出至与所述第N光模块连接的前传接口。
  3. 如权利要求1或2所述的系统,其特征在于,所述系统还包括对端的N个光模块,所述对端的N个光模块中的每个光模块包括第一光接口和第二光接口;
    其中,所述对端的N个光模块中的第一光模块的第一光接口通过所述光纤链路与所述本端的N个光模块中的第一光模块的第一光接口相连,
    所述对端的N个光模块中的第i光模块的第二光接口与所述对端的N个光模块中的第 i+1光模块的第一光接口相连。
  4. 如权利要求1至3中任一项所述的系统,其特征在于,所述本端包括基站的一个或者多个基带模块,所述对端包括所述基站的一个或者多个射频模块,或者,
    所述本端包括基站的一个或者多个射频模块,所述对端包括所述基站的一个或者多个基带模块。
  5. 如权利要求4所述的系统,其特征在于,所述本端的N个光模块中的每个光模块与本端的一个基带模块的一个前传接口连接,或者,
    所述本端的N个光模块中的每个光模块与本端的一个射频模块的一个前传接口连接。
  6. 如权利要求2至5中任一项所述的系统,其特征在于,所述本端的N个光模块中的第k光模块包括:
    发射单元、第一光学单元、第二光学单元和接收单元;其中,所述发射单元、所述第一光接口和所述第二光学单元均耦合至所述第一光学单元,所述接收单元和所述第二光接口均耦合至所述第二光学单元,k=1,2,……N;
    其中,所述发射单元用于将所述第k光模块连接的前传接口输入的电信号转换为第k波长的光信号并向所述第一光接口发射所述第一光信号;
    在k≠N的情况下:
    所述第一光学单元用于向所述第一光接口转发从所述发射单元接收的所述第k波长的光信号,向所述第一光接口转发从所述第二光学单元接收的第k+1波长至第N波长的光信号,且向所述第二光学单元转发从所述第一光接口接收的第k+N波长至第2N波长的光信号;
    所述第二光学单元用于向所述第一光学单元转发从所述第二光接口接收的所述第k+1波长至所述第N波长的光信号,向所述接收单元转发从所述第一光学单元接收的所述第k+N波长的光信号,向所述第二光接口转发从所述第一光学单元接收的第k+N+1波长至所述第2N波长的光信号;
    所述接收单元用于从所述第二光学单元接收所述第k+N波长的光信号,并转换为电信号输出至与所述第k光模块连接的前传接口;
    在k=N的情况下:
    所述第一光学单元用于向所述第一光接口转发从所述发射单元接收的所述第k波长的光信号,且向所述第二光学单元转发从所述第一光接口接收的第2k波长的光信号;
    所述第二光学单元用于向所述接收单元转发从所述第一光学单元接收的所述第2k波长的光信号;
    所述接收单元用于从所述第二光学单元接收所述第2k波长的光信号,并转换为电信号输出至与所述第k光模块连接的前传接口。
  7. 如权利要求6所述的系统,其特征在于,所述第一光学单元用于透射所述第k波长的光信号,反射其他波长的光信号,所述第二光学单元用于透射所述第k+N波长的光信号,反射其他波长的光信号。
  8. 如权利要求7所述的系统,其特征在于,第一光路和第二光路平行,所述第一光路为所述发射单元与所述第一光学单元之间传输所述第k波长的光信号的光路,所述第二光路为所述第二光学单元与所述接收单元之间传输所述第k+N波长的光信号的光路。
  9. 如权利要求7或8所述的系统,其特征在于,所述第一光学单元包括第一滤光片,所述第二光学单元包括第二滤光片。
  10. 如权利要求9所述的系统,其特征在于,所述第一滤光片和所述第二滤光片均为45°滤光片。
  11. 如权利要求9或10所述的系统,其特征在于,所述第二光学单元还包括第一反射镜,所述第一反射镜用于将经过所述第二滤光片透射的所述第k+N波长的光信号反射至所述接收单元。
  12. 如权利要求6至11中任一项所述的系统,其特征在于,所述发射单元、所述第一光学单元、所述第二光学单元和所述接收单元封装于光收发一体组件BOSA中。
  13. 如权利要求6至12中任一项所述的系统,其特征在于,所述发射单元为激光器。
  14. 一种光通信方法,其特征在于,包括:
    将本端的N个光模块中的第一光模块的第一光接口通过光纤链路与对端相连;
    将所述本端的N个光模块中的第i光模块的第二光接口与所述本端的N个光模块中的第i+1光模块的第一光接口相连,其中,所述本端的N个光模块中的每个光模块包括所述第一光接口和所述第二光接口,i=1,2,……,N-1。
  15. 如权利要求14所述的方法,其特征在于,将本端的N个光模块中的第一光模块的第一光接口通过光纤链路与对端相连包括:
    将所述本端的N个光模块中的第一光模块的第一光接口通过所述光纤链路与对端的N个光模块中的第一光模块的第一光接口相连;
    所述方法还包括:
    将所述对端的N个光模块中的第i光模块的第二光接口与所述对端的N个光模块中的第i+1光模块的第一光接口相连,其中,所述对端的N个光模块中的每个光模块包括所述第一光接口和所述第二光接口。
  16. 如权利要求14或者15所述的方法,其特征在于,所述本端包括基站的一个或者多个基带模块,所述对端包括所述基站的一个或者多个射频模块,或者,
    所述本端包括基站的一个或者多个射频模块,所述对端包括所述基站的一个或者多个基带模块。
  17. 如权利要求16所述的方法,其特征在于,所述本端包括基站的一个或者多个基带模块,所述方法还包括:将所述本端的N个光模块中的每个光模块与一个基带模块的一个前传接口相连,或者,
    所述本端包括基站的一个或者多个射频模块,所述方法还包括:将所述本端的N个光模块中的每个光模块与一个射频模块的一个前传接口相连。
  18. 一种光模块,其特征在于,包括:
    发射单元、第一光学单元、第二光学单元、接收单元、第一光接口和第二光接口;
    其中,所述发射单元、所述第一光接口和所述第二光学单元均耦合至所述第一光学单元,所述接收单元和所述第二光接口均耦合至所述第二光学单元;
    所述发射单元用于将输入至所述发射单元的电信号转换为第一光信号并向所述第一光接口发射所述第一光信号;
    所述第一光学单元用于向所述第一光接口转发从所述发射单元接收的所述第一光信 号,向所述第一光接口转发从所述第二光学单元接收的光信号,且向所述第二光学单元转发从所述第一光接口接收的光信号;
    所述第二光学单元用于向所述第一光学单元转发从所述第二光接口接收的光信号,向所述接收单元转发从所述第一光学单元接收的第二光信号,向所述第二光接口转发从所述第一光学单元接收的光信号;
    所述接收单元用于从所述第二光学单元接收所述第二光信号并将所述第二光信号转换为电信号输出。
  19. 如权利要求18所述的光模块,其特征在于,所述第一光学单元用于透射所述第一光信号,反射其他波长的光信号,所述第二光学单元用于透射所述第二光信号,反射其他波长的光信号。
  20. 如权利要求19所述的光模块,其特征在于,第一光路和第二光路平行,所述第一光路为所述发射单元与所述第一光学单元之间传输所述第一光信号的光路,所述第二光路为所述第二光学单元与所述接收单元之间传输所述第二光信号的光路。
  21. 如权利要求19或20所述的光模块,其特征在于,所述第一光学单元包括第一滤光片,所述第二光学单元包括第二滤光片。
  22. 如权利要求21所述的光模块,其特征在于,所述第一滤光片和所述第二滤光片均为45°滤光片。
  23. 如权利要求21或22所述的光模块,其特征在于,所述第二光学单元还包括第一反射镜,所述第一反射镜用于将经过所述第二滤光片透射的所述第二光信号反射至所述接收单元。
  24. 如权利要求18至23中任一项所述的光模块,其特征在于,所述发射单元、所述第一光学单元、所述第二光学单元和所述接收单元封装于光收发一体组件BOSA中。
  25. 如权利要求18至24中任一项所述的光模块,其特征在于,所述发射单元为激光器。
  26. 一种应用于光模块的装置,所述光模块包括所述装置,第一光接口和第二光接口,其特征在于:
    所述装置包括发射单元、第一光学单元、第二光学单元和接收单元;
    所述发射单元、所述第一光接口和所述第二光学单元均耦合至所述第一光学单元,所述接收单元和所述第二光接口均耦合至所述第二光学单元;
    其中,所述发射单元用于将输入至所述发射单元的电信号转换为第一光信号并向所述第一光接口发射所述第一光信号;
    所述第一光学单元用于向所述第一光接口转发从所述发射单元接收的所述第一光信号,向所述第一光接口转发从所述第二光学单元接收的光信号,且向所述第二光学单元转发从所述第一光接口接收的光信号;
    所述第二光学单元用于向所述第一光学单元转发从所述第二光接口接收的光信号,向所述接收单元转发从所述第一光学单元接收的第二光信号,向所述第二光接口转发从所述第一光学单元接收的光信号;
    所述接收单元用于从所述第二光学单元接收所述第二光信号并将所述第二光信号转换为电信号输出。
  27. 如权利要求26所述的装置,其特征在于,所述第一光学单元用于透射所述第一光信号,反射其他波长的光信号,所述第二光学单元用于透射所述第二光信号,反射其他波长的光信号。
  28. 如权利要求27所述的装置,其特征在于,第一光路和第二光路平行,所述第一光路为所述发射单元与所述第一光学单元之间传输所述第一光信号的光路,所述第二光路为所述第二光学单元与所述接收单元之间传输所述第二光信号的光路。
  29. 如权利要求27或28所述的装置,其特征在于,所述第一光学单元包括第一滤光片,所述第二光学单元包括第二滤光片。
  30. 如权利要求29所述的装置,其特征在于,所述第一滤光片和所述第二滤光片均为45°滤光片。
  31. 如权利要求29或30所述的装置,其特征在于,所述第二光学单元还包括第一反射镜,所述第一反射镜用于将经过所述第二滤光片透射的所述第二光信号反射至所述接收单元。
  32. 如权利要求26至31中任一项所述的装置,其特征在于,所述发射单元为激光器。
  33. 如权利要求26至32任一项所述的装置,其特征在于,所述装置为光收发一体组件BOSA。
PCT/CN2021/079770 2021-03-09 2021-03-09 光通信系统和方法、光模块和应用于光模块的装置 WO2022188032A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/079770 WO2022188032A1 (zh) 2021-03-09 2021-03-09 光通信系统和方法、光模块和应用于光模块的装置
CN202180077667.XA CN116458093A (zh) 2021-03-09 2021-03-09 光通信系统和方法、光模块和应用于光模块的装置
EP21929514.4A EP4300849A4 (en) 2021-03-09 2021-03-09 OPTICAL COMMUNICATION SYSTEM AND METHOD, OPTICAL MODULE, AND APPARATUS APPLIED TO OPTICAL MODULE
US18/464,196 US20230421261A1 (en) 2021-03-09 2023-09-08 Optical communication system and method, optical module, and apparatus used in optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/079770 WO2022188032A1 (zh) 2021-03-09 2021-03-09 光通信系统和方法、光模块和应用于光模块的装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/464,196 Continuation US20230421261A1 (en) 2021-03-09 2023-09-08 Optical communication system and method, optical module, and apparatus used in optical module

Publications (1)

Publication Number Publication Date
WO2022188032A1 true WO2022188032A1 (zh) 2022-09-15

Family

ID=83227359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079770 WO2022188032A1 (zh) 2021-03-09 2021-03-09 光通信系统和方法、光模块和应用于光模块的装置

Country Status (4)

Country Link
US (1) US20230421261A1 (zh)
EP (1) EP4300849A4 (zh)
CN (1) CN116458093A (zh)
WO (1) WO2022188032A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117909A (zh) * 2012-12-26 2013-05-22 福建邮科通信技术有限公司 一种多制式数字光纤五类线分布系统
WO2016165089A1 (zh) * 2015-04-15 2016-10-20 华为技术有限公司 光模块及网络设备
CN206117668U (zh) * 2016-06-30 2017-04-19 瑞斯康达科技发展股份有限公司 一种光接入网络系统
CN107342821A (zh) * 2017-07-18 2017-11-10 华为技术有限公司 一种光模块以及网络设备
CN212572561U (zh) * 2020-06-11 2021-02-19 杭州初灵信息技术股份有限公司 一种基于纯无源wdm技术的5g前传设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100960110B1 (ko) * 2008-06-25 2010-05-27 한국전자통신연구원 광대역 무선 서비스를 위한 광 백홀 네트워크
CN101350662B (zh) * 2008-09-01 2010-06-23 成都优博创技术有限公司 基于波分复用(xWDM)射频拉远单元的级联组网方法
US9184842B2 (en) * 2011-10-06 2015-11-10 Telefonaktiebolaget L M Ericsson (Publ) Apparatus for communicating a plurality of antenna signals at different optical wavelengths
CN102714545B (zh) * 2012-02-21 2015-04-08 华为技术有限公司 光收发模块、无源光网络系统、光纤检测方法和系统
US20170250927A1 (en) * 2013-12-23 2017-08-31 Dali Systems Co. Ltd. Virtual radio access network using software-defined network of remotes and digital multiplexing switches
CN106059660B (zh) * 2016-06-30 2019-01-11 瑞斯康达科技发展股份有限公司 一种环回检测方法、bbu、rru及光接入网络系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117909A (zh) * 2012-12-26 2013-05-22 福建邮科通信技术有限公司 一种多制式数字光纤五类线分布系统
WO2016165089A1 (zh) * 2015-04-15 2016-10-20 华为技术有限公司 光模块及网络设备
CN107431552A (zh) * 2015-04-15 2017-12-01 华为技术有限公司 光模块及网络设备
CN206117668U (zh) * 2016-06-30 2017-04-19 瑞斯康达科技发展股份有限公司 一种光接入网络系统
CN107342821A (zh) * 2017-07-18 2017-11-10 华为技术有限公司 一种光模块以及网络设备
CN212572561U (zh) * 2020-06-11 2021-02-19 杭州初灵信息技术股份有限公司 一种基于纯无源wdm技术的5g前传设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4300849A4 *
ZHAO JIE , XU MEIXIANG: "The Application Research on RRU Networking Program in BBU Concentration", TELECOMMUNICATIONS INFORMATION, no. 6, 10 June 2018 (2018-06-10), pages 10 - 14, XP055965380 *

Also Published As

Publication number Publication date
EP4300849A4 (en) 2024-04-24
EP4300849A1 (en) 2024-01-03
US20230421261A1 (en) 2023-12-28
CN116458093A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
US9941921B2 (en) Modular wireless communications platform
TW201400894A (zh) 具有密集封裝光學互連的晶片組件架構
CN104137454A (zh) 无线通信系统和无线射频装置
US10659156B2 (en) Apparatus and method for facilitating communication between a telecommunications network and a user device within a building
US20240098391A1 (en) Efficiently interconnecting computing nodes to enable use of high-radix network switches
CN107509125B (zh) 一种分布式光电混合交换结构
CN201274482Y (zh) 一种高速数据传输接口系统
WO2022188032A1 (zh) 光通信系统和方法、光模块和应用于光模块的装置
WO2023103590A1 (zh) 一种光模块、插芯及光纤连接器
CN206461624U (zh) 一种100g的qsfp28 lr4双通道接收光模块
CN104468131A (zh) 一种抗恶劣环境下的高速fc光纤统一网络互联系统
CN101702839B (zh) Ir接口主备链路倒换功能实现装置及方法
CN217183294U (zh) 一种光监控信道osc设备及光信号处理节点
CN203166928U (zh) 基于sfp封装的两路光收发一体模块
CN103746717A (zh) 一种cfp连接器及cfp传输架构
WO2022001989A1 (zh) 一种波分复用结构
CN104917569A (zh) 针对大规模天线阵列的模数混合射频光纤传输架构
Ramini et al. Silicon photonics I/O nodes for HPC applications
WO2017020292A1 (zh) 一种光接入设备及光接入系统
CN110456454B (zh) 光子人工智能芯片互联装置及片间互联光子人工智能芯片
US20220399939A1 (en) Visible light communication network
WO2020220829A1 (zh) 一种支持在线升级配置的可调双向传输微光电系统
TWI716265B (zh) 光波路徑轉傳裝置
TW202046662A (zh) IoT網路架構及其波分IoT閘道器
CN117155503B (zh) 一种可扩展的级联量子时间同步系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929514

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180077667.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021929514

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021929514

Country of ref document: EP

Effective date: 20230926

NENP Non-entry into the national phase

Ref country code: DE