WO2022186651A1 - 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 - Google Patents

포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 Download PDF

Info

Publication number
WO2022186651A1
WO2022186651A1 PCT/KR2022/003081 KR2022003081W WO2022186651A1 WO 2022186651 A1 WO2022186651 A1 WO 2022186651A1 KR 2022003081 W KR2022003081 W KR 2022003081W WO 2022186651 A1 WO2022186651 A1 WO 2022186651A1
Authority
WO
WIPO (PCT)
Prior art keywords
geometry
point cloud
attribute
information
points
Prior art date
Application number
PCT/KR2022/003081
Other languages
English (en)
French (fr)
Inventor
박유선
허혜정
오현묵
이수연
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US18/549,099 priority Critical patent/US20240155157A1/en
Publication of WO2022186651A1 publication Critical patent/WO2022186651A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/001Model-based coding, e.g. wire frame
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/40Tree coding, e.g. quadtree, octree
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation

Definitions

  • Embodiments relate to a method and apparatus for processing point cloud content.
  • the point cloud content is content expressed as a point cloud, which is a set of points (points) belonging to a coordinate system representing a three-dimensional space (space or volume).
  • Point cloud content can express three-dimensional media, such as VR (Virtual Reality), AR (Augmented Reality), MR (Mixed Reality), XR (Extended Reality), and autonomous driving. It is used to provide various services such as services.
  • VR Virtual Reality
  • AR Augmented Reality
  • MR Magnetic Reality
  • XR Extended Reality
  • autonomous driving it is used to provide various services such as services.
  • point cloud content tens of thousands to hundreds of thousands of point data are required. Therefore, a method for efficiently processing a large amount of point data is required.
  • An object of the present invention is to provide a point cloud data transmission apparatus, a transmission method, a point cloud data reception apparatus, and a reception method for efficiently transmitting and receiving a point cloud in order to solve the above-described problems.
  • An object of the present invention is to provide a point cloud data transmission apparatus, a transmission method, a point cloud data reception apparatus, and a reception method for solving latency and encoding/decoding complexity.
  • the technical problem according to the embodiments is to improve the encoding technology of the attribute information of the geometry-based point cloud compression (G-PCC) to improve the compression performance of the point cloud point cloud data transmission
  • G-PCC geometry-based point cloud compression
  • a technical problem according to the embodiments is to provide a point cloud data transmission apparatus, transmission method, and point cloud data reception apparatus and method that increase the compression efficiency of geometry and attributes by preventing loss of important points in lossy compression is to provide
  • An object of the present invention is to provide a point cloud data transmission apparatus, a transmission method, a point cloud data reception apparatus, and a reception method that increase attribute compression efficiency by allowing a single recoloring to be performed after compression of a geometry.
  • a method for transmitting point cloud data includes encoding geometric information including positions of points of point cloud data, and based on the geometric information, a point of the point cloud data It may include encoding the attribute information of the , and transmitting the encoded geometry information, the encoded attribute information, and the signaling information.
  • the encoding of the geometry information may include sampling points of the point cloud data according to a sampling scale, generating an octree based on the sampled points, and compressing an occupanci code of the octree to form a geometry bitstream. It is an embodiment to include the step of outputting .
  • the signaling information includes information related to the sampling.
  • the information related to the sampling is information for identifying a position difference between the sampled points and the original points.
  • the information related to the sampling is included in the geometry bitstream.
  • the information related to the sampling is included in at least one of a sequence parameter set, a geometry parameter set, an attribute parameter set, a tile parameter set, and a geometry slice header.
  • the encoding of the attribute information may include performing encoding based on attribute values of the sampled points.
  • a point cloud data transmission apparatus includes a geometry encoder for encoding geometry information including positions of points of point cloud data, an attribute encoder for encoding attribute information of points of the point cloud data based on the geometry information, and a transmitter for transmitting the encoded geometry information, the encoded attribute information, and signaling information.
  • the geometry encoder samples the points of the point cloud data according to a sampling scale, generates an octree based on the sampled points, and compresses the occupancy code of the octree and outputs it as a geometry bitstream. do.
  • the signaling information includes information related to the sampling.
  • the information related to the sampling is information for identifying a position difference between the sampled points and the original points.
  • the information related to the sampling is included in the geometry bitstream.
  • the information related to the sampling is included in at least one of a sequence parameter set, a geometry parameter set, an attribute parameter set, a tile parameter set, and a geometry slice header.
  • the attribute encoder performs encoding based on attribute values of the sampled points.
  • a method for receiving point cloud data includes receiving geometry information, attribute information, and signaling information, decoding the geometry information based on the signaling information, and the signaling information and the geometry information based on the It may include decoding the attribute information, and rendering the restored point cloud data based on the decoded geometry information and the decoded attribute information.
  • the decoded geometry information includes positions of points of the restored point cloud data
  • the decoded attribute information includes attribute values of points of the restored point cloud data
  • the signaling information includes sampling-related information
  • the decoding of the geometry information may include reconstructing the geometry information based on the sampling-related information.
  • the information related to the sampling is information for identifying a position difference between the sampled points and the original points.
  • the information related to the sampling is received while being included in a geometry bitstream including the geometry information.
  • the information related to the sampling is received by being included in at least one of a sequence parameter set, a geometry parameter set, an attribute parameter set, a tile parameter set, and a geometry slice header.
  • the decoding of the attribute information may include performing decoding based on geometry information reconstructed based on the sampling-related information.
  • the point cloud data transmission method, the transmission device, the point cloud data reception method, and the reception device may provide a quality point cloud service.
  • the point cloud data transmission method, the transmission device, the point cloud data reception method, and the reception device may achieve various video codec schemes.
  • the point cloud data transmission method, the transmission device, the point cloud data reception method, and the reception device may provide universal point cloud content such as an autonomous driving service.
  • the point cloud data transmission method, the transmission device, the point cloud data reception method, and the reception device perform spatial adaptive division of the point cloud data for independent encoding and decoding of the point cloud data, thereby improving parallel processing and It may provide scalability.
  • the point cloud data transmission method, the transmission device, the point cloud data reception method, and the reception device perform encoding and decoding by spatially dividing the point cloud data into tiles and/or slices, and signaling data necessary for this. It is possible to improve the encoding and decoding performance of the point cloud.
  • the point cloud data transmission method, the transmission device, the point cloud data reception method, and the reception device enable the attribute value of the reconstructed point of the point cloud to be set as the attribute value of the original point, whereby attribute encoding of the point cloud data /Decoding Quality can be improved, and geometry compression efficiency can be improved.
  • the point cloud data transmission method, the transmission device, the point cloud data reception method, and the reception device perform single recoloring even when generating an octree by performing quantization, so that attribute encoding/decoding quality of point cloud data can be increased, and geometry compression efficiency can be improved.
  • the point cloud data transmission method, the transmission device, the point cloud data reception method, and the reception device generate an octree by performing sampling, and transmit a position difference value between the original point and the sampling point in the form of metadata. , it is possible to perform single recoloring, so that the quality of attribute encoding/decoding of point cloud data can be improved, and geometry compression efficiency can be improved.
  • the point cloud data transmission method, the transmission device, the point cloud data reception method, and the reception device may shorten an attribute encoding time by performing single recoloring for attribute compression.
  • FIG. 1 illustrates a system for providing point cloud content according to embodiments.
  • FIG. 2 shows a process for providing Point Cloud content according to embodiments.
  • FIG. 3 shows a configuration of a Point Cloud capture device arrangement according to embodiments.
  • FIG. 4 illustrates a Point Cloud Video Encoder according to embodiments.
  • FIG. 5 illustrates voxels in a 3D space according to example embodiments.
  • FIG. 6 shows an example of an octree and an occupancy code according to embodiments.
  • FIG. 7 shows an example of a neighbor node pattern according to embodiments.
  • FIG. 8 shows an example of a Point configuration of Point Cloud contents for each LOD according to embodiments.
  • FIG 9 shows an example of a Point configuration of Point Cloud content for each LOD according to embodiments.
  • FIG. 10 shows an example of a block diagram of a point cloud video decoder according to embodiments.
  • FIG. 11 shows an example of a point cloud video decoder according to embodiments.
  • FIG. 12 shows components for Point Cloud video encoding of a transmitter according to embodiments.
  • FIG. 13 shows components for Point Cloud video decoding of a receiver according to embodiments.
  • FIG. 14 shows an example of a structure capable of interworking with a point cloud data method/device according to embodiments.
  • 15A to 15D are diagrams illustrating examples of a quantization method according to a quantization scale.
  • 16 is a diagram illustrating examples of expressing a position of a point after quantization according to embodiments.
  • 17A to 17D are diagrams illustrating examples of a sampling method according to the second embodiment.
  • 18 is a diagram illustrating an octree sampling method and metadata generation according to embodiments.
  • FIG. 19 is a diagram illustrating another example of a point cloud transmission apparatus according to embodiments.
  • 20 is a diagram illustrating an example of a detailed block diagram of a geometry encoder and an attribute encoder according to embodiments.
  • FIG. 21 is a diagram illustrating another example of a point cloud receiving apparatus according to embodiments.
  • 22 is a detailed block diagram illustrating another example of a geometry decoder and an attribute decoder according to embodiments.
  • FIG. 23 shows an example of a bitstream structure of point cloud data for transmission/reception according to embodiments.
  • 24 is a diagram illustrating an example of a syntax structure of a sequence parameter set according to embodiments.
  • 25 is a diagram illustrating another example of a syntax structure of a sequence parameter set according to embodiments.
  • 26 is a diagram illustrating an example of a syntax structure of metadata_data_unit() according to embodiments.
  • FIG. 27 is a diagram illustrating an example of a syntax structure of a geometry parameter set according to embodiments.
  • FIG. 28 is a diagram illustrating another example of a syntax structure of a geometry parameter set according to embodiments.
  • 29 is a diagram illustrating an example of a syntax structure of a tile parameter set according to embodiments.
  • FIG. 30 is a diagram illustrating another example of a syntax structure of a tile parameter set according to embodiments.
  • 31 is a diagram illustrating an example of a syntax structure of an attribute parameter set according to embodiments.
  • 32 is a diagram illustrating another example of a syntax structure of an attribute parameter set according to embodiments.
  • 33 is a diagram illustrating an example of a syntax structure of a geometry slice bitstream () according to embodiments.
  • 34 is a diagram illustrating an example of a syntax structure of a geometry slice header according to embodiments.
  • 35 is a diagram illustrating another example of a syntax structure of a geometry slice header according to the present specification.
  • 36 is a diagram illustrating an embodiment of a syntax structure of an attribute slice bitstream () according to the present specification.
  • FIG. 37 is a diagram illustrating an embodiment of a syntax structure of an attribute slice header according to the present specification.
  • 38 is a flowchart of a method for transmitting point cloud data according to embodiments.
  • 39 is a flowchart of a method for receiving point cloud data according to embodiments.
  • FIG. 1 shows an example of a point cloud content providing system according to embodiments.
  • the point cloud content providing system shown in FIG. 1 may include a transmission device 10000 and a reception device 10004 .
  • the transmitting device 10000 and the receiving device 10004 are capable of wired/wireless communication in order to transmit/receive point cloud data.
  • the transmission device 10000 may secure, process, and transmit a point cloud video (or point cloud content).
  • the transmitting device 10000 may be a fixed station, a base transceiver system (BTS), a network, an artificial intelligence (AI) device and/or system, a robot, an AR/VR/XR device and/or a server and the like.
  • BTS base transceiver system
  • AI artificial intelligence
  • the transmission device 10000 uses a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), a device that performs communication with a base station and/or other wireless devices, It may include robots, vehicles, AR/VR/XR devices, mobile devices, home appliances, Internet of Things (IoT) devices, AI devices/servers, and the like.
  • a radio access technology eg, 5G NR (New RAT), LTE (Long Term Evolution)
  • a device that performs communication with a base station and/or other wireless devices It may include robots, vehicles, AR/VR/XR devices, mobile devices, home appliances, Internet of Things (IoT) devices, AI devices/servers, and the like.
  • IoT Internet of Things
  • Transmission device 10000 is a point cloud video acquisition unit (Point Cloud Video Acquisition unit, 10001), a point cloud video encoder (Point Cloud Video Encoder, 10002) and / or a transmitter (Transmitter (or Communication module), 10003) contains
  • the point cloud video acquisition unit 10001 acquires the point cloud video through processing such as capturing, synthesizing, or generating.
  • the point cloud video is point cloud content expressed as a point cloud that is a set of points located in a three-dimensional space, and may be referred to as point cloud video data or the like.
  • a point cloud video according to embodiments may include one or more frames. One frame represents a still image/picture. Accordingly, the point cloud video may include a point cloud image/frame/picture, and may be referred to as any one of a point cloud image, a frame, and a picture.
  • the point cloud video encoder 10002 encodes the obtained point cloud video data.
  • the point cloud video encoder 10002 may encode point cloud video data based on point cloud compression coding.
  • Point cloud compression coding may include Geometry-based Point Cloud Compression (G-PCC) coding and/or Video based Point Cloud Compression (V-PCC) coding or next-generation coding.
  • G-PCC Geometry-based Point Cloud Compression
  • V-PCC Video based Point Cloud Compression
  • point cloud compression coding according to the embodiments is not limited to the above-described embodiments.
  • the point cloud video encoder 10002 may output a bitstream including encoded point cloud video data.
  • the bitstream may include not only the encoded point cloud video data, but also signaling information related to encoding of the point cloud video data.
  • the transmitter 10003 transmits a bitstream including encoded point cloud video data.
  • a bitstream according to embodiments is encapsulated into a file or segment (eg, a streaming segment) and transmitted through various networks such as a broadcasting network and/or a broadband network.
  • the transmission device 10000 may include an encapsulation unit (or an encapsulation module) that performs an encapsulation operation.
  • the encapsulation unit may be included in the transmitter 10003 .
  • the file or segment may be transmitted to the receiving device 10004 through a network or stored in a digital storage medium (eg, USB, SD, CD, DVD, Blu-ray, HDD, SSD, etc.).
  • the transmitter 10003 may communicate with the receiving device 10004 (or a receiver 10005) through wired/wireless communication through networks such as 4G, 5G, and 6G. Also, the transmitter 10003 may perform a necessary data processing operation according to a network system (eg, a communication network system such as 4G, 5G, or 6G). Also, the transmission device 10000 may transmit encapsulated data according to an on demand method.
  • a network system eg, a communication network system such as 4G, 5G, or 6G.
  • the transmission device 10000 may transmit encapsulated data according to an on demand method.
  • the receiving apparatus 10004 includes a receiver (Receiver, 10005), a point cloud video decoder (Point Cloud Video Decoder, 10006), and/or a renderer (Renderer, 10007).
  • the receiving device 10004 uses a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)) to communicate with a base station and/or other wireless devices, a device or a robot.
  • 5G NR New RAT
  • LTE Long Term Evolution
  • the receiver 10005 receives a bitstream including point cloud video data or a file/segment in which the bitstream is encapsulated from a network or a storage medium.
  • the receiver 10005 may perform a necessary data processing operation according to a network system (eg, a communication network system such as 4G, 5G, or 6G).
  • the receiver 10005 may output a bitstream by decapsulating the received file/segment.
  • the receiver 10005 may include a decapsulation unit (or a decapsulation module) for performing a decapsulation operation.
  • the decapsulation unit may be implemented as an element (or component or module) separate from the receiver 10005 .
  • the point cloud video decoder 10006 decodes a bitstream including point cloud video data.
  • the point cloud video decoder 10006 may decode the point cloud video data according to an encoded manner (eg, a reverse process of the operation of the point cloud video encoder 10002 ). Accordingly, the point cloud video decoder 10006 may decode the point cloud video data by performing point cloud decompression coding, which is a reverse process of the point cloud compression.
  • Point cloud decompression coding includes G-PCC coding.
  • the renderer 10007 renders the decoded point cloud video data.
  • the renderer 10007 may output point cloud content by rendering audio data as well as point cloud video data.
  • the renderer 10007 may include a display for displaying the point cloud content.
  • the display may not be included in the renderer 10007 and may be implemented as a separate device or component.
  • the feedback information is information for reflecting the interactivity with the user who consumes the point cloud content, and includes user information (eg, head orientation information, viewport information, etc.).
  • user information eg, head orientation information, viewport information, etc.
  • the feedback information is provided by the content transmitting side (eg, the transmission device 10000) and/or the service provider can be passed on to According to embodiments, the feedback information may be used by the receiving device 10004 as well as the transmitting device 10000 or may not be provided.
  • the head orientation information is information about the user's head position, direction, angle, movement, and the like.
  • the reception apparatus 10004 may calculate viewport information based on head orientation information.
  • the viewport information is information about the area of the point cloud video that the user is looking at.
  • a viewpoint is a point at which a user views a point cloud video, and may mean a central point of the viewport area. That is, the viewport is an area centered on a viewpoint, and the size and shape of the area may be determined by a Field Of View (FOV).
  • FOV Field Of View
  • the reception device 10004 may extract viewport information based on a vertical or horizontal FOV supported by the device in addition to the head orientation information.
  • the receiving device 10004 checks a user's point cloud consumption method, a point cloud video area that the user gazes at, a gaze time, and the like by performing a gaze analysis or the like.
  • the receiving device 10004 may transmit feedback information including the result of the gaze analysis to the transmitting device 10000 .
  • Feedback information may be obtained during rendering and/or display.
  • the feedback information according to embodiments may be secured by one or more sensors included in the receiving device 10004 .
  • the feedback information may be secured by the renderer 10007 or a separate external element (or device, component, etc.).
  • a dotted line in FIG. 1 represents a process of transmitting feedback information secured by the renderer 10007 .
  • the point cloud content providing system may process (encode/decode) the point cloud data based on the feedback information. Accordingly, the point cloud video decoder 10006 may perform a decoding operation based on the feedback information. Also, the receiving device 10004 may transmit feedback information to the transmitting device 10000 . The transmitting device 10000 (or the point cloud video encoder 10002 ) may perform an encoding operation based on the feedback information. Therefore, the point cloud content providing system does not process (encode/decode) all point cloud data, but efficiently processes necessary data (for example, point cloud data corresponding to the user's head position) based on the feedback information, and the user can provide point cloud content to
  • the transmitting apparatus 10000 may be referred to as an encoder, a transmitting device, a transmitter, a transmitting system, etc.
  • the receiving apparatus 10004 may be referred to as a decoder, a receiving device, a receiver, a receiving system, or the like.
  • Point cloud data (processed in a series of acquisition/encoding/transmission/decoding/rendering) processed in the point cloud content providing system of FIG. 1 according to embodiments may be referred to as point cloud content data or point cloud video data.
  • the point cloud content data may be used as a concept including metadata or signaling information related to the point cloud data.
  • the elements of the point cloud content providing system shown in FIG. 1 may be implemented by hardware, software, a processor and/or a combination thereof.
  • FIG. 2 is a block diagram illustrating an operation of providing point cloud content according to embodiments.
  • the block diagram of FIG. 2 shows the operation of the point cloud content providing system described in FIG. 1 .
  • the point cloud content providing system may process point cloud data based on point cloud compression coding (eg, G-PCC).
  • point cloud compression coding eg, G-PCC
  • the point cloud content providing system may acquire a point cloud video (20000).
  • a point cloud video is expressed as a point cloud belonging to a coordinate system representing a three-dimensional space.
  • a point cloud video according to embodiments may include a Ply (Polygon File format or the Stanford Triangle format) file.
  • the acquired point cloud video may include one or more Ply files.
  • the Ply file contains point cloud data such as the point's geometry and/or attributes. Geometry includes positions of points.
  • the position of each point may be expressed by parameters (eg, values of each of the X-axis, Y-axis, and Z-axis) representing a three-dimensional coordinate system (eg, a coordinate system including XYZ axes).
  • the attribute includes attributes of points (eg, texture information of each point, color (YCbCr or RGB), reflectance (r), transparency, etc.).
  • a point has one or more attributes (or properties).
  • one point may have one attribute of color, or two attributes of color and reflectance.
  • the geometry may be referred to as positions, geometry information, geometry data, and the like, and the attribute may be referred to as attributes, attribute information, attribute data, and the like.
  • the point cloud content providing system receives points from information (eg, depth information, color information, etc.) related to the point cloud video acquisition process. Cloud data can be obtained.
  • the point cloud content providing system may encode the point cloud data (20001).
  • the point cloud content providing system may encode point cloud data based on point cloud compression coding.
  • the point cloud data may include the geometry and attributes of the point.
  • the point cloud content providing system according to the embodiments may output a geometry bitstream by performing geometry encoding for encoding the geometry.
  • the point cloud content providing system according to the embodiments may output an attribute bitstream by performing attribute encoding for encoding an attribute.
  • the point cloud content providing system may perform attribute encoding based on geometry encoding.
  • the geometry bitstream and the attribute bitstream according to the embodiments may be multiplexed and output as one bitstream.
  • the bitstream according to embodiments may further include signaling information related to geometry encoding and attribute encoding.
  • the point cloud content providing system may transmit the encoded point cloud data (20002).
  • the encoded point cloud data may be expressed as a geometry bitstream and an attribute bitstream.
  • the encoded point cloud data may be transmitted in the form of a bitstream together with signaling information related to encoding of the point cloud data (eg, signaling information related to geometry encoding and attribute encoding).
  • the point cloud content providing system may encapsulate the bitstream for transmitting the encoded point cloud data and transmit it in the form of a file or segment.
  • the point cloud content providing system (eg, the receiving device 10004 or the receiver 10005) according to the embodiments may receive a bitstream including the encoded point cloud data. Also, the point cloud content providing system (eg, the receiving device 10004 or the receiver 10005) may demultiplex the bitstream.
  • the point cloud content providing system may decode the encoded point cloud data (for example, a geometry bitstream, an attribute bitstream) transmitted as a bitstream. have.
  • the point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) may decode the point cloud video data based on signaling information related to encoding of the point cloud video data included in the bitstream. have.
  • the point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) may decode the geometry bitstream to restore positions (geometry) of the points.
  • the point cloud content providing system may restore attributes of points by decoding an attribute bitstream based on the restored geometry.
  • the point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) may reconstruct the point cloud video based on positions and decoded attributes according to the reconstructed geometry.
  • the point cloud content providing system may render the decoded point cloud data (20004).
  • the point cloud content providing system eg, the receiving device 10004 or the renderer 10007) may render the geometry and attributes decoded through the decoding process according to various rendering methods. Points of the point cloud content may be rendered as a vertex having a certain thickness, a cube having a specific minimum size centered at the vertex position, or a circle centered at the vertex position. All or part of the rendered point cloud content is provided to the user through a display (eg, VR/AR display, general display, etc.).
  • a display eg, VR/AR display, general display, etc.
  • the point cloud content providing system (eg, the receiving device 10004) according to the embodiments may secure feedback information (20005).
  • the point cloud content providing system may encode and/or decode the point cloud data based on the feedback information. Since the operation of the feedback information and point cloud content providing system according to the embodiments is the same as the feedback information and operation described with reference to FIG. 1 , a detailed description thereof will be omitted.
  • FIG 3 shows an example of a point cloud video capture process according to embodiments.
  • FIG. 3 shows an example of a point cloud video capture process of the point cloud content providing system described with reference to FIGS. 1 and 2 .
  • the point cloud content is an object located in various three-dimensional spaces (eg, a three-dimensional space representing a real environment, a three-dimensional space representing a virtual environment, etc.) and/or a point cloud video representing the environment (images and/or videos) are included.
  • the point cloud content providing system includes one or more cameras (eg, an infrared camera capable of securing depth information, color information corresponding to the depth information) in order to generate point cloud content.
  • Point cloud video can be captured using an RGB camera that can extract
  • the point cloud content providing system according to the embodiments may extract a shape of a geometry composed of points in a three-dimensional space from depth information, and extract an attribute of each point from color information to secure point cloud data.
  • An image and/or an image according to embodiments may be captured based on at least one of an inward-facing method and an outward-facing method.
  • the left side of FIG. 3 shows an inward-pacing scheme.
  • the inward-pacing method refers to a method in which one or more cameras (or camera sensors) located surrounding the central object capture the central object.
  • the inward-facing method provides a 360-degree image of a point cloud content that provides a 360-degree image of a core object to the user (for example, a 360-degree image of an object (e.g., a core object such as a character, player, object, actor, etc.) to the user.
  • VR/AR content for example, a 360-degree image of an object (e.g., a core object such as a character, player, object, actor, etc.)
  • the right side of FIG. 3 shows an outward-pacing scheme.
  • the outward-pacing method refers to a method in which one or more cameras (or camera sensors) positioned surrounding the central object capture the environment of the central object rather than the central object.
  • the outward-pacing method may be used to generate point cloud content (eg, content representing an external environment that may be provided to a user of an autonomous vehicle) for providing a surrounding environment that appears from a user's point of view.
  • point cloud content eg, content representing an external environment that may be provided to a user of an autonomous vehicle
  • the point cloud content may be generated based on a capture operation of one or more cameras.
  • the point cloud content providing system may perform calibration of one or more cameras in order to set a global coordinate system before a capture operation.
  • the point cloud content providing system may generate the point cloud content by synthesizing the image and/or image captured by the above-described capture method and an arbitrary image and/or image.
  • the capture operation described with reference to FIG. 3 may not be performed.
  • the point cloud content providing system may perform post-processing on the captured image and/or the image. That is, the point cloud content providing system removes an unwanted area (for example, the background), recognizes a space where captured images and/or images are connected, and fills in a spatial hole if there is one. can
  • the point cloud content providing system may generate one point cloud content by performing coordinate system transformation on points of the point cloud video obtained from each camera.
  • the point cloud content providing system may perform coordinate system transformation of points based on the position coordinates of each camera. Accordingly, the point cloud content providing system may generate content representing one wide range or may generate point cloud content having a high density of points.
  • FIG. 4 shows an example of a point cloud video encoder according to embodiments.
  • the point cloud video encoder adjusts the quality of the point cloud content (eg, lossless, lossy, near-lossless) according to the network situation or application. or attributes) and perform an encoding operation.
  • the point cloud content providing system may not be able to stream the corresponding content in real time. Accordingly, the point cloud content providing system may reconfigure the point cloud content based on a maximum target bitrate in order to provide it according to a network environment and the like.
  • the point cloud video encoder may perform geometry encoding and attribute encoding. Geometry encoding is performed before attribute encoding.
  • the point cloud video encoder may include a Transformation Coordinates unit 40000, a Quantization unit 40001, an Octtree Analysis unit 40002, and a Surface Approximation unit.
  • Analysis unit, 40003 arithmetic encoder (Arithmetic Encode, 40004), geometry reconstruction unit (Geometry Reconstruction unit, 40005), color transformation unit (Color Transformation unit, 40006), attribute transformation unit (Attribute Transformation unit, 40007), RAHT (Region Adaptive Hierarchical Transform) transformation unit 40008, LOD generation unit (LOD Generation unit, 400009), lifting transformation unit (Lifting Transformation unit) 40010, coefficient quantization unit (Coefficient Quantization unit, 40011) and / or Aris and an Arithmetic Encoder (40012).
  • the coordinate system transformation unit 40000, the quantization unit 40001, the octree analysis unit 40002, the surface approximation analysis unit 40003, the arithmetic encoder 40004, and the geometry reconstruction unit 40005 perform geometry encoding. can do.
  • Geometry encoding according to embodiments may include octree geometry coding, direct coding, trisoup geometry encoding, and entropy encoding. Direct coding and trisup geometry encoding are applied selectively or in combination. Also, the geometry encoding is not limited to the above example.
  • the coordinate system conversion unit 40000 receives the positions and converts them into a coordinate system.
  • the positions may be converted into position information in a three-dimensional space (eg, a three-dimensional space expressed in an XYZ coordinate system, etc.).
  • Location information in 3D space may be referred to as geometry information.
  • the quantizer 40001 quantizes the geometry information. For example, the quantizer 40001 may quantize the points based on the minimum position values of all points (eg, the minimum values on each axis with respect to the X-axis, Y-axis, and Z-axis). The quantization unit 40001 multiplies the difference between the minimum position value and the position value of each point by a preset quantization scale value, and then performs a quantization operation to find the nearest integer value by rounding or lowering it. Accordingly, one or more points may have the same quantized position (or position value). The quantizer 40001 according to embodiments performs voxelization based on quantized positions to reconstruct quantized points.
  • the quantizer 40001 performs voxelization based on quantized positions to reconstruct quantized points.
  • Voxelization refers to a minimum unit expressing positional information in a three-dimensional space.
  • Points of point cloud content (or 3D point cloud video) according to embodiments may be included in one or more voxels.
  • the quantizer 40001 may match groups of points in a 3D space to voxels. According to embodiments, one voxel may include only one point.
  • one voxel may include one or more points.
  • a position of a center point of a corresponding voxel may be set based on positions of one or more points included in one voxel.
  • attributes of all positions included in one voxel may be combined and assigned to a corresponding voxel.
  • the octree analyzer 40002 performs octree geometry coding (or octree coding) to represent voxels in an octree structure.
  • the octree structure represents points matched to voxels based on the octal tree structure.
  • the surface approximation analyzer 40003 may analyze and approximate the octree.
  • Octree analysis and approximation is a process of analyzing to voxelize a region including a plurality of points in order to efficiently provide octree and voxelization.
  • the arithmetic encoder 40004 entropy encodes the octree and/or the approximated octree.
  • the encoding method includes an arithmetic encoding method.
  • the encoding results in a geometry bitstream.
  • Color transform unit 40006, attribute transform unit 40007, RAHT transform unit 40008, LOD generation unit 40009, lifting transform unit 40010, coefficient quantization unit 40011 and/or arithmetic encoder 40012 performs attribute encoding.
  • a point can have one or more attributes. Attribute encoding according to embodiments is equally applied to attributes of one point. However, when one attribute (eg, color) includes one or more elements, independent attribute encoding is applied to each element.
  • Attribute encoding may include color transform coding, attribute transform coding, Region Adaptive Hierarchical Transform (RAHT) coding, Interpolation-based hierarchical nearest-neighbor prediction-Prediction Transform coding, and interpolation-based hierarchical nearest -neighbor prediction with an update/lifting step (Lifting Transform)) coding.
  • RAHT Region Adaptive Hierarchical Transform
  • RAHT Interpolation-based hierarchical nearest-neighbor prediction-Prediction Transform
  • interpolation-based hierarchical nearest -neighbor prediction with an update/lifting step (Lifting Transform)) coding may be selectively used, or a combination of one or more codings may be used.
  • attribute encoding according to embodiments is not limited to the above-described example.
  • the color conversion unit 40006 performs color conversion coding for converting color values (or textures) included in attributes.
  • the color converter 40006 may convert the format of color information (eg, convert from RGB to YCbCr).
  • the operation of the color converter 40006 according to embodiments may be optionally applied according to color values included in the attributes.
  • the geometry reconstruction unit 40005 reconstructs (decompresses) an octree and/or an approximated octree.
  • the geometry reconstruction unit 40005 reconstructs an octree/voxel based on a result of analyzing the distribution of points.
  • the reconstructed octree/voxel may be referred to as a reconstructed geometry (or a reconstructed geometry).
  • the attribute transform unit 40007 performs an attribute transform that transforms attributes based on positions where geometry encoding has not been performed and/or a reconstructed geometry. As described above, since the attributes are dependent on the geometry, the attribute conversion unit 40007 may transform the attributes based on the reconstructed geometry information. For example, the attribute conversion unit 40007 may convert an attribute of a point at the position based on the position value of the point included in the voxel. As described above, when the position of the center point of a corresponding voxel is set based on the positions of one or more points included in one voxel, the attribute conversion unit 40007 converts attributes of the one or more points. When the trisoop geometry encoding has been performed, the attribute conversion unit 40007 may convert the attributes based on the trisoop geometry encoding.
  • the attribute conversion unit 40007 is an average value of attributes or attribute values (for example, color or reflectance of each point) of neighboring points within a specific position/radius from the position (or position value) of the central point of each voxel. can be calculated to perform attribute transformation.
  • the attribute conversion unit 40007 may apply a weight according to the distance from the center point to each point when calculating the average value.
  • each voxel has a position and a computed attribute (or attribute value).
  • the attribute transform unit 40007 may search for neighboring points existing within a specific position/radius from the position of the center point of each voxel based on the K-D tree or morton code.
  • K-D tree is a binary search tree, and supports a data structure that can manage points based on location so that Nearest Neighbor Search-NNS is possible quickly.
  • the Morton code is generated by representing the coordinate values (eg (x, y, z)) representing the three-dimensional positions of all points as bit values and mixing the bits. For example, if the coordinate value indicating the position of the point is (5, 9, 1), the bit value of the coordinate value is (0101, 1001, 0001).
  • the attribute transform unit 40007 may align the points based on the Morton code value and perform a shortest neighbor search (NNS) through a depth-first traversal process. After the attribute transform operation, when the nearest neighbor search (NNS) is required in another transform process for attribute coding, a K-D tree or a Molton code is used.
  • NSS shortest neighbor search
  • the converted attributes are input to the RAHT conversion unit 40008 and/or the LOD generation unit 40009.
  • the RAHT converter 40008 performs RAHT coding for predicting attribute information based on the reconstructed geometry information.
  • the RAHT transform unit 40008 may predict attribute information of a node at an upper level of the octree based on attribute information associated with a node at a lower level of the octree.
  • the LOD generator 40009 generates a Level of Detail (LOD).
  • LOD Level of Detail
  • the LOD according to the embodiments represents the detail of the point cloud content, and as the LOD value is smaller, the detail of the point cloud content is decreased, and as the LOD value is larger, the detail of the point cloud content is higher. Points may be classified according to LOD.
  • the lifting transform unit 40010 performs lifting transform coding that transforms the attributes of the point cloud based on weights. As described above, lifting transform coding may be selectively applied.
  • the coefficient quantizer 40011 quantizes the attribute-coded attributes based on the coefficients.
  • the arithmetic encoder 40012 encodes the quantized attributes based on arithmetic coding.
  • the elements of the point cloud video encoder of FIG. 4 are not shown in the figure, but include one or more processors or integrated circuits configured to communicate with one or more memories included in the point cloud content providing apparatus. may be implemented in hardware, software, firmware, or a combination thereof.
  • the one or more processors may perform at least any one or more of the operations and/or functions of the elements of the point cloud video encoder of FIG. 4 described above.
  • the one or more processors may also operate or execute a set of software programs and/or instructions for performing the operations and/or functions of the elements of the point cloud video encoder of FIG. 4 .
  • One or more memories in accordance with embodiments may include high speed random access memory, non-volatile memory (eg, one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state memory). memory devices (such as solid-state memory devices).
  • FIG. 5 shows an example of a voxel according to embodiments.
  • voxel 5 is an octree structure that recursively subdivides a bounding box defined by two poles (0,0,0) and (2 d , 2 d , 2 d ).
  • An example of a voxel generated through One voxel includes at least one or more points.
  • a voxel may estimate spatial coordinates from a positional relationship with a voxel group.
  • voxels have attributes (such as color or reflectance) like pixels of a 2D image/image.
  • a detailed description of the voxel is the same as that described with reference to FIG. 4 , and thus will be omitted.
  • FIG. 6 shows an example of an octree and an occupancy code according to embodiments.
  • the point cloud content providing system (point cloud video encoder 10002) or the octree analysis unit 40002 of the point cloud video encoder) in order to efficiently manage the area and/or position of the voxel Performs octree geometry coding (or octree coding) based on octree structure.
  • the upper part of FIG. 6 shows the octree structure.
  • the three-dimensional space of the point cloud content according to the embodiments is expressed by axes (eg, X-axis, Y-axis, and Z-axis) of the coordinate system.
  • the octree structure is created by recursive subdividing a bounding box defined by two poles (0,0,0) and (2 d , 2 d , 2 d ). . 2d may be set to a value constituting the smallest bounding box surrounding all points of the point cloud content (or point cloud video).
  • d represents the depth of the octree.
  • the d value is determined according to Equation 1 below.
  • (x int n , y int n , z int n ) represents positions (or position values) of quantized points.
  • the entire 3D space may be divided into eight spaces according to the division.
  • Each divided space is represented by a cube with six faces.
  • each of the eight spaces is again divided based on the axes of the coordinate system (eg, the X-axis, the Y-axis, and the Z-axis). Therefore, each space is further divided into 8 small spaces.
  • the divided small space is also expressed as a cube with six faces. This division method is applied until a leaf node of the octree becomes a voxel.
  • the lower part of Fig. 6 shows the occupancy code of the octree.
  • the occupancy code of the octree is generated to indicate whether each of the eight divided spaces generated by dividing one space includes at least one point.
  • one occupanci code is expressed by eight child nodes.
  • Each child node represents the occupancies of the divided space, and each child node has a value of 1 bit. Therefore, the occupanci code is expressed as an 8-bit code. That is, if at least one point is included in the space corresponding to the child node, the corresponding node has a value of 1. If the space corresponding to the child node does not contain a point (empty), the node has a value of 0. Since the occupancy code shown in FIG.
  • a point cloud video encoder (eg, arithmetic encoder 40004 ) according to embodiments may entropy encode the occupanci code.
  • the point cloud video encoder can intra/intercode the occupanci code.
  • the receiving apparatus (eg, the receiving apparatus 10004 or the point cloud video decoder 10006) according to embodiments reconstructs an octree based on the occupanci code.
  • the point cloud video encoder (eg, the octree analyzer 40002) may perform voxelization and octree coding to store positions of points.
  • the points in the 3D space are not always evenly distributed, there may be a specific area where there are not many points. In this case, it is inefficient to voxelize the entire 3D space. For example, if there are few points in a specific area, it is not necessary to perform voxelization up to the corresponding area.
  • the point cloud video encoder does not perform voxelization on the above-described specific region (or a node other than a leaf node of an octree), but directly codes positions of points included in the specific region (Direct coding). coding) can be performed. Coordinates of direct coding points according to embodiments are called direct coding mode (DCM).
  • the point cloud video encoder may perform trisoup geometry encoding for reconstructing positions of points in a specific region (or node) based on a voxel based on a surface model.
  • Tri-Soop geometry encoding is a geometry encoding that expresses the representation of an object as a series of triangle meshes.
  • the point cloud video decoder can generate a point cloud from the mesh surface.
  • Direct coding and trisup geometry encoding according to embodiments may be selectively performed. Also, direct coding and trisup geometry encoding according to embodiments may be performed in combination with octree geometry coding (or octree coding).
  • the option to use a direct mode for applying direct coding must be activated, and a node to which direct coding is to be applied is not a leaf node, but is less than a threshold within a specific node. points must exist. In addition, the total number of points to be subjected to direct coding should not exceed a preset limit value. If the above condition is satisfied, the point cloud video encoder (eg, arithmetic encoder 40004 ) according to embodiments may entropy-code positions (or position values) of points.
  • the point cloud video encoder (for example, the surface approximation analyzer 40003) according to the embodiments determines a specific level of the octree (when the level is smaller than the depth d of the octree), and from that level, using the surface model It is possible to perform tri-soup geometry encoding, which reconstructs the position of a point in the node region based on voxels (tri-soup mode).
  • the point cloud video encoder according to the embodiments may designate a level to which tri-soup geometry encoding is to be applied. For example, if the specified level is equal to the depth of the octree, the point cloud video encoder will not operate in tri-soup mode.
  • the point cloud video encoder may operate in the tri-soup mode only when the specified level is smaller than the depth value of the octree.
  • a three-dimensional cube region of nodes of a designated level according to embodiments is called a block.
  • One block may include one or more voxels.
  • a block or voxel may correspond to a brick.
  • the geometry is represented as a surface.
  • a surface according to embodiments may intersect each edge of the block at most once.
  • a vertex existing along an edge is detected when there is at least one occupied voxel adjacent to the edge among all blocks sharing the edge.
  • An ocupided voxel means a voxel including a point. The position of the vertex detected along the edge is the average position along the edge of all voxels of all voxels adjacent to the edge among all blocks sharing the edge.
  • the point cloud video encoder When a vertex is detected, the point cloud video encoder according to the embodiments performs an edge start point (x, y, z) and an edge direction vector ( x, y, z), vertex position values (relative position values within the edge) can be entropy-coded.
  • the point cloud video encoder eg, the geometry reconstruction unit 40005
  • the point cloud video encoder performs triangle reconstruction, up-sampling, and voxelization processes. can be performed to create a reconstructed geometry (reconstructed geometry).
  • Vertices located at the edge of a block determine the surface that passes through the block.
  • the surface according to embodiments is a non-planar polygon.
  • the triangle reconstruction process reconstructs the surface represented by a triangle based on the starting point of the edge, the direction vector of the edge, and the position value of the vertex.
  • the triangle reconstruction process is as shown in Equation 2 below. 1 Calculate the centroid value of each vertex, 2 perform a square on the values obtained by subtracting the center value from each vertex value, and obtain a value obtained by adding all the values.
  • the minimum value of the added value is obtained, and the projection process is performed along the axis with the minimum value. For example, if the x element is the minimum, each vertex is projected on the x-axis with respect to the center of the block and projected on the (y, z) plane. If the value that comes out when projecting to the (y, z) plane is (ai, bi), the ⁇ value is obtained through atan2(bi, ai), and the vertices are aligned based on the ⁇ value. Table 1 below shows combinations of vertices for generating a triangle according to the number of vertices. Vertices are sorted in order from 1 to n.
  • the first triangle may be composed of 1st, 2nd, and 3rd vertices among the aligned vertices
  • the second triangle may be composed of 3rd, 4th, and 1st vertices among the aligned vertices.
  • the upsampling process is performed to voxelize the triangle by adding points along the edge of the triangle. Create additional points based on the upsampling factor and the width of the block. The additional points are called refined vertices.
  • the point cloud video encoder may voxel the refined vertices. Also, the point cloud video encoder may perform attribute encoding based on the voxelized position (or position value).
  • FIG. 7 shows an example of a neighbor node pattern according to embodiments.
  • the point cloud video encoder may perform entropy coding based on context adaptive arithmetic coding.
  • the point cloud content providing system or the point cloud video encoder 10002 of FIG. 2 or the point cloud video encoder or arithmetic encoder 40004 of FIG. 4 can directly entropy code the occupanci code. have.
  • the point cloud content providing system or point cloud video encoder performs entropy encoding (intra encoding) based on the occupanci code of the current node and the occupancies of neighboring nodes, or entropy encoding (inter encoding) can be performed.
  • a frame according to embodiments means a set of point cloud videos generated at the same time. Compression efficiency of intra encoding/inter encoding according to embodiments may vary depending on the number of referenced neighboring nodes.
  • a point cloud video encoder determines occupancy of neighboring nodes of each node of an octree and obtains a neighbor pattern value.
  • the neighbor node pattern is used to infer the occupancy pattern of the corresponding node.
  • the left side of FIG. 7 shows a cube corresponding to a node (a cube located in the center) and six cubes (neighboring nodes) sharing at least one face with the cube.
  • the nodes shown in the figure are nodes of the same depth (depth).
  • the numbers shown in the figure represent the weights (1, 2, 4, 8, 16, 32, etc.) associated with each of the six nodes. Each weight is sequentially assigned according to the positions of neighboring nodes.
  • the right side of FIG. 7 shows the neighboring node pattern values.
  • the neighbor node pattern value is the sum of values multiplied by the weights of the ocupided neighbor nodes (neighbor nodes with points). Therefore, the neighbor node pattern values range from 0 to 63. When the value of the neighbor node pattern is 0, it indicates that there is no node (ocupid node) having a point among the neighboring nodes of the corresponding node. When the neighbor node pattern value is 63, it indicates that all of the neighboring nodes are ocupid nodes. As shown in the figure, since neighboring nodes to which weights 1, 2, 4, and 8 are assigned are ocupided nodes, the neighboring node pattern value is 15, which is the sum of 1, 2, 4, and 8.
  • the point cloud video encoder may perform coding according to a value of a neighboring node pattern (eg, when a value of a neighboring node pattern is 63, performing 64 types of coding). According to embodiments, the point cloud video encoder may change the neighbor node pattern value (eg, based on a table changing 64 to 10 or 6) to reduce coding complexity.
  • the encoded geometry is reconstructed (decompressed) before attribute encoding is performed.
  • the geometry reconstruction operation may include changing the arrangement of the direct coded points (eg, placing the direct coded points in front of the point cloud data).
  • the geometry reconstruction process is triangular reconstruction, upsampling, and voxelization. Since the attribute is dependent on the geometry, the attribute encoding is performed based on the reconstructed geometry.
  • the point cloud video encoder may reorganize or group the points by LOD.
  • 8 shows the point cloud content corresponding to the LOD.
  • the leftmost part of FIG. 8 shows original point cloud content.
  • the second figure from the left of FIG. 8 shows the distribution of the points of the lowest LOD, and the rightmost figure of FIG. 8 shows the distribution of the points of the highest LOD. That is, the points of the lowest LOD are sparsely distributed, and the points of the highest LOD are densely distributed. That is, as the LOD increases according to the direction of the arrow indicated at the bottom of FIG. 8 , the interval (or distance) between the points becomes shorter.
  • a point cloud content providing system can create an LOD.
  • the LOD is created by reorganizing the points into a set of refinement levels according to a set LOD distance value (or set of Euclidean Distance).
  • the LOD generation process is performed not only in the point cloud video encoder but also in the point cloud video decoder.
  • FIG. 9 shows examples (P0 to P9) of points of point cloud content distributed in a three-dimensional space.
  • the original order of FIG. 9 indicates the order of points P0 to P9 before LOD generation.
  • the LOD based order of FIG. 9 indicates the order of points according to the LOD generation. Points are rearranged by LOD. Also, the high LOD includes points belonging to the low LOD.
  • LOD0 includes P0, P5, P4 and P2.
  • LOD1 includes the points of LOD0 and P1, P6 and P3.
  • LOD2 includes points of LOD0, points of LOD1, and P9, P8 and P7.
  • the point cloud video encoder may perform LOD-based predictive transform coding, lifting transform coding, and RAHT transform coding selectively or in combination.
  • a point cloud video encoder may generate predictors for points and perform LOD-based predictive transform coding to set a predictive attribute (or predictive attribute value) of each point. That is, N predictors may be generated for N points.
  • the prediction attribute (or attribute value) is a weight calculated based on the distance to each neighboring point in the attributes (or attribute values, for example, color, reflectance, etc.) of neighboring points set in the predictor of each point (or the weight value) is set as the average value of the multiplied value.
  • the point cloud video encoder (eg, the coefficient quantization unit 40011 ) according to embodiments subtracts a corresponding prediction attribute (attribute value) from an attribute (ie, an original attribute value) of a corresponding point, and a residual value (residual) of the point quantization and inverse quantization of the attribute, residual attribute value, attribute prediction residual value, prediction error attribute value, etc.) Quantization process of the transmitting device performed on the residual attribute value is shown in Table 2. And the inverse quantization process of the receiving device performed on the quantized residual attribute values as shown in Table 2 is shown in Table 3.
  • the point cloud video encoder (eg, arithmetic encoder 40012 ) may entropy the quantized and dequantized residual attribute values as described above when there are neighboring points to the predictor of each point. can be coded.
  • the point cloud video encoder (eg, the arithmetic encoder 40012 ) according to embodiments may entropy-code attributes of a corresponding point without performing the above-described process if there are no neighboring points in the predictor of each point.
  • a point cloud video encoder (eg, lifting transform unit 40010) according to embodiments generates a predictor of each point, sets the LOD calculated in the predictor, registers neighboring points, and calculates the distance to the neighboring points.
  • Lifting transform coding may be performed by setting weights according to the corresponding weights.
  • the lifting transform coding according to the embodiments is similar to the LOD-based predictive transform coding described above, but has a difference in that a weight is accumulated and applied to an attribute value.
  • a process of accumulatively applying a weight to an attribute value according to embodiments is as follows.
  • the weights calculated for all predictors are additionally multiplied by the weights stored in the QW corresponding to the predictor index, and the calculated weights are cumulatively added to the update weight array as the indexes of neighboring nodes.
  • the value obtained by multiplying the calculated weight by the attribute value of the index of the neighbor node is accumulated and summed.
  • predictive attribute values are calculated by additionally multiplying the attribute values updated through the lift update process by the weights updated through the lift prediction process (stored in QW).
  • a point cloud video encoder eg, the coefficient quantization unit 40011
  • a point cloud video encoder eg, arithmetic encoder 40012
  • entropy codes the quantized attribute values.
  • the point cloud video encoder (for example, the RAHT transform unit 40008) according to the embodiments may perform RAHT transform coding for estimating the attributes of the nodes of the higher level by using the attributes associated with the nodes at the lower level of the octree. have.
  • RAHT transform coding is an example of attribute intra coding with octree backward scan.
  • the point cloud video encoder according to the embodiments scans the entire area from the voxel, and repeats the merging process up to the root node while merging the voxels into a larger block at each step.
  • the merging process according to the embodiments is performed only for the ocupid node. A merging process is not performed on an empty node, and a merging process is performed on a node immediately above the empty node.
  • Equation 3 represents the RAHT transformation matrix.
  • g lx,y,z represents the average attribute value of voxels in level l.
  • g lx,y,z can be calculated from g l+1 2x,y,z and g l+1 2x+1,y,z .
  • g l-1 x,y,z is a low-pass value and is used in the merging process at the next higher level.
  • h l-1 x,y,z are high-pass coefficients, and the high-pass coefficients in each step are quantized and entropy-coded (eg, encoding of the arithmetic encoder 40012 ).
  • the root node is generated as shown in Equation 4 below through the last g 1 0,0,0 and g 1 0,0,1 .
  • the gDC value is also quantized and entropy-coded like the high-pass coefficient.
  • FIG. 10 shows an example of a point cloud video decoder according to embodiments.
  • the point cloud video decoder shown in FIG. 10 is an example of the point cloud video decoder 10006 described in FIG. 1 , and may perform the same or similar operations to the operation of the point cloud video decoder 10006 described in FIG. 1 .
  • the point cloud video decoder may receive a geometry bitstream and an attribute bitstream included in one or more bitstreams.
  • the point cloud video decoder includes a geometry decoder and an attribute decoder.
  • the geometry decoder outputs decoded geometry by performing geometry decoding on the geometry bitstream.
  • the attribute decoder outputs decoded attributes by performing attribute decoding on the attribute bitstream based on the decoded geometry.
  • the decoded geometry and decoded attributes are used to reconstruct the point cloud content (decoded point cloud).
  • FIG. 11 shows an example of a point cloud video decoder according to embodiments.
  • the point cloud video decoder illustrated in FIG. 11 is a detailed example of the point cloud video decoder illustrated in FIG. 10 , and may perform a decoding operation that is a reverse process of the encoding operation of the point cloud video encoder illustrated in FIGS. 1 to 9 .
  • the point cloud video decoder may perform geometry decoding and attribute decoding. Geometry decoding is performed before attribute decoding.
  • a point cloud video decoder may include an arithmetic decoder 11000 , an octree synthesis unit 11001 , a surface approximation synthesis unit 11002 , and a geometry reconstruction unit (geometry reconstruction unit 11003), coordinates inverse transformation unit 11004, arithmetic decoder 11005, inverse quantization unit 11006, RAHT transformation unit 11007, LOD generation a LOD generation unit 11008 , an inverse lifting unit 11009 , and/or a color inverse transformation unit 11010 .
  • the arithmetic decoder 11000 , the octree synthesizer 11001 , the surface op-proximation synthesizer 11002 , the geometry reconstruction unit 11003 , and the coordinate system inverse transformation unit 11004 may perform geometry decoding.
  • Geometry decoding according to embodiments may include direct decoding and trisoup geometry decoding. Direct decoding and trisup geometry decoding are optionally applied. Also, the geometry decoding is not limited to the above example, and is performed as a reverse process of the geometry encoding described with reference to FIGS. 1 to 9 .
  • the arithmetic decoder 11000 decodes the received geometry bitstream based on arithmetic coding.
  • the operation of the arithmetic decoder 11000 corresponds to the reverse process of the arithmetic encoder 40004 .
  • the octree synthesizer 11001 may generate an octree by obtaining an ocupancy code from a decoded geometry bitstream (or information about a geometry secured as a result of decoding).
  • a detailed description of the occupanci code is the same as described with reference to FIGS. 1 to 9 .
  • the surface op-proximation synthesizing unit 11002 may synthesize a surface based on a decoded geometry and/or a generated octree when trisupe geometry encoding is applied.
  • the geometry reconstruction unit 11003 may regenerate the geometry based on the surface and/or the decoded geometry. As described with reference to FIGS. 1 to 9 , direct coding and tri-soup geometry encoding are selectively applied. Accordingly, the geometry reconstruction unit 11003 directly brings and adds position information of points to which direct coding is applied. In addition, when tri-soup geometry encoding is applied, the geometry reconstruction unit 11003 may perform a reconstruction operation of the geometry reconstruction unit 40005, for example, triangle reconstruction, up-sampling, and voxelization to restore the geometry. have. Specific details are the same as those described with reference to FIG. 6 and thus will be omitted.
  • the reconstructed geometry may include a point cloud picture or frame that does not include attributes.
  • the coordinate system inverse transform unit 11004 may obtain positions of points by transforming the coordinate system based on the restored geometry.
  • the arithmetic decoder 11005, the inverse quantization unit 11006, the RAHT transform unit 11007, the LOD generator 11008, the inverse lifting unit 11009, and/or the inverse color transform unit 11010 are the attributes described with reference to FIG. decoding can be performed.
  • Attribute decoding according to embodiments includes Region Adaptive Hierarchical Transform (RAHT) decoding, Interpolation-based hierarchical nearest-neighbor prediction-Prediction Transform decoding, and interpolation-based hierarchical nearest-neighbor prediction with an update/lifting step (Lifting Transform)) decoding may be included.
  • RAHT Region Adaptive Hierarchical Transform
  • Interpolation-based hierarchical nearest-neighbor prediction-Prediction Transform decoding Interpolation-based hierarchical nearest-neighbor prediction-Prediction Transform decoding
  • interpolation-based hierarchical nearest-neighbor prediction with an update/lifting step (Lifting Transform)) decoding may be included.
  • the arithmetic decoder 11005 decodes an attribute bitstream by arithmetic coding.
  • the inverse quantization unit 11006 inverse quantizes the decoded attribute bitstream or information about the attribute secured as a result of decoding, and outputs inverse quantized attributes (or attribute values). Inverse quantization may be selectively applied based on attribute encoding of the point cloud video encoder.
  • the RAHT transformation unit 11007, the LOD generation unit 11008, and/or the inverse lifting unit 11009 may process the reconstructed geometry and dequantized attributes. As described above, the RAHT conversion unit 11007, the LOD generation unit 11008, and/or the inverse lifting unit 11009 may selectively perform a corresponding decoding operation according to the encoding of the point cloud video encoder.
  • the color inverse transform unit 11010 performs inverse transform coding for inverse transforming color values (or textures) included in decoded attributes.
  • the operation of the color inverse transform unit 11010 may be selectively performed based on the operation of the color transform unit 40006 of the point cloud video encoder.
  • the elements of the point cloud video decoder of FIG. 11 are not shown in the figure, but include one or more processors or integrated circuits configured to communicate with one or more memories included in the point cloud content providing system. may be implemented in hardware, software, firmware, or a combination thereof.
  • the one or more processors may perform at least any one or more of the operations and/or functions of the elements of the point cloud video decoder of FIG. 11 described above.
  • the one or more processors may also operate or execute a set of software programs and/or instructions for performing operations and/or functions of the elements of the point cloud video decoder of FIG. 11 .
  • the transmission device shown in FIG. 12 is an example of the transmission device 10000 of FIG. 1 (or the point cloud video encoder of FIG. 4 ).
  • the transmitting apparatus shown in FIG. 12 may perform at least any one or more of the same or similar operations and methods to the operations and encoding methods of the point cloud video encoder described with reference to FIGS. 1 to 9 .
  • the transmission apparatus includes a data input unit 12000 , a quantization processing unit 12001 , a voxelization processing unit 12002 , an octree occupancy code generation unit 12003 , a surface model processing unit 12004 , and an intra/ Inter-coding processing unit 12005, arithmetic coder 12006, metadata processing unit 12007, color conversion processing unit 12008, attribute conversion processing unit (or attribute conversion processing unit) 12009, prediction/lifting/RAHT conversion It may include a processing unit 12010 , an arithmetic coder 12011 , and/or a transmission processing unit 12012 .
  • the data input unit 12000 receives or acquires point cloud data.
  • the data input unit 12000 may perform the same or similar operation and/or acquisition method to the operation and/or acquisition method of the point cloud video acquisition unit 10001 (or the acquisition process 20000 described in FIG. 2 ).
  • the coder 12006 performs geometry encoding. Since the geometry encoding according to the embodiments is the same as or similar to the geometry encoding described with reference to FIGS. 1 to 9 , a detailed description thereof will be omitted.
  • the quantization processing unit 12001 quantizes a geometry (eg, a position value or a position value of points).
  • the operation and/or quantization of the quantization processing unit 12001 is the same as or similar to the operation and/or quantization of the quantization unit 40001 described with reference to FIG. 4 .
  • a detailed description is the same as that described with reference to FIGS. 1 to 9 .
  • the voxelization processing unit 12002 voxelizes position values of quantized points.
  • the voxelization processing unit 12002 may perform the same or similar operations and/or processes as those of the quantization unit 40001 described with reference to FIG. 4 and/or the voxelization process. A detailed description is the same as that described with reference to FIGS. 1 to 9 .
  • the octree occupancy code generator 12003 performs octree coding on the positions of voxelized points based on the octree structure.
  • the octree occupanci code generator 12003 may generate an occupanci code.
  • the octree occupancy code generator 12003 may perform the same or similar operations and/or methods to the operations and/or methods of the point cloud video encoder (or the octree analyzer 40002) described with reference to FIGS. 4 and 6 . . A detailed description is the same as that described with reference to FIGS. 1 to 9 .
  • the surface model processing unit 12004 may perform tri-supply geometry encoding by reconstructing positions of points in a specific region (or node) based on a voxel based on a surface model.
  • the fore surface model processing unit 12004 may perform the same or similar operations and/or methods to those of the point cloud video encoder (eg, the surface appropriation analyzer 40003) described with reference to FIG. 4 .
  • a detailed description is the same as that described with reference to FIGS. 1 to 9 .
  • the intra/inter coding processing unit 12005 may perform intra/inter coding of point cloud data.
  • the intra/inter coding processing unit 12005 may perform the same or similar coding to the intra/inter coding described with reference to FIG. 7 . A detailed description is the same as that described with reference to FIG. 7 .
  • the intra/inter coding processing unit 12005 may be included in the arithmetic coder 12006 .
  • the arithmetic coder 12006 entropy encodes an octree and/or an approximated octree of point cloud data.
  • the encoding method includes an arithmetic encoding method.
  • the arithmetic coder 12006 performs the same or similar operations and/or methods as the operations and/or methods of the arithmetic encoder 40004 .
  • the metadata processing unit 12007 processes metadata related to point cloud data, for example, a setting value, and provides it to necessary processing such as geometry encoding and/or attribute encoding. Also, the metadata processing unit 12007 according to embodiments may generate and/or process signaling information related to geometry encoding and/or attribute encoding. Signaling information according to embodiments may be encoded separately from geometry encoding and/or attribute encoding. Also, signaling information according to embodiments may be interleaved.
  • the color conversion processing unit 12008, the attribute conversion processing unit 12009, the prediction/lifting/RAHT conversion processing unit 12010, and the arithmetic coder 12011 perform attribute encoding. Since the attribute encoding according to the embodiments is the same as or similar to the attribute encoding described with reference to FIGS. 1 to 9 , a detailed description thereof will be omitted.
  • the color conversion processing unit 12008 performs color conversion coding for converting color values included in attributes.
  • the color conversion processing unit 12008 may perform color conversion coding based on the reconstructed geometry.
  • the description of the reconstructed geometry is the same as described with reference to FIGS. 1 to 9 .
  • the same or similar operation and/or method to the operation and/or method of the color conversion unit 40006 described with reference to FIG. 4 is performed. A detailed description will be omitted.
  • the attribute transformation processing unit 12009 performs attribute transformation for transforming attributes based on positions and/or reconstructed geometry to which geometry encoding has not been performed.
  • the attribute transformation processing unit 12009 performs the same or similar operations and/or methods to those of the attribute transformation unit 40007 described in FIG. 4 . A detailed description will be omitted.
  • the prediction/lifting/RAHT transform processing unit 12010 may code the transformed attributes by combining any one or more of RAHT coding, LOD-based predictive transform coding, and lifting transform coding.
  • the prediction/lifting/RAHT transformation processing unit 12010 performs at least one or more of the same or similar operations to the operations of the RAHT transformation unit 40008, the LOD generation unit 40009, and the lifting transformation unit 40010 described in FIG. 4 . do.
  • LOD-based predictive transform coding, lifting transform coding, and RAHT transform coding are the same as those described with reference to FIGS. 1 to 9 , a detailed description thereof will be omitted.
  • the arithmetic coder 12011 may encode coded attributes based on arithmetic coding.
  • the arithmetic coder 12011 performs the same or similar operations and/or methods to the operations and/or methods of the arithmetic encoder 40012 .
  • the transmission processing unit 12012 transmits each bitstream including the encoded geometry and/or the encoded attribute and/or metadata, or transmits the encoded geometry and/or the encoded attribute and/or metadata It can be transmitted by composing it as one bitstream.
  • the bitstream may include one or more sub-bitstreams.
  • the bitstream according to the embodiments is a Sequence Parameter Set (SPS) for signaling of a sequence level, a Geometry Parameter Set (GPS) for signaling of the geometry information coding, an Attribute Parameter Set (APS) for signaling of the attribute information coding, a tile Signaling information including TPS (referred to as tile parameter set or tile inventory) for level signaling and slice data may be included.
  • SPS Sequence Parameter Set
  • GPS Geometry Parameter Set
  • APS Attribute Parameter Set
  • tile Signaling information including TPS (referred to as tile parameter set or tile inventory) for level signaling and slice data may be included.
  • Slice data may include information about one or more slices.
  • One slice according to embodiments may include one geometry bitstream (Geom0 0 ) and one or more attribute bitstreams (Attr0 0 , Attr1 0 ).
  • a slice refers to a series of syntax elements representing all or part of a coded point cloud frame.
  • the TPS may include information about each tile (eg, coordinate value information and height/size information of a bounding box, etc.) for one or more tiles.
  • a geometry bitstream may include a header and a payload.
  • the header of the geometry bitstream according to the embodiments may include identification information (geom_parameter_set_id), a tile identifier (geom_tile_id), a slice identifier (geom_slice_id) of a parameter set included in GPS, and information about data included in a payload. have.
  • the metadata processing unit 12007 may generate and/or process signaling information and transmit it to the transmission processing unit 12012 .
  • elements performing geometry encoding and elements performing attribute encoding may share data/information with each other as dotted lines are processed.
  • the transmission processing unit 12012 may perform the same or similar operation and/or transmission method to the operation and/or transmission method of the transmitter 10003 . Since the detailed description is the same as that described with reference to FIGS. 1 to 2 , a detailed description thereof will be omitted.
  • FIG. 13 is an example of a receiving apparatus according to embodiments.
  • the reception device shown in FIG. 13 is an example of the reception device 10004 of FIG. 1 (or the point cloud video decoder of FIGS. 10 and 11 ).
  • the receiving apparatus shown in FIG. 13 may perform at least any one or more of the same or similar operations and methods to the operations and decoding methods of the point cloud video decoder described with reference to FIGS. 1 to 11 .
  • the reception apparatus includes a reception unit 13000 , a reception processing unit 13001 , an arithmetic decoder 13002 , an Occupancy code-based octree reconstruction processing unit 13003 , and a surface model processing unit (triangle reconstruction). , up-sampling, voxelization) 13004, inverse quantization processing unit 13005, metadata parser 13006, arithmetic decoder 13007, inverse quantization processing unit 13008, prediction It may include a /lifting/RAHT inverse transformation processing unit 13009 , an inverse color transformation processing unit 13010 , and/or a renderer 13011 .
  • Each component of decoding according to embodiments may perform a reverse process of a component of encoding according to embodiments.
  • the receiver 13000 receives point cloud data.
  • the receiver 13000 may perform the same or similar operation and/or reception method as the operation and/or reception method of the receiver 10005 of FIG. 1 . A detailed description will be omitted.
  • the reception processing unit 13001 may acquire a geometry bitstream and/or an attribute bitstream from the received data.
  • the reception processing unit 13001 may be included in the reception unit 13000 .
  • the arithmetic decoder 13002, the occupancy code-based octree reconstruction processing unit 13003, the surface model processing unit 13004, and the inverse quantization processing unit 13005 may perform geometry decoding. Since the geometry decoding according to the embodiments is the same as or similar to the geometry decoding described with reference to FIGS. 1 to 10 , a detailed description thereof will be omitted.
  • the arithmetic decoder 13002 may decode a geometry bitstream based on arithmetic coding.
  • the arithmetic decoder 13002 performs the same or similar operation and/or coding to the operation and/or coding of the arithmetic decoder 11000 .
  • the occupancy code-based octree reconstruction processing unit 13003 may reconstruct the octopus by acquiring an occupanci code from a decoded geometry bitstream (or information about a geometry secured as a result of decoding).
  • the occupancy code-based octree reconstruction processing unit 13003 performs the same or similar operations and/or methods as those of the octree synthesis unit 11001 and/or the octree generation method.
  • the surface model processing unit 13004 may decode a trichop geometry based on a surface model method and reconstruct a geometry related thereto (eg, triangle reconstruction, up-sampling, voxelization) based on the surface model method when trisoop geometry encoding is applied. can be performed.
  • the surface model processing unit 13004 performs the same or similar operations to the operations of the surface op-proximation synthesizing unit 11002 and/or the geometry reconstruction unit 11003 .
  • the inverse quantization processing unit 13005 may inverse quantize the decoded geometry.
  • the metadata parser 13006 may parse metadata included in the received point cloud data, for example, a setting value.
  • the metadata parser 13006 may pass the metadata to geometry decoding and/or attribute decoding. A detailed description of the metadata is the same as that described with reference to FIG. 12 , and thus will be omitted.
  • the arithmetic decoder 13007 , the inverse quantization processing unit 13008 , the prediction/lifting/RAHT inverse transformation processing unit 13009 , and the color inverse transformation processing unit 13010 perform attribute decoding. Since the attribute decoding is the same as or similar to the attribute decoding described with reference to FIGS. 1 to 10 , a detailed description thereof will be omitted.
  • the arithmetic decoder 13007 may decode an attribute bitstream by arithmetic coding.
  • the arithmetic decoder 13007 may perform decoding of the attribute bitstream based on the reconstructed geometry.
  • the arithmetic decoder 13007 performs the same or similar operation and/or coding to the operation and/or coding of the arithmetic decoder 11005 .
  • the inverse quantization processing unit 13008 may inverse quantize the decoded attribute bitstream.
  • the inverse quantization processing unit 13008 performs the same or similar operations and/or methods as those of the inverse quantization unit 11006 and/or the inverse quantization method.
  • the prediction/lifting/RAHT inverse transform processing unit 13009 may process the reconstructed geometry and inverse quantized attributes.
  • the prediction/lifting/RAHT inverse transform processing unit 13009 performs the same or similar operations and/or decodings as the operations and/or decodings of the RAHT transform unit 11007, the LOD generation unit 11008 and/or the inverse lifting unit 11009 and/or At least any one or more of the decodings are performed.
  • the color inverse transform processing unit 13010 according to embodiments performs inverse transform coding for inverse transforming color values (or textures) included in decoded attributes.
  • the color inverse transform processing unit 13010 performs the same or similar operation and/or inverse transform coding to the operation and/or inverse transform coding of the inverse color transform unit 11010 .
  • the renderer 13011 may render point cloud data.
  • FIG. 14 shows an example of a structure capable of interworking with a method/device for transmitting and receiving point cloud data according to embodiments.
  • the structure of FIG. 14 is a server 17600, a robot 17100, an autonomous vehicle 17200, an XR device 17300, a smartphone 17400, a home appliance 17500, and/or a head-mount display (HMD) 17700). At least one of them represents a configuration connected to the cloud network 17000 .
  • the robot 17100 , the autonomous vehicle 17200 , the XR device 17300 , the smartphone 17400 , or the home appliance 17500 are referred to as devices.
  • the XR device 17300 may correspond to a point cloud compressed data (PCC) device according to embodiments or may be linked with a PCC device.
  • PCC point cloud compressed data
  • the cloud network 17000 may refer to a network that forms part of the cloud computing infrastructure or exists in the cloud computing infrastructure.
  • the cloud network 17000 may be configured using a 3G network, a 4G or Long Term Evolution (LTE) network, or a 5G network.
  • LTE Long Term Evolution
  • the server 17600 includes at least one of a robot 17100, an autonomous vehicle 17200, an XR device 17300, a smartphone 17400, a home appliance 17500, and/or an HMD 17700, and a cloud network 17000. It is connected through and may help at least a part of the processing of the connected devices 17100 to 17700 .
  • a Head-Mount Display (HMD) 17700 represents one of the types in which an XR device and/or a PCC device according to embodiments may be implemented.
  • the HMD-type device according to the embodiments includes a communication unit, a control unit, a memory unit, an I/O unit, a sensor unit, a power supply unit, and the like.
  • the devices 17100 to 17500 shown in FIG. 14 may be linked/coupled with the point cloud data transmission/reception device according to the above-described embodiments.
  • XR / PCC device 17300 is PCC and / or XR (AR + VR) technology is applied, HMD (Head-Mount Display), HUD (Head-Up Display) provided in the vehicle, television, mobile phone, smart phone, It may be implemented as a computer, a wearable device, a home appliance, a digital signage, a vehicle, a stationary robot, or a mobile robot.
  • HMD Head-Mount Display
  • HUD Head-Up Display
  • the XR/PCC device 17300 analyzes 3D point cloud data or image data acquired through various sensors or from an external device to generate position data and attribute data for 3D points in the surrounding space or real objects. Information can be obtained, and the XR object to be output can be rendered and output. For example, the XR/PCC apparatus 17300 may output an XR object including additional information on the recognized object to correspond to the recognized object.
  • the autonomous driving vehicle 17200 may be implemented as a mobile robot, a vehicle, an unmanned aerial vehicle, etc. by applying PCC technology and XR technology.
  • the autonomous driving vehicle 17200 to which the XR/PCC technology is applied may mean an autonomous driving vehicle equipped with a means for providing an XR image, an autonomous driving vehicle subject to control/interaction within the XR image, or the like.
  • the autonomous driving vehicle 17200 that is the target of control/interaction within the XR image may be distinguished from the XR device 17300 and may be interlocked with each other.
  • the autonomous vehicle 17200 provided with means for providing an XR/PCC image may obtain sensor information from sensors including a camera, and output an XR/PCC image generated based on the acquired sensor information.
  • the autonomous vehicle 17200 may provide the occupant with an XR/PCC object corresponding to a real object or an object in a screen by having a HUD and outputting an XR/PCC image.
  • the XR/PCC object when the XR/PCC object is output to the HUD, at least a portion of the XR/PCC object may be output to overlap the real object toward which the passenger's gaze is directed.
  • the XR/PCC object when the XR/PCC object is output to a display provided inside the autonomous vehicle, at least a part of the XR/PCC object may be output to overlap the object in the screen.
  • the autonomous vehicle 17200 may output XR/PCC objects corresponding to objects such as a lane, other vehicles, traffic lights, traffic signs, two-wheeled vehicles, pedestrians, and buildings.
  • VR Virtual Reality
  • AR Augmented Reality
  • MR Magnetic Reality
  • PCC Point Cloud Compression
  • VR technology is a display technology that provides objects or backgrounds in the real world only as CG images.
  • AR technology refers to a technology that shows a virtual CG image on top of an actual object image.
  • MR technology is similar to the aforementioned AR technology in that it shows virtual objects by mixing and combining them in the real world.
  • real objects and virtual objects made of CG images are clear, and virtual objects are used in a form that complements real objects, whereas in MR technology, virtual objects are regarded as having the same characteristics as real objects. distinct from technology. More specifically, for example, a hologram service to which the aforementioned MR technology is applied.
  • VR, AR, and MR technologies are sometimes called XR (extended reality) technologies rather than clearly distinguishing them. Accordingly, the embodiments of the present specification are applicable to all of VR, AR, MR, and XR technologies.
  • encoding/decoding based on PCC, V-PCC, and G-PCC technology may be applied.
  • the PCC method/apparatus according to the embodiments may be applied to a vehicle providing an autonomous driving service.
  • a vehicle providing an autonomous driving service is connected to a PCC device to enable wired/wireless communication.
  • the point cloud compressed data (PCC) transceiver receives/processes AR/VR/PCC service-related content data that can be provided together with the autonomous driving service when connected to a vehicle to enable wired/wireless communication. can be transmitted to the vehicle.
  • the point cloud data transceiver device may receive/process AR/VR/PCC service related content data according to a user input signal input through the user interface device and provide it to the user.
  • a vehicle or a user interface device may receive a user input signal.
  • a user input signal according to embodiments may include a signal indicating an autonomous driving service.
  • a point cloud (or referred to as point cloud data) is composed of a set of points, and each point may have geometry information and attribute information.
  • the point cloud encoding process compresses the geometry and compresses the attribute information based on the geometry reconstructed with location information changed through compression (referred to as reconstructed geometry or reconstructed geometry). Can be configured as a process.
  • the point cloud decoding process receives the encoded geometry bitstream and the attribute bitstream, decodes the geometry, and decodes the attribute information based on the geometry reconstructed through the decoding process. have.
  • lossy compression There are two types of compression of point cloud data: lossy compression and lossless compression.
  • lossy compression geometry (ie, location) information and attribute information may be compressed differently from the original or may be omitted.
  • lossless compression the original data precision is maintained without losing as much as possible, and the number of points is maintained as in the original.
  • near lossless compression which sets a threshold value in a certain range and allows only an error within the threshold value, is also considered as a lossless range.
  • the point cloud data before the point cloud data is compressed, it is defined whether all points of the input point cloud data are losslessly compressed or lossy compressed through a quantization process.
  • lossless/lossy compression is calculated by the bit allocation rate per point and is determined by bits per input point (bpip) and bits per output point (bpop). Compression is currently being performed with r01 (0.5-1.4 bpip) to r06 (18-21 bpip), which is the bit-per-rate ratio defined in the G-PCC (Geometry Point Cloud Compression) standard.
  • lossy compression proceeds as a quantization process, and the amount of lossy compression is calculated by scaling a geometry value defining a size of a lossy compressed bitstream. That is, the amount of lossy compression is calculated with a quantization parameter (QP) and a quantization step size (qS).
  • the quantization process is accomplished by scaling the geometry values with quantization coefficients.
  • the quantization coefficient is calculated as a positive real number of quantization step size (qS), and each value of x, y, and z geometry of the input point cloud is multiplied by the qS value.
  • the quantization step size qS may be derived from the quantization coefficient QP. Equation 5 below is an example of a calculation formula for deriving a quantization step size qS using a quantization coefficient QP.
  • the quantization step sizes (qS) currently used in G-PCC are 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 448, 512, 640, 768, 896, 1024,...
  • the real number of is used, and the larger the quantization step size, the more quantization and lossy compression at a high rate. That is, in this document, the quantization step size means the step size used for rate(r01-r06).
  • the quantization process is performed immediately after input of the point cloud data.
  • one or more points may have the same quantized position (or position value) according to the quantization step size.
  • 15A to 15D are diagrams illustrating examples of a quantization method according to a quantization scale.
  • FIG. 15(b) shows when the quantization scale is 0.5
  • FIG. 15(c) shows the quantization scale
  • FIG. 15(d) shows examples of a quantization method when the quantization scale is 0.125.
  • a quantization scale means a value to be scaled. In one embodiment, there is a scaling value designated for each step.
  • one or more points may have the same quantized position (or position value).
  • the point after quantization may correspond to the (0,0,0) position 50001 as shown in FIG. 16, or (0,0,1 ⁇ 1,1,1) according to the precision or characteristics of the point cloud. It can also be expressed in a spatial position or (0.5, 0.5, 0.5) central position.
  • 16 is a diagram illustrating examples of expressing a position of a point after quantization according to embodiments.
  • an octree structure is generated based on the quantized points.
  • the modified leaf node is located at the L-M level by modifying the L-M level (M: quantization step) geometry precision and quantizing the L-M ⁇ L level points.
  • M quantization step
  • all points from the lower L-M level to the maximum L level are quantized to place the modified leaf node at the L-M level.
  • geometry compression is performed with the geometry value changed to the median value of the octree node or a defined value for the corrected geometry precision. In this case, the octree-based geometry compression is performed in a lossless compression scheme.
  • the recoloring is a process of calculating an average value of attributes of neighboring points within a specific position/radius from the position value of the quantized point and setting it as an attribute of the quantized point.
  • the recoloring is referred to as an attribute transformation or color rebalancing.
  • the recoloring may be performed by the attribute transformation unit 40007 of FIG. 4 or the attribute transformation processing unit 12009 of FIG. 12 . For example, if it is assumed that L-level points are mapped to specific points of L-M level through quantization as above, since the attributes of L-level points cannot be known due to quantization, recoloring the attributes of L-M level points must be reset via
  • H(i) For each point of the reconstructed point cloud, H(i) is defined as a set of original points. That is, H(i) means a set of neighboring points.
  • H(i) is empty or has one or more values.
  • H(i) is empty means that there is no point within a specific distance when searching for a nearby point.
  • the attribute value a i * of a point is bundled with the attribute values of points that are not related at all due to the recoloring process as in Equation 6, the attribute value a i of the point is the original point cloud due to the average calculation formula of the attribute values. It is reconstructed with an attribute value different from the attribute value.
  • the attribute value (ie, color value) of the original point may be red, whereas the attribute value reconstructed through Equation 6 may be a color other than red.
  • the attribute encoding/decoding quality of the point cloud data can be improved by enabling the attribute values of the reconstructed point clouds to be set to the attribute values of the original points, Geometry compression efficiency can be improved.
  • This document proposes two methods. One is a method of performing quantization on input points for geometry compression, generating an octree structure based on the quantized points, and then performing attribute encoding with attribute values of original points. This document will refer to this as the first embodiment. Another method is to perform sampling on input points for geometry compression, create an octree structure based on the sampled points, and then perform attribute encoding with attribute values of original points. This document will refer to this as the second embodiment.
  • this document is to use the attribute value of the original point as it is without a recoloring process when encoding the attribute based on the reconstructed geometry after performing geometry compression based on the octree structure.
  • the single recoloring process means that the attribute value of the original point is used for attribute encoding as it is. Accordingly, a single recoloring process may be referred to as a 'recoloring omitting process'.
  • the transmitting side is performed in the order of quantization -> octree encoding -> single recoloring -> attribute compression/receiving side is performed in the order of octree decoding -> attribute decoding.
  • the second embodiment performs sampling instead of quantization for single recoloring (ie omitting recoloring).
  • the encoding process of the point cloud data corresponding to the first embodiment and/or the second embodiment includes the point cloud video encoder 10002 of FIG. 1 , the encoding 20001 of FIG. 2 , and the point of FIG. 4 .
  • the cloud video encoder, the point cloud video encoder of FIG. 12, the geometry encoder 51003 and the attribute encoder 51004 of FIG. 19, or the geometry encoder 51003 and the attribute encoder 51004 of FIG. 20 may perform.
  • the decoding process of the point cloud data corresponding to the first embodiment and/or the second embodiment according to the embodiments includes the point cloud video decoder 10006 of FIG. 1 , the decoding 20003 of FIG. 2 , and the point cloud of FIG. 11 .
  • the video decoder, the point cloud video decoder of FIG. 13 , the geometry decoder 61003 and the attribute decoder 61004 of FIG. 21 , or the geometry decoder 61003 and the attribute decoder 61004 of FIG. 22 may be performed. A detailed description of FIGS. 19 to 22 will be provided later.
  • the second embodiment uses a sampling method of selecting some points among input points according to encoding precision, and the sampled points are used to generate an octree structure.
  • the attribute values of sampled points ie, original points
  • the point cloud data is sampled, and attribute encoding/decoding is performed with the geometric precision of the unquantized original point cloud data.
  • the sampled points may be compressed and a difference value between the sampled point cloud and the original point cloud may be transmitted as metadata (or referred to as signaling information).
  • the metadata may be quantized with a sampling rate or quantization per sample value. By doing so, the picture and visual quality can be improved.
  • the metadata will be referred to as compression-related information (or compression-related information).
  • the compression-related information may be regarded as including the metadata.
  • the octree level is divided into 8 only up to the precision level used for lossy compression.
  • the sampled precision level i.e., leaf nodes
  • the precision level used for lossy compression i.e., encoding precision
  • M the precision level used for lossy compression
  • Additional data may be passed as metadata.
  • additional data may be included in the geometry bitstream and transmitted after arithmetic coding.
  • the additional data is information (eg, octree_sampling_residual) for decoding N-M to N levels. That is, since the octree compression encodes the occupancies form, the lower level (ie, N-level) occupancis may be transmitted in the form of metadata without being included in the compressed octree.
  • 17A to 17D are diagrams illustrating examples of a sampling method according to the second embodiment.
  • FIG. 17(b) is when the sampling scale is 0.5
  • FIG. 17(c) is when the sampling scale is 0.25
  • FIG. 17(d) shows examples of a sampling method when the sampling scale is 0.125.
  • the precision of all points is halved (ie, 1/2) means to lower it to
  • a point of (1,1) is an original point
  • a point of (0,0) is a sampled point corresponding to the original point.
  • the arrow movement amount of sampling is additionally transmitted as metadata.
  • an arrow movement amount of sampling may be transmitted while being included in a geometry bitstream.
  • the arrow movement amount of sampling is also referred to as the sampling movement amount.
  • the movement amount of the arrow of sampling means a position difference value between the original point and the sampled point. That is, the position difference value between the original point and the sampled point may be transmitted in the form of metadata or may be transmitted while being included in the geometry bitstream.
  • the quantization scale is 0.25 as shown in FIG. 17( c ), it means that the precision of all points is reduced by 0.25 times (ie, 1/4).
  • points of (1,1) and (2,1) are original points, and points of (0,0) are sampled points corresponding to the original points.
  • the arrow movement amount of sampling is additionally transmitted as metadata. That is, for each of the original points, the position difference value from the sampled point may be signaled and transmitted in the form of metadata, or may be transmitted while being included in the geometry bitstream.
  • the quantization scale is 0.125 as shown in FIG. 17( d ), it means that the precision of all points is reduced by 0.125 times (ie, 1/8).
  • points 50021-50024 of (1,1), (2,1), (1,3), and (4,4) are original points and (0,0)
  • the point of is the sampled point 50010 corresponding to the original points 50021-50024.
  • the arrow movement amount of sampling is additionally transmitted as metadata. That is, the position difference value from the sampled point 50010 for each of the original points 50021 to 50024 may be transmitted in the form of metadata or may be transmitted while being included in the geometry bitstream.
  • FIG. 18 is a diagram illustrating an octree sampling method and metadata generation according to embodiments.
  • N is the precision level to be sampled (ie, leaf nodes)
  • M is the precision level used for lossy compression (ie, encoding precision).
  • points 50021-50024 of FIG. 17(d) correspond to nodes 50021-50024 of level N in FIG. 18, and lower nodes of node 50010 of level M are point group 50021- of level N 50024), the point 50010 of FIG. 17(d) corresponds to the point 50010 of the level M of FIG.
  • sampling is selected at level N.
  • sampling is performed at leaf nodes (ie, level N), and octree-based occupancies compression is up to level M. Therefore, this document sends the occupancies part from level M to level N as metadata.
  • sampling is performed at a leaf node (ie, level N)
  • occult compression using an octree is performed up to level M
  • necessary information is transmitted as metadata at levels N to M.
  • a position difference value ie, octree_sampling_residual
  • the same value as the original point is used for octree sampling, and even if the sampling scale is changed, points at the same location are selected and only the number of points is reduced.
  • the amount of movement of the arrow can be transmitted as metadata.
  • the metadata may be transmitted as a calculated matrix.
  • single recoloring can be performed with the encoded octree at level M, and the reconstructed point cloud can be used for attribute compression.
  • a calculation formula that can use the sampling shift amount by the encoder of the transmitting side and the decoder of the receiving side may be expressed as Equation 8 below.
  • the transmitted values are a 1 , a 2 , and a 3 .
  • Equation 8 means a coefficient.
  • residuals 5021 - 5010 of metadata for one point are calculated as equations for sending metadata: x5021-x5010, y5021-y5010, z5021-z5010 do. If this is referred to as residual5021, residual 5021 to 5024 are calculated, respectively, and the coefficient r from which the residual 5021 to 5024 feature points are drawn is made into a matrix and signaled from the transmitter to the receiver.
  • the receiver calculates a1, a2, aN and r matrix to restore residuals 5021 to 5024.
  • r is simply a coefficient (ie, feature point r) for sending a smaller residual value.
  • the data of 2 NM x 2 NM x 2 NM (where N and M correspond to level N and level M in FIG. 18 ) are used as data. It can be transmitted as metadata through matic coding. In addition, additional metadata is needed to represent the level N nodes 50021 to 50024 from the level M point 50010 in FIG. 18, and this metadata has a value in the range of 2 NM x 2 NM x 2 NM . do.
  • 2 NM x 2 NM x 2 NM x 2 NM x 2 NM x 2 because the range of 2 N x 2 N x 2 N is required to represent the root to level N due to the octre occupanci representation, but only from level M to level N is required for decoding. It is in the NM range.
  • 2 NM x 2 NM x 2 NM is the metadata before extracting the key point, and a1, a2, and aN from which the key point r is extracted are signaled as final metadata.
  • the attribute value of one point can be used for attribute compression, that is, because it is a single recoloring, the accuracy of the attribute value can be increased, and thus the attribute compression efficiency can be increased.
  • the transmitting side is performed in the order of sampling -> octree encoding -> single recoloring -> metadata generation -> attribute compression/receiving side is performed in the order of octree decoding -> metadata reconstruction -> attribute decoding is performed with
  • this document may select whether to apply quantization or sampling to input point cloud data and signal it.
  • the present document may select and signal whether to apply recoloring to the reconstructed geometry or to apply single recoloring (ie, omitting recoloring).
  • this document selects whether to perform attribute encoding based on the recolored attribute value or to perform attribute encoding based on a single recolored (ie, omit recoloring) attribute value, and signal this have.
  • this document may be signaled as metadata or a previously calculated matrix in order to encode an exact point with a sampling scheme of an octree.
  • this document signals a quantized value and a sampled difference value per octree level, and the generated bitstream may be entropy-encoded.
  • the generated bitstream and the geometry reconstructed information may be combined to have a decoded geometry value, and the decoded geometry value may have an attribute value corresponding to the geometry value in the recoloring process.
  • the above-described compression-related information may be included in at least one of SPS, GPS, APS, TPS, and a geometry slice header.
  • FIG. 19 is a diagram illustrating another example of a point cloud transmission apparatus according to embodiments.
  • the elements of the point cloud transmission apparatus shown in FIG. 19 may be implemented by hardware, software, a processor, and/or a combination thereof.
  • the point cloud transmission apparatus may include a data input unit 51001 , a signaling processing unit 51002 , a geometry encoder 51003 , an attribute encoder 51004 , and a transmission processing unit 51005 .
  • the geometry encoder 51003 and the attribute encoder 51004 are described in the point cloud video encoder 10002 of FIG. 1 , the encoding 20001 of FIG. 2 , the point cloud video encoder of FIG. 4 , and the point cloud video encoder of FIG. 12 . Some or all of the action may be performed.
  • the data input unit 51001 receives or acquires point cloud data.
  • the data input unit 51001 may perform some or all of the operations of the point cloud video acquisition unit 10001 of FIG. 1 , or may perform some or all of the operations of the data input unit 12000 of FIG. 12 .
  • the data input unit 51001 outputs the positions of the points of the point cloud data to the geometry encoder 51003, and outputs the attributes of the points of the point cloud data to the attribute encoder 51004. Also, the parameters are output to the signaling processing unit 51002. According to embodiments, parameters may be provided to the geometry encoder 51003 and the attribute encoder 51004 .
  • the geometry encoder 51003 performs quantization or sampling on the positions of input points, generates an octree structure based on the quantized points or the sampled points, and then performs occupancies compression. That is, compression of the geometry information is performed.
  • the geometry encoder 51003 performs entropy encoding on the compressed geometry information and outputs it to the transmission processing unit 51005 in the form of a geometry bitstream.
  • the geometry encoder 51003 reconstructs geometry information based on positions changed through compression, and outputs the reconstructed (or decoded) geometry information to the attribute encoder 51004 .
  • the attribute encoder 51004 compresses attribute information based on positions for which geometry encoding has not been performed and/or reconstructed geometry information.
  • the attribute information may be coded by combining one or more of RAHT coding, LOD-based predictive transform coding, and lifting transform coding.
  • the attribute encoder 51004 performs entropy encoding on the compressed attribute information and outputs it to the transmission processing unit 51005 in the form of an attribute bitstream.
  • the signaling processing unit 51002 generates and/or processes signaling information (eg, parameters) necessary for encoding/decoding/rendering of geometry information and attribute information, etc., and transmits the geometry encoder 51003, the attribute encoder 51004, and/or transmission. It may be provided to the processing unit 51005 . Alternatively, the signaling processing unit 51002 may be provided with signaling information generated by the geometry encoder 51003 , the attribute encoder 51004 and/or the transmission processing unit 51005 . The signaling processing unit 51002 may provide information fed back from the receiving device (eg, head orientation information and/or viewport information to the geometry encoder 51003, the attribute encoder 51004 and/or the transmission processing unit 51005). have.
  • signaling information eg, parameters
  • signaling information may be signaled and transmitted in units of parameter sets (SPS: sequence parameter set, GPS: geometry parameter set, APS: attribute parameter set, TPS: Tile Parameter Set (or tile inventory), etc.). Also, it may be signaled and transmitted in units of coding units (or compression units or prediction units) of each image, such as slices or tiles.
  • SPS sequence parameter set
  • GPS geometry parameter set
  • APS attribute parameter set
  • TPS Tile Parameter Set (or tile inventory), etc.
  • coding units or compression units or prediction units
  • the method/apparatus according to the embodiments may signal related information to add/perform the operations of the embodiments.
  • the signaling information according to the embodiments may be used in a transmitting apparatus and/or a receiving apparatus.
  • the transmission processing unit 51005 may perform the same or similar operation and/or transmission method as the operation and/or transmission method of the transmission processing unit 12012 of FIG. 12 , the operation and/or the operation of the transmitter 1003 of FIG. 1 and/or The same or similar operation and/or transmission method as the transmission method may be performed.
  • the same or similar operation and/or transmission method as the transmission method may be performed.
  • the transmission processing unit 51005 converts the geometry bitstream output from the geometry encoder 51003, the attribute bitstream output from the attribute encoder 51004, and the signaling bitstream output from the signaling processing unit 51002 into one bitstream. It can be transmitted as it is after being multiplexed with . In this document, it is assumed that the file is in the ISOBMFF file format.
  • the file or segment may be transmitted to a receiving device or stored in a digital storage medium (eg, USB, SD, CD, DVD, Blu-ray, HDD, SSD, etc.).
  • the transmission processing unit 51005 may be capable of wired/wireless communication with a receiving device through a network such as 4G, 5G, 6G, or the like.
  • the transmission processing unit 51005 may perform a necessary data processing operation according to a network system (eg, a communication network system such as 4G, 5G, or 6G).
  • the transmission processing unit 51005 may transmit encapsulated data according to an on demand method.
  • the above-described compression-related information (or referred to as compression-related information) is SPS, GPS, APS and It may be transmitted while being included in a TPS and/or a geometry data unit (or referred to as a geometry slice bitstream).
  • FIG. 20 is a diagram illustrating an example of a detailed block diagram of a geometry encoder 51003 and an attribute encoder 51004 according to embodiments.
  • the elements of the geometry encoder shown in FIG. 20 may be implemented in hardware, software, a processor and/or a combination thereof.
  • the geometry encoder 51003 includes a coordinate transformation unit 53001, a quantization/sampling determination and processing unit 53002, a metadata generation and quantization unit 53003, an octree occupancy code generation unit 53004, and a surface It may include a model processing unit 53005 , an arithmetic coder 53006 , and a geometry reconstruction unit 53007 .
  • the attribute encoder 51004 includes a color transformation processing unit 55001, an attribute transformation processing unit 55002, a prediction/lifting/RAHT transformation processing unit 55003, a coefficient quantization processing unit 55004, and an arithmetic coder 55005. ) may be included.
  • the coordinate transformation unit 53002 may support coordinate system transformation of point cloud data, such as changing the xyz axis of input points or converting from an xyz rectangular coordinate system to a spherical coordinate system.
  • the quantization/sampling determination and processing unit 53002 may select whether to perform quantization or sampling on the positions of input points.
  • the metadata generation and quantization unit 53003 corrects the maximum depth level N to a geometric precision of level N-M in order to lossy compress the level. Points from N-M to N are quantized according to the quantization scale to position the modified leaf node at level N-M. In other words, by dividing level N-M by precision, all points from level N-M to level N are quantized to place the modified leaf node at level N-M.
  • the metadata generation and quantization unit 53003 when sampling is selected in the quantization/sampling determination and processing unit 53002, the metadata generation and quantization unit 53003 performs sampling at a maximum depth level N according to a sampling scale. That is, points are selected according to the sampling scale at level N.
  • the precision level ie, encoding precision
  • M additional data for levels N-M to N are transmitted as metadata.
  • the additional data is information (eg, octree_sampling_residual) for decoding N-M to N levels. That is, the additional data may mean a position difference value between the original point and the sampled point.
  • sampling is performed at leaf nodes, occupancies compression using octrees is performed up to level M, and information required at levels N to M is at least one of SPS, GPS, TPS, APS, or geometry slice header as metadata. It is transmitted by being included in the , or transmitted by being included in the geometry bitstream.
  • the position of each quantized point is the position of the point to which one or more original points are mapped (i.e., a position not in the original point cloud), and the position of each sampled point is that of one of the one or more original points. becomes the location.
  • information indicating the relationship between points of level N and points of level M is not signaled, whereas when sampling is performed, the relationship between points of level N and points of level M can be known.
  • the present information is signaled in the form of metadata. That is, since the octree compression encodes the occupancies form, when sampling is performed, the low-level (level N) occupancis are transmitted as metadata without being included in the compressed octree.
  • the octree occupancy code generation unit 53004 When quantization is performed by the metadata generation and quantization unit 53003, the octree occupancy code generation unit 53004 generates an octree structure using the quantized points, and the metadata generation and quantization unit 53003 uses the meta data generation and quantization unit 53003 to generate an octree structure.
  • an octree structure When data is generated, an octree structure is created using sampling points.
  • a leaf node of the generated octree structure (eg, level M in FIG. 19 ) is expressed as an occupanci code.
  • the octree occupancy code generator 53004 is the same as or similar to the operation and/or method of the point cloud video encoder (or the octree analyzer 40002 or the octree occupancy code generator 12003) described with reference to FIG. 4 or 12 . An action and/or a method may be performed.
  • the surface model processing unit 53005 may perform trisoop geometry encoding for reconstructing positions of points in a specific region (or node) based on a voxel based on a surface model.
  • the surface model processing unit 53005 operates the same as or similar to the operation and/or method of the point cloud video encoder (eg, the surface approxiation analysis unit 40003 or the surface model processing unit 12004) described with reference to FIG. 4 or 12 . and/or methods.
  • the arithmetic coder 53006 performs arithmetic coding (eg, entropy coding) on the output of the octree occupancy code generation unit 53004 and/or the surface model processing unit 53005 and outputs it in the form of a geometry bitstream.
  • arithmetic coder 53006 may entropy-code the occupancy code output from the octree occupanci code generator 53004 .
  • the point cloud video encoder can intra/intercode the occupanci code.
  • a receiving apparatus (or a point cloud video decoder) reconstructs an octree based on an occupanci code.
  • the geometry reconstructing unit 53007 reconstructs the geometry information based on the octree occupanci code generator 53004 . For example, if the octree structure is generated based on quantized points, the output of the geometry reconstruction unit 53007 becomes positions of points after quantization, and if the octree structure is generated based on sampled points, the geometry reconstruction unit The output of 53007 is the locations of the sampled points.
  • the output of the geometry reconstruction unit 53007 is provided to the attribute transformation processing unit 55002 and/or the prediction/lifting/RAHT transformation processing unit 55003 of the attribute encoder 51004 .
  • the color conversion processing unit 55001 of the attribute encoder 51004 performs color conversion coding for converting color values included in attributes of points output from the data input unit 51001 .
  • the color conversion processing unit 55001 may perform color conversion coding based on the reconstructed geometry. For example, the color conversion processing unit 55001 may convert the format of color information (eg, convert RGB to YCbCr).
  • the color conversion processing unit 55001 operates the same or similar to the operation and/or method of the point cloud video encoder (eg, the color conversion unit 40006 or the color conversion processing unit 12008) described with reference to FIG. 4 or 12 and/or method can be performed.
  • the attribute transformation processing unit 55002 performs recoloring or single recoloring (ie, omitting recoloring) based on positions and/or reconstructed geometry to which geometry encoding has not been performed.
  • the attribute transform processing unit 55002 performs recoloring or single recoloring.
  • recoloring is performed based on Equation 6, and single recoloring is performed based on Equation 7.
  • a plurality of neighboring points of a point input from the geometry reconstruction unit 53007 are searched based on a K-D tree or a Morton code, and an average value of the attributes of a plurality of searched neighboring points is inputted. It is set as an attribute of , and is output to the prediction/lifting/RAHT conversion processing unit 55003 .
  • an attribute of a representative point among a plurality of searched neighboring points is set as an attribute of an input point and output to the prediction/lifting/RAHT transformation processing unit 55003 .
  • the attribute transform processing unit 55002 performs single recoloring. That is, since the point input from the geometry reconstruction unit 53007 is an original point, the attribute of the input point is output to the prediction/lifting/RAHT conversion processing unit 55003 as it is.
  • the prediction/lifting/RAHT transform processing unit 55003 may code the attributes output from the attribute transformation processing unit 55002 in any one or a combination of RAHT coding, LOD-based predictive transform coding, and lifting transform coding.
  • the prediction/lifting/RAHT transformation processing unit 55003 includes the operations of the RAHT transformation unit 40008, the LOD generation unit 40009, and the lifting transformation unit 40010 described in FIG. 4 or the prediction/lifting/RAHT transformation processing unit of FIG. 12 ( 12010), at least one of the same or similar operations as the operation of FIG.
  • LOD-based predictive transform coding, lifting transform coding, and RAHT transform coding are the same as those described with reference to FIGS. 1 to 9 , a detailed description thereof will be omitted.
  • the attribute-coded attributes in the prediction/lifting/RAHT transform processing unit 55003 may be quantized based on the coefficients in the coefficient quantization unit 55004.
  • the arithmetic coder 55005 encodes the quantized attributes based on arithmetic coding and outputs them in the form of an attribute bitstream.
  • the geometry bitstream output from the arithmetic coder 53006 of the geometry encoder 51003 and the attribute bitstream output from the arithmetic coder 55005 of the attribute encoder 51004 are input to the transmission processing unit 51005 .
  • the transmission processing unit 51005 may perform the same or similar operation and/or transmission method as the operation and/or transmission method of the transmission processing unit 12012 of FIG. 12 , and The same or similar operation and/or transmission method as the operation and/or transmission method may be performed.
  • the same or similar operation and/or transmission method as the operation and/or transmission method may be performed.
  • FIG. 1 or FIG. 12 For a detailed description, reference will be made to the description of FIG. 1 or FIG. 12 and will be omitted herein.
  • the transmission processing unit 51005 receives the geometry bitstream output from the geometry encoder 51003, the attribute bitstream output from the attribute encoder 51004, and the signaling bitstream output from the signaling processing unit 51002. Each may be transmitted, or may be multiplexed into one bitstream and transmitted.
  • the transmission processing unit 51005 may encapsulate a bitstream into a file or segment (eg, a streaming segment) and then transmit it through various networks such as a broadcasting network and/or a broadband network.
  • a file or segment eg, a streaming segment
  • various networks such as a broadcasting network and/or a broadband network.
  • the signaling processing unit 51002 may generate and/or process signaling information and output it to the transmission processing unit 51005 in the form of a bitstream.
  • the signaling information generated and/or processed by the signaling processing unit 51002 is to be provided to the geometry encoder 51003, the attribute encoder 51004, and/or the transmission processing unit 51005 for geometry encoding, attribute encoding, and transmission processing.
  • the signaling processing unit 51002 may receive signaling information generated by the geometry encoder 51003 , the attribute encoder 51004 , and/or the transmission processing unit 51005 .
  • signaling information may be signaled and transmitted in units of parameter sets (SPS: sequence parameter set, GPS: geometry parameter set, APS: attribute parameter set, TPS: Tile parameter set, etc.). Also, it may be signaled and transmitted in units of coding units of each image, such as slices or tiles.
  • the signaling information may include compression-related information (or compression-related information) including metadata.
  • the signaling information is at the system level such as file format, DASH (dynamic adaptive streaming over HTTP), MMT (MPEG media transport), or HDMI (High Definition Multimedia Interface), Display Port, VESA (Video Electronics Standards Association), CTA, etc. It can also be defined at the wired interface of
  • the method/apparatus according to the embodiments may signal related information to add/perform the operations of the embodiments.
  • the signaling information according to the embodiments may be used in a transmitting apparatus and/or a receiving apparatus.
  • FIG. 21 is a diagram illustrating another example of a point cloud receiving apparatus according to embodiments.
  • the point cloud reception apparatus may include a reception processing unit 61001, a signaling processing unit 61002, a geometry decoder 61003, an attribute decoder 61004, and a post-processor 61005.
  • the geometry decoder 61003 and the attribute decoder 61004 may be referred to as point cloud video decoders.
  • the point cloud video decoder may be referred to as a PCC decoder, a PCC decoding unit, a point cloud decoder, a point cloud decoding unit, or the like.
  • the reception processing unit 61001 may receive one bitstream, or may each receive a geometry bitstream, an attribute bitstream, and a signaling bitstream.
  • the reception processing unit 61001 may decapsulate the received file and/or segment and output it as a bitstream.
  • the reception processing unit 61001 demultiplexes a geometry bitstream, an attribute bitstream, and/or a signaling bitstream from one bitstream, and demultiplexes the
  • the multiplexed signaling bitstream may be output to the signaling processing unit 61002
  • the geometry bitstream may be output to the geometry decoder 61003
  • the attribute bitstream may be output to the attribute decoder 61004 .
  • the reception processing unit 61001 When a geometry bitstream, an attribute bitstream, and/or a signaling bitstream are received (or decapsulated) respectively, the reception processing unit 61001 according to the embodiments transmits the signaling bitstream to the signaling processing unit 61002, the geometry bitstream is the geometry decoder 61003 , and the attribute bitstream may be transmitted to the attribute decoder 61004 .
  • the signaling processing unit 61002 parses and processes signaling information, for example, SPS, GPS, APS, TPS, metadata, etc., from the input signaling bitstream to a geometry decoder 61003, an attribute decoder 61004, It may be provided to the post-processing unit 61005 .
  • the signaling information included in the geometry slice header and/or the attribute slice header may also be parsed in advance by the signaling processing unit 61002 before decoding the corresponding slice data. That is, if the point cloud data is divided into tiles and/or slices at the transmitting side, since the TPS includes the number of slices included in each tile, the point cloud video decoder according to the embodiments may check the number of slices. and can quickly parse information for parallel decoding.
  • the point cloud video decoder may quickly parse the bitstream including the point cloud data by receiving the SPS having a reduced amount of data.
  • the receiving device may perform decoding of a corresponding tile as soon as it receives tiles, and may maximize decoding efficiency by performing decoding for each slice based on the GPS and APS included in the tile for each tile.
  • the geometry decoder 61003 may restore the geometry by performing the reverse process of the geometry encoder 51003 of FIG. 19 based on signaling information (eg, geometry-related parameters) with respect to the compressed geometry bitstream.
  • the geometry reconstructed (or reconstructed) by the geometry decoder 61003 is provided to the attribute decoder 61004 .
  • the attribute decoder 61004 performs the reverse process of the attribute encoder 51004 of FIG. 19 based on signaling information (eg, attribute-related parameters) and the reconstructed geometry for the compressed attribute bitstream to restore attributes have.
  • the geometry decoder 61003 and the attribute decoder 61004 perform geometry decoding and attribute decoding in units of tiles and/or slices. can
  • FIG. 22 is a detailed block diagram illustrating another example of a geometry decoder 61003 and an attribute decoder 61004 according to embodiments.
  • the geometry decoder 61003 includes an arithmetic decoder 63001, an occupanci code-based octree reconstruction processing unit 63002, a surface model processing unit 63003, a metadata reconstruction unit 63004, a geometry reconstruction unit 63005, and A coordinate system inverse transform unit 63006 may be included.
  • the arithmetic decoder 63001 may arithmetically decode the input geometry bitstream.
  • the occupancy code-based octree reconstruction processing unit 63002 may reconstruct the octree by obtaining an occupanci code from an arithmetic decoded geometry bitstream (or compression-related information obtained as a result of decoding).
  • the surface model processing unit 63003 may perform, when tri-soup geometry encoding is applied, tri-top geometry decoding and related geometry reconstruction (eg, triangle reconstruction, up-sampling, voxelization) based on the surface model method. .
  • the metadata reconstruction unit 63004 may reconstruct the metadata when the metadata generated when sampling is performed by the geometry encoder 51003 of the transmitting side is included in the geometry bitstream after arithmetic coding and received. Alternatively, metadata may be reconstructed based on compression-related information included in the signaling information.
  • the geometry reconstruction unit 63004 may regenerate the geometry based on the processed surface model and/or the reconstructed metadata.
  • the geometry reconstructed by the geometry reconstruction unit 63004 is output to the coordinate system inverse transformation unit 63006 and the prediction/lifting/RAHT transformation processing unit 65003 of the attribute decoder 61004 .
  • the coordinate system inverse transform unit 63006 may obtain positions (ie, position values) of points by transforming the coordinate system based on the restored geometry.
  • the positions obtained by the coordinate system inverse transformation unit 63006 of the geometry decoder 61003 are output to a post-processing unit 61005 .
  • compression-related information is included in at least one of a sequence parameter set (SPS), a geometry parameter set (GPS), an attribute parameter set (APS), a tile parameter set (TPS), and a geometry slice header If it is signaled, it may be obtained from the signaling processing unit 61002 and provided to the geometry decoder 61003 or may be directly obtained from the geometry decoder 61003 .
  • SPS sequence parameter set
  • GPS geometry parameter set
  • APS attribute parameter set
  • TPS tile parameter set
  • the attribute decoder 61004 includes an arithmetic decoder 65001, an inverse quantization processing unit 65002, a prediction/lifting/RAHT transformation processing unit 65003, an attribute reconstruction unit 65004, and a color inverse transformation processing unit 65005). may include
  • the arithmetic decoder 65001 may arithmetically decode the input attribute bitstream.
  • the arithmetic decoder 65001 performs the same or similar operation and/or decoding to the operation and/or decoding of the arithmetic decoder 11005 of FIG. 11 or the arithmetic decoder 13007 of FIG. 13 .
  • the inverse quantization processing unit 65002 inverse quantizes the arithmetic decoded attribute bitstream and outputs inverse quantized attributes (or attribute values). Inverse quantization may be selectively applied based on attribute encoding of the point cloud video encoder.
  • the prediction/lifting/RAHT transform processing unit 65003 uses any one or two or more of RAHT decoding, LOD-based prediction transform decoding technique, and lifting transform decoding technique based on the reconstructed geometry for the attributes output from the inverse quantization processing unit 65002 can be decoded by combining .
  • the attribute reconstruction unit 65004 reconstructs the attributes decoded by the prediction/lifting/RAHT transformation processing unit 65003.
  • the inverse color transformation processing unit 65005 performs inverse transformation coding for inverse transformation on color values (or textures) included in the reconstructed attributes, and outputs the inverse transformation coding to the post processing unit 61005 .
  • the color inverse transform processing unit 65005 performs the same or similar operation and/or inverse transform coding to the operation and/or inverse transform coding of the inverse color transform unit 11010 of FIG. 11 or the inverse color transform processing unit 13010 of FIG. 13 .
  • the post-processing unit 61005 may reconstruct the point cloud data by matching the positions restored and output by the geometry decoder 61003 with the attributes restored and output by the attribute decoder 61004. And the reconstructed point cloud data may be rendered through the display. Also, if the reconstructed point cloud data is in units of tiles and/or slices, the post-processing unit 61005 may perform the reverse process of spatial division of the transmitting side based on signaling information.
  • FIG. 23 shows an example of a bitstream structure of point cloud data for transmission/reception according to embodiments.
  • the signaling information may be used in a point cloud video encoder of a transmitting end or a point cloud video decoder of a receiving end.
  • the point cloud video encoder may generate a bitstream as shown in FIG. 23 by encoding the geometry information and the attribute information as described above.
  • the signaling information about the point cloud data may be generated and processed by at least one of a geometry encoder, an attribute encoder, and a signaling processor of the point cloud video encoder, and may be included in the bitstream.
  • the signaling information may be received/obtained from at least one of a geometry decoder, an attribute decoder, and a signaling processing unit of a point cloud video decoder.
  • a bitstream according to embodiments may be transmitted/received by being divided into a geometry bitstream, an attribute bitstream, and a signaling bitstream, or may be combined into one bitstream and transmitted/received.
  • the bitstream may include one or more sub-bitstreams.
  • the bitstream according to the embodiments includes a Sequence Parameter Set (SPS) for sequence-level signaling, a Geometry Parameter Set (GPS) for signaling of geometry information coding, and one or more Attribute Parameter Sets (APS) for signaling of attribute information coding, APS 0 , APS 1 ), a Tile Parameter Set (TPS) for tile-level signaling, and one or more slices (slice 0 to slice n) may be included.
  • SPS Sequence Parameter Set
  • GPS Geometry Parameter Set
  • APS Attribute Parameter Set
  • TPS Tile Parameter Set
  • slices slice 0 to slice n
  • a bitstream of point cloud data may include one or more tiles, and each tile may be a group of slices including one or more slices (slice 0 to slice n).
  • the TPS may include information about each tile (eg, coordinate value information and height/size information of a bounding box, etc.) for one or more tiles.
  • Each slice may include one geometry bitstream (Geom0) and one or more attribute bitstreams (Attr0, Attr1).
  • the first slice 0 may include one geometry bitstream Geom0 0 and one or more attribute bitstreams Attr0 0 and Attr1 0 .
  • a geometry bitstream (or referred to as a geometry slice) in each slice may include a geometry slice header (geom_slice_header) and geometry slice data (geom_slice_data).
  • the geometry bitstream in each slice is referred to as a geometry data unit
  • the geometry slice header is referred to as a geometry data unit header
  • the geometry slice data is also referred to as a geometry data unit data.
  • Each attribute bitstream in each slice may include an attribute slice header (attr_slice_header) and attribute slice data (attr_slice_data).
  • an attribute bitstream in each slice is called an attribute data unit
  • an attribute slice header is called an attribute data unit header
  • the attribute slice data is also called an attribute data unit data.
  • the transmitting apparatus transmits the point cloud data according to the structure of the bitstream as shown in FIG. 23, so that it is possible to apply different encoding operations according to importance, and to provide an encoding method with good quality in an important area.
  • Receiving apparatus by receiving the point cloud data according to the structure of the bitstream as shown in FIG. 23, using a complex decoding (filtering) method for the entire point cloud data according to the processing capacity (capacity) of the receiving apparatus Instead, different filtering (decoding methods) can be applied to each region (divided into tiles or slices). Accordingly, it is possible to provide better image quality to an area important to the user and ensure adequate latency on the system.
  • the tile or slice is provided so that the point cloud data can be divided into regions and processed. And, when dividing the point cloud data by region, by setting the option to create a different set of neighboring points for each region, a low complexity but somewhat low reliability or conversely high complexity but high reliability selection method can be provided. have.
  • At least one of SPS, GPS, TPS, APS, and a geometry slice header may include compression-related information (or referred to as compression-related information).
  • signals may have different meanings depending on the location where they are transmitted.
  • signals eg, compression-related information
  • it may indicate that it is applied to attribute restoration
  • TPS it may indicate that the corresponding signaling is applied only to points within a tile
  • signaling is applied only to the corresponding slice.
  • the fields defined below or referred to as syntax elements
  • they may be transmitted through a parameter set of a higher concept.
  • whether or not to perform recoloring for attribute compression according to the reconstructed geometry information may be signaled to the compression-related information.
  • whether single recoloring is performed may be signaled in the compression-related information according to the generation of the Morton code, the distribution of geometric attribute values, the similarity of the attribute values of neighboring nodes, and the distribution of DC coefficients.
  • a field which is a term used in syntaxes of the present specification to be described later, may have the same meaning as a parameter or an element.
  • SPS sequence parameter set
  • the SPS may include sequence information of the point cloud data bitstream, and in particular, an example including option information related to neighboring point selection is shown.
  • the SPS may include a profile_idc field, a profile_compatibility_flags field, a level_idc field, a sps_bounding_box_present_flag field, a sps_source_scale_factor field, a sps_seq_parameter_set_id field, a sps_num_attribute_sets field, and a sps_extension_present_flag field.
  • the profile_idc field indicates a profile to which the bitstream conforms.
  • the value of the profile_compatibility_flags field is 1, it may indicate that the bitstream conforms to the profile indicated by profile_idc (the bitstream conforms to the profile indicated by profile_idc).
  • the level_idc field indicates a level to which the bitstream follows.
  • the sps_bounding_box_present_flag field indicates whether source bounding box information is signaled to the SPS.
  • the source bounding box information may include source bounding box offset and size information. For example, if the value of the sps_bounding_box_present_flag field is 1, it indicates that source bounding box information is signaled to the SPS, and if 0, it is not signaled.
  • the sps_source_scale_factor field indicates the scale factor of the source point cloud.
  • the sps_seq_parameter_set_id field provides an identifier for the SPS referenced by other syntax elements (provides an identifier for the SPS for reference by other syntax elements).
  • the sps_num_attribute_sets field indicates the number of coded attributes in the bitstream.
  • the sps_extension_present_flag field indicates whether the sps_extension_data syntax structure exists in the corresponding SPS syntax structure. For example, if the value of the sps_extension_present_flag field is 1, it indicates that the sps_extension_data syntax structure exists in this SPS syntax structure, and if 0, it does not exist (equal to 1 specifies that the sps_extension_data syntax structure is present in the SPS syntax structure. The sps_extension_present_flag field equal to 0 specifies that this syntax structure is not present.
  • SPS may further include sps_bounding_box_offset_x field, sps_bounding_box_offset_y field, sps_bounding_box_offset_z field, sps_bounding_box_scale_factor field, sps_bounding_box_size_size_depth_factor field, sps_bounding_box_size_size_depth_factor field, sps_bounding_box_size_size_depth_size field, sps_bounding_box_size_size_depth field when the value of the sps_bounding_box_present_flag field is 1 according to embodiments.
  • the sps_bounding_box_offset_x field indicates an x offset of a source bounding box in Cartesian coordinates. If the x offset of the source bounding box does not exist, the value of the sps_bounding_box_offset_x field is 0.
  • the sps_bounding_box_offset_y field indicates a y offset of a source bounding box in a Cartesian coordinate system. If the y offset of the source bounding box does not exist, the value of the sps_bounding_box_offset_y field is 0.
  • the sps_bounding_box_offset_z field indicates the z offset of the source bounding box in the Cartesian coordinate system. If the z offset of the source bounding box does not exist, the value of the sps_bounding_box_offset_z field is 0.
  • the sps_bounding_box_scale_factor field indicates a scale factor of a source bounding box in a Cartesian coordinate system. If the scale factor of the source bounding box does not exist, the value of the sps_bounding_box_scale_factor field may be 1.
  • the sps_bounding_box_size_width field indicates the width of the source bounding box in the Cartesian coordinate system. If the width of the source bounding box does not exist, the value of the sps_bounding_box_size_width field may be 1.
  • the sps_bounding_box_size_height field indicates the height of the source bounding box in the Cartesian coordinate system. If the height of the source bounding box does not exist, the value of the sps_bounding_box_size_height field may be 1.
  • the sps_bounding_box_size_depth field indicates the depth of the source bounding box in the Cartesian coordinate system. When the depth of the source bounding box does not exist, the value of the sps_bounding_box_size_depth field may be 1.
  • the SPS according to the embodiments includes a loop that is repeated as much as the value of the sps_num_attribute_sets field. In this case, it is assumed that i is initialized to 0, is increased by 1 each time the loop is executed, and the loop is repeated until the value of i becomes the value of the sps_num_attribute_sets field.
  • This loop contains the attribute_dimension[i] field, the attribute_instance_id[i] field, the attribute_bitdepth[i] field, the attribute_cicp_colour_primaries[i] field, the attribute_cicp_transfer_characteristics[i] field, the attribute_cicp_matrix_coeffs[i] field, the attribute_cicp_video_full_range_the field, It can contain fields.
  • the attribute_dimension[i] field specifies the number of components of the i-th attribute.
  • the attribute_instance_id[i] field indicates an instance identifier of the i-th attribute.
  • the attribute_bitdepth[i] field indicates the bitdepth of the i-th attribute signal(s) (specifies the bitdepth of the i-th attribute signal(s)).
  • the attribute_cicp_colour_primaries[i] field indicates chromaticity coordinates of color attribute source primaries of the i-th attribute.
  • the attribute_cicp_transfer_characteristics[i] field is a reference opto-electronic transfer characteristic as a source input linear optical intensity having a nominal real-valued range between 0 and 1 of the i-th attribute. function or the inverse of the reference opto-electronic transfer characteristic function as a function of output linear optical intensity. (either indicates the reference opto-electronic transfer characteristic function of the color attribute as a function of a source input linear optical intensity with a nominal real-valued range of 0 to 1 or indicates the inverse of the reference electro-optical transfer characteristic function as a function of an output linear optical intensity.)
  • the attribute_cicp_matrix_coeffs[i] field describes a matrix coefficient used for deriving luma and chroma signals from green, blue, and red (or the three primary colors of Y, Z, and X) of the i-th attribute. (describes the matrix coefficients used in deriving luma and chroma signals from the green, blue, and red, or Y, Z, and X primaries.)
  • the attribute_cicp_video_full_range_flag[i] field is a black level, luma, and chroma signal derived from E'Y, E'PB and E'PR or E'R, E'G and E'B real-value component signals of the i-th attribute. indicates the range of
  • the known_attribute_label_flag[i] field indicates whether a known_attribute_label field or an attribute_label_four_bytes field is signaled for the i-th attribute. For example, when the value of the known_attribute_label_flag[i] field is 1, it indicates that the known_attribute_label field is signaled for the i-th attribute, and when the value of the known_attribute_label_flag[i] field is 1, it indicates that the attribute_label_four_bytes field is signaled for the i-th attribute. .
  • the known_attribute_label[i] field indicates an attribute type. For example, if the value of the known_attribute_label[i] field is 0, it indicates that the i-th attribute is color. If the value of the known_attribute_label[i] field is 1, it indicates that the i-th attribute is reflectance, and the known_attribute_label[i] field If the value of is 1, it may indicate that the i-th attribute is a frame index.
  • the attribute_label_four_bytes field indicates a known attribute type with a 4-byte code.
  • a value of the attribute_label_four_bytes field may indicate a color of 0, and a reflectance of 1 may indicate a value of the attribute_label_four_bytes field.
  • the SPS according to embodiments may further include a sps_extension_data_flag field when the value of the sps_extension_present_flag field is 1.
  • the sps_extension_data_flag field may have any value.
  • SPS sequence parameter set
  • the SPS may include a recoloring_skip_flag field, an octree_sampling_location field, a sampling_point_num field, and a reconstructed_geometry_use_flag field.
  • the recoloring_skip_flag field may indicate whether recoloring is skipped. For example, if the value of the recoloring_skip_flag field is true, single recoloring (ie, recoloring skip) is performed, and if false, it may indicate that recoloring is performed.
  • the octree_sampling_location field may indicate the location of a point after quantization when a quantization value is used for octree coding. That is, a position (0,0,0) to (1,1,1) or a central position (0.5, 0.5, 0.5) may be indicated as a position to be used in octree quantization within a cubic block as shown in FIG. 16 .
  • the quantization position is (0,0,0) position
  • 0001 is (0,0,1) position
  • ... ., 0111 can represent the (1,1,1) position
  • 1000 can represent the (0.5, 0.5, 0.5) center position.
  • the sampling_point_num field indicates the number of sampled points. Referring to FIG. 18 as an example, the number of points sampled in level N corresponds to the total number of points in level M.
  • the reconstructed_geometry_use_flag field indicates whether to use a geometry value reconstructed by single recoloring for attribute information. For example, if the value of the reconstructed_geometry_use_flag field is true, it may indicate that a geometry value reconstructed by single recoloring is used for attribute information, and if false, it may indicate that a geometry value reconstructed by existing recoloring is used for attribute information.
  • the SPS may include metadata_data_unit().
  • the SPS does not include metadata_data_unit( ), but may include a loop that is repeated by the value of the sampling_point_num field instead.
  • i is initialized to 0, is increased by 1 each time the loop is executed, and the loop is repeated until the value of i becomes the value of the sampling_point_num field.
  • This loop may include the octree_sampling_residual [i][3] field. This loop may be located after the sampling_point_num field.
  • the octree_sampling_residual [i][3] field indicates a position difference value between the i-th sampling point and the original point.
  • the position difference value may be expressed in the form of xyz.
  • x-x', y-y', and z-z' values may be represented as much as the number of sampled points.
  • xyz represents the position value of the original point
  • x'y'z' represents the position value of the sampling point.
  • 26 is a diagram illustrating an example of a syntax structure of metadata_data_unit() according to embodiments.
  • metadata_data_unit() may include a repeating statement that is repeated as much as the value of the sampling_point_num field. In this case, it is assumed that i is initialized to 0, is increased by 1 each time the loop is executed, and the loop is repeated until the value of i becomes the value of the sampling_point_num field. This loop may include the octree_sampling_residual [i][3] field.
  • the octree_sampling_residual [i][3] field indicates a position difference value between the i-th sampling point and the original point.
  • the position difference value may be expressed in the form of xyz.
  • x-x', y-y', and z-z' values may be represented as much as the number of sampled points.
  • xyz represents the position value of the original point
  • x'y'z' represents the position value of the sampling point.
  • sampling_point_num field may be included in metadata_data_unit().
  • metadata_data_unit( ) may exist in each parameter set or may exist as a single data unit.
  • the difference between the sampled octree and the position value of the original point cloud may be transmitted as metadata, or a value substituted with the calculation formula of the embodiment may be transmitted in the form of a bitstream using arithmetic coding.
  • metadata_data_unit( ) is also referred to as sampling related information. That is, the sampling related information may be transmitted by being included in at least one of SPS, GPS, APS, TPS, and a geometry slice header, or may be transmitted while being included in a geometry bitstream.
  • the compression-related information of FIG. 25 may be included in any location of the SPS of FIG. 24 .
  • FIG. 27 is a diagram illustrating an embodiment of a syntax structure of a geometry parameter set (geometry_parameter_set()) (GPS) according to the present specification.
  • the gps_geom_parameter_set_id field provides an identifier of the GPS referenced by other syntax elements (provides an identifier for the GPS for reference by other syntax elements).
  • the gps_seq_parameter_set_id field indicates the value of the seq_parameter_set_id field for the corresponding active SPS (specifies the value of sps_seq_parameter_set_id for the active SPS).
  • the gps_box_present_flag field indicates whether additional bounding box information is provided in a geometry slice header referring to the current GPS. For example, if the value of the gps_box_present_flag field is 1, it may indicate that additional bounding box information is provided in a geometry header referring to the current GPS. Accordingly, when the value of the gps_box_present_flag field is 1, the GPS may further include a gps_gsh_box_log2_scale_present_flag field.
  • the gps_gsh_box_log2_scale_present_flag field indicates whether the gps_gsh_box_log2_scale field is signaled in each geometry slice header referring to the current GPS. For example, if the value of the gps_gsh_box_log2_scale_present_flag field is 1, it may indicate that the gps_gsh_box_log2_scale field is signaled in each geometry slice header referring to the current GPS.
  • the gps_gsh_box_log2_scale_present_flag field is 0, the gps_gsh_box_log2_scale field is not signaled in each geometry slice header referring to the current GPS, and a common scale for all slices is signaled in the gps_gsh_box_log2_scale field of the current GPS. can do.
  • the GPS may further include a gps_gsh_box_log2_scale field.
  • the gps_gsh_box_log2_scale field indicates a common scale factor of a bounding box origin for all slices currently referring to GPS.
  • the unique_geometry_points_flag field indicates whether all output points have unique positions. For example, if the value of the unique_geometry_points_flag field is 1, it indicates that all output points have unique positions. When the value of the unique_geometry_points_flag field is 0, equal to 1 indicates that all output points have unique positions. unique_geometry_points_flag field equal to 0 indicates that the output points may have same positions).
  • the neighbor_context_restriction_flag field indicates contexts used by octree occupancy coding. For example, if the value of the neighbor_context_restriction_flag field is 0, it indicates that octre occupancy coding uses contexts determined based on six neighboring parent nodes. If the value of the neighbor_context_restriction_flag field is 1, it indicates that octree occupancy coding uses contexts determined based only on sibling nodes (equal to 0 indicates that octree occupancy coding uses contexts determined from six neighbouring parent nodes. neighbor_context_restriction_flag field equal to 1 indicates that octree occupancy coding uses contexts determined from sibling nodes only.).
  • the inferred_direct_coding_mode_enabled_flag field indicates whether a direct_mode_flag field exists in a corresponding geometry node syntax. For example, if the value of the inferred_direct_coding_mode_enabled_flag field is 1, it indicates that the direct_mode_flag field is present in the corresponding geometry node syntax. For example, if the value of the inferred_direct_coding_mode_enabled_flag field is 0, it indicates that the direct_mode_flag field does not exist in the corresponding geometry node syntax.
  • the bitwise_occupancy_coding_flag field indicates whether the geometry node occupancy is encoded using bitwise contextualization of the syntax element occupancy map. For example, if the value of the bitwise_occupancy_coding_flag field is 1, it indicates that the geometry node occupancy_map is encoded using bitwise contextualization of the syntax element occupancy_map. For example, if the value of the bitwise_occupancy_coding_flag field is 0, it indicates that the geometry node occupancy_byte is encoded using the directory-encoded syntax element occupancy_byte.
  • the adjacent_child_contextualization_enabled_flag field indicates whether adjacent children of neighboring octree nodes are used for bitwise occupancy contextualization. For example, if the value of the adjacent_child_contextualization_enabled_flag field is 1, it indicates that adjacent children of neighboring octree nodes are used for bitwise occupancy contextualization. For example, if the value of the adjacent_child_contextualization_enabled_flag field is 0, it indicates that children of neighboring octree nodes are not used for bitwise occupancy contextualization.
  • the log2_neighbour_avail_boundary field indicates the value of the variable NeighbAvailBoundary that is used in the decoding process as follows: (Specifies the value of the variable NeighbAvailBoundary that is used in the decoding process as follows: ).
  • NeighbAvailBoundary 2 log2_neighbour_avail_boundary
  • NeighbAvailabilityMask may be set to 1. For example, if the value of the neighbor_context_restriction_flag field is 0, NeighbAvailabilityMask may be set to 1 ⁇ log2_neighbour_avail_boundary.
  • the log2_intra_pred_max_node_size field indicates the octree nodesize eligible for occupancy intra prediction.
  • the log2_trisoup_node_size field indicates a variable TrisoupNodeSize as the size of triangle nodes determined as follows (specifies the variable TrisoupNodeSize as the size of the triangle nodes as follows).
  • TrisoupNodeSize 1 ⁇ log2_trisoup_node_size
  • the gps_extension_present_flag field indicates whether a gps_extension_data syntax structure exists in the corresponding GPS syntax. For example, if the value of the gps_extension_present_flag field is 1, it indicates that the gps_extension_data syntax structure exists in the corresponding GPS syntax. For example, if the value of the gps_extension_present_flag field is 0, it indicates that the gps_extension_data syntax structure does not exist in the corresponding GPS syntax.
  • GPS according to embodiments may further include a gps_extension_data_flag field when the value of the gps_extension_present_flag field is 1.
  • the gps_extension_data_flag field may have any value. Its presence and value do not affect decoder conformance to profiles.
  • FIG. 28 is a diagram illustrating an embodiment of a syntax structure of a geometry parameter set (geometry_parameter_set( )) (GPS) including compression-related information according to an embodiment.
  • the name of the signaling information may be understood within the scope of the meaning and function of the signaling information.
  • the GPS may include a recoloring_skip_flag field, an octree_sampling_location field, a sampling_point_num field, and a reconstructed_geometry_use_flag field.
  • the GPS does not include metadata_data_unit(), but instead includes a loop that is repeated as much as the value of the sampling_point_num field.
  • i is initialized to 0, is increased by 1 each time the loop is executed, and the loop is repeated until the value of i becomes the value of the sampling_point_num field.
  • This loop may include the octree_sampling_residual [i][3] field. This loop may be located after the sampling_point_num field.
  • the octree_sampling_residual [i][3] field indicates a position difference value between the i-th sampling point and the original point.
  • the position difference value may be expressed in the form of xyz.
  • x-x', y-y', and z-z' values may be represented as much as the number of sampled points.
  • xyz represents the position value of the original point
  • x'y'z' represents the position value of the sampling point.
  • the compression-related information of FIG. 28 may be included in any location of the GPS of FIG. 27 .
  • TPS 29 is a diagram illustrating an embodiment of a syntax structure of a tile parameter set (tile_parameter_set()) (TPS) according to the present specification.
  • a tile parameter set (TPS) may be referred to as a tile inventory.
  • the TPS according to the embodiments includes information related to each tile for each tile.
  • the TPS includes a num_tiles field.
  • the num_tiles field indicates the number of tiles signaled for the bitstream. If there are no tiles, the value of the num_tiles field will be 0 (when not present, num_tiles is inferred to be 0).
  • the TPS includes a loop that is repeated as much as the value of the num_tiles field.
  • i is initialized to 0, is increased by 1 each time the loop is executed, and the loop is repeated until the value of i becomes the value of the num_tiles field.
  • This loop may include a tile_bounding_box_offset_x[i] field, a tile_bounding_box_offset_y[i] field, a tile_bounding_box_offset_z[i] field, a tile_bounding_box_size_width[i] field, a tile_bounding_box_size_height[i] field, and a tile_size_bounding_box field.
  • the tile_bounding_box_offset_x[i] field indicates the x offset of the i-th tile in the Cartesian coordinate system (indicates the x offset of the i-th tile in the cartesian coordinates).
  • the tile_bounding_box_offset_y[i] field indicates the y offset of the i-th tile in the Cartesian coordinate system.
  • the tile_bounding_box_offset_z[i] field indicates the z offset of the i-th tile in the Cartesian coordinate system.
  • the tile_bounding_box_size_width[i] field indicates the width of the i-th tile in the Cartesian coordinate system.
  • the tile_bounding_box_size_height[i] field indicates the height of the i-th tile in the Cartesian coordinate system.
  • the tile_bounding_box_size_depth[i] field indicates the depth of the i-th tile in the Cartesian coordinate system.
  • TPS tile parameter set
  • TPS tile parameter set
  • the name of the signaling information may be understood within the scope of the meaning and function of the signaling information.
  • the TPS may include a recoloring_skip_flag field, an octree_sampling_location field, a sampling_point_num field, and a reconstructed_geometry_use_flag field.
  • the TPS may not include metadata_data_unit(), but instead may include a loop that is repeated as much as the value of the sampling_point_num field.
  • i is initialized to 0, is increased by 1 each time the loop is executed, and the loop is repeated until the value of i becomes the value of the sampling_point_num field.
  • This loop may include the octree_sampling_residual [i][3] field. This loop may be located after the sampling_point_num field.
  • the octree_sampling_residual [i][3] field indicates a position difference value between the i-th sampling point and the original point.
  • the position difference value may be expressed in the form of xyz.
  • x-x', y-y', and z-z' values may be represented as much as the number of sampled points.
  • xyz represents the position value of the original point
  • x'y'z' represents the position value of the sampling point.
  • the compression-related information of FIG. 30 may be included in any location of the TPS of FIG. 29 .
  • FIG. 31 is a diagram illustrating an embodiment of a syntax structure of an attribute parameter set (attribute_parameter_set()) (APS) according to the present specification.
  • the APS may include information on a method of encoding attribute information of point cloud data included in one or more slices.
  • the APS may include an aps_attr_parameter_set_id field, aps_seq_parameter_set_id field, attr_coding_type field, aps_attr_initial_qp field, aps_attr_chroma_qp_offset field, aps_slice_qp_delta_present_flag field, and aps_extension_extension_extension_extension_extension_extension_extension field.
  • the aps_attr_parameter_set_id field indicates an identifier of an APS for reference by other syntax elements.
  • the aps_seq_parameter_set_id field indicates a value of sps_seq_parameter_set_id for an active SPS.
  • the attr_coding_type field indicates a coding type for an attribute.
  • the coding type may indicate predicting weight lifting, if 1, the coding type may indicate RAHT, and if 2, it may indicate fixed weight lifting. .
  • the aps_attr_initial_qp field indicates the initial value of the variable slice quantization parameter (SliceQp) for each slice referring to the APS (specifies the initial value of the variable SliceQp for each slice referring to the APS).
  • the aps_attr_chroma_qp_offset field indicates the offsets to the initial quantization parameter signaled by the syntax aps_attr_initial_qp (aps_attr_initial_qp).
  • the aps_slice_qp_delta_present_flag field indicates whether the ash_attr_qp_delta_luma and ash_attr_qp_delta_chroma syntax elements are present in the corresponding attribute slice header (ASH).
  • aps_slice_qp_delta_present_flag field indicates that the ash_attr_qp_delta_luma and ash_attr_qp_delta_chroma syntax elements are present in the corresponding attribute slice header (ASH) (equal to 1 specifies that the ash_qp_delta_present and the chroma elements are equal to 1 specifies that the ash_qattr_qp_delta syntax) .
  • aps_slice_qp_delta_present_flag field 0
  • the value of the attr_coding_type field is 0 or 2
  • lifting_num_pred_nearest_neighbors_minus1 field, lifting_search_range_minus1 field, and a lifting_neighbor_bias[k] field may be further included.
  • the lifting_num_pred_nearest_neighbors_minus1 field plus 1 indicates the maximum number of nearest neighbors to be used for prediction. According to embodiments, the value of NumPredNearestNeighbours is set equal to lifting_num_pred_nearest_neighbours.
  • the lifting_search_range_minus1 field plus 1 indicates a search range used to determine nearest neighbors to be used for prediction and to build distance-based levels of detail (LOD) (lifting_search_range_minus1 plus 1 specifies the search range used to determine nearest neighbors to be used for prediction and to build distance-based levels of detail).
  • the lifting_neighbor_bias[k] field specifies a bias used to weight the k-th components in the calculation of the Euclidean distance between two points as part of the nearest neighbor derivation process. components in the calculation of the euclidean distance between two points as part of the nearest neighbor derivation process).
  • the APS may further include a lifting_scalability_enabled_flag field when the value of the attr_coding_type field is 2, that is, when the coding type indicates fixed weight lifting.
  • the lifting_scalability_enabled_flag field indicates whether the attribute decoding process allows the pruned octree decode result for input geometry points. For example, if the value of the lifting_scalability_enabled_flag field is 1, it indicates that the attribute decoding process allows the pruned octree decode result for the input geometry points. ). If the value of the lifting_scalability_enabled_flag field is 0, it indicates that the attribute decoding process requires the complete octree decode result for the input geometry points.
  • the APS may further include a lifting_num_detail_levels_minus1 field when the value of the lifting_scalability_enabled_flag field is false.
  • the lifting_num_detail_levels_minus1 field indicates the number of LODs for attribute coding (specifies the number of levels of detail for the attribute coding).
  • the APS may further include a lifting_lod_regular_sampling_enabled_flag field.
  • the lifting_lod_regular_sampling_enabled_flag field indicates whether levels of detail (LODs) are created by the regular sampling strategy. For example, if the value of the lifting_lod_regular_sampling_enabled_flag field is 1, it indicates that the LOD is created using the regular sampling strategy. For example, if the value of the lifting_lod_regular_sampling_enabled_flag field is 0, it indicates that a distance_based sampling strategy is used instead (The lifting_lod_regular_sampling_enabled_flag equal to 1 specifies levels of detail are built by using a regular sampling strategy. to 0 specifies that a distance-based sampling strategy is used instead).
  • LODs levels of detail
  • the APS may further include a repetition statement that is repeated as much as the value of the lifting_num_detail_levels_minus1 field.
  • the index idx is initialized to 0, increases by 1 each time the loop is executed, and the loop is repeated until the index idx becomes larger than the value of the lifting_num_detail_levels_minus1 field.
  • the lifting_sampling_period_minus2 [idx] field plus 2 indicates the sampling period for the LOD idx (specifies the sampling period for the level of detail idx).
  • the lifting_sampling_distance_squared_scale_minu1 [idx] field plus 1 specifies the scale factor for the derivation of the square of the sampling distance for the level of detail idx ).
  • the lifting_sampling_distance_squared_offset [idx] field indicates an offset for derivation of the square of the sampling distance for the LOD idx (specifies the offset of the derivation of the square of the sampling distance for the level of detail idx).
  • the APS according to the embodiments may further include a lifting_adaptive_prediction_threshold field, a lifting_intra_lod_prediction_num_layers field, a lifting_max_num_direct_predictors field, and an inter_component_prediction_enabled_flag field when the value of the attr_coding_type field is 0, that is, when the coding type is predicting weight lifting.
  • the lifting_adaptive_prediction_threshold field specifies the threshold to enable adaptive prediction.
  • the lifting_intra_lod_prediction_num_layers field specifies the number of LOD layer where decoded points in the same LOD layer could be referred to generate prediction value of target point). For example, if the value of the lifting_intra_lod_prediction_num_layers field is the value of the LevelDetailCount, it indicates that the target point can refer to decoded points in the same LOD layer for all LOD layers (The lifting_intra_lod_prediction_num_layers field equal to LevelDetailCount indicates that target point could refer decoded points in the same LOD layer for all LOD layers).
  • the lifting_intra_lod_prediction_num_layers field indicates that the target point cannot refer to decoded points in the same LOD layer for arbitrary LOD layers.
  • the lifting_intra_lod_prediction_num_layers field indicates that target point could not refer decoded points in the same LoD layer for any LoD layers.
  • the lifting_max_num_direct_predictors field indicates the maximum number of predictors to be used for direct prediction. The value of the lifting_max_num_direct_predictors field is in the range of 0 to LevelDetailCount.
  • the inter_component_prediction_enabled_flag field indicates whether a primary component of a multi-component attribute is used to predict reconstructed values of non-primary components. For example, if the value of the inter_component_prediction_enabled_flag field is 1, it indicates that the primary component of the multi-component attribute is used to predict the reconstructed values of non-primary components (specifies that the primary component of a multi component attribute is used to predict the reconstructed value of non-primary components). If the value of the inter_component_prediction_enabled_flag field is 0, it indicates that all attribute components are reconstructed independently (specifies that all attribute components are reconstructed independently).
  • the APS may further include a raht_prediction_enabled_flag field when the value of the attr_coding_type field is 1, that is, when the attribute coding type is RAHT.
  • the raht_prediction_enabled_flag field indicates whether transform weight prediction from the neighbor points is enabled in the RAHT decoding process. For example, if the value of the raht_prediction_enabled_flag field is 1, it indicates that transform weight prediction from the neighbor points is enabled in the RAHT decoding process, and if 0, it is disabled.
  • the APS may further include a raht_prediction_threshold0 field and a raht_prediction_threshold1 field.
  • the raht_prediction_threshold0 field indicates a threshold value for terminating transform weight prediction from the neighbor points.
  • the raht_prediction_threshold1 field indicates a threshold value for skipping transform weight prediction from the neighbor points.
  • the aps_extension_flag field indicates whether the aps_extension_data syntax structure exists in the corresponding APS syntax structure. For example, if the value of the aps_extension_flag field is 1, it indicates that the aps_extension_data syntax structure exists in the corresponding APS syntax structure. For example, if the value of the aps_extension_flag field is 0, it indicates that the aps_extension_data syntax structure does not exist in the corresponding APS syntax structure.
  • the APS according to embodiments may further include an aps_extension_data_flag field when the value of the aps_extension_flag field is 1.
  • the aps_extension_data_flag field may have any value. Its presence and value do not affect decoder conformance to profiles.
  • the APS according to embodiments may further include information related to LoD-based attribute compression.
  • FIG. 32 is a diagram illustrating an embodiment of a syntax structure of an attribute parameter set (attribute_parameter_set()) (APS) including compression-related information according to an embodiment.
  • the name of the signaling information may be understood within the scope of the meaning and function of the signaling information.
  • the APS may include a recoloring_skip_flag field, an octree_sampling_location field, a sampling_point_num field, and a reconstructed_geometry_use_flag field.
  • the APS may not include metadata_data_unit( ) but instead include a loop that is repeated as much as the value of the sampling_point_num field.
  • i is initialized to 0, is increased by 1 each time the loop is executed, and the loop is repeated until the value of i becomes the value of the sampling_point_num field.
  • This loop may include the octree_sampling_residual [i][3] field. This loop may be located after the sampling_point_num field.
  • the octree_sampling_residual [i][3] field indicates a position difference value between the i-th sampling point and the original point.
  • the position difference value may be expressed in the form of xyz.
  • x-x', y-y', and z-z' values may be represented as much as the number of sampled points.
  • xyz represents the position value of the original point
  • x'y'z' represents the position value of the sampling point.
  • the compression-related information of FIG. 32 may be included in any location of the APS of FIG. 31 .
  • 33 is a diagram illustrating an embodiment of a syntax structure of a geometry slice bitstream () according to the present specification.
  • a geometry slice bitstream (geometry_slice_bitstream ()) may include a geometry slice header (geometry_slice_header()) and geometry slice data (geometry_slice_data()).
  • 34 is a diagram illustrating an embodiment of a syntax structure of a geometry slice header (geometry_slice_header()) according to the present specification.
  • a bitstream transmitted by a transmitting device may include one or more slices.
  • Each slice may include a geometry slice and an attribute slice.
  • the geometry slice includes a geometry slice header (GSH).
  • the attribute slice includes an attribute slice header (ASH, Attribute Slice Header).
  • the geometry slice header (geometry_slice_header( )) may include a gsh_geom_parameter_set_id field, a gsh_tile_id field, a gsh_slice_id field, a gsh_max_node_size_log2 field, a gsh_num_points field, and a byte_alignment( ) field.
  • the value of the gps_box_present_flag field included in the geometry parameter set (GPS) is true (eg, 1)
  • the value of the gps_gsh_box_log2_scale_present_flag field is true (eg, 1)
  • it may further include a gsh_box_log2_scale field, a gsh_box_origin_x field, a gsh_box_origin_y field, and a gsh_box_origin_z field.
  • the gsh_geom_parameter_set_id field indicates a value of gps_geom_parameter_set_id of the active GPS (specifies the value of the gps_geom_parameter_set_id of the active GPS).
  • the gsh_tile_id field indicates an identifier of a corresponding tile referenced by a corresponding geometry slice header (GSH).
  • the gsh_slice_id indicates an identifier of a corresponding slice for reference by other syntax elements.
  • the gsh_box_log2_scale field indicates a scaling factor of a bounding box origin for a corresponding slice.
  • the gsh_box_origin_x field indicates the x value of the bounding box origin scaled by the value of the gsh_box_log2_scale field.
  • the gsh_box_origin_y field indicates a y value of the bounding box origin scaled by the value of the gsh_box_log2_scale field.
  • the gsh_box_origin_z field indicates the z value of the bounding box origin scaled by the value of the gsh_box_log2_scale field.
  • the gsh_max_node_size_log2 field indicates the size of the root geometry octree node.
  • the gsh_points_number field indicates the number of coded points in a corresponding slice.
  • 35 is a diagram illustrating an embodiment of a syntax structure of a geometry slice header (geometry_slice_header( )) including compression-related information according to embodiments.
  • the name of the signaling information may be understood within the scope of the meaning and function of the signaling information.
  • the geometry slice header may include a recoloring_skip_flag field, an octree_sampling_location field, a sampling_point_num field, and a reconstructed_geometry_use_flag field.
  • the geometry slice header may not include metadata_data_unit(), but instead may include a loop that is repeated as much as the value of the sampling_point_num field.
  • i is initialized to 0, is increased by 1 each time the loop is executed, and the loop is repeated until the value of i becomes the value of the sampling_point_num field.
  • This loop may include the octree_sampling_residual [i][3] field. This loop may be located after the sampling_point_num field.
  • the octree_sampling_residual [i][3] field indicates a position difference value between the i-th sampling point and the original point.
  • the position difference value may be expressed in the form of xyz.
  • x-x', y-y', and z-z' values may be represented as much as the number of sampled points.
  • xyz represents the position value of the original point
  • x'y'z' represents the position value of the sampling point.
  • the compression-related information of FIG. 35 may be included in an arbitrary position of the geometry slice header of FIG. 34 .
  • 36 is a diagram illustrating an embodiment of a syntax structure of an attribute slice bitstream () according to the present specification.
  • the attribute slice bitstream (attribute_slice_bitstream()) may include an attribute slice header (attribute_slice_header()) and attribute slice data (attribute_slice_data()).
  • FIG. 37 is a diagram illustrating an embodiment of a syntax structure of an attribute slice header (attribute_slice_header()) according to the present specification.
  • the attribute slice header (attribute_slice_header()) may include an ash_attr_parameter_set_id field, an ash_attr_sps_attr_idx field, an ash_attr_geom_slice_id field, an ash_attr_layer_qp_delta_present_flag field, and an ash_attr_deltapresent_flag field, and an ash_attr_deltapresent_flag field.
  • the attribute slice header (attribute_slice_header()) according to embodiments further includes an ash_attr_qp_delta_luma field, and the value of the attribute_dimension_minus_sps_attr_idx] field is 0 [ash_attr_idx] If greater than, the attribute slice header may further include an ash_attr_qp_delta_chroma field.
  • the ash_attr_parameter_set_id field indicates a value of the aps_attr_parameter_set_id field of the currently active APS.
  • the ash_attr_sps_attr_idx field indicates an attribute set in the current active SPS.
  • the ash_attr_geom_slice_id field indicates a value of the gsh_slice_id field of the current geometry slice header.
  • the ash_attr_qp_delta_luma field indicates a luma delta quantization parameter (qp) derived from an initial slice qp in an active attribute parameter set.
  • the ash_attr_qp_delta_chroma field indicates a chroma delta quantization parameter (qp) derived from an initial slice qp in an active attribute parameter set.
  • InitialSliceQpY aps_attrattr_initial_qp + ash_attr_qp_delta_luma
  • InitialSliceQpC aps_attrattr_initial_qp + aps_attr_chroma_qp_offset+ ash_attr_qp_delta_chroma
  • the ash_attr_layer_qp_delta_present_flag field indicates whether the ash_attr_layer_qp_delta_luma field and the ash_attr_layer_qp_delta_chroma field exist in the corresponding attribute slice header (ASH) for each layer. For example, if the value of the ash_attr_layer_qp_delta_present_flag field is 1, it indicates that the ash_attr_layer_qp_delta_luma field and the ash_attr_layer_qp_delta_chroma field exist in the corresponding attribute slice header, and if 0, it does not exist.
  • the attribute slice header may further include an ash_attr_num_layer_qp_minus1 field.
  • the geometry slice header may include as many loops as the value of NumLayerQp. In this case, it is assumed that i is initialized to 0, increases by 1 whenever the loop is executed, and the loop is repeated until the value of i becomes the value of NumLayerQp. This loop contains the ash_attr_layer_qp_delta_luma[i] field. Also, when the value of the attribute_dimension_minus1[ash_attr_sps_attr_idx] field is greater than 0, the loop may further include an ash_attr_layer_qp_delta_chroma[i] field.
  • the ash_attr_layer_qp_delta_luma field indicates a luma delta quantization parameter (qp) from the InitialSliceQpY in each layer.
  • the ash_attr_layer_qp_delta_chroma field indicates a chroma delta quantization parameter (qp) from the InitialSliceQpC in each layer.
  • SliceQpY[i] InitialSliceQpY + ash_attr_layer_qp_delta_luma[i]
  • SliceQpC[i] InitialSliceQpC + ash_attr_layer_qp_delta_chroma[i]
  • the attribute slice header (attribute_slice_header()) according to embodiments indicates that ash_attr_region_qp_delta, region bounding box origin, and size exist in the current attribute slice header. If the value of the ash_attr_region_qp_delta_present_flag field is 0, it indicates that the ash_attr_region_qp_delta, region bounding box origin, and size do not exist in the current attribute slice header.
  • the ash_attr_qp_region_box_origin_x field indicates the x offset of the region bounding box related to slice_origin_x (indicates the x offset of the region bounding box relative to slice_origin_x).
  • the ash_attr_qp_region_box_origin_y field indicates the y offset of the region bounding box related to slice_origin_y (indicates the y offset of the region bounding box relative to slice_origin_y).
  • the ash_attr_qp_region_box_origin_z field indicates the z offset of the region bounding box related to slice_origin_z (indicates the z offset of the region bounding box relative to slice_origin_z).
  • the ash_attr_qp_region_box_size_width field indicates the width of a region bounding box.
  • the ash_attr_qp_region_box_size_height field indicates the height of a region bounding box.
  • the ash_attr_qp_region_box_size_depth field indicates the depth of a region bounding box.
  • the ash_attr_region_qp_delta field indicates delta qp from SliceQpY[i] and SliceQpC[i] of the region specified by the ash_attr_qp_region_box field.
  • 38 is a flowchart of a method for transmitting point cloud data according to embodiments.
  • a method for transmitting point cloud data includes encoding a geometry included in the point cloud data (71001), and encoding an attribute included in the point cloud data based on the input and/or reconstructed geometry ( 71002), and transmitting (71003) a bitstream including the encoded geometry, encoded attributes, and signaling information.
  • the steps of encoding the geometry and attributes included in the point cloud data are the point cloud video encoder 10002 of FIG. 1 , the encoding 20001 of FIG. 2 , the point cloud video encoder of FIG. 4 , the point of FIG. 12 .
  • Some or all of the operations of the cloud video encoder, the geometry encoder and attribute encoder of FIG. 19 , and the geometry encoder and attribute encoder of FIG. 20 may be performed.
  • a sampling movement amount (eg, octree_sampling_residual) is transmitted as metadata.
  • the sampling movement amount means a position difference value between the original point and the sampled point.
  • geometry reconstruction used for attribute compression is performed based on an octree structure generated using quantized points or an octree structure generated using sampled points.
  • the attribute of the point of the reconstructed geometry is used for attribute compression as it is.
  • the recoloring process is skipped. This document refers to this as a single recoloring process.
  • single recoloring uses the attributes of the original point cloud as it is for attribute compression.
  • the step of encoding the attribute ( 71002 ) performs attribute compression using the attributes reconstructed in a single recoloring process.
  • the encoding of the geometry and attributes according to the embodiments may be performed in units of a slice or a tile including one or more slices.
  • Transmitting the bitstream including the encoded geometry, encoded attributes, and signaling information (71003) includes the transmitter 10003 of FIG. 1, the transmission step 20002 of FIG. 2, and the transmission processing unit 12012 of FIG. ) or may be performed by the transmission processing unit 51008 of FIG. 19 .
  • 39 is a flowchart of a method for receiving point cloud data according to embodiments.
  • a method for receiving point cloud data includes receiving a bitstream including an encoded geometry, an encoded attribute, and signaling information (81001), and decoding the geometry based on the signaling information (81002) , decoding an attribute based on the decoded/reconstructed geometry and signaling information (81003), and rendering the reconstructed point cloud data based on the decoded geometry and the decoded attribute (81004).
  • Receiving a bitstream including the encoded geometry, encoded attributes, and signaling information (81001) may include the receiver 10005 of FIG. 1 , the transmission 20002 of FIG. 2 or decoding 20003 of FIG. ), the reception unit 13000 or the reception processing unit 13001 of FIG. 13 , or the reception processing unit 61001 of FIG. 21 .
  • the decoding of the geometry and attributes ( 81002 and 81003 ) may be performed in units of a slice or a tile including one or more slices.
  • Decoding geometry 81002 may include the point cloud video decoder 10006 of FIG. 1 , the decoding 20003 of FIG. 2 , the point cloud video decoder of FIG. 11 , the point cloud video decoder of FIG. 13 , FIG. Some or all of the operations of the geometry decoder of FIG. 21 and the geometry decoder of FIG. 22 may be performed.
  • Decoding an attribute 81003 includes the point cloud video decoder 10006 of FIG. 1 , the decoding 20003 of FIG. 2 , the point cloud video decoder of FIG. 11 , the point cloud video decoder of FIG. 13 , FIG. Some or all of the operations of the attribute decoder of FIG. 21 and the attribute decoder of FIG. 22 may be performed.
  • signaling information for example, at least one of a sequence parameter set, a geometry parameter set, an attribute parameter set, a tile parameter set, and a geometry slice header may include compression-related information. Since the details included in the compression-related information have been described above, they will be omitted here to avoid redundant description. According to embodiments, the compression-related information may also be received while being included in the geometry bitstream.
  • the decoding of the geometry 81002 may perform geometry decoding by reconstructing metadata based on compression-related information and regenerating an octree based on the reconstructed metadata. And, the geometry can be reconstructed based on the regenerated octree.
  • the decoding of the attribute 81003 may perform attribute decoding based on the reconstructed geometry information.
  • Rendering the restored point cloud data based on the decoded geometry and the decoded attributes according to the embodiments 81004 may render the restored point cloud data according to various rendering methods.
  • the points of the point cloud content may be rendered as a vertex having a certain thickness, a cube having a specific minimum size centered at the vertex position, or a circle centered at the vertex position. All or part of the rendered point cloud content is provided to the user through a display (eg, VR/AR display, general display, etc.).
  • Rendering the point cloud data according to the embodiments 81004 may be performed by the renderer 10007 of FIG. 1 , the rendering 20004 of FIG. 2 , or the renderer 13011 of FIG. 13 .
  • quantization or sampling is performed on point cloud data to generate an octree, and single recoloring is performed to perform attribute compression, thereby increasing geometry compression efficiency and attribute compression efficiency in lossy octree coding.
  • an input value of octree coding can be selected using quantization or sampling through defined signaling, and encoding is performed with the input information.
  • the point cloud reconstructed after compression into an octree brings accurate attribute information using single recoloring, thereby increasing the visual quality of attribute values.
  • the encoding time can be shortened. That is, it is possible to shorten the encoding time by not using the octree recoloring.
  • Each of the above-described parts, modules or units may be software, processor, or hardware parts for executing consecutive execution processes stored in a memory (or storage unit). Each of the steps described in the above-described embodiment may be performed by a processor, software, or hardware parts. Each module/block/unit described in the above embodiment may operate as a processor, software, or hardware. Also, the methods presented by the embodiments may be implemented as code. This code may be written to a processor-readable storage medium, and thus may be read by a processor provided by an apparatus.
  • unit means a unit that processes at least one function or operation, which may be implemented as hardware or software or a combination of hardware and software.
  • Various components of the apparatus of the embodiments may be implemented by hardware, software, firmware, or a combination thereof.
  • Various components of the embodiments may be implemented in one chip, for example, one hardware circuit.
  • Each of the components according to the embodiments may be implemented as separate chips.
  • At least one or more of the components of the device according to the embodiments may be composed of one or more processors capable of executing one or more programs, and the one or more programs operate/ One or more operations/methods of the method may be performed, or may include instructions for performing the method.
  • Executable instructions for performing the method/acts of the apparatus according to the embodiments may be stored in non-transitory CRM or other computer program products configured for execution by one or more processors, or one or more may be stored in temporary CRM or other computer program products configured for execution by processors.
  • the memory according to the embodiments may be used as a concept including not only a volatile memory (eg, RAM, etc.) but also a non-volatile memory, a flash memory, a PROM, and the like.
  • it may be implemented in the form of a carrier wave, such as transmission through the Internet may be included.
  • the processor-readable recording medium is distributed in a computer system connected to a network, so that the processor-readable code can be stored and executed in a distributed manner.
  • the various elements of the embodiments may be implemented by hardware, software, firmware, or a combination thereof.
  • Various elements of the embodiments may be implemented on a single chip, such as a hardware circuit.
  • embodiments may optionally be performed on separate chips.
  • at least one of the elements of the embodiments may be performed within one or more processors including instructions for performing an operation according to the embodiments.
  • the operations according to the embodiments described in this document may be performed by a transceiver including one or more memories and/or one or more processors according to the embodiments.
  • One or more memories may store programs for processing/controlling operations according to embodiments, and one or more processors may control various operations described herein.
  • the one or more processors may be referred to as a controller or the like.
  • Operations in embodiments may be performed by firmware, software, and/or a combination thereof, and the firmware, software, and/or a combination thereof may be stored in a processor or stored in a memory.
  • first, second, etc. may be used to describe various components of the embodiments. However, the interpretation of various components according to the embodiments should not be limited by the above terms. These terms are only used to distinguish one component from another. it is only For example, the first user input signal may be referred to as a second user input signal. Similarly, the second user input signal may be referred to as a first user input signal. Use of these terms should be interpreted as not departing from the scope of the various embodiments. Although both the first user input signal and the second user input signal are user input signals, they do not mean the same user input signals unless the context clearly indicates otherwise.
  • the operations according to the embodiments described in this document may be performed by a transceiver including a memory and/or a processor according to the embodiments.
  • the memory may store programs for processing/controlling operations according to the embodiments, and the processor may control various operations described in this document.
  • the processor may be referred to as a controller or the like. Operations according to embodiments may be performed by firmware, software, and/or a combination thereof, and the firmware, software, and/or a combination thereof may be stored in a processor or stored in a memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

실시예들에 따른 포인트 클라우드 데이터 전송 방법은, 포인트 클라우드 데이터의 포인트들의 포지션들을 포함하는 지오메트리 정보를 인코딩하는 단계, 상기 지오메트리 정보를 기반으로 상기 포인트 클라우드 데이터의 포인트들의 어트리뷰트 정보를 인코딩하는 단계, 및 상기 인코드된 지오메트리 정보, 상기 인코드된 어트리뷰트 정보 및 시그널링 정보를 전송하는 단계를 포함할 수 있다.

Description

포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
실시예들은 포인트 클라우드 콘텐트(Point Cloud Content)를 처리하는 방법 및 장치에 대한 것이다.
포인트 클라우드 콘텐트는 3차원 공간(space or volume)을 표현하는 좌표계에 속한 점(포인트)들의 집합인 포인트 클라우드로 표현되는 콘텐트이다. 포인트 클라우드 콘텐트는3차원으로 이루어진 미디어를 표현할 수 있으며, VR (Virtual Reality, 가상현실), AR (Augmented Reality, 증강현실), MR (Mixed Reality, 혼합현실), XR (Extended Reality), 및 자율 주행 서비스 등의 다양한 서비스를 제공하기 위해 사용된다. 하지만 포인트 클라우드 콘텐트를 표현하기 위해서는 수만개에서 수십만개의 포인트 데이터가 필요하다. 따라서 방대한 양의 포인트 데이터를 효율적으로 처리하기 위한 방법이 요구된다.
실시예들에 따른 기술적 과제는, 전술한 문제점 등을 해결하기 위해서, 포인트 클라우드를 효율적으로 송수신하기 위한 포인트 클라우드 데이터 전송 장치, 전송 방법, 포인트 클라우드 데이터 수신 장치 및 수신 방법을 제공하는데 있다.
실시예들에 따른 기술적 과제는, 지연시간(latency) 및 인코딩/디코딩 복잡도를 해결하기 위한 포인트 클라우드 데이터 전송 장치, 전송 방법, 포인트 클라우드 데이터 수신 장치 및 수신 방법을 제공하는데 있다.
실시예들에 따른 기술적 과제는, 지오메트리 기반의 포인트 클라우드 압축(Geometry-based point cloud compression, G-PCC)의 어트리뷰트 정보(attribute)의 인코딩 기술을 개선하여 포인트 클라우드의 압축 성능 향상시키는 포인트 클라우드 데이터 전송 장치, 전송 방법, 포인트 클라우드 데이터 수신 장치 및 수신 방법을 제공하는데 있다.
실시예들에 따른 기술적 과제는, 손실 압축(lossy compression)에서 중요한 포인트는 손실시키지 않도록 함으로써, 지오메트리와 어트리뷰트의 압축 효율을 높이는 포인트 클라우드 데이터 전송 장치, 전송 방법, 포인트 클라우드 데이터 수신 장치 및 수신 방법을 제공하는데 있다.
실시예들에 따른 기술적 과제는, 지오메트리의 압축 후 단일 리컬러링을 수행할 수 있도록 함으로서, 어트리뷰트 압축 효율을 높이는 포인트 클라우드 데이터 전송 장치, 전송 방법, 포인트 클라우드 데이터 수신 장치 및 수신 방법을 제공하는데 있다.
다만, 전술한 기술적 과제만으로 제한되는 것은 아니고, 본 문서 전체 내용에 기초하여 당업자가 유추할 수 있는 다른 기술적 과제로 실시예들의 권리범위가 확장될 수 있다.
상술한 목적 및 다른 이점을 달성하기 위해서 실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터의 포인트들의 포지션들을 포함하는 지오메트리 정보를 인코딩하는 단계, 상기 지오메트리 정보를 기반으로 상기 포인트 클라우드 데이터의 포인트들의 어트리뷰트 정보를 인코딩하는 단계, 및 상기 인코드된 지오메트리 정보, 상기 인코드된 어트리뷰트 정보 및 시그널링 정보를 전송하는 단계를 포함할 수 있다.
상기 지오메트리 정보를 인코딩하는 단계는, 상기 포인트 클라우드 데이터의 포인트들을 샘플링 스케일에 따라 샘플링하는 단계, 상기 샘플링된 포인트들을 기반으로 옥트리를 생성하는 단계, 및 상기 옥트리의 오큐판시 코드를 압축하여 지오메트리 비트스트림으로 출력하는 단계를 포함하는 것을 일 실시예로 한다.
상기 시그널링 정보는 상기 샘플링에 관련된 정보를 포함하는 것을 일 실시예로 한다.
상기 샘플링에 관련된 정보는 상기 샘플링된 포인트들과 오리지날 포인트들과의 위치 차이를 식별하기 위한 정보인 것을 일 실시예로 한다.
상기 샘플링에 관련된 정보는 상기 지오메트리 비트스트림에 포함되는 것을 일 실시예로 한다.
상기 샘플링에 관련된 정보는 시퀀스 파라미터 세트, 지오메트리 파라미터 세트, 어트리뷰트 파라미터 세트, 타일 파라미터 세트, 지오메트르 슬라이스 헤더 중 적어도 하나에 포함되는 것을 일 실시예로 한다.
상기 어트리뷰트 정보를 인코딩하는 단계는, 상기 샘플링된 포인트들의 어트리뷰트 값들을 기반으로 인코딩을 수행하는 것을 일 실시예로 한다.
실시예들에 따른 포인트 클라우드 데이터 송신 장치는 포인트 클라우드 데이터의 포인트들의 포지션들을 포함하는 지오메트리 정보를 인코딩하는 지오메트리 인코더, 상기 지오메트리 정보를 기반으로 상기 포인트 클라우드 데이터의 포인트들의 어트리뷰트 정보를 인코딩하는 어트리뷰트 인코더, 및 상기 인코드된 지오메트리 정보, 상기 인코드된 어트리뷰트 정보 및 시그널링 정보를 전송하는 전송부를 포함할 수 있다.
상기 지오메트리 인코더는 상기 포인트 클라우드 데이터의 포인트들을 샘플링 스케일에 따라 샘플링하고, 상기 샘플링된 포인트들을 기반으로 옥트리를 생성하며, 상기 옥트리의 오큐판시 코드를 압축하여 지오메트리 비트스트림으로 출력하는 것을 일 실시예로 한다.
상기 시그널링 정보는 상기 샘플링에 관련된 정보를 포함하는 것을 일 실시예로 한다.
상기 샘플링에 관련된 정보는 상기 샘플링된 포인트들과 오리지날 포인트들과의 위치 차이를 식별하기 위한 정보인 것을 일 실시예로 한다.
상기 샘플링에 관련된 정보는 상기 지오메트리 비트스트림에 포함되는 것을 일 실시예로 한다.
상기 샘플링에 관련된 정보는 시퀀스 파라미터 세트, 지오메트리 파라미터 세트, 어트리뷰트 파라미터 세트, 타일 파라미터 세트, 지오메트르 슬라이스 헤더 중 적어도 하나에 포함되는 것을 일 실시예로 한다.
상기 어트리뷰트 인코더는 상기 샘플링된 포인트들의 어트리뷰트 값들을 기반으로 인코딩을 수행하는 것을 일 실시예로 한다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은 지오메트리 정보, 어트리뷰트 정보, 및 시그널링 정보를 수신하는 단계, 상기 시그널링 정보를 기반으로 상기 지오메트리 정보를 디코딩하는 단계, 상기 시그널링 정보와 상기 지오메트리 정보를 기반으로 상기 어트리뷰트 정보를 디코딩하는 단계, 및 상기 디코드된 지오메트리 정보와 상기 디코드된 어트리뷰트 정보를 기반으로 복원된 포인트 클라우드 데이터를 렌더링하는 단계를 포함할 수 있다.
상기 디코드된 지오메트리 정보는 상기 복원된 포인트 클라우드 데이터의 포인트들의 포지션들을 포함하고, 상기 디코드된 어트리뷰트 정보는 상기 복원된 포인트 클라우드 데이터의 포인트들의 어트리뷰트 값들을 포함하는 것을 일 실시예로 한다.
상기 시그널링 정보는 샘플링에 관련된 정보를 포함하고, 상기 지오메트리 정보를 디코딩하는 단계는 상기 샘플링에 관련된 정보를 기반으로 상기 지오메트리 정보를 재구성하는 것을 일 실시예로 한다.
상기 샘플링에 관련된 정보는 샘플링된 포인트들과 오리지날 포인트들과의 위치 차이를 식별하기 위한 정보인 것을 일 실시예로 한다.
상기 샘플링에 관련된 정보는 상기 지오메트리 정보를 포함하는 지오메트리 비트스트림에 포함되어 수신되는 것을 일 실시예로 한다.
상기 샘플링에 관련된 정보는 시퀀스 파라미터 세트, 지오메트리 파라미터 세트, 어트리뷰트 파라미터 세트, 타일 파라미터 세트, 지오메트르 슬라이스 헤더 중 적어도 하나에 포함되어 수신되는 것을 일 실시예로 한다.
상기 어트리뷰트 정보를 디코딩하는 단계는, 상기 샘플링에 관련된 정보를 기반으로 재구성된 지오메트리 정보를 기반으로 디코딩을 수행하는 것을 일 실시예로 한다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 퀄리티 있는 포인트 클라우드 서비스를 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 다양한 비디오 코덱 방식을 달성할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 자율주행 서비스 등 범용적인 포인트 클라우드 콘텐츠를 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 포인트 클라우드 데이터의 독립적 인코딩 및 디코딩을 위해 포인트 클라우드 데이터의 공간 적응적 분할을 수행함으로써, 병렬 처리의 향상 및 스케일러비티(scalability)를 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 포인트 클라우드 데이터를 타일 및/또는 슬라이스 단위로 공간 분할하여 인코딩 및 디코딩을 수행하고 이를 위해 필요한 데이터를 시그널링함으로써 포인트 클라우드의 인코딩 및 디코딩 성능을 향상시킬 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 재구성된 포인트 클라우드의 포인트의 어트리뷰트 값을 오리지날 포인트의 어트리뷰트 값으로 설정할 수 있도록 함으로써, 포인트 클라우드 데이터의 어트리뷰트 인코딩/디코딩 화질을 높일 수 있고, 지오메트리 압축 효율을 향상시킬 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 양자화를 수행하여 옥트리를 생성하는 경우에도 단일 리컬러링을 수행하도록 함으로써, 포인트 클라우드 데이터의 어트리뷰트 인코딩/디코딩 화질을 높일 수 있고, 지오메트리 압축 효율을 향상시킬 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 샘플링을 수행하여 옥트리를 생성하고, 오리지날 포인트와 샘플링 포인트와의 위치 차이값을 메타데이터 형태로 전송하도록 함으로써, 단일 리컬러링을 수행할 수 있게 되어 포인트 클라우드 데이터의 어트리뷰트 인코딩/디코딩 화질을 높일 수 있고, 지오메트리 압축 효율을 향상시킬 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 어트리뷰트 압축을 위해 단일 리컬러링을 수행함으로써, 어트리뷰트 인코딩 시간을 단축시킬 수 있다.
도면은 실시예들을 더욱 이해하기 위해서 포함되며, 도면은 실시예들에 관련된 설명과 함께 실시예들을 나타낸다.
도 1은 실시예들에 따른 포인트 클라우드(Point Cloud) 콘텐츠 제공을 위한 시스템을 나타낸다.
도 2는 실시예들에 따른 Point Cloud 콘텐츠 제공을 위한 과정을 나타낸다.
도 3은 실시예들에 따른 Point Cloud 캡처 장비 배열 구성을 나타낸다.
도 4는 실시예들에 따른 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder)를 나타낸다.
도 5는 실시예들에 따른 3차원 공간상의 복셀을 나타낸다.
도 6은 실시예들에 따른 옥트리와 occupancy 코드의 예시를 나타낸다.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.
도 8은 실시예들에 따른 LOD별 Point Cloud 콘텐츠의 Point 구성의 예시를 나타낸다.
도 9는 실시예들에 따른 LOD별 Point Cloud 콘텐츠의 Point 구성의 예시를 나타낸다.
도 10은 실시예들에 따른 포인트 클라우드 비디오 디코더(Point Cloud Video Decoder)의 블록 다이어그램(block diagram) 예시를 나타낸다.
도 11은 실시예들에 따른 포인트 클라우드 비디오 디코더(Point Cloud Video Decoder)의 예시를 나타낸다.
도 12는 실시예들에 따른 송신기의 Point Cloud 비디오 인코딩을 위한 구성요소를 나타낸다.
도 13은 실시예들에 따른 수신기의 Point Cloud 비디오 디코딩을 위한 구성요소를 나타낸다.
도 14는 실시예들에 따른 포인트 클라우드 데이터 방법/장치와 연동 가능한 구조의 예시를 나타낸다.
도 15(a) 내지 도 15(d)는 양자화 스케일에 따른 양자화 방법의 예시들을 보인 도면이다.
도 16은 실시예들에 따른 양자화 이후 포인트의 위치를 표현하는 예시들을 보인 도면이다.
도 17(a) 내지 도 17(d)는 제2 실시예에 따른 샘플링 방법의 예시들을 보인 도면이다.
도 18은 실시예들에 따른 옥트리 샘플링 방법과 메타데이터 생성의 예시를 보인 도면이다.
도 19는 실시예들에 따른 포인트 클라우드 송신 장치의 또 다른 예시를 보인 도면이다.
도 20은 실시예들에 따른 지오메트리 인코더와 어트리뷰트 인코더의 상세 블록도의 예시를 보인 도면이다.
도 21은 실시예들에 따른 포인트 클라우드 수신 장치의 또 다른 예시를 보인 도면이다.
도 22는 실시예들에 따른 지오메트리 디코더와 어트리뷰트 디코더의 다른 예시를 보인 상세 블록도이다.
도 23은 실시예들에 따른 송/수신을 위한 포인트 클라우드 데이터의 비트스트림 구조의 예시를 나타낸다.
도 24는 실시예들에 따른 시퀀스 파라미터 세트의 신택스 구조의 일 예시를 보인 도면이다.
도 25는 실시예들에 따른 시퀀스 파라미터 세트의 신택스 구조의 다른 예시를 보인 도면이다.
도 26은 실시예들에 따른 metadata_data_unit()의 신택스 구조의 예시를 보인 도면이다.
도 27은 실시예들에 따른 지오메트리 파라미터 세트의 신택스 구조의 일 예시를 보인 도면이다.
도 28은 실시예들에 따른 지오메트리 파라미터 세트의 신택스 구조의 다른 예시를 보인 도면이다.
도 29는 실시예들에 따른 타일 파라미터 세트의 신택스 구조의 일 예시를 보인 도면이다.
도 30은 실시예들에 따른 타일 파라미터 세트의 신택스 구조의 다른 예시를 보인 도면이다.
도 31은 실시예들에 따른 어트리뷰트 파라미터 세트의 신택스 구조의 일 예시를 보인 도면이다.
도 32는 실시예들에 따른 어트리뷰트 파라미터 세트의 신택스 구조의 다른 예시를 보인 도면이다.
도 33은 실시예들에 따른 지오메트리 슬라이스 비트스트림()의 신택스 구조의 일 예시를 보인 도면이다.
도 34는 실시예들에 따른 지오메트리 슬라이스 헤더의 신택스 구조의 일 예시를 보인 도면이다.
도 35는 본 명세서에 따른 지오메트리 슬라이스 헤더의 신택스 구조의 다른 예시를 보인 도면이다.
도 36은 본 명세서에 따른 어트리뷰트 슬라이스 비트스트림()의 신택스 구조의 일 실시예를 보인 도면이다.
도 37은 본 명세서에 따른 어트리뷰트 슬라이스 헤더의 신택스 구조의 일 실시예를 보인 도면이다.
도 38은 실시예들에 따른 포인트 클라우드 데이터 송신 방법의 흐름도를 나타낸다.
도 39는 실시예들에 따른 포인트 클라우드 데이터 수신 방법의 흐름도를 나타낸다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 하기의 실시예들은 본 발명을 구체화하기 위한 것일 뿐 본 발명의 권리 범위를 제한하거나 한정하는 것이 아님은 물론이다. 본 발명의 상세한 설명 및 실시예들로부터 본 발명이 속하는 기술 분야의 전문가가 용이하게 유추할 수 있는 것은 본 발명의 권리 범위에 속하는 것으로 해석된다.
본 명세서의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 안되며, 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
바람직한 실시예들에 대해 구체적으로 설명하되, 그 예는 첨부된 도면에 나타낸다. 첨부된 도면을 참조한 아래의 상세한 설명은 구현될 수 있는 실시예들만을 나타내기보다는 바람직한 실시예들을 설명하기 위한 것이다. 이하에서는 본 발명에 대한 철저한 이해를 제공하기 위해 세부 사항을 포함하여 설명한다. 그러나 본 발명이 이러한 세부 사항 없이 실행될 수 있다는 것은 당업자에게 자명하다. 본 명세서에서 사용되는 대부분의 용어는 해당 분야에서 널리 사용되는 일반적인 것들에서 선택되지만, 일부 용어는 출원인에 의해 임의로 선택되며 그 의미는 필요에 따라 다음 설명에서 자세히 서술한다. 따라서 본 발명은 용어의 단순한 명칭이나 의미가 아닌 용어의 의도된 의미에 근거하여 이해되어야 한다. 또한 이하의 도면들 및 상세한 설명은 구체적으로 기술된 실시예들에만 국한되어 해석되지 않고, 도면 및 상세한 설명에 기재된 실시예들과 균등하거나, 대체 가능한 것들까지 포함하는 것으로 해석되어야만 한다.
도 1은 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템의 예시를 나타낸다.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템은 전송 장치(transmission device)(10000) 및 수신 장치(reception device)(10004)를 포함할 수 있다. 전송 장치(10000) 및 수신 장치(10004)는 포인트 클라우드 데이터를 송수신하기 위해 유무선 통신 가능하다.
실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오(또는 포인트 클라우드 콘텐트)를 확보하고 처리하여 전송할 수 있다. 실시예들에 따라, 전송 장치(10000)는 고정국(fixed station), BTS(base transceiver system), 네트워크, AI(Artificial Intelligence) 기기 및/또는 시스템, 로봇, AR/VR/XR 기기 및/또는 서버 등을 포함할 수 있다. 또한 실시예들에 따라 전송 장치(10000)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다.
실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오 획득부(Point Cloud Video Acquisition unit, 10001), 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder, 10002) 및/또는 트랜스미터(Transmitter (or Communication module), 10003)를 포함한다
실시예들에 따른 포인트 클라우드 비디오 획득부(10001)는 캡쳐, 합성 또는 생성 등의 처리 과정을 통해 포인트 클라우드 비디오를 획득한다. 포인트 클라우드 비디오는 3차원 공간에 위치한 포인트들의 집합인 포인트 클라우드로 표현되는 포인트 클라우드 콘텐트로서, 포인트 클라우드 비디오 데이터 등으로 호칭될 수 있다. 실시예들에 따른 포인트 클라우드 비디오는 하나 또는 그 이상의 프레임들을 포함할 수 있다. 하나의 프레임은 정지 영상/픽쳐를 나타낸다. 따라서 포인트 클라우드 비디오는 포인트 클라우드 영상/프레임/픽처를 포함할 수 있으며, 포인트 클라우드 영상, 프레임 및 픽처 중 어느 하나로 호칭될 수 있다.
실시예들에 따른 포인트 클라우드 비디오 인코더(10002)는 확보된 포인트 클라우드 비디오 데이터를 인코딩한다. 포인트 클라우드 비디오 인코더(10002)는 포인트 클라우드 컴프레션(Point Cloud Compression) 코딩을 기반으로 포인트 클라우드 비디오 데이터를 인코딩할 수 있다. 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 G-PCC(Geometry-based Point Cloud Compression) 코딩 및/또는 V-PCC(Video based Point Cloud Compression) 코딩 또는 차세대 코딩을 포함할 수 있다. 또한 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 상술한 실시예에 국한되는 것은 아니다. 포인트 클라우드 비디오 인코더(10002)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 출력할 수 있다. 비트스트림은 인코딩된 포인트 클라우드 비디오 데이터뿐만 아니라, 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 포함할 수 있다.
실시예들에 따른 트랜스미터(10003)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 전송한다. 실시예들에 따른 비트스트림은 파일 또는 세그먼트(예를 들면 스트리밍 세그먼트) 등으로 인캡슐레이션되어 방송망 및/또는 브로드밴드 망등의 다양한 네트워크를 통해 전송된다. 도면에 도시되지 않았으나, 전송 장치(10000)는 인캡슐레이션 동작을 수행하는 인캡슐레이션부(또는 인캡슐레이션 모듈)을 포함할 수 있다. 또한 실시예들에 따라 인캡슐레이션부는 트랜스미터(10003)에 포함될 수 있다. 실시예들에 따라 파일 또는 세그먼트는 네트워크를 통해 수신 장치(10004)로 전송되거나, 디지털 저장매체(예를 들면 USB, SD, CD, DVD, 블루레이, HDD, SSD 등)에 저장될 수 있다. 실시예들에 따른 트랜스미터(10003)는 수신 장치(10004) (또는 리시버(Receiver, 10005))와 4G, 5G, 6G 등의 네트워크를 통해 유/무선 통신 가능하다. 또한 트랜스미터(10003)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 또한 전송 장치(10000)는 온 디맨드(On Demand) 방식에 따라 인캡슐레이션된 데이터를 전송할 수도 있다.
실시예들에 따른 수신 장치(10004)는 리시버(Receiver, 10005), 포인트 클라우드 비디오 디코더(Point Cloud Video Decoder, 10006) 및/또는 렌더러(Renderer, 10007)를 포함한다. 실시예들에 따라 수신 장치(10004)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다.
실시예들에 따른 리시버(10005)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림 또는 비트스트림이 인캡슐레이션된 파일/세그먼트 등을 네트워크 또는 저장매체로부터 수신한다. 리시버(10005)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 실시예들에 따른 리시버(10005)는 수신한 파일/세그먼트를 디캡슐레이션하여 비트스트림을 출력할수 있다. 또한 실시예들에 따라 리시버(10005)는 디캡슐레이션 동작을 수행하기 위한 디캡슐레이션부(또는 디캡슐레이션 모듈)을 포함할 수 있다. 또한 디캡슐레이션부는 리시버(10005)와 별개의 엘레멘트(또는 컴포넌트 또는 모듈)로 구현될 수 있다.
포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 디코딩한다. 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터가 인코딩된 방식에 따라 디코딩할 수 있다(예를 들면 포인트 클라우드 비디오 인코더(10002)의 동작의 역과정). 따라서 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 컴프레션의 역과정인 포인트 클라우드 디컴프레션 코딩을 수행하여 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 디컴프레션 코딩은 G-PCC 코딩을 포함한다.
렌더러(10007)는 디코딩된 포인트 클라우드 비디오 데이터를 렌더링한다. 렌더러(10007)는 포인트 클라우드 비디오 데이터 뿐만 아니라 오디오 데이터도 렌더링하여 포인트 클라우드 콘텐트를 출력할 수 있다. 실시예들에 따라 렌더러(10007)는 포인트 클라우드 콘텐트를 디스플레이하기 위한 디스플레이를 포함할 수 있다. 실시예들에 따라 디스플레이는 렌더러(10007)에 포함되지 않고 별도의 디바이스 또는 컴포넌트로 구현될 수 있다.
도면에 점선으로 표시된 화살표는 수신 장치(10004)에서 획득한 피드백 정보(feedback information)의 전송 경로를 나타낸다. 피드백 정보는 포인트 클라우드 콘텐트를 소비하는 사용자와의 인터랙티비를 반영하기 위한 정보로서, 사용자의 정보(예를 들면 헤드 오리엔테이션 정보, 뷰포트(Viewport) 정보 등)을 포함한다. 특히 포인트 클라우드 콘텐트가 사용자와의 상호작용이 필요한 서비스(예를 들면 자율주행 서비스 등)를 위한 콘텐트인 경우, 피드백 정보는 콘텐트 송신측(예를 들면 전송 장치(10000)) 및/또는 서비스 프로바이더에게 전달될 수 있다. 실시예들에 따라 피드백 정보는 전송 장치(10000) 뿐만 아니라 수신 장치(10004)에서도 사용될 수 있으며, 제공되지 않을 수도 있다.
실시예들에 따른 헤드 오리엔테이션 정보는 사용자의 머리 위치, 방향, 각도, 움직임 등에 대한 정보이다. 실시예들에 따른 수신 장치(10004)는 헤드 오리엔테이션 정보를 기반으로 뷰포트 정보를 계산할 수 있다. 뷰포트 정보는 사용자가 바라보고 있는 포인트 클라우드 비디오의 영역에 대한 정보이다. 시점(viewpoint)은 사용자가 포인트 클라우드 비디오를 보고 있는 점으로 뷰포트 영역의 정중앙 지점을 의미할 수 있다. 즉, 뷰포트는 시점을 중심으로 한 영역으로서, 영역의 크기, 형태 등은 FOV(Field Of View) 에 의해 결정될 수 있다. 따라서 수신 장치(10004)는 헤드 오리엔테이션 정보 외에 장치가 지원하는 수직(vertical) 혹은 수평(horizontal) FOV 등을 기반으로 뷰포트 정보를 추출할 수 있다. 또한 수신 장치(10004)는 게이즈 분석 (Gaze Analysis) 등을 수행하여 사용자의 포인트 클라우드 소비 방식, 사용자가 응시하는 포인트 클라우드 비디오 영역, 응시 시간 등을 확인한다. 실시예들에 따라 수신 장치(10004)는 게이즈 분석 결과를 포함하는 피드백 정보를 송신 장치(10000)로 전송할 수 있다. 실시예들에 따른 피드백 정보는 렌더링 및/또는 디스플레이 과정에서 획득될 수 있다. 실시예들에 따른 피드백 정보는 수신 장치(10004)에 포함된 하나 또는 그 이상의 센서들에 의해 확보될 수 있다. 또한 실시예들에 따라 피드백 정보는 렌더러(10007) 또는 별도의 외부 엘레멘트(또는 디바이스, 컴포넌트 등)에 의해 확보될 수 있다.
도 1의 점선은 렌더러(10007)에서 확보한 피드백 정보의 전달 과정을 나타낸다. 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 처리(인코딩/디코딩)할 수 있다. 따라서 포인트 클라우드 비디오 디코더(10006)는 피드백 정보를 기반으로 디코딩 동작을 수행할 수 있다. 또한 수신 장치(10004)는 피드백 정보를 전송 장치(10000)로 전송할 수 있다. 전송 장치(10000)(또는 포인트 클라우드 비디오 인코더(10002))는 피드백 정보를 기반으로 인코딩 동작을 수행할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 모든 포인트 클라우드 데이터를 처리(인코딩/디코딩)하지 않고, 피드백 정보를 기반으로 필요한 데이터(예를 들면 사용자의 헤드 위치에 대응하는 포인트 클라우드 데이터)를 효율적으로 처리하고, 사용자에게 포인트 클라우드 콘텐트를 제공할 수 있다.
실시예들에 따라, 전송 장치(10000)는 인코더, 전송 디바이스, 전송기, 전송 시스템 등으로 호칭될 수 있으며, 수신 장치(10004)는 디코더, 수신 디바이스, 수신기, 수신 시스템 등으로 호칭될 수 있다.
실시예들에 따른 도 1 의 포인트 클라우드 콘텐트 제공 시스템에서 처리되는 (획득/인코딩/전송/디코딩/렌더링의 일련의 과정으로 처리되는) 포인트 클라우드 데이터는 포인트 클라우드 콘텐트 데이터 또는 포인트 클라우드 비디오 데이터라고 호칭할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 데이터는 포인트 클라우드 데이터와 관련된 메타데이터 내지 시그널링 정보를 포함하는 개념으로 사용될 수 있다.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템의 엘리먼트들은 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 결합 등으로 구현될 수 있다.
도 2는 실시예들에 따른 포인트 클라우드 콘텐트 제공 동작을 나타내는 블록도이다.
도 2의 블록도는 도 1에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 동작을 나타낸다. 상술한 바와 같이 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩(예를 들면 G-PCC)을 기반으로 포인트 클라우드 데이터를 처리할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오를 획득할 수 있다(20000). 포인트 클라우드 비디오는 3차원 공간을 표현하는 좌표계에 속한 포인트 클라우드로 표현된다. 실시예들에 따른 포인트 클라우드 비디오는 Ply (Polygon File format or the Stanford Triangle format) 파일을 포함할 수 있다. 포인트 클라우드 비디오가 하나 또는 그 이상의 프레임들을 갖는 경우, 획득한 포인트 클라우드 비디오는 하나 또는 그 이상의 Ply 파일들을 포함할 수 있다. Ply 파일은 포인트의 지오메트리(Geometry) 및/또는 어트리뷰트(Attribute)와 같은 포인트 클라우드 데이터를 포함한다. 지오메트리는 포인트들의 포지션들을 포함한다. 각 포인트의 포지션은 3차원 좌표계(예를 들면 XYZ축들로 이루어진 좌표계 등)를 나타내는 파라미터들(예를 들면 X축, Y축, Z축 각각의 값)로 표현될 수 있다. 어트리뷰트는 포인트들의 어트리뷰트들(예를 들면, 각 포인트의 텍스쳐 정보, 색상(YCbCr 또는 RGB), 반사율(r), 투명도 등)을 포함한다. 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들(또는 속성들)을 가진다. 예를 들어 하나의 포인트는 하나의 색상인 어트리뷰트를 가질 수도 있고, 색상 및 반사율인 두 개의 어트리뷰트들을 가질 수도 있다. 실시예들에 따라, 지오메트리는 포지션들, 지오메트리 정보, 지오메트리 데이터 등으로 호칭 가능하며, 어트리뷰트는 어트리뷰트들, 어트리뷰트 정보, 어트리뷰트 데이터 등으로 호칭할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오의 획득 과정과 관련된 정보(예를 들면 깊이 정보, 색상 정보 등)로부터 포인트 클라우드 데이터를 확보할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 포인트 클라우드 비디오 인코더(10002))은 포인트 클라우드 데이터를 인코딩할 수 있다(20001). 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩을 기반으로 포인트 클라우드 데이터를 인코딩할 수 있다. 상술한 바와 같이 포인트 클라우드 데이터는 포인트의 지오메트리 및 어트리뷰트를 포함할 수 있다. 따라서 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 지오메트리를 인코딩하는 지오메트리 인코딩을 수행하여 지오메트리 비트스트림을 출력할 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 어트리뷰트를 인코딩하는 어트리뷰트 인코딩을 수행하여 어트리뷰트 비트스트림을 출력할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 제공 시스템은 지오메트리 인코딩에 기초하여 어트리뷰트 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 비트스트림 및 어트리뷰트 비트스트림은 멀티플렉싱되어 하나의 비트스트림으로 출력될 수 있다. 실시예들에 따른 비트스트림은 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보를 더 포함할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 트랜스미터(10003))는 인코딩된 포인트 클라우드 데이터를 전송할 수 있다(20002). 도1에서 설명한 바와 같이 인코딩된 포인트 클라우드 데이터는 지오메트리 비트스트림, 어트리뷰트 비트스트림으로 표현될 수 있다. 또한 인코딩된 포인트 클라우드 데이터는 포인트 클라우드 데이터의 인코딩과 관련된 시그널링 정보(예를 들면 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보)과 함께 비트스트림의 형태로 전송될 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 인코딩된 포인트 클라우드 데이터를 전송하는 비트스트림을 인캡슐레이션 하여 파일 또는 세그먼트의 형태로 전송할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 수신할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 비트스트림을 디멀티플렉싱할 수 있다.
포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림으로 전송되는 인코딩된 포인트 클라우드 데이터(예를 들면 지오메트리 비트스트림, 어트리뷰트 비트스트림)을 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림에 포함된 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 기반으로 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 지오메트리 비트스트림을 디코딩하여 포인트들의 포지션들(지오메트리)을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 복원한 지오메트리를 기반으로 어트리뷰트 비트스트림을 디코딩하여 포인트들의 어트리뷰트들을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 복원된 지오메트리에 따른 포지션들 및 디코딩된 어트리뷰트를 기반으로 포인트 클라우드 비디오를 복원할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩된 포인트 클라우드 데이터를 렌더링할 수 있다(20004). 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩 과정을 통해 디코딩된 지오메트리 및 어트리뷰트들을 다양한 렌더링 방식에 따라 렌더링 할 수 있다. 포인트 클라우드 콘텐트의 포인트들은 일정 두께를 갖는 정점, 해당 정점 위치를 중앙으로 하는 특정 최소 크기를 갖는 정육면체, 또는 정점 위치를 중앙으로 하는 원 등으로 렌더링 될 수도 있다. 렌더링된 포인트 클라우드 콘텐트의 전부 또는 일부 영역은 디스플레이 (예를 들면 VR/AR 디스플레이, 일반 디스플레이 등)을 통해 사용자에게 제공된다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004))는 피드백 정보를 확보할 수 있다(20005). 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 인코딩 및/또는 디코딩할 수 있다. 실시예들에 따른 피드백 정보 및 포인트 클라우드 콘텐트 제공 시스템의 동작은 도 1에서 설명한 피드백 정보 및 동작과 동일하므로 구체적인 설명은 생략한다.
도 3은 실시예들에 따른 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
도 3은 도 1과 도 2에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
포인트 클라우드 콘텐트는 다양한 3차원 공간(예를 들면 현실 환경을 나타내는 3차원 공간, 가상 환경을 나타내는3차원 공간 등)에 위치한 오브젝트(object) 및/또는 환경을 나타내는 포인트 클라우드 비디오(이미지들 및/또는 영상들)을 포함한다. 따라서 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 콘텐트를 생성하기 위하여 하나 또는 그 이상의 카메라(camera)들(예를 들면, 깊이 정보를 확보할 수 있는 적외선 카메라, 깊이 정보에 대응되는 색상 정보를 추출 할 수 있는 RGB 카메라 등), 프로젝터(예를 들면 깊이 정보를 확보하기 위한 적외선 패턴 프로젝터 등), 라이다(LiDAR)등을 사용하여 포인트 클라우드 비디오를 캡쳐할 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 깊이 정보로부터 3차원 공간상의 포인트들로 구성된 지오메트리의 형태를 추출하고, 색상정보로부터 각 포인트의 어트리뷰트를 추출하여 포인트 클라우드 데이터를 확보할 수 있다. 실시예들에 따른 이미지 및/또는 영상은 인워드-페이싱(inward-facing) 방식 및 아웃워드-페이싱(outward-facing) 방식 중 적어도 어느 하나 이상을 기반으로 캡쳐될 수 있다.
도 3의 왼쪽은 인워드-페이싱 방식을 나타낸다. 인워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트를 캡쳐하는 방식을 의미한다. 인워드-페이싱 방식은 핵심 객체에 대한 360도 이미지를 사용자에게 제공하는 포인트 클라우드 콘텐트(예를 들면 사용자에게 객체(예-캐릭터, 선수, 물건, 배우 등 핵심이 되는 객체)의 360도 이미지를 제공하는 VR/AR 콘텐트)를 생성하기 위해 사용될 수 있다.
도 3의 오른쪽은 아웃워드-페이싱 방식을 나타낸다. 아웃워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트가 아닌 중심 오브젝트의 환경을 캡쳐하는 방식을 의미한다. 아웃워드-페이싱 방식은 사용자의 시점에서 나타나는 주변 환경을 제공하기 위한 포인트 클라우드 콘텐트(예를 들면, 자율 주행 차량의 사용자에게 제공될 수 있는 외부 환경을 나타내는 콘텐트)를 생성하기 위해 사용될 수 있다.
도 3에 도시된 바와 같이, 포인트 클라우드 콘텐트는 하나 또는 그 이상의 카메라들의 캡쳐 동작을 기반으로 생성될 수 있다. 이 경우 각 카메라의 좌표계가 다를 수 있으므로 포인트 클라우드 콘텐트 제공 시스템은 캡쳐 동작 이전에 글로벌 공간 좌표계(global coordinate system)을 설정하기 위하여 하나 또는 그 이상의 카메라들의 캘리브레이션을 수행할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 상술한 캡쳐 방식으로 캡쳐된 이미지 및/또는 영상과 임의의 이미지 및/또는 영상을 합성하여 포인트 클라우드 콘텐트를 생성할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 가상 공간을 나타내는 포인트 클라우드 콘텐트를 생성하는 경우, 도3에서 설명한 캡쳐 동작을 수행하지 않을 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 캡쳐한 이미지 및/또는 영상에 대해 후처리를 수행할 수 있다. 즉, 포인트 클라우드 콘텐트 제공 시스템은 원하지 않는 영역(예를 들면 배경)을 제거하거나, 캡쳐한 이미지들 및/또는 영상들이 연결된 공간을 인식하고, 구멍(spatial hole)이 있는 경우 이를 메우는 동작을 수행할 수 있다.
또한 포인트 클라우드 콘텐트 제공 시스템은 각 카메라로부터 확보한 포인트 클라우드 비디오의 포인트들에 대하여 좌표계 변환을 수행하여 하나의 포인트 클라우드 콘텐트를 생성할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 각 카메라의 위치 좌표를 기준으로 포인트들의 좌표계 변환을 수행할 수 있다. 이에 따라, 포인트 클라우드 콘텐트 제공 시스템은 하나의 넓은 범위를 나타내는 콘텐트를 생성할 수도 있고, 포인트들의 밀도가 높은 포인트 클라우드 콘텐트를 생성할 수도 있다.
도 4는 실시예들에 따른 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder)의 예시를 나타낸다.
도 4는 도 1의 포인트 클라우드 비디오 인코더(10002)의 상세 예시를 나타낸다. 포인트 클라우드 비디오 인코더는 네트워크의 상황 혹은 애플리케이션 등에 따라 포인트 클라우드 콘텐트의 질(예를 들어 무손실-lossless, 손실-lossy, near-lossless)을 조절하기 위하여 포인트 클라우드 데이터(예를 들면 포인트들의 포지션들 및/또는 어트리뷰트들)을 재구성하고 인코딩 동작을 수행한다. 포인트 클라우드 콘텐트의 전체 사이즈가 큰 경우(예를 들어 30 fps의 경우 60 Gbps인 포인트 클라우드 콘텐트) 포인트 클라우드 콘텐트 제공 시스템은 해당 콘텐트를 리얼 타임 스트리밍하지 못할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 네트워크 환경등에 맞춰 제공하기 위하여 최대 타깃 비트율(bitrate)을 기반으로 포인트 클라우드 콘텐트를 재구성할 수 있다.
도 1과 도2 에서 설명한 바와 같이 포인트 클라우드 비디오 인코더는 지오메트리 인코딩 및 어트리뷰트 인코딩을 수행할 수 있다. 지오메트리 인코딩은 어트리뷰트 인코딩보다 먼저 수행된다.
실시예들에 따른 포인트 클라우드 비디오 인코더는 좌표계 변환부(Transformation Coordinates unit, 40000), 양자화부(Quantization unit, 40001), 옥트리 분석부(Octree Analysis unit, 40002), 서페이스 어프록시메이션 분석부(Surface Approximation Analysis unit, 40003), 아리스메틱 인코더(Arithmetic Encode, 40004), 지오메트리 리컨스트럭션부(Geometry Reconstruction unit, 40005), 컬러 변환부(Color Transformation unit, 40006), 어트리뷰트 변환부(Attribute Transformation unit, 40007), RAHT(Region Adaptive Hierarchical Transform) 변환부(40008), LOD생성부( LOD Generation unit, 40009), 리프팅 변환부(Lifting Transformation unit)(40010), 계수 양자화부(Coefficient Quantization unit, 40011) 및/또는 아리스메틱 인코더(Arithmetic Encoder, 40012)를 포함한다.
좌표계 변환부(40000), 양자화부(40001), 옥트리 분석부(40002), 서페이스 어프록시메이션 분석부(40003), 아리스메틱 인코더(40004), 및 지오메트리 리컨스트럭션부(40005)는 지오메트리 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 인코딩은 옥트리 지오메트리 코딩, 다이렉트 코딩(direct coding), 트라이숩 지오메트리 인코딩(trisoup geometry encoding) 및 엔트로피 인코딩을 포함할 수 있다. 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 또는 조합으로 적용된다. 또한 지오메트리 인코딩은 위의 예시에 국한되지 않는다.
도면에 도시된 바와 같이, 실시예들에 따른 좌표계 변환부(40000)는 포지션들을 수신하여 좌표계(coordinate)로 변환한다. 예를 들어, 포지션들은 3차원 공간 (예를 들면XYZ 좌표계로 표현되는 3차원 공간 등)의 위치 정보로 변환될 수 있다. 실시예들에 따른 3차원 공간의 위치 정보는 지오메트리 정보로 지칭될 수 있다.
실시예들에 따른 양자화부(40001)는 지오메트리 정보를 양자화한다. 예를 들어, 양자화부(40001)는 전체 포인트들의 최소 위치 값(예를 들면 X축, Y축, Z축 에 대하여 각축상의 최소 값)을 기반으로 포인트들을 양자화 할 수 있다. 양자화부(40001)는 최소 위치 값과 각 포인트의 위치 값의 차이에 기 설정된 양자 스케일(quantization scale) 값을 곱한 뒤, 내림 또는 올림을 수행하여 가장 가까운 정수 값을 찾는 양자화 동작을 수행한다. 따라서 하나 또는 그 이상의 포인트들은 동일한 양자화된 포지션 (또는 포지션 값)을 가질 수 있다. 실시예들에 따른 양자화부(40001)는 양자화된 포인트들을 재구성하기 위해 양자화된 포지션들을 기반으로 복셀화(voxelization)를 수행한다. 복셀화는 3차원 공간 상의 위치정보를 표현하는 최소한의 유닛을 의미한다. 실시예들에 따른 포인트 클라우드 콘텐트(또는 3차원 포인트 클라우드 비디오)의 포인트들은 하나 또는 그 이상의 복셀(voxel)들에 포함될 수 있다. 복셀은 볼륨(Volume)과 픽셀(Pixel)의 조합어로서, 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 양자화부(40001)는 3차원 공간의 포인트들의 그룹들을 복셀들로 매칭할 수 있다. 실시예들에 따라 하나의 복셀은 하나의 포인트만 포함할 수 있다. 실시예들에 따라 하나의 복셀은 하나 또는 그 이상의 포인트들을 포함할 수 있다. 또한 하나의 복셀을 하나의 포인트로 표현하기 위하여, 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점(center point)의 포지션을 설정할 수 있다. 이 경우 하나의 복셀에 포함된 모든 포지션들의 어트리뷰트들은 통합되어(combined) 해당 복셀에 할당될(assigned)수 있다.
실시예들에 따른 옥트리 분석부(40002)는 복셀을 옥트리(octree) 구조로 나타내기 위한 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다. 옥트리 구조는 팔진 트리 구조에 기반하여 복셀에 매칭된 포인트들을 표현한다.
실시예들에 따른 서페이스 어프록시메이션 분석부(40003)는 옥트리를 분석하고, 근사화할 수 있다. 실시예들에 따른 옥트리 분석 및 근사화는 효율적으로 옥트리 및 복셀화를 제공하기 위해서 다수의 포인트들을 포함하는 영역에 대해 복셀화하기 위해 분석하는 과정이다.
실시예들에 따른 아리스메틱 인코더(40004)는 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. 인코딩의 결과로 지오메트리 비트스트림이 생성된다.
컬러 변환부(40006), 어트리뷰트 변환부(40007), RAHT 변환부(40008), LOD생성부(40009), 리프팅 변환부(40010), 계수 양자화부(40011) 및/또는 아리스메틱 인코더(40012)는 어트리뷰트 인코딩을 수행한다. 상술한 바와 같이 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들을 가질 수 있다. 실시예들에 따른 어트리뷰트 인코딩은 하나의 포인트가 갖는 어트리뷰트들에 대해 동일하게 적용된다. 다만, 하나의 어트리뷰트(예를 들면 색상)이 하나 또는 그 이상의 요소들을 포함하는 경우, 각 요소마다 독립적인 어트리뷰트 인코딩이 적용된다. 실시예들에 따른 어트리뷰트 인코딩은 컬러 변환 코딩, 어트리뷰트 변환 코딩, RAHT(Region Adaptive Hierarchical Transform) 코딩, 예측 변환(Interpolation-based hierarchical nearest-neighbour prediction-Prediction Transform) 코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 코딩을 포함할 수 있다. 포인트 클라우드 콘텐트에 따라 상술한 RAHT 코딩, 예측 변환 코딩 및 리프팅 변환 코딩은 선택적으로 사용되거나, 하나 또는 그 이상의 코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 인코딩은 상술한 예시에 국한되는 것은 아니다.
실시예들에 따른 컬러 변환부(40006)는 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 변환하는 컬러 변환 코딩을 수행한다. 예를 들어, 컬러 변환부(40006)는 색상 정보의 포맷을 변환(예를 들어 RGB에서 YCbCr로 변환)할 수 있다. 실시예들에 따른 컬러 변환부(40006)의 동작은 어트리뷰트들에 포함된 컬러값에 따라 옵셔널(optional)하게 적용될 수 있다.
실시예들에 따른 지오메트리 리컨스트럭션부(40005)는 옥트리 및/또는 근사화된 옥트리를 재구성(디컴프레션)한다. 지오메트리 리컨스트럭션부(40005)는 포인트들의 분포를 분석한 결과에 기반하여 옥트리/복셀을 재구성한다. 재구성된 옥트리/복셀은 재구성된 지오메트리(또는 복원된 지오메트리)로 호칭될 수 있다.
실시예들에 따른 어트리뷰트 변환부(40007)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 상술한 바와 같이 어트리뷰트들은 지오메트리에 종속되므로, 어트리뷰트 변환부(40007)는 재구성된 지오메트리 정보를 기반으로 어트리뷰트들을 변환할 수 있다. 예를 들어, 어트리뷰트 변환부(40007)는 복셀에 포함된 포인트의 포지션값을 기반으로 그 포지션의 포인트가 가지는 어트리뷰트를 변환할 수 있다. 상술한 바와 같이 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점의 포지션이 설정된 경우, 어트리뷰트 변환부(40007)는 하나 또는 그 이상의 포인트들의 어트리뷰트들을 변환한다. 트라이숩 지오메트리 인코딩이 수행된 경우, 어트리뷰트 변환부(40007)는 트라이숩 지오메트리 인코딩을 기반으로 어트리뷰트들을 변환할 수 있다.
어트리뷰트 변환부(40007)는 각 복셀의 중앙점의 포지션(또는 포지션 값)으로부터 특정 위치/반경 내에 이웃하고 있는 포인트들의 어트리뷰트들 또는 어트리뷰트 값들(예를 들면 각 포인트의 색상, 또는 반사율 등)의 평균값을 계산하여 어트리뷰트 변환을 수행할 수 있다. 어트리뷰트 변환부(40007)는 평균값 계산시 중앙점으로부터 각 포인트까지의 거리에 따른 가중치를 적용할 수 있다. 따라서 각 복셀은 포지션과 계산된 어트리뷰트(또는 어트리뷰트 값)을 갖게 된다.
어트리뷰트 변환부(40007)는 K-D 트리 또는 몰톤(morton) 코드를 기반으로 각 복셀의 중앙점의 포지션으로부터 특정 위치/반경 내에 존재하는 이웃 포인트들을 탐색할 수 있다. K-D 트리는 이진 탐색 트리(binary search tree)로 빠르게 최단 이웃점 탐색(Nearest Neighbor Search-NNS)이 가능하도록 point들을 위치 기반으로 관리할 수 있는 자료 구조를 지원한다. 몰톤 코드는 모든 포인트들의 3차원 포지션을 나타내는 좌표값(예를 들면 (x, y, z))을 비트값으로 나타내고, 비트들을 믹싱하여 생성된다. 예를 들어 포인트의 포지션을 나타내는 좌표값이 (5, 9, 1)일 경우 좌표값의 비트 값은 (0101, 1001, 0001)이다. 비트 값을 z, y, x 순서로 비트 인덱스에 맞춰 믹싱하면 010001000111이다. 이 값을 10진수로 나타내면 1095이 된다. 즉, 좌표값이 (5, 9, 1)인 포인트의 몰톤 코드 값은 1095이다. 어트리뷰트 변환부(40007)는 몰톤 코드 값을 기준으로 포인트들을 정렬하고depth-first traversal 과정을 통해 최단 이웃점 탐색(NNS)을 할 수 있다. 어트리뷰트 변환 동작 이후, 어트리뷰트 코딩을 위한 다른 변환 과정에서도 최단 이웃점 탐색(NNS)이 필요한 경우, K-D 트리 또는 몰톤 코드가 활용된다.
도면에 도시된 바와 같이 변환된 어트리뷰트들은 RAHT 변환부(40008) 및/또는 LOD 생성부(40009)로 입력된다.
실시예들에 따른 RAHT 변환부(40008)는 재구성된 지오메트리 정보에 기반하여 어트리뷰트 정보를 예측하는 RAHT코딩을 수행한다. 예를 들어, RAHT 변환부(40008)는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트 정보에 기반하여 옥트리의 상위 레벨에 있는 노드의 어트리뷰트 정보를 예측할 수 있다.
실시예들에 따른 LOD생성부(40009)는 LOD(Level of Detail)를 생성한다. 실시예들에 따른 LOD는 포인트 클라우드 콘텐트의 디테일을 나타내는 정도로서, LOD 값이 작을 수록 포인트 클라우드 콘텐트의 디테일이 떨어지고, LOD 값이 클 수록 포인트 클라우드 콘텐트의 디테일이 높음을 나타낸다. 포인트들을 LOD에 따라 분류될 수 있다.
실시예들에 따른 리프팅 변환부(40010)는 포인트 클라우드의 어트리뷰트들을 가중치에 기반하여 변환하는 리프팅 변환 코딩을 수행한다. 상술한 바와 같이 리프팅 변환 코딩은 선택적으로 적용될 수 있다.
실시예들에 따른 계수 양자화부(40011)은 어트리뷰트 코딩된 어트리뷰트들을 계수에 기반하여 양자화한다.
실시예들에 따른 아리스메틱 인코더(40012)는 양자화된 어트리뷰트들을 아리스메틱 코딩 에 기반하여 인코딩한다.
도 4의 포인트 클라우드 비디오 인코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 콘텐트 제공 장치에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 4의 포인트 클라우드 비디오 인코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도 4의 포인트 클라우드 비디오 인코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다. 실시예들에 따른 하나 또는 그 이상의 메모리들은 하이 스피드 랜덤 억세스 메모리를 포함할 수도 있고, 비휘발성 메모리(예를 들면 하나 또는 그 이상의 마그네틱 디스크 저장 디바이스들, 플래쉬 메모리 디바이스들, 또는 다른 비휘발성 솔리드 스테이트 메모리 디바이스들(Solid-state memory devices)등)를 포함할 수 있다.
도 5 는 실시예들에 따른 복셀의 예시를 나타낸다.
도 5는 X축, Y축, Z축의 3가지 축으로 구성된 좌표계로 표현되는 3차원 공간상에 위치한 복셀을 나타낸다. 도 4에서 설명한 바와 같이 포인트 클라우드 비디오 인코더(예를 들면 양자화부(40001) 등)은 복셀화를 수행할 수 있다. 복셀은 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 도 5는 두 개의 극점들(0,0,0) 및 (2d, 2d, 2d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(recursive subdividing)하는 옥트리 구조를 통해 생성된 복셀의 예시를 나타낸다. 하나의 복셀은 적어도 하나 이상의 포인트를 포함한다. 복셀은 복셀군(voxel group)과의 포지션 관계로부터 공간 좌표를 추정 할 수 있다. 상술한 바와 같이 복셀은 2차원 이미지/영상의 픽셀과 마찬가지로 어트리뷰트(색상 또는 반사율 등)을 가진다. 복셀에 대한 구체적인 설명은 도 4에서 설명한 바와 동일하므로 생략한다.
도 6은 실시예들에 따른 옥트리 및 오큐판시 코드 (occupancy code)의 예시를 나타낸다.
도 1 내지 도 4에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템(포인트 클라우드 비디오 인코더(10002)) 또는 포인트 클라우드 비디오 인코더의 옥트리 분석부(40002))는 복셀의 영역 및/또는 포지션을 효율적으로 관리하기 위하여 옥트리 구조 기반의 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다.
도 6의 상단은 옥트리 구조를 나타낸다. 실시예들에 따른 포인트 클라우드 콘텐트의 3차원 공간은 좌표계의 축들(예를 들면 X축, Y축, Z축)로 표현된다. 옥트리 구조는 두 개의 극점들(0,0,0) 및 (2d, 2d, 2d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(recursive subdividing)하여 생성된다. 2d는 포인트 클라우드 콘텐트(또는 포인트 클라우드 비디오)의 전체 포인트들을 감싸는 가장 작은 바운딩 박스를 구성하는 값으로 설정될 수 있다. d는 옥트리의 깊이(depth)를 나타낸다. d값은 다음의 수학식 1에 따라 결정된다. 하기 수학식 1에서 (xint n, yint n, zint n)는 양자화된 포인트들의 포지션들(또는 포지션 값들)을 나타낸다.
[수학식 1]
Figure PCTKR2022003081-appb-img-000001
도 6의 상단의 중간에 도시된 바와 같이, 분할에 따라 전체 3차원 공간은 8개의 공간들로 분할될 수 있다. 분할된 각 공간은 6개의 면들을 갖는 큐브로 표현된다. 도 6의 상단의 오른쪽에 도시된 바와 같이 8개의 공간들 각각은 다시 좌표계의 축들(예를 들면 X축, Y축, Z축)을 기반으로 분할된다. 따라서 각 공간은 다시 8개의 작은 공간들로 분할된다. 분할된 작은 공간 역시 6개의 면들을 갖는 큐브로 표현된다. 이와 같은 분할 방식은 옥트리의 리프 노드(leaf node)가 복셀이 될 때까지 적용된다.
도 6의 하단은 옥트리의 오큐판시 코드를 나타낸다. 옥트리의 오큐판시 코드는 하나의 공간이 분할되어 발생되는 8개의 분할된 공간들 각각이 적어도 하나의 포인트를 포함하는지 여부를 나타내기 위해 생성된다. 따라서 하나의 오큐판시 코드는 8개의 자식 노드(child node)들로 표현된다. 각 자식 노드는 분할된 공간의 오큐판시를 나타내며, 자식 노드는 1비트의 값을 갖는다. 따라서 오큐판시 코드는 8 비트 코드로 표현된다. 즉, 자식 노드에 대응하는 공간에 적어도 하나의 포인트가 포함되어 있으면 해당 노드는 1값을 갖는다. 자식 노드에 대응하는 공간에 포인트가 포함되어 있지 않으면 (empty), 해당 노드는 0값을 갖는다. 도 6에 도시된 오큐판시 코드는 00100001이므로 8개의 자식 노드 중 3번째 자식 노드 및 8번째 자식 노드에 대응하는 공간들은 각각 적어도 하나의 포인트를 포함함을 나타낸다. 도면에 도시된 바와 같이 3번째 자식 노드 및 8번째 자식 노드는 각각 8개의 자식 노드를 가지며, 각 자식 노드는 8비트의 오큐판시 코드로 표현된다. 도면은 3번째 자식 노드의 오큐판시 코드가 10000111이고, 8번째 자식 노드의 오큐판시 코드가 01001111임을 나타낸다. 실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 아리스메틱 인코더(40004))는 오큐판시 코드를 엔트로피 인코딩할 수 있다. 또한 압축 효율을 높이기 위해 포인트 클라우드 비디오 인코더는 오큐판시 코드를 인트라/인터 코딩할 수 있다. 실시예들에 따른 수신 장치(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10006))는 오큐판시 코드를 기반으로 옥트리를 재구성한다.
실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 옥트리 분석부(40002))는 포인트들의 포지션들을 저장하기 위해 복셀화 및 옥트리 코딩을 수행할 수 있다. 하지만 3차원 공간 내 포인트들이 언제나 고르게 분포하는 것은 아니므로, 포인트들이 많이 존재하지 않는 특정 영역이 존재할 수 있다. 이 경우, 3차원 공간 전체에 대해 복셀화를 수행하는 것은 비효율 적이다. 예를 들어 특정 영역에 포인트가 거의 존재하지 않는다면, 해당 영역까지 복셀화를 수행할 필요가 없다.
따라서 실시예들에 따른 포인트 클라우드 비디오 인코더는 상술한 특정 영역(또는 옥트리의 리프 노드를 제외한 노드)에 대해서는 복셀화를 수행하지 않고, 특정 영역에 포함된 포인트들의 포지션을 직접 코딩하는 다이렉트 코딩(Direct coding)을 수행할 수 있다. 실시예들에 따른 다이렉트 코딩 포인트의 좌표들은 다이렉트 코딩 모드(Direct Coding Mode, DCM)으로 호칭된다. 또한 실시예들에 따른 포인트 클라우드 비디오 인코더는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩(Trisoup geometry encoding)을 수행할 수 있다. 트라이숩 지오메트리 인코딩은 오브젝트의 표현을 삼각형 메쉬(triangle mesh)의 시리즈로 표현하는 지오메트리 인코딩이다. 따라서 포인트 클라우드 비디오 디코더는 메쉬 표면으로부터 포인트 클라우드를 생성할 수 있다. 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 수행될 수 있다. 또한 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 옥트리 지오메트리 코딩(또는 옥트리 코딩)과 결합되어 수행될 수 있다.
다이렉트 코딩(Direct coding)을 수행하기 위해서는 다이렉트 코딩을 적용하기 위한 직접 모드(direct mode) 사용 옵션이 활성화 되어 있어야 하며, 다이렉트 코딩을 적용할 노드는 리프 노드가 아니고, 특정 노드 내에 한계치(threshold) 이하의 포인트들이 존재해야 한다. 또한 다이렉트 코딩의 대상이 되는 전체 포인트들의 개수는 기설정된 한계값을 넘어서는 안된다. 위의 조건이 만족되면, 실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들어, 아리스메틱 인코더(40004))는 포인트들의 포지션들(또는 포지션 값들)을 엔트로피 코딩할 수 있다.
실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))는 옥트리의 특정 레벨(레벨은 옥트리의 깊이 d보다는 작은 경우)을 정하고, 그 레벨부터는 표면 모델을 사용하여 노드 영역내의 포인트의 포지션을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다(트라이숩 모드). 실시예들에 따른 포인트 클라우드 비디오 인코더는 트라이숩 지오메트리 인코딩을 적용할 레벨을 지정할 수 있다. 예를 들어, 지정된 레벨이 옥트리의 깊이와 같으면 포인트 클라우드 비디오 인코더는 트라이숩 모드로 동작하지 않는다. 즉, 실시예들에 따른 포인트 클라우드 비디오 인코더는 지정된 레벨이 옥트리의 깊이값 보다 작은 경우에만 트라이숩 모드로 동작할 수 있다. 실시예들에 따른 지정된 레벨의 노드들의 3차원 정육면체 영역을 블록(block)이라 호칭한다. 하나의 블록은 하나 또는 그 이상의 복셀들을 포함할 수 있다. 블록 또는 복셀은 브릭(brick)에 대응될 수도 있다. 각 블록 내에서 지오메트리는 표면(surface)으로 표현된다. 실시예들에 따른 표면은 최대 한번 블록의 각 엣지(edge, 모서리)와 교차할 수 있다.
하나의 블록은 12개의 엣지들을 가지므로, 하나의 블록 내 적어도 12개의 교차점들이 존재한다. 각 교차점은 버텍스(vertex, 정점 또는 꼭지점)라 호칭된다. 엣지를 따라 존재하는 버텍스은 해당 엣지를 공유하는 모든 블록들 중 그 엣지에 인접한 적어도 하나의 오큐파이드 복셀(occupied voxel)이 있는 경우 감지된다. 실시예들에 따른 오큐파이드 복셀은 포인트를 포함하는 복셀을 의미한다. 엣지를 따라 검출된 버텍스의 포지션은 해당 엣지를 공유하는 모든 블록들 중 해당 엣지에 인접한 모든 복셀들의 엣지에 따른 평균 포지션(the average position along the edge of all voxels)이다.
버텍스가 검출되면 실시예들에 따른 포인트 클라우드 비디오 인코더는 엣지의 시작점(x, y, z), 엣지의 방향벡터(
Figure PCTKR2022003081-appb-img-000002
x,
Figure PCTKR2022003081-appb-img-000003
y,
Figure PCTKR2022003081-appb-img-000004
z), 버텍스 위치 값 (엣지 내의 상대적 위치 값)들을 엔트로피 코딩할 수 있다. 트라이숩 지오메트리 인코딩이 적용된 경우, 실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 지오메트리 리컨스트럭션부(40005))는 삼각형 재구성(triangle reconstruction), 업-샘플링(up-sampling), 복셀화 과정을 수행하여 복원된 지오메트리(재구성된 지오메트리)를 생성할 수 있다.
블록의 엣지에 위치한 버텍스들은 블록을 통과하는 표면(surface)를 결정한다. 실시예들에 따른 표면은 비평면 다각형이다. 삼각형 재구성 과정은 엣지의 시작점, 엣지의 방향 벡터와 버텍스의 위치값을 기반으로 삼각형으로 나타내는 표면을 재구성한다. 삼각형 재구성 과정은 다음의 수학식 2와 같다. ①각 버텍스들의 중심(centroid)값을 계산하고, ②각 버텍스값에서 중심 값을 뺀 값들에 ③자승을 수행하고 그 값을 모두 더한 값을 구한다.
[수학식 2]
Figure PCTKR2022003081-appb-img-000005
그리고나서, 더해진 값의 최소값을 구하고, 최소값이 있는 축에 따라서 프로젝션 (Projection, 투영) 과정을 수행한다. 예를 들어 x 요소(element)가 최소인 경우, 각 버텍스를 블록의 중심을 기준으로 x축으로 프로젝션 시키고, (y, z) 평면으로 프로젝션 시킨다. (y, z)평면으로 프로젝션 시키면 나오는 값이 (ai, bi)라면 atan2(bi, ai)를 통해 θ값을 구하고, θ값을 기준으로 버텍스들(vertices)을 정렬한다. 하기의 표 1은 버텍스들의 개수에 따라 삼각형을 생성하기 위한 버텍스들의 조합을 나타낸다. 버텍스들은 1부터 n까지의 순서로 정렬된다. 하기 표 1은 4개의 버텍스들에 대하여, 버텍스들의 조합에 따라 두 개의 삼각형들이 구성될 수 있음을 나타낸다. 첫번째 삼각형은 정렬된 버텍스들 중 1, 2, 3번째 버텍스들로 구성되고, 두번째 삼각형은 정렬된 버텍스들 중 3, 4, 1번째 버텍스들로 구성될 수 있다.
표 1. Triangles formed from vertices ordered 1,…, n
n Triangles
3 (1,2,3)
4 (1,2,3), (3,4,1)
5 (1,2,3), (3,4,5), (5,1,3)
6 (1,2,3), (3,4,5), (5,6,1), (1,3,5)
7 (1,2,3), (3,4,5), (5,6,7), (7,1,3), (3,5,7)
8 (1,2,3), (3,4,5), (5,6,7), (7,8,1), (1,3,5), (5,7,1)
9 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,1,3), (3,5,7), (7,9,3)
10 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,1), (1,3,5), (5,7,9), (9,1,5)
11 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,1,3), (3,5,7), (7,9,11), (11,3,7)
12 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,12,1), (1,3,5), (5,7,9), (9,11,1), (1,5,9)
업샘플링 과정은 삼각형의 엣지를 따라서 중간에 점들을 추가하여 복셀화 하기 위해서 수행된다. 업샘플링 요소 값(upsampling factor)과 블록의 너비를 기준으로 추가 점들을 생성한다. 추가점은 리파인드 버텍스(refined vertices)라고 호칭된다. 실시예들에 따른 포인트 클라우드 비디오 인코더는 리파인드 버텍스들을 복셀화할 수 있다. 또한 포인트 클라우드 비디오 인코더는 복셀화 된 포지션(또는 포지션 값)을 기반으로 어트리뷰트 인코딩을 수행할 수 있다.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.
포인트 클라우드 비디오의 압축 효율을 증가시키기 위하여 실시예들에 따른 포인트 클라우드 비디오 인코더는 콘텍스트 어댑티브 아리스메틱 (context adaptive arithmetic) 코딩을 기반으로 엔트로피 코딩을 수행할 수 있다.
도 1 내지 도 6에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템 또는 도 2의 포인트 클라우드 비디오 인코더(10002) 또는 도 4의 포인트 클라우드 비디오 인코더 또는 아리스메틱 인코더(40004)는 오큐판시 코드를 곧바로 엔트로피 코딩할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템 또는 포인트 클라우드 비디오 인코더는 현재 노드의 오큐판시 코드와 이웃 노드들의 오큐판시를 기반으로 엔트로피 인코딩(인트라 인코딩)을 수행하거나, 이전 프레임의 오큐판시 코드를 기반으로 엔트로피 인코딩(인터 인코딩)을 수행할 수 있다. 실시예들에 따른 프레임은 동일한 시간에 생성된 포인트 클라우드 비디오의 집합을 의미한다. 실시예들에 따른 인트라 인코딩/인터 인코딩의 압축 효율은 참조하는 이웃 노드들의 개수에 따라 달라질 수 있다. 비트가 커지면 복잡해지지만 한쪽으로 치우치게 만들어서 압축 효율이 높아질 수 있다. 예를 들어 3-bit context를 가지면, 2의 3승인 = 8가지 방법으로 코딩 해야 한다. 나누어 코딩을 하는 부분은 구현의 복잡도에 영향을 준다. 따라서 압축의 효율과 복잡도의 적정 수준을 맞출 필요가 있다.
도 7은 이웃 노드들의 오큐판시를 기반으로 오큐판시 패턴을 구하는 과정을 나타낸다. 실시예들에 따른 포인트 클라우드 비디오 인코더는 옥트리의 각 노드의 이웃 노드들의 오큐판시(occupancy)를 판단하고 이웃 노드 패턴(neighbor pattern) 값을 구한다. 이웃 노드 패턴은 해당 노드의 오큐판시 패턴을 추론하기 위해 사용된다. 도 7의 왼쪽은 노드에 대응하는 큐브(가운데 위치한 큐브) 및 해당 큐브와 적어도 하나의 면을 공유하는 6개의 큐브들(이웃 노드들)을 나타낸다. 도면에 도시된 노드들은 같은 뎁스(깊이)의 노드들이다. 도면에 도시된 숫자는 6개의 노드들 각각과 연관된 가중치들(1, 2, 4, 8, 16, 32, 등)을 나타낸다. 각 가중치는 이웃 노드들의 위치에 따라 순차적으로 부여된다.
도 7의 오른쪽은 이웃 노드 패턴 값을 나타낸다. 이웃 노드 패턴 값은 오큐파이드 이웃 노드(포인트를 갖는 이웃 노드)의 가중치가 곱해진 값들의 합이다. 따라서 이웃 노드 패턴 값은 0에서 63까지의 값을 갖는다. 이웃 노드 패턴 값이 0 인 경우, 해당 노드의 이웃 노드 중 포인트를 갖는 노드(오큐파이드 노드)가 없음을 나타낸다. 이웃 노드 패턴 값이 63인 경우, 이웃 노드들이 전부 오큐파이드 노드들임을 나타낸다. 도면에 도시된 바와 같이 가중치1, 2, 4, 8가 부여된 이웃 노드들은 오큐파이드 노드들이므로, 이웃 노드 패턴 값은 1, 2, 4, 8을 더한 값인 15이다. 포인트 클라우드 비디오 인코더는 이웃 노드 패턴 값에 따라 코딩을 수행할 수 있다(예를 들어 이웃 노드 패턴 값이 63인 경우, 64가지의 코딩을 수행). 실시예들에 따라 포인트 클라우드 비디오 인코더는 이웃 노드 패턴 값을 변경 (예를 들면 64를 10 또는 6으로 변경하는 테이블을 기반으로) 하여 코딩의 복잡도를 줄일 수 있다.
도 8은 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 1 내지 도 7에서 설명한 바와 같이, 어트리뷰트 인코딩이 수행되기 전 인코딩된 지오메트리는 재구성(디컴프레션) 된다. 다이렉트 코딩이 적용된 경우, 지오메트리 재구성 동작은 다이렉트 코딩된 포인트들의 배치를 변경하는 것을 포함할 수 있다(예를 들면 다이렉트 코딩된 포인트들을 포인트 클라우드 데이터의 앞쪽에 배치). 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 재구성 과정은 삼각형 재구성, 업샘플링, 복셀화 과정을 어트리뷰트는 지오메트리에 종속되므로, 어트리뷰트 인코딩은 재구성된 지오메트리를 기반으로 수행된다.
포인트 클라우드 비디오 인코더(예를 들면 LOD 생성부(40009))는 포인트들을 LOD별로 분류(reorganization) 또는 그룹핑(grouping) 할 수 있다. 도 8은 LOD에 대응하는 포인트 클라우드 콘텐트를 나타낸다. 도 8의 가장 왼쪽은 오리지널 포인트 클라우드 콘텐트를 나타낸다. 도 8의 왼쪽에서 두번째 그림은 가장 낮은 LOD의 포인트들의 분포를 나타내며, 도 8의 가장 오른쪽 그림은 가장 높은 LOD의 포인트들의 분포를 나타낸다. 즉, 가장 낮은 LOD의 포인트들은 드문드문(sparse) 분포하며, 가장 높은 LOD의 포인트들은 촘촘히 분포한다. 즉, 도 8의 하단에 표시된 화살표 방향에 따라 LOD가 증가할수록 포인트들 간의 간격(또는 거리)는 더 짧아진다.
도 9는 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 1 내지 도 8에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템, 또는 포인트 클라우드 비디오 인코더(예를 들면 도 2의 포인트 클라우드 비디오 인코더(10002), 도 4의 포인트 클라우드 비디오 인코더, 또는 LOD 생성부(40009))는 LOD를 생성할 수 있다. LOD는 포인트들을 설정된 LOD 거리 값(또는 유클리디안 디스턴스(Euclidean Distance)의 세트)에 따라 리파인먼트 레벨들(refinement levels)의 세트로 재정열(reorganize)하여 생성된다. LOD 생성 과정은 포인트 클라우드 비디오 인코더뿐만 아니라 포인트 클라우드 비디오 디코더에서도 수행된다.
도 9의 상단은 3차원 공간에 분포된 포인트 클라우드 콘텐트의 포인트들의 예시(P0내지 P9)를 나타낸다. 도 9의 오리지널 오더(Original order)는 LOD 생성 전 포인트들 P0내지 P9의 순서를 나타낸다. 도 9의 LOD 기반 오더 (LOD based order)는 LOD 생성에 따른 포인트들의 순서를 나타낸다. 포인트들은 LOD별 재정열된다. 또한 높은 LOD는 낮은 LOD에 속한 포인트들을 포함한다. 도 9에 도시된 바와 같이 LOD0는 P0, P5, P4 및 P2를 포함한다. LOD1은 LOD0의 포인트들과 P1, P6 및 P3를 포함한다. LOD2는 LOD0의 포인트들, LOD1의 포인트들 및 P9, P8 및 P7을 포함한다.
도 4에서 설명한 바와 같이 실시예들에 따른 포인트 클라우드 비디오 인코더는 LOD 기반의 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩을 선택적으로 또는 조합하여 수행할 수 있다.
실시예들에 따른 포인트 클라우드 비디오 인코더는 포인트들에 대한 예측기(predictor)를 생성하여 각 포인트의 예측 어트리뷰트(또는 예측 어트리뷰트값)을 설정하기 위한 LOD 기반의 예측 변환 코딩을 수행할 수 있다. 즉, N개의 포인트들에 대하여 N개의 예측기들이 생성될 수 있다. 실시예들에 따른 예측기는 각 포인트의 LOD 값과 LOD별 설정된 거리 내에 존재하는 이웃 포인트들에 대한 인덱싱 정보 및 이웃 포인트들까지의 거리 값을 기반으로 가중치(=1/거리) 값을 계산할 수 있다.
실시예들에 따른 예측 어트리뷰트(또는 어트리뷰트값)은 각 포인트의 예측기에 설정된 이웃 포인트들의 어트리뷰트들(또는 어트리뷰트 값들, 예를 들면 색상, 반사율 등)에 각 이웃 포인트까지의 거리를 기반으로 계산된 가중치(또는 가중치값)을 곱한 값의 평균값으로 설정된다. 실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 계수 양자화부(40011)는 해당 포인트의 어트리뷰트(즉, 오리지날 어트리뷰트 값)에서 해당 예측 어트리뷰트(어트리뷰트값)을 뺀 해당 포인트의 잔여값(residual, 잔여 어트리뷰트, 잔여 어트리뷰트값, 어트리뷰트 예측 잔여값, 예측 에러 어트리뷰트 값 등으로 호칭할 수 있다)을 양자화(quantization) 및 역양자화(inverse quantization)할 수 있다. 잔여 어트리뷰트 값에 대해 수행되는 송신 디바이스의 양자화 과정은 표 2와 같다. 그리고 표 2와 같이 양자화가 이루어진 잔여 어트리뷰트 값에 대해 수행되는 수신 디바이스의 역 양자화 과정은 표 3과 같다.
int PCCQuantization(int value, int quantStep) {
if( value >=0) {
return floor(value / quantStep + 1.0 / 3.0);
} else {
return -floor(-value / quantStep + 1.0 / 3.0);
}
}
int PCCInverseQuantization(int value, int quantStep) {
if( quantStep ==0) {
return value;
} else {
return value * quantStep;
}
}
실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 아리스메틱 인코더(40012))는 각 포인트의 예측기에 이웃한 포인트들이 있는 경우, 상술한 바와 같이 양자화 및 역양자화된 잔여(residual) 어트리뷰트 값을 엔트로피 코딩 할 수 있다. 실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 아리스메틱 인코더(40012))는 각 포인트의 예측기에 이웃한 포인트들이 없으면 상술한 과정을 수행하지 않고 해당 포인트의 어트리뷰트들을 엔트로피 코딩할 수 있다.
실시예들에 따른 포인트 클라우드 비디오 인코더 (예를 들면 리프팅 변환부(40010))는 각 포인트의 예측기를 생성하고, 예측기에 계산된 LOD를 설정 및 이웃 포인트들을 등록하고, 이웃 포인트들까지의 거리에 따른 가중치를 설정하여 리프팅 변환 코딩을 수행할 수 있다. 실시예들에 따른 리프팅 변환 코딩은 상술한 LOD 기반의 예측 변환 코딩과 유사하나, 어트리뷰트값에 가중치를 누적 적용한다는 점에서 차이가 있다. 실시예들에 따른 어트리뷰트값에 가중치를 누적 적용하는 과정은 다음과 같다.
1) 각 포인트의 가중치 값을 저장하는 배열 QW(QuantizationWieght)를 생성한다. QW의 모든 요소들의 초기값은 1.0이다. 예측기에 등록된 이웃 노드의 예측기 인덱스의 QW 값에 현재 포인트의 예측기의 가중치를 곱한 값을 더한다.
2) 리프트 예측 과정: 예측된 어트리뷰트 값을 계산하기 위하여 포인트의 어트리뷰트 값에 가중치를 곱한 값을 기존 어트리뷰트값에서 뺀다.
3) 업데이트웨이트(updateweight) 및 업데이트(update)라는 임시 배열들을 생성하고 임시 배열들을 0으로 초기화한다.
4) 모든 예측기에 대해서 계산된 가중치에 예측기 인덱스에 해당하는 QW에 저장된 가중치를 추가로 곱해서 산출된 가중치를 업데이트웨이트 배열에 이웃 노드의 인덱스로 누적으로 합산한다. 업데이트 배열에는 이웃 노드의 인덱스의 어트리뷰트 값에 산출된 가중치를 곱한 값을 누적 합산한다.
5) 리프트 업데이트 과정: 모든 예측기에 대해서 업데이트 배열의 어트리뷰트 값을 예측기 인덱스의 업데이트웨이트 배열의 가중치 값으로 나누고, 나눈 값에 다시 기존 어트리뷰트 값을 더한다.
6) 모든 예측기에 대해서, 리프트 업데이트 과정을 통해 업데이트된 어트리뷰트 값에 리프트 예측 과정을 통해 업데이트 된(QW에 저장된) 가중치를 추가로 곱하여 예측 어트리뷰트 값을 산출한다. 실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 계수 양자화부(40011))는 예측 어트리뷰트 값을 양자화한다. 또한 포인트 클라우드 비디오 인코더(예를 들면 아리스메틱 인코더(40012))는 양자화된 어트리뷰트 값을 엔트로피 코딩한다.
실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 RAHT 변환부(40008))는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트를 사용하여 상위 레벨의 노드들의 어트리뷰트를 에측하는 RAHT 변환 코딩을 수행할 수 있다. RAHT 변환 코딩은 옥트리 백워드 스캔을 통한 어트리뷰트 인트라 코딩의 예시이다. 실시예들에 따른 포인트 클라우드 비디오 인코더는 복셀에서 전체 영역으로 스캔하고, 각 스텝에서 복셀을 더 큰 블록으로 합치면서 루트 노드까지의 병합 과정을 반복수행한다. 실시예들에 따른 병합 과정은 오큐파이드 노드에 대해서만 수행된다. 엠티 노드(empty node)에 대해서는 병합 과정이 수행되지 않으며, 엠티 노드의 바로 상위 노드에 대해 병합 과정이 수행된다.
하기의 수학식 3은 RAHT 변환 행렬을 나타낸다. glx,y,z 는 레벨 l에서의 복셀들의 평균 어트리뷰트 값을 나타낸다. glx,y,z는 gl+1 2x,y,z와 gl+1 2x+1,y,z로부터 계산될 수 있다. gl 2x,y,z 와 gl 2x+1,y,z 의 가중치를 w1=wl 2x,y,z과 w2=wl 2x+1,y,z 이다.
[수학식 3]
Figure PCTKR2022003081-appb-img-000006
gl-1 x,y,z는 로-패스(low-pass) 값으로, 다음 상위 레벨에서의 병합 과정에서 사용된다. hl-1 x,y,z은 하이패스 계수(high-pass coefficients)이며, 각 스텝에서의 하이패스 계수들은 양자화되어 엔트로피 코딩 된다(예를 들면 아리스메틱 인코더(40012)의 인코딩). 가중치는 wl-1 x,y,z = wl 2x,y,z + wl 2x+1,y,z로 계산된다. 루트 노드는 마지막 g1 0,0,0 과 g1 0,0,1을 통해서 다음의 수학식 4와 같이 생성된다.
[수학식 4]
Figure PCTKR2022003081-appb-img-000007
gDC값 또한 하이패스 계수와 같이 양자화되어 엔트로피 코딩된다.
도 10은 실시예들에 따른 포인트 클라우드 비디오 디코더(Point Cloud Video Decoder)의 예시를 나타낸다.
도 10에 도시된 포인트 클라우드 비디오 디코더는 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006) 예시로서, 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006)의 동작 등과 동일 또는 유사한 동작을 수행할 수 있다. 도면이 도시된 바와 같이 포인트 클라우드 비디오 디코더는 하나 또는 그 이상의 비트스트림(bitstream)들에 포함된 지오메트리 비트스트림(geometry bitstream) 및 어트리뷰트 비트스트림(attribute bitstream)을 수신할 수 있다. 포인트 클라우드 비디오 디코더는 지오메트리 디코더(geometry decoder) 및 어트리뷰트 디코더(attribute decoder)를 포함한다. 지오메트리 디코더는 지오메트리 비트스트림에 대해 지오메트리 디코딩을 수행하여 디코딩된 지오메트리(decoded geometry)를 출력한다. 어트리뷰트 디코더는 디코딩된 지오메트리를 기반으로 어트리뷰트 비트스트림에 대해 어트리뷰트 디코딩을 수행하여 디코딩된 어트리뷰트들(decoded attributes)을 출력한다. 디코딩된 지오메트리 및 디코딩된 어트리뷰트들은 포인트 클라우드 콘텐트를 복원(decoded point cloud)하는데 사용된다.
도 11은 실시예들에 따른 포인트 클라우드 비디오 디코더(Point Cloud Video Decoder)의 예시를 나타낸다.
도 11에 도시된 포인트 클라우드 비디오 디코더는 도 10에서 설명한 포인트 클라우드 비디오 디코더의 상세 예시로서, 도 1 내지 도 9에서 설명한 포인트 클라우드 비디오 인코더의 인코딩 동작의 역과정인 디코딩 동작을 수행할 수 있다.
도 1 및 도 10에서 설명한 바와 같이 포인트 클라우드 비디오 디코더는 지오메트리 디코딩 및 어트리뷰트 디코딩을 수행할 수 있다. 지오메트리 디코딩은 어트리뷰트 디코딩보다 먼저 수행된다.
실시예들에 따른 포인트 클라우드 비디오 디코더는 아리스메틱 디코더(arithmetic decoder, 11000), 옥트리 합성부(octree synthesis unit, 11001), 서페이스 오프록시메이션 합성부(surface approximation synthesis unit, 11002), 지오메트리 리컨스트럭션부(geometry reconstruction unit, 11003), 좌표계 역변환부(coordinates inverse transformation unit, 11004), 아리스메틱 디코더(arithmetic decoder, 11005), 역양자화부(inverse quantization unit, 11006), RAHT변환부(11007), LOD생성부(LOD generation unit, 11008), 인버스 리프팅부(Inverse lifting unit, 11009), 및/또는 컬러 역변환부(color inverse transformation unit, 11010)를 포함한다.
아리스메틱 디코더(11000), 옥트리 합성부(11001), 서페이스 오프록시메이션 합성부(11002), 지오메트리 리컨스트럭션부(11003), 좌표계 역변환부(11004)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 다이렉트 디코딩(direct decoding) 및 트라이숩 지오메트리 디코딩(trisoup geometry decoding)을 포함할 수 있다. 다이렉트 디코딩 및 트라이숩 지오메트리 디코딩은 선택적으로 적용된다. 또한 지오메트리 디코딩은 위의 예시에 국한되지 않으며, 도 1 내지 도 9에서 설명한 지오메트리 인코딩의 역과정으로 수행된다.
실시예들에 따른 아리스메틱 디코더(11000)는 수신한 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩한다. 아리스메틱 디코더(11000)의 동작은 아리스메틱 인코더(40004)의 역과정에 대응한다.
실시예들에 따른 옥트리 합성부(11001)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 생성할 수 있다. 오큐판시 코드에 대한 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 같다.
실시예들에 따른 서페이스 오프록시메이션 합성부(11002)는 트라이숩 지오메트리 인코딩이 적용된 경우, 디코딩된 지오메트리 및/또는 생성된 옥트리에 기반하여 서페이스를 합성할 수 있다.
실시예들에 따른 지오메트리 리컨스트럭션부(11003)는 서페이스 및 또는 디코딩된 지오메트리에 기반하여 지오메트리를 재생성할 수 있다. 도 1 내지 도 9에서 설명한 바와 같이, 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 적용된다. 따라서 지오메트리 리컨스트럭션부(11003)는 다이렉트 코딩이 적용된 포인트들의 포지션 정보들을 직접 가져와서 추가한다. 또한, 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 리컨스트럭션부(11003)는 지오메트리 리컨스트럭션부(40005)의 재구성 동작, 예를 들면 삼각형 재구성, 업-샘플링, 복셀화 동작을 수행하여 지오메트리를 복원할 수 있다. 구체적인 내용은 도 6에서 설명한 바와 동일하므로 생략한다. 복원된 지오메트리는 어트리뷰트들을 포함하지 않는 포인트 클라우드 픽쳐 또는 프레임을 포함할 수 있다.
실시예들에 따른 좌표계 역변환부(11004)는 복원된 지오메트리를 기반으로 좌표계를 변환하여 포인트들의 포지션들을 획득할 수 있다.
아리스메틱 디코더(11005), 역양자화부(11006), RAHT 변환부(11007), LOD생성부(11008), 인버스 리프팅부(11009), 및/또는 컬러 역변환부(11010)는 도 10에서 설명한 어트리뷰트 디코딩을 수행할 수 있다. 실시예들에 따른 어트리뷰트 디코딩은 RAHT(Region Adaptive Hierarchical Transform) 디코딩, 예측 변환(Interpolation-based hierarchical nearest-neighbour prediction-Prediction Transform) 디코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 디코딩을 포함할 수 있다. 상술한 3가지의 디코딩들은 선택적으로 사용되거나, 하나 또는 그 이상의 디코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 디코딩은 상술한 예시에 국한되는 것은 아니다.
실시예들에 따른 아리스메틱 디코더(11005)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩한다.
실시예들에 따른 역양자화부(11006)는 디코딩된 어트리뷰트 비트스트림 또는 디코딩 결과 확보한 어트리뷰트에 대한 정보를 역양자화(inverse quantization)하고 역양자화된 어트리뷰트들(또는 어트리뷰트 값들)을 출력한다. 역양자화는 포인트 클라우드 비디오 인코더의 어트리뷰트 인코딩에 기반하여 선택적으로 적용될 수 있다.
실시예들에 따라 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 상술한 바와 같이 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 포인트 클라우드 비디오 인코더의 인코딩에 따라 그에 대응하는 디코딩 동작을 선택적으로 수행할 수 있다.
실시예들에 따른 컬러 역변환부(11010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 컬러 역변환부(11010)의 동작은 포인트 클라우드 비디오 인코더의 컬러 변환부(40006)의 동작에 기반하여 선택적으로 수행될 수 있다.
도 11의 포인트 클라우드 비디오 디코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 콘텐트 제공 시스템에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 11의 포인트 클라우드 비디오 디코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도11의 포인트 클라우드 비디오 디코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다.
도 12는 실시예들에 따른 전송 장치의 예시이다.
도 12에 도시된 전송 장치는 도 1의 전송장치(10000) (또는 도 4의 포인트 클라우드 비디오 인코더)의 예시이다. 도 12에 도시된 전송 장치는 도 1 내지 도 9에서 설명한 포인트 클라우드 비디오 인코더의 동작들 및 인코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다. 실시예들에 따른 전송 장치는 데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), 아리스메틱 (Arithmetic) 코더(12006), 메타데이터 처리부(12007), 색상 변환 처리부(12008), 어트리뷰트 변환 처리부(또는 속성 변환 처리부)(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011) 및/또는 전송 처리부(12012)를 포함할 수 있다.
실시예들에 따른 데이터 입력부(12000)는 포인트 클라우드 데이터를 수신 또는 획득한다. 데이터 입력부(12000)는 포인트 클라우드 비디오 획득부(10001)의 동작 및/또는 획득 방법(또는 도2에서 설명한 획득과정(20000))과 동일 또는 유사한 동작 및/또는 획득 방법을 수행할 수 있다.
데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), Arithmetic 코더(12006)는 지오메트리 인코딩을 수행한다. 실시예들에 따른 지오메트리 인코딩은 도 1 내지 도 9에서 설명한 지오메트리 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 양자화 처리부(12001)는 지오메트리(예를 들면 포인트들의 위치값, 또는 포지션값)을 양자화한다. 양자화 처리부(12001)의 동작 및/또는 양자화는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 양자화와 동일 또는 유사하다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 복셀화 처리부(12002)는 양자화된 포인트들의 포지션 값을 복셀화한다. 복셀화 처리부(120002)는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 복셀화 과정과 동일 또는 유사한 동작 및/또는 과정을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 옥트리 오큐판시 코드 생성부(12003)는 복셀화된 포인트들의 포지션들을 옥트리 구조를 기반으로 옥트리 코딩을 수행한다. 옥트리 오큐판시 코드 생성부(12003)는 오큐판시 코드를 생성할 수 있다. 옥트리 오큐판시 코드 생성부(12003)는 도 4 및 도 6에서 설명한 포인트 클라우드 비디오 인코더 (또는 옥트리 분석부(40002))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 표면 모델 처리부(12004)는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다. 포면 모델 처리부(12004)는 도 4 에서 설명한 포인트 클라우드 비디오 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 인트라/인터 코딩 처리부(12005)는 포인트 클라우드 데이터를 인트라/인터 코딩할 수 있다. 인트라/인터 코딩 처리부(12005)는 도 7에서 설명한 인트라/인터 코딩과 동일 또는 유사한 코딩을 수행할 수 있다. 구체적인 설명은 도 7에서 설명한 바와 동일하다. 실시예들에 따라 인트라/인터 코딩 처리부(12005)는 아리스메틱 코더(12006)에 포함될 수 있다.
실시예들에 따른 아리스메틱 코더(12006)는 포인트 클라우드 데이터의 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. 아리스메틱 코더(12006)는 아리스메틱 인코더(40004)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 메타데이터 처리부(12007)는 포인트 클라우드 데이터에 관한 메타데이터, 예를 들어 설정 값 등을 처리하여 지오메트리 인코딩 및/또는 어트리뷰트 인코딩 등 필요한 처리 과정에 제공한다. 또한 실시예들에 따른 메타데이터 처리부(12007)는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 관련된 시그널링 정보를 생성 및/또는 처리할 수 있다. 실시예들에 따른 시그널링 정보는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 별도로 인코딩처리될 수 있다. 또한 실시예들에 따른 시그널링 정보는 인터리빙 될 수도 있다.
색상 변환 처리부(12008), 어트리뷰트 변환 처리부(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011)는 어트리뷰트 인코딩을 수행한다. 실시예들에 따른 어트리뷰트 인코딩은 도 1 내지 도 9에서 설명한 어트리뷰트 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 색상 변환 처리부(12008)는 어트리뷰트들에 포함된 색상값을 변환하는 색상 변환 코딩을 수행한다. 색상 변환 처리부(12008)는 재구성된 지오메트리를 기반으로 색상 변환 코딩을 수행할 수 있다. 재구성된 지오메트리에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하다. 또한 도 4에서 설명한 컬러 변환부(40006)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다.
실시예들에 따른 어트리뷰트 변환 처리부(12009)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 어트리뷰트 변환 처리부(12009)는 도 4에 설명한 어트리뷰트 변환부(40007)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다. 실시예들에 따른 예측/리프팅/RAHT 변환 처리부(12010)는 변환된 어트리뷰트들을 RAHT 코딩, LOD 기반의 예측 변환 코딩 및 리프팅 변환 코딩 중 어느 하나 또는 하나 이상을 조합하여 코딩할 수 있다. 예측/리프팅/RAHT 변환 처리부(12010)는 도 4에서 설명한 RAHT 변환부(40008), LOD 생성부(40009) 및 리프팅 변환부(40010)의 동작들과 동일 또는 유사한 동작들 중 적어도 하나 이상을 수행한다. 또한 LOD 기반의 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 코더(12011)는 코딩된 어트리뷰트들을 아리스메틱 코딩에 기반하여 인코딩할 수 있다. 아리스메틱 코더(12011)는 아리스메틱 인코더(40012)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 전송 처리부(12012)는 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트 및/또는 메타 데이터를 포함하는 각 비트스트림을 전송하거나, 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트 및/또는 메타 데이터를 하나의 비트스트림으로 구성하여 전송할 수 있다. 실시예들에 따른 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트 및/또는 메타 데이터가 하나의 비트스트림으로 구성되는 경우, 비트스트림은 하나 또는 그 이상의 서브 비트스트림들을 포함할 수 있다. 실시예들에 따른 비트스트림은 시퀀스 레벨의 시그널링을 위한 SPS (Sequence Parameter Set), 지오메트리 정보 코딩의 시그널링을 위한 GPS(Geometry Parameter Set), 어트리뷰트 정보 코딩의 시그널링을 위한 APS(Attribute Parameter Set), 타일 레벨의 시그널링을 위한 TPS (Tile Parameter Set 또는 tile inventory라 함)를 포함하는 시그널링 정보 및 슬라이스 데이터를 포함할 수 있다. 슬라이스 데이터는 하나 또는 그 이상의 슬라이스들에 대한 정보를 포함할 수 있다. 실시예들에 따른 하나의 슬라이스는 하나의 지오메트리 비트스트림(Geom00) 및 하나 또는 그 이상의 어트리뷰트 비트스트림들(Attr00, Attr10)을 포함할 수 있다.
슬라이스란 코딩된 포인트 클라우드 프레임의 전체 또는 일부를 나타내는 신택스 엘리먼트의 시리즈를 말한다.
실시예들에 따른 TPS(또는 타일 인벤토리)는 하나 또는 그 이상의 타일들에 대하여 각 타일에 관한 정보(예를 들면 bounding box의 좌표값 정보 및 높이/크기 정보 등)을 포함할 수 있다. 지오메트리 비트스트림은 헤더와 페이로드를 포함할 수 있다. 실시예들에 따른 지오메트리 비트스트림의 헤더는 GPS에 포함된 파라미터 세트의 식별 정보(geom_parameter_set_id), 타일 식별자(geom_tile_id), 슬라이스 식별자(geom_slice_id) 및 페이로드에 포함된 데이터에 관한 정보 등을 포함할 수 있다. 상술한 바와 같이 실시예들에 따른 메타데이터 처리부(12007)는 시그널링 정보를 생성 및/또는 처리하여 전송 처리부(12012)로 전송할 수 있다. 실시예들에 따라, 지오메트리 인코딩을 수행하는 엘레멘트들 및 어트리뷰트 인코딩을 수행하는 엘레멘트들은 점선 처리된 바와 같이 상호 데이터/정보를 공유할 수 있다. 실시예들에 따른 전송 처리부(12012)는 트랜스미터(10003)의 동작 및/또는 전송 방법과 동일 또는 유사한 동작 및/또는 전송 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 2에서 설명한 바와 동일하므로 생략한다.
도 13은 실시예들에 따른 수신 장치의 예시이다.
도 13에 도시된 수신 장치는 도 1의 수신장치(10004) (또는 도 10 및 도 11의 포인트 클라우드 비디오 디코더)의 예시이다. 도 13에 도시된 수신 장치는 도 1 내지 도 11에서 설명한 포인트 클라우드 비디오 디코더의 동작들 및 디코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다.
실시예들에 따른 수신 장치는 수신부(13000), 수신 처리부(13001), 아리스메틱 (arithmetic) 디코더(13002), 오큐판시 코드 (Occupancy code) 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(삼각형 재구성, 업-샘플링, 복셀화)(13004), 인버스(inverse) 양자화 처리부(13005), 메타데이터 파서(13006), 아리스메틱 (arithmetic) 디코더(13007), 인버스(inverse)양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009), 색상 역변환 처리부(13010) 및/또는 렌더러(13011)를 포함할 수 있다. 실시예들에 따른 디코딩의 각 구성요소는 실시예들에 따른 인코딩의 구성요소의 역과정을 수행할 수 있다.
실시예들에 따른 수신부(13000)는 포인트 클라우드 데이터를 수신한다. 수신부(13000)는 도 1의 리시버(10005)의 동작 및/또는 수신 방법과 동일 또는 유사한 동작 및/또는 수신 방법을 수행할 수 있다. 구체적인 설명은 생략한다.
실시예들에 따른 수신 처리부(13001)는 수신한 데이터로부터 지오메트리 비트스트림 및/또는 어트리뷰트 비트스트림을 획득할 수 있다. 수신 처리부(13001)는 수신부(13000)에 포함될 수 있다.
아리스메틱 디코더(13002), 오큐판시 코드 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(13004) 및 인버스 양자화 처리부(13005)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 도 1 내지 도 10에서 설명한 지오메트리 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 디코더(13002)는 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩할 수 있다. 아리스메틱 디코더(13002)는 아리스메틱 디코더(11000)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다.
실시예들에 따른 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 재구성할 수 있다. 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 옥트리 합성부(11001)의 동작 및/또는 옥트리 생성 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 실시예들에 따른 표면 모델 처리부(13004)는 트라이숩 지오메트리 인코딩이 적용된 경우, 표면 모델 방식에 기반하여 트라이숩 지오메트리 디코딩 및 이와 관련된 지오메트리 리컨스트럭션(예를 들면 삼각형 재구성, 업-샘플링, 복셀화)을 수행할 수 있다. 표면 모델 처리부(13004)는 서페이스 오프록시메이션 합성부(11002) 및/또는 지오메트리 리컨스트럭션부(11003)의 동작과 동일 또는 유사한 동작을 수행한다.
실시예들에 따른 인버스 양자화 처리부(13005)는 디코딩된 지오메트리를 인버스 양자화할 수 있다.
실시예들에 따른 메타데이터 파서(13006)는 수신한 포인트 클라우드 데이터에 포함된 메타데이터, 예를 들어 설정 값 등을 파싱할 수 있다. 메타데이터 파서(13006)는 메타데이터를 지오메트리 디코딩 및/또는 어트리뷰트 디코딩에 전달할 수 있다. 메타데이터에 대한 구체적인 설명은 도 12에서 설명한 바와 동일하므로 생략한다.
아리스메틱 디코더(13007), 인버스 양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009) 및 색상 역변환 처리부(13010)는 어트리뷰트 디코딩을 수행한다. 어트리뷰트 디코딩는 도 1 내지 도 10에서 설명한 어트리뷰트 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 디코더(13007)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩할 수 있다. 아리스메틱 디코더(13007)는 재구성된 지오메트리를 기반으로 어트리뷰트 비트스트림의 디코딩을 수행할 수 있다. 아리스메틱 디코더(13007)는 아리스메틱 디코더(11005)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다.
실시예들에 따른 인버스 양자화 처리부(13008)는 디코딩된 어트리뷰트 비트스트림을 인버스 양자화할 수 있다. 인버스 양자화 처리부(13008)는 역양자화부(11006)의 동작 및/또는 역양자화 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 예측/리프팅/RAHT 역변환 처리부(13009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 예측/리프팅/RAHT 역변환 처리부(13009)는 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)의 동작들 및/또는 디코딩들과 동일 또는 유사한 동작들 및/또는 디코딩들 중 적어도 어느 하나 이상을 수행한다. 실시예들에 따른 색상 역변환 처리부(13010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 색상 역변환 처리부(13010)는 컬러 역변환부(11010)의 동작 및/또는 역변환 코딩과 동일 또는 유사한 동작 및/또는 역변환 코딩을 수행한다. 실시예들에 따른 렌더러(13011)는 포인트 클라우드 데이터를 렌더링할 수 있다.
도 14는 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치와 연동 가능한 구조의 예시를 나타낸다.
도 14의 구조는 서버(17600), 로봇(17100), 자율 주행 차량(17200), XR 장치(17300), 스마트폰(17400), 가전(17500) 및/또는 HMD(Head-Mount Display, 17700) 중에서 적어도 하나 이상이 클라우드 네트워크(17000)와 연결된 구성을 나타낸다. 로봇(17100), 자율 주행 차량(17200), XR 장치(17300), 스마트폰(17400) 또는 가전(17500) 등은 장치라 호칭된다. 또한, XR 장치(17300)는 실시예들에 따른 포인트 클라우드 압축 데이터 (PCC) 장치에 대응되거나 PCC장치와 연동될 수 있다.
클라우드 네트워크(17000)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(17000)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
서버(17600)는 로봇(17100), 자율 주행 차량(17200), XR 장치(17300), 스마트폰(17400), 가전(17500) 및/또는 HMD(17700) 중에서 적어도 하나 이상과 클라우드 네트워크(17000)을 통하여 연결되고, 연결된 장치들(17100 내지 17700)의 프로세싱을 적어도 일부를 도울 수 있다.
HMD (Head-Mount Display)(17700)는 실시예들에 따른 XR 디바이스 및/또는 PCC 디바이스가 구현될 수 있는 타입 중 하나를 나타낸다. 실시예들에 따른HMD 타입의 디바이스는, 커뮤니케이션 유닛, 컨트롤 유닛, 메모리 유닛, I/O 유닛, 센서 유닛, 그리고 파워 공급 유닛 등을 포함한다.
이하에서는, 상술한 기술이 적용되는 장치(17100 내지 17500)의 다양한 실시 예들을 설명한다. 여기서, 도 14에 도시된 장치(17100 내지 17500)는 상술한 실시예들에 따른 포인트 클라우드 데이터 송수신 장치와 연동/결합될 수 있다.
<PCC+XR>
XR/PCC 장치(17300)는 PCC 및/또는 XR(AR+VR) 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수도 있다.
XR/PCC 장치(17300)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 어트리뷰트 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR/PCC 장치(17300)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
<PCC+자율주행+XR>
자율 주행 차량(17200)은 PCC 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR/PCC 기술이 적용된 자율 주행 차량(17200)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(17200)은 XR 장치(17300)와 구분되며 서로 연동될 수 있다.
XR/PCC영상을 제공하는 수단을 구비한 자율 주행 차량(17200)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR/PCC 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(17200)은 HUD를 구비하여 XR/PCC 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR/PCC 객체를 제공할 수 있다.
이때, XR/PCC 객체가 HUD에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR/PCC 객체가 자율 주행 차량의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(17200)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR/PCC 객체들을 출력할 수 있다.
실시예들에 의한 VR (Virtual Reality) 기술, AR (Augmented Reality) 기술, MR (Mixed Reality) 기술 및/또는 PCC(Point Cloud Compression) 기술은, 다양한 디바이스에 적용 가능하다.
즉, VR 기술은, 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하는 디스플레이 기술이다. 반면, AR 기술은, 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 보여 주는 기술을 의미한다. 나아가, MR 기술은, 현실세계에 가상 객체들을 섞고 결합시켜서 보여준다는 점에서 전술한 AR 기술과 유사하다. 그러나, AR 기술에서는 현실 객체와 CG 영상으로 만들어진 가상 객체의 구별이 뚜렷하고, 현실 객체를 보완하는 형태로 가상 객체를 사용하는 반면, MR 기술에서는 가상 객체가 현실 객체와 동등한 성격으로 간주된다는 점에서 AR 기술과는 구별이 된다. 보다 구체적으로 예를 들면, 전술한 MR 기술이 적용된 것이 홀로그램 서비스 이다.
다만, 최근에는 VR, AR, MR 기술을 명확히 구별하기 보다는 XR (extended Reality) 기술로 부르기도 한다. 따라서, 본 명세서의 실시예들은 VR, AR, MR, XR 기술 모두에 적용 가능하다. 이러한 기술은 PCC, V-PCC, G-PCC 기술 기반 인코딩/디코딩이 적용될 수 있다.
실시예들에 따른 PCC 방법/장치는 자율 주행 서비스를 제공하는 차량에 적용될 수 있다.
자율 주행 서비스를 제공하는 차량은 PCC 디바이스와 유/무선 통신이 가능하도록 연결된다.
실시예들에 따른 포인트 클라우드 압축 데이터 (PCC) 송수신 장치는 차량과 유/무선 통신이 가능하도록 연결된 경우, 자율 주행 서비스와 함께 제공할 수 있는 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 차량에 전송할 수 있다. 또한 포인트 클라우드 데이터 송수신 장치 차량에 탑재된 경우, 포인트 클라우드 송수신 장치는 사용자 인터페이스 장치를 통해 입력된 사용자 입력 신호에 따라 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 사용자에게 제공할 수 있다. 실시예들에 따른 차량 또는 사용자 인터페이스 장치는 사용자 입력 신호를 수신할 수 있다. 실시예들에 따른 사용자 입력 신호는 자율 주행 서비스를 지시하는 신호를 포함할 수 있다.
전술한 바와 같이 포인트 클라우드(또는 포인트 클라우드 데이터라 함)는 포인트(point)들의 집합으로 구성되며, 각 포인트는 지오메트리(geometry) 정보와 어트리뷰트 (attribute) 정보를 가질 수 있다. 그리고, 포인트 클라우드 인코딩(encoding) 과정은 지오메트리를 압축하고, 압축을 통해 변경된 위치 정보들로 재구성된 지오메트리(reconstructed geometry 또는 복원된 지오메트리라 함)를 바탕으로 어트리뷰트 정보를 압축하는 과정으로 구성될 수 있다. 또한, 포인트 클라우드 디코딩(decoding) 과정은 인코딩된 지오메트리 비트스트림(bitstream)과 어트리뷰트 비트스트림을 전송 받아서 지오메트리를 디코딩하고, 디코딩 과정을 통해 재구성된 지오메트리를 기반으로 어트리뷰트 정보를 디코딩하는 과정으로 구성될 수 있다.
포인트 클라우드 데이터의 압축에는 손실(lossy) 압축과 무손실(lossless) 압축이 있다. 손실 압축의 경우, 지오메트리(즉, 위치) 정보와 어트리뷰트 정보가 원본과 다르게 압축되거나 생략될 수 있다. 이에 반해, 무손실 압축의 경우, 원본의 데이터 정밀도(Precision)를 최대한 잃지 않고 유지하며, 포인트들의 개수도 원본과 같이 유지하는 것이다. 이때, 부동 소수점으로 입력된 값의 경우, 일정 범위의 임계치(Threshold Value)를 설정하고 해당 임계치 이내의 오차만 가능하도록 하는 유사 무손실(Near Lossless) 압축도 무손실의 범위로 간주하고 있다.
실시예들에 따르면, 포인트 클라우드 데이터를 압축하기 이전에, 양자화 과정을 통해 입력 포인트 클라우드 데이터의 모든 포인트들을 무손실 압축할지 아니면 손실 압축할지 여부를 정의한다. 이때 무손실/손실 압축은 포인트 당 비트 할당률로 계산되며 bpip(bits per input point)와 bpop(bits per output point)로 결정된다. 현재 G-PCC(지오메트리 포인트 클라우드 압축) 표준에서 정의하고 있는 레이트(rate) 당 비트(bits) 비율인 r01(0.5-1.4 bpip)~r06(18-21 bpip)로 압축이 되고 있다.
실시예들에 따르면, 손실 압축은 양자화 과정으로 진행되며, 이러한 손실 압축의 양은 손실 압축 비트스트림 크기를 정하는 지오메트리 값의 스케일링(scaling)으로 계산된다. 즉, 손실 압축의 양은 양자화 계수(QP, Quantization parameter)와 양자화 스텝 사이즈(qS, quantization step size)로 계산된다. 다시 말해, 양자화 과정은 양자화 계수로 지오메트리 값을 스케일링함으로써 이루어진다. 이때, 양자화 계수는 qS(quantization step size)의 양의 실수로 계산되며, 입력된 포인트 클라우드의 지오메트리 x, y, z각각의 값에 qS값이 곱해지게 된다. 실시예들에 따르면, 양자화 스텝 사이즈(qS)는 양자화 계수(QP)로부터 도출될 수 있다. 다음의 수학식 5는 양자화 계수(QP)를 이용하여 양자화 스텝 사이즈(qS)를 도출하는 계산식의 예시이다.
[수학식 5]
Figure PCTKR2022003081-appb-img-000008
현재 G-PCC에서 사용되고 있는 양자화 스텝 사이즈(qS)는 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 448, 512, 640, 768, 896, 1024,…의 실수가 사용되고 있으며 양자화 스텝 사이즈가 클수록 양자화가 많이 되고, 높은 비율의 손실 압축이 이루어진다. 즉, 본 문서에서 양자화 스텝 사이즈는 rate(r01-r06)에 사용되는 스텝 사이즈를 의미한다. 그리고 손실 압축에서 단위 시간 당 비트(bitrate)를 정하고 샘플링 레이트= bitrate / quantization per sample로 단위 시간 당 비트를 조절할 수 있다.
실시예들에 따르면, 양자화 과정은 포인트 클라우드 데이터의 입력 직후에 수행된다. 이때, 양자화 과정이 수행되면 양자화 스텝 사이즈에 따라 하나 또는 그 이상의 포인트들은 동일한 양자화된 위치 (또는 위치 값)을 가질 수 있다.
도 15(a) 내지 도 15(d)는 양자화 스케일에 따른 양자화 방법의 예시들을 보인 도면이다.
좀 더 구체적으로, 도 15(a)는 양자화를 위해 입력되는 오리지날(=원본) 포인트들의 예시를 보이고 있고, 도 15(b)는 양자화 스케일이 0.5일 때, 도 15(c)는 양자화 스케일이 0.25일 때, 도 15(d)는 양자화 스케일이 0.125일 때의 양자화 방법의 예시들을 보이고 있다. 본 문서에서 양자화 스케일은 스케일링할 값을 의미한다. 일 실시예로, 스텝별 지정된 스케일링 값이 있게 된다.
즉, 5개의 오리지날 포인트들이 도 15(a)와 같이 5x5 공간에 위치한다고 할 때, 도 15(b)와 같이 양자화 스케일이 0.5이면 모든 포인트들의 precision(정밀도)를 절반(즉, 1/2)으로 낮춘다는 것을 의미한다. 예를 들어, 도 15(b)에서 (0,0~1,1)의 포인트는 (0,0)의 포인트에 대응(또는 매핑)된다. 또한, 도 15(c)와 같이 양자화 스케일이 0.25이면 모든 포인트들의 정밀도를 0.25배(즉, 1/4) 낮춘다는 것을 의미한다. 예를 들어, 도 15(c)에서 (0,0~2,2)의 포인트들은 (0,0)의 포인트에 대응(또는 매핑)된다. 그리고, 도 15(d)와 같이 양자화 스케일이 0.125이면, 모든 포인트들의 정밀도를 0.125배(즉, 1/8) 낮춘다는 것을 의미한다. 예를 들어, 도 15(d)에서 (0,0~4,4)의 포인트들은 (0,0)의 포인트에 대응(또는 매핑)된다. 다시 말해, 양자화 스케일이 낮아질수록 공간의 많은 포인트들이 하나의 포인트에 대응(또는 매핑)되기 때문에 손실되는 포인트들이 증가함을 알 수 있다.
이와 같이 양자화가 수행되면, 하나 또는 그 이상의 포인트들은 동일한 양자화된 위치 (또는 위치 값)을 가질 수 있다.
이때, 양자화 이후 포인트는 도 16에서와 같이 (0,0,0) 위치(50001)에 대응시킬 수도 있고, 또는 정밀도나 포인트 클라우드의 특성에 따라 (0,0,1~1,1,1) 공간의 위치 또는 (0.5, 0.5, 0.5) 중앙 위치에 표현할 수도 있다.
도 16은 실시예들에 따른 양자화 이후 포인트의 위치를 표현하는 예시들을 보인 도면이다.
실시예들에 따라 양자화가 수행되고 나면, 양자화된 포인트들을 기반으로 옥트리 구조를 생성한다.
실시예들에 따르면, 옥트리를 특정 정밀도까지 전송하기 위해서는 레벨을 정의하고 있는데 옥트리 최대 레벨의 지오메트리 정밀도를 나타내는 깊이(=L)까지 공간을 8등분한다.
그리고, 최대 깊이 L을 손실 압축하기 위해서는 L-M 레벨 (M: 양자화 스텝)의 지오메트리 정밀도(geometry precision)로 수정하며 L-M ~ L 레벨의 포인트들을 양자화해서 수정된 리프 노드를 L-M레벨에 위치시킨다. 다시 말해, L-M 레벨을 정밀도로 나눠서 하위 L-M 레벨부터 최대 레벨인 L레벨까지의 포인트들을 모두 양자화하여 수정된 리프 노드를 L-M 레벨에 위치시킨다. 그리고, 수정된 지오메트리 정밀도는 옥트리 노드의 중앙값 또는 정의된 값으로 변경된 지오메트리 값을 갖고 지오메트리 압축을 수행하게 된다. 이때, 옥트리 기반의 지오메트리 압축은 무손실 압축 방식으로 수행된다.
하지만, 전술한 바와 같이 양자화된 포인트들을 기반으로 옥트리 구조를 생성하여 지오메트리 압축을 수행하게 되면, 어트리뷰트 인코딩(또는 압축이라 함)을 수행하기 전에 리컬러링(recoloring)이 필수적이다.
실시예들에 따르면, 리컬러링은 양자화된 포인트의 위치 값으로부터 특정 위치/반경 내에 이웃하고 있는 포인트들의 어트리뷰트들의 평균값을 계산하여 양자화된 포인트의 어트리뷰트로 설정하는 과정이다. 실시예들에 따르면, 리컬러링은 어트리뷰트 변환 또는 색상 재조정이라 칭한다. 그리고, 리컬러링은 도 4의 어트리뷰트 변환부(40007) 또는 도 12의 어트리뷰트 변환 처리부(12009)에서 수행될 수 있다. 예를 들어, 위에서와 같이 양자화를 통해 L 레벨의 포인트들이 L-M 레벨의 특정 포인트로 매핑되었다고 가정하면, 양자화로 인해 L 레벨의 포인트들의 어트리뷰트를 알 수 없으므로, L-M 레벨의 포인트의 어트리뷰트를 리컬러링을 통해 다시 설정해야 한다.
다음은 리컬러링 방법에 대한 설명이다.
(1) 재구성된 포인트 클라우드의 각 포인트에 대해 가장 가까운 이웃 포인트들의 어트리뷰트 값을 ai * 라 한다.
(2) 재구성된 포인트 클라우드의 각 포인트에 대해 H(i)를 오리지날 포인트들의 집합으로 정의한다. 즉, H(i)는 이웃 포인트들의 집합을 의미한다.
(3) 이때, 재구성된 포인트들의 가까운 이웃으로 Xi를 공유하는 포인트로 지정하고, H(i)는 비어있거나 하나 이상의 값을 갖는다. 여기서, H(i)가 비어있다는 것은 가까운 이웃 포인트를 찾을 때 특정 거리 이내에 포인트가 없는 경우를 의미한다.
(4-1) 만일 H(i)가 비어있으면, 어트리뷰트 값 ai *는 포인트 Xi의 어트리뷰트 값이 그대로 지정된다. 즉, 하나의 포인트가 하나의 어트리뷰트에 대응된다.
(4-2) 만일 H(i)가 비어있지 않으면, 아래 수학식 6에 의해 어트리뷰트 값 ai가 계산된다.
[수학식 6]
Figure PCTKR2022003081-appb-img-000009
따라서, 수학식 6과 같은 리컬러링 과정으로 인해 포인트의 어트리뷰트 값 ai * 이 전혀 연관이 없는 포인트들의 어트리뷰트 값으로 묶이게 되면, 어트리뷰트 값의 평균 계산식으로 인해 포인트의 어트리뷰트 값 ai은 오리지날 포인트 클라우드의 어트리뷰트 값과 다른 어트리뷰트 값으로 재구성된다. 예를 들어, 오리지날 포인트의 어트리뷰트 값(즉, 컬러값)은 레드인데 반해, 수학식 6을 통해 재구성된 어트리뷰트 값은 레드가 아닌 다른 컬러가 될 수 있다.
그리고, 리컬러링을 통해 다른 값으로 어트리뷰트 값이 재구성될 경우, 이를 기반으로 어트리뷰트 압축을 수행하게 되면 어트리뷰트 압축 효율이 낮아지는 문제가 발생하게 된다. 즉, 포인트 클라우드 데이터의 어트리뷰트 인코딩/디코딩 화질이 저하되는 문제가 발생한다.
본 문서는 정확한 어트리뷰트 값을 얻지 못하는 문제를 해결하기 위해, 재구성된 포인트 클라우드의 포인트의 어트리뷰트 값을 오리지날 포인트의 어트리뷰트 값으로 설정할 수 있도록 함으로써, 포인트 클라우드 데이터의 어트리뷰트 인코딩/디코딩 화질을 높일 수 있고, 지오메트리 압축 효율을 향상시킬 수 있다.
본 문서는 2가지 방법을 제안한다. 하나는 지오메트리 압축을 위해 입력되는 포인트들에 대해 양자화를 수행하고, 양자화된 포인트들을 기반으로 옥트리 구조를 생성한 후 오리지날 포인트의 어트리뷰트 값으로 어트리뷰트 인코딩을 수행하는 방법이다. 본 문서는 이를 제1 실시예로 칭하기로 한다. 다른 하나는 지오메트리 압축을 위해 입력되는 포인트들에 대해 샘플링을 수행하고 샘플링된 포인트들을 기반으로 옥트리 구조를 생성한 후 오리지날 포인트의 어트리뷰트 값으로 어트리뷰트 인코딩을 수행하는 방법이다. 본 문서는 이를 제2 실시예로 칭하기로 한다.
즉, 본 문서는 옥트리 구조를 기반으로 지오메트리 압축을 수행한 후, 재구성된 지오메트리를 기반으로 어트리뷰트 인코딩시 리컬러링 과정없이 오리지날 포인트의 어트리뷰트 값을 그대로 이용하기 위한 것이다.
본 문서를 이를 단일 리컬러링 과정이라 칭한다. 즉, 단일 리컬러링 과정은 오리지날 포인트의 어트리뷰트 값을 그대로 어트리뷰트 인코딩에 이용한다는 의미이다. 따라서, 단일 리컬러링 과정은 '리컬러링 생략 과정'으로 지칭될 수 있다.
제1 실시예는 위의 리컬러링 설명 중 (1)~(3)을 수행할 때, 하나의 대표되는 포인트로 단일 리컬러링을 수행한다. 즉, H(i)가 비어있지 않으면, 아래 수학식 7에 의해 i개의 포인트들 중 하나의 포인트(예를 들어, 2번째 포인트)의 어트리뷰트 값이 재구성된 포인트의 어트리뷰트 값 ai이 된다.
[수학식 7]
Figure PCTKR2022003081-appb-img-000010
다시 말해, H(i)가 비어있지 않을 때 어트리뷰트 평균을 구하는 평균 계산식이 사용되지 않는다.
제1 실시예에 따르면, 송신측은 양자화 -> 옥트리 인코딩 -> 단일 리컬러링 -> 어트리뷰트 압축 순으로 수행되고/수신측은 옥트리 디코딩 -> 어트리뷰트 디코딩 순으로 수행된다.
제2 실시예는 단일 리컬러링(즉, 리컬러링 생략)을 위해 양자화 대신 샘플링을 수행한다.
실시예들에 따르면, 제1 실시예 및/또는 제2 실시예에 대응하는 포인트 클라우드 데이터의 인코딩 과정은 도 1의 포인트 클라우드 비디오 인코더(10002), 도 2의 인코딩(20001), 도 4의 포인트 클라우드 비디오 인코더, 도 12의 포인트 클라우드 비디오 인코더, 도 19의 지오메트리 인코더(51003)와 어트리뷰트 인코더(51004) 또는 도 20의 지오메트리 인코더(51003)와 어트리뷰트 인코더(51004)에서 수행될 수 있다.
실시예들에 따른 제1 실시예 및/또는 제2 실시예에 대응하는 포인트 클라우드 데이터의 디코딩 과정은 도 1의 포인트 클라우드 비디오 디코더(10006), 도 2의 디코딩(20003), 도 11의 포인트 클라우드 비디오 디코더, 도 13의 포인트 클라우드 비디오 디코더, 도 21의 지오메트리 디코더(61003)와 어트리뷰트 디코더(61004) 또는 도 22의 지오메트리 디코더(61003)와 어트리뷰트 디코더(61004)에서 수행될 수 있다. 도 19 내지 도 22의 상세 설명은 뒤에서 다시 하기로 한다.
양자화와 샘플링은 포인트 클라우드의 손실 압축에서 데이터 량(=포인트 개수)를 비트 레이트에 따라 조절하기 위한 기준이라는 공통점이 있지만 압축 효율에서는 양자화와 샘플링 효율이 최대 200%의 차이를 보일 수 있다. 양자화는 포인트 위치 값이 연속적인 값을 갖는다는 가정으로 이산적인 분포를 갖는 값을 재구성하는 과정인 반면, 샘플링은 일정한 간격으로 데이터를 선택하는 과정이다. 따라서 입력값이 같은 포인트 클라우드를 양자화와 샘플링을 통해 동일한 포인트들의 개수를 출력하면, 같은 포인트들의 개수이지만 지오메트리 정밀도(precision)가 다른 각각의 양자화 된 포인트 클라우드와 샘플링 된 포인트 클라우드를 얻을 수 있다.
다음은 제2 실시예에 대한 설명이다.
제2 실시예는 인코딩 정밀도에 따라 입력되는 포인트들 중 일부 포인트들을 선택하는 샘플링 방법을 사용하며, 샘플링 된 포인트들은 옥트리 구조의 생성에 이용된다. 또한 샘플링된 포인트들(즉, 오리지날 포인트들)의 어트리뷰트 값이 어트리뷰트 압축에 사용된다. 다시 말해, 포인트 클라우드 데이터를 샘플링하고, 양자화 되지 않은 오리지날 포인트 클라우드 데이터의 지오메트리 정밀도로 어트리뷰트 인코딩/디코딩을 수행한다. 그리고, 샘플링된 포인트들을 압축하고 샘플링된 포인트 클라우드와 오리지날 포인트 클라우드의 차이값을 메타데이터(또는 시그널링 정보라 함)로 전송할 수 있다. 이때 비트율을 맞추기 위해 메타데이터는 샘플링 레이트(sampling rate) 혹은 quantization per sample 값으로 양자화 될 수 있다. 이렇게 함으로써, 화질과 시각적 품질을 향상시킬 수 있다. 본 문서는 설명의 편의를 위해, 상기 메타데이터를 압축 관련 정보(또는 압축에 관련된 정보)라 칭하기로 한다. 또는 상기 압축 관련 정보는 상기 메타데이터를 포함한다고 간주할 수 있다.
제2 실시예에 따른 샘플링을 위해, 옥트리 레벨을 손실 압축에 사용되는 정밀도(precision) 레벨까지만 8분할을 한다. 예를 들어, 샘플링되는 정밀도 레벨(즉, 리프 노드)이 N이라고 하고, 손실 압축에 사용되는 정밀도 레벨(즉, 인코딩 정밀도)이 M이라고 할 때, N-M ~ N레벨(또는 뎁스라 함)에 대한 추가 데이터는 메타데이터로서 전달될 수 있다. 또는 추가 데이터는 지오메트리 비트스트림에 포함되어 아리스메틱 코딩 후 송신할 수 있다. 실시예들에 따르면, 추가 데이터는 N-M ~ N레벨을 디코딩하기 위한 정보(예, octree_sampling_residual)이다. 즉, 옥트리 압축은 오큐판시 형태를 인코딩하는 것이기 때문에 하위 레벨(즉, N 레벨)의 오큐판시를 압축된 옥트리에 포함시키지 않고 메타데이터 형태로 전송할 수 있다.
도 17(a) 내지 도 17(d)는 제2 실시예에 따른 샘플링 방법의 예시들을 보인 도면이다.
좀 더 구체적으로, 도 17(a)는 오리지날(=원본) 포인트들의 예시를 보이고 있고, 도 17(b)는 샘플링 스케일이 0.5일 때, 도 17(c)는 샘플링 스케일이 0.25일 때, 도 17(d)는 샘플링 스케일이 0.125일 때의 샘플링 방법의 예시들을 보이고 있다.
즉, 5개의 오리지날 포인트들이 도 17(a)와 같이 5x5 공간에 위치한다고 할 때, 도 17(b)와 같이 샘플링 스케일이 0.5이면 모든 포인트들의 precision(정밀도)를 절반(즉, 1/2)으로 낮춘다는 것을 의미한다. 예를 들어, 도 17(b)에서 (1,1)의 포인트가 오리지날 포인트이고, (0,0)의 포인트가 오리지날 포인트에 대응되는 샘플링된 포인트이다. 이때, 샘플링의 화살표 이동량을 메타데이터로 추가 전송한다. 실시예들에 따르면, 샘플링의 화살표 이동량은 지오메트리 비트스트림에 포함되어 전송될 수도 있다. 본 문서는 샘플링의 화살표 이동량을 샘플링 이동량이라 칭하기도 한다. 실시예들에 따르면, 샘플링의 화살표 이동량은 오리지날 포인트와 샘플링된 포인트와의 위치 차이값을 의미한다. 즉, 오리지날 포인트와 샘플링된 포인트와의 위치 차이값은 메타데이터 형태로 전송될 수도 있고, 지오메트리 비트스트림에 포함되어 전송될 수도 있다.
또한, 도 17(c)와 같이 양자화 스케일이 0.25이면 모든 포인트들의 정밀도를 0.25배(즉, 1/4) 낮춘다는 것을 의미한다. 예를 들어, 도 17(c)에서 (1,1), (2,1)의 포인트들은 오리지날 포인트들이고 (0,0)의 포인트가 오리지날 포인트들에 대응되는 샘플링된 포인트이다. 이때, 샘플링의 화살표 이동량을 메타데이터로 추가 전송한다. 즉, 오리지날 포인트들 각각에 대해 샘플링된 포인트와의 위치 차이값은 메타데이터 형태로 시그널링되어 전송될 수도 있고, 지오메트리 비트스트림에 포함되어 전송될 수도 있다.
그리고, 도 17(d)와 같이 양자화 스케일이 0.125이면, 모든 포인트들의 정밀도를 0.125배(즉, 1/8) 낮춘다는 것을 의미한다. 예를 들어, 도 17(d)에서 (1,1), (2,1), (1,3), (4,4)의 포인트들(50021-50024)은 오리지날 포인트들이고 (0,0)의 포인트는 오리지날 포인트들(50021-50024)에 대응되는 샘플링된 포인트(50010)이다. 이때, 샘플링의 화살표 이동량을 메타데이터로 추가 전송한다. 즉, 오리지날 포인트들(50021-50024) 각각에 대해 샘플링된 포인트(50010)와의 위치 차이값은 메타데이터 형태로 전송될 수도 있고 지오메트리 비트스트림에 포함되어 전송될 수도 있다.
도 18은 실시예들에 따른 옥트리 샘플링 방법과 메타데이터 생성의 예시를 보인 도면이다. 도 18에서, N은 샘플링되는 정밀도 레벨(즉, 리프 노드)이고, M은 손실 압축에 사용되는 정밀도 레벨(즉, 인코딩 정밀도)이라고 가정한다. 또한, 도 17(d)의 포인트들(50021-50024)이 도 18의 레벨 N의 노드(50021-50024)에 해당되고 레벨 M의 노드(50010)의 하위 노드가 레벨 N의 포인트 그룹(50021-50024)이라고 가정하면, 도 17(d)의 포인트(50010)는 도 18의 레벨 M의 포인트(50010)에 해당된다. 이때, 샘플링은 레벨 N에서 선택된다. 즉, 샘플링은 리프 노드(즉, 레벨 N)에서 수행되고, 옥트리 기반 오큐판시 압축은 레벨 M까지이다. 그러므로, 본 문서는 레벨 M에서 레벨 N의 오큐판시 부분을 메타데이터로 보낸다. 다시 말해, 샘플링은 리프 노드(즉, 레벨 N)에서 이루어지고, 옥트리를 이용한 오큐판시 압축은 레벨 M까지 수행되며, 레벨 N~M에서 필요한 정보들이 메타데이터로 전달된다. 이때, 레벨 N의 포인트들(50021-50024) 각각에 대해 레벨 M의 포인트(50010)와의 위치 차이값(즉, octree_sampling_residual)이 메타데이터로 시그널링된다.
도 17(a) 내지 도 17(d)에서 보는 바와 같이, 옥트리 샘플링은 오리지날 포인트와 동일한 값이 사용되며, 샘플링 스케일이 변경되더라도 동일한 위치의 포인트가 선택되고 포인트 수만 줄어들게 된다. 그리고, 도 18의 샘플링에서 옥트리 레벨 M의 인코딩 정밀도에 대응하도록 인코딩 하면,
Figure PCTKR2022003081-appb-img-000011
화살표의 이동량을 메타데이터로 전달할 수 있다. 이때 메타데이터는 계산된 매트릭스로 전달될 수 있다. 또한, 레벨 M에서 인코딩된 옥트리로 단일 리컬러링을 수행할 수 있으며 재구성된 포인트 클라우드는 어트리뷰트 압축에 사용될 수 있다. 실시예들에 따르면, 샘플링 이동량을 송신측의 인코더와 수신측의 디코더에서 사용할 수 있는 계산식은 다음의 수학식 8과 같이 나타낼 수 있다. 이때, 송신되는 값은 a1, a2, a3이다.
[수학식 8]
Figure PCTKR2022003081-appb-img-000012
위 수학식 8에서 r 은 계수(coefficient)를 의미한다. 그리고, 수학식 8을 도 17(d)에 적용하면, 메타데이터를 보내기 위한 수식으로 하나의 포인트에 대한 메타데이터의 residual(5021 - 5010): x5021-x5010, y5021-y5010, z5021-z5010가 계산된다. 이를 residual5021으로 지칭하면, residual 5021~5024가 각각 계산되고, residual 5021~5024특징점을 뽑은 계수 r을 매트릭스로 만들어 송신기에서 수신기로 시그널링한다. 이때 송신기에서 a1, a2, aN(즉, 특징점을 제외한 값)을 송신하면, 수신기에서는 a1, a2, aN과 r 매트릭스를 계산하여 residual 5021~5024를 복원할 수 있다. 다시 말해, r은 간단하게 더 작은 residual값을 보내기 위한 계수(즉, 특징점 r)이다.
또한, 옥트리 레벨의 샘플링된 포인트 위치와 오리지날 포인트 위치값의 차이를 전송하기 위해서는 2N-M x 2N-M x 2N-M(여기서, N과 M은 도 18의 레벨 N과 레벨 M에 대응)의 데이터로 아리스메틱 코딩을 통해 메타데이터로 전송할 수 있다. 그리고, 도 18의 레벨 M의 포인트(50010)에서 레벨 N의 노드들(50021-50024)로 표현되기 위해서는 추가 메타데이터가 필요한데, 이 메타데이터는 2N-M x 2N-M x 2N-M 범위의 값을 가지게 된다. 그 이유는 옥트리 오큐판시 표현으로 인해 루트~레벨 N을 표시하기 위해서는 2N x 2N x 2N 의 범위가 필요하지만, 디코딩을 위해서는 레벨 M에서 레벨 N까지만 필요하기 때문에 2N-M x 2N-M x 2N-M 범위이다. 2N-M x 2N-M x 2N-M 는 특징점을 추출하기 이전의 메타데이터이고, 특징점 r을 추출한 a1, a2, aN은 최종 메타데이터로 시그널링하게 된다.
그리고, 샘플링된 포인트들로 지오메트리를 재구성하게 되면 하나의 포인트의 어트리뷰트 값을 어트리뷰트 압축에 이용할 수 있기 때문에 즉, 단일 리컬러링이기 때문에, 어트리뷰트 값의 정확도를 높일 수 있고 이로 인해 어트리뷰트 압축 효율도 높일 수 있게 된다.
지금까지 설명한 제2 실시예에 따르면, 송신측은 샘플링 ->옥트리 인코딩 -> 단일 리컬러링 -> 메타데이터 생성 -> 어트리뷰트 압축 순으로 수행되고/수신측은 옥트리 디코딩 -> 메타데이터 재구성 -> 어트리뷰트 디코딩 순으로 수행된다.
실시예들에 따르면, 본 문서는 입력되는 포인트 클라우드 데이터에 양자화를 적용할 지 아니면 샘플링을 적용할지를 선택하고 이를 시그널링할 수 있다.
실시예들에 따르면, 본 문서는 재구성된 지오메트리에 리컬러링을 적용할지 아니면 단일 리컬러링(즉, 리컬러링 생략)을 적용할지를 선택하고 이를 시그널링할 수 있다.
실시예들에 따르면, 본 문서는 리컬러링된 어트리뷰트 값을 기반으로 어트리뷰트 인코딩을 수행하지 아니면 단일 리컬러링(즉, 리컬러링 생략)된 어트리뷰트 값을 기반으로 어트리뷰트 인코딩을 수행할지를 선택하고 이를 시그널링할 수 있다.
실시예들에 따르면, 본 문서는 옥트리의 샘플링 방안으로 정확한 포인트를 인코딩하기 위해 메타데이터나 이전에 계산 된 매트릭스로 시그널링할 수 있다. 실시예들에 따르면, 본 문서는 옥트리 레벨당 양자화 된 값과 샘플링 된 차이값을 시그널링하며, 이때 생성된 비트스트림은 엔트로피 인코딩할 수 있다. 또한, 생성된 비트스트림과 지오메트리 재구성된 정보는 결합되어 디코딩된 지오메트리 값을 가질 수 있으며, 디코딩된 지오메트리 값은 리컬러링 과정에서 지오메트리 값에 대응하는 어트리뷰트 값을 가질 수 있다. 그리고 재구성 된 지오메트리 값에 따른 어트리뷰트 값은 어트리뷰트 압축 효율에 따라 사용 여부를 시그널링 할 수 있다. 이때 사용 여부는 어트리뷰트 압축 수행 이후 결정할 수 있으며, 어트리뷰트 값의 분포에 따라 수행 여부를 지정할 수 있다.
위에서 설명한 압축 관련 정보(메타데이터 포함)는 SPS, GPS, APS, TPS, 또는 지오메트리 슬라이스 헤더 중 적어도 하나에 포함될 수 있다.
도 19는 실시예들에 따른 포인트 클라우드 송신 장치의 또 다른 예시를 보인 도면이다. 도 19에 도시된 포인트 클라우드 송신 장치의 엘리먼트들은 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 결합등으로 구현될 수 있다.
실시예들에 따르면, 포인트 클라우드 송신 장치는 데이터 입력부(51001), 시그널링 처리부(51002), 지오메트리 인코더(51003), 어트리뷰트 인코더(51004), 및 전송 처리부(51005)를 포함할 수 있다.
상기 지오메트리 인코더(51003)와 어트리뷰트 인코더(51004)는 도 1의 포인트 클라우드 비디오 인코더(10002), 도 2의 인코딩(20001), 도 4의 포인트 클라우드 비디오 인코더, 도 12의 포인트 클라우드 비디오 인코더에서 설명된 동작의 일부 또는 전체를 수행할 수 있다.
실시예들에 따른 데이터 입력부(51001)는 포인트 클라우드 데이터를 수신 또는 획득한다. 상기 데이터 입력부(51001)는 도 1의 포인트 클라우드 비디오 획득부(10001)의 동작의 일부 또는 전부를 수행할 수도 있고 또는 도 12의 데이터 입력부(12000)의 동작의 일부 또는 전부를 수행할 수도 있다.
상기 데이터 입력부(51001)는 포인트 클라우드 데이터의 포인트들의 포지션들을 지오메트리 인코더(51003)로 출력하고, 포인트 클라우드 데이터의 포인트들의 어트리뷰트들을 어트리뷰트 인코더(51004)로 출력한다. 또한 파라미터들은 시그널링 처리부(51002)로 출력한다. 실시예들에 따라 파라미터들은 지오메트리 인코더(51003)와 어트리뷰트 인코더(51004)로 제공될 수도 있다.
상기 지오메트리 인코더(51003)는 입력되는 포인트들의 포지션들에 대해 양자화를 수행하거나 또는 샘플링을 수행하고, 양자화된 포인트들 또는 샘플링된 포인트들을 기반으로 옥트리 구조를 생성한 후 오큐판시 압축을 수행한다. 즉, 지오메트리 정보의 압축이 수행된다. 상기 지오메트리 인코더(51003)는 압축된 지오메트리 정보에 대해 엔트로피 인코딩을 수행하여 지오메트리 비트스트림 형태로 전송 처리부(51005)로 출력한다.
상기 지오메트리 인코더(51003)는 압축을 통해 변경된 포지션들을 기반으로 지오메트리 정보를 재구성하고, 재구성된(또는 복호화된) 지오메트리 정보를 상기 어트리뷰트 인코더(51004)로 출력한다.
상기 어트리뷰트 인코더(51004)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리 정보를 기반으로 어트리뷰트 정보를 압축한다. 일 실시예로, 상기 어트리뷰트 정보는 RAHT 코딩, LOD 기반의 예측 변환 코딩 및 리프팅 변환 코딩 중 어느 하나 또는 하나 이상을 조합하여 코딩될 수 있다. 상기 어트리뷰트 인코더(51004)는 압축된 어트리뷰트 정보에 대해 엔트로피 인코딩을 수행하여 어트리뷰트 비트스트림 형태로 전송 처리부(51005)로 출력한다.
상기 시그널링 처리부(51002)는 지오메트리 정보와 어트리뷰트 정보의 인코딩/디코딩/렌더링 등에 필요한 시그널링 정보(예, 파라미터들)를 생성 및/또는 처리하여 지오메트리 인코더(51003), 어트리뷰트 인코더(51004) 및/또는 전송 처리부(51005)로 제공할 수 있다. 또는 상기 시그널링 처리부(51002)가 지오메트리 인코더(51003), 어트리뷰트 인코더(51004) 및/또는 전송 처리부(51005)에서 생성된 시그널링 정보를 제공받을 수도 있다. 상기 시그널링 처리부(51002)는 수신 장치에서 피드백되는 정보(예를 들어, 헤드 오리엔테이션 정보 및/또는 뷰포트 정보를 지오메트리 인코더(51003), 어트리뷰트 인코더(51004) 및/또는 전송 처리부(51005)로 제공할 수도 있다.
본 명세서에서 시그널링 정보는 parameter set (SPS: sequence parameter set, GPS: geometry parameter set, APS: attribute parameter set, TPS: Tile Parameter Set (또는 tile inventory라 함) 등) 단위로 시그널링되어 전송될 수 있다. 또한 슬라이스 또는 타일과 같이 각 영상의 코딩 유닛(또는 압축 단위 또는 예측 단위) 단위로 시그널링되어 전송될 수도 있다.
실시예들에 따른 방법/장치가 실시예들의 동작을 추가/수행 하기 위해서 관련 정보를 시그널링 할 수 있다. 실시예들에 따른 시그널링 정보는 송신 장치 및/또는 수신 장치에서 사용될 수 있다.
상기 전송 처리부(51005)는 도 12의 전송 처리부(12012)의 동작 및/또는 전송 방법과 동일 또는 유사한 동작 및/또는 전송 방법을 수행할 수도 있고, 도 1의 트랜스미터(1003)의 동작 및/또는 전송 방법과 동일 또는 유사한 동작 및/또는 전송 방법을 수행할 수 있다. 구체적인 설명은 도 1 또는 도 12의 설명을 참조하기로 하고 여기서는 생략한다.
상기 전송 처리부(51005)는 상기 지오메트리 인코더(51003)에서 출력되는 지오메트리 비트스트림, 상기 어트리뷰트 인코더(51004)에서 출력되는 어트리뷰트 비트스트림, 상기 시그널링 처리부(51002)에서 출력되는 시그널링 비트스트림을 하나의 비트스트림으로 다중화한 후 그대로 전송하거나 또는 파일이나 세그먼트 등로 인캡슐레이션하여 전송할 수 있다. 본 문서에서 파일은 ISOBMFF 파일 포맷인 것을 일 실시예로 한다.
실시예들에 따라 파일 또는 세그먼트는 수신 장치로 전송되거나, 디지털 저장매체(예를 들면 USB, SD, CD, DVD, 블루레이, HDD, SSD 등)에 저장될 수 있다. 실시예들에 따른 전송 처리부(51005)는 수신 장치와 4G, 5G, 6G 등의 네트워크를 통해 유/무선 통신 가능하다. 또한 전송 처리부(51005)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 또한 전송 처리부(51005)는 온 디맨드(On Demand) 방식에 따라 인캡슐레이션된 데이터를 전송할 수도 있다.
실시예들에 따르면, 전술한 압축 관련 정보(또는 압축에 관련된 정보라 함)는 상기 시그널링 처리부(51002), 지오메트리 인코더(51003), 전송 처리부(51005) 중 적어도 하나에 의해 SPS, GPS, APS 및/또는 TPS 및/또는 지오메트리 데이터 유닛(또는 지오메트리 슬라이스 비트스트림이라 함)에 포함되어 전송될 수 있다.
도 20은 실시예들에 따른 지오메트리 인코더(51003)와 어트리뷰트 인코더(51004)의 상세 블록도의 예시를 보인 도면이다. 도 20에 도시된 지오메트리 인코더의 엘리먼트들은 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 결합등으로 구현될 수 있다.
실시예들에 따르면, 지오메트리 인코더(51003)는 좌표 변환부(53001), 양자화/샘플링 결정 및 처리부(53002), 메타데이터 생성 및 양자화부(53003), 옥트리 오큐판시 코드 생성부(53004), 표면 모델 처리부(53005), 아리스메틱 코더(53006), 및 지오메트리 재구성부(53007)를 포함할 수 있다.
실시예들에 따르면, 어트리뷰트 인코더(51004)는 색상 변환 처리부(55001), 어트리뷰트 변환 처리부(55002), 예측/리프팅/RAHT 변환 처리부(55003), 계수 양자화 처리부(55004), 및 아리스메틱 코더(55005)를 포함할 수 있다.
상기 좌표 변환부(53002)는 입력되는 포인트들의 xyz축을 변경한다거나 xyz 직교 좌표계에서 구면 (spherical) 좌표계로 변환하는 등 포인트 클라우드 데이터의 좌표계 변환을 지원할 수 있다.
상기 양자화/샘플링 결정 및 처리부(53002)는 입력되는 포인트들의 포지션들에 대해 양자화를 수행할지 아니면 샘플링을 수행할지를 선택할 수 있다.
일 실시예로, 상기 양자화/샘플링 결정 및 처리부(53002)에서 양자화가 선택되면, 상기 메타데이터 생성 및 양자화부(53003)는 최대 깊이 레벨 N을 손실 압축하기 위하여 레벨 N-M의 지오메트리 정밀도로 수정하며 레벨 N-M ~ N의 포인트들을 양자화 스케일에 따라 양자화해서 수정된 리프 노드를 레벨 N-M에 위치시킨다. 다시 말해, 레벨 N-M을 정밀도로 나눠서 레벨 N-M부터 레벨 N까지의 포인트들을 모두 양자화하여 수정된 리프 노드를 레벨 N-M에 위치시킨다.
다른 실시예로, 상기 양자화/샘플링 결정 및 처리부(53002)에서 샘플링이 선택되면, 상기 메타데이터 생성 및 양자화부(53003)는 샘플링 스케일에 따라 최대 깊이 레벨 N에서 샘플링을 수행한다. 즉, 레벨 N에서 샘플링 스케일에 따라 포인트들이 선택된다. 그리고, 손실 압축에 사용되는 정밀도 레벨(즉, 인코딩 정밀도)이 M이라고 할 때, 레벨 N-M ~ N에 대한 추가 데이터는 메타데이터로서 전송한다. 실시예들에 따르면, 추가 데이터는 N-M ~ N레벨을 디코딩하기 위한 정보(예, octree_sampling_residual)이다. 즉, 추가 데이터는 오리지날 포인트와 샘플링된 포인트와의 위치 차이값을 의미할 수 있다. 다시 말해, 샘플링은 리프 노드에서 이루어지고, 옥트리를 이용한 오큐판시 압축은 레벨 M까지 수행되며, 레벨 N~M에서 필요한 정보들이 메타데이터로서 SPS, GPS, TPS, APS, 또는 지오메트리 슬라이스 헤더 중 적어도 하나에 포함되어 전송되거나 또는 지오메트리 비트스트림에 포함되어 전송된다.
이와 같이, 양자화된 각 포인트의 위치는 하나 이상의 오리지날 포인트들이 매핑된 포인트의 위치(즉, 오리지날 포인트 클라우드에 없는 위치)이고, 샘플링된 각 포인트의 위치는 하나 이상의 오리지날 포인트들 중 하나의 오리지날 포인트의 위치가 된다. 그리고, 양자화를 수행할 경우 레벨 N의 포인트들과 레벨 M의 포인트의 관계를 알 수 있는 정보가 시그널링되지 않는데 반해, 샘플링을 수행할 경우 레벨 N의 포인트들과 레벨 M의 포인트의 관계를 알 수 있는 정보가 메타데이터 형태로 시그널링된다. 즉, 옥트리 압축은 오큐판시 형태를 인코딩하는 것이기 때문에, 샘플링을 수행할 경우 하위 레벨 (level N)의 오큐판시를 압축된 옥트리에 포함시키지 않고 메타데이터로 전송한다.
상기 옥트리 오큐판시 코드 생성부(53004)는 상기 메타데이터 생성 및 양자화부(53003)에서 양자화가 수행되면 양자화된 포인트들을 이용하여 옥트리 구조를 생성하고, 상기 메타데이터 생성 및 양자화부(53003)에서 메타데이터를 생성하면 샘플링 포인트들을 이용하여 옥트리 구조를 생성한다. 생성된 옥트리 구조의 리프 노드(예를 들어, 도 19의 레벨 M)는 오큐판시 코드로 표현된다. 옥트리 오큐판시 코드 생성부(53004)는 도 4 또는 도 12에서 설명한 포인트 클라우드 비디오 인코더 (또는 옥트리 분석부(40002) 또는 옥트리 오큐판시 코드 생성부(12003))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다.
상기 표면 모델 처리부(53005)는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다. 표면 모델 처리부(53005)는 도 4 또는 도 12에서 설명한 포인트 클라우드 비디오 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003) 또는 표면 모델 처리부(12004))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다.
상기 아리스메틱 코더(53006)는 상기 옥트리 오큐판시 코드 생성부(53004) 및/또는 표면 모델 처리부(53005)의 출력에 대해 아리스메틱 코딩(예, 엔트로피 코딩)을 수행하여 지오메트리 비트스트림 형태로 출력한다. 예를 들어, 상기 아리스메틱 코더(53006)는 상기 옥트리 오큐판시 코드 생성부(53004)에서 출력되는 오큐판시 코드를 엔트로피 코딩할 수 있다. 또한 압축 효율을 높이기 위해 포인트 클라우드 비디오 인코더는 오큐판시 코드를 인트라/인터 코딩할 수 있다. 실시예들에 따른 수신 장치(또는 포인트 클라우드 비디오 디코더)는 오큐판시 코드를 기반으로 옥트리를 재구성한다.
상기 지오메트리 재구성부(53007)는 상기 옥트리 오큐판시 코드 생성부(53004)의 오큐판시 코드를 기반으로 지오메트리 정보를 재구성한다. 예를 들어, 상기 옥트리 구조가 양자화된 포인트들을 기반으로 생성되었다면 상기 지오메트리 재구성부(53007)의 출력은 양자화 후의 포인트들의 위치들이 되고, 상기 옥트리 구조가 샘플링된 포인트들을 기반으로 생성되었다면 상기 지오메트리 재구성부(53007)의 출력은 샘플링된 포인트들의 위치들이 된다.
상기 지오메트리 재구성부(53007)의 출력은 어트리뷰트 인코더(51004)의 어트리뷰트 변환 처리부(55002) 및/또는 예측/리프팅/RAHT 변환 처리부(55003)로 제공된다.
실시예들에 따른 어트리뷰트 인코더(51004)의 색상 변환 처리부(55001)는 데이터 입력부(51001)에서 출력되는 포인트들의 어트리뷰트들에 포함된 색상값을 변환하는 색상 변환 코딩을 수행한다. 색상 변환 처리부(55001)는 재구성된 지오메트리를 기반으로 색상 변환 코딩을 수행할 수 있다. 예를 들어, 색상 변환 처리부(55001)는 색상 정보의 포맷을 변환(예를 들어 RGB에서 YCbCr로 변환)할 수 있다. 색상 변환 처리부(55001)는 도 4 또는 도 12에서 설명한 포인트 클라우드 비디오 인코더(예를 들면 컬러 변환부(40006) 또는 색상 변환 처리부(12008))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다.
상기 어트리뷰트 변환 처리부(55002)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 리컬러링 또는 단일 리컬러링(즉, 리컬러링 생략)을 수행한다.
일 실시예로, 지오메트리 인코더(51003)에서 양자화를 수행하였다면 상기 어트리뷰트 변환 처리부(55002)는 리컬러링을 수행하거나 단일 리컬러링을 수행한다. 실시예들에 따르면, 리컬러링은 수학식 6을 기반으로 수행되고, 단일 리컬러링은 수학식 7을 기반으로 수행된다. 다시 말해, 리컬러링은 지오메트리 재구성부(53007)로부터 입력되는 포인트의 복수의 이웃 포인트들을 K-D 트리 또는 몰톤(morton) 코드를 기반으로 탐색하고, 탐색된 복수의 이웃 포인트들의 어트리뷰트들의 평균값이 입력되는 포인트의 어트리뷰트로 설정되어 예측/리프팅/RAHT 변환 처리부(55003)로 출력된다. 단일 리컬러링은 탐색된 복수의 이웃 포인트들 중 대표 포인트의 어트리뷰트가 입력되는 포인트의 어트리뷰트로 설정되어 예측/리프팅/RAHT 변환 처리부(55003)로 출력된다.
다른 실시예로, 지오메트리 인코더(51003)에서 샘플링을 수행하였다면 상기 어트리뷰트 변환 처리부(55002)는 단일 리컬러링을 수행한다. 즉, 지오메트리 재구성부(53007)로부터 입력되는 포인트는 오리지날 포인트이므로 입력되는 포인트의 어트리뷰트가 그대로 예측/리프팅/RAHT 변환 처리부(55003)로 출력된다.
상기 예측/리프팅/RAHT 변환 처리부(55003)는 어트리뷰트 변환 처리부(55002)에서 출력되는 어트리뷰트들을 RAHT 코딩, LOD 기반의 예측 변환 코딩 및 리프팅 변환 코딩 중 어느 하나 또는 조합하여 코딩할 수 있다. 예측/리프팅/RAHT 변환 처리부(55003)는 도 4에서 설명한 RAHT 변환부(40008), LOD 생성부(40009) 및 리프팅 변환부(40010)의 동작들 또는 도 12의 예측/리프팅/RAHT 변환 처리부(12010)의 동작과 동일 또는 유사한 동작들 중 적어도 하나 이상을 수행한다. 또한 LOD 기반의 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
상기 예측/리프팅/RAHT 변환 처리부(55003)에서 어트리뷰트 코딩된 어트리뷰트들은 계수 양자화부(55004)에서 계수에 기반하여 양자화될 수 있다.
상기 아리스메틱 코더(55005)는 양자화된 어트리뷰트들을 아리스메틱 코딩에 기반하여 인코딩하여 어트리뷰트 비트스트림 형태로 출력한다.
상기 지오메트리 인코더(51003)의 아리스메틱 코도(53006)에서 출력되는 지오메트리 비트스트림과 상기 어트리뷰트 인코더(51004)의 아리스메틱 코더(55005)에서 출력되는 어트리뷰트 비트스트림은 전송 처리부(51005)로 입력된다.
실시예들에 따른 전송 처리부(51005)는 도 12의 전송 처리부(12012)의 동작 및/또는 전송 방법과 동일 또는 유사한 동작 및/또는 전송 방법을 수행할 수도 있고, 도 1의 트랜스미터(10003)의 동작 및/또는 전송 방법과 동일 또는 유사한 동작 및/또는 전송 방법을 수행할 수 있다. 구체적인 설명은 도 1 또는 도 12의 설명을 참조하기로 하고 여기서는 생략한다.
실시예들에 따른 전송 처리부(51005)는 상기 지오메트리 인코더(51003)에서 출력되는 지오메트리 비트스트림, 상기 어트리뷰트 인코더(51004)에서 출력되는 어트리뷰트 비트스트림, 상기 시그널링 처리부(51002)에서 출력되는 시그널링 비트스트림을 각각 전송할 수도 있고, 하나의 비트스트림으로 다중화하여 전송할 수도 있다.
실시예들에 따른 전송 처리부(51005)는 비트스트림을 파일 또는 세그먼트(예를 들면 스트리밍 세그먼트) 등으로 인캡슐레이션한 후 방송망 및/또는 브로드밴드 망등의 다양한 네트워크를 통해 전송할 수도 있다.
실시예들에 따른 시그널링 처리부(51002)는 시그널링 정보를 생성 및/또는 처리하여 비트스트림 형태로 전송 처리부(51005)로 출력할 수 있다. 상기 시그널링 처리부(51002)에서 생성 및/또는 처리된 시그널링 정보는 지오메트리 인코딩, 어트리뷰트 인코딩, 및 전송 처리를 위해 지오메트리 인코더(51003), 어트리뷰트 인코더(51004), 및/또는 전송 처리부(51005)로 제공될 수도 있고, 또는 상기 시그널링 처리부(51002)가 지오메트리 인코더(51003), 어트리뷰트 인코더(51004), 및/또는 전송 처리부(51005)에서 생성된 시그널링 정보를 제공받을 수도 있다.
본 명세서에서 시그널링 정보는 parameter set (SPS: sequence parameter set, GPS: geometry parameter set, APS: attribute parameter set, TPS: Tile Parameter Set 등) 단위로 시그널링되어 전송될 수 있다. 또한 슬라이스 또는 타일과 같이 각 영상의 코딩 유닛 단위로 시그널링되어 전송될 수도 있다. 본 명세서에서 시그널링 정보는 메타데이터를 포함하는 압축 관련 정보(또는 압축에 관련된 정보라 함)를 포함할 수 있다. 어플리케이션에 따라 시그널링 정보는 파일 포맷, DASH(dynamic adaptive streaming over HTTP), MMT(MPEG media transport) 등의 시스템 단 또는 HDMI(High Definition Multimedia Interface), Display Port, VESA(Video Electronics Standards Association), CTA 등의 유선 인터페이스 단에서도 정의될 수 있다.
실시예들에 따른 방법/장치가 실시예들의 동작을 추가/수행 하기 위해서 관련 정보를 시그널링 할 수 있다. 실시예들에 따른 시그널링 정보는 송신 장치 및/또는 수신 장치에서 사용될 수 있다.
도 21은 실시예들에 따른 포인트 클라우드 수신 장치의 또 다른 예시를 보인 도면이다.
실시예들에 따른 포인트 클라우드 수신 장치는 수신 처리부(61001), 시그널링 처리부(61002), 지오메트리 디코더(61003), 어트리뷰트 디코더(61004), 및 후 처리부(post-processor)(61005)를 포함할 수 있다. 실시예들에 따라 지오메트리 디코더(61003)와 어트리뷰트 디코더(61004)를 포인트 클라우드 비디오 디코더라 칭할 수 있다. 실시예들에 따르면, 포인트 클라우드 비디오 디코더는 PCC 디코더, PCC 디코딩부, 포인트 클라우드 디코더, 포인트 클라우드 디코딩부 등으로 호칭될 수 있다.
실시예들에 따른 수신 처리부(61001)는 하나의 비트스트림을 수신할 수도 있고, 또는 지오메트리 비트스트림, 어트리뷰트 비트스트림, 시그널링 비트스트림을 각각 수신할 수도 있다. 실시예들에 따른 수신 처리부(61001)는 파일 및/또는 세그먼트가 수신되면, 수신된 파일 및/또는 세그먼트를 디캡슐레이션하여 비트스트림으로 출력할 수 있다.
실시예들에 따른 수신 처리부(61001)는 하나의 비트스트림이 수신(또는 디캡슐레이션)되면, 하나의 비트스트림으로부터 지오메트리 비트스트림, 어트리뷰트 비트스트림, 및/또는 시그널링 비트스트림을 디멀티플렉싱하고, 디멀티플렉스된 시그널링 비트스트림은 시그널링 처리부(61002)로, 지오메트리 비트스트림은 지오메트리 디코더(61003)로, 어트리뷰트 비트스트림은 어트리뷰트 디코더(61004)로 출력할 수 있다.
실시예들에 따른 수신 처리부(61001)는 지오메트리 비트스트림, 어트리뷰트 비트스트림, 및/또는 시그널링 비트스트림이 각각 수신(또는 디캡슐레이션)되면, 시그널링 비트스트림은 시그널링 처리부(61002)로, 지오메트리 비트스트림은 지오메트리 디코더(61003)로, 어트리뷰트 비트스트림은 어트리뷰트 디코더(61004)로 전달할 수 있다.
상기 시그널링 처리부(61002)는 입력된 시그널링 비트스트림으로부터 시그널링 정보 예를 들어, SPS, GPS, APS, TPS, 메타 데이터 등에 포함된 정보를 파싱 및 처리하여 지오메트리 디코더(61003), 어트리뷰트 디코더(61004), 후 처리부(61005)로 제공할 수 있다. 다른 실시예로, 지오메트리 슬라이스 헤더 및/또는 어트리뷰트 슬라이스 헤더에 포함된 시그널링 정보도 해당 슬라이스 데이터를 디코딩하기 전에 상기 시그널링 처리부(61002)에서 미리 파싱될 수도 있다. 즉, 송신측에서 포인트 클라우드 데이터가 타일들 및/또는 슬라이스들로 분할되었다면, TPS는 각각의 타일 내에 포함된 슬라이스들의 개수를 포함하므로, 실시예들에 따른 포인트 클라우드 비디오 디코더는 슬라이스의 개수를 확인할 수 있고, 병렬적 디코딩을 위한 정보를 신속하게 파싱할 수 있다.
따라서, 본 명세서에 따른 포인트 클라우드 비디오 디코더는 데이터 양이 줄은 SPS를 수신함으로써 포인트 클라우드 데이터를 포함하는 비트스트림을 빠르게 파싱(parsing)할 수 있다. 수신 장치는 타일들을 수신하는대로 해당 타일의 디코딩을 수행할 수 있고, 타일 별로 타일 내에 포함된 GPS와 APS에 기초하여 슬라이스 별로 디코딩을 수행함으로써 디코딩 효율을 극대화할 수 있다.
즉 상기 지오메트리 디코더(61003)는 압축된 지오메트리 비트스트림에 대해 시그널링 정보(예, 지오메트리 관련된 파라미터들)를 기반으로 도 19의 지오메트리 인코더(51003)의 역과정을 수행하여 지오메트리를 복원할 수 있다. 상기 지오메트리 디코더(61003)에서 복원된(또는 재구성된(reconstructed)) 지오메트리는 어트리뷰트 디코더(61004)로 제공된다. 상기 어트리뷰트 디코더(61004)는 압축된 어트리뷰트 비트스트림에 대해 시그널링 정보(예, 어트리뷰트 관련된 파라미터들)와 재구성된 지오메트리를 기반으로 도 19의 어트리뷰트 인코더(51004)의 역과정을 수행하여 어트리뷰트를 복원할 수 있다. 실시예들에 따르면, 송신측에서 포인트 클라우드 데이터가 타일 및/또는 슬라이스 단위로 분할되었다면, 지오메트리 디코더(61003)와 어트리뷰트 디코더(61004)에서 타일 및/또는 슬라이스 단위로 지오메트리 디코딩과 어트리뷰트 디코딩을 수행할 수 있다.
도 22는 실시예들에 따른 지오메트리 디코더(61003)와 어트리뷰트 디코더(61004)의 다른 예시를 보인 상세 블록도이다.
도 22에서 지오메트리 디코더(61003)는 아리스메틱 디코더(63001), 오큐판시 코드 기반 옥트리 재구성 처리부(63002), 표면 모델 처리부(63003), 메타데이터 재구성부(63004), 지오메트리 재구성부(63005), 및 좌표계 역변환부(63006)를 포함할 수 있다. 도 22의 아리스메틱 디코더(63001), 오큐판시 코드 기반 옥트리 재구성 처리부(63002), 표면 모델 처리부(63003), 지오메트리 재구성부(63005), 및 좌표계 역변환부(63006)는 도 11의 아리스메틱 디코더(11000), 옥트리 합성부(11001), 서페이스 오프록시메이션 합성부(11002), 지오메트리 리컨스트럭션부(11003), 및 좌표계 역변환부(11004)의 동작의 일부 또는 전부를 수행할 수도 있고, 또는 도 13의 아리스메틱 디코더(13002), 오큐판시 코드 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(13004), 및 인버스 양자화 처리부(13005)의 동작의 일부 또는 전부를 수행할 수도 있다.
즉, 상기 아리스메틱 디코더(63001)는 입력되는 지오메트리 비트스트림을 아리스메틱 디코딩할 수 있다.
상기 오큐판시 코드 기반 옥트리 재구성 처리부(63002)는 아리스메틱 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 압축 관련 정보)로부터 오큐판시 코드를 획득하여 옥트리를 재구성할 수 있다.
상기 표면 모델 처리부(63003)는 트라이숩 지오메트리 인코딩이 적용된 경우, 표면 모델 방식에 기반하여 트라이숩 지오메트리 디코딩 및 이와 관련된 지오메트리 재구성(예를 들면 삼각형 재구성, 업-샘플링, 복셀화)을 수행할 수 있다.
상기 메타데이터 재구성부(63004)는 송신측의 지오메트리 인코더(51003)에서 샘플링을 수행하였을 때 생성된 메타데이터가 아리스메틱 코딩 후 지오메트리 비트스트림에 포함되어 수신되었을 때 메타데이터를 재구성할 수 있다. 또는 시그널링 정보에 포함된 압축 관련 정보를 기반으로 메타데이터를 재구성할 수 있다.
상기 지오메트리 재구성부(63004)는 처리된 표면 모델 및/또는 재구성된 메타데이터에 기반하여 지오메트리를 재생성할 수 있다.
상기 지오메트리 재구성부(63004)에서 복원된 지오메트리는 좌표계 역변환부(63006)와 어트리뷰트 디코더(61004)의 예측/리프팅/RAHT 변환 처리부(65003)로 출력된다.
상기 좌표계 역변환부(63006)는 복원된 지오메트리를 기반으로 좌표계를 변환하여 포인트들의 포지션들(즉, 위치값들)을 획득할 수 있다.
상기 지오메트리 디코더(61003)의 좌표계 역변환부(63006)에서 획득된 포지션들은 후 처리(post-process)부(61005)로 출력된다.
실시예들에 따르면, 시퀀스 파라미터 세트(SPS), 지오메트리 파라미터 세트(GPS), 어트리뷰트 파라미터 세트(APS), 타일 파라미터 세트(TPS), 지오메트리 슬라이스 헤더 중 적어도 하나에 압축 관련 정보(또는 메타데이터)가 시그널링되어 있다면, 상기 시그널링 처리부(61002)에서 획득하여 지오메트리 디코더(61003)로 제공하거나, 상기 지오메트리 디코더(61003)에서 직접 획득할 수도 있다.
실시예들에 따른 어트리뷰트 디코더(61004)는 아리스메틱 디코더(65001), 역양자화 처리부(65002), 예측/리프팅/RAHT 변환 처리부(65003), 어트리뷰트 재구성부(65004), 및 색상 역변환 처리부(65005)를 포함할 수 있다.
실시예들에 따른 아리스메틱 디코더(65001)는 입력되는 어트리뷰트 비트스트림을 아리스메틱 디코딩할 수 있다. 아리스메틱 디코더(65001)는 도 11의 아리스메틱 디코더(11005) 또는 도 13의 아리스메틱 디코더(13007)의 동작 및/또는 디코딩과 동일 또는 유사한 동작 및/또는 디코딩을 수행한다.
상기 역양자화 처리부(65002)는 아리스메틱 디코딩된 어트리뷰트 비트스트림을 역양자화(inverse quantization)하고 역양자화된 어트리뷰트들(또는 어트리뷰트 값들)을 출력한다. 역양자화는 포인트 클라우드 비디오 인코더의 어트리뷰트 인코딩에 기반하여 선택적으로 적용될 수 있다.
상기 예측/리프팅/RAHT 변환 처리부(65003)는 역양자화 처리부(65002)에서 출력되는 어트리뷰트들을 재구성된 지오메트리를 기반으로 RAHT 디코딩, LOD 기반의 예측 변환 디코딩 기법 및 리프팅 변환 디코딩 기법 중 어느 하나 또는 둘 이상을 조합하여 디코딩할 수 있다.
상기 어트리뷰트 재구성부(65004)는 상기 예측/리프팅/RAHT 변환 처리부(65003)에서 디코딩된 어트리뷰트들을 재구성한다.
상기 색상 역변환 처리부(65005)는 재구성된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행하여 후 처리부(61005)로 출력한다. 상기 색상 역변환 처리부(65005)는 도 11의 컬러 역변환부(11010) 또는 도 13의 색상 역변환 처리부(13010)의 동작 및/또는 역변환 코딩과 동일 또는 유사한 동작 및/또는 역변환 코딩을 수행한다.
상기 후 처리부(61005)는 상기 지오메트리 디코더(61003)에서 복원되어 출력되는 포지션들과 상기 어트리뷰트 디코더(61004)에서 복원되어 출력되는 어트리뷰트들을 매칭하여 포인트 클라우드 데이터를 재구성할 수 있다. 그리고 재구성된 포인트 클라우드 데이터는 디스플레이를 통해 렌더링될 수 있다. 또한 상기 후 처리부(61005)는 재구성된 포인트 클라우드 데이터가 타일 및/또는 슬라이스 단위라면, 시그널링 정보를 기반으로 송신측의 공간 분할의 역과정을 수행할 수 있다.
도 23은 실시예들에 따른 송/수신을 위한 포인트 클라우드 데이터의 비트스트림 구조의 예시를 나타낸다.
지금까지 설명한 실시예들을 추가/수행 하기 위해서 관련 정보를 시그널링 할 수 있다. 실시예들에 따른 시그널링 정보는 송신단의 포인트 클라우드 비디오 인코더 또는 수신단의 포인트 클라우드 비디오 디코더 등에서 사용될 수 있다.
실시예들에 따른 포인트 클라우드 비디오 인코더는 전술한 바와 같이 지오메트리 정보와 어트리뷰트 정보를 인코딩하여 도 23과 같은 비트스트림을 생성할 수 있다. 또한, 포인트 클라우드 데이터에 관한 시그널링 정보는 포인트 클라우드 비디오 인코더의 지오메트리 인코더, 어트리뷰트 인코더, 시그널링 처리부 중 적어도 하나에서 생성되고 처리되어 비트스트림에 포함될 수 있다.
실시예들에 따른 시그널링 정보는 포인트 클라우드 비디오 디코더의 지오메트리 디코더, 어트리뷰트 디코더, 시그널링 처리부 중 적어도 하나에서 수신/획득될 수 있다.
실시예들에 따른 비트스트림은 지오메트리 비트스트림, 어트리뷰트 비트스트림, 및 시그널링 비트스트림으로 구분되어 송/수신될 수도 있고, 하나의 비트스트림으로 컴바인되어 송/수신될 수도 있다.
실시예들에 따른 지오메트리 비트스트림, 어트리뷰트 비트스트림, 및 시그널링 비트스트림이 하나의 비트스트림으로 구성되는 경우, 비트스트림은 하나 또는 그 이상의 서브 비트스트림들을 포함할 수 있다. 실시예들에 따른 비트스트림은 시퀀스 레벨의 시그널링을 위한 SPS (Sequence Parameter Set), 지오메트리 정보 코딩의 시그널링을 위한 GPS(Geometry Parameter Set), 어트리뷰트 정보 코딩의 시그널링을 위한 하나 이상의 APS(Attribute Parameter Set, APS0, APS1), 타일 레벨의 시그널링을 위한 TPS (Tile Parameter Set), 하나 이상의 슬라이스들(slice 0 ~ slice n)를 포함할 수 있다. 즉, 실시예들에 따른 포인트 클라우드 데이터의 비트스트림은 하나 이상의 타일들을 포함할 수 있고, 각 타일은 하나 이상의 슬라이스들(slice 0 ~ slice n)을 포함하는 슬라이스들의 그룹일 수 있다. 실시예들에 따른 TPS는 하나 이상의 타일들에 대하여 각 타일에 관한 정보(예를 들면 bounding box의 좌표값 정보 및 높이/크기 정보 등)를 포함할 수 있다. 각 슬라이스는 하나의 지오메트리 비트스트림(Geom0) 및 하나 이상의 어트리뷰트 비트스트림들(Attr0, Attr1)을 포함할 수 있다. 예를 들어, 제1 슬라이스(slice 0)는 하나의 지오메트리 비트스트림(Geom00) 및 하나 이상의 어트리뷰트 비트스트림들(Attr00, Attr10)을 포함할 수 있다.
각 슬라이스 내 지오메트리 비트스트림(또는 지오메트리 슬라이스라 함)은 지오메트리 슬라이스 헤더(geom_slice_header)와 지오메트리 슬라이스 데이터(geom_slice_data)로 구성될 수 있다. 실시예들에 따르면, 각 슬라이스 내 지오메트리 비트스트림은 지오메트리 데이터 유닛이라 칭하고, 지오메트리 슬라이스 헤더는 지오메트리 데이터 유닛 헤더라 칭하고, 지오메트리 슬라이스 데이터는 지오메트리 데이터 유닛 데이터라 칭하기도 한다.
각 슬라이스 내 각 어트리뷰트 비트스트림(또는 어트리뷰트 슬라이스라 함)은 어트리뷰트 슬라이스 헤더(attr_slice_header)와 어트리뷰트 슬라이스 데이터(attr_slice_data)로 구성될 수 있다. 실시예들에 따르면, 각 슬라이스 내 어트리뷰트 비트스트림은 어트리뷰트 데이터 유닛이라 칭하고, 어트리뷰트 슬라이스 헤더는 어트리뷰트 데이터 유닛 헤더라 칭하고, 어트리뷰트 슬라이스 데이터는 어트리뷰트 데이터 유닛 데이터라 칭하기도 한다.
실시예들에 따른 송신 장치는, 도 23과 같은 비트스트림의 구조에 따라 포인트 클라우드 데이터를 전송함으로써, 중요도에 따라서 다른 인코딩 동작을 적용할 수 있게 하고, 품질(quality)이 좋은 인코딩 방법을 중요한 영역에 사용할 수 있는 방안을 제공할 수 있다. 또한 포인트 클라우드 데이터의 특성에 따른 효율적인 인코딩 및 전송을 지원하고 사용자의 요구사항에 따른 어트리뷰트 값을 제공할 수 있다.
실시예들에 따른 수신 장치는, 도 23과 같은 비트스트림의 구조에 따라 포인트 클라우드 데이터를 수신함으로써, 수신 장치의 처리능력(capacity)에 따라서 포인트 클라우드 데이터 전체에 복잡한 디코딩(필터링) 방법을 사용하는 대신 영역별로 (타일로 나누어지거나 슬라이스로 나누어진 영역) 서로 다른 필터링(디코딩 방법)을 적용할 수 있게 된다. 따라서, 사용자에게 중요한 영역에 더 좋은 화질을 제공하고 시스템 상으로 적절한 레이턴시(latency)을 보장할 수 있다.
전술한 바와 같이 타일 또는 슬라이스는 포인트 클라우드 데이터를 영역별로 나누어 처리할 수 있도록 하기 위해 제공된다. 그리고, 포인트 클라우드 데이터를 영역별로 나눌 때, 각각의 영역별로 다른 이웃 포인트 집합을 생성하는 옵션을 설정하여 복잡도(complexity)는 낮으나 신뢰도는 다소 떨어지거나 반대로 복잡도는 높으나 신뢰도가 높은 선택 방안을 제공할 수 있다.
실시예들에 따르면, SPS, GPS, TPS, APS, 또는 지오메트리 슬라이스 헤더 중 적어도 하나는 압축 관련 정보(또는 압축에 관련된 정보라 함)를 포함할 수 있다.
즉, 시그널(예를 들어, 압축 관련 정보)이 전달되는 위치에 따라 서로 다른 의미를 가질 수 있는데 만약 SPS에 정의되는 경우 시퀀스 전체에 동일하게 적용될 수 있고, GPS에 정의되는 경우 위치 복원에 사용됨을 나타낼 수 있고, APS에 정의되는 경우 어트리뷰트 복원에 적용됨을 나타낼 수 있고, TPS에 정의되는 경우 타일 내의 포인트에 대해서만 해당 시그널링이 적용됨을 나타낼 수 있고, 슬라이스 단위에 전달되는 경우 해당 슬라이스에 대해서만 시그널링이 적용됨을 나타낼 수 있다. 또한 다음에서 정의된 필드들(또는 신택스 엘레먼트들이라 칭함)이 현재 포인트 클라우드 데이터 스트림 뿐 아니라 복수의 포인트 클라우드 데이터 스트림에 적용될 수 있는 경우에는 상위 개념의 파라미터 세트 등을 통해 전달할 수 있다.
실시예들에 따르면, 재구성된 지오메트리 정보에 따라 어트리뷰트 압축을 위한 리컬러링 수행 여부를 압축 관련 정보에 시그널링 할 수 있다. 리컬러링을 수행하지 않을 경우, 즉 단일 리컬러링일 경우, 하나의 포인트에 따른 어트리뷰트 값이 하나이기 때문에 오리지날 포인트 클라우드와 정확히 일치하는 어트리뷰트 값을 압축할 수 있다. 따라서 지오메트리 재구성에 영향을 받는 어트리뷰트 압축의 정확도를 높일 수 있다는 장점을 가지고 있다. 실시예들에 따르면, 몰톤 코드 생성, 지오메트리 어트리뷰트 값의 분포, 이웃 노드의 어트리뷰트 값의 유사도, DC 계수의 분포에 따라서 단일 리컬러링 여부를 압축 관련 정보에 시그널링 할 수 있다.
이후 설명되는 본 명세서의 신택스들에서 사용되는 용어인 필드는 파라미터 또는 엘리먼트와 동일한 의미를 가질 수 있다.
도 24는 본 명세서에 따른 시퀀스 파라미터 세트(seq_parameter_set_rbsp())(SPS)의 신택스 구조의 일 실시예를 보인 도면이다. SPS는 포인트 클라우드 데이터 비트스트림의 시퀀스 정보를 포함할 수 있으며, 특히 이웃 포인트 선택 관련 옵션 정보를 포함하는 예를 보이고 있다.
실시예들에 따른 SPS는 profile_idc 필드, profile_compatibility_flags 필드, level_idc 필드, sps_bounding_box_present_flag 필드, sps_source_scale_factor 필드, sps_seq_parameter_set_id 필드, sps_num_attribute_sets 필드 및 sps_extension_present_flag 필드를 포함할 수 있다.
상기 profile_idc 필드는 그 비트스트림이 따르는(conform) 프로파일을 나타낸다.
상기 profile_compatibility_flags 필드의 값이 1이면, 그 비트스트림이 상기 profile_idc 필드에 의해 지시된 그 프로파일을 따른다는 것(the bitstream conforms to the profile indicated by profile_idc)을 나타낼 수 있다.
상기 level_idc 필드는 그 비트스트림이 따르는 레벨을 나타낸다.
상기 sps_bounding_box_present_flag 필드는 소스 바운딩 박스 정보가 상기 SPS에 시그널링되는지 여부를 지시한다. 상기 소스 바운딩 박스 정보는 소스 바운딩 박스 오프셋과 사이즈 정보를 포함할 수 있다. 예를 들어, 상기 sps_bounding_box_present_flag 필드의 값이 1이면, 소스 바운딩 박스 정보가 상기 SPS에 시그널링되고, 0이면 시그널링되지 않음을 나타낸다. 상기 sps_source_scale_factor 필드는 소스 포인트 클라우드의 스케일 펙터를 나타낸다(indicates the scale factor of the source point cloud).
상기 sps_seq_parameter_set_id 필드는 다른 신택스 엘리먼트들에 의해 참조되는 SPS에 대한 식별자를 제공한다(provides an identifier for the SPS for reference by other syntax elements).
상기 sps_num_attribute_sets 필드는 그 비트스트림 내 코딩된 어트리뷰트들의 개수를 나타낸다(indicates the number of coded attributes in the bitstream).
상기 sps_extension_present_flag 필드는 sps_extension_data 신택스 구조가 해당 SPS 신택스 구조에 존재하는지 여부를 나타낸다. 예를 들어, 상기 sps_extension_present_flag 필드의 값이 1이면, sps_extension_data 신택스 구조가 이 SPS 신택스 구조에 존재하고, 0이면 존재하지 않음을 나타낸다(equal to 1 specifies that the sps_extension_data syntax structure is present in the SPS syntax structure. The sps_extension_present_flag field equal to 0 specifies that this syntax structure is not present. When not present, the value of the sps_extension_present_flag field is inferred to be equal to 0).
실시예들에 따른 SPS는 상기 sps_bounding_box_present_flag 필드의 값이 1이면, sps_bounding_box_offset_x 필드, sps_bounding_box_offset_y 필드, sps_bounding_box_offset_z 필드, sps_bounding_box_scale_factor 필드, sps_bounding_box_size_width 필드, sps_bounding_box_size_height 필드, 및 sps_bounding_box_size_depth 필드를 더 포함할 수 있다.
상기 sps_bounding_box_offset_x 필드는 직교 좌표계(Cartesian coordinates)에서 소스 바운딩 박스의 x 오프셋을 나타낸다. 소스 바운딩 박스의 x 오프셋이 존재하지 않으면, 상기 sps_bounding_box_offset_x 필드의 값은 0이다.
상기 sps_bounding_box_offset_y 필드는 직교 좌표계에서 소스 바운딩 박스의 y 오프셋을 나타낸다. 소스 바운딩 박스의 y 오프셋이 존재하지 않으면, 상기 sps_bounding_box_offset_y 필드의 값은 0이다.
상기 sps_bounding_box_offset_z 필드는 직교 좌표계에서 소스 바운딩 박스의 z 오프셋을 나타낸다. 소스 바운딩 박스의 z 오프셋이 존재하지 않으면, 상기 sps_bounding_box_offset_z 필드의 값은 0이다.
상기 sps_bounding_box_scale_factor 필드는 직교 좌표계에서 소스 바운딩 박스의 스케일 펙터를 나타낸다. 소스 바운딩 박스의 스케일 팩터가 존재하지 않으면, 상기 sps_bounding_box_scale_factor 필드의 값은 1일 수 있다.
상기 sps_bounding_box_size_width 필드는 직교 좌표계에서 소스 바운딩 박스의 폭을 나타낸다. 소스 바운딩 박스의 폭이 존재하지 않으면, 상기 sps_bounding_box_size_width 필드의 값은 1일 수 있다.
상기 sps_bounding_box_size_height 필드는 직교 좌표계에서 소스 바운딩 박스의 높이를 나타낸다. 소스 바운딩 박스의 높이가 존재하지 않으면, 상기 sps_bounding_box_size_height 필드의 값은 1일 수 있다.
상기 sps_bounding_box_size_depth 필드는 직교 좌표계에서 소스 바운딩 박스의 깊이를 나타낸다. 소스 바운딩 박스의 깊이가 존재하지 않으면, 상기 sps_bounding_box_size_depth 필드의 값은 1일 수 있다.
실시예들에 따른 SPS는 상기 sps_num_attribute_sets 필드의 값만큼 반복되는 반복문을 포함한다. 이때 i는 0으로 초기화되고, 반복문이 수행될 때마다 1씩 증가하며, i값이 상기 sps_num_attribute_sets 필드의 값이 될때까지 반복문이 반복되는 것을 일 실시예로 한다. 이 반복문은 attribute_dimension[i] 필드, attribute_instance_id[i] 필드, attribute_bitdepth[i] 필드, attribute_cicp_colour_primaries[i] 필드, attribute_cicp_transfer_characteristics[i] 필드, attribute_cicp_matrix_coeffs[i] 필드, attribute_cicp_video_full_range_flag[i] 필드, 및 known_attribute_label_flag[i] 필드를 포함할 수 있다.
상기 attribute_dimension[i] 필드는 i번째 어트리뷰트의 컴포넌트들의 수를 나타낸다(specifies the number of components of the i-th attribute).
상기 attribute_instance_id[i] 필드는 i번째 어트리뷰트의 인스턴스 식별자를 나타낸다.
상기 attribute_bitdepth[i] 필드는 i번째 어트리뷰트 신호(들)의 비트깊이(bitdepth)를 나타낸다(specifies the bitdepth of the i-th attribute signal(s)).
상기 attribute_cicp_colour_primaries[i] 필드는 i번째 어트리뷰트의 컬러 어트리뷰트 소스 프라이머리들의 색도(chromaticity coordinates)를 나타낸다.
상기 attribute_cicp_transfer_characteristics[i] 필드는 i번째 어트리뷰트의 0에서 1사이의 노미널 real-valued 범위를 갖는 소스 입력 리니어 옵티컬 강도(input linear optical intensity)로서 참조 광-전자 전달 특성 함수(reference opto-electronic transfer characteristic function)를 지시하거나 또는 출력 리니어 옵티컬 강도(output linear optical intensity)의 함수로서 참조 전자-광 전달 특성 함수(reference opto-electronic transfer characteristic function)의 역(inverse)을 나타낸다. (either indicates the reference opto-electronic transfer characteristic function of the colour attribute as a function of a source input linear optical intensity with a nominal real-valued range of 0 to 1 or indicates the inverse of the reference electro-optical transfer characteristic function as a function of an output linear optical intensity.)
상기 attribute_cicp_matrix_coeffs[i] 필드는 i번째 어트리뷰트의 녹색, 청색 및 적색 (또는 Y, Z, X의 삼원색)으로부터 루마(luma)와 채도(chroma) 신호들을 도출하는데(deriving) 사용된 매트릭스 계수를 설명한다(describes the matrix coefficients used in deriving luma and chroma signals from the green, blue, and red, or Y, Z, and X primaries.)
상기 attribute_cicp_video_full_range_flag[i] 필드는 i번째 어트리뷰트의 E'Y, E'PB 및 E'PR 또는 E'R, E'G 및 E'B 실제-값 컴포넌트 신호들로부터 도출되는 블랙 레벨과 루마 및 채도 신호의 범위를 나타낸다.
상기 known_attribute_label_flag[i] 필드는 i번째 어트리뷰트를 위해 known_attribute_label 필드 또는 attribute_label_four_bytes필드가 시그널링되는지를 나타낸다. 예를 들어, 상기 known_attribute_label_flag[i] 필드의 값이 1이면, i번째 어트리뷰트를 위해 known_attribute_label필드가 시그널링되고, 상기 known_attribute_label_flag[i] 필드의 값이 1이면, i번째 어트리뷰트를 위해 attribute_label_four_bytes필드가 시그널링됨을 나타낸다.
상기 known_attribute_label[i] 필드는 어트리뷰트의 타입을 나타낸다. 예를 들어, 상기 known_attribute_label[i] 필드의 값이 0이면 i번째 어트리뷰트는 컬러임을 나타내고, 상기 known_attribute_label[i] 필드의 값이 1이면 i번째 어트리뷰트는 반사율(reflectance)임을 나타내며, known_attribute_label[i] 필드의 값이 1이면 i번째 어트리뷰트는 프레임 인덱스(frame index)임을 나타낼 수 있다.
상기 attribute_label_four_bytes필드는 4바이트 코드로 known 어트리뷰트 타입을 지시한다.
일 실시예로, 상기 attribute_label_four_bytes필드의 값이 0이면 컬러를, 1이면 반사율을 지시할 수 있다.
실시예들에 따른 SPS는 상기 sps_extension_present_flag 필드의 값이 1이면sps_extension_data_flag 필드를 더 포함할 수 있다.
상기 sps_extension_data_flag 필드는 어느 값이나 가질 수 있다.
도 25는 실시예들에 따른 압축 관련 정보를 포함하는 시퀀스 파라미터 세트(seq_parameter_set_rbsp())(SPS)의 신택스 구조의 예시를 보인 도면이다.
도 25에서, SPS는 recoloring_skip_flag 필드, octree_sampling_location 필드, sampling_point_num 필드, 및 reconstructed_geometry_use_flag 필드를 포함할 수 있다.
상기 recoloring_skip_flag 필드는 리컬러링이 스킵되는지 여부를 지시할 수 있다. 예를 들어, 상기 recoloring_skip_flag 필드의 값이 참이면 단일 리컬러링(즉, 리컬러링 스킵)이 수행되고, 거짓이면 리컬러링이 수행됨을 지시할 수 있다.
상기 octree_sampling_location 필드는 옥트리 코딩에 양자화 값을 사용할 경우, 양자화 이후의 포인트의 위치를 지시할 수 있다. 즉, 도 16과 같은 큐빅 내에서 (0,0,0)~(1,1,1) 위치 또는 (0.5, 0.5, 0.5) 중앙 위치를 옥트리 양자화에서 사용할 위치로 지시할 수 있다. 예를 들어, 상기 octree_sampling_location 필드에 4비트를 할당하고, 상기 octree_sampling_location 필드의 값이 0000이면 양자화 위치는 (0,0,0) 위치, 0001이면 (0,0,1) 위치, …., 0111이면 (1,1,1) 위치, 1000이면 (0.5, 0.5, 0.5) 중앙 위치를 나타낼 수 있다.
상기 sampling_point_num 필드는 샘플링된 포인트들의 개수를 나타낸다. 도 18을 예로 들 경우, 레벨 N에서 샘플링된 포인트들의 개수이며, 레벨 M의 포인트들의 총 개수에 해당된다.
상기 reconstructed_geometry_use_flag 필드는 단일 리컬러링으로 재구성된 지오메트리 값을 어트리뷰트 정보에 사용할지 여부를 지시한다. 예를 들어, 상기 reconstructed_geometry_use_flag 필드의 값이 참이면 단일 리컬러링으로 재구성된 지오메트리 값을 어트리뷰트 정보에 사용함을 지시하고, 거짓이면 기존 리컬러링으로 재구성된 지오메트리 값을 어트리뷰트 정보에 사용함을 지시할 수 있다.
실시예들에 따르면, 상기 reconstructed_geometry_use_flag 필드의 값이 참이면, SPS는 metadata_data_unit()을 포함할 수 있다.
실시예들에 따르면, SPS는 metadata_data_unit()를 포함하지 않고 대신 상기 sampling_point_num 필드의 값만큼 반복되는 반복문을 포함할 수 있다. 이때 i는 0으로 초기화되고, 반복문이 수행될 때마다 1씩 증가하며, i값이 상기 sampling_point_num 필드의 값이 될때까지 반복문이 반복되는 것을 일 실시예로 한다. 이 반복문은 octree_sampling_residual [i][3] 필드를 포함할 수 있다. 이 반복문은 상기 sampling_point_num 필드 다음에 위치할 수 있다.
상기 octree_sampling_residual [i][3] 필드는 i번째 샘플링 포인트와 오리지날 포인트의 위치 차이값을 나타낸다. 위치 차이값은 xyz 형태로 나타낼 수 있다. 예를 들어, 샘플링된 포인트의 개수만큼 x-x', y-y', z-z' 값을 나타낼 수 있다. 여기서, xyz는 오리지날 포인트의 위치 값을 나타내고, x'y'z'는 샘플링 포인트의 위치 값을 나타낸다.
도 26은 실시예들에 따른 metadata_data_unit()의 신택스 구조의 예시를 보인 도면이다.
도 26에서 metadata_data_unit()은 sampling_point_num 필드의 값만큼 반복되는 반복문을 포함할 수 있다. 이때 i는 0으로 초기화되고, 반복문이 수행될 때마다 1씩 증가하며, i값이 상기 sampling_point_num 필드의 값이 될때까지 반복문이 반복되는 것을 일 실시예로 한다. 이 반복문은 octree_sampling_residual [i][3] 필드를 포함할 수 있다.
상기 octree_sampling_residual [i][3] 필드는 i번째 샘플링 포인트와 오리지날 포인트의 위치 차이값을 나타낸다. 위치 차이값은 xyz 형태로 나타낼 수 있다. 예를 들어, 샘플링된 포인트의 개수만큼 x-x', y-y', z-z' 값을 나타낼 수 있다. 여기서, xyz는 오리지날 포인트의 위치 값을 나타내고, x'y'z'는 샘플링 포인트의 위치 값을 나타낸다.
실시예들에 따르면, 상기 sampling_point_num 필드는 metadata_data_unit()에 포함될 수도 있다.
실시예들에 따라 metadata_data_unit()은 각 파라미터 세트에 존재할 수도 있고, 단독 데이터 유닛으로 존재할 수 있다. 또한, 샘플링 된 옥트리와 오리지날 포인트 클라우드의 위치값의 차이를 메타데이터로 전달하거나 실시예의 계산식으로 치환 된 값을 아리스메틱 코딩을 이용하여 비트스트림 형태로 전달할 수도 있다.
실시예들에 따르면, metadata_data_unit()은 샘플링 관련 정보라 칭하기도 한다. 즉, 샘플링 관련 정보는 SPS, GPS, APS, TPS, 지오메트리 슬라이스 헤더 중 적어도 하나에 포함되어 전송될 수도 있고 또는 지오메트리 비트스트림에 포함되어 전송될 수도 있다.
실시예들에 따르면, 도 25의 압축 관련 정보는 도 24의 SPS의 임의의 위치에 포함될 수 있다.
도 27은 본 명세서에 따른 지오메트리 파라미터 세트(geometry_parameter_set())(GPS)의 신택스 구조의 일 실시예를 보인 도면이다.
실시예들에 따른 GPS는 gps_geom_parameter_set_id 필드, gps_seq_parameter_set_id 필드, gps_box_present_flag 필드, unique_geometry_points_flag 필드, neighbour_context_restriction_flag 필드, inferred_direct_coding_mode_enabled_flag 필드, bitwise_occupancy_coding_flag 필드, adjacent_child_contextualization_enabled_flag 필드, log2_neighbour_avail_boundary 필드, log2_intra_pred_max_node_size 필드, log2_trisoup_node_size 필드, 및 gps_extension_present_flag 필드를 포함할 수 있다.
상기 gps_geom_parameter_set_id 필드는 다른 신텍스 엘리먼트들에 의해 참조되는 GPS의 식별자를 제공한다 (provides an identifier for the GPS for reference by other syntax elements).
상기 gps_seq_parameter_set_id 필드는 해당 액티브 SPS에 대한 seq_parameter_set_id 필드의 값을 나타낸다 (specifies the value of sps_seq_parameter_set_id for the active SPS).
상기 gps_box_present_flag 필드는 추가 바운딩 박스 정보가 현재 GPS를 참조하는 지오메트리 슬라이스 헤더에서 제공되는지 여부를 나타낸다. 예를 들어, 상기 gps_box_present_flag 필드의 값이 1이면, 추가 바운딩 박스 정보가 현재 GPS를 참조하는 지오메트리 헤더(geometry header) 내에 제공됨을 지시할 수 있다. 따라서 상기 gps_box_present_flag 필드의 값이 1이면 GPS는 gps_gsh_box_log2_scale_present_flag 필드를 더 포함할 수 있다.
상기 gps_gsh_box_log2_scale_present_flag 필드는 gps_gsh_box_log2_scale 필드가 현재 GPS를 참조하는 각 지오메트리 슬라이스 헤더에 시그널링되는지 여부를 나타낸다. 예를 들어, 상기 gps_gsh_box_log2_scale_present_flag 필드의 값이 1이면, 상기 gps_gsh_box_log2_scale 필드가 현재 GPS를 참조하는 각 지오메트리 슬라이스 헤더에 시그널링됨을 지시할 수 있다. 다른 예로, 상기 gps_gsh_box_log2_scale_present_flag 필드의 값이 0이면, 상기 gps_gsh_box_log2_scale 필드가 현재 GPS를 참조하는 각 지오메트리 슬라이스 헤더에 시그널링되지 않으며, 모든 슬라이스들을 위한 공통 스케일(common scale)이 현재 GPS의 gps_gsh_box_log2_scale 필드에 시그널링됨을 지시할 수 있다.
상기 gps_gsh_box_log2_scale_present_flag 필드의 값이 0이면, GPS는 gps_gsh_box_log2_scale 필드를 더 포함할 수 있다.
상기 gps_gsh_box_log2_scale 필드는 현재 GPS를 참조하는 모든 슬라이스들에 대한 바운딩 박스 오리진의 공통 스케일 팩터(common scale factor)를 나타낸다.
상기 unique_geometry_points_flag 필드는 모든 출력된 포인트들이 고유의 포지션들을 가지는지 여부를 나타낸다. 예를 들어, 상기 unique_geometry_points_flag 필드의 값이 1이면, 모든 출력 포인트들이 고유의 포지션들을 가진다고 지시한다. 상기 unique_geometry_points_flag 필드의 값이 0이면, 2개 이상의 출력 포인트들이 같은 포지션들을 가질 수 있음을 지시한다(equal to 1 indicates that all output points have unique positions. unique_geometry_points_flag field equal to 0 indicates that the output points may have same positions).
상기 neighbour_context_restriction_flag 필드는 옥트리 오큐판시 코딩이 사용하는 컨텍스트들을 나타낸다. 예를 들어, 상기 neighbour_context_restriction_flag 필드의 값이 0이면, 옥트리 오큐판시 코딩이 6개의 이웃 부모 노드들(neighboring parent nodes)에 기초하여 결정된 컨텍스트들을 사용함을 나타낸다. 상기 neighbour_context_restriction_flag 필드의 값이 1이면, 옥트리 오큐판시 코딩이 형제 노드들(sibling nodes)에만 기초하여 결정된 컨텍스트들을 사용함을 나타낸다 (equal to 0 indicates that octree occupancy coding uses contexts determined from six neighbouring parent nodes. neighbour_context_restriction_flag field equal to 1 indicates that octree occupancy coding uses contexts determined from sibling nodes only.).
상기 inferred_direct_coding_mode_enabled_flag필드는 direct_mode_flag 필드가 해당 지오메트리 노드 신택스에 존재하는지 여부를 나타낸다. 예를 들어, 상기 inferred_direct_coding_mode_enabled_flag필드의 값이 1이면, 상기 direct_mode_flag 필드가 해당 지오메트리 노드 신택스에 존재함을 지시한다. 예를 들어, 상기 inferred_direct_coding_mode_enabled_flag필드의 값이 0이면, 상기 direct_mode_flag 필드가 해당 지오메트리 노드 신택스에 존재하지 않음을 지시한다.
상기 bitwise_occupancy_coding_flag 필드는 지오메트리 노드 오큐판시가 그 신택스 엘리먼트 오큐판시 맵의 비트와이즈 맥락화(bitwise contextualization)를 사용하여 인코딩되는지 여부를 나타낸다. 예를 들어, 상기 bitwise_occupancy_coding_flag 필드의 값이 1이면, 지오메트리 노드 오큐판시가 그 신택스 엘리먼트 occupancy_map의 비트와이즈 맥락화(bitwise contextualization)를 사용하여 인코딩됨을 지시한다. 예를 들어, 상기 bitwise_occupancy_coding_flag 필드의 값이 0이면, 지오메트리 노드 오큐판시가 그 디렉토리 인코드된 신택스 엘리먼트 occupancy_byte를 사용하여 인코딩됨을 지시한다.
상기 adjacent_child_contextualization_enabled_flag 필드는 이웃 옥트리 노드들(neighbouring octree nodes)의 인접한 자식들(adjacent children)이 비트와이즈 오큐판시 맥락화(bitwise occupancy contextualization)를 위해 사용되는지 여부를 나타낸다. 예를 들어, 상기 adjacent_child_contextualization_enabled_flag 필드의 값이 1이면, 이웃 옥트리 노드들(neighbouring octree nodes)의 인접한 자식들(adjacent children)이 비트와이즈 오큐판시 맥락화(bitwise occupancy contextualization)를 위해 사용됨을 지시한다. 예를 들어, 상기 adjacent_child_contextualization_enabled_flag 필드의 값이 0이면, 이웃 옥트리 노드들(neighbouring octree nodes)의 자식들(children)이 비트와이즈 오큐판시 맥락화(bitwise occupancy contextualization)를 위해 사용되지 않음을 지시한다.
상기 log2_neighbour_avail_boundary 필드는 디코딩 프로세스에서 아래와 같이 이용되는 변수(variable) NeighbAvailBoundary의 값을 나타낸다(specifies the value of the variable NeighbAvailBoundary that is used in the decoding process as follows: ).
NeighbAvailBoundary = 2log2_neighbour_avail_boundary
예를 들어, 상기 neighbour_context_restriction_flag 필드의 값이 1이면, NeighbAvailabilityMask는 1로 설정될 수 있다. 예를 들어, 상기 neighbour_context_restriction_flag 필드의 값이 0이면, NeighbAvailabilityMask는 1 << log2_neighbour_avail_boundary로 설정될 수 있다.
상기 log2_intra_pred_max_node_size 필드는 오큐판시 인트라 예측 자격이 있는 옥트리 노드 사이즈를 나타낸다(specifies the octree nodesize eligible for occupancy intra prediction).
상기 log2_trisoup_node_size 필드는 아래와 같이 결정되는 트라이앵글 노드들의 사이즈로서 변수(variable) TrisoupNodeSize을 나타낸다(specifies the variable TrisoupNodeSize as the size of the triangle nodes as follows).
TrisoupNodeSize = 1 << log2_trisoup_node_size
상기 gps_extension_present_flag 필드는 gps_extension_data 신택스 구조가 해당 GPS 신택스에 존재하는지 여부를 나타낸다. 예를 들어, 상기 gps_extension_present_flag 필드의 값이 1이면, gps_extension_data 신택스 구조가 해당 GPS 신택스에 존재함을 지시한다. 예를 들어, 상기 gps_extension_present_flag 필드의 값이 0이면, gps_extension_data 신텍스 구조가 해당 GPS 신택스에 존재하지 않음을 지시한다.
실시예들에 따른 GPS는 상기 gps_extension_present_flag 필드의 값이 1이면gps_extension_data_flag 필드를 더 포함할 수 있다.
상기 gps_extension_data_flag 필드는 어느 값이나 가질 수 있다. 그것의 존재와 값은 디코더 규격(decoder conformance to profiles)에 영향을 주지 않는다.
도 28은 실시예들에 따른 압축 관련 정보를 포함하는 지오메트리 파라미터 세트(geometry_parameter_set())(GPS)의 신택스 구조의 일 실시예를 보인 도면이다. 시그널링 정보의 명칭은 시그널링 정보의 의미 및 기능의 범위 내에서 이해될 수 있다.
도 28에서, GPS는 recoloring_skip_flag 필드, octree_sampling_location 필드, sampling_point_num 필드, 및 reconstructed_geometry_use_flag 필드를 포함할 수 있다.
각 필드의 설명은 도 25와 동일하므로 중복 설명을 피하기 위해 여기서는 생략하기로 한다.
그리고, 상기 reconstructed_geometry_use_flag 필드의 값이 참이면 포함되는 metadata_data_unit()의 상세 설명은 도 26과 동일하므로 중복 설명을 피하기 위해 여기서는 생략하기로 한다.
실시예들에 따르면, GPS는 metadata_data_unit()를 포함하지 않고 대신 상기 sampling_point_num 필드의 값만큼 반복되는 반복문을 포함할 수 있다. 이때 i는 0으로 초기화되고, 반복문이 수행될 때마다 1씩 증가하며, i값이 상기 sampling_point_num 필드의 값이 될때까지 반복문이 반복되는 것을 일 실시예로 한다. 이 반복문은 octree_sampling_residual [i][3] 필드를 포함할 수 있다. 이 반복문은 상기 sampling_point_num 필드 다음에 위치할 수 있다.
상기 octree_sampling_residual [i][3] 필드는 i번째 샘플링 포인트와 오리지날 포인트의 위치 차이값을 나타낸다. 위치 차이값은 xyz 형태로 나타낼 수 있다. 예를 들어, 샘플링된 포인트의 개수만큼 x-x', y-y', z-z' 값을 나타낼 수 있다. 여기서, xyz는 오리지날 포인트의 위치 값을 나타내고, x'y'z'는 샘플링 포인트의 위치 값을 나타낸다.
실시예들에 따르면, 도 28의 압축 관련 정보는 도 27의 GPS의 임의의 위치에 포함될 수 있다.
도 29는 본 명세서에 따른 타일 파라미터 세트(tile_parameter_set())(TPS)의 신택스 구조의 일 실시예를 보인 도면이다. 실시예들에 따라 TPS(Tile Parameter Set)는 타일 인벤토리(tile inventory)로 호칭될 수도 있다. 실시예들에 따른 TPS는 타일별로 각 타일에 관련된 정보를 포함한다.
실시예들에 따른 TPS는 num_tiles 필드를 포함한다.
상기 num_tiles 필드는 그 비트스트림을 위해 시그널링된 타일들의 개수를 나타낸다. 만일 타일들이 존재하지 않으면, 상기 num_tiles 필드의 값은 0이 될 것이다(when not present, num_tiles is inferred to be 0).
실시예들에 따른 TPS는 상기 num_tiles 필드의 값만큼 반복되는 반복문을 포함한다. 이때 i는 0으로 초기화되고, 반복문이 수행될 때마다 1씩 증가하며, i값이 상기 num_tiles 필드의 값이 될때까지 반복문이 반복되는 것을 일 실시예로 한다. 이 반복문은 tile_bounding_box_offset_x[i] 필드, tile_bounding_box_offset_y[i] 필드, tile_bounding_box_offset_z[i] 필드, tile_bounding_box_size_width[i] 필드, tile_bounding_box_size_height[i] 필드, 및 tile_bounding_box_size_depth[i] 필드를 포함할 수 있다.
상기 tile_bounding_box_offset_x[i] 필드는 직교 좌표계에서 i-번째 타일의 x 오프셋을 나타낸다 (indicates the x offset of the i-th tile in the cartesian coordinates).
상기 tile_bounding_box_offset_y[i] 필드는 직교 좌표계에서 i-번째 타일의 y 오프셋을 나타낸다.
상기 tile_bounding_box_offset_z[i] 필드는 직교 좌표계에서 i-번째 타일의 z 오프셋을 나타낸다.
상기 tile_bounding_box_size_width[i] 필드는 직교 좌표계에서 i-번째 타일의 폭(width)를 나타낸다.
상기 tile_bounding_box_size_height[i] 필드는 직교 좌표계에서 i-번째 타일의 높이(height)를 나타낸다.
상기 tile_bounding_box_size_depth[i] 필드는 직교 좌표계에서 i-번째 타일의 깊이(depth)를 나타낸다.
도 30은 실시예들에 따른 압축 관련 정보를 포함하는 타일 파라미터 세트(tile_parameter_set())(TPS)의 신택스 구조의 일 실시예를 보인 도면이다. 시그널링 정보의 명칭은 시그널링 정보의 의미 및 기능의 범위 내에서 이해될 수 있다.
도 30에서, TPS는 recoloring_skip_flag 필드, octree_sampling_location 필드, sampling_point_num 필드, 및 reconstructed_geometry_use_flag 필드를 포함할 수 있다.
각 필드의 설명은 도 25와 동일하므로 중복 설명을 피하기 위해 여기서는 생략하기로 한다.
그리고, 상기 reconstructed_geometry_use_flag 필드의 값이 참이면 포함되는 metadata_data_unit()의 상세 설명은 도 26과 동일하므로 중복 설명을 피하기 위해 여기서는 생략하기로 한다.
실시예들에 따르면, TPS는 metadata_data_unit()를 포함하지 않고 대신 상기 sampling_point_num 필드의 값만큼 반복되는 반복문을 포함할 수 있다. 이때 i는 0으로 초기화되고, 반복문이 수행될 때마다 1씩 증가하며, i값이 상기 sampling_point_num 필드의 값이 될때까지 반복문이 반복되는 것을 일 실시예로 한다. 이 반복문은 octree_sampling_residual [i][3] 필드를 포함할 수 있다. 이 반복문은 상기 sampling_point_num 필드 다음에 위치할 수 있다.
상기 octree_sampling_residual [i][3] 필드는 i번째 샘플링 포인트와 오리지날 포인트의 위치 차이값을 나타낸다. 위치 차이값은 xyz 형태로 나타낼 수 있다. 예를 들어, 샘플링된 포인트의 개수만큼 x-x', y-y', z-z' 값을 나타낼 수 있다. 여기서, xyz는 오리지날 포인트의 위치 값을 나타내고, x'y'z'는 샘플링 포인트의 위치 값을 나타낸다.
실시예들에 따르면, 도 30의 압축 관련 정보는 도 29의 TPS의 임의의 위치에 포함될 수 있다.
도 31은 본 명세서에 따른 어트리뷰트 파라미터 세트(attribute_parameter_set())(APS)의 신택스 구조의 일 실시예를 보인 도면이다. 실시예들에 따른 APS는 하나 또는 그 이상의 슬라이스들에 포함된 포인트 클라우드 데이터의 어트리뷰트 정보를 인코딩하는 방법에 관한 정보를 포함할 수 있다.
실시예들에 따른 APS는 aps_attr_parameter_set_id 필드, aps_seq_parameter_set_id 필드, attr_coding_type 필드, aps_attr_initial_qp 필드, aps_attr_chroma_qp_offset 필드, aps_slice_qp_delta_present_flag 필드, 및 aps_extension_flag 필드를 포함할 수 있다.
상기 aps_attr_parameter_set_id 필드는 다른 신택스 엘리먼트들에 의한 참조를 위한 APS의 식별자를 나타낸다.
상기 aps_seq_parameter_set_id 필드는 액티브(active) SPS에 대한 sps_seq_parameter_set_id의 값을 나타낸다.
상기 attr_coding_type 필드는 어트리뷰트에 대한 코딩 타입을 나타낸다.
실시예들에 따르면, 상기 attr_coding_type 필드의 값이 0이면 코딩 타입은 예측 가중치 리프팅(predicting weight lifting)를, 1이면 코딩 타입은 RAHT를, 2이면 고정 가중치 리프팅(fix weight lifting)을 지시할 수 있다.
상기 aps_attr_initial_qp 필드는 APS를 참조하는 각 슬라이스에 대한 변수 슬라이스 양자화 파라미터(SliceQp)의 초기 값을 나타낸다(specifies the initial value of the variable SliceQp for each slice referring to the APS).
상기 aps_attr_chroma_qp_offset 필드는 신택스 aps_attr_initial_qp에 의해 시그널링된 초기 양자화 파라미터에 대한 오프셋들을 나타낸다(specifies the offsets to the initial quantization parameter signalled by the syntax aps_attr_initial_qp).
상기 aps_slice_qp_delta_present_flag 필드는 ash_attr_qp_delta_luma and ash_attr_qp_delta_chroma 신택스 엘리먼트들이 해당 어트리뷰트 슬라이스 헤더(ASH)에 존재하는지 여부를 나타낸다. 예를 들어, 상기 aps_slice_qp_delta_present_flag 필드의 값이 1이면, ash_attr_qp_delta_luma and ash_attr_qp_delta_chroma 신택스 엘리먼트들이 해당 어트리뷰트 슬라이스 헤더(ASH)에 존재함을 지시한다(equal to 1 specifies that the ash_attr_qp_delta_luma and ash_attr_qp_delta_chroma syntax elements are present in the ASH). 예를 들어, 상기 aps_slice_qp_delta_present_flag 필드의 값이 0이면, ash_attr_qp_delta_luma and ash_attr_qp_delta_chroma 신택스 엘리먼트들이 해당 어트리뷰트 슬라이스 헤더(ASH)에 존재하지 않음을 지시한다(specifies that the ash_attr_qp_delta_luma and ash_attr_qp_delta_chroma syntax elements are not present in the ASH).
실시예들에 따른 APS는 상기 attr_coding_type 필드의 값이 0이거나 또는 2이면, 즉, 코딩 타입이 예측 가중치 리프팅(predicting weight lifting)이거나 또는 고정 가중치 리프팅(fix weight lifting)이면, lifting_num_pred_nearest_neighbours_minus1 필드, lifting_search_range_minus1 필드, 및 lifting_neighbour_bias[k] 필드를 더 포함할 수 있다.
상기 lifting_num_pred_nearest_neighbours_minus1 필드 plus 1은 예측(prediction)을 위해 사용될 가장 가까운 이웃(nearest neighbor)들의 최대 개수를 나타낸다. 실시예들에 따르면, NumPredNearestNeighbours의 값은 lifting_num_pred_nearest_neighbours와 같도록 설정된다.
상기 lifting_search_range_minus1 필드 plus 1은 예측을 위해 사용될 가장 가까운 이웃들을 결정하고 거리 기반 LOD(distance-based levels of detail)를 빌드(build)하기 위해 사용된 서치 범위를 나타낸다(lifting_search_range_minus1 plus 1 specifies the search range used to determine nearest neighbours to be used for prediction and to build distance-based levels of detail). 서치 범위를 명시하기 위한 변수 LiftingSearchRange는 상기 lifting_search_range_minus1 필드의 값에 1을 더하여 구할 수 있다(LiftingSearchRange = lifting_search_range_minus1 +1).
상기 lifting_neighbour_bias[k] 필드는 가장 가까운 이웃 유도 과정의 일부로서 두 포인트들 사이의 유클리디언 거리의 계산에서 k번째 컴포넌트들을 가중하기 위해 사용된 바이어스를 나타낸다(specifies a bias used to weight the k-th components in the calculation of the euclidean distance between two points as part of the nearest neighbour derivation process).
실시예들에 따르면, APS는 상기 attr_coding_type 필드의 값이 2이면, 즉 코딩 타입이 고정 가중치 리프팅을 지시하면, lifting_scalability_enabled_flag 필드를 더 포함할 수 있다.
상기 lifting_scalability_enabled_flag 필드는 어트리뷰트 디코딩 과정이 입력 지오메트리 포인트들에 대해 pruned 옥트리 디코드 결과를 허용하는지 여부를 지시한다. 예를 들어, 상기 lifting_scalability_enabled_flag 필드의 값이 1이면, 어트리뷰트 디코딩 과정이 입력 지오메트리 포인트들에 대해 pruned 옥트리 디코드 결과를 허용함을 나타낸다(specifies that the attribute decoding process allows the pruned octree decode result for the input geometry points). 만일 상기 lifting_scalability_enabled_flag 필드의 값이 0이면, 상기 어트리뷰트 디코딩 과정이 입력 지오메트리 포인트들에 대해 완전한 옥트리 디코드 결과를 요구함을 나타낸다(specifies that that the attribute decoding process requires the complete octree decode result for the input geometry points).
실시예들에 따르면, APS는 상기lifting_scalability_enabled_flag 필드의 값이 거짓이면, lifting_num_detail_levels_minus1 필드를 더 포함할 수 있다.
상기 lifting_num_detail_levels_minus1 필드는 어트리뷰트 코딩을 위해 LOD들의 개수를 나타낸다(specifies the number of levels of detail for the attribute coding). LOD들의 개수를 명시하기 위한 변수 LevelDetailCount는 상기 lifting_num_detail_levels_minus1 필드의 값에 1을 더하여 구할 수 있다(LevelDetailCount = lifting_num_detail_levels_minus1 + 1).
실시예들에 따르면, APS는 상기 lifting_num_detail_levels_minus1 필드의 값이 1보다 크면, lifting_lod_regular_sampling_enabled_flag 필드를 더 포함할 수 있다.
상기 lifting_lod_regular_sampling_enabled_flag 필드는 LOD(levels of detail)가 레귤러 샘플링 전략에 의해 만들어지는지 여부를 나타낸다. 예를 들어, 상기 lifting_lod_regular_sampling_enabled_flag 필드의 값이 1이면, LOD가 레귤러 샘플링 전략을 사용하여 만들어짐을 지시한다. 예를 들어, 상기 lifting_lod_regular_sampling_enabled_flag 필드의 값이 0이면, 거리 기반 샘플링 전략(distance_based sampling strategy)이 대신 사용됨을 지시한다(The lifting_lod_regular_sampling_enabled_flag equal to 1 specifies levels of detail are built by using a regular sampling strategy. The lifting_lod_regular_sampling_enabled_flag equal to 0 specifies that a distance-based sampling strategy is used instead).
실시예들에 따르면, APS는 상기lifting_scalability_enabled_flag 필드의 값이 거짓일 때, 상기 lifting_num_detail_levels_minus1 필드의 값만큼 반복되는 반복문을 더 포함할 수 있다. 이때 인덱스(idx)는 0으로 초기화되고, 반복문이 수행될 때마다 1씩 증가하며, 인덱스(idx)가 상기 lifting_num_detail_levels_minus1 필드의 값보다 커질때까지 반복문이 반복되는 것을 일 실시예로 한다. 이 반복문은 lifting_lod_regular_sampling_enabled_flag 필드의 값이 참(예를 들어, 1)이면 lifting_sampling_period_minus2 [idx] 필드를 포함하고, 거짓(예를 들어, 0)이면 lifting_sampling_distance_squared_scale_minus1 [idx] 필드를 포함할 수 있다. 그리고, idx의 값이 0이 아니면(idx != 0), lifting_sampling_distance_squared_offset [idx] 필드를 더 포함할 수 있다.
상기 lifting_sampling_period_minus2 [idx] 필드 plus 2는 LOD idx를 위한 샘플링 주기를 나타낸다(specifies the sampling period for the level of detail idx).
상기 lifting_sampling_distance_squared_scale_minu1 [idx] 필드 plus 1은 LOD idx를 위한 샘플링 거리의 제곱의 derivation를 위한 스케일 팩터(scale factor)를 나타낸다(specifies the scale factor for the derivation of the square of the sampling distance for the level of detail idx).
상기 lifting_sampling_distance_squared_offset [idx] 필드는 LOD idx를 위한 샘플링 거리의 제곱의 derivation을 위한 옵셋을 나타낸다(specifies the offset of the derivation of the square of the sampling distance for the level of detail idx).
실시예들에 따른 APS는 상기 attr_coding_type 필드의 값이 0이면, 즉 코딩 타입이 예측 가중치 리프팅(predicting weight lifting)이면, lifting_adaptive_prediction_threshold 필드, lifting_intra_lod_prediction_num_layers 필드, lifting_max_num_direct_predictors 필드, 및 inter_component_prediction_enabled_flag 필드를 더 포함할 수 있다.
상기 lifting_adaptive_prediction_threshold 필드는 적응적 예측을 가능하게 하기 위한 임계값을 나타낸다(specifies the threshold to enable adaptive prediction). 실시예들에 따르면, 적응적 예측기 선택 모드를 스위치하기 위하여 임계값을 명시하는 변수 AdaptivePredictionThreshold는 상기 lifting_adaptive_prediction_threshold 필드의 값과 같게 설정된다 (AdaptivePredictionThreshold = lifting_adaptive_prediction_threshold).
상기 lifting_intra_lod_prediction_num_layers 필드는 같은 LOD 레이어 내 디코드된 포인트들이 타겟 포인트의 예측 값을 생성하기 위해 참조할 수 있는 LOD 레이어의 number를 나타낸다(specifies number of LOD layer where decoded points in the same LOD layer could be referred to generate prediction value of target point). 예를 들어, 상기 lifting_intra_lod_prediction_num_layers 필드의 값이 상기 LevelDetailCount의 값이면, 타겟 포인트는 모든 LOD 레이어들을 위한 동일 LOD 레이어 내 디코드된 포인트들을 참조할 수 있음을 나타낸다(The lifting_intra_lod_prediction_num_layers field equal to LevelDetailCount indicates that target point could refer decoded points in the same LOD layer for all LOD layers). 예를 들어, 상기 lifting_intra_lod_prediction_num_layers 필드의 값이 0이면, 타겟 포인트는 임의의 LOD 레이어들을 위한 동일 LOD 레이어 내 디코드된 포인트들을 참조할 수 없음을 나타낸다(The lifting_intra_lod_prediction_num_layers field equal to 0 indicates that target point could not refer decoded points in the same LoD layer for any LoD layers). 상기 lifting_max_num_direct_predictors 필드는 직접 예측(direct prediction)을 위해 사용될 예측기(predictor)의 최대 개수를 나타낸다. 상기 lifting_max_num_direct_predictors 필드의 값은 0부터 LevelDetailCount의 범위에 있다.
상기 inter_component_prediction_enabled_flag 필드는 멀티 컴포넌트 어트리뷰트의 primary 컴포넌트가 non-primary 컴포넌트들의 reconstructed 값을 예측하기 위해 사용되는지 여부를 나타낸다. 예를 들어, 상기 inter_component_prediction_enabled_flag 필드의 값이 1이면, 멀티 컴포넌트 어트리뷰트의 primary 컴포넌트가 non-primary 컴포넌트들의 reconstructed 값을 예측하기 위해 사용됨을 나타낸다(specifies that the primary component of a multi component attribute is used to predict the reconstructed value of non-primary components). 만일, 상기 inter_component_prediction_enabled_flag 필드의 값이 0이면, 모든 어트리뷰트 컴포넌트들이 독립적으로 reconstruct됨을 나타낸다(specifies that all attribute components are reconstructed independently).
실시예들에 따르면, APS는 상기 attr_coding_type 필드의 값이 1이면, 즉 어트리뷰트 코딩 타입이 RAHT이면, raht_prediction_enabled_flag 필드를 더 포함할 수 있다.
상기 raht_prediction_enabled_flag 필드는 이웃 포인트들로부터 온 트랜스폼 웨이트 예측(transform weight prediction from the neighbour points)이 RAHT 디코딩 과정에서 인에이블되는지 여부를 나타낸다. 예를 들어, 상기 raht_prediction_enabled_flag 필드의 값이 1이면, 이웃 포인트들로부터 온 트랜스폼 웨이트 예측(transform weight prediction from the neighbour points)이 RAHT 디코딩 과정에서 인에이블되고, 0이면 디제이블됨을 나타낸다.
실시예들에 따르면, APS는 상기 raht_prediction_enabled_flag 필드의 값이 참이면, raht_ prediction_threshold0 필드와 raht_prediction_threshold1 필드를 더 포함할 수 있다.
상기 raht_ prediction_threshold0 필드는 이웃 포인트들로부터 온 트랜스폼 웨이트 예측(transform weight prediction from the neighbour points)을 종료하기 위한 임계값을 나타낸다.
상기 raht_prediction_threshold1 필드는 이웃 포인트들로부터 온 트랜스폼 웨이트 예측(transform weight prediction from the neighbour points)을 스킵하기 위한 임계값을 나타낸다.
상기 aps_extension_flag 필드는 aps_extension_data 신택스 구조가 해당 APS 신택스 구조에 존재하는지 여부를 나타낸다. 예를 들어, 상기 aps_extension_flag 필드의 값이 1이면, aps_extension_data 신택스 구조가 해당 APS 신택스 구조에 존재함을 지시한다. 예를 들어, 상기 aps_extension_flag 필드의 값이 0이면, aps_extension_data 신택스 구조가 해당 APS 신택스 구조에 존재하지 않음을 지시한다.
실시예들에 따른 APS는 상기 aps_extension_flag 필드의 값이 1이면aps_extension_data_flag 필드를 더 포함할 수 있다.
상기 aps_extension_data_flag 필드는 어느 값이나 가질 수 있다. 그것의 존재와 값은 디코더 규격(decoder conformance to profiles)에 영향을 주지 않는다.
실시예들에 따른 APS는 LoD 기반의 어트리뷰트 압축에 관련된 정보를 더 포함할 수 있다.
도 32는 실시예들에 따른 압축 관련 정보를 포함하는 어트리뷰트 파라미터 세트(attribute_parameter_set())(APS)의 신택스 구조의 일 실시예를 보인 도면이다. 시그널링 정보의 명칭은 시그널링 정보의 의미 및 기능의 범위 내에서 이해될 수 있다.
도 32에서, APS는 recoloring_skip_flag 필드, octree_sampling_location 필드, sampling_point_num 필드, 및 reconstructed_geometry_use_flag 필드를 포함할 수 있다.
각 필드의 설명은 도 25와 동일하므로 중복 설명을 피하기 위해 여기서는 생략하기로 한다.
그리고, 상기 reconstructed_geometry_use_flag 필드의 값이 참이면 포함되는 metadata_data_unit()의 상세 설명은 도 26과 동일하므로 중복 설명을 피하기 위해 여기서는 생략하기로 한다.
실시예들에 따르면, APS는 metadata_data_unit()를 포함하지 않고 대신 상기 sampling_point_num 필드의 값만큼 반복되는 반복문을 포함할 수 있다. 이때 i는 0으로 초기화되고, 반복문이 수행될 때마다 1씩 증가하며, i값이 상기 sampling_point_num 필드의 값이 될때까지 반복문이 반복되는 것을 일 실시예로 한다. 이 반복문은 octree_sampling_residual [i][3] 필드를 포함할 수 있다. 이 반복문은 상기 sampling_point_num 필드 다음에 위치할 수 있다.
상기 octree_sampling_residual [i][3] 필드는 i번째 샘플링 포인트와 오리지날 포인트의 위치 차이값을 나타낸다. 위치 차이값은 xyz 형태로 나타낼 수 있다. 예를 들어, 샘플링된 포인트의 개수만큼 x-x', y-y', z-z' 값을 나타낼 수 있다. 여기서, xyz는 오리지날 포인트의 위치 값을 나타내고, x'y'z'는 샘플링 포인트의 위치 값을 나타낸다.
실시예들에 따르면, 도 32의 압축 관련 정보는 도 31의 APS의 임의의 위치에 포함될 수 있다.
도 33은 본 명세서에 따른 지오메트리 슬라이스 비트스트림()의 신택스 구조의 일 실시예를 보인 도면이다.
실시예들에 따른 지오메트리 슬라이스 비트스트림(geometry_slice_bitstream ())은 지오메트리 슬라이스 헤더(geometry_slice_header())와 지오메트리 슬라이스 데이터(geometry_slice_data())를 포함할 수 있다.
도 34는 본 명세서에 따른 지오메트리 슬라이스 헤더(geometry_slice_header())의 신택스 구조의 일 실시예를 보인 도면이다.
실시예들에 따른 송신 장치가 전송하는 비트스트림(또는 수신 장치가 수신하는 비트스트림)은 하나 이상의 슬라이스들을 포함할 수 있다. 각 슬라이스(slice)는 지오메트리 슬라이스 및 어트리뷰트 슬라이스를 포함할 수 있다. 지오메트리 슬라이스는 지오메트리 슬라이스 헤더(GSH, Geometry Slice Header)를 포함한다. 어트리뷰트 슬라이스는 어트리뷰트 슬라이스 헤더(ASH, Attribute Slice Header)를 포함한다.
실시예들에 따른 지오메트리 슬라이스 헤더(geometry_slice_header())는 gsh_geom_parameter_set_id 필드, gsh_tile_id 필드, gsh_slice_id 필드, gsh_max_node_size_log2 필드, gsh_num_points 필드 및 byte_alignment( ) 필드를 포함할 수 있다.
실시예들에 따른 지오메트리 슬라이스 헤더(geometry_slice_header())는 지오메트리 파라미터 세트(GPS)에 포함된 gps_box_present_flag 필드의 값이 참(예를 들어, 1)이고, gps_gsh_box_log2_scale_present_flag 필드의 값이 참(예를 들어, 1)이면, gsh_box_log2_scale 필드, gsh_box_origin_x 필드, gsh_box_origin_y 필드, 및 gsh_box_origin_z 필드를 더 포함할 수 있다.
상기 gsh_geom_parameter_set_id 필드는 액티브 GPS의 gps_geom_parameter_set_id의 값을 나타낸다 (specifies the value of the gps_geom_parameter_set_id of the active GPS).
상기 gsh_tile_id 필드는 해당 지오메트리 슬라이스 헤더(GSH)에 의해 참조되는 해당 타일(tile)의 식별자를 나타낸다.
상기 gsh_slice_id는 다른 신택스 엘리먼트들에 의한 참조를 위해 해당 슬라이스의 식별자를 나타낸다.
상기 gsh_box_log2_scale 필드는 해당 슬라이스를 위한 바운딩 박스 오리진의 스케일링 팩터를 나타낸다.
상기 gsh_box_origin_x 필드는 상기 gsh_box_log2_scale 필드의 값에 의해 스케일링된 바운딩 박스 오리진의 x값을 나타낸다.
상기 gsh_box_origin_y 필드는 상기 gsh_box_log2_scale 필드의 값에 의해 스케일링된 바운딩 박스 오리진의 y값을 나타낸다.
상기 gsh_box_origin_z 필드는 상기 gsh_box_log2_scale 필드의 값에 의해 스케일링된 바운딩 박스 오리진의 z값을 나타낸다.
상기 gsh_max_node_size_log2 필드는 루트 지오메트리 옥트리 노드의 사이즈를 나타낸다.
상기 gsh_points_number 필드는 해당 슬라이스 내 코딩된 포인트들의 개수를 나타낸다.
도 35는 실시예들에 따른 압축 관련 정보를 포함하는 지오메트리 슬라이스 헤더(geometry_slice_header())의 신택스 구조의 일 실시예를 보인 도면이다. 시그널링 정보의 명칭은 시그널링 정보의 의미 및 기능의 범위 내에서 이해될 수 있다.
도 35에서, 지오메트리 슬라이스 헤더는 recoloring_skip_flag 필드, octree_sampling_location 필드, sampling_point_num 필드, 및 reconstructed_geometry_use_flag 필드를 포함할 수 있다.
각 필드의 설명은 도 25와 동일하므로 중복 설명을 피하기 위해 여기서는 생략하기로 한다.
그리고, 상기 reconstructed_geometry_use_flag 필드의 값이 참이면 포함되는 metadata_data_unit()의 상세 설명은 도 26과 동일하므로 중복 설명을 피하기 위해 여기서는 생략하기로 한다.
실시예들에 따르면, 지오메트리 슬라이스 헤더는 metadata_data_unit()를 포함하지 않고 대신 상기 sampling_point_num 필드의 값만큼 반복되는 반복문을 포함할 수 있다. 이때 i는 0으로 초기화되고, 반복문이 수행될 때마다 1씩 증가하며, i값이 상기 sampling_point_num 필드의 값이 될때까지 반복문이 반복되는 것을 일 실시예로 한다. 이 반복문은 octree_sampling_residual [i][3] 필드를 포함할 수 있다. 이 반복문은 상기 sampling_point_num 필드 다음에 위치할 수 있다.
상기 octree_sampling_residual [i][3] 필드는 i번째 샘플링 포인트와 오리지날 포인트의 위치 차이값을 나타낸다. 위치 차이값은 xyz 형태로 나타낼 수 있다. 예를 들어, 샘플링된 포인트의 개수만큼 x-x', y-y', z-z' 값을 나타낼 수 있다. 여기서, xyz는 오리지날 포인트의 위치 값을 나타내고, x'y'z'는 샘플링 포인트의 위치 값을 나타낸다.
실시예들에 따르면, 도 35의 압축 관련 정보는 도 34의 지오메트리 슬라이스 헤더의 임의의 위치에 포함될 수 있다.
도 36은 본 명세서에 따른 어트리뷰트 슬라이스 비트스트림()의 신택스 구조의 일 실시예를 보인 도면이다.
실시예들에 따른 어트리뷰트 슬라이스 비트스트림(attribute_slice_bitstream ())은 어트리뷰트 슬라이스 헤더(attribute_slice_header())와 어트리뷰트 슬라이스 데이터(attribute_slice_data())를 포함할 수 있다.
도 37은 본 명세서에 따른 어트리뷰트 슬라이스 헤더(attribute_slice_header())의 신택스 구조의 일 실시예를 보인 도면이다.
실시예들에 따른 어트리뷰트 슬라이스 헤더(attribute_slice_header())는 ash_attr_parameter_set_id 필드, ash_attr_sps_attr_idx 필드, ash_attr_geom_slice_id 필드, ash_attr_layer_qp_delta_present_flag 필드, 및 ash_attr_region_qp_delta_present_flag 필드를 포함할 수 있다.
실시예들에 따른 어트리뷰트 슬라이스 헤더(attribute_slice_header())는 어트리뷰트 파라미터 세트(APS)의 aps_slice_qp_delta_present_flag 필드의 값이 참(예, 1)이면, ash_attr_qp_delta_luma 필드를 더 포함하고, attribute_dimension_minus1 [ash_attr_sps_attr_idx] 필드의 값이 0보다 크면 상기 어트리뷰트 슬라이스 헤더는 ash_attr_qp_delta_chroma 필드를 더 포함할 수 있다.
상기 ash_attr_parameter_set_id 필드는 현재 액티브 APS의 aps_attr_parameter_set_id필드의 값을 나타낸다.
상기 ash_attr_sps_attr_idx 필드는 현재 액티브 SPS 내의 어트리뷰트 세트를 나타낸다.
상기 ash_attr_geom_slice_id 필드는 현재 지오메트리 슬라이스 헤더의 gsh_slice_id 필드의 값을 나타낸다.
상기 ash_attr_qp_delta_luma 필드는 액티브 어트리뷰트 파라미터 세트 내 초기 슬라이스 qp로부터 도출된 루마 델타 양자화 파라미터(qp)를 나타낸다.
상기 ash_attr_qp_delta_chroma 필드는 액티브 어트리뷰트 파라미터 세트 내 초기 슬라이스 qp로부터 도출된 크로마 델타 양자화 파라미터(qp)를 나타낸다.
이때 변수들 InitialSliceQpY와 InitialSliceQpC는 아래와 같이 도출된다.
InitialSliceQpY = aps_attrattr_initial_qp + ash_attr_qp_delta_luma
InitialSliceQpC = aps_attrattr_initial_qp + aps_attr_chroma_qp_offset+ ash_attr_qp_delta_chroma
상기 ash_attr_layer_qp_delta_present_flag 필드는 각 레이어 별로 ash_attr_layer_qp_delta_luma 필드와 ash_attr_layer_qp_delta_chroma 필드가 해당 어트리뷰트 슬라이스 헤더(ASH)에 존재하는지 여부를 나타낸다. 예를 들어, 상기 ash_attr_layer_qp_delta_present_flag 필드의 값이 1이면 상기 ash_attr_layer_qp_delta_luma 필드와 ash_attr_layer_qp_delta_chroma 필드가 해당 어트리뷰트 슬라이스 헤더에 존재하고, 0이면 존재하지 않음을 나타낸다.
상기 ash_attr_layer_qp_delta_present_flag 필드의 값이 참이면, 어트리뷰트 슬라이스 헤더는 ash_attr_num_layer_qp_minus1 필드를 더 포함할 수 있다.
상기 ash_attr_num_layer_qp_minus1 필드 plus 1은 상기 ash_attr_qp_delta_luma 필드와 상기 ash_attr_qp_delta_chroma 필드가 시그널링되는 레이어의 개수를 나타낸다. 상기 ash_attr_num_layer_qp 필드가 시그널링되지 않으면, 상기 ash_attr_num_layer_qp 필드의 값은 0이 될 것이다. 실시예들에 따르면, 레이어의 개수를 명시하는 NumLayerQp는 상기 ash_attr_num_layer_qp_minus1 필드의 값에 0을 더하여 구할 수 있다(NumLayerQp = ash_attr_num_layer_qp_minus1 + 1).
실시예들에 따르면, 지오메트리 슬라이스 헤더는 상기 ash_attr_layer_qp_delta_present_flag 필드의 값이 참이면, 상기 NumLayerQp의 값만큼 반복문을 포함할 수 있다. 이때 i는 0으로 초기화되고, 반복문이 수행될 때마다 1씩 증가하며, i값이 상기 NumLayerQp의 값이 될 때까지 반복문이 반복되는 것을 일 실시예로 한다. 이 반복문은 ash_attr_layer_qp_delta_luma[i] 필드를 포함한다. 또한 상기 반복문은 attribute_dimension_minus1[ash_attr_sps_attr_idx] 필드의 값이 0보다 크면, ash_attr_layer_qp_delta_chroma[i] 필드를 더 포함할 수 있다.
상기 ash_attr_layer_qp_delta_luma 필드는 각 레이어에서 상기 InitialSliceQpY로부터 luma delta 양자화 파라미터(qp)를 나타낸다.
상기 ash_attr_layer_qp_delta_chroma 필드는 각 레이어에서 상기 InitialSliceQpC 로부터 chroma delta 양자화 파라미터(qp)를 나타낸다.
The variables SliceQpY[i] and SliceQpC[i] with i = 0…NumLayerQPNumQPLayer-1는 아래와 같이 도출된다.
for ( i = 0; i < NumLayerQPNumQPLayer; i++) {
SliceQpY[i] = InitialSliceQpY + ash_attr_layer_qp_delta_luma[i]
SliceQpC[i] = InitialSliceQpC + ash_attr_layer_qp_delta_chroma[i]
}
실시예들에 따른 어트리뷰트 슬라이스 헤더(attribute_slice_header())는 상기 ash_attr_region_qp_delta_present_flag 필드의 값이 1이면, ash_attr_region_qp_delta, region bounding box origin, 그리고 size가 현재 어트리뷰트 슬라이스 헤더에 존재함을 지시한다. 만일 상기 ash_attr_region_qp_delta_present_flag 필드의 값이 0이면, 상기 ash_attr_region_qp_delta, region bounding box origin, and size가 현재 어트리뷰트 슬라이스 헤더에 존재하지 않음을 지시한다.
즉, 상기 ash_attr_layer_qp_delta_present_flag 필드의 값이 1이면, 상기 어트리뷰트 슬라이스 헤더는 ash_attr_qp_region_box_origin_x 필드, ash_attr_qp_region_box_origin_y 필드, ash_attr_qp_region_box_origin_z 필드, ash_attr_qp_region_box_width 필드, ash_attr_qp_region_box_height 필드, ash_attr_qp_region_box_depth 필드, 및 ash_attr_region_qp_delta 필드를 더 포함할 수 있다.
상기 ash_attr_qp_region_box_origin_x 필드는 slice_origin_x와 관련된 region bounding box의 x 오프셋을 지시한다(indicates the x offset of the region bounding box relative to slice_origin_x).
상기 ash_attr_qp_region_box_origin_y 필드는 slice_origin_y와 관련된 region bounding box의 y 오프셋을 지시한다(indicates the y offset of the region bounding box relative to slice_origin_y).
상기 ash_attr_qp_region_box_origin_z 필드는 slice_origin_z와 관련된 region bounding box의 z 오프셋을 지시한다(indicates the z offset of the region bounding box relative to slice_origin_z).
상기 ash_attr_qp_region_box_size_width 필드는 region bounding box의 width를 지시한다.
상기 ash_attr_qp_region_box_size_height 필드는 region bounding box의 height를 지시한다.
상기 ash_attr_qp_region_box_size_depth 필드는 region bounding box의 depth를 지시한다.
상기 ash_attr_region_qp_delta 필드는 ash_attr_qp_region_box 필드에 의해 지정된 region의 SliceQpY[i] and SliceQpC[i] 로부터 delta qp를 나타낸다.
실시예들에 따르면, 영역 박스 델타 양자화 파라미터(region box delta quantization parameter)를 명시하는 변수(variable) RegionboxDeltaQp는 상기 ash_attr_region_qp_delta 필드의 값과 같도록 설정된다(RegionboxDeltaQp = ash_attr_region_qp_delta).
도 38은 실시예들에 따른 포인트 클라우드 데이터 송신 방법의 흐름도를 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터에 포함된 지오메트리를 인코딩하는 단계(71001), 입력된 및/또는 재구성된 지오메트리를 기반으로 상기 포인트 클라우드 데이터에 포함된 어트리뷰트를 인코딩하는 단계(71002), 그리고 인코드된 지오메트리, 인코드된 어트리뷰트, 및 시그널링 정보를 포함하는 비트스트림을 전송하는 단계(71003)를 포함할 수 있다.
포인트 클라우드 데이터에 포함된 지오메트리와 어트리뷰트를 인코딩하는 단계(71001, 71002)는 도 1의 포인트 클라우드 비디오 인코더(10002), 도 2의 인코딩(20001), 도 4의 포인트 클라우드 비디오 인코더, 도 12의 포인트 클라우드 비디오 인코더, 도 19의 지오메트리 인코더와 어트리뷰트 인코더, 도 20의 지오메트리 인코더와 어트리뷰트 인코더의 동작의 일부 또는 전체를 수행할 수 있다.
실시예들에 따르면, 지오메트리를 인코딩하는 단계(71001)는 입력되는 포인트 클라우드 데이터의 포인트들에 대해 양자화 스케일에 따라 양자화를 수행하거나 또는 샘플링 스케일에 따라 샘플링을 수행한다. 그리고, 양자화된 포인트들 또는 샘플링된 포인트들을 기반으로 옥트리 구조를 생성하고 오큐판시 코드를 엔트로피 인코딩하여 지오메트리 비트스트림 형태로 출력한다. 또한, 샘플링된 포인트들을 기반으로 옥트리 구조를 생성할 때, 샘플링 이동량(예, octree_sampling_residual)을 메타데이터로서 전송한다. 여기서, 샘플링 이동량은 오리지날 포인트와 샘플링된 포인트와의 위치 차이값을 의미한다. 그리고, 어트리뷰트 압축에 이용되는 지오메트리 재구성은 양자화된 포인트들을 이용하여 생성된 옥트리 구조 또는 샘플링된 포인트들을 이용하여 생성된 옥트리 구조를 기반으로 이루어진다. 이때, 샘플링된 포인트는 복수의 오리지날 포인트들 중 하나에 대응되므로, 재구성된 지오메트리의 포인트의 어트리뷰트가 그대로 어트리뷰트 압축에 이용된다. 다시 말해 리컬러링 과정이 스킵된다. 본 문서는 이를 단일 리컬러링 과정이라 칭한다. 즉, 단일 리컬러링은 오리지날 포인트 클라우드의 어트리뷰트를 그대로 어트리뷰트 압축에 이용하는 것이다.
실시예들에 따르면, 어트리뷰트를 인코딩하는 단계(71002)는 단일 리컬러링 과정으로 재구성된 어트리뷰트들을 이용하여 어트리뷰트 압축을 수행한다.
실시예들에 따른 지오메트리와 어트리뷰트를 인코딩하는 단계(71001, 71002)는 슬라이스(slice) 또는 하나 또는 그 이상의 슬라이스들을 포함하는 타일(tile) 단위로 인코딩을 수행할 수 있다.
인코드된 지오메트리, 인코드된 어트리뷰트, 및 시그널링 정보를 포함하는 비트스트림을 전송하는 단계(71003)는 도 1의 트랜스미터(10003), 도 2의 전송 단계(20002), 도 12의 전송 처리부(12012) 또는 도 19의 전송 처리부(51008)에서 수행될 수도 있다.
도 39는 실시예들에 따른 포인트 클라우드 데이터 수신 방법의 흐름도를 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은 인코드된 지오메트리, 인코드된 어트리뷰트, 및 시그널링 정보를 포함하는 비트스트림을 수신하는 단계(81001), 시그널링 정보를 기반으로 지오메트리를 디코딩하는 단계(81002), 디코딩/재구성된 지오메트리와 시그널링 정보를 기반으로 어트리뷰트를 디코딩하는 단계(81003), 및 디코드된 지오메트리와 디코드된 어트리뷰트를 기반으로 복원된 포인트 클라우드 데이터를 렌더링하는 단계(81004)를 포함할 수 있다.
실시예들에 따른 인코드된 지오메트리, 인코드된 어트리뷰트, 및 시그널링 정보를 포함하는 비트스트림을 수신하는 단계(81001)는 도 1의 리시버(10005), 도 2의 진송(20002) 또는 디코딩(20003), 도 13의 수신부(13000) 또는 수신 처리부(13001), 또는 도 21의 수신 처리부(61001)에서 수행될 수 있다.
실시예들에 따른 지오메트리와 어트리뷰트를 디코딩하는 단계(81002, 81003)는 슬라이스(slice) 또는 하나 또는 그 이상의 슬라이스들을 포함하는 타일(tile) 단위로 디코딩을 수행할 수 있다.
실시예들에 따른 지오메트리를 디코딩하는 단계(81002)는 도 1의 포인트 클라우드 비디오 디코더(10006), 도 2의 디코딩(20003), 도 11의 포인트 클라우드 비디오 디코더, 도 13의 포인트 클라우드 비디오 디코더, 도 21의 지오메트리 디코더, 도 22의 지오메트리 디코더의 동작의 일부 또는 전체를 수행할 수 있다.
실시예들에 따른 어트리뷰트를 디코딩하는 단계(81003)는 도 1의 포인트 클라우드 비디오 디코더(10006), 도 2의 디코딩(20003), 도 11의 포인트 클라우드 비디오 디코더, 도 13의 포인트 클라우드 비디오 디코더, 도 21의 어트리뷰트 디코더, 도 22의 어트리뷰트 디코더의 동작의 일부 또는 전체를 수행할 수 있다.
실시예들에 따르면, 시그널링 정보 예를 들어, 시퀀스 파라미터 세트, 지오메트리 파라미터 세트, 어트리뷰트 파라미터 세트, 타일 파라미터 세트, 지오메트리 슬라이스 헤더 중 적어도 하나는 압축 관련 정보를 포함할 수 있다. 상기 압축 관련 정보에 포함되는 상세 내용은 위에서 기술하였으므로 중복 설명을 피하기 위해 여기서는 생략하기로 한다. 실시예들에 따르면, 압축 관련 정보는 지오메트리 비트스트림에 포함도어 수신될 수도 있다.
실시예들에 따르면, 지오메트리를 디코딩하는 단계(81002)는 압축 관련 정보를 기반으로 메타데이터를 재구성하고, 재구성된 메타데이터를 기반으로 옥트리를 재생성하여 지오메트리 디코딩을 수행할 수 있다. 그리고, 재생성된 옥트리를 기반으로 지오메트리를 재구성할 수 있다.
실시예들에 따르면, 어트리뷰트를 디코딩하는 단계(81003)는 재구성된 지오메트리 정보를 기반으로 어트리뷰트 디코딩을 수행할 수 있다.
실시예들에 따른 디코드된 지오메트리와 디코드된 어트리뷰트를 기반으로 복원된 포인트 클라우드 데이터를 렌더링하는 단계(81004)는 복원된 포인트 클라우드 데이터를 다양한 렌더링 방식에 따라 렌더링할 수 있다. 예를 들어, 포인트 클라우드 콘텐트의 포인트들은 일정 두께를 갖는 정점, 해당 정점 위치를 중앙으로 하는 특정 최소 크기를 갖는 정육면체, 또는 정점 위치를 중앙으로 하는 원 등으로 렌더링 될 수도 있다. 렌더링된 포인트 클라우드 콘텐트의 전부 또는 일부 영역은 디스플레이 (예를 들면 VR/AR 디스플레이, 일반 디스플레이 등)을 통해 사용자에게 제공된다.
실시예들에 따른 포인트 클라우드 데이터를 렌더링하는 단계(81004)는 도 1의 렌더러(10007) 또는 도 2의 렌더링(20004) 또는 도 13의 렌더러(13011) 에서 수행될 수 있다.
이와 같이 본 명세서는 포인트 클라우드 데이터에 대해 양자화 또는 샘플링을 수행하여 옥트리를 생성하고, 단일 리컬러링을 수행하여 어트리뷰트 압축을 수행함으로써, 손실 옥트리 코딩에서 지오메트리 압축 효율과 어트리뷰트 압축 효율을 높일 수 있다. 또한 정의된 시그널링을 통해 양자화 혹은 샘플링을 이용하여 옥트리 코딩의 입력값을 선택할 수 있으며 입력된 정보로 인코딩을 수행한다. 그리고, 옥트리로 압축한 후 재구성 된 포인트 클라우드는 단일 리컬러링을 이용하여 정확한 어트리뷰트 정보를 가져오게 됨으로써, 어트리뷰트 값의 시각적 품질이 높아지는 효과를 가진다. 특히 옥트리의 리컬러링 또한 단일값을 사용하기 때문에 인코딩 시간을 단축시킬 수 있다. 즉, 옥트리의 리컬러링을 사용하지 않아서 인코딩 시간을 단축시킬 수 있다.
전술한 각각의 파트, 모듈 또는 유닛은 메모리(또는 저장 유닛)에 저장된 연속된 수행과정들을 실행하는 소프트웨어, 프로세서, 하드웨어 파트일 수 있다. 전술한 실시예에 기술된 각 단계들은 프로세서, 소프트웨어, 하드웨어 파트들에 의해 수행될 수 있다. 전술한 실시예에 기술된 각 모듈/블락/유닛들은 프로세서, 소프트웨어, 하드웨어로서 동작할 수 있다. 또한, 실시예들이 제시하는 방법들은 코드로서 실행될 수 있다. 이 코드는 프로세서가 읽을 수 있는 저장매체에 쓰여질 수 있고, 따라서 장치(apparatus)가 제공하는 프로세서에 의해 읽혀질 수 있다.
또한 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 그리고 명세서에 기재된 “…부”등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
본 명세서는 설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시 예들을 병합하여 새로운 실시 예를 구현하도록 설계하는 것도 가능하다. 그리고, 통상의 기술자의 필요에 따라, 이전에 설명된 실시 예들을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체를 설계하는 것도 실시예들의 권리범위에 속한다.
실시예들에 따른 장치 및 방법은 상술한 바와 같이 설명된 실시 예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
실시예들의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 실시예들은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 실시예들의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 실시예들의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.
실시예들의 장치의 다양한 구성요소들은 하드웨어, 소프트웨어, 펌웨어 또는 그것들의 조합에 의해 수행될 수 있다. 실시예들의 다양한 구성요소들은 하나의 칩, 예를 들면 하나의 하드웨어 서킷으로 구현될 수 있다. 실시예들에 따른 구성요소들은 각각 별도의 칩들로 구현될 수 있다. 실시예들에 따른 장치의 구성요소들 중 적어도 하나 이상은 하나 또는 그 이상의 프로그램들을 실행 할 수 있는 하나 또는 그 이상의 프로세서들로 구성될 수 있으며, 하나 또는 그 이상의 프로그램들은 실시예들에 따른 동작/방법들 중 어느 하나 또는 그 이상의 동작/방법들을 수행시키거나, 수행시키기 위한 인스트럭션들을 포함할 수 있다. 실시예들에 따른 장치의 방법/동작들을 수행하기 위한 실행 가능한 인스트럭션들은 하나 또는 그 이상의 프로세서들에 의해 실행되기 위해 구성된 일시적이지 않은 CRM 또는 다른 컴퓨터 프로그램 제품들에 저장될 수 있거나, 하나 또는 그 이상의 프로세서들에 의해 실행되기 위해 구성된 일시적인 CRM 또는 다른 컴퓨터 프로그램 제품들에 저장될 수 있다. 또한 실시예들에 따른 메모리는 휘발성 메모리(예를 들면 RAM 등)뿐 만 아니라 비휘발성 메모리, 플래쉬 메모리, PROM등을 전부 포함하는 개념으로 사용될 수 있다. 또한, 인터넷을 통한 전송 등과 같은 반송파의 형태로 구현되는 것도 포함될 수 있다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
이 문서에서 "/"와 ","는 "및/또는"으로 해석된다. 예를 들어, "A/B"는 "A 및/또는 B"로 해석되고, "A, B"는 "A 및/또는 B"로 해석된다. 추가적으로, "A/B/C"는 "A, B, 및/또는 C 중 적어도 하나"를 의미한다. 또한, "A, B, C"도 "A, B 및/또는 C 중 적어도 하나"를 의미한다. 추가적으로, 이 문서에서 “또는”는 “및/또는”으로 해석된다. 예를 들어, "A 또는 B"은, 1) "A"만을 의미하고, 2) "B"만을 의미하거나, 3) "A 및 B"를 의미할 수 있다. 달리 표현하면, 본 문서의 “또는”은 “추가적으로 또는 대체적으로(additionally or alternatively)”를 의미할 수 있다.
실시예들의 다양한 엘리먼트들은 하드웨어, 소프트웨어, 펌웨어 또는 그것들의 조합에 의해 수행될 수 있다. 실시예들의 다양한 엘리먼트는 하드웨어 회로와 같은 싱글 칩 상에서 수행될 수 있다. 실시예들에 따라, 실시예들은 선택적으로 개별적인 칩들 상에서 수행될 수 있다. 실시예들에 따라, 실시예들의 엘리먼트들 중 적어도 하나는 실시예들에 따른 동작을 수행하는 인스트럭션들을 포함하는 하나 또는 하나 이상의 프로세서 내에서 수행될 수 있다.
또한, 본 문서에서 설명하는 실시예들에 따른 동작은 실시예들에 따라서 하나 이상의 메모리들 및/또는 하나 이상의 프로세서들을 포함하는 송수신 장치에 의해 수행될 수 있다. 하나 이상의 메모리들을 실시예들에 따른 동작을 처리/제어하기 위한 프로그램들을 저장할 수 있고, 하나 이상의 프로세서들을 본 문서에서 설명한 다양한 동작을 제어할 수 있다. 하나 이상의 프로세서들은 컨트롤러 등으로 지칭 가능하다. 실시예들에 동작들은 펌웨어, 소프트웨어, 및/또는 그것들의 조합에 의해 수행될 수 있고, 펌웨어, 소프트웨어, 및/또는 그것들의 조합은 프로세서에 저장되거나 메모리에 저장될 수 있다.
제1, 제2 등과 같은 용어는 실시예들의 다양한 구성요소들을 설명하기 위해 사용될 수 있다. 하지만 실시예들에 따른 다양한 구성요소들은 위 용어들에 의해 해석이 제한되어서는 안된다. 이러한 용어는 하나의 구성요소를 다른 구성요소와 구별하기 위해 사용되는 것에 불과하다. 것에 불과하다. 예를 들어, 제1 사용자 인풋 시그널은 제2사용자 인풋 시그널로 지칭될 수 있다. 이와 유사하게, 제2사용자 인풋 시그널은 제1사용자 인풋 시그널로 지칭될 수 있다. 이러한 용어의 사용은 다양한 실시예들의 범위 내에서 벗어나지 않는 것으로 해석되어야만 한다. 제1사용자 인풋 시그널 및 제2사용자 인풋 시그널은 모두 사용자 인풋 시그널들이지만, 문맥 상 명확하게 나타내지 않는 한 동일한 사용자 인풋 시그널들을 의미하지 않는다.
실시예들을 설명하기 위해 사용된 용어는 특정 실시예들을 설명하기 위한 목적으로 사용되고, 실시예들을 제한하기 위해서 의도되지 않는다. 실시예들의 설명 및 청구항에서 사용된 바와 같이, 문맥 상 명확하게 지칭하지 않는 한 단수는 복수를 포함하는 것으로 의도된다. 및/또는 표현은 용어 간의 모든 가능한 결합을 포함하는 의미로 사용된다. “포함한다” 표현은 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들이 존재하는 것을 설명하고, 추가적인 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들을 포함하지 않는 것을 의미하지 않는다. 실시예들을 설명하기 위해 사용되는, ~인 경우, ~때 등의 조건 표현은 선택적인 경우로만 제한 해석되지 않는다. 특정 조건을 만족하는 때, 특정 조건에 대응하여 관련 동작을 수행하거나, 관련 정의가 해석되도록 의도되었다.
또한, 본 문서에서 설명하는 실시예들에 따른 동작은 실시예들에 따라서 메모리 및/또는 프로세서를 포함하는 송수신 장치에 의해 수행될 수 있다. 메모리는 실시예들에 따른 동작을 처리/제어하기 위한 프로그램들을 저장할 수 있고, 프로세서는 본 문서에서 설명한 다양한 동작을 제어할 수 있다. 프로세서는 컨트롤러 등으로 지칭 가능하다. 실시예들에 따른 동작들은 펌웨어, 소프트웨어, 및/또는 그것들의 조합에 의해 수행될 수 있고, 펌웨어, 소프트웨어, 및/또는 그것들의 조합은 프로세서에 저장되거나 메모리에 저장될 수 있다.
발명의 실시를 위한 최선의 형태에서 구체적으로 설명되었다.
본 실시예들의 사상이나 범위를 벗어나지 않고 본 실시예들에서 다양한 변경 및 변형이 가능함은 당업자에게 자명하다. 따라서, 실시예들은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 실시예들의 변경 및 변형을 포함하는 것으로 의도된다.

Claims (15)

  1. 포인트 클라우드 데이터의 포인트들의 포지션들을 포함하는 지오메트리 정보를 인코딩하는 단계;
    상기 지오메트리 정보를 기반으로 상기 포인트 클라우드 데이터의 포인트들의 어트리뷰트 정보를 인코딩하는 단계; 및
    상기 인코드된 지오메트리 정보, 상기 인코드된 어트리뷰트 정보 및 시그널링 정보를 전송하는 단계를 포함하며,
    상기 지오메트리 정보를 인코딩하는 단계는,
    상기 포인트 클라우드 데이터의 포인트들을 샘플링 스케일에 따라 샘플링하는 단계,
    상기 샘플링된 포인트들을 기반으로 옥트리를 생성하는 단계, 및
    상기 옥트리의 오큐판시 코드를 압축하여 지오메트리 비트스트림으로 출력하는 단계를 포함하며,
    상기 시그널링 정보는 상기 샘플링에 관련된 정보를 포함하는 포인트 클라우드 데이터 송신 방법.
  2. 제 1 항에 있어서,
    상기 샘플링에 관련된 정보는 상기 샘플링된 포인트들과 오리지날 포인트들과의 위치 차이를 식별하기 위한 정보인 포인트 클라우드 데이터 송신 방법.
  3. 제 1 항에 있어서,
    상기 샘플링에 관련된 정보는 상기 지오메트리 비트스트림에 포함되는 포인트 클라우드 데이터 송신 방법.
  4. 제 1 항에 있어서,
    상기 샘플링에 관련된 정보는 시퀀스 파라미터 세트, 지오메트리 파라미터 세트, 어트리뷰트 파라미터 세트, 타일 파라미터 세트, 또는 지오메트르 슬라이스 헤더 중 적어도 하나에 포함되는 포인트 클라우드 데이터 송신 방법.
  5. 제 1 항에 있어서, 상기 어트리뷰트 정보를 인코딩하는 단계는,
    상기 샘플링된 포인트들의 어트리뷰트 값들을 기반으로 인코딩을 수행하는 포인트 클라우드 데이터 송신 방법.
  6. 포인트 클라우드 데이터의 포인트들의 포지션들을 포함하는 지오메트리 정보를 인코딩하는 지오메트리 인코더;
    상기 지오메트리 정보를 기반으로 상기 포인트 클라우드 데이터의 포인트들의 어트리뷰트 정보를 인코딩하는 어트리뷰트 인코더; 및
    상기 인코드된 지오메트리 정보, 상기 인코드된 어트리뷰트 정보 및 시그널링 정보를 전송하는 전송부를 포함하며,
    상기 지오메트리 인코더는 상기 포인트 클라우드 데이터의 포인트들을 샘플링 스케일에 따라 샘플링하고, 상기 샘플링된 포인트들을 기반으로 옥트리를 생성하며, 상기 옥트리의 오큐판시 코드를 압축하여 지오메트리 비트스트림으로 출력하고,
    상기 시그널링 정보는 상기 샘플링에 관련된 정보를 포함하는 포인트 클라우드 데이터 송신 장치.
  7. 제 6 항에 있어서,
    상기 샘플링에 관련된 정보는 상기 샘플링된 포인트들과 오리지날 포인트들과의 위치 차이를 식별하기 위한 정보인 포인트 클라우드 데이터 송신 장치.
  8. 제 6 항에 있어서,
    상기 샘플링에 관련된 정보는 상기 지오메트리 비트스트림에 포함되는 포인트 클라우드 데이터 송신 장치.
  9. 제 6 항에 있어서,
    상기 샘플링에 관련된 정보는 시퀀스 파라미터 세트, 지오메트리 파라미터 세트, 어트리뷰트 파라미터 세트, 타일 파라미터 세트, 또는 지오메트르 슬라이스 헤더 중 적어도 하나에 포함되는 포인트 클라우드 데이터 송신 장치.
  10. 제 6 항에 있어서, 상기 어트리뷰트 인코더는,
    상기 샘플링된 포인트들의 어트리뷰트 값들을 기반으로 인코딩을 수행하는 포인트 클라우드 데이터 송신 장치.
  11. 지오메트리 정보, 어트리뷰트 정보, 및 시그널링 정보를 수신하는 단계;
    상기 시그널링 정보를 기반으로 상기 지오메트리 정보를 디코딩하는 단계;
    상기 시그널링 정보와 상기 지오메트리 정보를 기반으로 상기 어트리뷰트 정보를 디코딩하는 단계; 및
    상기 디코드된 지오메트리 정보와 상기 디코드된 어트리뷰트 정보를 기반으로 복원된 포인트 클라우드 데이터를 렌더링하는 단계를 포함하며,
    상기 디코드된 지오메트리 정보는 상기 복원된 포인트 클라우드 데이터의 포인트들의 포지션들을 포함하고, 상기 디코드된 어트리뷰트 정보는 상기 복원된 포인트 클라우드 데이터의 포인트들의 어트리뷰트 값들을 포함하고,
    상기 시그널링 정보는 샘플링에 관련된 정보를 포함하고,
    상기 지오메트리 정보를 디코딩하는 단계는 상기 샘플링에 관련된 정보를 기반으로 상기 지오메트리 정보를 재구성하는 포인트 클라우드 데이터 수신 방법.
  12. 제 11 항에 있어서,
    상기 샘플링에 관련된 정보는 샘플링된 포인트들과 오리지날 포인트들과의 위치 차이를 식별하기 위한 정보인 포인트 클라우드 데이터 수신 방법.
  13. 제 11 항에 있어서,
    상기 샘플링에 관련된 정보는 상기 지오메트리 정보를 포함하는 지오메트리 비트스트림에 포함되어 수신되는 포인트 클라우드 데이터 수신 방법.
  14. 제 11 항에 있어서,
    상기 샘플링에 관련된 정보는 시퀀스 파라미터 세트, 지오메트리 파라미터 세트, 어트리뷰트 파라미터 세트, 타일 파라미터 세트, 또는 지오메트르 슬라이스 헤더 중 적어도 하나에 포함되어 수신되는 포인트 클라우드 데이터 수신 방법.
  15. 제 11 항에 있어서, 상기 어트리뷰트 정보를 디코딩하는 단계는,
    상기 샘플링에 관련된 정보를 기반으로 재구성된 지오메트리 정보를 기반으로 디코딩을 수행하는 포인트 클라우드 데이터 수신 방법.
PCT/KR2022/003081 2021-03-04 2022-03-04 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 WO2022186651A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/549,099 US20240155157A1 (en) 2021-03-04 2022-03-04 Point cloud data transmission device, point cloud data transmission method, point cloud data reception device and point cloud data reception method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0028694 2021-03-04
KR20210028694 2021-03-04

Publications (1)

Publication Number Publication Date
WO2022186651A1 true WO2022186651A1 (ko) 2022-09-09

Family

ID=83154290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/003081 WO2022186651A1 (ko) 2021-03-04 2022-03-04 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법

Country Status (2)

Country Link
US (1) US20240155157A1 (ko)
WO (1) WO2022186651A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210407145A1 (en) * 2020-06-30 2021-12-30 Electronics And Telecommunications Research Institute Method of compressing occupancy map of three-dimensional point cloud

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100082703A1 (en) * 2008-09-29 2010-04-01 Microsoft Corporation Octree construction on graphics processing units
US20200074728A1 (en) * 2012-03-07 2020-03-05 Willow Garage, Inc. Point cloud data hierarchy
US20200252657A1 (en) * 2017-10-06 2020-08-06 Interdigital Vc Holdings, Inc. A method and apparatus for encoding/decoding the geometry of a point cloud representing a 3d object
WO2020190093A1 (ko) * 2019-03-20 2020-09-24 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021002636A1 (ko) * 2019-07-04 2021-01-07 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100082703A1 (en) * 2008-09-29 2010-04-01 Microsoft Corporation Octree construction on graphics processing units
US20200074728A1 (en) * 2012-03-07 2020-03-05 Willow Garage, Inc. Point cloud data hierarchy
US20200252657A1 (en) * 2017-10-06 2020-08-06 Interdigital Vc Holdings, Inc. A method and apparatus for encoding/decoding the geometry of a point cloud representing a 3d object
WO2020190093A1 (ko) * 2019-03-20 2020-09-24 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021002636A1 (ko) * 2019-07-04 2021-01-07 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210407145A1 (en) * 2020-06-30 2021-12-30 Electronics And Telecommunications Research Institute Method of compressing occupancy map of three-dimensional point cloud
US11954891B2 (en) * 2020-06-30 2024-04-09 Electronics And Telecommunications Research Institute Method of compressing occupancy map of three-dimensional point cloud

Also Published As

Publication number Publication date
US20240155157A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
WO2021066615A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
WO2021066312A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021066626A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
WO2021141352A2 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021210764A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021049758A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2020262831A1 (ko) 포인트 클라우드 데이터 처리 장치 및 방법
WO2021002592A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2020256308A1 (ko) 포인트 클라우드 데이터 처리 장치 및 방법
WO2021261840A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021060850A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021045603A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2022019713A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021246843A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021242064A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2022015006A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2022098152A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2022035256A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021206291A1 (ko) 포인트 클라우드 데이터 전송 장치, 전송 방법, 처리 장치 및 처리 방법
WO2021182937A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2022050650A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021002636A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021045601A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2022186651A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2022240128A1 (ko) 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 수신 방법 및 포인트 클라우드 데이터 수신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763632

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18549099

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763632

Country of ref document: EP

Kind code of ref document: A1