WO2022186363A1 - Lithium-ion battery module - Google Patents

Lithium-ion battery module Download PDF

Info

Publication number
WO2022186363A1
WO2022186363A1 PCT/JP2022/009265 JP2022009265W WO2022186363A1 WO 2022186363 A1 WO2022186363 A1 WO 2022186363A1 JP 2022009265 W JP2022009265 W JP 2022009265W WO 2022186363 A1 WO2022186363 A1 WO 2022186363A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
circuit
signal
output
voltage
Prior art date
Application number
PCT/JP2022/009265
Other languages
French (fr)
Japanese (ja)
Inventor
英明 堀江
洋志 川崎
雄介 水野
Original Assignee
Apb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apb株式会社 filed Critical Apb株式会社
Publication of WO2022186363A1 publication Critical patent/WO2022186363A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • the present disclosure relates to a lithium-ion battery module, and more specifically, a lithium-ion battery that includes a plurality of optical transmitters that output optical signals according to the states of each of the plurality of stacked single cells that make up an assembled battery. Regarding modules.
  • an assembled battery in which multiple lithium-ion cells are stacked is used as a power source for portable electronic devices such as electric vehicles and hybrid electric vehicles.
  • portable electronic devices such as electric vehicles and hybrid electric vehicles.
  • it is necessary to manage charging so that there is no overcharged unit cell.
  • an overcharge heat generating circuit including a light emitting diode is connected in parallel to both ends of a battery module including single cells connected in series, and when overcharge occurs, the light emitted from the light emitting diode is a common optical fiber.
  • Patent Document 1 emits light when a unit cell is overcharged and the corresponding light-emitting diode is energized. Can not do it.
  • the present disclosure has been made in view of such problems, and its object is to provide a lithium-ion battery module in which each light-emitting part outputs an optical signal according to the state of the corresponding single battery. to do.
  • a lithium-ion battery module includes an assembled battery configured by stacking a plurality of single cells, and a plurality of optical transmitters provided in the plurality of single cells.
  • each of the plurality of cells includes a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative current collector; and each of the plurality of optical transmitters includes each cell and is powered by the corresponding cell, each optical transmitter of the plurality of optical transmitters, a measuring unit configured to output a characteristic signal representing characteristics of the corresponding cell; a controller configured to receive the characteristic signal and output a predetermined control signal; a light emitting unit configured to output an optical signal according to the control signal; with The control unit A state determination unit that determines the state of the corresponding unit cell based on the received characteristic signal, The light emitting unit is controlled to output control signals of different patterns according to the determined states of the corresponding single cells, and to output light signals of different patterns according to the determined states of the corresponding single cells
  • a lithium-ion battery module further comprises a light-receiving section that receives an optical signal and converts it into an electrical signal, and the light-receiving section and the assembled battery are electrically insulated. do.
  • each light-emitting portion outputs an optical signal corresponding to the state of the corresponding cell.
  • FIG. 1 is a partially cutaway perspective view of a lithium-ion battery module according to an embodiment of the present invention
  • FIG. FIG. 2 is a diagram showing a schematic cross-sectional structure of the lithium-ion battery module shown in FIG. 1
  • FIG. 4 is a diagram showing a schematic configuration of multiple optical transmitters in the lithium ion battery module according to one embodiment of the present invention
  • 1 is a diagram showing a schematic configuration of a clock generation circuit of an optical transmitter in a lithium ion battery module according to one embodiment of the present invention
  • FIG. 4 is a functional block diagram of a measurement circuit of an optical transmitter in the lithium ion battery module of one embodiment of the present invention
  • 3 is a functional block diagram of a control circuit for an optical transmitter in the lithium ion battery module of one embodiment of the present invention
  • FIG. FIGS. 4(a) and 4(b) are diagrams for explaining optical signals transmitted by a plurality of optical transmitters in a certain time period (ideal timing within the system cycle) in the lithium-ion battery module of one embodiment of the present invention
  • , and (c) are diagrams showing optical signals transmitted from different optical transmitters on the time axis
  • (d) is a diagram showing the optical signals of (a), (b), and (c) in a common optical waveguide.
  • FIG. 4 is a diagram for explaining optical signals transmitted by a plurality of optical transmitters in another time period (timing shifted from the ideal timing within the system cycle) in the lithium ion battery module of one embodiment of the present invention; ), (b), and (c) show optical signals transmitted from different optical transmitters on the time axis, and (d) shows (a), (b), and (d) in a common optical waveguide. It is a figure which shows the optical signal of (c) on a time-axis.
  • FIG. 4 is a diagram for explaining optical signals transmitted by a plurality of optical transmitters in another time period (timing shifted from the ideal timing within the system cycle) in the lithium ion battery module of one embodiment of the present invention; ), (b), and (c) show optical signals transmitted from different optical transmitters on the time axis, and (d) shows (a), (b), and (d) in a common optical waveguide. It is a figure which shows the optical signal of (c) on a time-axis.
  • FIG. 4 is a diagram for explaining the timing of an optical signal transmitted by an optical transmitter in the lithium-ion battery module of one embodiment of the present invention, (a) is a diagram showing the clock of the optical transmitter, and (b) is a diagram for measurement
  • FIG. 4 is a diagram showing a signal indicating the state of the corresponding unit cell determined based on the characteristic signal from the circuit
  • FIG. 4 is a diagram showing an optical signal output according to a control signal from a circuit
  • 1 is a functional block diagram of a lithium-ion battery module according to one embodiment of the invention
  • FIG. 4 is a flowchart of signal processing of the signal processing device for the lithium-ion battery module according to one embodiment of the present invention
  • 1 is a block diagram showing the optical transmitter of the first embodiment and its usage
  • FIG. 1 is a circuit diagram showing a comparison circuit of a first embodiment
  • FIG. 3 is a circuit diagram showing an output circuit of the first embodiment
  • FIG. 4 is a diagram showing an example of the correspondence between the state of the optical transmitter of the first embodiment, the input voltage, and the output signal
  • FIG. 4 is a diagram showing an example of an output signal of the optical transmitter of the first embodiment
  • FIG. FIG. 4 is a block diagram showing an optical transmitter of a second embodiment
  • FIG. FIG. 11 is a block diagram showing an optical transmitter of a third embodiment
  • FIG. 11 is a block diagram showing an optical transmitter of a fourth embodiment
  • FIG. FIG. 12 is a block diagram showing an optical transmitter of a fifth embodiment
  • FIG. FIG. 12 is a block diagram showing an optical transmitter of a sixth embodiment
  • FIG. 11 is a block diagram showing an optical transmitter of a seventh embodiment
  • FIG. FIG. 12 is a block diagram showing an optical transmitter of an eighth embodiment
  • FIG. 21 is a block diagram showing an optical transmitter of a ninth embodiment
  • FIG. FIG. 20 is a diagram showing an example of connecting the optical transmitters of the ninth embodiment
  • FIG. 11 is a block diagram showing an optical transmitter of a tenth embodiment
  • FIG. FIG. 20 is a diagram showing an example of connecting the optical transmitters of the tenth embodiment
  • a lithium-ion battery module includes an assembled battery configured by stacking a plurality of single cells, and a plurality of optical transmitters provided for the plurality of single cells. Each cell has a corresponding optical transmitter. Each optical transmitter is configured to receive a characteristic signal representing the characteristics of the corresponding unit cell and output a predetermined control signal (for example, a control signal obtained by encoding the characteristic signal for each predetermined period). A control section and a light emitting section for outputting an optical signal corresponding to a control signal to an optical waveguide common to a plurality of optical transmitters are provided. A plurality of optical transmitters are configured to asynchronously transmit optical signals.
  • a unit cell is made by laminating a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector in this order from the bottom.
  • the unit cell has a positive electrode in which a positive electrode active material layer is formed on the surface of a substantially rectangular plate-shaped positive electrode current collector, and a negative electrode active material layer formed on the surface of a substantially rectangular flat negative electrode current collector. and a negative electrode are laminated with a substantially flat separator interposed therebetween.
  • an annular frame member is arranged between the positive electrode current collector and the negative electrode current collector, and the frame member fixes the peripheral edge portion of the separator between the positive electrode current collector and the negative electrode current collector.
  • the positive electrode active material layer, the separator and the negative electrode active material layer are sealed.
  • the light emitting section may be embedded in or attached to the frame member so as to be exposed on the side surface of the frame member.
  • FIG. 1 is a partially cutaway perspective view of a lithium-ion battery module according to an embodiment of the present invention.
  • the lithium ion battery module 1 has a plurality of stacked single cells 30 .
  • the lithium-ion battery module 1 also has an optical waveguide 60 arranged adjacent to or in close proximity to the light-emitting surface of the light-emitting portion 20 .
  • the lithium-ion battery module 1 has an exterior body 70 that accommodates the plurality of cells 30 and the optical waveguides 60 .
  • a plurality of stacked single cells 30 constitute an assembled battery 50 .
  • FIG. 1 shows a configuration in which five cells 30 are stacked, more or less than five cells may be stacked. In one implementation, the number of stacks of cells 30 may be 20 or more.
  • Each unit cell 30 has a negative electrode current collector (not shown) and a positive electrode current collector (not shown) facing the negative electrode current collector.
  • Two adjacent cells 30 in the assembled battery 50 are stacked such that the upper surface of the negative electrode current collector of one cell 30 and the lower surface of the positive electrode current collector of the other cell 30 are adjacent to each other.
  • FIG. 1 shows an assembled battery 50 in which five cells 30 are connected in series.
  • the positive electrode current collector and the negative electrode current collector are made of metal materials such as copper, aluminum, titanium, stainless steel, nickel and alloys thereof, baked carbon, conductive polymer materials, conductive glass, etc. can be configured.
  • a conductive sheet is provided on the uppermost negative electrode current collector of the assembled battery 50 .
  • a part of the conductive sheet is drawn out from the outer package 70 to form the lead wiring 57 .
  • a conductive sheet is provided under the positive electrode current collector on the bottom surface of the assembled battery 50 .
  • a part of the conductive sheet is pulled out from the exterior body 70 to form the lead wiring 59 .
  • the conductive sheet can be constructed using any of metal materials such as copper, aluminum, titanium, stainless steel, nickel and alloys thereof, but is not limited to these materials as long as they are conductive materials.
  • the conductive sheet may be constructed using a conductive polymeric material.
  • Each cell 30 has a measurement circuit 90 that measures the characteristics of the cell.
  • Each unit cell 30 also has a light emitting unit 20 that emits light based on the measured characteristics and outputs an optical signal.
  • the measurement circuit 90 and the light emitting section 20 are provided in the optical transmitter 10 together with the control circuit 40 .
  • the optical transmitter 10 will be described later.
  • the optical waveguide 60 has an optical output portion from which the incident and propagated optical signal is emitted.
  • light emitted from light emitting units 20 provided in each of 20 or more single cells 30 arranged adjacent or close to one optical waveguide 60 is optically coupled and output from the light output unit. emit.
  • a portion of the optical waveguide 60 is pulled out from the exterior body 70 to serve as an optical output section.
  • An optical signal emitted from the optical output section is received by the light receiving section 80 .
  • the light receiving section 80 can be configured using a photodiode, a phototransistor, or the like.
  • the light-receiving section 80 may be configured using an LED element, which is a light-emitting element, as a light-receiving element.
  • the entire optical waveguide 60 including the optical output section may be housed inside the exterior body 70 .
  • the optical signal emitted from the optical output section is received by the light receiving section 80 arranged inside the exterior body 70 .
  • the light receiving section 80 is electrically insulated from the assembled battery 50 as in the case where the light receiving section 80 is arranged inside the exterior body 70 .
  • the exterior body 70 can be configured using a metal can case or a polymer-metal composite film.
  • the exterior body 70 is sealed so as to maintain the internal pressure reduction.
  • FIG. 2 is a diagram showing a schematic cross-sectional structure of the lithium ion battery module shown in FIG.
  • the optical waveguide 60 extending in the stacking direction of the unit cells is arranged adjacent to or close to the light emitting surface of the light emitting section 20 .
  • the optical waveguide 60 may be, for example, an optical fiber, or may be a light guide plate having a sufficient width (length in the direction perpendicular to the stacking direction of the cells) to receive the optical signal from the light emitting section 20 .
  • the width dimension of the optical waveguide 60 should be larger than the maximum dimension of the light emitting surface of the light emitting part 20 (diameter if the light emitting surface is circular, diagonal if rectangular).
  • FIG. 2 shows a case where the optical waveguide 60 is configured using a light guide plate.
  • the optical waveguide 60 can be arranged so as to cover all of the light emitting surfaces of the plurality of light emitting portions 20 (each corresponding to a plurality of stacked single cells). Further, the optical waveguide 60 can be arranged so as to cover the light emitting direction of the light emitting section 20 (including the case where it is aligned with the vertical direction of the light emitting surface and the case where it is inclined from the vertical direction of the light emitting surface).
  • the optical signal output from the light emitting unit 20 is more likely to be received than when an optical fiber is used as the optical waveguide 60.
  • An additional component such as a lens for focusing light to 60 is no longer required, the labor for positioning the optical waveguide is reduced, or the misalignment tolerance is increased.
  • an additional component such as a lens may be used, or a light guide plate subjected to light condensing processing may be used.
  • the complexity of positioning can be reduced or the position can be reduced.
  • the deviation allowance is increased.
  • the optical waveguide 60 extending in the stacking direction of the unit cells is exemplified, it is also possible to use the optical waveguide 60 extending in a direction orthogonal to the stacking direction of the unit cells.
  • the light guide plate as the optical waveguide 60 can cover all of the light emitting surfaces of the plurality of light emitting portions 20, and by tapering toward the light output portion, light is output from the tapered light output portion.
  • An optical signal can be received by the light receiver 80 .
  • the optical waveguide 60 is subjected to scattering processing 60a at the position of the back surface corresponding to the position of the surface that receives the optical signal.
  • the scattering processing 60a is applied to a position corresponding to the light emitting surface of the adjacent or adjacent light emitting section 20.
  • the scattering processing 60a can be, for example, uneven processing. A portion of the optical signal that enters the optical waveguide 60 and is scattered by the scattering processing 60a propagates in the direction of the optical output section.
  • the optical waveguide 60 is subjected to reflection processing 60b at the bent portion, so that the optical signal scattered by the bent portion can be reflected in the direction of the optical output portion.
  • Reflection processing 60b is applied to the end opposite to the end serving as the light output portion of the optical waveguide 60 and the bent portion. The direction of the light output can be reflected.
  • FIG. 3 is a diagram showing a schematic configuration of a plurality of optical transmitters within a lithium ion battery module according to one embodiment of the present invention.
  • the optical transmitters 10 correspond to the cells 30 respectively.
  • the optical transmitter 10 includes a light emitting section 20, a control circuit 40, and a measurement circuit 90 arranged on flexible printed circuits (FPC) (not shown).
  • FPC flexible printed circuits
  • the measurement circuit 90 is configured to measure the characteristics of the corresponding unit cell 30 and output a characteristic signal representing the measured characteristics.
  • the measurement circuit 90 can be configured using arbitrary semiconductor elements such as microcomputers, ICs, and LSIs.
  • the measurement circuit 90 is powered by the cell 30 .
  • Measurement circuitry 90 may be configured to measure, for example, voltage or temperature or both as characteristics of the cell. More specifically, the measurement circuit 90 is a control circuit that is electrically coupled to voltage measurement terminals (not shown) that are in contact with the positive electrode current collector and the negative electrode current collector, respectively, and is also electrically coupled to the light emitting unit 20 . 40 are electrically coupled.
  • the measurement circuit 90 outputs a signal indicating the voltage input to the voltage measurement terminal as a characteristic signal.
  • the measurement circuit 90 is connected to one or more temperature measurement elements (not shown) provided in contact with the surface of the positive electrode current collector and the negative electrode current collector or the surface of the cell as an alternative or in addition to the voltage measurement terminals. may be electrically coupled.
  • the measurement circuit 90 outputs a signal corresponding to the output from the temperature measurement element as a characteristic signal.
  • the control circuit 40 is configured to receive a characteristic signal representing the characteristic of the corresponding unit cell from the measurement circuit 90 and output a control signal obtained by encoding the characteristic signal every predetermined period.
  • a control signal is supplied to the light emitting unit 20 .
  • the control circuit 40 can be configured using any semiconductor device such as a microcomputer, IC, or LSI. Power is supplied from the cell 30 .
  • the control circuit 40 may be integrated with the measurement circuit 90 .
  • the control circuit may be configured to encode the identifier ID unique to the corresponding cell 30 together with the characteristic signal and output the control signal. By outputting the optical signal based on the control signal in which the identifier ID of the unit cell 30 is encoded in the corresponding control signal together with the characteristic signal, it is possible to determine which unit cell the status information is on the receiving side. can be determined or estimated.
  • the light emitting unit 20 can be configured using light emitting elements such as LED elements and organic EL elements.
  • the light emitting unit 20 is powered by the cell 30 and driven based on a control signal from the control circuit 40 (that is, emits light according to the control signal and outputs an optical signal according to the control signal). can be configured.
  • the optical transmitter 10 is provided on the cell 30 so that the light emitting section 20 is arranged on one of the short sides of the cell 30 .
  • the light emitting surfaces of the plurality of light emitting units 20 are arranged in a row on the side surface of the assembled battery 50 in the stacking direction of the plurality of unit cells 30 and adjacent to or close to the optical waveguide 60. are placed as follows.
  • the optical transmitter 10 is configured to operate with an internal clock. Measurement circuit 90 and control circuit 40 operate in synchronization with an internal clock. In order to suppress the power consumption of the optical transmitter 10 which is supplied with power from the cell 30, it is preferable that the clock generation circuit also consumes less power.
  • FIG. 4 is a diagram showing a schematic configuration of a clock generation circuit for an optical transmitter in a lithium ion battery module according to one embodiment of the present invention.
  • This clock generation circuit produces a square wave clock when a sinusoidal voltage generated by an oscillator circuit (not shown) such as a Colpitts circuit is applied to one (Vinp) and the other (Vinn) of the two inputs of a comparator.
  • a circuit that outputs a signal A CR circuit including a capacitor C and a resistor R is connected to Vinp, and the sizes of the resistor R and the capacitor C are determined according to the period or frequency of the desired square wave.
  • FIG. 5 is a functional block diagram of the measurement circuit 90 of the optical transmitter of this embodiment.
  • the measurement circuit 90 includes an input terminal 91a and an input terminal 91b, a comparison circuit 92, and an output terminal 95.
  • FIG. 5 is a functional block diagram of the measurement circuit 90 of the optical transmitter of this embodiment.
  • the measurement circuit 90 includes an input terminal 91a and an input terminal 91b, a comparison circuit 92, and an output terminal 95.
  • the input terminal 91a and the input terminal 91b are terminals for electrically connecting the voltage measurement terminal and the measurement circuit 90, which are in contact with the positive electrode current collector and the negative electrode current collector of the cell 30, respectively.
  • the input terminal 91a and the input terminal 91b are connected to one or more temperature measurement elements (not shown) provided in contact with the surface of the positive electrode current collector and the negative electrode current collector of the cell 30 or the surface of the cell. It is a terminal for electrically coupling the circuit 90 .
  • the input terminal 91a and the input terminal 91b are a voltage or current sensor that measures the voltage between the positive electrode current collector and the negative electrode current collector of the cell 30, a temperature sensor provided on the surface of the cell 30, or It is a terminal for inputting a voltage output by a sensor such as a magnetic sensor provided near the surface of the cell.
  • a signal corresponding to a predetermined reference for example, a voltage with reference to the ground potential
  • the signal corresponding to the reference may be input to one of the input terminals 91a and 91b.
  • the input terminal 91b in the comparison circuit 92 may be grounded in advance so that a ground potential is supplied to the comparison circuit 92, and a signal corresponding to the reference may be input to the input terminal 91a.
  • the comparison circuit 92 may not have the input terminal 91b for inputting a reference signal from the outside.
  • the comparison circuit 92 compares the potentials input to the input terminals 91a and 91b and outputs a signal indicating the potential difference. This potential difference corresponds to the voltage of the cell 30 or the temperature of the cell.
  • the comparison circuit 92 can be configured using, for example, one or more comparators. By increasing the number of comparators, the granularity of the meaning (for example, the voltage of the cell 30, the temperature of the cell, or the magnetic field around the cell) indicated by the potential difference output from the output terminal 95 by the comparison circuit 92 can be increased. Can be fine or precise.
  • the output terminal 95 is a terminal for outputting the signal output by the comparison circuit 92 as a characteristic signal corresponding to the characteristic (voltage or temperature) of the cell 30 .
  • FIG. 6 is a functional block diagram of the control circuit 40 of the optical transmitter 10 in the lithium ion battery module of one embodiment of the present invention.
  • the control circuit 40 includes a state determination circuit 42 , a lookup table 44 , a selector 43 and an output terminal 45 .
  • the state determination circuit 42 determines the state of the corresponding cell based on the characteristic signal output by the measurement circuit 90, and outputs a control signal having a different pattern from the output terminal 45 according to the determined state of the corresponding cell. It is a circuit configured to The state determination circuit 42 is coupled to the lookup table 44 and the selector 43 and cooperates to determine the state of the corresponding unit cell based on the characteristic signal from the measurement circuit 90. It is configured to output control signals of different patterns according to the state of .
  • the lookup table 44 stores values of signals (characteristic signals) indicating a plurality of potential differences that can be input from the measurement circuit 90 via the state determination circuit 42, a plurality of corresponding battery states, and a plurality of control patterns with mutually different patterns. It can be a table in which signals are associated with each other.
  • the corresponding battery status can be, for example, a corresponding battery voltage or temperature range
  • the control signal can be a signal pattern representing the corresponding battery voltage range or temperature range.
  • the selector 43 refers to the lookup table 44 to determine the state of the battery (for example, voltage or temperature range) corresponding to the value of the signal (characteristic signal) indicating the potential difference input via the state determination circuit 42 and the relevant A control signal (signal pattern) corresponding to the state is determined.
  • a control signal corresponding to the determined state of the corresponding battery is output from the output terminal 45 .
  • Selector 43 and lookup table 44 may be configured by a single circuit that sets a pulse pattern representing a signal pattern representing a battery voltage range or temperature range in response to a signal from state determination circuit 32. .
  • each of the plurality of optical transmitters 10 outputs an optical signal corresponding to the state of the corresponding cell.
  • Each optical transmitter 10 outputs an optical signal asynchronously with other optical transmitters.
  • FIG. 7 is a diagram illustrating optical signals transmitted by a plurality of optical transmitters in a certain time period (at ideal transmission timings within the system period) in the lithium-ion battery module according to one embodiment of the present invention.
  • the assembled battery 50 is configured by stacking n unit cells (n is an integer equal to or greater than 2), and the lithium-ion battery module includes n optical transmitters corresponding to the n unit cells, respectively.
  • the system period of the lithium-ion battery module be n ⁇ T, and each optical transmitter 10 transmits an optical signal in a time period T within the system period.
  • the ideal transmission timing within the system cycle is the timing at which the n time intervals T at which the n optical transmitters 10 transmit optical signals do not overlap.
  • FIG. 7(a), (b), and (c) show optical signals transmitted from three optical transmitters out of n optical transmitters 10 at ideal transmission timings within the system period.
  • Fig. 3 is a view on the axis;
  • FIG. 7(b) shows the three
  • the time period during which the first, second and third optical transmitters transmit optical signals is T, and the period (repetition time period) is nT.
  • (d) is a diagram showing the optical signal on the optical waveguide 60 common to the n optical transmitters 10 on the time axis.
  • the optical signals shown in FIGS. 7A, 7B, and 7C are received by the light receiving section 80 without overlapping on the optical waveguide 60.
  • FIG. FIG. 7 shows a case where each optical transmitter transmits an optical signal with the same content, but the content of the optical signal (number of pulses and pattern) is variable according to the state of the cell.
  • the maximum number of pulses that can be transmitted in a time period T is transmitted as an optical signal, and if a smaller number of pulses are transmitted as an optical signal (pulses are transmitted in the first half of the time period T and pulses in the second half). not sent).
  • the optical transmitter 10 is configured to operate with an internal clock. Therefore, the internal clocks of all the optical transmitters 10 are not the same, and a shift occurs in the transmission timing of optical signals. The deviation of the transmission timing of the optical signal increases with the lapse of time, and the ideal transmission timing within the system period is restored. Assuming that the internal clocks of all the optical transmitters 10 are the same, the optical signal transmission timings of two or more optical transmitters 10 that transmit optical signals asynchronously can be the same. In this case, since the optical signals continue to overlap on the optical waveguide 60, a mechanism for controlling the transmission timing between the plurality of optical transmitters 10 is required. need to be synchronized.
  • each of the plurality of optical transmitters 10 operates with the internal clock and transmits optical signals asynchronously with other optical transmitters. More specifically, by adjusting the magnitudes of the resistance R and the capacitance C of the CR circuit described above with reference to FIG. .
  • the accuracy of the clock generation circuit of this embodiment described with reference to FIG. 4 is lower than that of the clock generation circuit using a crystal oscillator.
  • the accuracy of a crystal oscillator with a built-in temperature compensation circuit is about 1 ⁇ 10 ⁇ 9 .
  • the accuracy of the silicon resonator and the ceramic resonator of this embodiment includes deviation from the target accuracy at the time of manufacture (there is variation in accuracy). Therefore, the internal clock of the optical transmitter 10 is adjusted so as not to be the same as the internal clocks of other optical transmitters 10 due to manufacturing variations and/or adjustment of the CR circuit.
  • the light-emitting unit 20 operates and emits light according to the internal clock of the optical transmitter 10 .
  • the internal clock of the optical transmitter 10 has temperature dependency. Therefore, the width of a pulse (length of light emission time) transmitted as an optical signal also has temperature dependence.
  • the width of the optical pulse varies with temperature, if the light receiving unit 80 converts the optical signal into an electrical signal at a constant sampling interval, there is a possibility that a pulse capture error occurs (the light emitting unit 20 When the width of the light pulse is shortened on the light receiving section 80 side, two light pulses are converted into one electric pulse on the light receiving section 80 side, or when the width of the light pulse is lengthened on the light emitting section 20 side.
  • the light receiving section 80 may be configured to have a mechanism for changing the sampling interval when converting the received optical signal into an electrical signal according to the temperature dependency of the internal clock of the optical transmitter 10 obtained in advance. desirable.
  • FIG. 8 is a diagram for explaining optical signals transmitted by a plurality of optical transmitters in a certain time period (transmission timing shifted from the ideal transmission timing within the system cycle) in the lithium-ion battery module according to one embodiment of the present invention; is. Similar to FIG. 7, FIGS. 8A, 8B, and 8C are diagrams showing optical signals transmitted from three optical transmitters out of the n optical transmitters 10 on the time axis. is.
  • the period of the internal clock of the second optical transmitter is configured to be slightly shorter (the frequency is slightly higher), thus the time period for transmitting the optical signal is shorter than T by ⁇ 1, and the period (repetition time period) is n(T ⁇ 1).
  • the period of the internal clock of the third optical transmitter is configured to be slightly longer (the frequency is slightly lower) than the internal clock of the first optical transmitter, so the time to transmit the optical signal is The period is longer than T by ⁇ 2, and the period (repeating time period) is n(T+ ⁇ 2).
  • (d) is a diagram showing the optical signal on the optical waveguide 60 common to the n optical transmitters 10 on the time axis. The optical signals shown in FIGS. 8(a), (b), and (c) are superimposed on the optical waveguide 60 and received by the light receiving section 80.
  • the width of the optical pulses, or at least part of the array pattern changes from the optical pulse contained in the optical signal output by the first optical transmitter.
  • the arrangement of the light pulses of is changing. This change also appears in the electrical signal from the light receiving section 80 .
  • At least one of the plurality of optical signals output from the plurality of optical transmitters 10 is based on at least one of the number of electrical pulses contained in the electrical signal from the light receiving section 80, the width of the electrical pulses, and the arrangement of the electrical pulses. It can be determined whether a portion overlaps on the light guide 60 .
  • FIG. 9 is a diagram illustrating the timing at which the optical transmitter transmits optical signals in the lithium-ion battery module according to one embodiment of the present invention.
  • FIG. 9(a) is a diagram showing the internal clock of the optical transmitter 10 on the time axis. Measurement circuit 90 and control circuit 40 operate according to this internal clock.
  • FIG. 9(b) is a diagram showing a signal indicating the state of the corresponding cell determined by the control circuit 40 based on the characteristic signal from the measurement circuit 90.
  • the signal indicating the state of the cell differs (changes) according to the state of the cell.
  • the comparison circuit 92 outputs a characteristic signal indicating the potential difference (voltage of the cell) between the two input terminals according to the internal clock.
  • the state determination circuit 42 determines the state of the corresponding cell based on the characteristic signal from the measurement circuit 90 according to the internal clock, and determines the state of the corresponding cell according to the state of the corresponding cell. judge the signal.
  • Determination of different patterns of signals according to the corresponding state of the cell and the determined state of the cell may be performed using the selector 43 and the lookup table 44 . Quantization errors occur when the measurement circuit 90 outputs the characteristic signal and when the control circuit 40 outputs the control signal.
  • the signal (number of pulses and pattern) corresponding to the state of the cell determined by the control circuit 40 changes according to the change in the potential difference between the cells (the state of the cell).
  • FIG. 9(c) is a diagram showing a signal indicating a predetermined time period T (the repetition period is nT) in the time period nT of the system period.
  • the control circuit 40 uses a clock counter (not shown) that counts an internal clock to count the time period nT of the system cycle and a predetermined time period T within the time period nT, and generate a signal indicating the predetermined time period. can be generated.
  • the control circuit 40 encodes the characteristic signal together with a signal indicating a predetermined time period and outputs a control signal.
  • the control signal supplied from the control circuit 40 to the light emitting unit 20 is the product of the characteristic signal shown in FIG. 9(b) and the signal indicating the predetermined period shown in FIG. 9(c).
  • FIG. 9(d) is a diagram showing an optical signal output when the light emitting section 20 emits light according to the control signal supplied from the control circuit 40.
  • the remaining n ⁇ 1 optical transmitters for example, the second optical transmitter, the third optical transmitter, . . . If the optical transmitters) transmit optical signals at different timings, the optical signals are received by the light receiving section 80 without overlapping on the optical waveguide 60 as shown in FIG. 7(d).
  • the optical signals are received by the light receiving section 80 without overlapping on the common optical waveguide 60 as shown in FIG. 7(d).
  • the optical signals overlap on the optical waveguide 60 and are received by the light receiving section 80 as shown in FIG. 8(d).
  • the optical signals are received by the light receiving section 80 without overlapping on the common optical waveguide 60 as shown in FIG. 7(d) again.
  • the ideal transmission timing within the system cycle occurs in a relatively long cycle, and based on the optical signals received from the plurality of optical transmitters 10 at this time, , it is possible to determine the characteristics of a plurality of single cells.
  • FIG. 10 is a functional block diagram of a lithium ion battery module according to one embodiment of the present invention.
  • the lithium-ion battery module comprises a signal processor 100 configured to determine or estimate the state of the plurality of cells, taking into account additional information apart from the electrical signal converted from the optical signal by the light receiver 80 .
  • the lithium ion battery module 1 includes a voltmeter 120 for measuring the input/output voltage of the assembled battery connected to the lead wiring 57 and the lead wiring 59 .
  • the lithium ion battery module 1 also includes an ammeter 110 connected to the lead wire 57 for measuring the input/output current of the assembled battery.
  • the input/output voltage information obtained from the voltmeter 120 and the input/output current information obtained from the ammeter 110 can be used as additional information when determining or estimating the states of the plurality of cells.
  • Time series and prior knowledge can also be used when determining or estimating the states of a plurality of single cells.
  • the time series can be an information table in which the states determined by the state determination unit 102 are recorded in chronological order.
  • the prior knowledge includes an information table showing the correspondence relationship between preset cell characteristics (internal states such as voltage and temperature) and the length of the characteristic signal output by the measuring circuit 90, cell characteristics (voltage and temperature , etc.) can be information indicating state transitions.
  • the time series and prior knowledge can be information recorded on a computer-readable recording medium.
  • the signal processing device 100 includes a state determination section 102 and a state estimation section 104 .
  • Signal processing device 100 may be a computing device that includes a memory, a processor, and a computer-readable storage medium that records a program that causes the processor to function as state determining section 102 and state estimating section 104 .
  • the computer-readable storage medium may record information indicating the above-described prior knowledge in addition to the program.
  • the state (characteristics) of the cell 30 is determined by the state determining unit 102 based on the electrical signal from the light receiving unit 80 (step S11), and the states of all the cells are determined. It is determined whether or not the states have been determined (step S12), and the states of the single cells whose states could not be determined are estimated by the state estimating unit 104 (step S13).
  • step S11 the state determining unit 102 based on the electrical signal from the light receiving unit 80
  • the states of all the cells are determined. It is determined whether or not the states have been determined (step S12), and the states of the single cells whose states could not be determined are estimated by the state estimating unit 104 (step S13).
  • the state determination unit 102 processes the electrical signal from the light receiving unit 80 and determines whether or not it is converted from an optical signal in which two or more optical signals are superimposed. For example, it can be determined whether two or more optical signals overlap based on the number of pulses, the width of the pulses, and the pattern of pulse sequences contained in the electronic signals. If it is determined that the electrical signal is not converted from an optical signal in which two or more optical signals are superimposed, the state determining unit 102 determines that the voltage indicated by the electrical signal is the voltage of the cell 30. decide.
  • the state estimator 104 estimates the voltages of the cells that have not been determined by the state determiner 102 .
  • the state estimator 104 uses the input/output voltage information obtained from the voltmeter 120 . Assuming that the input/output voltage information Vtotal of the assembled battery 50 composed of n unit cells 30 connected in series and the sum of the voltages of the plurality of unit cells being V1+V2+V3+ . . . .
  • the state estimator 104 transitions the voltage of the cell that could not be determined by the state determiner 102 by using the relationship of Equation 1.
  • FIG. Vtotal V1+V2+V3+...Vn (Formula 1)
  • the state estimation unit 104 obtains the difference between Vtotal and the sum of the voltages of the cells determined by the state determination unit 102, and estimates the voltages of the cells that were not determined by the state determination unit 102 based on the obtained difference. can do.
  • the cell voltage determined by state determination section 102 may include quantization errors in measurement circuit 90 and control circuit 40 . Therefore, it is preferable to estimate the voltages of the single cells that have not been determined by the state determining unit 102, taking into account this error range.
  • m (m be an integer) be the number of cells whose voltages are determined by the state determination unit 102
  • Sm the lower limit of the voltage range represented by the electrical signal
  • SM the upper limit.
  • the voltage range Vrng_ND of the unit cells that have not been energized can be expressed by Equation (2).
  • the state estimating unit 104 can estimate the voltage of the cell that was not determined by the state determining unit 102 within this range. Vtotal-(SM1+SM2+...SMm) ⁇ Vrng_ND ⁇ Vtotal-(Sm1+Sm2+...Smm) (Formula 2)
  • the state estimating unit 104 can use prior knowledge to estimate the voltage of the cell that was not determined by the state determining unit 102 at the timing. As prior knowledge, a voltage-capacity curve measured in advance is held, and the state estimating unit 104 uses a value that fits the voltage-capacity curve to determine the state of a single cell of a certain voltage after charging a predetermined amount. A voltage change or voltage at the battery can be estimated.
  • the state estimation unit 104 uses one or more of estimation using additional information, estimation based on time series, and estimation using prior knowledge to estimate the voltage of the cell that was not determined by the state determination unit 102 at the timing. be able to.
  • the optical signals are received by the light receiving section 80 while being superimposed on the optical waveguide 60 as shown in FIG. 8(d). It becomes possible to estimate the state of the cell.
  • FIG. 12 is a block diagram showing the optical transmitter 10 and its usage in the first embodiment.
  • the optical transmitter 10 of this embodiment includes a comparison circuit 92, a state determination circuit 42, a pulse pattern setting circuit 233, a reset circuit 234, a clock generation circuit 235, and an output circuit 236.
  • FIG. The optical transmitter 10 also includes a VDD terminal 221 , a VSS terminal 222 , an input terminal 224 and an output terminal 223 .
  • the optical transmitter 10 further includes a light emitter 20 (not shown).
  • the VDD terminal 221 is connected to the power supply VDD inside the optical transmitter 10 .
  • the VSS terminal 222 is connected to the power supply VSS within the optical transmitter 10 .
  • Input terminal 224 is connected to comparison circuit 92 .
  • Comparing circuit 92 is connected to state determining circuit 42 .
  • the state determination circuit 42 is connected to the comparison circuit 92 and the pulse pattern setting circuit 233 .
  • the pulse pattern setting circuit 233 is connected to the state determination circuit 42 , the reset circuit 234 , the clock generation circuit 235 and the output circuit 236 .
  • the reset circuit 234 is connected to the pulse pattern setting circuit 233 and the clock generation circuit 235 .
  • the clock generation circuit 235 is connected to the reset circuit 234 and the pulse pattern setting circuit 233 .
  • the output circuit 236 is connected to the pulse pattern setting circuit 233 and the output terminal 223 . Part of the description of the power connection of each circuit in the optical transmitter 10 is omitted.
  • the cell 30 is connected to a VDD terminal 221 and a VSS terminal 222 which are cell connection terminals of the optical transmitter 10 .
  • the sensor 205 has three terminals of power supply and output. The sensor 205 operates using the cell 30 as a power source. The sensor 205 applies a voltage based on the voltage of the VSS terminal 222 from the output terminal to the input terminal 224 as the input voltage VIN.
  • the optical transmitter 10 outputs from the output terminal 223 an output signal OUT corresponding to the voltage range of the voltage applied to the input terminal 224 . An output signal OUT corresponding to the characteristic signal is supplied to the light emitting section 20 (not shown).
  • FIG. 13 is a circuit diagram showing the comparison circuit 92 of the first embodiment.
  • the comparison circuit 92 includes resistor circuits 301 and 302 that generate voltages to be input to the comparators, comparators 303 and 304 , and a voltage source 305 .
  • the resistor circuit 301 has switches 306 and 307 and resistors 310 , 311 and 312 .
  • Switch 306 , resistor 310 and resistor 312 are connected in series between VDD terminal 221 and VSS terminal 222 .
  • switch 307, resistor 311, and resistor 312 are connected in series between input terminal 224 and power supply VSS.
  • Resistor circuit 302 has switches 308 and 309 and resistors 313 , 314 and 315 .
  • Switch 308, resistor 313, and resistor 315 are connected in series between input terminal 224 and power supply VSS.
  • switch 309, resistor 314, and resistor 315 are connected in series between input terminal 224 and power supply VSS.
  • the comparator 303 has an inverting input terminal connected to the power supply VSS2 via the voltage source 305, and a non-inverting input terminal connected to the connection point of the resistors 310, 311, and 312. FIG.
  • the comparator 304 has an inverting input terminal connected to the power supply VSS via the voltage source 305 and a non-inverting input terminal connected to the connection point of the resistors 313 , 314 , and 315 . Outputs of the comparators 303 and 304 are connected to the state determination circuit 42 .
  • the state determination circuit 42 determines in which voltage range the input voltage VIN input to the input terminal 224 is positioned according to the output determination result of the input comparator, and sets a new monitoring voltage range according to the determination. Thus, a control signal for setting the switches 306, 307, 308, and 309 of the comparison circuit 92 on and off is output. Further, the state determination circuit 42 outputs to the pulse pattern setting circuit 233 in which monitor voltage range the input voltage VIN falls.
  • the state determination circuit 42 can be composed of a logic circuit, a processor circuit, or the like.
  • the pulse pattern setting circuit 233 is a circuit implementing functions corresponding to the selector 43 and lookup table 44 described above.
  • the pulse pattern setting circuit 233 receives the output of the state determination circuit 42 and outputs a pulse-shaped output signal OUT corresponding to the voltage range of the input voltage VIN from the sensor 205 from the output terminal 223 via the output circuit 236 .
  • Signals from the reset circuit 234 and the clock circuit 35 are used to generate the pulse pattern of the output signal OUT.
  • the operations of the pulse pattern setting circuit 233, reset circuit 234, and clock circuit 35 will be described later.
  • the output circuit 236 has an input, an output, a PMOS transistor 361 and an NMOS transistor 362 .
  • the PMOS transistor 361 has a gate terminal connected to the input of the output circuit 236 , a source terminal connected to the power supply VDD, and a drain terminal connected to the output of the output circuit 236 .
  • the NMOS transistor 362 has a gate terminal connected to the input of the output circuit 236 , a source terminal connected to the power supply VSS, and a drain terminal connected to the output of the output circuit 236 .
  • the input voltage VIN of the input terminal 224 to which the sensor 205 is connected, the comparison circuit 92, and the state determination circuit 42 will be described with reference to FIG.
  • the input voltage VIN is the voltage applied from the sensor 205 to the input terminal 224 with reference to the voltage of the VSS terminal 222 .
  • Voltage source 305 supplies a reference voltage VREF to the inverting input terminals of comparators 303 and 304 .
  • the non-inverting input terminal of the comparator 303 is applied with a voltage obtained by dividing the single cell voltage VBAT by the resistor circuit 301 by turning on either of the switches 306 and 307 .
  • the input voltage VIN when the voltage applied to the non-inverting input terminal of the comparator 303 when the switch 306 is on is equal to the reference voltage VREF is defined as the voltage VDET1.
  • the input voltage VIN when the voltage applied to the non-inverting input terminal of the comparator 303 when the switch 307 is on is equal to the reference voltage VREF is defined as the voltage VDET3.
  • a voltage obtained by dividing the input voltage VIN by the resistor circuit 302 is applied to the non-inverting input terminal of the comparator 304 by turning on either of the switches 308 and 309 .
  • the input voltage VIN when the voltage applied to the non-inverting input terminal of the comparator 304 when the switch 308 is on is equal to the reference voltage VREF is defined as the voltage VDET2.
  • the input voltage VIN when the voltage applied to the non-inverting input terminal of the comparator 304 when the switch 309 is on is equal to the reference voltage VREF is assumed to be the voltage VDET4.
  • the resistance values of the resistors 310 to 315 are set so that the magnitude relationship is voltage VDET1>voltage VDET2>voltage VDET3>voltage VDET4.
  • FIG. 15 is a diagram showing the correspondence between the state of the optical transmitter, the input voltage VIN, and the output signal OUT.
  • a voltage state in which the input voltage VIN is equal to or higher than the voltage VDET1 is STATE1.
  • a voltage state in which the input voltage VIN is equal to or higher than the voltage VDET2 and lower than the voltage VDET1 is STATE2.
  • a voltage state in which the input voltage VIN is equal to or higher than the voltage VDET3 and lower than VDET2 is STATE3.
  • a voltage state in which the input voltage VIN is equal to or higher than the voltage VDET4 and lower than the voltage VDET3 is STATE4.
  • a voltage state in which the input voltage VIN is less than the voltage VDET4 is STATE5.
  • the switches 306 and 308 are turned on.
  • a voltage obtained by dividing the input voltage VIN by resistors 310 and 312 is input to the non-inverting input terminal of the comparator 303
  • a voltage obtained by dividing the input voltage VIN by resistors 313 and 315 is input to the non-inverting input of the comparator 304 . is entered.
  • the comparison circuit 92 sets the voltage VDET1 as the upper reference voltage and the voltage VDET2 as the lower reference voltage for monitoring the input voltage VIN, and sets the monitoring voltage range.
  • the state determination circuit 42 determines in which voltage range of the voltage states (STATE1 to STATE5) the input voltage VIN is located, and outputs the determination result to the pulse pattern setting circuit 233. do. Also, according to the determination result, it outputs a control signal for setting ON/OFF of the switch of the comparison circuit 92 so as to set a new monitoring voltage range.
  • the state determination circuit 42 outputs a control signal for turning off the switch 306 and turning on the switch 307 .
  • the voltage range monitored by the comparison circuit 92 is a voltage range equal to or higher than the voltage VDET3 and lower than the voltage VDET2.
  • the voltage state is STATE3.
  • the state determination circuit 42 outputs a control signal for turning off the switch 308 and turning on the switch 309. FIG.
  • the monitoring voltage range of the comparison circuit 92 is equal to or higher than the voltage VDET4 and lower than the voltage VDET3, and the voltage state is STATE4 when the input voltage VIN is within this voltage range.
  • the state determination circuit 42 outputs the switch control signal according to the determination result of the comparison circuit 92, so that the monitoring voltage range can be sequentially switched. can be monitored. If the input voltage VIN is ramped up, the optical transmitter switches to the opposite action.
  • the optical transmitter 10 can obtain states (STATE) corresponding to five voltage states as shown in FIG.
  • the state determination circuit 42 Based on the output of the comparison circuit 92 , the state determination circuit 42 outputs to the pulse pattern setting circuit 233 a signal indicating in which voltage range the input voltage VIN is located.
  • the pulse pattern setting circuit 233 Based on the clock signal supplied from the clock generation circuit 235, the pulse pattern setting circuit 233 converts a predetermined pulse group consisting of a predetermined pulse width and a predetermined number of pulses preset according to each state into a predetermined pulse group. A predetermined voltage pulse or current pulse is output through the output circuit 236 repeatedly for each cycle.
  • the state determination circuit 42 and the pulse pattern setting circuit 233 are composed of a logic circuit or a processor circuit operated by a program.
  • the reset circuit 234 receives a signal from the pulse pattern setting circuit 233 every predetermined cycle and operates to initialize the pulse pattern setting circuit 233, thereby resetting the pulse pattern with a predetermined pulse width and a predetermined number of pulses.
  • the configured predetermined pulse group is repeatedly output for each predetermined pulse period.
  • FIG. 15 shows the correspondence between each voltage state (STATE), the input voltage VIN, the pulse width (Output Pulse Width), the number of pulses forming a pulse group (Output Pulse Number), and the pulse cycle (Output Pulse Cycle).
  • An example of the output signal OUT is shown in FIG.
  • STATE1 voltage value
  • STATE1 voltage value
  • VDET1 voltage value
  • the predetermined pulse group consists of two voltage pulses with a pulse width of 128 ms with a pulse interval of 128 ms, and the pulse group is repeatedly output. The period is 1024ms.
  • a combination of pulse width, pulse interval and number of pulses within a predetermined pulse period is called a pulse pattern.
  • FIG. 16 shows the case where the output signal OUT is a voltage pulse, the output signal OUT may be a current pulse.
  • the pulse output is assigned a pulse with a large pulse width that increases current consumption when the input voltage VIN is high, and a pulse with a small pulse width that reduces current consumption when the battery voltage VBAT is low due to battery exhaustion. assign. By allocating the pulse output in this way, it is possible to extend the life of the single cell when the single cell voltage VBAT becomes low.
  • a microcomputer (not shown) that determines the voltage of the sensor 205 from the voltage pulse or current pulse from the output terminal 223 of the optical transmitter 10 determines the pulse width and the number of pulses of the pulse group output from the optical transmitter 10. can obtain the voltage information of the sensor 205 output.
  • the monitoring microcomputer determines the pulse group output from the optical transmitter 10 with reference to the master clock. In determining the pulse group, the microcomputer measures the time from the first pulse width of the pulse group to the subsequent pulse for each pulse period, and based on the first measured time, the similar waveform subsequent pulse is the time STATE can be determined by counting the number of shots similar to .
  • a voltage pulse or current pulse from the output terminal 223 of the optical transmitter 10 is used to determine the voltage of the sensor 205 .
  • the signal processing device 100 for judging the voltage of the sensor 205 by means of light pulses emitted from the light emitting section 20 (not shown) of the optical transmitter 10 determines the pulse width of the light pulse group and the number of light pulses to determine the sensor voltage. 205 output voltage information can be obtained.
  • the pulse pattern of the output signal OUT is generated based on the clock generated by the clock generation circuit 235
  • the clock generation circuit 235 is a CR oscillation circuit or the like described with reference to FIG. consists of a general oscillator circuit.
  • the clock period output from the CR oscillation circuit varies depending on the power supply voltage, temperature, etc., but as described above, the state determination by the microcomputer is based on time measurement for the first pulse pattern and subsequent similar pulse patterns. Determined by counting the number of shots.
  • the clock generation circuit 235 of the optical transmitter 10 can output pulses that enable state determination even if the accuracy is not high. Therefore, the optical transmitter 10 does not require a high-precision reference source such as a crystal oscillator, and a voltage monitoring system can be configured easily and inexpensively.
  • the pulse pattern setting circuit 233 generates a predetermined pulse group composed of a predetermined pulse width and a predetermined number of pulses according to the voltage range of the input voltage VIN. is repeatedly output every predetermined pulse period.
  • the optical transmitter 10 of the present embodiment can periodically confirm that the input voltage VIN is within a predetermined voltage range for each predetermined pulse period.
  • By monitoring the predetermined pulse pattern with a microcomputer or the like it is possible to confirm at predetermined intervals that the output of the sensor 205 is within a predetermined voltage range. It is possible to periodically determine whether or not there is a failure in the monitoring circuit such as
  • the comparison circuit 92 of this embodiment has four reference voltages and five monitoring voltage ranges. By adopting a configuration in which switches are switched, it is possible to further subdivide the monitoring voltage range.
  • reset circuit 234 receives signals from pulse pattern setting circuit 233 every predetermined pulse period to operate, reset circuit 234 receives signals from both state determination circuit 42 and pulse pattern setting circuit 233 . , and initializes the clock generation circuit 235 and the pulse pattern setting circuit 233 every time the state determination circuit 42 changes or the pulse pattern setting circuit 233 outputs a predetermined cycle.
  • the sensor 205 may be any device that outputs a voltage depending on the physical quantity to be sensed, and examples thereof include a temperature sensor and a magnetic sensor, but are not limited to these.
  • FIG. 17 is a block diagram showing the optical transmitter 10a in the second embodiment.
  • the optical transmitter 10a further includes a light emitting section 20 (not shown).
  • the optical transmitter 10a of this embodiment includes a sensor circuit 237 instead of the input terminal 224 of the optical transmitter 10 of the first embodiment.
  • the comparison circuit 92 is connected to the sensor circuit 237 instead of the input terminal 224 .
  • the optical transmitter 10 a of this embodiment applies the sensor voltage output by the sensor circuit 237 to the comparison circuit 92 .
  • the sensor voltages are compared by the comparator of the comparison circuit 92 and the result is output to the state determination circuit 42 .
  • the state determination circuit 42 determines in which voltage range the sensor voltage output by the sensor circuit 237 is positioned according to the inputted output determination result of the comparator, and sets a new monitoring voltage range according to the determination.
  • a control signal for setting the switches 306, 307, 308, and 309 of the comparison circuit 92 on and off is output.
  • the state determination circuit 42 outputs a signal to the pulse pattern setting circuit 233 indicating in which monitor voltage range the sensor voltage is.
  • the pulse pattern setting circuit 233 receives the output of the state determination circuit 42 and outputs a pulse-shaped output signal OUT corresponding to the sensor voltage output by the sensor circuit 237 via the output circuit 236 .
  • An output signal OUT corresponding to the characteristic signal is supplied to a light emitting section 20 (not shown) and a monitoring microcomputer (not shown).
  • the pulse pattern setting circuit 233 is configured with a predetermined pulse width and a predetermined number of pulses according to the voltage range of the sensor voltage output from the sensor circuit 237.
  • a predetermined pulse group is repeatedly output for each predetermined pulse period.
  • the optical transmitter 10a of this embodiment can periodically confirm that the sensor voltage output by the sensor circuit 237 is within a predetermined voltage range at each predetermined pulse period.
  • the sensor circuit 237 may output a voltage according to the physical quantity to be sensed, and examples thereof include a temperature sensor circuit and a magnetic sensor circuit, but are not limited to these.
  • FIG. 18 is a block diagram showing the optical transmitter 12 in the third embodiment.
  • the optical transmitter 10b further includes a light emitter 20 (not shown).
  • the optical transmitter 10b of this embodiment is configured by connecting the VDD terminal 221 to the comparison circuit 92 instead of the input terminal 224 of the optical transmitter 10 of the first embodiment.
  • the VDD terminal 221 is connected to the power supply VDD and the comparison circuit 92 inside the optical transmitter 10b.
  • the optical transmitter 10 b of this embodiment applies the cell voltage VBAT of the cell 30 applied to the VDD terminal 221 to the comparison circuit 92 .
  • the cell voltage VBAT is compared by the comparator of the comparison circuit 92 and the result is output to the state determination circuit 42 .
  • the state determination circuit 42 determines in which voltage range the unit cell voltage VBAT of the unit cell 30 is positioned according to the inputted output determination result of the comparator, and sets a new monitoring voltage range according to the determination.
  • a control signal for setting the switches 306, 307, 308, and 309 of the comparison circuit 92 on and off is output.
  • the state determination circuit 42 outputs a signal to the pulse pattern setting circuit 233 to indicate in which monitor voltage range the cell voltage VBAT is.
  • the pulse pattern setting circuit 233 receives the output of the state determination circuit 42 and outputs a pulse-shaped output signal OUT corresponding to the voltage range of the single battery voltage VBAT via the output circuit 236 .
  • An output signal OUT corresponding to the characteristic signal is supplied to a light emitting section 20 (not shown) and a monitoring microcomputer (not shown).
  • the pulse pattern setting circuit 233 is configured with a predetermined pulse width and a predetermined number of pulses according to the voltage range of the cell voltage VBAT of the cell 30.
  • a predetermined pulse group is repeatedly output for each predetermined pulse period.
  • the optical transmitter 10 of this embodiment can periodically confirm that the cell voltage VBAT of the cell 30 is within a predetermined voltage range at every predetermined pulse period.
  • FIG. 19 is a block diagram showing an optical transmitter 10c in the fourth embodiment.
  • the optical transmitter 10c of this embodiment comprises a second comparison circuit 92a having the same configuration as the comparison circuit 92 in the optical transmitter 10 of the first embodiment.
  • a state determination circuit 42a is provided instead of the state determination circuit 42.
  • the state determination circuit 42a receives inputs from the comparison circuit 92 and the second comparison circuit 92a, and outputs a control signal for setting the switches of the comparison circuit 92 and the second comparison circuit 92a.
  • the optical transmitter 10c further includes a light emitter 20 (not shown).
  • the input terminal 224 is connected to the state determination circuit 42a via the second comparison circuit 92a.
  • the VDD terminal 221 is connected to the power supply VDD and the comparison circuit 92 inside the optical transmitter 10 .
  • the sensor 205 uses the cell 30 as a power source and applies a sensor voltage based on the voltage of the VSS terminal 221 to the input terminal 224 .
  • the input terminal 224 is connected to the second comparison circuit 92a.
  • the comparison circuit 92 is connected to the state determination circuit 42a, and similarly the second comparison circuit 92a is connected to the state determination circuit 42a.
  • the state determination circuit 42a outputs to the pulse pattern setting circuit 233 a signal indicating in which voltage range the monitoring voltage ranges of the comparison circuit 92 and the second comparison circuit 92a are.
  • the pulse pattern setting circuit 233 receives the output of the state determination circuit 42 and outputs a pulse-shaped output signal OUT corresponding to the voltage input to the VDD terminal 221 and the input terminal 224 via the output circuit 236 .
  • An output signal OUT corresponding to the characteristic signal is supplied to a light emitting section 20 (not shown) and a monitoring microcomputer (not shown).
  • the pulse pattern output from the pulse pattern setting circuit 233 is one of 25 states obtained by combining five voltage ranges (STATE), which are monitoring voltage ranges of the comparison circuit 92 and the second comparison circuit 92a.
  • STATE five voltage ranges
  • a pulse pattern representing the voltage range of the comparison circuit 92 and a pulse pattern representing the voltage range of the second comparison circuit 92a may be repeated.
  • the pulse pattern setting circuit 233 responds to the voltage range of the input voltage VIN input to the input terminal 224 and the cell voltage VBAT of the cell 30.
  • a predetermined pulse group composed of a predetermined pulse width and a predetermined number of pulses is repeatedly output for each predetermined pulse period.
  • the optical transmitter 10c of this embodiment can periodically confirm that the input voltage VIN and the cell voltage VBAT are within a predetermined voltage range at each predetermined pulse period.
  • FIG. 20 is a block diagram showing an optical transmitter 10d in the fifth embodiment.
  • the optical transmitter 10d further includes a light emitting section 20 (not shown).
  • the optical transmitter 10 d of this embodiment is configured by connecting the VDD terminal 221 to the comparison circuit 92 .
  • the VDD terminal 221 is connected to the power supply VDD and the comparison circuit 92 inside the optical transmitter 10b.
  • a sensor circuit 237 and a second comparison circuit 92a are provided instead of the input terminal 224 of the optical transmitter 10 of the first embodiment.
  • the second comparison circuit 92a is connected to the state determination circuit 42a.
  • the comparison circuit 92 is connected to the state determination circuit 42a, and similarly the second comparison circuit 92a is connected to the state determination circuit 42a.
  • the state determination circuit 42a outputs to the pulse pattern setting circuit 233 a signal indicating in which voltage range the monitoring voltage ranges of the comparison circuit 92 and the second comparison circuit 92a are.
  • the pulse pattern setting circuit 233 receives the output of the state determination circuit 42 and outputs a pulse-like output signal OUT corresponding to the voltage output from the VDD terminal 221 and the sensor circuit 237 via the output circuit 236 .
  • An output signal OUT corresponding to the characteristic signal is supplied to a light emitting section 20 (not shown) and a monitoring microcomputer (not shown).
  • the pulse pattern output from the pulse pattern setting circuit 233 is one of 25 states obtained by combining five voltage ranges (STATE), which are monitoring voltage ranges of the comparison circuit 92 and the second comparison circuit 92a.
  • STATE five voltage ranges
  • a pulse pattern representing the voltage range of the comparison circuit 92 and a pulse pattern representing the voltage range of the second comparison circuit 92a may be repeated.
  • the pulse pattern setting circuit 233 sets the voltage between the cell voltage VBAT of the cell 30 and the voltage output from the sensor circuit 237 (input voltage VIN).
  • a predetermined pulse group composed of a predetermined pulse width and a predetermined number of pulses according to the range is repeatedly output for each predetermined pulse period.
  • the optical transmitter 10d of this embodiment can periodically confirm that the input voltage VIN and the cell voltage VBAT are within a predetermined voltage range at each predetermined pulse period.
  • FIG. 21 is a block diagram showing an optical transmitter 10e in the sixth embodiment.
  • the optical transmitter 10e of this embodiment is configured by adding an abnormal signal input terminal 225 to the optical transmitter 10 of the first embodiment.
  • a state determination circuit 42b is provided instead of the state determination circuit 42.
  • the abnormal signal input terminal 225 is connected to the state determination circuit 42b.
  • the state determination circuit 42 b determines the abnormal state and outputs the abnormal state to the pulse pattern setting circuit 233 .
  • the pulse pattern setting circuit 233 receives the output of the state determination circuit 42b and outputs a pulse-shaped output signal OUT corresponding to the abnormal state.
  • An output signal OUT corresponding to an abnormal state is supplied to a light emitting unit 20 (not shown) and a monitoring microcomputer (not shown).
  • FIG. 22 is a block diagram showing an optical transmitter 10f in the seventh embodiment.
  • the optical transmitter 10f of this embodiment has the optical transmitter 10 of the first embodiment and the light emitting section 20.
  • FIG. The light emitting section 20 of this embodiment is connected between the VDD terminal 221 and the output terminal 223 of the optical transmitter 10 of the first embodiment.
  • a VDD terminal 221 of the optical transmitter 10 is connected to the positive terminal of the cell 30 via a second VDD terminal 226, and a VSS terminal 222 of the optical transmitter 10 is connected to the cell 30 via a second VSS terminal 227.
  • connected to the negative pole of Input terminal 224 is connected to the output of sensor 205 via second input terminal 28 .
  • the optical transmitter 10f of the present embodiment repeats a predetermined pulse group composed of a predetermined pulse width and a predetermined number of pulses according to the voltage range of the input voltage VIN from the sensor 205 at every predetermined pulse period. 20 is illuminated.
  • the optical transmitter 10f of the present embodiment can periodically confirm that the input voltage VIN output by the sensor 205 is within a predetermined voltage range for each predetermined pulse period.
  • the light emitted from the light emitting section 20 is received by the light receiving section 80, so that the isolated communication with the cell 30 and the optical transmitter 10f is possible.
  • the output circuit 236 and the pulse pattern setting circuit 233 in the optical transmitter 10f are appropriately set so that the pulse pattern output by the light emitting section 20 is received by the light receiving section 80 accurately.
  • the output circuit 236 is set to output an appropriate output current in order to cause the light emitting section 20 to emit light with a luminous intensity that allows communication.
  • the pulse pattern setting circuit 233 sets an appropriate pulse width in consideration of the lighting and extinguishing times required by the light emitting section 20 .
  • the light emitting unit 20 is added to the optical transmitter 10 of the first embodiment, but the optical transmitter 10a of the second embodiment, the optical transmitter 10b of the third embodiment, The light emitting unit 20 may be added to the optical transmitter 10c of the fourth embodiment and the optical transmitter 10d of the fifth embodiment.
  • Examples of the light emitting unit 20 include infrared light emitting diodes and visible light emitting diodes, but are not limited to these.
  • FIG. 23 is a block diagram showing an optical transmitter 10g in the eighth embodiment.
  • the optical transmitter 10g of this embodiment has a configuration in which an abnormal current limiting device connection terminal 229 is provided in the optical transmitter 10f of the seventh embodiment.
  • the source terminal of the NMOS transistor 362 of the output circuit 236 shown in FIG. 14 is connected to the abnormal current limiting device connection terminal 229 instead of the power supply VSS.
  • the optical transmitter 10 g has a configuration in which the abnormal current limiting device 206 is connected between the abnormal current limiting device connection terminal 229 and the VSS terminal 222 .
  • the abnormal current limiting device 206 operates to limit the current value when a current greater than or equal to a preset current value flows between the terminals.
  • the transistor of the output circuit 236 shown in FIG. 14 has a short failure in this configuration. If the PMOS transistor 361 is short-circuited, a through current flows through the abnormal current limiting device 206 via the output circuit 236 each time a pulse is output. When the current flows, the abnormal current can be limited because the operation is performed to limit the current value. The short failure of the NMOS transistor 362 can also limit the abnormal current as described above.
  • the configuration is added to the seventh embodiment, but the configuration may be added to the first to sixth embodiments.
  • An abnormal current limiting device connection terminal 229a is provided at the source terminal of the PMOS transistor 361 of the output circuit 236, and is connected to the VDD terminal 221 through the abnormal current limiting device connection terminal 229a. A similar effect can be obtained with the configuration.
  • FIG. 24 is a block diagram showing an optical transmitter 10h in the ninth embodiment.
  • This embodiment includes a communication terminal 230 and a pulse synthesizing circuit 239 in addition to the optical transmitter 10b of the third embodiment.
  • the optical transmitter 10h further includes a light emitting section 20 (not shown).
  • the communication terminal 230 is configured to be connected to the output circuit 236 via the pulse synthesizing circuit 239 .
  • the communication terminal 230 is externally daisy-chain connected to another optical transmitter, and outputs an output signal OUT from the output terminal 223 together with the monitoring status of the other optical transmitter.
  • the pulse synthesizing circuit 239 is installed between the pulse pattern setting circuit 233 and the output circuit 236 and outputs the sum of the signal from the pulse pattern setting circuit 233 and the signal from the communication terminal 230 to the output circuit 236 .
  • a signal from the output circuit 236 is supplied to the light emitting unit 20 (not shown) and a monitoring microcomputer (not shown).
  • FIG. 25 is an example of a configuration in which the optical transmitters 10h of this embodiment are daisy-chained.
  • the communication terminal 230 of the first optical transmitter 10h-1 of this embodiment is connected to the output terminal 223 of the second optical transmitter 10h-2.
  • a communication terminal 230 of the second optical transmitter 10g-2 is connected to a third optical transmitter 10g-3 (not shown).
  • the optical transmitter of this embodiment can collectively output a plurality of unit cell monitoring results from the first optical transmitter 10h-1, which is the final stage.
  • the monitoring microcomputer (not shown) can determine the state by determining the number of subsequent pulses using the initial pulse width as a time reference. No clock synchronization is required.
  • the signal processing device 100 that processes the optical pulses from the light emitting unit 20 (not shown) of the optical transmitter 10h-1 determines the pulse width of the optical pulse group and the number of optical pulses to determine the state (STATE). can be determined. Therefore, a multi-voltage monitoring system can be configured easily and inexpensively while reducing the communication load of the processing circuit.
  • the pulse period has been described as 1024 ms as an example, when signals from a large number of optical transmitters are combined by daisy chain connection, the pulse period is set to a long period such as 60 s (60 seconds). Collision between output signals can be avoided.
  • FIG. 26 is a block diagram showing the optical transmitter 10i in the tenth embodiment.
  • This embodiment includes a communication terminal 230, a pulse determination circuit 240, and a state comparison circuit 241 in addition to the optical transmitter 10b of the third embodiment.
  • the optical transmitter 10i further includes a light emitter 20 (not shown).
  • the communication terminal 230 is configured to be connected to the state comparison circuit 241 via the pulse determination circuit 240 .
  • the state comparison circuit 241 is configured to be connected to the state determination circuit 42a, the pulse determination circuit 240, and the pulse pattern setting circuit 233.
  • the communication terminal 230 is externally daisy-chain connected to another optical transmitter, and outputs an output signal OUT from the output terminal 223 together with the monitoring status of the other optical transmitter.
  • a signal from the output circuit 236 is supplied to the light emitting unit 20 (not shown) and a monitoring microcomputer (not shown) through the output terminal 223 .
  • the pulse determination circuit 240 receives a pulse signal from the communication terminal 230 and outputs a state (STATE) signal indicated by the pulse signal to the state comparison circuit 241 .
  • the state comparison circuit 241 compares the state (STATE) signal from the state determination circuit 42a and the state (STATE) signal from the pulse determination circuit 240 according to a predetermined standard, and selects the state (STATE) signal determined to be more important. is output to the pulse pattern setting circuit 233 .
  • FIG. 27 is an example of a configuration in which the optical transmitters 10i of this embodiment are daisy-chained.
  • the communication terminal 230 of the first optical transmitter 10i-1 of this embodiment is connected to the output terminal 223 of the second optical transmitter 10i-2.
  • a communication terminal 230 of the second optical transmitter 10i-2 is connected to a third optical transmitter 10i-3 (not shown).
  • the optical transmitter of this embodiment is capable of outputting from the optical transmitter 10i-1 the result with the highest degree of importance among the plurality of unit cell monitoring results.
  • the monitoring microcomputer (not shown) can determine the state by determining the number of subsequent pulses using the initial pulse width as a time reference. No clock synchronization is required.
  • the signal processing device 100 that processes optical pulses from the light emitting unit 20 (not shown) of the optical transmitter 10i-1 judges the pulse width of the optical pulse group and the number of optical pulses to determine the state (STATE). can be determined. Therefore, a multi-voltage monitoring system can be configured easily and inexpensively while reducing the communication load of the processing circuit.
  • a predetermined pulse group composed of a predetermined pulse width and a predetermined number of pulses set in advance according to the voltage state of the cell is repeated at a predetermined pulse period. Since it is output, the state of the cell voltage can be checked periodically. This makes it possible to determine whether the optical transmitter is abnormal when the output terminal of the optical transmitter is internally short-circuited with the power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

A lithium-ion battery module is provided which outputs an optical signal corresponding to the state of multiple laminated battery cells that configure a battery assembly. This lithium-ion battery module includes multiple optical transmitters (10) provided on multiple battery cells (30) that configure a battery assembly (50). Each optical transmitter is configured to be provided with a control circuit (40) which receives from a measurement circuit (90) a characteristic signal representing a characteristic of the corresponding battery cell and which outputs a prescribed control signal; and a light-emitting unit (20) which outputs an optical signal, corresponding to the control signal, to an optical waveguide (60) common to the multiple optical transmitters. The control circuit (40) is provided with a state determination circuit (42) which determines the state of the corresponding battery cells on the basis of the received characteristic signal, and is configured to control the light-emitting unit (20) so as to output different-pattern control signals in response to the determined state, and to output different-pattern optical signals in response to the determined state.

Description

リチウムイオン電池モジュールlithium ion battery module
 本開示は、リチウムイオン電池モジュールに関し、より詳細には、組電池を構成する積層された複数の単電池のそれぞれの状態に応じた光信号を出力する複数の光送信器を備えたリチウムイオン電池モジュールに関する。 TECHNICAL FIELD The present disclosure relates to a lithium-ion battery module, and more specifically, a lithium-ion battery that includes a plurality of optical transmitters that output optical signals according to the states of each of the plurality of stacked single cells that make up an assembled battery. Regarding modules.
 従来、電気自動車およびハイブリッド電気自動車等の電源携帯型電子機器の電源としてリチウムイオン電池の単電池を複数個積層した組電池が用いられている。このような組電池を充電する場合、過充電状態になる単電池が存在することがないように充電管理を行う必要がある。 Conventionally, an assembled battery in which multiple lithium-ion cells are stacked is used as a power source for portable electronic devices such as electric vehicles and hybrid electric vehicles. When charging such an assembled battery, it is necessary to manage charging so that there is no overcharged unit cell.
 特許文献1には、直列に接続された単電池を含む電池モジュールの両端に、発光ダイオードを含む過充電発熱回路を並列に接続し、過充電が生じたときに発光ダイオードの発光が共通の光ファイバーにより受光ダイオードに送られることが開示されている(例えば、特許文献1の第0012、0023-0024段落、第5図参照)。 In Patent Document 1, an overcharge heat generating circuit including a light emitting diode is connected in parallel to both ends of a battery module including single cells connected in series, and when overcharge occurs, the light emitted from the light emitting diode is a common optical fiber. (see, for example, paragraphs 0012, 0023-0024 of Patent Document 1 and FIG. 5).
特開平11-341693号公報JP-A-11-341693
 しかしながら、特許文献1の構成は、単電池に過充電が生じて対応する発光ダイオードに通電が生じると発光する構成であるため、組電池を構成する複数の単電池のそれぞれの状態に応じて発光することができない。 However, the structure of Patent Document 1 emits light when a unit cell is overcharged and the corresponding light-emitting diode is energized. Can not do it.
 本開示は、このような問題に鑑みてなされたもので、その目的とするところは、各発光部が対応する単電池の状態に応じた光信号を出力するようにしたリチウムイオン電池モジュールを提供することにある。 The present disclosure has been made in view of such problems, and its object is to provide a lithium-ion battery module in which each light-emitting part outputs an optical signal according to the state of the corresponding single battery. to do.
 このような目的を達成するために、本発明の一実施形態のリチウムイオン電池モジュールは、複数の単電池を積層して構成された組電池と、複数の単電池に備えられた複数の光送信器とを含み、複数の単電池の各単電池は、正極活物質層、セパレータ、負極活物質層、及び負極集電体を含み、複数の光送信器の各光送信機は、各単電池に対応しており、対応する単電池から電力供給され、
 複数の光送信器の各光送信器は、
  対応する単電池の特性を表す特性信号を出力するように構成された測定部と、
  特性信号を受信し、所定の制御信号を出力するように構成された制御部と、
  制御信号に応じた光信号を出力するように構成された発光部と、
を備え、
 制御部は、
  受信した特性信号に基づいて対応する単電池の状態を判定する状態判定部を備え、
  判定された対応する単電池の状態に応じた異なるパターンの制御信号を出力し、判定された対応する単電池の状態に応じた異なるパターンの光信号を出力するように発光部を制御するように構成されていること、を特徴とする。
In order to achieve such an object, a lithium-ion battery module according to one embodiment of the present invention includes an assembled battery configured by stacking a plurality of single cells, and a plurality of optical transmitters provided in the plurality of single cells. each of the plurality of cells includes a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative current collector; and each of the plurality of optical transmitters includes each cell and is powered by the corresponding cell,
each optical transmitter of the plurality of optical transmitters,
a measuring unit configured to output a characteristic signal representing characteristics of the corresponding cell;
a controller configured to receive the characteristic signal and output a predetermined control signal;
a light emitting unit configured to output an optical signal according to the control signal;
with
The control unit
A state determination unit that determines the state of the corresponding unit cell based on the received characteristic signal,
The light emitting unit is controlled to output control signals of different patterns according to the determined states of the corresponding single cells, and to output light signals of different patterns according to the determined states of the corresponding single cells. characterized by:
 また、他の実施形態に係るリチウムイオン電池モジュールは、光信号を受信して電気信号に変換する受光部をさらに備え、受光部と組電池とは電気的に絶縁されている、ことを特徴とする。 A lithium-ion battery module according to another embodiment further comprises a light-receiving section that receives an optical signal and converts it into an electrical signal, and the light-receiving section and the assembled battery are electrically insulated. do.
 以上説明したように、本開示によれば、各発光部が対応する単電池の状態に応じた光信号を出力するようにしたリチウムイオン電池モジュールを提供することが可能となる。 As described above, according to the present disclosure, it is possible to provide a lithium-ion battery module in which each light-emitting portion outputs an optical signal corresponding to the state of the corresponding cell.
本発明の一実施形態にかかるリチウムイオン電池モジュールの一部を切り欠いた斜視図である。1 is a partially cutaway perspective view of a lithium-ion battery module according to an embodiment of the present invention; FIG. 図1に示すリチウムイオン電池モジュールの概略断面構造を示す図である。FIG. 2 is a diagram showing a schematic cross-sectional structure of the lithium-ion battery module shown in FIG. 1; 本発明の一実施形態のリチウムイオン電池モジュール内の複数の光送信器の概略構成を示す図である。FIG. 4 is a diagram showing a schematic configuration of multiple optical transmitters in the lithium ion battery module according to one embodiment of the present invention; 本発明の一実施形態のリチウムイオン電池モジュールにおける光送信器のクロック生成回路の概略構成を示す図である。1 is a diagram showing a schematic configuration of a clock generation circuit of an optical transmitter in a lithium ion battery module according to one embodiment of the present invention; FIG. 本発明の一実施形態のリチウムイオン電池モジュールにおける光送信器の測定回路の機能ブロック図である。FIG. 4 is a functional block diagram of a measurement circuit of an optical transmitter in the lithium ion battery module of one embodiment of the present invention; 本発明の一実施形態のリチウムイオン電池モジュールにおける光送信器の制御回路の機能ブロック図である。3 is a functional block diagram of a control circuit for an optical transmitter in the lithium ion battery module of one embodiment of the present invention; FIG. 本発明の一実施形態のリチウムイオン電池モジュールにおけるある時間期間(システム周期内の理想的なタイミング)において複数の光送信器が送信する光信号を説明する図であり、(a)、(b)、および(c)は互いに異なる光送信器から送信される光信号を時間軸上に示す図であり、(d)は共通の光導波路における(a)、(b)、および(c)の光信号を時間軸上に示す図である。FIGS. 4(a) and 4(b) are diagrams for explaining optical signals transmitted by a plurality of optical transmitters in a certain time period (ideal timing within the system cycle) in the lithium-ion battery module of one embodiment of the present invention; , and (c) are diagrams showing optical signals transmitted from different optical transmitters on the time axis, and (d) is a diagram showing the optical signals of (a), (b), and (c) in a common optical waveguide. It is a figure which shows a signal on a time-axis. 本発明の一実施形態のリチウムイオン電池モジュールにおける別の時間期間(システム周期内の理想的なタイミングからずれたタイミング)において複数の光送信器が送信する光信号を説明する図であり、(a)、(b)、および(c)は互いに異なる光送信器から送信される光信号を時間軸上に示す図であり、(d)は共通の光導波路における(a)、(b)、および(c)の光信号を時間軸上に示す図である。FIG. 4 is a diagram for explaining optical signals transmitted by a plurality of optical transmitters in another time period (timing shifted from the ideal timing within the system cycle) in the lithium ion battery module of one embodiment of the present invention; ), (b), and (c) show optical signals transmitted from different optical transmitters on the time axis, and (d) shows (a), (b), and (d) in a common optical waveguide. It is a figure which shows the optical signal of (c) on a time-axis. 本発明の一実施形態のリチウムイオン電池モジュール内において光送信器が送信する光信号のタイミングを説明する図であり、(a)は光送信器のクロックを示す図であり、(b)は測定回路からの特性信号に基づいて判定された対応する単電池の状態を示す信号を示す図であり、(c)は所定の期間を示す信号を示す図であり、(d)は発光部が制御回路からの制御信号に応じて出力する光信号を示す図である。FIG. 4 is a diagram for explaining the timing of an optical signal transmitted by an optical transmitter in the lithium-ion battery module of one embodiment of the present invention, (a) is a diagram showing the clock of the optical transmitter, and (b) is a diagram for measurement FIG. 4 is a diagram showing a signal indicating the state of the corresponding unit cell determined based on the characteristic signal from the circuit, FIG. FIG. 4 is a diagram showing an optical signal output according to a control signal from a circuit; 本発明の一実施形態のリチウムイオン電池モジュールの機能ブロック図である。1 is a functional block diagram of a lithium-ion battery module according to one embodiment of the invention; FIG. 本発明の一実施形態のリチウムイオン電池モジュールの信号処理装置の信号処理のフローチャートである。4 is a flowchart of signal processing of the signal processing device for the lithium-ion battery module according to one embodiment of the present invention; 第1の実施例の光送信機とその利用法を示すブロック図である。1 is a block diagram showing the optical transmitter of the first embodiment and its usage; FIG. 第1の実施例の比較回路を示す回路図である。1 is a circuit diagram showing a comparison circuit of a first embodiment; FIG. 第1の実施例の出力回路を示す回路図である。3 is a circuit diagram showing an output circuit of the first embodiment; FIG. 第1の実施例の光送信機の状態と入力電圧と出力信号の対応の一例を示す図である。FIG. 4 is a diagram showing an example of the correspondence between the state of the optical transmitter of the first embodiment, the input voltage, and the output signal; 第1の実施例の光送信機の出力信号の一例を示す図である。FIG. 4 is a diagram showing an example of an output signal of the optical transmitter of the first embodiment; FIG. 第2の実施例の光送信機を示すブロック図である。FIG. 4 is a block diagram showing an optical transmitter of a second embodiment; FIG. 第3の実施例の光送信機を示すブロック図である。FIG. 11 is a block diagram showing an optical transmitter of a third embodiment; FIG. 第4の実施例の光送信機を示すブロック図である。FIG. 11 is a block diagram showing an optical transmitter of a fourth embodiment; FIG. 第5の実施例の光送信機を示すブロック図である。FIG. 12 is a block diagram showing an optical transmitter of a fifth embodiment; FIG. 第6の実施例の光送信機を示すブロック図である。FIG. 12 is a block diagram showing an optical transmitter of a sixth embodiment; FIG. 第7の実施例の光送信機を示すブロック図である。FIG. 11 is a block diagram showing an optical transmitter of a seventh embodiment; FIG. 第8の実施例の光送信機を示すブロック図である。FIG. 12 is a block diagram showing an optical transmitter of an eighth embodiment; FIG. 第9の実施例の光送信機を示すブロック図である。FIG. 21 is a block diagram showing an optical transmitter of a ninth embodiment; FIG. 第9の実施例の光送信機を接続する一例を示す図である。FIG. 20 is a diagram showing an example of connecting the optical transmitters of the ninth embodiment; 第10の実施例の光送信機を示すブロック図である。FIG. 11 is a block diagram showing an optical transmitter of a tenth embodiment; FIG. 第10の実施例の光送信機を接続する一例を示す図である。FIG. 20 is a diagram showing an example of connecting the optical transmitters of the tenth embodiment;
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。同一または類似の符号は、同一または類似の要素を示すものとし、繰り返しの説明を省略する場合がある。以下に説明される数値および材料は例示であり、したがって、本開示は、その要旨を逸脱しない範囲で他の数値および材料を用いて実施することができることは言うまでもない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or similar reference numerals indicate the same or similar elements, and repeated descriptions may be omitted. It should be appreciated that the numbers and materials set forth below are exemplary, and thus the present disclosure can be practiced using other numbers and materials without departing from the spirit thereof.
 本発明の一実施形態に係るリチウムイオン電池モジュールは、複数の単電池を積層して構成された組電池と、複数の単電池に備えられた複数の光送信器とを含む。各単電池が対応する光送信器を有する。各光送信器は、対応する単電池の特性を表す特性信号を受信し、所定の制御信号(例えば、所定の期間毎に当該特性信号を符号化した制御信号)を出力するように構成された制御部と、複数の光送信器に共通の光導波路に、制御信号に応じた光信号を出力する発光部とを備える。複数の光送信器は、非同期で光信号を送信するように構成されている。 A lithium-ion battery module according to one embodiment of the present invention includes an assembled battery configured by stacking a plurality of single cells, and a plurality of optical transmitters provided for the plurality of single cells. Each cell has a corresponding optical transmitter. Each optical transmitter is configured to receive a characteristic signal representing the characteristics of the corresponding unit cell and output a predetermined control signal (for example, a control signal obtained by encoding the characteristic signal for each predetermined period). A control section and a light emitting section for outputting an optical signal corresponding to a control signal to an optical waveguide common to a plurality of optical transmitters are provided. A plurality of optical transmitters are configured to asynchronously transmit optical signals.
 典型的に、単電池は、下から順に正極集電体と、正極活物質層と、セパレータと、負極活物質層と、負極集電体とを積層したものである。また、単電池は、略矩形平板状の正極集電体の表面に正極活物質層が形成された正極と、同様に略矩形平板状の負極集電体の表面に負極活物質層が形成された負極とが、略平板状のセパレータを介して積層されて形成されている。単電池は、正極集電体と負極集電体との間に環状の枠部材を配置し、当該枠部材により、正極集電体と負極集電体の間にセパレータの周縁部を固定するとともに、正極活物質層、セパレータおよび負極活物質層を封止している。例えば、発光部は、枠部材の側面に露出するように、枠部材内に埋め込まれるまたは枠部材に取り付けられてもよい。 Typically, a unit cell is made by laminating a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector in this order from the bottom. The unit cell has a positive electrode in which a positive electrode active material layer is formed on the surface of a substantially rectangular plate-shaped positive electrode current collector, and a negative electrode active material layer formed on the surface of a substantially rectangular flat negative electrode current collector. and a negative electrode are laminated with a substantially flat separator interposed therebetween. In the unit cell, an annular frame member is arranged between the positive electrode current collector and the negative electrode current collector, and the frame member fixes the peripheral edge portion of the separator between the positive electrode current collector and the negative electrode current collector. , the positive electrode active material layer, the separator and the negative electrode active material layer are sealed. For example, the light emitting section may be embedded in or attached to the frame member so as to be exposed on the side surface of the frame member.
 図1は本発明の実施形態にかかるリチウムイオン電池モジュールの一部を切り欠いた斜視図である。 FIG. 1 is a partially cutaway perspective view of a lithium-ion battery module according to an embodiment of the present invention.
 図1に示すように、リチウムイオン電池モジュール1は積層された複数の単電池30を有する。また、リチウムイオン電池モジュール1は、発光部20の発光面に隣接または近接して配置された光導波路60を有する。さらに、リチウムイオン電池モジュール1は複数の単電池30および光導波路60を収容する外装体70を有する。 As shown in FIG. 1, the lithium ion battery module 1 has a plurality of stacked single cells 30 . The lithium-ion battery module 1 also has an optical waveguide 60 arranged adjacent to or in close proximity to the light-emitting surface of the light-emitting portion 20 . Furthermore, the lithium-ion battery module 1 has an exterior body 70 that accommodates the plurality of cells 30 and the optical waveguides 60 .
 積層された複数の単電池30は組電池50を構成している。図1は、5つの単電池30を積層した形態を示しているが、単電池の積層数は5より多くても、または5より少なくてもよい。一実装例では、単電池30の積層数は20以上であり得る。各単電池30は、負極集電体(不図示)および負極集電体と対向する正極集電体(不図示)を有する。組電池50内において隣り合う2つの単電池30は、一方の単電池30の負極集電体の上面と他方の単電池30の正極集電体の下面が隣接するように積層されている。図1は、5つの単電池30を直列接続した組電池50を示している。 A plurality of stacked single cells 30 constitute an assembled battery 50 . Although FIG. 1 shows a configuration in which five cells 30 are stacked, more or less than five cells may be stacked. In one implementation, the number of stacks of cells 30 may be 20 or more. Each unit cell 30 has a negative electrode current collector (not shown) and a positive electrode current collector (not shown) facing the negative electrode current collector. Two adjacent cells 30 in the assembled battery 50 are stacked such that the upper surface of the negative electrode current collector of one cell 30 and the lower surface of the positive electrode current collector of the other cell 30 are adjacent to each other. FIG. 1 shows an assembled battery 50 in which five cells 30 are connected in series.
 正極集電体および負極集電体は、銅、アルミニウム、チタン、ステンレス鋼、ニッケルおよびこれらの合金などの金属材料、ならびに焼成炭素、導電性高分子材料、導電性ガラス等のいずれかを用いて構成され得る。 The positive electrode current collector and the negative electrode current collector are made of metal materials such as copper, aluminum, titanium, stainless steel, nickel and alloys thereof, baked carbon, conductive polymer materials, conductive glass, etc. can be configured.
 組電池50の最上面の負極集電体の上には導電性シートが設けられている。導電性シートの一部が外装体70から引き出されて引出配線57となっている。また、組電池50の最下面の正極集電体の下には導電性シートが設けられている。導電性シートの一部が外装体70から引き出されて引出配線59となっている。導電性シートは、銅、アルミニウム、チタン、ステンレス鋼、ニッケルおよびこれらの合金などの金属材料のいずれかを用いて構成され得るが、導電性を有す材料であればこれらに限定されない。導電性シートは、導電性高分子材料を用いて構成されてもよい。 A conductive sheet is provided on the uppermost negative electrode current collector of the assembled battery 50 . A part of the conductive sheet is drawn out from the outer package 70 to form the lead wiring 57 . A conductive sheet is provided under the positive electrode current collector on the bottom surface of the assembled battery 50 . A part of the conductive sheet is pulled out from the exterior body 70 to form the lead wiring 59 . The conductive sheet can be constructed using any of metal materials such as copper, aluminum, titanium, stainless steel, nickel and alloys thereof, but is not limited to these materials as long as they are conductive materials. The conductive sheet may be constructed using a conductive polymeric material.
 各単電池30は、当該単電池の特性を測定する測定回路90を有する。また、各単電池30は、測定された特性に基づいて発光して光信号を出力する発光部20を有する。測定回路90および発光部20は、制御回路40とともに光送信器10に備えられている。光送信器10については後述する。 Each cell 30 has a measurement circuit 90 that measures the characteristics of the cell. Each unit cell 30 also has a light emitting unit 20 that emits light based on the measured characteristics and outputs an optical signal. The measurement circuit 90 and the light emitting section 20 are provided in the optical transmitter 10 together with the control circuit 40 . The optical transmitter 10 will be described later.
 光導波路60は、入射し伝搬した光信号が出射する光出力部を有する。一実装例では、1つの光導波路60に隣接または近接して配置された20個以上の単電池30の各々に備えられた発光部20からの発光が、光学的に結合され、光出力部から出射する。本実施形態において、光導波路60の一部は、外装体70から引き出されて、光出力部となっている。光出力部から出射した光信号は、受光部80により受信される。受光部80は、フォトダイオード、フォトトランジスタなどを用いて構成することができる。発光素子であるLED素子を受光素子として用いて受光部80を構成してもよい。なお、光出力部を含む光導波路60の全体は外装体70の内部に収容されていてもよい。光導波路60の全体を外装体70の内部に収容する場合、光出力部から出射した光信号は、外装体70の内部に配置された受光部80により受信される。受光部80を外装体70の内部に配置する場合であっても、外装体70の内部に配置する場合と同様に、受光部80は組電池50と電気的に絶縁されることが望ましい。 The optical waveguide 60 has an optical output portion from which the incident and propagated optical signal is emitted. In one implementation, light emitted from light emitting units 20 provided in each of 20 or more single cells 30 arranged adjacent or close to one optical waveguide 60 is optically coupled and output from the light output unit. emit. In this embodiment, a portion of the optical waveguide 60 is pulled out from the exterior body 70 to serve as an optical output section. An optical signal emitted from the optical output section is received by the light receiving section 80 . The light receiving section 80 can be configured using a photodiode, a phototransistor, or the like. The light-receiving section 80 may be configured using an LED element, which is a light-emitting element, as a light-receiving element. The entire optical waveguide 60 including the optical output section may be housed inside the exterior body 70 . When the entire optical waveguide 60 is housed inside the exterior body 70 , the optical signal emitted from the optical output section is received by the light receiving section 80 arranged inside the exterior body 70 . Even when the light receiving section 80 is arranged inside the exterior body 70 , it is desirable that the light receiving section 80 is electrically insulated from the assembled battery 50 as in the case where the light receiving section 80 is arranged inside the exterior body 70 .
 外装体70は、金属缶ケースまたは高分子金属複合フィルムを用いて構成することができる。外装体70は、内部の減圧を保つように封止される。 The exterior body 70 can be configured using a metal can case or a polymer-metal composite film. The exterior body 70 is sealed so as to maintain the internal pressure reduction.
 図2は、図1に示すリチウムイオン電池モジュールの概略断面構造を示す図である。図2に示すように、単電池の積層方向に延伸した光導波路60は、発光部20の発光面に隣接または近接して配置される。光導波路60は、例えば、光ファイバーとしてもよく、発光部20からの光信号を受光するのに十分な幅(単電池の積層方向に直交する方向の長さ)を有する導光板としてもよい。光導波路60を導光板で構成する場合、光導波路60の幅方向寸法を発光部20の発光面の最大寸法(発光面が円形の場合は直径、矩形の場合は対角線)よりも大きくするとよい。図2は、導光板を用いて光導波路60を構成した場合を示している。 FIG. 2 is a diagram showing a schematic cross-sectional structure of the lithium ion battery module shown in FIG. As shown in FIG. 2 , the optical waveguide 60 extending in the stacking direction of the unit cells is arranged adjacent to or close to the light emitting surface of the light emitting section 20 . The optical waveguide 60 may be, for example, an optical fiber, or may be a light guide plate having a sufficient width (length in the direction perpendicular to the stacking direction of the cells) to receive the optical signal from the light emitting section 20 . When the optical waveguide 60 is composed of a light guide plate, the width dimension of the optical waveguide 60 should be larger than the maximum dimension of the light emitting surface of the light emitting part 20 (diameter if the light emitting surface is circular, diagonal if rectangular). FIG. 2 shows a case where the optical waveguide 60 is configured using a light guide plate.
 光導波路60として導光板を用いる場合、複数の発光部20の発光面(各々が積層された複数の単電池に対応する)のすべてを覆うように光導波路60を配置することができる。また、発光部20の発光方向(発光面の鉛直方向に一致する場合および発光面の鉛直方向にから傾斜している場合を含む)を覆うように光導波路60を配置することができる。 When a light guide plate is used as the optical waveguide 60, the optical waveguide 60 can be arranged so as to cover all of the light emitting surfaces of the plurality of light emitting portions 20 (each corresponding to a plurality of stacked single cells). Further, the optical waveguide 60 can be arranged so as to cover the light emitting direction of the light emitting section 20 (including the case where it is aligned with the vertical direction of the light emitting surface and the case where it is inclined from the vertical direction of the light emitting surface).
 このように光導波路60として導光板を用いる場合、光導波路60として光ファイバーを用いる場合に比べて、発光部20から出力された光信号が受光され易くなる、発光部20からの光信号を光導波路60に集光するためのレンズなどの追加部品が必要なくなる、光導波路の位置決めの手間が削減される、または位置ずれの許容量が増大される。勿論、光導波路60としての導光板に対する発光部20からの光信号の結合効率を高めるために、レンズなどの追加部品を用いてもよく、集光加工を施した導光板を用いてもよい。レンズなどの追加部品および集光加工を施した導光板の一方または双方を用いる場合であっても、光導波路60として光ファイバーを用いる場合に比べ、位置決めの手間の煩雑性が削減される、または位置ずれ許容量が増大される。単電池の積層方向に延伸した光導波路60を例示するが、単電池の積層方向に直交する方向に延伸した光導波路60を用いることも可能である。この場合、光導波路60としての導光板は、複数の発光部20の発光面のすべてを覆うことが可能で、光出力部に向かうテーパー形状とすることで、先細りの光出力部から出力される光信号を受光部80で受信することができる。 When a light guide plate is used as the optical waveguide 60 in this manner, the optical signal output from the light emitting unit 20 is more likely to be received than when an optical fiber is used as the optical waveguide 60. An additional component such as a lens for focusing light to 60 is no longer required, the labor for positioning the optical waveguide is reduced, or the misalignment tolerance is increased. Of course, in order to increase the coupling efficiency of the optical signal from the light emitting unit 20 to the light guide plate as the optical waveguide 60, an additional component such as a lens may be used, or a light guide plate subjected to light condensing processing may be used. Even if one or both of an additional component such as a lens and a light-condensing light guide plate are used, compared to the case of using an optical fiber as the optical waveguide 60, the complexity of positioning can be reduced or the position can be reduced. The deviation allowance is increased. Although the optical waveguide 60 extending in the stacking direction of the unit cells is exemplified, it is also possible to use the optical waveguide 60 extending in a direction orthogonal to the stacking direction of the unit cells. In this case, the light guide plate as the optical waveguide 60 can cover all of the light emitting surfaces of the plurality of light emitting portions 20, and by tapering toward the light output portion, light is output from the tapered light output portion. An optical signal can be received by the light receiver 80 .
 図2に示すように、光導波路60は、光信号を受光する表面の位置に対応する裏面の位置に、散乱加工60aが施されている。散乱加工60aは、隣接または近接する発光部20の発光面に対応する位置に施されている。散乱加工60aは、例えば、凹凸加工であり得る。光導波路60に入射し散乱加工60aにより散乱した光信号の一部は、光出力部の方向に伝搬する。 As shown in FIG. 2, the optical waveguide 60 is subjected to scattering processing 60a at the position of the back surface corresponding to the position of the surface that receives the optical signal. The scattering processing 60a is applied to a position corresponding to the light emitting surface of the adjacent or adjacent light emitting section 20. As shown in FIG. The scattering processing 60a can be, for example, uneven processing. A portion of the optical signal that enters the optical waveguide 60 and is scattered by the scattering processing 60a propagates in the direction of the optical output section.
 また、光導波路60は、曲げ部分に反射加工60bが施されており、これにより曲げ部分により散乱した光信号を光出力部の方向へ反射することができる。また、光導波路60の光出力部となる端部と反対の端部および曲げ部分に反射加工60bが施されており、これにより凹凸加工により光出力部の方向と反対方向に散乱した光を、光出力部の方向反射することができる。 In addition, the optical waveguide 60 is subjected to reflection processing 60b at the bent portion, so that the optical signal scattered by the bent portion can be reflected in the direction of the optical output portion. Reflection processing 60b is applied to the end opposite to the end serving as the light output portion of the optical waveguide 60 and the bent portion. The direction of the light output can be reflected.
 図3は、本発明の一実施形態のリチウムイオン電池モジュール内の複数の光送信器の概略構成を示す図である。光送信器10は単電池30にそれぞれ対応する。光送信器10は、フレキシブルプリント基板(Flexible printed circuits:FPC)(不図示)の上に配置された発光部20、制御回路40、および測定回路90を備える。 FIG. 3 is a diagram showing a schematic configuration of a plurality of optical transmitters within a lithium ion battery module according to one embodiment of the present invention. The optical transmitters 10 correspond to the cells 30 respectively. The optical transmitter 10 includes a light emitting section 20, a control circuit 40, and a measurement circuit 90 arranged on flexible printed circuits (FPC) (not shown).
 測定回路90は、対応する単電池30の特性を測定し、測定された特性を表す特性信号を出力するように構成されている。測定回路90は、マイクロコンピュータ、IC、LSIなどの任意の半導体素子を用いて構成し得る。測定回路90は、単電池30から電力供給される。測定回路90は、単電池の特性として、例えば、電圧または温度若しくは両方を測定するように構成し得る。より具体的には、測定回路90は、正極集電体および負極集電体にそれぞれ接する電圧測定端子(不図示)に電気的に結合されると共に発光部20に電気的に結合された制御回路40と電気的に結合される。測定回路90は、電圧測定端子に入力される電圧を示す信号を特性信号として出力する。測定回路90は、電圧測定端子の代替としてまたは追加して、正極集電体および負極集電体の表面または単電池の表面に接して設けられた1つ以上の温度測定素子(不図示)に電気的に結合されてもよい。測定回路90は、温度測定素子からの出力に対応する信号を特性信号として出力する。 The measurement circuit 90 is configured to measure the characteristics of the corresponding unit cell 30 and output a characteristic signal representing the measured characteristics. The measurement circuit 90 can be configured using arbitrary semiconductor elements such as microcomputers, ICs, and LSIs. The measurement circuit 90 is powered by the cell 30 . Measurement circuitry 90 may be configured to measure, for example, voltage or temperature or both as characteristics of the cell. More specifically, the measurement circuit 90 is a control circuit that is electrically coupled to voltage measurement terminals (not shown) that are in contact with the positive electrode current collector and the negative electrode current collector, respectively, and is also electrically coupled to the light emitting unit 20 . 40 are electrically coupled. The measurement circuit 90 outputs a signal indicating the voltage input to the voltage measurement terminal as a characteristic signal. The measurement circuit 90 is connected to one or more temperature measurement elements (not shown) provided in contact with the surface of the positive electrode current collector and the negative electrode current collector or the surface of the cell as an alternative or in addition to the voltage measurement terminals. may be electrically coupled. The measurement circuit 90 outputs a signal corresponding to the output from the temperature measurement element as a characteristic signal.
 制御回路40は、測定回路90から対応する単電池の特性を表す特性信号を受信し、所定の期間毎に特性信号を符号化した制御信号を出力するように構成されている。制御信号は、発光部20に供給される。制御回路40は、マイコン、IC、LSIなどの任意の半導体素子を用いて構成され得る。単電池30から電力供給される。制御回路40は、測定回路90と一体であってもよい。制御回路は、特性信号と共に対応する単電池30に固有の識別子IDを符号化して制御信号を出力するように構成してもよい。特性信号と共に対応する制御信号に単電池30の識別子IDが符号化された制御信号に基づいて光信号が出力されるようになることで、受信側で、いずれの単電池の状態情報であるかを決定または推定することが可能となる。 The control circuit 40 is configured to receive a characteristic signal representing the characteristic of the corresponding unit cell from the measurement circuit 90 and output a control signal obtained by encoding the characteristic signal every predetermined period. A control signal is supplied to the light emitting unit 20 . The control circuit 40 can be configured using any semiconductor device such as a microcomputer, IC, or LSI. Power is supplied from the cell 30 . The control circuit 40 may be integrated with the measurement circuit 90 . The control circuit may be configured to encode the identifier ID unique to the corresponding cell 30 together with the characteristic signal and output the control signal. By outputting the optical signal based on the control signal in which the identifier ID of the unit cell 30 is encoded in the corresponding control signal together with the characteristic signal, it is possible to determine which unit cell the status information is on the receiving side. can be determined or estimated.
 発光部20は、LED素子、有機EL素子などの発光素子を用いて構成され得る。発光部20は、単電池30から電力供給され、制御回路40からの制御信号に基づいて駆動する(すなわち、制御信号に応じて発光することで制御信号に応じた光信号を出力する)ように構成され得る。 The light emitting unit 20 can be configured using light emitting elements such as LED elements and organic EL elements. The light emitting unit 20 is powered by the cell 30 and driven based on a control signal from the control circuit 40 (that is, emits light according to the control signal and outputs an optical signal according to the control signal). can be configured.
 光送信器10は、発光部20が単電池30の短辺の一方に配置されるように、単電池30に備えられている。好ましくは、複数の単電池30を積層した状態で、複数の発光部20の発光面が、組電池50の側面に複数の単電池30の積層方向に一列に並び、光導波路60に隣接または近接して配置される。 The optical transmitter 10 is provided on the cell 30 so that the light emitting section 20 is arranged on one of the short sides of the cell 30 . Preferably, in a state in which the plurality of unit cells 30 are stacked, the light emitting surfaces of the plurality of light emitting units 20 are arranged in a row on the side surface of the assembled battery 50 in the stacking direction of the plurality of unit cells 30 and adjacent to or close to the optical waveguide 60. are placed as follows.
 光送信器10は、内部クロックで動作するように構成される。測定回路90および制御回路40は内部クロックに同期して動作する。単電池30から電力供給される光送信器10による電力消費を抑制するため、クロック生成回路も電力消費の小さなものが好ましい。 The optical transmitter 10 is configured to operate with an internal clock. Measurement circuit 90 and control circuit 40 operate in synchronization with an internal clock. In order to suppress the power consumption of the optical transmitter 10 which is supplied with power from the cell 30, it is preferable that the clock generation circuit also consumes less power.
 図4は、本発明の一実施形態のリチウムイオン電池モジュールにおける光送信器のクロック生成回路の概略構成を示す図である。このクロック生成回路は、コルピッツ回路のような発信回路(不図示)により生成された正弦波電圧を、コンパレータの2つの入力の内の一方(Vinp)と他方(Vinn)に印加すると矩形波のクロック信号を出力する回路である。容量Cと抵抗Rを含むCR回路がVinpに接続されており、抵抗Rと容量Cの大きさは、所望の矩形波の周期または周波数に応じて決定されている。 FIG. 4 is a diagram showing a schematic configuration of a clock generation circuit for an optical transmitter in a lithium ion battery module according to one embodiment of the present invention. This clock generation circuit produces a square wave clock when a sinusoidal voltage generated by an oscillator circuit (not shown) such as a Colpitts circuit is applied to one (Vinp) and the other (Vinn) of the two inputs of a comparator. A circuit that outputs a signal. A CR circuit including a capacitor C and a resistor R is connected to Vinp, and the sizes of the resistor R and the capacitor C are determined according to the period or frequency of the desired square wave.
 図5は、本実施形態の光送信器の測定回路90の機能ブロック図である。測定回路90は、入力端子91aおよび入力端子91bと、比較回路92と、出力端子95とを備える。 FIG. 5 is a functional block diagram of the measurement circuit 90 of the optical transmitter of this embodiment. The measurement circuit 90 includes an input terminal 91a and an input terminal 91b, a comparison circuit 92, and an output terminal 95. FIG.
 入力端子91aおよび入力端子91bは、単電池30の正極集電体および負極集電体にそれぞれ接する電圧測定端子と測定回路90を電気的に結合するための端子である。または、入力端子91aおよび入力端子91bは、単電池30の正極集電体および負極集電体の表面または単電池の表面に接して設けられた1つ以上の温度測定素子(不図示)に測定回路90を電気的に結合するための端子である。または、入力端子91aおよび入力端子91bは、単電池30の正極集電体と負極集電体との間の電圧を測定する電圧または電流センサ、単電池30の表面に設けられた温度センサ、または単電池の表面付近に設けられた磁気センサ等のセンサが出力する電圧を入力するための端子である。予め定められた基準に対する信号(例えば、グランド電位を基準とした電圧)を測定回路90に入力する場合、入力端子91aおよび入力端子91bの一方に基準に対する信号が入力されるように構成してもよい(例えば、比較回路92内において予め入力端子91bを接地して比較回路92へグランド電位が供給されるようにし、入力端子91aに基準に対する信号が入力されるもよい。この場合、比較回路92は、外部から基準となる信号を入力するための入力端子91bを備えなくてもよい。)。 The input terminal 91a and the input terminal 91b are terminals for electrically connecting the voltage measurement terminal and the measurement circuit 90, which are in contact with the positive electrode current collector and the negative electrode current collector of the cell 30, respectively. Alternatively, the input terminal 91a and the input terminal 91b are connected to one or more temperature measurement elements (not shown) provided in contact with the surface of the positive electrode current collector and the negative electrode current collector of the cell 30 or the surface of the cell. It is a terminal for electrically coupling the circuit 90 . Alternatively, the input terminal 91a and the input terminal 91b are a voltage or current sensor that measures the voltage between the positive electrode current collector and the negative electrode current collector of the cell 30, a temperature sensor provided on the surface of the cell 30, or It is a terminal for inputting a voltage output by a sensor such as a magnetic sensor provided near the surface of the cell. When a signal corresponding to a predetermined reference (for example, a voltage with reference to the ground potential) is input to the measuring circuit 90, the signal corresponding to the reference may be input to one of the input terminals 91a and 91b. (For example, the input terminal 91b in the comparison circuit 92 may be grounded in advance so that a ground potential is supplied to the comparison circuit 92, and a signal corresponding to the reference may be input to the input terminal 91a. In this case, the comparison circuit 92 may not have the input terminal 91b for inputting a reference signal from the outside.).
 比較回路92は、入力端子91aおよび91bに入力される電位を比較して、電位差を示す信号を出力する。この電位差は、単電池30の電圧または単電池の温度に相当する。比較回路92は、例えば、1つまたは複数のコンパレータを用いて構成することができる。コンパレータの数を多くすることで、比較回路92が出力端子95をから出力する電位差が示す意味内容(例えば、単電池30の電圧、単電池の温度、または単電池の周囲の磁界)の粒度を細かくまたは精度を高くできる。 The comparison circuit 92 compares the potentials input to the input terminals 91a and 91b and outputs a signal indicating the potential difference. This potential difference corresponds to the voltage of the cell 30 or the temperature of the cell. The comparison circuit 92 can be configured using, for example, one or more comparators. By increasing the number of comparators, the granularity of the meaning (for example, the voltage of the cell 30, the temperature of the cell, or the magnetic field around the cell) indicated by the potential difference output from the output terminal 95 by the comparison circuit 92 can be increased. Can be fine or precise.
 出力端子95は、比較回路92により出力された信号を、単電池30の特性(電圧または温度)に対応する特性信号として出力するための端子である。 The output terminal 95 is a terminal for outputting the signal output by the comparison circuit 92 as a characteristic signal corresponding to the characteristic (voltage or temperature) of the cell 30 .
 図6は、本発明の一実施形態のリチウムイオン電池モジュールにおける光送信器10の制御回路40の機能ブロック図である。制御回路40は、状態判定回路42と、ルックアップテーブル44と、セレクタ43と、出力端子45とを備える。 FIG. 6 is a functional block diagram of the control circuit 40 of the optical transmitter 10 in the lithium ion battery module of one embodiment of the present invention. The control circuit 40 includes a state determination circuit 42 , a lookup table 44 , a selector 43 and an output terminal 45 .
 状態判定回路42は、測定回路90が出力する特性信号に基づいて対応する単電池の状態を判定し、判定された対応する単電池の状態に応じて異なるパターンの制御信号を出力端子45から出力するように構成された回路である。状態判定回路42は、ルックアップテーブル44およびセレクタ43と結合され、これらを協働して測定回路90からの特性信号に基づいて対応する単電池の状態を判定し、判定された対応する単電池の状態に応じて異なるパターンの制御信号を出力ように構成されている。 The state determination circuit 42 determines the state of the corresponding cell based on the characteristic signal output by the measurement circuit 90, and outputs a control signal having a different pattern from the output terminal 45 according to the determined state of the corresponding cell. It is a circuit configured to The state determination circuit 42 is coupled to the lookup table 44 and the selector 43 and cooperates to determine the state of the corresponding unit cell based on the characteristic signal from the measurement circuit 90. It is configured to output control signals of different patterns according to the state of .
 ルックアップテーブル44は、測定回路90から状態判定回路42を介して入力され得る複数の電位差を示す信号(特性信号)の値と、対応する電池の複数の状態と、互いに異なるパターンの複数の制御信号とを対応付けるテーブルとすることができる。対応する電池の状態は、例えば、対応する電池の電圧または温度の範囲とすることができ、制御信号は対応する電池の電圧の範囲または温度の範囲を表す信号パターンとすることができる。 The lookup table 44 stores values of signals (characteristic signals) indicating a plurality of potential differences that can be input from the measurement circuit 90 via the state determination circuit 42, a plurality of corresponding battery states, and a plurality of control patterns with mutually different patterns. It can be a table in which signals are associated with each other. The corresponding battery status can be, for example, a corresponding battery voltage or temperature range, and the control signal can be a signal pattern representing the corresponding battery voltage range or temperature range.
 セレクタ43は、ルックアップテーブル44を参照して、状態判定回路42を介して入力された電位差を示す信号(特性信号)の値に対応する電池の状態(例えば、電圧または温度の範囲)および当該状態に応じた制御信号(信号パターン)を判定する。判定された対応する電池の状態に応じた制御信号は、出力端子45から出力される。セレクタ43およびルックアップテーブル44は、状態判定回路32からの信号に応答して、電池の電圧の範囲または温度の範囲を表す信号パターンを表すパルスパターンを設定する1つの回路で構成してもよい。 The selector 43 refers to the lookup table 44 to determine the state of the battery (for example, voltage or temperature range) corresponding to the value of the signal (characteristic signal) indicating the potential difference input via the state determination circuit 42 and the relevant A control signal (signal pattern) corresponding to the state is determined. A control signal corresponding to the determined state of the corresponding battery is output from the output terminal 45 . Selector 43 and lookup table 44 may be configured by a single circuit that sets a pulse pattern representing a signal pattern representing a battery voltage range or temperature range in response to a signal from state determination circuit 32. .
 以上の構成により、複数の光送信器10はそれぞれ、対応する単電池の状態に対応する光信号を出力する。各光送信器10は、他の光送信器と非同期で光信号を出力する。 With the above configuration, each of the plurality of optical transmitters 10 outputs an optical signal corresponding to the state of the corresponding cell. Each optical transmitter 10 outputs an optical signal asynchronously with other optical transmitters.
 図7は、本発明の一実施形態のリチウムイオン電池モジュールにおけるある時間期間において(システム周期内の理想的な送信タイミングにおいて)複数の光送信器が送信する光信号を説明する図である。組電池50はn個(nは、2以上の整数)の単電池が積層されて構成されており、リチウムイオン電池モジュールはn個の単電池にそれぞれ対応するn個の光送信器を含むものとする。リチウムイオン電池モジュールのシステム周期をn×Tとし、各光送信器10はシステム周期内の時間期間Tにおいて光信号を送信する。n個の光送信器10が光信号を送信するn個の時間間隔Tが重ならないタイミングがシステム周期内の理想的な送信タイミングである。 FIG. 7 is a diagram illustrating optical signals transmitted by a plurality of optical transmitters in a certain time period (at ideal transmission timings within the system period) in the lithium-ion battery module according to one embodiment of the present invention. Assume that the assembled battery 50 is configured by stacking n unit cells (n is an integer equal to or greater than 2), and the lithium-ion battery module includes n optical transmitters corresponding to the n unit cells, respectively. . Let the system period of the lithium-ion battery module be n×T, and each optical transmitter 10 transmits an optical signal in a time period T within the system period. The ideal transmission timing within the system cycle is the timing at which the n time intervals T at which the n optical transmitters 10 transmit optical signals do not overlap.
 図7(a)、(b)、および(c)は、システム周期内の理想的な送信タイミングにおいて、n個の光送信器10の内の3つの光送信器から送信される光信号を時間軸上に示す図である。図7(a)は3つの光送信器の内の第1の光送信器によってt=t0からt=t1までの時間期間Tに送信された光信号を示し、図7(b)は3つの光送信器の内の第2の光送信器によってt=t1からt=t2までの時間期間Tに送信された光信号を示し、図7(c)は3つの光送信器の内の第3の光送信器によってt=t2からt=t3までの時間期間Tに送信された光信号を示す。第1、第2および第3の光送信器が光信号を送信する時間期間はTであり、周期(繰り返し時間期間)はnTである。(d)はn個の光送信器10に共通の光導波路60上の光信号を時間軸上に示す図である。図7(a)、(b)、および(c)に示す光信号は、光導波路60上で重ならずに、受光部80で受信される。図7は、各光送信器が、同じ内容の光信号を送信する場合を示すが、光信号の内容(パルスの数やパターン)は単電池の状態に応じて可変である。時間期間Tにおいて送信できる最大数のパルスが光信号として送信される場合もあり、より少ない数のパルスが光信号として送信される場合(時間期間Tの前半にパルスが送信され、後半にパルスが送信されない場合)もある。 7(a), (b), and (c) show optical signals transmitted from three optical transmitters out of n optical transmitters 10 at ideal transmission timings within the system period. Fig. 3 is a view on the axis; FIG. 7(a) shows the optical signal transmitted by the first of the three optical transmitters during the time period T from t=t0 to t=t1, and FIG. 7(b) shows the three FIG. 7(c) shows the optical signal transmitted during time period T from t=t1 to t=t2 by the second one of the optical transmitters, and FIG. is transmitted by the optical transmitter in the time period T from t=t2 to t=t3. The time period during which the first, second and third optical transmitters transmit optical signals is T, and the period (repetition time period) is nT. (d) is a diagram showing the optical signal on the optical waveguide 60 common to the n optical transmitters 10 on the time axis. The optical signals shown in FIGS. 7A, 7B, and 7C are received by the light receiving section 80 without overlapping on the optical waveguide 60. FIG. FIG. 7 shows a case where each optical transmitter transmits an optical signal with the same content, but the content of the optical signal (number of pulses and pattern) is variable according to the state of the cell. Sometimes the maximum number of pulses that can be transmitted in a time period T is transmitted as an optical signal, and if a smaller number of pulses are transmitted as an optical signal (pulses are transmitted in the first half of the time period T and pulses in the second half). not sent).
 上述したように、光送信器10は、内部クロックで動作するように構成される。したがって、すべての光送信器10の内部クロックは同一とはならず、光信号の送信タイミングにずれが生じる。光信号の送信タイミングのずれは時間の経過とともに大きくなり、再びシステム周期内の理想的な送信タイミングに戻る。仮にすべての光送信器10の内部クロックは同一であるとすると、非同期で光信号を送信する2つの以上の光送信器10の光信号の送信タイミングは同一となり得る。この場合、光導波路60上において光信号は重なり続けることになるので、複数の光送信器10間で、送信タイミングを制御する機構が必要となり、すなわち複数の光送信器10間で、送信タイミングを同期化する必要がある。 As described above, the optical transmitter 10 is configured to operate with an internal clock. Therefore, the internal clocks of all the optical transmitters 10 are not the same, and a shift occurs in the transmission timing of optical signals. The deviation of the transmission timing of the optical signal increases with the lapse of time, and the ideal transmission timing within the system period is restored. Assuming that the internal clocks of all the optical transmitters 10 are the same, the optical signal transmission timings of two or more optical transmitters 10 that transmit optical signals asynchronously can be the same. In this case, since the optical signals continue to overlap on the optical waveguide 60, a mechanism for controlling the transmission timing between the plurality of optical transmitters 10 is required. need to be synchronized.
 送信のタイミングを制御する機構を追加すると、部品点数の増加、光送信器10のサイズの増加、組み立て工程の増加に伴い光送信器10のコストが増加する。したがって、本実施例のリチウムイオン電池モジュールは、複数の光送信器10のそれぞれが、内部クロックで動作して、他の光通信器と非同期に、光信号を送信するようにしている。より具体的には図4を参照して上述したCR回路の抵抗Rおよび容量Cの大きさを調整することで、すべての光送信器10の内部クロックが同一とならないように予め構成してある。 Adding a mechanism for controlling the timing of transmission increases the cost of the optical transmitter 10 due to an increase in the number of parts, an increase in the size of the optical transmitter 10, and an increase in the number of assembly processes. Therefore, in the lithium-ion battery module of this embodiment, each of the plurality of optical transmitters 10 operates with the internal clock and transmits optical signals asynchronously with other optical transmitters. More specifically, by adjusting the magnitudes of the resistance R and the capacitance C of the CR circuit described above with reference to FIG. .
 図4を参照して説明した本実施形態のクロック発生回路の精度は、水晶振動子を用いたクロック発生回路に比べて、低い。図4のクロック発生回路のようなマイコン内に実装され得るシリコン振動子やセラミック振動子の精度は、1×10-3~1×10-2(0.1%~数%)程度であり温度依存性を有するのに対して、温度補償回路を内蔵した水晶振動子の精度は、1×10-9程度である。また、本実施形態のシリコン振動子やセラミック振動子の制度は、製造時の目標精度からのずれを含む(精度にバラつきがある)。したがって、光送信器10の内部クロックは、製造時のバラつきにより、および/またはCR回路の調整により、他の光送信器10の内部クロックと同一とならないように調整されている。 The accuracy of the clock generation circuit of this embodiment described with reference to FIG. 4 is lower than that of the clock generation circuit using a crystal oscillator. The accuracy of a silicon oscillator or a ceramic oscillator that can be mounted in a microcomputer like the clock generation circuit in FIG. The accuracy of a crystal oscillator with a built-in temperature compensation circuit is about 1×10 −9 . In addition, the accuracy of the silicon resonator and the ceramic resonator of this embodiment includes deviation from the target accuracy at the time of manufacture (there is variation in accuracy). Therefore, the internal clock of the optical transmitter 10 is adjusted so as not to be the same as the internal clocks of other optical transmitters 10 due to manufacturing variations and/or adjustment of the CR circuit.
 上述したように、発光部20は、光送信器10の内部クロックにしたがって動作し発光する。光送信器10の内部クロックは温度依存性を有している。よって、光信号として送信されるパルスの幅(発光時間の長さ)もまた温度依存性を有している。光パルスの幅が温度に応じて変化しているにもかかわらず、受光部80が一定のサンプリング間隔で、光信号を電気信号に変換した場合、パルスの取り込みミスが生じる可能性(発光部20側で光パルスの幅が短くなっている場合に受光部80側で2つの光パルスを1つの電気パルスに変換したり、または、発光部20側で光パルスの幅が長くなっている場合に受光部80側で1つの光パルスを2つの電気パルスに変換したりする可能性)がある。したがって、受光部80は、受信した光信号を電気信号に変換する際のサンプリング間隔を、予め取得した光送信器10の内部クロックの温度依存性にしたがって変更する機構を備えた構成とすることが望ましい。 As described above, the light-emitting unit 20 operates and emits light according to the internal clock of the optical transmitter 10 . The internal clock of the optical transmitter 10 has temperature dependency. Therefore, the width of a pulse (length of light emission time) transmitted as an optical signal also has temperature dependence. Although the width of the optical pulse varies with temperature, if the light receiving unit 80 converts the optical signal into an electrical signal at a constant sampling interval, there is a possibility that a pulse capture error occurs (the light emitting unit 20 When the width of the light pulse is shortened on the light receiving section 80 side, two light pulses are converted into one electric pulse on the light receiving section 80 side, or when the width of the light pulse is lengthened on the light emitting section 20 side. There is a possibility that one optical pulse is converted into two electrical pulses on the light receiving section 80 side). Therefore, the light receiving section 80 may be configured to have a mechanism for changing the sampling interval when converting the received optical signal into an electrical signal according to the temperature dependency of the internal clock of the optical transmitter 10 obtained in advance. desirable.
 図8は、本発明の一実施形態のリチウムイオン電池モジュールにおけるある時間期間(システム周期内の理想的な送信タイミングからずれた送信タイミング)において複数の光送信器が送信する光信号を説明する図である。図7と同様に、図8(a)、(b)、および(c)は、n個の光送信器10の内の3つの光送信器から送信される光信号を時間軸上に示す図である。 FIG. 8 is a diagram for explaining optical signals transmitted by a plurality of optical transmitters in a certain time period (transmission timing shifted from the ideal transmission timing within the system cycle) in the lithium-ion battery module according to one embodiment of the present invention; is. Similar to FIG. 7, FIGS. 8A, 8B, and 8C are diagrams showing optical signals transmitted from three optical transmitters out of the n optical transmitters 10 on the time axis. is.
 図8(a)は第1の光送信器によってt=t0からt=t1までの時間期間Tに送信された光信号を示す。第1の光送信器の内部クロックを基準とすると、第2の光送信器の内部クロックの周期はわずかに短く(周波数はわずかに高く)構成されており、したがって、光信号を送信する時間期間はTよりもδ1だけ短くなっており、周期(繰り返し時間期間)はn(T-δ1)となっている。図8(b)は第2の光送信器によってt=t1からずれた時間期間T-δ1に送信された光信号を示す。また、第3の光送信器の内部クロックの周期は、第1の光送信器の内部クロックに比べてわずかに長く(周波数はわずかに低く)構成されており、したがって、光信号を送信する時間期間はTよりもδ2だけ長くなっており、周期(繰り返し時間期間)はn(T+δ2)となっている。図8(c)は第3の光送信器によってt=t2からずれた時間期間T+δ2に送信された光信号を示す。(d)はn個の光送信器10に共通の光導波路60上の光信号を時間軸上に示す図である。図8(a)、(b)、および(c)に示す光信号は、光導波路60上で重なって、受光部80で受信される。光導波路60上で光信号が重なることで、例えば、t=t0からt=t1までの時間期間Tにおける光信号に含まれる光パルスの数、光パルスの幅、または配列パターンの少なくとも一部は、第1の光送信器が出力した光信号に含まれる光パルスから変化する。図9(d)の例では、t=t0からt=t1までの時間期間T内の後ろから2つ目のパルスが追加され、後ろから1つ目のパルスの幅が広くなり、光信号内の光パルスの配列が変化している。この変化は、受光部80から電気信号にも現れる。したがって、受光部80から電気信号に含まれる電気パルスの数、電気パルスの幅、または電気パルスの配列の少なくとも1つに基づいて、複数の光送信器10から出力された複数の光信号の少なくとも一部が光導波路60上で重なったかどうかを判定することができる。 FIG. 8(a) shows the optical signal transmitted by the first optical transmitter in the time period T from t=t0 to t=t1. Taking the internal clock of the first optical transmitter as a reference, the period of the internal clock of the second optical transmitter is configured to be slightly shorter (the frequency is slightly higher), thus the time period for transmitting the optical signal is shorter than T by δ1, and the period (repetition time period) is n(T−δ1). FIG. 8(b) shows the optical signal transmitted by the second optical transmitter at a time period T-.delta.1 offset from t=t1. Also, the period of the internal clock of the third optical transmitter is configured to be slightly longer (the frequency is slightly lower) than the internal clock of the first optical transmitter, so the time to transmit the optical signal is The period is longer than T by δ2, and the period (repeating time period) is n(T+δ2). FIG. 8(c) shows the optical signal transmitted by the third optical transmitter at a time period T+.delta.2 offset from t=t2. (d) is a diagram showing the optical signal on the optical waveguide 60 common to the n optical transmitters 10 on the time axis. The optical signals shown in FIGS. 8(a), (b), and (c) are superimposed on the optical waveguide 60 and received by the light receiving section 80. FIG. By overlapping the optical signals on the optical waveguide 60, for example, the number of optical pulses included in the optical signal in the time period T from t=t0 to t=t1, the width of the optical pulses, or at least part of the array pattern , changes from the optical pulse contained in the optical signal output by the first optical transmitter. In the example of FIG. 9(d), the second pulse from the back within the time period T from t=t0 to t=t1 is added, the width of the first pulse from the back is widened, and the optical signal The arrangement of the light pulses of is changing. This change also appears in the electrical signal from the light receiving section 80 . Therefore, at least one of the plurality of optical signals output from the plurality of optical transmitters 10 is based on at least one of the number of electrical pulses contained in the electrical signal from the light receiving section 80, the width of the electrical pulses, and the arrangement of the electrical pulses. It can be determined whether a portion overlaps on the light guide 60 .
 図9は、本発明の一実施形態のリチウムイオン電池モジュール内において光送信器が光信号を送信するタイミングを説明する図である。図7および図8を参照して説明した第1の光送信器10を例に、光送信器10が、システム周期の時間期間nT内のt=0からt=1までの時間期間Tにおいて光信号を送信するタイミングを説明する。 FIG. 9 is a diagram illustrating the timing at which the optical transmitter transmits optical signals in the lithium-ion battery module according to one embodiment of the present invention. Taking the first optical transmitter 10 described with reference to FIGS. 7 and 8 as an example, the optical transmitter 10 transmits light during a time period T from t=0 to t=1 within the time period nT of the system period. The timing for transmitting signals will be explained.
 図9(a)は、光送信器10の内部クロックを時間軸上に示す図である。この内部クロックにしたがって、測定回路90および制御回路40が動作する。 FIG. 9(a) is a diagram showing the internal clock of the optical transmitter 10 on the time axis. Measurement circuit 90 and control circuit 40 operate according to this internal clock.
 図9(b)は、測定回路90からの特性信号に基づいて制御回路40により判定された対応する単電池の状態を示す信号を示す図である。単電池の状態を示す信号は単電池の状態に応じて異なる(変化する)。測定回路90において、内部クロックにしたがって、比較回路92が2つの入力端子間の電位差(単電池の電圧)を示す特性信号を出力する。また、制御回路40において、内部クロックにしたがって、状態判定回路42が、測定回路90からの特性信号に基づいて対応する単電池の状態を判定し、対応する単電池の状態に応じた異なるパターンの信号を判定する。対応する単電池の状態および判定された単電池の状態に応じた異なるパターンの信号の判定は、セレクタ43およびルックアップテーブル44を用いて行われ得る。測定回路90が特性信号を出力するときおよび制御回路40において制御信号を出力するとき、量子化誤差が生じる。図9(b)は、t=0からのシステム周期の時間期間nT内に測定回路90の2つの入力端子間の電位差が変化しない場合を例示しているが、測定回路90の2つの入力端子間の電位差の変化(単電池の状態)に応じて、制御回路40において判定される単電池の状態に応じた信号(パルスの数やパターン)が変化する。 FIG. 9(b) is a diagram showing a signal indicating the state of the corresponding cell determined by the control circuit 40 based on the characteristic signal from the measurement circuit 90. FIG. The signal indicating the state of the cell differs (changes) according to the state of the cell. In the measurement circuit 90, the comparison circuit 92 outputs a characteristic signal indicating the potential difference (voltage of the cell) between the two input terminals according to the internal clock. In the control circuit 40, the state determination circuit 42 determines the state of the corresponding cell based on the characteristic signal from the measurement circuit 90 according to the internal clock, and determines the state of the corresponding cell according to the state of the corresponding cell. judge the signal. Determination of different patterns of signals according to the corresponding state of the cell and the determined state of the cell may be performed using the selector 43 and the lookup table 44 . Quantization errors occur when the measurement circuit 90 outputs the characteristic signal and when the control circuit 40 outputs the control signal. FIG. 9(b) illustrates the case where the potential difference between the two input terminals of the measuring circuit 90 does not change within the time period nT of the system cycle from t=0. The signal (number of pulses and pattern) corresponding to the state of the cell determined by the control circuit 40 changes according to the change in the potential difference between the cells (the state of the cell).
 図9(c)は、システム周期の時間期間nTにおける所定の時間期間T(繰り返し周期がnTである)を示す信号を示す図である。制御回路40は、内部クロックをカウントするクロックカウンター(不図示)を使用して、システム周期の時間期間nTおよび時間期間nT中の所定の時間期間Tを計数し、所定の時間期間を示す信号を生成することができる。制御回路40は、特性信号を所定の時間期間を示す信号とともに符号化して制御信号を出力する。制御回路40が発光部20へ供給する制御信号は、図9(b)に示す特性信号と図9(c)に示す所定の期間を示す信号の積となっている。 FIG. 9(c) is a diagram showing a signal indicating a predetermined time period T (the repetition period is nT) in the time period nT of the system period. The control circuit 40 uses a clock counter (not shown) that counts an internal clock to count the time period nT of the system cycle and a predetermined time period T within the time period nT, and generate a signal indicating the predetermined time period. can be generated. The control circuit 40 encodes the characteristic signal together with a signal indicating a predetermined time period and outputs a control signal. The control signal supplied from the control circuit 40 to the light emitting unit 20 is the product of the characteristic signal shown in FIG. 9(b) and the signal indicating the predetermined period shown in FIG. 9(c).
 図9(d)は、発光部20が制御回路40から供給された制御信号にしたがって発光することにより出力される光信号を示す図である。図9(b)に示すt=t1以降に制御回路40において判定された測定回路90から出力された特性信号に対応する単電池の状態に応じたパターンの信号は、制御信号に符号化されず(または、符号化されて0の連続となる)、したがって、光信号として出力されない。システム周期の時間期間nTの内のt=t1以降の期間に、残りのn-1個の光送信器(例えば、第2の光送信器、第3の光送信器、・・・第nの光送信器)が互いに異なるタイミングで光信号を送信すれば、図7(d)に示すように光信号は、光導波路60上で重ならずに、受光部80で受信されることになる。 FIG. 9(d) is a diagram showing an optical signal output when the light emitting section 20 emits light according to the control signal supplied from the control circuit 40. FIG. The pattern signal corresponding to the state of the unit cell corresponding to the characteristic signal output from the measuring circuit 90 determined by the control circuit 40 after t=t1 shown in FIG. 9B is not encoded into the control signal. (or encoded into a series of 0's) and therefore not output as an optical signal. In the period after t=t1 in the time period nT of the system period, the remaining n−1 optical transmitters (for example, the second optical transmitter, the third optical transmitter, . . . If the optical transmitters) transmit optical signals at different timings, the optical signals are received by the light receiving section 80 without overlapping on the optical waveguide 60 as shown in FIG. 7(d).
 以上説明したように、システム周期内の理想的な送信タイミングにおいては図7(d)に示したように光信号は共通の光導波路60上で重ならず、受光部80で受信される。その後のシステム周期内の理想的な送信タイミングからずれた送信タイミングにおいては図8(d)に示したように光信号は、光導波路60上で重なって、受光部80で受信される。さらにその後のシステム周期内の理想的な送信タイミングにおいては再び図7(d)に示したように光信号は共通の光導波路60上で重ならず、受光部80で受信される。このように、本実施形態のリチウムイオン電池モジュールにおいては、比較的長い周期で、システム周期内の理想的な送信タイミングが生じ、この時に受信した複数の光送信器10からの光信号に基づいて、複数の単電池の特性を決定することが可能となる。 As described above, at the ideal transmission timing within the system period, the optical signals are received by the light receiving section 80 without overlapping on the common optical waveguide 60 as shown in FIG. 7(d). At the subsequent transmission timing that deviates from the ideal transmission timing within the system cycle, the optical signals overlap on the optical waveguide 60 and are received by the light receiving section 80 as shown in FIG. 8(d). Further, at the ideal transmission timing within the subsequent system period, the optical signals are received by the light receiving section 80 without overlapping on the common optical waveguide 60 as shown in FIG. 7(d) again. Thus, in the lithium-ion battery module of the present embodiment, the ideal transmission timing within the system cycle occurs in a relatively long cycle, and based on the optical signals received from the plurality of optical transmitters 10 at this time, , it is possible to determine the characteristics of a plurality of single cells.
 図8(d)に示すシステム周期内の理想的な送信タイミングからずれた送信タイミングにおいて単電池の特性を決定または推定する方法を以下に説明する。 A method for determining or estimating the characteristics of a cell at transmission timings that deviate from the ideal transmission timings within the system cycle shown in FIG. 8(d) will be described below.
 図10は、本発明の一実施形態のリチウムイオン電池モジュールの機能ブロック図である。リチウムイオン電池モジュールは、受光部80が光信号から変換した電気信号とは別の追加情報を考慮し、複数の単電池の状態を決定または推定するように構成された信号処理装置100を備える。 FIG. 10 is a functional block diagram of a lithium ion battery module according to one embodiment of the present invention. The lithium-ion battery module comprises a signal processor 100 configured to determine or estimate the state of the plurality of cells, taking into account additional information apart from the electrical signal converted from the optical signal by the light receiver 80 .
 図10に示すようにリチウムイオン電池モジュール1は、引出配線57と引出配線59とに接続された、組電池の入出力電圧を測定するための電圧計120を備える。また、リチウムイオン電池モジュール1は、引出配線57に接続された、組電池の入出力電流を測定するための電流計110を備える。電圧計120から取得される入出力電圧情報および電流計110から取得される入出力電流情報は追加情報として複数の単電池の状態を決定または推定する際に用いることができる。また、複数の単電池の状態を決定または推定する際に時系列や事前知識を用いることもできる。時系列は、状態決定部102により決定された状態を時間順に記録した情報テーブルとすることができる。事前知識は、事前に設定した単電池の特性(電圧や温度などの内部状態)と測定回路90が出力する特性信号の長さとの対応関係を示す情報テーブルや、単電池の特性(電圧や温度などの内部状態)の状態遷移を示す情報とすることができる。時系列や事前知識は、コンピュータが読取可能な記録媒体に記録された情報とすることができる。 As shown in FIG. 10, the lithium ion battery module 1 includes a voltmeter 120 for measuring the input/output voltage of the assembled battery connected to the lead wiring 57 and the lead wiring 59 . The lithium ion battery module 1 also includes an ammeter 110 connected to the lead wire 57 for measuring the input/output current of the assembled battery. The input/output voltage information obtained from the voltmeter 120 and the input/output current information obtained from the ammeter 110 can be used as additional information when determining or estimating the states of the plurality of cells. Time series and prior knowledge can also be used when determining or estimating the states of a plurality of single cells. The time series can be an information table in which the states determined by the state determination unit 102 are recorded in chronological order. The prior knowledge includes an information table showing the correspondence relationship between preset cell characteristics (internal states such as voltage and temperature) and the length of the characteristic signal output by the measuring circuit 90, cell characteristics (voltage and temperature , etc.) can be information indicating state transitions. The time series and prior knowledge can be information recorded on a computer-readable recording medium.
 信号処理装置100は、状態決定部102および状態推定部104を備える。信号処理装置100は、メモリおよびプロセッサと、プロセッサを状態決定部102および状態推定部104として機能させるプログラムを記録したコンピュータが読取可能な記憶媒体とを備えたコンピューティング装置としてもよい。コンピュータが読取可能な記憶媒体は、プログラムの他に、上述した事前知識を示す情報を記録していてもよい。 The signal processing device 100 includes a state determination section 102 and a state estimation section 104 . Signal processing device 100 may be a computing device that includes a memory, a processor, and a computer-readable storage medium that records a program that causes the processor to function as state determining section 102 and state estimating section 104 . The computer-readable storage medium may record information indicating the above-described prior knowledge in addition to the program.
 システム周期内の理想的な送信タイミングからずれた送信タイミングにおいても、複数の光送信装置から送信される光信号は、重ならない限り、受光部80によって受光され、当該光信号を送信した光送信器に対応する単電池の特性を正しく決定できる。したがって、図11に示すように、初めに、状態決定部102において受光部80からの電気信号に基づいて単電池30の状態(特性)を決定し(ステップS11)、全ての単電池の状態を決定できたどうかを判定し(ステップS12)、状態を決定できなかった単電池については、状態推定部104で状態を推定する(ステップS13)。以下、単電池の特性として単電池の電圧を決定または推定する方法の具体例を説明する。 Even at transmission timings that deviate from the ideal transmission timing within the system period, optical signals transmitted from a plurality of optical transmitters are received by the light receiving unit 80 as long as they do not overlap, and the optical transmitter that transmitted the optical signals can correctly determine the characteristics of the cell corresponding to . Therefore, as shown in FIG. 11, first, the state (characteristics) of the cell 30 is determined by the state determining unit 102 based on the electrical signal from the light receiving unit 80 (step S11), and the states of all the cells are determined. It is determined whether or not the states have been determined (step S12), and the states of the single cells whose states could not be determined are estimated by the state estimating unit 104 (step S13). A specific example of a method for determining or estimating the voltage of a cell as a characteristic of the cell will be described below.
 状態決定部102は、受光部80からの電気信号を処理して、2つ以上の光信号が重なった状態の光信号から変換されたものでないかを決定する。例えば、電子信号に含まれるパルスの数、パルスの幅、パルスの配列パターンに基づいて、2つ以上の光信号が重なったかどうかを決定することができる。電気信号が2つ以上の光信号が重なった状態の光信号から変換されたものでないと決定された場合、状態決定部102は、当該電気信号が示す電圧を、単電池30の電圧であると決定する。 The state determination unit 102 processes the electrical signal from the light receiving unit 80 and determines whether or not it is converted from an optical signal in which two or more optical signals are superimposed. For example, it can be determined whether two or more optical signals overlap based on the number of pulses, the width of the pulses, and the pattern of pulse sequences contained in the electronic signals. If it is determined that the electrical signal is not converted from an optical signal in which two or more optical signals are superimposed, the state determining unit 102 determines that the voltage indicated by the electrical signal is the voltage of the cell 30. decide.
 状態推定部104は、状態決定部102により決定されなかった単電池の電圧を推定する。状態推定部104は、電圧計120から取得される入出力電圧情報を利用する。直列に接続されたn個の単電池30から構成された組電池50の入出力電圧情報Vtotalとし、複数の単電池の電圧の和をV1+V2+V3+・・・Vnとすると、式1の関係が成立する。状態推定部104は、式1の関係を利用することで状態決定部102により決定することができなかった単電池の電圧を推移する。
Vtotal=V1+V2+V3+・・・Vn   (式1)
The state estimator 104 estimates the voltages of the cells that have not been determined by the state determiner 102 . The state estimator 104 uses the input/output voltage information obtained from the voltmeter 120 . Assuming that the input/output voltage information Vtotal of the assembled battery 50 composed of n unit cells 30 connected in series and the sum of the voltages of the plurality of unit cells being V1+V2+V3+ . . . . The state estimator 104 transitions the voltage of the cell that could not be determined by the state determiner 102 by using the relationship of Equation 1. FIG.
Vtotal=V1+V2+V3+...Vn (Formula 1)
 状態推定部104は、Vtotalと、状態決定部102により決定された単電池の電圧の和との差を求め、求めた差に基づいて状態決定部102により決定されなかった単電池の電圧を推定することができる。ここで、状態決定部102により決定された単電池の電圧は、測定回路90および制御回路40における量子化誤差を含み得る。したがって、この誤差の範囲を考慮して、状態決定部102により決定されなかった単電池の電圧を推定することが好ましい。状態決定部102により電圧が決定された単電池の数をm(mは整数)とし、電気信号により表された電圧の範囲の下限をSmとし、上限をSMとすると、状態決定部102により決定されなかった単電池の電圧の範囲Vrng_NDは、式(2)で表現できる。状態推定部104は、この範囲内で状態決定部102により決定されなかった単電池の電圧を推定することができる。
Vtotal-(SM1+SM2+・・・SMm)<Vrng_ND<Vtotal-(Sm1+Sm2+・・・Smm)   (式2)
The state estimation unit 104 obtains the difference between Vtotal and the sum of the voltages of the cells determined by the state determination unit 102, and estimates the voltages of the cells that were not determined by the state determination unit 102 based on the obtained difference. can do. Here, the cell voltage determined by state determination section 102 may include quantization errors in measurement circuit 90 and control circuit 40 . Therefore, it is preferable to estimate the voltages of the single cells that have not been determined by the state determining unit 102, taking into account this error range. Let m (m be an integer) be the number of cells whose voltages are determined by the state determination unit 102, let Sm be the lower limit of the voltage range represented by the electrical signal, and SM be the upper limit. The voltage range Vrng_ND of the unit cells that have not been energized can be expressed by Equation (2). The state estimating unit 104 can estimate the voltage of the cell that was not determined by the state determining unit 102 within this range.
Vtotal-(SM1+SM2+...SMm)<Vrng_ND<Vtotal-(Sm1+Sm2+...Smm) (Formula 2)
 また、状態推定部104は、あるタイミングで状態決定部102により決定されなかった単電池の電圧を、時系列に基づいて推定することができる。例えば、状態推定部104は、あるタイミングで状態決定部102により決定されなかった単電池の電圧を、そのタイミングよりも前のタイミングおよびそのタイミングよりも後のタイミングの少なくとも一方で状態決定部102により決定された単電池の電圧に基づいて推定することができる。例えば、t=t0およびt=t2において状態決定部102により決定された単電池の電圧がV1で等しかったとする。このとき、状態推定部104は、この時系列に基づいて、t=t1において状態決定部102により決定されなかった単電池の電圧が、V1に近い(V1との差が大きくない)V0、V1またはV2(V0<V1<V2)のいずれかであると推定することができる。別の例では、t=t0において状態決定部102により決定された単電池の電圧がV1で、t=t2において状態決定部102により決定された単電池の電圧がV3であったとする。このとき、状態推定部104は、この時系列に基づいて、t=t1において状態決定部102により決定されなかった単電池の電圧が、V1またはV3に近い(V1またはV3との差が大きくない)V1からV3までの間のV1、V2またはV3(V1<V2<V3)と推定することができる。 In addition, the state estimating section 104 can estimate the voltage of the cell that was not determined by the state determining section 102 at a certain timing based on the time series. For example, the state estimating unit 104 determines the voltage of the unit cell that was not determined by the state determining unit 102 at a certain timing by the state determining unit 102 at least at one of the timing before and after that timing. It can be estimated based on the determined voltage of the unit cell. For example, assume that the voltages of the single cells determined by the state determining unit 102 at t=t0 and t=t2 are equal to V1. At this time, based on this time series, state estimating section 104 determines that the voltages of the single cells that were not determined by state determining section 102 at t=t1 are V0 and V1 close to V1 (the difference from V1 is not large). or V2 (V0<V1<V2). In another example, it is assumed that the cell voltage determined by the state determination unit 102 at t=t0 is V1, and the cell voltage determined by the state determination unit 102 at t=t2 is V3. At this time, based on this time series, state estimating section 104 determines that the voltage of the cell that was not determined by state determining section 102 at t=t1 is close to V1 or V3 (the difference from V1 or V3 is not large). ) V1, V2 or V3 between V1 and V3 (V1<V2<V3).
 さらにまた、状態推定部104は、事前知識を用いて、タイミングで状態決定部102により決定されなかった単電池の電圧を推定することができる。事前知識として、予め測定された電圧-容量曲線を保持しておき、状態推定部104は、電圧-容量曲線にフィットする値を用いて、ある電圧の単電池に所定量充電した後の当該単電池における電圧変化量または電圧を推定することができる。 Furthermore, the state estimating unit 104 can use prior knowledge to estimate the voltage of the cell that was not determined by the state determining unit 102 at the timing. As prior knowledge, a voltage-capacity curve measured in advance is held, and the state estimating unit 104 uses a value that fits the voltage-capacity curve to determine the state of a single cell of a certain voltage after charging a predetermined amount. A voltage change or voltage at the battery can be estimated.
 状態推定部104は、追加情報を用いる推定、時系列に基づく推定、および事前知識を用いる推定の1つ以上を用いて、タイミングで状態決定部102により決定されなかった単電池の電圧を推定することができる。 The state estimation unit 104 uses one or more of estimation using additional information, estimation based on time series, and estimation using prior knowledge to estimate the voltage of the cell that was not determined by the state determination unit 102 at the timing. be able to.
 以上説明したように、システム周期内の理想的な周期からずれた時間期間においては図8(d)に示したように光信号が光導波路60上で重なって受光部80で受信されるが、単電池の状態を推定することが可能となる。 As described above, in a time period that deviates from the ideal period within the system period, the optical signals are received by the light receiving section 80 while being superimposed on the optical waveguide 60 as shown in FIG. 8(d). It becomes possible to estimate the state of the cell.
 以下、図面を参照しながら上述した実施形態に係るリチウムイオン電池モジュールにおける光送信機10の種々の実施例について詳細に説明する。 Various examples of the optical transmitter 10 in the lithium ion battery module according to the above embodiment will be described in detail below with reference to the drawings.
[第1の実施例]
 第1の実施例の光送信機10の構成について図12を参照しながら説明する。図12は、第1の実施例における光送信機10とその利用法を示すブロック図である。図12において、本実施例の光送信機10は、比較回路92と、状態判定回路42と、パルスパターン設定回路233と、リセット回路234と、クロック発生回路235と、出力回路236を備える。また、光送信機10は、VDD端子221と、VSS端子222と、入力端子224と、出力端子223と、を備える。光送信機10は、発光部20(不図示)をさらに備える。
[First embodiment]
The configuration of the optical transmitter 10 of the first embodiment will be described with reference to FIG. FIG. 12 is a block diagram showing the optical transmitter 10 and its usage in the first embodiment. 12, the optical transmitter 10 of this embodiment includes a comparison circuit 92, a state determination circuit 42, a pulse pattern setting circuit 233, a reset circuit 234, a clock generation circuit 235, and an output circuit 236. FIG. The optical transmitter 10 also includes a VDD terminal 221 , a VSS terminal 222 , an input terminal 224 and an output terminal 223 . The optical transmitter 10 further includes a light emitter 20 (not shown).
 VDD端子221は、光送信機10内の電源VDDに接続される。VSS端子222は、光送信機10内の電源VSSに接続される。入力端子224は、比較回路92に接続される。比較回路92は、状態判定回路42に接続される。状態判定回路42は、比較回路92とパルスパターン設定回路233に接続される。パルスパターン設定回路233は、状態判定回路42とリセット回路234とクロック発生回路235と出力回路236に接続される。リセット回路234は、パルスパターン設定回路233と、クロック発生回路235に接続される。クロック発生回路235は、リセット回路234とパルスパターン設定回路233に接続される。出力回路236は、パルスパターン設定回路233と出力端子223が接続される。光送信機10内の各回路の電源接続については、一部説明を省略する。単電池30は、光送信機10の単電池接続端子であるVDD端子221とVSS端子222に接続される。センサ205は、電源と出力の3端子を有する。センサ205は、単電池30を電源として動作する。センサ205は、出力端子からVSS端子222の電圧を基準とした電圧を入力電圧VINとして入力端子224に印加する。光送信機10は、入力端子224に印加された電圧の電圧範囲に対応する出力信号OUTを、出力端子223から出力する。特性信号に相当する出力信号OUTは、発光部20(不図示)へ供給される。 The VDD terminal 221 is connected to the power supply VDD inside the optical transmitter 10 . The VSS terminal 222 is connected to the power supply VSS within the optical transmitter 10 . Input terminal 224 is connected to comparison circuit 92 . Comparing circuit 92 is connected to state determining circuit 42 . The state determination circuit 42 is connected to the comparison circuit 92 and the pulse pattern setting circuit 233 . The pulse pattern setting circuit 233 is connected to the state determination circuit 42 , the reset circuit 234 , the clock generation circuit 235 and the output circuit 236 . The reset circuit 234 is connected to the pulse pattern setting circuit 233 and the clock generation circuit 235 . The clock generation circuit 235 is connected to the reset circuit 234 and the pulse pattern setting circuit 233 . The output circuit 236 is connected to the pulse pattern setting circuit 233 and the output terminal 223 . Part of the description of the power connection of each circuit in the optical transmitter 10 is omitted. The cell 30 is connected to a VDD terminal 221 and a VSS terminal 222 which are cell connection terminals of the optical transmitter 10 . The sensor 205 has three terminals of power supply and output. The sensor 205 operates using the cell 30 as a power source. The sensor 205 applies a voltage based on the voltage of the VSS terminal 222 from the output terminal to the input terminal 224 as the input voltage VIN. The optical transmitter 10 outputs from the output terminal 223 an output signal OUT corresponding to the voltage range of the voltage applied to the input terminal 224 . An output signal OUT corresponding to the characteristic signal is supplied to the light emitting section 20 (not shown).
 次に、第1の実施例の比較回路92の構成について図13を参照しながら説明する。図13は、第1の実施例の比較回路92を示す回路図である。比較回路92は、コンパレータに入力する電圧を生成する抵抗回路301、302と、コンパレータ303、304と、電圧源305で構成されている。抵抗回路301は、スイッチ306、307と、抵抗310、311、312を有する。スイッチ306と、抵抗310と、抵抗312とは、VDD端子221とVSS端子222の間に直列に接続される。同様に、スイッチ307と、抵抗311と、抵抗312とは、入力端子224と電源VSSとの間に直列に接続される。抵抗回路302は、スイッチ308、309と、抵抗313、314、315を有する。スイッチ308と、抵抗313と、抵抗315とは、入力端子224と電源VSSとの間に直列に接続される。同様に、スイッチ309と、抵抗314と、抵抗315とは、入力端子224と電源VSSとの間に直列に接続される。コンパレータ303は、反転入力端子が電圧源305を介して電源VSS2に接続され、非反転入力端子が抵抗310、311、312の接続点に接続される。同様にコンパレータ304は、反転入力端子が電圧源305を介して電源VSSに接続され、非反転入力端子が抵抗313、314、315の接続点に接続される。コンパレータ303、304の出力は、状態判定回路42に接続される。 Next, the configuration of the comparison circuit 92 of the first embodiment will be described with reference to FIG. FIG. 13 is a circuit diagram showing the comparison circuit 92 of the first embodiment. The comparison circuit 92 includes resistor circuits 301 and 302 that generate voltages to be input to the comparators, comparators 303 and 304 , and a voltage source 305 . The resistor circuit 301 has switches 306 and 307 and resistors 310 , 311 and 312 . Switch 306 , resistor 310 and resistor 312 are connected in series between VDD terminal 221 and VSS terminal 222 . Similarly, switch 307, resistor 311, and resistor 312 are connected in series between input terminal 224 and power supply VSS. Resistor circuit 302 has switches 308 and 309 and resistors 313 , 314 and 315 . Switch 308, resistor 313, and resistor 315 are connected in series between input terminal 224 and power supply VSS. Similarly, switch 309, resistor 314, and resistor 315 are connected in series between input terminal 224 and power supply VSS. The comparator 303 has an inverting input terminal connected to the power supply VSS2 via the voltage source 305, and a non-inverting input terminal connected to the connection point of the resistors 310, 311, and 312. FIG. Similarly, the comparator 304 has an inverting input terminal connected to the power supply VSS via the voltage source 305 and a non-inverting input terminal connected to the connection point of the resistors 313 , 314 , and 315 . Outputs of the comparators 303 and 304 are connected to the state determination circuit 42 .
 状態判定回路42は、入力されたコンパレータの出力判定結果に従って、入力端子224に入力される入力電圧VINがどの電圧範囲に位置するかを判定し、判定に応じて新たな監視電圧範囲を設定するよう、比較回路92のスイッチ306、307、308、309のオンオフを設定する制御信号を出力する。また、状態判定回路42は、入力電圧VINがどの監視電圧範囲にあるかをパルスパターン設定回路233へ出力する。状態判定回路42は、ロジック回路、プロセッサ回路等で構成できる。 The state determination circuit 42 determines in which voltage range the input voltage VIN input to the input terminal 224 is positioned according to the output determination result of the input comparator, and sets a new monitoring voltage range according to the determination. Thus, a control signal for setting the switches 306, 307, 308, and 309 of the comparison circuit 92 on and off is output. Further, the state determination circuit 42 outputs to the pulse pattern setting circuit 233 in which monitor voltage range the input voltage VIN falls. The state determination circuit 42 can be composed of a logic circuit, a processor circuit, or the like.
 パルスパターン設定回路233は、上述したセレクタ43およびルックアップテーブル44に相当する機能を実装した回路である。パルスパターン設定回路233は、状態判定回路42の出力を受け、出力回路236を介して出力端子223から、センサ205からの入力電圧VINの電圧範囲に対応したパルス状の出力信号OUTを出力する。出力信号OUTのパルスパターンの生成は、リセット回路234とクロック回路35からの信号を用いておこなう。パルスパターン設定回路233と、リセット回路234と、クロック回路35の動作については後で説明する。 The pulse pattern setting circuit 233 is a circuit implementing functions corresponding to the selector 43 and lookup table 44 described above. The pulse pattern setting circuit 233 receives the output of the state determination circuit 42 and outputs a pulse-shaped output signal OUT corresponding to the voltage range of the input voltage VIN from the sensor 205 from the output terminal 223 via the output circuit 236 . Signals from the reset circuit 234 and the clock circuit 35 are used to generate the pulse pattern of the output signal OUT. The operations of the pulse pattern setting circuit 233, reset circuit 234, and clock circuit 35 will be described later.
 出力回路236の構成について図14を参照しながら説明する。出力回路236は、入力と出力とPMOSトランジスタ361とNMOSトランジスタ362を備える。PMOSトランジスタ361は、ゲート端子が出力回路236の入力に、ソース端子が電源VDDに、ドレイン端子が出力回路236の出力に接続される。NMOSトランジスタ362は、ゲート端子が出力回路236の入力に、ソース端子が電源VSSに、ドレイン端子が出力回路236の出力に接続される。 The configuration of the output circuit 236 will be described with reference to FIG. The output circuit 236 has an input, an output, a PMOS transistor 361 and an NMOS transistor 362 . The PMOS transistor 361 has a gate terminal connected to the input of the output circuit 236 , a source terminal connected to the power supply VDD, and a drain terminal connected to the output of the output circuit 236 . The NMOS transistor 362 has a gate terminal connected to the input of the output circuit 236 , a source terminal connected to the power supply VSS, and a drain terminal connected to the output of the output circuit 236 .
 図13を参照して、センサ205が接続される入力端子224の入力電圧VINと、比較回路92と、状態判定回路42の動作について説明する。入力電圧VINは、VSS端子222の電圧を基準にしてセンサ205から入力端子224に印加される電圧とする。電圧源305は、基準電圧VREFをコンパレータ303、304の反転入力端子に供給する。 The operation of the input voltage VIN of the input terminal 224 to which the sensor 205 is connected, the comparison circuit 92, and the state determination circuit 42 will be described with reference to FIG. The input voltage VIN is the voltage applied from the sensor 205 to the input terminal 224 with reference to the voltage of the VSS terminal 222 . Voltage source 305 supplies a reference voltage VREF to the inverting input terminals of comparators 303 and 304 .
 コンパレータ303の非反転入力端子は、スイッチ306、307のどちらかをオンすることで、単電池電圧VBATを抵抗回路301で分圧した電圧が印加される。スイッチ306がオンのときに、コンパレータ303の非反転入力端子に印加される電圧が、基準電圧VREFと等しくなる時の入力電圧VINを電圧VDET1とする。スイッチ307がオンのときに、コンパレータ303の非反転入力端子に印加される電圧が、基準電圧VREFと等しくなる時の入力電圧VINを電圧VDET3とする。 The non-inverting input terminal of the comparator 303 is applied with a voltage obtained by dividing the single cell voltage VBAT by the resistor circuit 301 by turning on either of the switches 306 and 307 . The input voltage VIN when the voltage applied to the non-inverting input terminal of the comparator 303 when the switch 306 is on is equal to the reference voltage VREF is defined as the voltage VDET1. The input voltage VIN when the voltage applied to the non-inverting input terminal of the comparator 303 when the switch 307 is on is equal to the reference voltage VREF is defined as the voltage VDET3.
 コンパレータ304の非反転入力端子は、スイッチ308、309のどちらかをオンすることで、入力電圧VINを抵抗回路302で分圧した電圧が印加される。スイッチ308がオンのときに、コンパレータ304の非反転入力端子に印加される電圧が、基準電圧VREFと等しくなる時の入力電圧VINを電圧VDET2とする。スイッチ309がオンのときに、コンパレータ304の非反転入力端子に印加される電圧が、基準電圧VREFと等しくなる時の入力電圧VINを電圧VDET4とする。電圧VDET1、VDET2、VDET3、VDET4は、電圧VDET1>電圧VDET2>電圧VDET3>電圧VDET4の大小関係となるように抵抗310~315の抵抗値を設定する。 A voltage obtained by dividing the input voltage VIN by the resistor circuit 302 is applied to the non-inverting input terminal of the comparator 304 by turning on either of the switches 308 and 309 . The input voltage VIN when the voltage applied to the non-inverting input terminal of the comparator 304 when the switch 308 is on is equal to the reference voltage VREF is defined as the voltage VDET2. The input voltage VIN when the voltage applied to the non-inverting input terminal of the comparator 304 when the switch 309 is on is equal to the reference voltage VREF is assumed to be the voltage VDET4. For the voltages VDET1, VDET2, VDET3, and VDET4, the resistance values of the resistors 310 to 315 are set so that the magnitude relationship is voltage VDET1>voltage VDET2>voltage VDET3>voltage VDET4.
 図15を参照して、入力電圧VINと電圧VDET1~電圧VDET4と状態(STATE)の関係を説明する。図15は、光送信機の状態と入力電圧VINと出力信号OUTの対応を示す図である。入力電圧VINが、電圧VDET1以上の電圧状態は、STATE1とする。入力電圧VINが、電圧VDET2以上かつ電圧VDET1未満の電圧状態は、STATE2とする。入力電圧VINが、電圧VDET3以上かつVDET2未満の電圧状態は、STATE3とする。入力電圧VINが、電圧VDET4以上かつ電圧VDET3未満の電圧状態は、STATE4とする。入力電圧VINが、電圧VDET4未満の電圧状態は、STATE5とする。なおここでは境界の電圧は上側のSTATEに含まれるとしたが、境界の電圧が上側か下側かどちらのSTATEに含まれるかは任意に設定可能である。 The relationship between the input voltage VIN, the voltages VDET1 to VDET4, and the state (STATE) will be described with reference to FIG. FIG. 15 is a diagram showing the correspondence between the state of the optical transmitter, the input voltage VIN, and the output signal OUT. A voltage state in which the input voltage VIN is equal to or higher than the voltage VDET1 is STATE1. A voltage state in which the input voltage VIN is equal to or higher than the voltage VDET2 and lower than the voltage VDET1 is STATE2. A voltage state in which the input voltage VIN is equal to or higher than the voltage VDET3 and lower than VDET2 is STATE3. A voltage state in which the input voltage VIN is equal to or higher than the voltage VDET4 and lower than the voltage VDET3 is STATE4. A voltage state in which the input voltage VIN is less than the voltage VDET4 is STATE5. Although the boundary voltage is included in the upper STATE here, it is possible to arbitrarily set whether the boundary voltage is included in the upper or lower STATE.
 図13の比較回路92において、例えばスイッチ306、308がオン状態とする。コンパレータ303の非反転入力端子には、入力電圧VINを抵抗310、312で分圧した電圧が入力され、コンパレータ304の非反転入力には、入力電圧VINを抵抗313、315で分圧した電圧が入力される。前述の電圧関係より、比較回路92は、入力電圧VINを監視する上側基準電圧が電圧VDET1、下側基準電圧が電圧VDET2となり、監視電圧範囲が設定される。状態判定回路42は比較回路92の出力に基づいて、入力電圧VINが前記電圧状態(STATE1~STAET5)の内のどの電圧範囲に位置するかを判定し、判定結果をパルスパターン設定回路233へ出力する。また判定結果に応じて、新たな監視電圧範囲を設定するよう、比較回路92のスイッチのオンオフを設定する制御信号を出力する。 In the comparison circuit 92 of FIG. 13, for example, the switches 306 and 308 are turned on. A voltage obtained by dividing the input voltage VIN by resistors 310 and 312 is input to the non-inverting input terminal of the comparator 303 , and a voltage obtained by dividing the input voltage VIN by resistors 313 and 315 is input to the non-inverting input of the comparator 304 . is entered. Based on the above-described voltage relationship, the comparison circuit 92 sets the voltage VDET1 as the upper reference voltage and the voltage VDET2 as the lower reference voltage for monitoring the input voltage VIN, and sets the monitoring voltage range. Based on the output of the comparison circuit 92, the state determination circuit 42 determines in which voltage range of the voltage states (STATE1 to STATE5) the input voltage VIN is located, and outputs the determination result to the pulse pattern setting circuit 233. do. Also, according to the determination result, it outputs a control signal for setting ON/OFF of the switch of the comparison circuit 92 so as to set a new monitoring voltage range.
 ここで、入力電圧VINが電圧VDET2以上かつ電圧VDET1未満の電圧状態であるSTATE2の状態から変化し、入力電圧VINが電圧VDET2未満となったとする。状態判定回路42はスイッチ306をオフし、スイッチ307をオンする制御信号を出力する。比較回路92による監視電圧範囲は、電圧VDET3以上かつ電圧VDET2未満の電圧範囲となり、入力電圧VINがこの電圧範囲である場合の電圧状態はSTATE3となる。さらに入力電圧VINが変化することによって、電圧VDET3未満の電圧となった場合、状態判定回路42は、スイッチ308をオフし、スイッチ309をオンする制御信号を出力する。比較回路92の監視電圧範囲は、電圧VDET4以上かつ電圧VDET3未満となり、入力電圧VINがこの電圧範囲である場合の電圧状態はSTATE4となる。このように比較回路92の判定結果に応じて、状態判定回路42がスイッチ制御信号を出力することで監視電圧範囲を順次切り替えることができ、比較回路92は、2つのコンパレータで複数の電圧範囲を監視することができる。入力電圧VINが上昇して変化していった場合、光送信機は、逆の動作スイッチ切り替えを行う。 Here, it is assumed that the input voltage VIN changes from the state of STATE2, which is the voltage state equal to or higher than the voltage VDET2 and lower than the voltage VDET1, and the input voltage VIN becomes lower than the voltage VDET2. The state determination circuit 42 outputs a control signal for turning off the switch 306 and turning on the switch 307 . The voltage range monitored by the comparison circuit 92 is a voltage range equal to or higher than the voltage VDET3 and lower than the voltage VDET2. When the input voltage VIN is within this voltage range, the voltage state is STATE3. Further, when the input voltage VIN changes to be less than the voltage VDET3, the state determination circuit 42 outputs a control signal for turning off the switch 308 and turning on the switch 309. FIG. The monitoring voltage range of the comparison circuit 92 is equal to or higher than the voltage VDET4 and lower than the voltage VDET3, and the voltage state is STATE4 when the input voltage VIN is within this voltage range. In this manner, the state determination circuit 42 outputs the switch control signal according to the determination result of the comparison circuit 92, so that the monitoring voltage range can be sequentially switched. can be monitored. If the input voltage VIN is ramped up, the optical transmitter switches to the opposite action.
 続いて、光送信機10の全体動作について図12を参照して説明する。光送信機10は、比較回路92と状態判定回路42によって得られる監視電圧範囲によって、図15に示すように5つの電圧状態に対応した状態(STATE)を得ることができる。状態判定回路42は比較回路92の出力に基づいて、入力電圧VINがどの電圧範囲に位置するかを判定した信号を、パルスパターン設定回路233へ出力する。パルスパターン設定回路233は、クロック発生回路235から供給されるクロック信号に基づき、各状態に応じて予め設定された所定のパルス幅と所定のパルス数で構成された所定のパルス群を所定のパルス周期ごとに繰り返して、出力回路236を介して、所定の電圧パルス、または、電流パルスとして出力する。状態判定回路42、およびパルスパターン設定回路233は、ロジック回路やプログラムで動作するプロセッサ回路で構成される。 Next, the overall operation of the optical transmitter 10 will be described with reference to FIG. The optical transmitter 10 can obtain states (STATE) corresponding to five voltage states as shown in FIG. Based on the output of the comparison circuit 92 , the state determination circuit 42 outputs to the pulse pattern setting circuit 233 a signal indicating in which voltage range the input voltage VIN is located. Based on the clock signal supplied from the clock generation circuit 235, the pulse pattern setting circuit 233 converts a predetermined pulse group consisting of a predetermined pulse width and a predetermined number of pulses preset according to each state into a predetermined pulse group. A predetermined voltage pulse or current pulse is output through the output circuit 236 repeatedly for each cycle. The state determination circuit 42 and the pulse pattern setting circuit 233 are composed of a logic circuit or a processor circuit operated by a program.
 リセット回路234は、所定のパルス周期ごとにパルスパターン設定回路233から所定の周期ごとの信号を受け動作し、パルスパターン設定回路233を初期化することで、所定のパルス幅と所定のパルス数で構成された所定のパルス群を所定のパルス周期ごとに繰り返し出力する。 The reset circuit 234 receives a signal from the pulse pattern setting circuit 233 every predetermined cycle and operates to initialize the pulse pattern setting circuit 233, thereby resetting the pulse pattern with a predetermined pulse width and a predetermined number of pulses. The configured predetermined pulse group is repeatedly output for each predetermined pulse period.
 本実施例における、パルス出力割り当て例を図15に示す。図15は、各電圧状態(STATE)と、入力電圧VIN、パルス幅(Output Pulse Width)、パルス群を構成するパルス数(Output Pulse Number)、パルス周期(Output Pulse Cycle)の対応関係を示す。出力信号OUTの一例を図16に示す。例えば入力電圧VINが電圧VDET1以上の電圧値(STATE1)をとるとき、所定のパルス群は、パルス幅128msの電圧パルスがパルス間隔128msで2発であり、パルス群を繰り返して出力する所定のパルス周期は、1024msである。所定のパルス周期内のパルス幅とパルス間隔とパルス数の組合せをパルスパターンと呼ぶ。図16では出力信号OUTが電圧パルスの場合を示したが、出力信号OUTは電流パルスとしても良い。パルス出力の割り当ては、入力電圧VINが高い時に消費電流が大きくなるパルス幅の大きいパルスを割り当て、単電池が消耗して単電池電圧VBATが低くなった時に消費電流が小さくなるパルス幅の小さいパルスを割り当てる。このようにパルス出力を割り当てることで、単電池電圧VBATが低くなった時の単電池寿命を延ばすことができる。 An example of pulse output allocation in this embodiment is shown in FIG. FIG. 15 shows the correspondence between each voltage state (STATE), the input voltage VIN, the pulse width (Output Pulse Width), the number of pulses forming a pulse group (Output Pulse Number), and the pulse cycle (Output Pulse Cycle). An example of the output signal OUT is shown in FIG. For example, when the input voltage VIN takes a voltage value (STATE1) equal to or higher than the voltage VDET1, the predetermined pulse group consists of two voltage pulses with a pulse width of 128 ms with a pulse interval of 128 ms, and the pulse group is repeatedly output. The period is 1024ms. A combination of pulse width, pulse interval and number of pulses within a predetermined pulse period is called a pulse pattern. Although FIG. 16 shows the case where the output signal OUT is a voltage pulse, the output signal OUT may be a current pulse. The pulse output is assigned a pulse with a large pulse width that increases current consumption when the input voltage VIN is high, and a pulse with a small pulse width that reduces current consumption when the battery voltage VBAT is low due to battery exhaustion. assign. By allocating the pulse output in this way, it is possible to extend the life of the single cell when the single cell voltage VBAT becomes low.
 光送信機10の出力端子223からの電圧パルスまたは電流パルスによってセンサ205の電圧判定をするマイコン(不図示)は、光送信機10の出力するパルス郡のパルス幅と、パルス数を判断することでセンサ205の出力の電圧情報を得ることができる。監視用のマイコンはマスタークロックを基準とし、光送信機10の出力するパルス郡の判定を行う。パルス郡の判定において、マイコンはパルス周期毎に、パルス郡の最初のパルス幅と後続のパルスまでの時間を測定し、最初に測定した前記時間を基準として、同様の波形後続のパルスが前記時間と同様の発数をカウントするようにすれば状態(STATE)を判定できる。光送信機10の出力端子223からの電圧パルスまたは電流パルスによってセンサ205の電圧判定をする。同様に、光送信機10の発光部20(不図示)からの光パルスによってセンサ205の電圧判定をする信号処理装置100は、光パルス郡のパルス幅と、光パルス数を判断することでセンサ205の出力の電圧情報を得ることができる。 A microcomputer (not shown) that determines the voltage of the sensor 205 from the voltage pulse or current pulse from the output terminal 223 of the optical transmitter 10 determines the pulse width and the number of pulses of the pulse group output from the optical transmitter 10. can obtain the voltage information of the sensor 205 output. The monitoring microcomputer determines the pulse group output from the optical transmitter 10 with reference to the master clock. In determining the pulse group, the microcomputer measures the time from the first pulse width of the pulse group to the subsequent pulse for each pulse period, and based on the first measured time, the similar waveform subsequent pulse is the time STATE can be determined by counting the number of shots similar to . A voltage pulse or current pulse from the output terminal 223 of the optical transmitter 10 is used to determine the voltage of the sensor 205 . Similarly, the signal processing device 100 for judging the voltage of the sensor 205 by means of light pulses emitted from the light emitting section 20 (not shown) of the optical transmitter 10 determines the pulse width of the light pulse group and the number of light pulses to determine the sensor voltage. 205 output voltage information can be obtained.
 本実施例の光送信機10において、出力信号OUTのパルスパターンはクロック発生回路235で生成するクロックを基準に生成され、クロック発生回路235は図4を参照して説明したようなCR発振回路等の一般的な発振回路で構成される。CR発振回路より出力されるクロック周期は、電源電圧依存、温度依存等によってばらつきを持つが、マイコンによる状態判定は、前記の通り、最初のパルスパターンに関する時間測定と、後続の同様のパルスパターンの発数をカウントすることによって判定される。光送信機10のクロック発生回路235は、高精度でなくとも状態判定を可能とするパルスを出力できる。したがって光送信機10は、水晶振動子などの高精度基準発信源を必要とせず、電圧監視システムを容易かつ安価に構成できる。 In the optical transmitter 10 of this embodiment, the pulse pattern of the output signal OUT is generated based on the clock generated by the clock generation circuit 235, and the clock generation circuit 235 is a CR oscillation circuit or the like described with reference to FIG. consists of a general oscillator circuit. The clock period output from the CR oscillation circuit varies depending on the power supply voltage, temperature, etc., but as described above, the state determination by the microcomputer is based on time measurement for the first pulse pattern and subsequent similar pulse patterns. Determined by counting the number of shots. The clock generation circuit 235 of the optical transmitter 10 can output pulses that enable state determination even if the accuracy is not high. Therefore, the optical transmitter 10 does not require a high-precision reference source such as a crystal oscillator, and a voltage monitoring system can be configured easily and inexpensively.
 以上、説明したように、本実施例の光送信機10において、パルスパターン設定回路233は、入力電圧VINの電圧範囲に応じた所定のパルス幅と所定のパルス数で構成された所定のパルス群が所定のパルス周期ごとに繰り返し出力する。本実施例の光送信機10は、入力電圧VINが所定の電圧範囲に位置することを、所定のパルス周期毎に定期的に確認できる。上記所定パルスパターンをマイコン等において、監視することによって、センサ205の出力が所定電圧範囲内に位置することを所定の周期ごとに確認することができるため、出力ポートまでの配線経路が電源とショートする等の監視回路の故障の有無を定期的に判断することができる。なお、本実施例の比較回路92は、4つの基準電圧と5つの監視電圧範囲を有する構成としたが、スイッチと分圧抵抗を増やすことで、入力電圧VINを分圧した電圧を増やし、順次スイッチを切り替えるような構成にすることで、監視電圧範囲をより細分化することが可能となる。 As described above, in the optical transmitter 10 of this embodiment, the pulse pattern setting circuit 233 generates a predetermined pulse group composed of a predetermined pulse width and a predetermined number of pulses according to the voltage range of the input voltage VIN. is repeatedly output every predetermined pulse period. The optical transmitter 10 of the present embodiment can periodically confirm that the input voltage VIN is within a predetermined voltage range for each predetermined pulse period. By monitoring the predetermined pulse pattern with a microcomputer or the like, it is possible to confirm at predetermined intervals that the output of the sensor 205 is within a predetermined voltage range. It is possible to periodically determine whether or not there is a failure in the monitoring circuit such as The comparison circuit 92 of this embodiment has four reference voltages and five monitoring voltage ranges. By adopting a configuration in which switches are switched, it is possible to further subdivide the monitoring voltage range.
 なお、ここでは、リセット回路234は、パルスパターン設定回路233から所定のパルス周期ごとの信号を受けて動作する構成を説明したが、状態判定回路42およびパルスパターン設定回路233の両方から信号を受けて動作し、状態判定回路42の変化またはパルスパターン設定回路233からの所定の周期ごとにクロック発生回路235とパルスパターン設定回路233を初期化する構成としてもよい。 Although reset circuit 234 receives signals from pulse pattern setting circuit 233 every predetermined pulse period to operate, reset circuit 234 receives signals from both state determination circuit 42 and pulse pattern setting circuit 233 . , and initializes the clock generation circuit 235 and the pulse pattern setting circuit 233 every time the state determination circuit 42 changes or the pulse pattern setting circuit 233 outputs a predetermined cycle.
 上記構成においては、センサ205の出力が変動し、所定電圧範囲を外れ、状態が変化した時点から、所定のパルスパターンを出力可能になる。センサ205は、感知する物理量によって電圧出力するものであればよく、例として温度センサ、磁気センサ等があるがこれらに限定されるものではない。 In the above configuration, when the output of the sensor 205 fluctuates, deviates from the predetermined voltage range, and the state changes, it becomes possible to output a predetermined pulse pattern. The sensor 205 may be any device that outputs a voltage depending on the physical quantity to be sensed, and examples thereof include a temperature sensor and a magnetic sensor, but are not limited to these.
[第2の実施例]
 第2の実施例の光送信機10aの構成について図17を参照しながら説明する。なお、第1の実施例と同じ構成要素は、第1の実施例と同じ番号を附番し説明を省略する。図17は、第2の実施例における光送信機10aを示すブロック図である。光送信機10aは、発光部20(不図示)をさらに備える。
[Second embodiment]
The configuration of the optical transmitter 10a of the second embodiment will be described with reference to FIG. The same components as in the first embodiment are assigned the same numbers as in the first embodiment, and descriptions thereof are omitted. FIG. 17 is a block diagram showing the optical transmitter 10a in the second embodiment. The optical transmitter 10a further includes a light emitting section 20 (not shown).
 本実施例の光送信機10aは、第1の実施例の光送信機10の入力端子224に代えて、センサ回路237を備えて構成される。比較回路92は、入力端子224に代えてセンサ回路237に接続される。本実施例の光送信機10aは、センサ回路237が出力するセンサ電圧を比較回路92に印加する。センサ電圧は比較回路92のコンパレータで比較され、その結果を状態判定回路42へ出力する。 The optical transmitter 10a of this embodiment includes a sensor circuit 237 instead of the input terminal 224 of the optical transmitter 10 of the first embodiment. The comparison circuit 92 is connected to the sensor circuit 237 instead of the input terminal 224 . The optical transmitter 10 a of this embodiment applies the sensor voltage output by the sensor circuit 237 to the comparison circuit 92 . The sensor voltages are compared by the comparator of the comparison circuit 92 and the result is output to the state determination circuit 42 .
 状態判定回路42は、入力されたコンパレータの出力判定結果に従って、センサ回路237が出力するセンサ電圧がどの電圧範囲に位置するかを判定し、判定に応じて新たな監視電圧範囲を設定するよう、比較回路92のスイッチ306、307、308、309のオンオフを設定する制御信号を出力する。また、状態判定回路42は、センサ電圧がどの監視電圧範囲にあるかの信号をパルスパターン設定回路233へ出力する。パルスパターン設定回路233は、状態判定回路42の出力を受け、出力回路236を介してセンサ回路237が出力するセンサ電圧に対応したパルス状の出力信号OUTを出力する。特性信号に相当する出力信号OUTは、発光部20(不図示)および監視用のマイコン(不図示)へ供給される。 The state determination circuit 42 determines in which voltage range the sensor voltage output by the sensor circuit 237 is positioned according to the inputted output determination result of the comparator, and sets a new monitoring voltage range according to the determination. A control signal for setting the switches 306, 307, 308, and 309 of the comparison circuit 92 on and off is output. Also, the state determination circuit 42 outputs a signal to the pulse pattern setting circuit 233 indicating in which monitor voltage range the sensor voltage is. The pulse pattern setting circuit 233 receives the output of the state determination circuit 42 and outputs a pulse-shaped output signal OUT corresponding to the sensor voltage output by the sensor circuit 237 via the output circuit 236 . An output signal OUT corresponding to the characteristic signal is supplied to a light emitting section 20 (not shown) and a monitoring microcomputer (not shown).
 以上、説明したように、本実施例の光送信機10aにおいて、パルスパターン設定回路233は、センサ回路237が出力するセンサ電圧の電圧範囲に応じた所定のパルス幅と所定のパルス数で構成された所定のパルス群を所定のパルス周期ごとに繰り返し出力する。本実施例の光送信機10aは、センサ回路237が出力するセンサ電圧が所定の電圧範囲に位置することを、所定のパルス周期毎に定期的に確認できる。センサ回路237は、感知する物理量によって電圧出力するものであればよく、例として温度センサ回路、磁気センサ回路等があるがこれらに限定されるものではない。 As described above, in the optical transmitter 10a of this embodiment, the pulse pattern setting circuit 233 is configured with a predetermined pulse width and a predetermined number of pulses according to the voltage range of the sensor voltage output from the sensor circuit 237. A predetermined pulse group is repeatedly output for each predetermined pulse period. The optical transmitter 10a of this embodiment can periodically confirm that the sensor voltage output by the sensor circuit 237 is within a predetermined voltage range at each predetermined pulse period. The sensor circuit 237 may output a voltage according to the physical quantity to be sensed, and examples thereof include a temperature sensor circuit and a magnetic sensor circuit, but are not limited to these.
[第3の実施例]
 第3の実施例の光送信機10bの構成について図18を参照しながら説明する。なお、第1の実施例と同じ構成要素は、第1の実施例と同じ番号を附番し説明を省略する。図18は、第3の実施例における光送信機12を示すブロック図である。光送信機10bは、発光部20(不図示)をさらに備える。
[Third embodiment]
The configuration of the optical transmitter 10b of the third embodiment will be described with reference to FIG. The same components as in the first embodiment are assigned the same numbers as in the first embodiment, and descriptions thereof are omitted. FIG. 18 is a block diagram showing the optical transmitter 12 in the third embodiment. The optical transmitter 10b further includes a light emitter 20 (not shown).
 本実施例の光送信機10bは、第1の実施例の光送信機10の入力端子224に代えて、VDD端子221を比較回路92に接続して構成される。VDD端子221は、光送信機10bの内部で電源VDDと比較回路92に接続される。本実施例の光送信機10bは、VDD端子221に印加される単電池30の単電池電圧VBATを比較回路92に印加する。単電池電圧VBATは比較回路92のコンパレータで比較され、その結果を状態判定回路42へ出力する。 The optical transmitter 10b of this embodiment is configured by connecting the VDD terminal 221 to the comparison circuit 92 instead of the input terminal 224 of the optical transmitter 10 of the first embodiment. The VDD terminal 221 is connected to the power supply VDD and the comparison circuit 92 inside the optical transmitter 10b. The optical transmitter 10 b of this embodiment applies the cell voltage VBAT of the cell 30 applied to the VDD terminal 221 to the comparison circuit 92 . The cell voltage VBAT is compared by the comparator of the comparison circuit 92 and the result is output to the state determination circuit 42 .
 状態判定回路42は、入力されたコンパレータの出力判定結果に従って、単電池30の単電池電圧VBATがどの電圧範囲に位置するかを判定し、判定に応じて新たな監視電圧範囲を設定するよう、比較回路92のスイッチ306、307、308、309のオンオフを設定する制御信号を出力する。また、状態判定回路42は、単電池電圧VBATがどの監視電圧範囲にあるかの信号をパルスパターン設定回路233へ出力する。パルスパターン設定回路233は、状態判定回路42の出力を受け、出力回路236を介して単電池電圧VBATの電圧範囲に対応したパルス状の出力信号OUTを出力する。特性信号に相当する出力信号OUTは、発光部20(不図示)および監視用のマイコン(不図示)へ供給される。 The state determination circuit 42 determines in which voltage range the unit cell voltage VBAT of the unit cell 30 is positioned according to the inputted output determination result of the comparator, and sets a new monitoring voltage range according to the determination. A control signal for setting the switches 306, 307, 308, and 309 of the comparison circuit 92 on and off is output. In addition, the state determination circuit 42 outputs a signal to the pulse pattern setting circuit 233 to indicate in which monitor voltage range the cell voltage VBAT is. The pulse pattern setting circuit 233 receives the output of the state determination circuit 42 and outputs a pulse-shaped output signal OUT corresponding to the voltage range of the single battery voltage VBAT via the output circuit 236 . An output signal OUT corresponding to the characteristic signal is supplied to a light emitting section 20 (not shown) and a monitoring microcomputer (not shown).
 以上、説明したように、本実施例の光送信機10bにおいて、パルスパターン設定回路233は、単電池30の単電池電圧VBATの電圧範囲に応じた所定のパルス幅と所定のパルス数で構成された所定のパルス群を所定のパルス周期ごとに繰り返し出力する。本実施例の光送信機10は、単電池30の単電池電圧VBATが所定の電圧範囲に位置することを、所定のパルス周期毎に定期的に確認できる。 As described above, in the optical transmitter 10b of this embodiment, the pulse pattern setting circuit 233 is configured with a predetermined pulse width and a predetermined number of pulses according to the voltage range of the cell voltage VBAT of the cell 30. A predetermined pulse group is repeatedly output for each predetermined pulse period. The optical transmitter 10 of this embodiment can periodically confirm that the cell voltage VBAT of the cell 30 is within a predetermined voltage range at every predetermined pulse period.
[第4の実施例]
 第4の実施例の光送信機10cの構成について図19を参照しながら説明する。なお、第1の実施例と同じ構成要素は、第1の実施例と同じ番号を附番し説明を省略する。図19は、第4の実施例における光送信機10cを示すブロック図である。本実施例の光送信機10cは、第1の実施例の光送信機10に比較回路92と同様の構成である第2の比較回路92aを備えて構成される。また状態判定回路42に代えて状態判定回路42aを備えている。状態判定回路42aは、比較回路92と第2の比較回路92aからの入力を受け、比較回路92と第2の比較回路92aのスイッチを設定する制御信号を出力する。光送信機10cは、発光部20(不図示)をさらに備える。
[Fourth embodiment]
The configuration of the optical transmitter 10c of the fourth embodiment will be described with reference to FIG. The same components as in the first embodiment are assigned the same numbers as in the first embodiment, and descriptions thereof are omitted. FIG. 19 is a block diagram showing an optical transmitter 10c in the fourth embodiment. The optical transmitter 10c of this embodiment comprises a second comparison circuit 92a having the same configuration as the comparison circuit 92 in the optical transmitter 10 of the first embodiment. Also, instead of the state determination circuit 42, a state determination circuit 42a is provided. The state determination circuit 42a receives inputs from the comparison circuit 92 and the second comparison circuit 92a, and outputs a control signal for setting the switches of the comparison circuit 92 and the second comparison circuit 92a. The optical transmitter 10c further includes a light emitter 20 (not shown).
 入力端子224は、第2の比較回路92aを介して状態判定回路42aに接続される。本実施例の光送信機10cは、VDD端子221が、光送信機10の内部で電源VDDと比較回路92に接続される。またセンサ205は単電池30を電源とし、VSS端子221の電圧を基準としたセンサ電圧を入力端子224に印加する。入力端子224は、第2の比較回路92aに接続される。 The input terminal 224 is connected to the state determination circuit 42a via the second comparison circuit 92a. In the optical transmitter 10 c of this embodiment, the VDD terminal 221 is connected to the power supply VDD and the comparison circuit 92 inside the optical transmitter 10 . The sensor 205 uses the cell 30 as a power source and applies a sensor voltage based on the voltage of the VSS terminal 221 to the input terminal 224 . The input terminal 224 is connected to the second comparison circuit 92a.
 比較回路92は、状態判定回路42aに接続され、同様に第2の比較回路92aは、状態判定回路42aに接続される。状態判定回路42aは、比較回路92と第2の比較回路92aの監視電圧範囲がどの電圧範囲にあるかの信号を、パルスパターン設定回路233へ出力する。パルスパターン設定回路233は、状態判定回路42の出力を受け、出力回路236を介してVDD端子221と入力端子224に入力される電圧に対応したパルス状の出力信号OUTを出力する。特性信号に相当する出力信号OUTは、発光部20(不図示)および監視用のマイコン(不図示)へ供給される。 The comparison circuit 92 is connected to the state determination circuit 42a, and similarly the second comparison circuit 92a is connected to the state determination circuit 42a. The state determination circuit 42a outputs to the pulse pattern setting circuit 233 a signal indicating in which voltage range the monitoring voltage ranges of the comparison circuit 92 and the second comparison circuit 92a are. The pulse pattern setting circuit 233 receives the output of the state determination circuit 42 and outputs a pulse-shaped output signal OUT corresponding to the voltage input to the VDD terminal 221 and the input terminal 224 via the output circuit 236 . An output signal OUT corresponding to the characteristic signal is supplied to a light emitting section 20 (not shown) and a monitoring microcomputer (not shown).
 パルスパターン設定回路233の出力するパルスパターンは、比較回路92と第2の比較回路92aの監視電圧範囲である各5個の電圧範囲(STATE)を組み合わせた25個の状態のうちのどれかを表すパルスパターンとしても良いし、比較回路92の電圧範囲を表すパルスパターンと、第2の比較回路92aの電圧範囲を表すパルスパターンと、を繰り返すとしても良い。 The pulse pattern output from the pulse pattern setting circuit 233 is one of 25 states obtained by combining five voltage ranges (STATE), which are monitoring voltage ranges of the comparison circuit 92 and the second comparison circuit 92a. Alternatively, a pulse pattern representing the voltage range of the comparison circuit 92 and a pulse pattern representing the voltage range of the second comparison circuit 92a may be repeated.
 以上、説明したように、本実施例の光送信機10cにおいて、パルスパターン設定回路233は、入力端子224に入力される入力電圧VINと、単電池30の単電池電圧VBATの電圧範囲に応じた所定のパルス幅と所定のパルス数で構成された所定のパルス群を所定のパルス周期ごとに繰り返し出力する。本実施例の光送信機10cは、入力電圧VINと単電池電圧VBATが所定の電圧範囲に位置することを、所定のパルス周期毎に定期的に確認できる。 As described above, in the optical transmitter 10c of this embodiment, the pulse pattern setting circuit 233 responds to the voltage range of the input voltage VIN input to the input terminal 224 and the cell voltage VBAT of the cell 30. A predetermined pulse group composed of a predetermined pulse width and a predetermined number of pulses is repeatedly output for each predetermined pulse period. The optical transmitter 10c of this embodiment can periodically confirm that the input voltage VIN and the cell voltage VBAT are within a predetermined voltage range at each predetermined pulse period.
[第5の実施例]
 第5の実施例の光送信機10dの構成について図20を参照しながら説明する。なお、第4の実施例と同じ構成要素は、第4の実施例と同じ番号を附番し説明を省略する。図20は、第5の実施例における光送信機10dを示すブロック図である。光送信機10dは、発光部20(不図示)をさらに備える。
[Fifth embodiment]
The configuration of the optical transmitter 10d of the fifth embodiment will be described with reference to FIG. The same components as in the fourth embodiment are assigned the same numbers as in the fourth embodiment, and descriptions thereof are omitted. FIG. 20 is a block diagram showing an optical transmitter 10d in the fifth embodiment. The optical transmitter 10d further includes a light emitting section 20 (not shown).
 本実施例の光送信機10dは、VDD端子221を比較回路92に接続して構成される。VDD端子221は、光送信機10bの内部で電源VDDと比較回路92に接続される。また、第1の実施例の光送信機10の入力端子224に代えて、センサ回路237と第2の比較回路92aを備えて構成される。第2の比較回路92aは、状態判定回路42aに接続される。 The optical transmitter 10 d of this embodiment is configured by connecting the VDD terminal 221 to the comparison circuit 92 . The VDD terminal 221 is connected to the power supply VDD and the comparison circuit 92 inside the optical transmitter 10b. Further, instead of the input terminal 224 of the optical transmitter 10 of the first embodiment, a sensor circuit 237 and a second comparison circuit 92a are provided. The second comparison circuit 92a is connected to the state determination circuit 42a.
 比較回路92は、状態判定回路42aに接続され、同様に第2の比較回路92aは、状態判定回路42aに接続される。状態判定回路42aは、比較回路92と第2の比較回路92aの監視電圧範囲がどの電圧範囲にあるかの信号を、パルスパターン設定回路233へ出力する。パルスパターン設定回路233は、状態判定回路42の出力を受け、出力回路236を介してVDD端子221とセンサ回路237から出力される電圧に対応したパルス状の出力信号OUTを出力する。特性信号に相当する出力信号OUTは、発光部20(不図示)および監視用のマイコン(不図示)へ供給される。 The comparison circuit 92 is connected to the state determination circuit 42a, and similarly the second comparison circuit 92a is connected to the state determination circuit 42a. The state determination circuit 42a outputs to the pulse pattern setting circuit 233 a signal indicating in which voltage range the monitoring voltage ranges of the comparison circuit 92 and the second comparison circuit 92a are. The pulse pattern setting circuit 233 receives the output of the state determination circuit 42 and outputs a pulse-like output signal OUT corresponding to the voltage output from the VDD terminal 221 and the sensor circuit 237 via the output circuit 236 . An output signal OUT corresponding to the characteristic signal is supplied to a light emitting section 20 (not shown) and a monitoring microcomputer (not shown).
 パルスパターン設定回路233の出力するパルスパターンは、比較回路92と第2の比較回路92aの監視電圧範囲である各5個の電圧範囲(STATE)を組み合わせた25個の状態のうちのどれかを表すパルスパターンとしても良いし、比較回路92の電圧範囲を表すパルスパターンと、第2の比較回路92aの電圧範囲を表すパルスパターンと、を繰り返すとしても良い。 The pulse pattern output from the pulse pattern setting circuit 233 is one of 25 states obtained by combining five voltage ranges (STATE), which are monitoring voltage ranges of the comparison circuit 92 and the second comparison circuit 92a. Alternatively, a pulse pattern representing the voltage range of the comparison circuit 92 and a pulse pattern representing the voltage range of the second comparison circuit 92a may be repeated.
 以上、説明したように、本実施例の光送信機10dにおいて、パルスパターン設定回路233は、単電池30の単電池電圧VBATと、センサ回路237から出力される電圧(入力電圧VIN)との電圧範囲に応じた所定のパルス幅と所定のパルス数で構成された所定のパルス群を所定のパルス周期ごとに繰り返し出力する。本実施例の光送信機10dは、入力電圧VINと単電池電圧VBATが所定の電圧範囲に位置することを、所定のパルス周期毎に定期的に確認できる。 As described above, in the optical transmitter 10d of this embodiment, the pulse pattern setting circuit 233 sets the voltage between the cell voltage VBAT of the cell 30 and the voltage output from the sensor circuit 237 (input voltage VIN). A predetermined pulse group composed of a predetermined pulse width and a predetermined number of pulses according to the range is repeatedly output for each predetermined pulse period. The optical transmitter 10d of this embodiment can periodically confirm that the input voltage VIN and the cell voltage VBAT are within a predetermined voltage range at each predetermined pulse period.
[第6の実施例]
 第6の実施例の光送信機10eの構成について図21を参照しながら説明する。なお、第1の実施例と同じ構成要素は、第1の実施例と同じ番号を附番し説明を省略する。図21は、第6の実施例における光送信機10eを示すブロック図である。本実施例の光送信機10eは、第1の実施例の光送信機10に異常信号入力端子225を備えて構成される。また状態判定回路42に代えて状態判定回路42bを備えている。異常信号入力端子225は、状態判定回路42bに接続される。異常信号入力端子225がアクティブ信号を受けると、状態判定回路42bは異常状態を判定し、パルスパターン設定回路233へ異常状態を出力する。パルスパターン設定回路233は、状態判定回路42bの出力を受け、異常状態に対応したパルス状の出力信号OUTを出力する。異常状態に相当する出力信号OUTは、発光部20(不図示)および監視用のマイコン(不図示)へ供給される。
[Sixth embodiment]
The configuration of the optical transmitter 10e of the sixth embodiment will be described with reference to FIG. The same components as in the first embodiment are assigned the same numbers as in the first embodiment, and descriptions thereof are omitted. FIG. 21 is a block diagram showing an optical transmitter 10e in the sixth embodiment. The optical transmitter 10e of this embodiment is configured by adding an abnormal signal input terminal 225 to the optical transmitter 10 of the first embodiment. Also, instead of the state determination circuit 42, a state determination circuit 42b is provided. The abnormal signal input terminal 225 is connected to the state determination circuit 42b. When the abnormal signal input terminal 225 receives the active signal, the state determination circuit 42 b determines the abnormal state and outputs the abnormal state to the pulse pattern setting circuit 233 . The pulse pattern setting circuit 233 receives the output of the state determination circuit 42b and outputs a pulse-shaped output signal OUT corresponding to the abnormal state. An output signal OUT corresponding to an abnormal state is supplied to a light emitting unit 20 (not shown) and a monitoring microcomputer (not shown).
[第7の実施例]
 第7の実施例の光送信機10fの構成について図22を参照しながら説明する。なお、第1の実施例と同じ構成要素は、第1の実施例と同じ番号を附番し説明を省略する。図22は、第7の実施例における光送信機10fを示すブロック図である。本実施例の光送信機10fは、第1の実施例の光送信機10と発光部20とを有する。本実施例の発光部20は、第1の実施例の光送信機10のVDD端子221と出力端子223の間に発光部20を接続している。光送信機10のVDD端子221は、第2のVDD端子226を介して単電池30の正極と接続され、光送信機10のVSS端子222は、第2のVSS端子227を介して単電池30の負極と接続される。入力端子224は、第2の入力端子28を介してセンサ205の出力に接続される。
[Seventh embodiment]
The configuration of the optical transmitter 10f of the seventh embodiment will be described with reference to FIG. The same components as in the first embodiment are assigned the same numbers as in the first embodiment, and descriptions thereof are omitted. FIG. 22 is a block diagram showing an optical transmitter 10f in the seventh embodiment. The optical transmitter 10f of this embodiment has the optical transmitter 10 of the first embodiment and the light emitting section 20. FIG. The light emitting section 20 of this embodiment is connected between the VDD terminal 221 and the output terminal 223 of the optical transmitter 10 of the first embodiment. A VDD terminal 221 of the optical transmitter 10 is connected to the positive terminal of the cell 30 via a second VDD terminal 226, and a VSS terminal 222 of the optical transmitter 10 is connected to the cell 30 via a second VSS terminal 227. connected to the negative pole of Input terminal 224 is connected to the output of sensor 205 via second input terminal 28 .
 本実施例の光送信機10fは、センサ205からの入力電圧VINの電圧範囲に応じた所定のパルス幅と所定のパルス数で構成された所定のパルス群を所定のパルス周期ごとに繰り返し発光部20を発光させる。本実施例の光送信機10fは、センサ205が出力する入力電圧VINが所定の電圧範囲に位置することを、所定のパルス周期毎に定期的に確認できる。本実施例の光送信機10fは、発光部20による発光を受光部80にて受信することで単電池30及び光送信機10fと電気的に絶縁した絶縁通信が可能となる。 The optical transmitter 10f of the present embodiment repeats a predetermined pulse group composed of a predetermined pulse width and a predetermined number of pulses according to the voltage range of the input voltage VIN from the sensor 205 at every predetermined pulse period. 20 is illuminated. The optical transmitter 10f of the present embodiment can periodically confirm that the input voltage VIN output by the sensor 205 is within a predetermined voltage range for each predetermined pulse period. In the optical transmitter 10f of the present embodiment, the light emitted from the light emitting section 20 is received by the light receiving section 80, so that the isolated communication with the cell 30 and the optical transmitter 10f is possible.
 光送信機10fにおける出力回路236と、パルスパターン設定回路233は、発光部20によって出力されるパルスパターンを、受光部80で正確に受信するため、適切に設定にされる。 The output circuit 236 and the pulse pattern setting circuit 233 in the optical transmitter 10f are appropriately set so that the pulse pattern output by the light emitting section 20 is received by the light receiving section 80 accurately.
 出力回路236は、発光部20を通信可能な光度で発光させるため、適切な出力電流を出力するよう設定される。またパルスパターン設定回路233は、発光部20が要する点灯、消灯時間を考慮し、適切なパルス幅に設定される。 The output circuit 236 is set to output an appropriate output current in order to cause the light emitting section 20 to emit light with a luminous intensity that allows communication. The pulse pattern setting circuit 233 sets an appropriate pulse width in consideration of the lighting and extinguishing times required by the light emitting section 20 .
 なお、本実施例は第1の実施例の光送信機10に発光部20を付加する構成にしたが、第2の実施例の光送信機10a、第3の実施例の光送信機10b、第4の実施例の光送信機10c、第5の実施例の光送信機10dに発光部20を付加される構成でも良い。また、発光部20の例としては、赤外発光ダイオードや可視光発光ダイオード等があるが、これらに限定されるものではない。 In this embodiment, the light emitting unit 20 is added to the optical transmitter 10 of the first embodiment, but the optical transmitter 10a of the second embodiment, the optical transmitter 10b of the third embodiment, The light emitting unit 20 may be added to the optical transmitter 10c of the fourth embodiment and the optical transmitter 10d of the fifth embodiment. Examples of the light emitting unit 20 include infrared light emitting diodes and visible light emitting diodes, but are not limited to these.
[第8の実施例]
 第8の実施例の光送信機10gの構成について図23を参照しながら説明する。なお、第7の実施例と同じ構成要素は、第7の実施例と同じ番号を附番し説明を省略する。図23は、第8の実施例における光送信機10gを示すブロック図である。本実施例の光送信機10gは、第7の実施例の光送信機10fに、異常電流制限装置接続端子229を備えた構成とである。光送信機10gは、図14に示す出力回路236のNMOSトランジスタ362のソース端子が電源VSSに代えて異常電流制限装置接続端子229に接続されている。光送信機10gは、異常電流制限装置接続端子229とVSS端子222間に異常電流制限装置206を接続した構成とする。異常電流制限装置206は、端子間に予め設定した電流値以上の電流が流れた時、当該電流値を制限する動作をする。
[Eighth embodiment]
The configuration of the optical transmitter 10g of the eighth embodiment will be described with reference to FIG. The same components as in the seventh embodiment are assigned the same numbers as in the seventh embodiment, and descriptions thereof are omitted. FIG. 23 is a block diagram showing an optical transmitter 10g in the eighth embodiment. The optical transmitter 10g of this embodiment has a configuration in which an abnormal current limiting device connection terminal 229 is provided in the optical transmitter 10f of the seventh embodiment. In the optical transmitter 10g, the source terminal of the NMOS transistor 362 of the output circuit 236 shown in FIG. 14 is connected to the abnormal current limiting device connection terminal 229 instead of the power supply VSS. The optical transmitter 10 g has a configuration in which the abnormal current limiting device 206 is connected between the abnormal current limiting device connection terminal 229 and the VSS terminal 222 . The abnormal current limiting device 206 operates to limit the current value when a current greater than or equal to a preset current value flows between the terminals.
 本構成において、図14に示す出力回路236のトランジスタがショート故障した場合を考える。PMOSトランジスタ361がショート故障した場合、パルス出力を行う毎に貫通電流が出力回路236を介し、異常電流制限装置206に流れるが、異常電流制限装置206の端子間に予め設定した電流値以上の電流が流れた時、当該電流値を制限する動作をするため、異常電流を制限することができる。NMOSトランジスタ362のショート故障も前記と同じく、異常電流を制限することができる。なお、本実施例は第7の実施例に付加する構成にしたが、第1~第6の実施例に付加される構成でも良い。また出力回路236のPMOSトランジスタ361のソース端子に異常電流制限装置接続端子229aを設け、異常電流制限装置接続端子229aを介して、VDD端子221と接続し、出力端子223に発光部20を接続する構成としても同等の効果が得られる。 Consider a case where the transistor of the output circuit 236 shown in FIG. 14 has a short failure in this configuration. If the PMOS transistor 361 is short-circuited, a through current flows through the abnormal current limiting device 206 via the output circuit 236 each time a pulse is output. When the current flows, the abnormal current can be limited because the operation is performed to limit the current value. The short failure of the NMOS transistor 362 can also limit the abnormal current as described above. In this embodiment, the configuration is added to the seventh embodiment, but the configuration may be added to the first to sixth embodiments. An abnormal current limiting device connection terminal 229a is provided at the source terminal of the PMOS transistor 361 of the output circuit 236, and is connected to the VDD terminal 221 through the abnormal current limiting device connection terminal 229a. A similar effect can be obtained with the configuration.
[第9の実施例]
 本発明の第9の実施例の光送信機10hの構成について図24を参照しながら説明する。なお、第1の実施例と同じ構成要素は、第1の実施例と同じ番号を附番し説明を省略する。図24は、第9の実施例における光送信機10hを示すブロック図である。本実施例は第3の実施例の光送信機10bに、通信端子230と、パルス合成回路239を備えた。光送信機10hは、発光部20(不図示)をさらに備える。通信端子230は、パルス合成回路239を介して、出力回路236へ接続される構成とした。通信端子230は、外部で別の光送信機とデイジーチェーン接続し、別の光送信機の監視状況と合わせて出力端子223から出力信号OUTを出力する。
[Ninth embodiment]
The configuration of the optical transmitter 10h of the ninth embodiment of the present invention will be described with reference to FIG. The same components as in the first embodiment are assigned the same numbers as in the first embodiment, and descriptions thereof are omitted. FIG. 24 is a block diagram showing an optical transmitter 10h in the ninth embodiment. This embodiment includes a communication terminal 230 and a pulse synthesizing circuit 239 in addition to the optical transmitter 10b of the third embodiment. The optical transmitter 10h further includes a light emitting section 20 (not shown). The communication terminal 230 is configured to be connected to the output circuit 236 via the pulse synthesizing circuit 239 . The communication terminal 230 is externally daisy-chain connected to another optical transmitter, and outputs an output signal OUT from the output terminal 223 together with the monitoring status of the other optical transmitter.
 パルス合成回路239は、パルスパターン設定回路233と出力回路236の間に設置され、パルスパターン設定回路233からの信号と通信端子230からの信号の和を出力回路236へ出力する。出力回路236からの信号は、発光部20(不図示)および監視用のマイコン(不図示)へ供給される。 The pulse synthesizing circuit 239 is installed between the pulse pattern setting circuit 233 and the output circuit 236 and outputs the sum of the signal from the pulse pattern setting circuit 233 and the signal from the communication terminal 230 to the output circuit 236 . A signal from the output circuit 236 is supplied to the light emitting unit 20 (not shown) and a monitoring microcomputer (not shown).
 図25は、本実施例の光送信機10hをデイジーチェーン接続した構成の一例である。本実施例の第1の光送信機10h-1の通信端子230は、第2の光送信機10h-2の出力端子223に接続される。第2の光送信機10g-2の通信端子230は、図示していない第3の光送信機10g-3に接続される。本実施例の光送信機は、複数の単電池監視結果を、最終段となる第1の光送信機10h-1からまとめて出力することが可能となる。前述の通り、監視用のマイコン(不図示)は最初のパルス幅を時間基準として、後続のパルスの数を判定するようにすれば状態(STATE)を判定できるため、各光送信機の間にクロックの同期は不要である。同様に、光送信機10h-1の発光部20(不図示)からの光パルスを処理する信号処理装置100は、光パルス郡のパルス幅と、光パルス数を判断することで状態(STATE)を判定することができる。したがって複数電圧の監視システムを、処理回路の通信負荷の低減を図りつつ、容易かつ安価に構成できる。 FIG. 25 is an example of a configuration in which the optical transmitters 10h of this embodiment are daisy-chained. The communication terminal 230 of the first optical transmitter 10h-1 of this embodiment is connected to the output terminal 223 of the second optical transmitter 10h-2. A communication terminal 230 of the second optical transmitter 10g-2 is connected to a third optical transmitter 10g-3 (not shown). The optical transmitter of this embodiment can collectively output a plurality of unit cell monitoring results from the first optical transmitter 10h-1, which is the final stage. As described above, the monitoring microcomputer (not shown) can determine the state by determining the number of subsequent pulses using the initial pulse width as a time reference. No clock synchronization is required. Similarly, the signal processing device 100 that processes the optical pulses from the light emitting unit 20 (not shown) of the optical transmitter 10h-1 determines the pulse width of the optical pulse group and the number of optical pulses to determine the state (STATE). can be determined. Therefore, a multi-voltage monitoring system can be configured easily and inexpensively while reducing the communication load of the processing circuit.
 また、パルス周期は、1024msを例として説明したが、デイジーチェーン接続によって、多数の光送信機からの信号が纏められる場合など、パルス周期は、例えば60s(60秒)のように長い周期とし、出力信号同士の衝突を避けることができる。 In addition, although the pulse period has been described as 1024 ms as an example, when signals from a large number of optical transmitters are combined by daisy chain connection, the pulse period is set to a long period such as 60 s (60 seconds). Collision between output signals can be avoided.
[第10の実施例]
 第10の実施例の光送信機10iの構成について図26を参照しながら説明する。なお、第1の実施例と同じ構成要素は、第1の実施例と同じ番号を附番し説明を省略する。図26は、第10の実施例における光送信機10iを示すブロック図である。本実施例は第3の実施例の光送信機10bに、通信端子230と、パルス判定回路240と、状態比較回路241を備えた。光送信機10iは、発光部20(不図示)をさらに備える。通信端子230は、パルス判定回路240を介して、状態比較回路241に接続される構成とした。状態比較回路241は、状態判定回路42aとパルス判定回路240とパルスパターン設定回路233へ接続される構成とした。通信端子230は、外部で別の光送信機とデイジーチェーン接続し、別の光送信機の監視状況と合わせて出力端子223から出力信号OUTを出力する。出力回路236からの信号は出力端子223を介して、発光部20(不図示)および監視用のマイコン(不図示)へ供給される。
[Tenth embodiment]
The configuration of the optical transmitter 10i of the tenth embodiment will be described with reference to FIG. The same components as in the first embodiment are assigned the same numbers as in the first embodiment, and descriptions thereof are omitted. FIG. 26 is a block diagram showing the optical transmitter 10i in the tenth embodiment. This embodiment includes a communication terminal 230, a pulse determination circuit 240, and a state comparison circuit 241 in addition to the optical transmitter 10b of the third embodiment. The optical transmitter 10i further includes a light emitter 20 (not shown). The communication terminal 230 is configured to be connected to the state comparison circuit 241 via the pulse determination circuit 240 . The state comparison circuit 241 is configured to be connected to the state determination circuit 42a, the pulse determination circuit 240, and the pulse pattern setting circuit 233. FIG. The communication terminal 230 is externally daisy-chain connected to another optical transmitter, and outputs an output signal OUT from the output terminal 223 together with the monitoring status of the other optical transmitter. A signal from the output circuit 236 is supplied to the light emitting unit 20 (not shown) and a monitoring microcomputer (not shown) through the output terminal 223 .
 パルス判定回路240は、通信端子230からのパルス信号を受け、パルス信号の示す状態(STATE)信号を状態比較回路241へ出力する。状態比較回路241は、状態判定回路42aからの状態(STATE)信号と、パルス判定回路240からの状態(STATE)信号をあらかじめ定めた基準で比較し、より重要と判定された状態(STATE)信号をパルスパターン設定回路233へ出力する。 The pulse determination circuit 240 receives a pulse signal from the communication terminal 230 and outputs a state (STATE) signal indicated by the pulse signal to the state comparison circuit 241 . The state comparison circuit 241 compares the state (STATE) signal from the state determination circuit 42a and the state (STATE) signal from the pulse determination circuit 240 according to a predetermined standard, and selects the state (STATE) signal determined to be more important. is output to the pulse pattern setting circuit 233 .
 図27は、本実施例の光送信機10iをデイジーチェーン接続した構成の一例である。本実施例の第1の光送信機10i-1の通信端子230は、第2の光送信機10i-2の出力端子223に接続される。第2の光送信機10i-2の通信端子230は、図示していない第3の光送信機10i-3に接続される。本実施例の光送信機は、複数の単電池監視結果の内、最も重要度の高い結果を光送信機10i-1から出力することが可能となる。前述の通り、監視用のマイコン(不図示)は最初のパルス幅を時間基準として、後続のパルスの数を判定するようにすれば状態(STATE)を判定できるため、各光送信機の間にクロックの同期は不要である。同様に、光送信機10i-1の発光部20(不図示)からの光パルスを処理する信号処理装置100は、光パルス郡のパルス幅と、光パルス数を判断することで状態(STATE)を判定することができる。したがって複数電圧の監視システムを、処理回路の通信負荷の低減を図りつつ、容易かつ安価に構成できる。 FIG. 27 is an example of a configuration in which the optical transmitters 10i of this embodiment are daisy-chained. The communication terminal 230 of the first optical transmitter 10i-1 of this embodiment is connected to the output terminal 223 of the second optical transmitter 10i-2. A communication terminal 230 of the second optical transmitter 10i-2 is connected to a third optical transmitter 10i-3 (not shown). The optical transmitter of this embodiment is capable of outputting from the optical transmitter 10i-1 the result with the highest degree of importance among the plurality of unit cell monitoring results. As described above, the monitoring microcomputer (not shown) can determine the state by determining the number of subsequent pulses using the initial pulse width as a time reference. No clock synchronization is required. Similarly, the signal processing device 100 that processes optical pulses from the light emitting unit 20 (not shown) of the optical transmitter 10i-1 judges the pulse width of the optical pulse group and the number of optical pulses to determine the state (STATE). can be determined. Therefore, a multi-voltage monitoring system can be configured easily and inexpensively while reducing the communication load of the processing circuit.
 以上、各種実施例の光送信機によれば、単電池の電圧状態に応じて予め設定された所定のパルス幅と所定のパルス数で構成された所定のパルス群が所定のパルス周期ごとに繰り返し出力されるため、単電池電圧の状態を定期的に確認することができる。これにより光送信機の出力端子が内部で電源と短絡する異常が生じた場合において、光送信機の異常を判定することができる。 As described above, according to the optical transmitters of the various embodiments, a predetermined pulse group composed of a predetermined pulse width and a predetermined number of pulses set in advance according to the voltage state of the cell is repeated at a predetermined pulse period. Since it is output, the state of the cell voltage can be checked periodically. This makes it possible to determine whether the optical transmitter is abnormal when the output terminal of the optical transmitter is internally short-circuited with the power supply.
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態で説明したフローチャート、シーケンス、実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成要素の一部または全部を置換して若しくは構成要素を追加して、組み合わせることが可能である。 The embodiments described above are for facilitating understanding of the present invention, and are not for limiting interpretation of the present invention. Flowcharts, sequences, elements included in the embodiments, their arrangement, materials, conditions, shapes, sizes, and the like described in the embodiments are not limited to those illustrated and can be changed as appropriate. In addition, it is possible to replace some or all of the components shown in different embodiments or add components and combine them.
 1 リチウムイオン電池モジュール
 10、10a、10b、10c、10d、10e、10f、10g、10h、10i 光送信器
 20 発光部
 30、30a、30b 単電池
 40 制御回路
 42、42a、42b 状態判定回路
 43 セレクタ
 44 ルックアップテーブル
 45 出力端子
 50 組電池
 57、59 引出配線
 60 光導波路
 60a 散乱加工
 60b 反射加工
 70 外装体
 80 受光部
 90 測定回路
 91a、91b 入力端子
 92、92a 比較回路
 95 出力端子
 100 信号処理装置
 102 状態決定部
 104 状態推定部
 110 電流計
 120 電圧計
 205 センサ
 206 異常電流制限装置
 223 出力端子
 224 入力端子
 229 異常電流制限装置接続端子
 230 通信端子
 301、302 抵抗回路
 303、304 コンパレータ
 305 電圧源
 306、307、308、309 スイッチ
 310、311、312、313 抵抗
 314、315、361、362 PMOSトランジスタ
Reference Signs List 1 lithium ion battery module 10, 10a, 10b, 10c, 10d, 10e, 10f, 10g, 10h, 10i optical transmitter 20 light emitting unit 30, 30a, 30b cell 40 control circuit 42, 42a, 42b state determination circuit 43 selector 44 look-up table 45 output terminal 50 assembled battery 57, 59 lead wiring 60 optical waveguide 60a scattering processing 60b reflection processing 70 exterior body 80 light receiving section 90 measurement circuit 91a, 91b input terminals 92, 92a comparison circuit 95 output terminal 100 signal processing device 102 state determining unit 104 state estimating unit 110 ammeter 120 voltmeter 205 sensor 206 abnormal current limiting device 223 output terminal 224 input terminal 229 abnormal current limiting device connection terminal 230 communication terminal 301, 302 resistance circuit 303, 304 comparator 305 voltage source 306 , 307, 308, 309 Switches 310, 311, 312, 313 Resistors 314, 315, 361, 362 PMOS transistors

Claims (8)

  1.  複数の単電池を積層して構成された組電池と、前記複数の単電池に備えられた複数の光送信器とを含むリチウムイオン電池モジュールであって、
     前記複数の単電池の各単電池は、正極活物質層、セパレータ、負極活物質層、及び負極集電体を含み、
     前記複数の光送信器の各光送信機は、前記各単電池に対応しており、前記対応する単電池から電力供給され、
     前記複数の光送信器の各光送信器は、
      前記対応する単電池の特性を表す特性信号を出力するように構成された測定部と、
      前記特性信号を受信し、所定の制御信号を出力するように構成された制御部と、
      前記制御信号に応じた光信号を出力するように構成された発光部と、
    を備え、
     前記制御部は、
      受信した前記特性信号に基づいて前記対応する単電池の状態を判定する状態判定部を備え、
      判定された前記対応する単電池の状態に応じた異なるパターンの前記制御信号を出力し、判定された前記対応する単電池の状態に応じた異なるパターンの前記光信号を出力するように前記発光部を制御するように構成されている、リチウムイオン電池モジュール。
    A lithium ion battery module including an assembled battery configured by stacking a plurality of single cells and a plurality of optical transmitters provided in the plurality of single cells,
    each unit cell of the plurality of unit cells includes a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector;
    each optical transmitter of the plurality of optical transmitters corresponds to each of the cells and is powered by the corresponding cell;
    each optical transmitter of the plurality of optical transmitters,
    a measurement unit configured to output a characteristic signal representing characteristics of the corresponding unit cell;
    a control unit configured to receive the characteristic signal and output a predetermined control signal;
    a light emitting unit configured to output an optical signal corresponding to the control signal;
    with
    The control unit
    A state determination unit that determines the state of the corresponding unit cell based on the received characteristic signal,
    The light emitting unit outputs the control signal of a different pattern according to the determined state of the corresponding unit cell, and outputs the light signal of a different pattern according to the determined state of the corresponding unit cell. A lithium-ion battery module configured to control a
  2.  前記特性は、前記単電池の電圧または前記単電池の温度である、請求項1に記載のリチウムイオン電池モジュール。 The lithium ion battery module according to claim 1, wherein the characteristic is the voltage of the single cell or the temperature of the single cell.
  3.  前記制御部は他の単電池の制御部と非同期で前記制御信号を出力するように構成されている、請求項1または2に記載のリチウムイオン電池モジュール。 3. The lithium ion battery module according to claim 1 or 2, wherein said control section is configured to output said control signal asynchronously with control sections of other cells.
  4.  前記複数の光送信器のそれぞれが個別の内部クロックで動作しており、前記制御部は前記個別の内部クロックに基づく一定の周期で前記制御信号を出力し、前記内部クロックが互いに異なるおよび/または異なるように調整されていることにより、前記一定の周期は前記他の単電池の制御部が制御信号を出力する一定の周期と異なる、請求項3に記載のリチウムイオン電池モジュール。 each of the plurality of optical transmitters operates with an individual internal clock, the control unit outputs the control signal at a constant cycle based on the individual internal clock, and the internal clocks are different from each other and/or 4. The lithium ion battery module according to claim 3, wherein said constant cycle is different from the constant cycle in which the control unit of said other unit cell outputs the control signal by being adjusted differently.
  5.  前記制御部は、外部からの異常状態を示す外部信号に応答して、前記異常状態に対応するパターンの制御信号を出力するようにさらに構成された、請求項1から4のいずれか一項に記載のリチウムイオン電池モジュール。 5. The control unit according to any one of claims 1 to 4, further configured to output a control signal having a pattern corresponding to the abnormal state in response to an external signal indicating the abnormal state from the outside. A lithium-ion battery module as described.
  6.  前記光信号を受信して電気信号に変換する受光部をさらに備え、
     前記受光部と前記組電池とは電気的に絶縁されている、請求項1から5のいずれか一項に記載のリチウムイオン電池モジュール。
    further comprising a light receiving unit that receives the optical signal and converts it into an electrical signal;
    The lithium ion battery module according to any one of claims 1 to 5, wherein said light receiving section and said assembled battery are electrically insulated.
  7.  前記電気信号を処理して前記複数の単電池のそれぞれの状態を決定または推定するように構成された信号処理部さらに備えた、請求項6に記載のリチウムイオン電池モジュール。 7. The lithium ion battery module according to claim 6, further comprising a signal processing unit configured to process the electrical signal to determine or estimate the state of each of the plurality of cells.
  8.  前記複数の光送信器に共通の光導波路をさらに備えた、請求項1から7のいずれか一項に記載のリチウムイオン電池モジュール。 The lithium ion battery module according to any one of claims 1 to 7, further comprising an optical waveguide common to said plurality of optical transmitters.
PCT/JP2022/009265 2021-03-03 2022-03-03 Lithium-ion battery module WO2022186363A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021033564A JP2022134442A (en) 2021-03-03 2021-03-03 lithium ion battery module
JP2021-033564 2021-03-03

Publications (1)

Publication Number Publication Date
WO2022186363A1 true WO2022186363A1 (en) 2022-09-09

Family

ID=83155408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009265 WO2022186363A1 (en) 2021-03-03 2022-03-03 Lithium-ion battery module

Country Status (2)

Country Link
JP (1) JP2022134442A (en)
WO (1) WO2022186363A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096429A (en) * 2002-08-30 2004-03-25 Denso Corp Wireless communication system
JP2007157403A (en) * 2005-12-01 2007-06-21 Sanyo Electric Co Ltd Power supply device
JP2020087661A (en) * 2018-11-22 2020-06-04 トヨタ自動車株式会社 Battery pack, battery monitoring device, and vehicle
JP2021034266A (en) * 2019-08-27 2021-03-01 本田技研工業株式会社 Battery voltage control device and electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096429A (en) * 2002-08-30 2004-03-25 Denso Corp Wireless communication system
JP2007157403A (en) * 2005-12-01 2007-06-21 Sanyo Electric Co Ltd Power supply device
JP2020087661A (en) * 2018-11-22 2020-06-04 トヨタ自動車株式会社 Battery pack, battery monitoring device, and vehicle
JP2021034266A (en) * 2019-08-27 2021-03-01 本田技研工業株式会社 Battery voltage control device and electric vehicle

Also Published As

Publication number Publication date
JP2022134442A (en) 2022-09-15

Similar Documents

Publication Publication Date Title
JP5560557B2 (en) Battery control device
US7750612B2 (en) Voltage-pulse converting circuit and charge control system
KR20100050908A (en) Control device and led light emitting device using the control device
JP2008295299A5 (en)
JP2009027915A5 (en)
WO2010074290A1 (en) Integrated circuit and battery monitoring device utilizing the same
US20150192664A1 (en) Analog-digital conversion circuit, sensor apparatus, cellular phone, and digital camera
KR102095432B1 (en) Battery control ic and control method therefor
CN101331402B (en) Current measurement circuit and method
JP2011069782A (en) Voltage monitoring circuit, and battery power supply device
JP4515339B2 (en) Abnormal voltage detection device for battery pack
WO2022186363A1 (en) Lithium-ion battery module
US9250861B2 (en) Random number generating device
CN113519122B (en) Circuit arrangement for determining the level of an over-bias voltage of a single photon avalanche diode
EP3471186B1 (en) Battery system with battery cell internal cell supervision circuits
KR100911716B1 (en) Method and apparatus to judge that mobile equipment is whether it is had on
RU2449299C1 (en) Microcontroller measuring converter for resistive sensor
JP6707373B2 (en) Cell balance device
WO2021235060A1 (en) Electronic device, test method for electronic device, and test system for electronic device
JP2022020267A (en) Light communication system
US11424715B2 (en) Solar energy detection module and solar panel
US20230216099A1 (en) Lithium-ion battery and optical communication system
JP2014106139A (en) Voltage monitoring system, voltage monitoring device, and voltage monitoring method
US20220283204A1 (en) Voltage monitoring device
JP2023000661A (en) Secondary battery module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763414

Country of ref document: EP

Kind code of ref document: A1