WO2022186166A1 - 接合構造体及びその製造方法 - Google Patents

接合構造体及びその製造方法 Download PDF

Info

Publication number
WO2022186166A1
WO2022186166A1 PCT/JP2022/008456 JP2022008456W WO2022186166A1 WO 2022186166 A1 WO2022186166 A1 WO 2022186166A1 JP 2022008456 W JP2022008456 W JP 2022008456W WO 2022186166 A1 WO2022186166 A1 WO 2022186166A1
Authority
WO
WIPO (PCT)
Prior art keywords
joined
metal
plating
bonded
plated
Prior art date
Application number
PCT/JP2022/008456
Other languages
English (en)
French (fr)
Inventor
宏平 巽
Original Assignee
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学 filed Critical 学校法人早稲田大学
Priority to US18/547,965 priority Critical patent/US20240165921A1/en
Publication of WO2022186166A1 publication Critical patent/WO2022186166A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K28/00Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
    • B23K28/006Welding metals by means of an electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1806Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by mechanical pretreatment, e.g. grinding, sanding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials

Definitions

  • the technology disclosed in this specification relates to a joint structure and a manufacturing method thereof.
  • Patent Literature 1 discloses a technique of joining copper chip electrodes, which are objects to be joined, or a copper chip electrode and a copper lead wire in a semiconductor device by plating mainly composed of nickel. disclosed.
  • plating is performed by circulating a plating solution around the contact portion, whereby the chip electrode and the lead wire are plated. forming a joint that joins them in between.
  • the present invention has been created in view of the above points, and an object of the present invention is to provide a bonded structure in which objects to be bonded made of metal are firmly bonded to each other with a plated metal, and a method for manufacturing the bonded structure.
  • a bonded structure according to the present invention includes a first bonded body made of a first metal, a second bonded body made of a second metal, and the first bonded body and the second bonded body. a plated part made of a plated metal between the joined bodies and joining the first joined body and the second joined body, wherein the plated part connects the first joined body and the second joined body; An association interface where the plating metal is associated is formed at a portion approximately equidistant from the surfaces to be joined of the joined body, and a recrystallized region in which the plating metal is recrystallized is provided near the association interface, or A first diffusion region in which the plating metal is diffused is provided in the vicinity of the meeting interface.
  • Another bonded structure according to the present invention includes a first bonded body made of a first metal, a second bonded body made of a second metal, and a a plated part made of a plated metal between two objects to be joined and joining the first object to be joined and the second object to be joined;
  • a boundary portion between at least one of the objects to be joined and the plating portion has a second diffusion region in which the metal forming the at least one object to be joined and the plating metal are diffused and mixed.
  • a plating solution is allowed to enter between a first bonded body made of a first metal and a second bonded body made of a second metal, and the By forming an association interface between the first object to be joined and the second object to be joined, the plated metal grown from each of the surfaces to be joined of the first object to be joined and the second object to be joined is associated with each other.
  • a recrystallized region is formed by recrystallizing the plating metal at the meeting interface.
  • Another method for manufacturing a bonded structure according to the present invention is to impregnate a plating solution between a first bonded body made of a first metal and a second bonded body made of a second metal, By forming an association interface between the first object to be joined and the second object to be joined, where plated metal grown from each of the surfaces to be joined of the first object to be joined and the second object to be joined meet. , a bonding step of bonding the first bonded body and the second bonded body with the plated metal, and a heat treatment step of heat-treating the plated metal after the bonding step, wherein the heat treatment step is the melting point of the plating metal is T1 (K) and the heat treatment temperature is T2 (K).
  • an association interface in which the plating metal is associated is formed at a portion approximately equidistant from each of the surfaces to be joined of the pair of members to be joined, and the plating metal is recrystallized in the vicinity of the association interface. or have a first diffusion region of plating metal diffused near the association interface. Therefore, it is possible to prevent or suppress breakage originating from the association interface, and realize a bonded structure in which objects to be bonded made of metal are firmly bonded to each other with the plated metal.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a joint structure according to a first embodiment
  • FIG. FIG. 4 is an enlarged cross-sectional view of a main part of the joint structure
  • It is a flow chart which shows a manufacturing method of a junction structure.
  • FIG. 4 is an enlarged side view of a main part of the joint structure
  • FIG. 11 is a top view of a joint structure according to a third embodiment
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 6, and is a cross-sectional view showing an enlarged main part; It is the graph which showed the test result of a shear test.
  • FIG. 10 is an SEM image of a joined body and a plated portion after cumulative heat treatment at 400° C. to 800° C.
  • FIG. It is a graph which shows the result of the SEM image which shows the to-be-joined body and plating part after heat processing at 400 degreeC, and an elemental line analysis.
  • FIG. 1 It is a graph which shows the result of the SEM image which shows the to-be-joined body and plating part after heat processing at 500 degreeC, and an elemental line analysis. It is a graph which shows the result of the SEM image which shows the to-be-joined body and plating part after heat processing at 700 degreeC, and an elemental line analysis. 4 is a graph showing an SEM image and elemental line analysis results showing a joined body and a plated portion after cumulative heat treatment at 400° C. to 800° C.
  • FIG. It is a SEM image which expanded the cross section of the plating part of the sample which did not smoothen. It is an SEM image which expanded the cross section of the plating part of the sample which performed the smoothing process.
  • FIG. 10 is a BSE image showing a bonded body and a plated portion of a bonded structure that has not been heat-treated, and an EBSD image of the corresponding bonded body and the plated portion;
  • FIG. 10 is a BSE image showing the object to be bonded and the plated portion after cumulative heat treatment at 400° C. to 800° C. and the corresponding EBSD image of the object to be bonded and the plated portion;
  • FIG. It is the graph which showed the test result of a tensile test.
  • the bonded structure 10 is formed by bonding a wire-shaped first bonded body 12 and a plate-shaped second bonded body 16 with a plated portion 14. , a second member to be joined 16 and a plated portion 14 .
  • the first object to be joined 12 and the second object to be joined 16 are each made of stainless steel, which is one of ferrous alloys.
  • the plated portion 14 is made of nickel (Ni) as a plating metal between the first object to be joined 12 and the second object to be joined 16 .
  • the plated portion 14 is formed by plating using a plating solution.
  • the first metal forming the first object to be joined 12 and the second metal forming the second object to be joined 16 are the same metal, but they may be different metals.
  • a bonded structure 10 in which a wire-shaped first bonded body 12 having a circular cross section and elongated elongated body and a flat plate-shaped second bonded body 16 having a flat surface will be described.
  • the shapes and the like of the first body 12 and the second body 16 and the bonding structure 10 formed by these are not limited to this.
  • joints structure 10 for example, pipes of a heat exchanger, a joint of a pipe and a housing, a joint of a pipe and a cooling fin, a joint of a cooling fin and a housing, a vacuum vessel, a joint of gas or liquid piping, a wire
  • a wire mesh that is joined together
  • a honeycomb structure such as a stainless steel catalyst carrier
  • a member that is joined to each other such as spectacles, in which minute parts of members are joined. That is, it is possible to join structures, which are conventionally joined by welding or brazing, at a low temperature by plating instead of brazing or the like.
  • first member to be joined 12 and the second member to be joined 16, which are independent members, are described as a pair of members to be joined.
  • the portions facing each other across the discontinued portion can be regarded as a pair of members to be bonded, and a plated portion may be formed between the portions to form a bonding structure.
  • the first object to be joined 12 is fixed on the plate surface of the second object to be joined 16 so as to extend along the plate surface of the second object to be joined 16 . That is, the first object to be joined 12 linearly contacts the second object to be joined 16 along the extending direction in such a manner that its extending direction is orthogonal to the normal direction of the plate surface of the second object to be joined 16 . is doing.
  • a part of the surface of the first object to be joined 12 (the part facing the second object to be joined 16) is a surface to be joined 12a to be joined to the second object to be joined 16
  • Part of the surface of the object to be joined 16 (the part facing the first object to be joined 12 ) is a surface to be joined 16 a to be joined to the first object to be joined 12 .
  • the distance between the surface to be joined 12a of the first object to be joined 12 and the surface to be joined 16a of the second object to be joined 16 extends outward from the contact portion C1 between the first object to be joined 12 and the second object to be joined 16. gradually widening. In other words, the distance between the surfaces to be bonded 12a, 16a gradually increases continuously as the partial regions of the surfaces to be bonded 12a, 16a move away from the contact portion C1 where they are in contact with each other. In this way, the plating portion 14 is formed between the surfaces to be bonded 12a and the surfaces to be bonded 16a, the distance of which gradually increases from the contact portion C1 toward the outside. By bonding to the body 16 to be bonded, the first body 12 and the second body 16 are bonded.
  • first object to be joined 12 and the second object to be joined 16 are in linear contact.
  • the first object to be joined 12 and the second object to be joined 16 may be in point contact as in the case of joining the objects to be joined.
  • the first object to be joined 12 and the second object to be joined 16 may be close to each other in a dotted or linear manner.
  • the two surfaces to be joined may be such that the distance between them increases continuously as the partial regions of these surfaces to be joined move away from the positions where they are close to each other.
  • the parts of the surfaces to be joined of each object to be joined are close to each other in a state where the parts to be joined can be regarded as points or lines, and the distance between the parts to be joined is means that is small.
  • the distance between the adjacent portions of the surfaces to be welded is the maximum length outward from the adjacent portion of the surfaces to be welded, that is, the length from the closest portion of the surfaces to be welded to the farthest portion of the surfaces to be welded. On the other hand, 1/5 or less is preferable, and 1/10 or less is more preferable.
  • the configuration in which the distance between the surfaces to be bonded is widened from the contact portion C1 of the surfaces to be bonded 12a and 16a or from the adjacent portion toward the outside, as will be described later in detail, It prevents or suppresses the generation of voids at the portion where the columnar crystals that become the grown plated portion 14 meet. Thereby, the bonding strength between the first body to be bonded 12 and the second body to be bonded 16 can be increased.
  • the objects to be joined may partially face each other. It may also be a configuration in which the objects to be joined are in contact with each other in a planar manner, or parts of the objects to be joined are in close proximity to each other in a planar manner. In this case, it is preferable to have a portion where the distance between the surfaces to be bonded is widened outward from the contact portion of the surfaces to be bonded or from the adjacent portion.
  • the boundary between the portion that is in planar contact or proximity and the portion where the interval is gradually increased will be in linear contact or proximity. Therefore, even with such a configuration, voids are generated at the portions where the columnar crystals that become the plated portions that grow from the contact portions or the adjoining portions and that gradually increase outward from the surfaces to be joined meet. is prevented or suppressed.
  • the plated portion 14 is formed between the surface to be joined 12a of the first object to be joined 12 and the surface to be joined 16a of the second object to be joined 16 without voids and without gaps.
  • the plated portion 14 has a recrystallized region RC formed in a portion that straddles the association interface AI.
  • the recrystallized regions RC are granular crystals formed by recrystallization of columnar crystals of the plated metal (nickel in this embodiment) grown from the surfaces to be joined 12a and 16a during the manufacturing process of the joint structure 10, which will be described later. crystal region.
  • the metal forming the first object to be joined 12 and the second object to be joined 16 is applied to the plated portion 14, or the plated metal of the plated portion 14 is applied to the first object to be joined 12 and the second object to be joined.
  • the boundaries between the first and second bodies 12 and 16 to be bonded and the plated portion 14, that is, the surfaces to be bonded 12a and 16a may not be clear. 12a and 16a are drawn.
  • the columnar crystals grown from the surfaces to be bonded 12a and 16a meet (collide) at portions approximately equidistant from the surfaces to be bonded 12a and 16a, and the portions to be bonded meet.
  • Association interfaces AI between the columnar crystals extending from 12a and 16a are formed.
  • a heat treatment is performed in the manufacturing process to cause recovery (atomic rearrangement) at the association interface, thereby forming the first diffusion region MR1 and the second diffusion region MR2.
  • heat treatment is further performed at a high temperature for a long period of time to form a recrystallized region RC in which the plated metal is recrystallized in the plated portion 14 at portions substantially equidistant from the surfaces 12a and 16a to be bonded. formed. That is, in the plated portion 14, granular crystals are formed by recrystallization of the plated metal so as to straddle the association interface AI. Therefore, the plated portion 14 does not have an association interface AI, which has a weak bonding strength and is a starting point of breakage of the plated portion 14, so that breakage originating from the association interface AI can be prevented or suppressed. As a result, in the joined structure 10, the joining strength between the first joined body 12 and the second joined body 16 is large, and the joining is strong.
  • the recrystallized region RC is formed in a part of the plated portion 14 in the bonded structure 10 of the present embodiment, the recrystallized region RC may not be formed in the plated portion 14 . Even if the recrystallized region RC is not formed, at the recovery temperature or higher, diffusion occurs at the meeting interface and the interface strength increases. Crystal recovery (atomic rearrangement) occurs in the plated portion 14 of the bonded structure 10 by heat treatment during the manufacturing process. As a result, the bonding between the first body 12 and the second body 16 can be made stronger.
  • the occurrence of crystal recovery is, for example, due to a decrease in the Vickers hardness of the plated portion 14, or the formation of subgrain boundaries (or subgrain grain structures) in the plated portion 14, or a decrease in dislocation density. It can be confirmed by observing with, etc.
  • the crystal recovery in the plated portion 14 may be formed only in the vicinity of the association interface AI, as shown as the first diffusion region MR1 in FIG. 2, for example.
  • the first diffusion region MR1 is a region in which atoms (nickel atoms) of the plating metal forming the plating portion 14 are diffused across the association interface AI. That is, the first diffusion region MR1 is composed of plating metal atoms forming crystals grown from the bonding surface 12a of the first bonding body 12 and crystals growing from the bonding surface 16a of the second bonding body 16. Atoms of the constituent plating metal are mixed.
  • the association formed in the plated portion 14 will be Bonding at the interface AI becomes stronger. Thereby, the bonding between the first body to be bonded 12 and the second body to be bonded 16 can be strengthened. Note that if the recovery of the crystals in the plated portion 14 occurs over the entire plated portion 14, the bonding between the first joined body 12 and the second joined body 16 can be made even stronger.
  • the recrystallized region RC straddling the association interface AI generated in the manufacturing process of the bonded structure 10 is formed in at least a part of the plated portion 14, the first bonded body 12 and the second bonded body are formed.
  • the bonding strength with the bonded body 16 can be increased.
  • the recrystallized region RC is formed only in the vicinity of the association interface AI, the association interface AI disappears, and recrystallization occurs outside the recrystallized region RC (on the side of the surfaces to be joined 12a and 16a).
  • a region (a region composed of columnar crystals) may be formed.
  • the area ratio of the columnar crystals whose length is three times or more the width of one columnar crystal to the area of the plated portion 14 is 50% or more, the first bonded body A good bond can be obtained between 12 and the second body 16 to be bonded. More preferably, if it is 66% or more, the generation of voids can be effectively suppressed.
  • crystal orientation of growth in the case of nickel, ⁇ 001> and ⁇ 101> are the preferential growth directions, and even when they are mixed, they exhibit columnar crystals, and the above ratio due to them is 50% or more. preferably 66% or more.
  • the expression of crystal orientation when the crystal is cubic, ⁇ 101>, ⁇ 110>, and ⁇ 011> are equivalent, and ⁇ 100>, ⁇ 010>, and ⁇ 001> are also equivalent. , are treated as the same crystal orientation group.
  • the boundary portion (near the bonded surface 12a) between the first bonded body 12 and the plated portion 14 (near the bonded surface 12a) and the second A second diffusion region MR2 is formed in each boundary portion between the joined body 16 and the plated portion 14 (in the vicinity of the joined surface 16a).
  • the second diffusion region MR2 formed in the boundary portion between the first object to be joined 12 and the plated portion 14 constitutes the plated portion 14 together with atoms such as iron of the stainless steel forming the first object to be joined 12. Atoms of the plating metal (nickel atoms) are mixed.
  • the proportion of atoms such as iron in the stainless steel forming the first object to be joined 12 gradually decreases from the first object to be joined 12 toward the plating portion 14, and the plating portion 14
  • the ratio of nickel atoms in the plating metal gradually decreases from 1 to 1 toward the first joined body 12 .
  • the second diffusion region MR2 formed at the boundary between the second object 16 and the plating portion 14 is composed of atoms such as iron of the stainless steel forming the second object 16 and the plating portion. Atoms (nickel atoms) of the plating metal that constitutes 14 are mixed.
  • the proportion of atoms such as iron in the stainless steel constituting the second object to be joined 16 gradually decreases from the second object to be joined 16 toward the plating portion 14, and the plating portion 14
  • the ratio of nickel atoms in the plating metal gradually decreases continuously from the second body 16 toward the second body 16 to be joined.
  • the bonded structure 10 has the second diffusion regions MR2 at the boundary between the first object to be bonded 12 and the plating portion 14 and at the boundary between the second object to be bonded 16 and the plating portion 14, respectively.
  • the bonding at the boundary portion between the first object to be bonded 12 and the plating portion 14 and the boundary portion between the second object to be bonded 16 and the plating portion 14 is strong. Therefore, in the joined structure 10, the joining between the first joined body 12 and the second joined body 16 is stronger.
  • the thickness of the diffusion region is preferably 5 nm or more (about 10 atoms).
  • the thickness of the diffusion region can be calculated from the heat treatment temperature and heat treatment time based on the diffusion formula of each atom. Also, the thickness of the diffusion region can be confirmed by cross-sectional analysis using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the first joined body 12 and the second joined body 16 are made of stainless steel, which is one of ferrous alloys, and the plating portion 14 is made of nickel as a plating metal.
  • the stainless steel contains nickel as an alloying element, and if the solid solubility limit is not exceeded, even if nickel diffuses into the stainless steel, there will be little deterioration due to changes in the crystal structure or precipitates.
  • copper and nickel are also completely solid solutions. In this way, when both bodies to be joined are completely solid solution, there is no different phase such as an intermetallic compound between dissimilar metals. Bonding with excellent strength can be realized between 16 and plated portion 14 . Also, both stainless steel and nickel are excellent in corrosion resistance. Therefore, the bonded structure 10 maintains bonding with excellent strength for a long period of time.
  • the first object to be joined 12 and the second object to be joined 16 are each made of stainless steel, and the metal forming the first object to be joined 12 and the second object to be joined 16 is stainless steel is not limited to
  • the metal constituting the object to be joined is preferably an iron-based alloy including various stainless steels, copper, or a copper alloy. Iron-based alloys refer to high-alloy steels such as ordinary steels, tool steels, stainless steels and heat-resistant steels.
  • nickel is used as the plating metal forming the plating portion 14, but it is not limited to nickel.
  • the plating metal forming the plating portion 14 is preferably nickel, a nickel alloy, copper, or the like.
  • a nickel alloy means a zinc-nickel alloy, a copper-nickel alloy, or the like. It is preferable that the metal forming the object to be joined and the plating metal forming the plated portion 14 be a complete solid solution as described above, or be metals with relatively large solid solubility limits or the same metal. This is because if the metal forming the object to be joined and the plating metal are the same, they do not form different phases due to diffusion. A combination of copper and nickel, a combination of gold and silver, etc. can be mentioned as a complete solid solution.
  • the first object to be joined 12 and the second object to be joined 16 are prepared.
  • the surface roughness is improved and smoothed by machining or polishing.
  • the surfaces 12a and 16a to be bonded of the first body 12 and the second body 16 to be bonded preferably have an arithmetic surface roughness Ra of 5 ⁇ m or less, and preferably 3 ⁇ m or less. It is more preferable to have
  • the growth direction of the columnar crystals of the plated metal growing from each of the surfaces to be joined 12a and 16a is made uniform. That is, the growing directions of the columnar crystals from the surfaces to be joined 12a and 16a should not be greatly different from each other.
  • the columnar crystals growing from the outer portion grow earlier than the columnar crystals growing from the inner portion on the other surface to be bonded 16a. Therefore, it prevents or suppresses the growth of columnar crystals from the inner part from terminating before meeting, and prevents or suppresses the generation of voids in the plating part 14.
  • the surface of the first object to be joined 12 and the surface of the second object to be joined 16 are subjected to alkaline degreasing and acid cleaning to remove surface dust, oil, and the like.
  • Each treatment in the pretreatment step S4 may be performed while the first object to be joined 12 is fixed to the second object to be joined 16 in a joining manner, or may be carried out separately while they are separated.
  • This pretreatment step S4 may be performed according to the material of the object to be joined, and may be omitted.
  • plating is performed to form the plated portion 14 between the bonding surface 12a of the first bonding object 12 and the bonding surface 16a of the second bonding object 16,
  • the first object to be joined 12 and the second object to be joined 16 are joined.
  • the plating process is performed by fixing the first object 12 to the second object 16 in linear contact along the extending direction. That is, the plating process is performed while fixing the first object to be joined 12 and the second object to be joined 16 in a state to be joined.
  • the primary plating process is performed after the primary plating process.
  • a nickel thin film is formed on the surfaces of the first object to be joined 12 and the second object to be joined 16 while removing the passive film formed on the surfaces thereof.
  • Wood's bath Ni strike plating
  • the thin film formed by the base plating process becomes part of the plating portion 14 . If it is not necessary to remove the passivation film from the object to be joined, that is, if the surface to be joined has good platability, such a base plating treatment is unnecessary.
  • the plated portion 14 is formed between the surface to be joined 12 a of the first object to be joined 12 and the surface to be joined 16 a of the second object to be joined 16 .
  • the temperature of the plating solution is preferably about 55°C. It should be noted that when processing is performed by electroplating, such as in Wood's bath or sulfamic acid bath, the first object to be joined 12 and the second object to be joined 16 are in a state of being electrically connected, and each is equipotential. Alternatively, it is preferable that the first body 12 and the second body 16 are contacted or short-circuited at another location so as to electrically conduct.
  • the plating solution used in this plating treatment is preferably prepared so that the columnar crystals meet sequentially outward from the region where the distance between the surfaces to be bonded 12a and the surfaces to be bonded 16a is small.
  • the plating solution used in the plating process preferably does not contain additives that promote grain refinement, such as brightening agents, because the structure of the plating portion tends to form columnar crystals. A small current density is preferred.
  • a sample was prepared using a plating solution in which the plating metal was made finer by adding a brightening agent, and the above shear test and observation of the joint cross section were performed. was 20%.
  • the shear strength is, for example, 100 MPa or more
  • the columnar crystal content is, for example, 80% or more. Therefore, the addition (content) amount (including zero) of the brightener may be determined according to the desired shear strength, columnar crystal content, gloss, and the like.
  • the metals constituting both bodies to be joined are both aluminum, it is difficult to perform direct electrolytic plating. After the bonding, a gap between the surfaces to be joined is properly provided, and electrolytic nickel plating is grown in the gap, so that the two bodies to be joined can be joined.
  • the heat treatment conditions after plating are preferably 200° C. or higher and 600° C. or lower.
  • the object to be joined made of aluminum is useless.
  • Nickel is deposited by electroplating, and pretreatment is performed on the object to be joined made of stainless steel.
  • the base plating treatment is performed in a Wood bath
  • the main plating treatment is performed in a sulfamic acid bath, so that the aluminum and the stainless steel can be joined with the plated metal.
  • the objects to be joined made of stainless steel are subjected to base plating treatment, and then the two objects to be joined are brought into contact with each other and subjected to the main plating treatment, thereby joining the objects to be joined. good too.
  • plating is performed on the entire surfaces of the first object to be joined 12 and the second object to be joined 16, but portions that do not contribute to joining need not be plated.
  • a resist film or the like is applied in advance to the portions of the surfaces of the first object to be joined 12 and the second object to be joined 16 that do not require plating (parts other than the surfaces to be joined 12a and 16a).
  • plating can be selectively performed.
  • selective plating can be performed by performing plating without removing the passivation film on the portions of the surfaces of the first object to be joined 12 and the second object to be joined 16 that do not need to be plated. .
  • elongated nickel columnar crystals grow from the surfaces to be joined 12a and 16a, respectively.
  • the columnar crystals grown from the surface to be bonded 12a of the first object to be bonded 12 and the columnar crystals grown from the surface to be bonded 16a of the second object to be bonded 16 collide with each other at their tips to meet, and the surfaces to be bonded
  • a meeting interface AI is formed at a portion approximately equidistant from 12a and 16a.
  • This meeting interface AI is formed in order from a point where the distance between the surfaces 12a and 16a to be joined is narrow to a point where the distance is wide. As a result, the generation of voids in the plated portion 14 is prevented or suppressed.
  • a heat treatment is performed to heat the structure (hereinafter referred to as a pre-treatment joined structure) in which the objects to be joined 12 and 16 are joined at the plating portions 14 through the joining step S6 as described above.
  • heat treatment is performed in the atmosphere at 700° C. for 90 minutes. Since the recrystallization temperature is approximately 1/3 of the melting point, this heat treatment assumes that the melting point of the plated metal forming the plated portion 14 is T1 (K), and the heat treatment temperature for the bonded structure before treatment is T2 (K ), it is preferable that a relationship of T2 ⁇ T1 ⁇ 1/3 is established.
  • the heat treatment is preferably performed at a temperature of 576K or higher, which is one third of the melting point of nickel, 1728K.
  • the heat treatment temperature is more preferably T1/3+98K or higher.
  • the heat treatment temperature is preferably within a range in which the performances of the objects to be joined 12 and 16 and the plated portion 14 are not deteriorated.
  • the heat treatment temperature is preferably 300° C. or higher and 1150° C. or lower.
  • the above heat treatment causes recovery (rearrangement of atoms) in the plated portion 14, forms the first diffusion region MR1 in the vicinity of the association interface AI, and A second diffusion region MR2 can be formed in . Furthermore, in a high temperature range, columnar crystals can be recrystallized into granular crystals to form recrystallized regions RC.
  • the plating metal is nickel
  • the pre-treatment bonded structure is heated at a heat treatment temperature of 250° C.
  • the atoms of iron or the like of the stainless steel constituting the second body 16 are diffused toward the plated portion 14 side.
  • the plating metal atoms (nickel atoms) forming the plating portion 14 are diffused toward the second object to be joined 16 .
  • the second diffusion regions MR2 can be formed in the boundary portion between the first object to be bonded 12 and the plating portion 14 and the boundary portion between the second object to be bonded 16 and the plating portion 14, respectively.
  • the Vickers hardness of the plated portion 14 decreases due to recovery (atomic rearrangement) occurring at the meeting interface of the plated portion 14 .
  • the plating metal is nickel and the hardness symbol is HV0.025
  • the Vickers hardness before heating is about 280 HV
  • the Vickers hardness after heat treatment is about 220 to 120 HV.
  • the Vickers hardness of the plated portion 14 can be measured with micro Vickers by a known measuring method according to Japanese Industrial Standard JIS Z 2244.
  • the columnar crystals can be recrystallized into granular crystals to form the recrystallized regions RC by heating the pre-treatment bonded structure at a heat treatment temperature of 250° C. or higher.
  • This change to granular crystals starts from the association interface AI where a strong stress is applied in the plated portion 14, and the recrystallized region can be expanded by lengthening the heating time.
  • the width of the recrystallized region can be adjusted by adjusting the heat treatment temperature, heating time, and the like.
  • the joining structure 10 is manufactured through the above steps. In the manufactured bonded structure 10, the bonding between the first bonded body 12 and the second bonded body 16 is strong.
  • first joined bodies 32 and second joined bodies 36 which are repeatedly bent in an M-shape, are alternately arranged, and plated portions 34 are provided. It is joined by In addition, it is the same as that of 1st Embodiment other than demonstrating a detail below.
  • the bonded structure 30 is used, for example, as a honeycomb-shaped metal carrier for purifying exhaust gas that is attached to the inside of an exhaust system pipe of an automobile or a motorcycle.
  • 36 are arranged alternately in the radial direction and concentrically wound.
  • the first joined body 32 and the second joined body 36 are each formed by bending or curving a strip of ferritic stainless steel, which is one of iron-based alloys, into a predetermined shape.
  • the plating portion 34 is formed of nickel (Ni) as a plating metal by plating using a plating solution between the first object to be joined 32 and the second object to be joined 36 .
  • the first metal forming the first object to be joined 32 and the second metal forming the second object to be joined 36 are the same metal, but they may be different metals.
  • the first object to be joined 32 is fixed to the second object to be joined 36 while the bending portions bent in an M shape are adjacent to the second object to be joined 36 . Since the first object to be joined 32 and the second object to be joined 36 have a width in the depth direction of the drawing, the bent portion of the first object to be joined 32 is in linear contact with the second object to be joined 36 . is doing. As shown in FIG. 5, the first object to be joined 32 has a surface to be joined 32a provided for joining to the second object to be joined 36 at the tip 32b of the bent portion. Reference numeral 36 denotes a surface to be joined 36 a that is used for joining with the first member 32 to be joined.
  • the distance between the surface to be bonded 32a of the first object to be bonded 32 and the surface to be bonded 36a of the second object to be bonded 36 extends outward from the distal end portion 32b of the bent portion of the first object to be bonded 32. It's getting wider and wider. In other words, the distance between the surfaces to be joined 32a, 36a gradually increases continuously as the distance from the tip 32b increases. Thus, the plated portion 34 is formed between the surface to be joined 32a and the surface to be joined 36a, the interval of which gradually increases outward from the tip portion 32b.
  • the bonded structure 30 is manufactured by the same procedure as that of the bonded structure of the first embodiment, so that the bonding strength between the first bonded body 32 and the second bonded body 36 is large, resulting in a strong bond.
  • the plating solution is circulated between the first object to be joined 32 and the second object to be joined 36 to form the plated portion 34, so that the first object to be joined 32 and the second object to be joined can be easily joined.
  • a joint 36 can be joined.
  • the metal carrier for purifying the exhaust gas described above As the metal carrier for purifying the exhaust gas described above, a joint structure in which objects to be joined made of stainless steel are joined together by brazing in a vacuum, or a joining structure in which objects to be joined made of ceramics are joined to each other Structures are known, but those brazed in a vacuum have the problem of high manufacturing costs, and those using ceramics have the problem of increased pressure loss.
  • the joint structure 30 maintains joint strength equivalent to that of metal carriers joined by conventional brazing, while reducing manufacturing costs and preventing or suppressing an increase in pressure loss.
  • the joint structure 50 includes electrodes provided on the surface of a wiring member 52 as one member to be joined extending in a belt shape and a solar cell 56 as the other member to be joined. 58 are joined by the plated portion 54 .
  • a solar cell module is configured by joining the wiring material 52 to a plurality of solar cells 56 by the plating portions 54 .
  • one of the solar battery cell 56 and the wiring member 52 is the first member to be joined, and the other is the second member to be joined.
  • it is the same as that of 1st Embodiment other than demonstrating a detail below.
  • the wiring member 52 is made of copper and electrically connects a plurality of solar cells 56 .
  • the solar battery cell 56 is mainly made of silicon and has a flat plate shape.
  • the plating portion 54 is formed of nickel (Ni) as a plating metal between the wiring member 52 and the solar cell 56 by plating using a plating solution.
  • a plurality of electrodes 58 are formed on one surface of the solar cell 56 .
  • the plurality of electrodes 58 linearly extend in a direction perpendicular to the extending direction of the wiring member 52 and are arranged at predetermined intervals in the extending direction of the wiring member 52 .
  • the wiring material 52 is not bonded to the solar cells 56 entirely on the surface facing the solar cells 56 , but is bonded to the electrodes 58 only at the portions intersecting the electrodes 58 of the solar cells 56 . there is That is, the wiring members 52 are locally joined to the solar cells 56 .
  • the wiring member 52 is locally bonded in this manner, the stress applied to the plated portion 54 is effectively relieved compared to a configuration in which the entire surface facing the solar cell 56 is bonded. . Therefore, the durability of the plated portion 54 is enhanced, and the life of the joint structure 50 as a solar cell module is extended as compared with the conventional solar cell module.
  • the wiring material 52 has a mountain-shaped cross section that protrudes toward the electrode 58 of the solar cell 56 and is joined with the top portion thereof in contact with the electrode 58 . Since the top of the wiring member 52 extends linearly in the extending direction, the wiring member 52 and the electrode 58 are in linear contact. In addition, even if part or all of the top of the wiring member 52 is separated from the electrode 58 in the extension direction of the wiring member 52, there is no problem as long as it is within a range where it can be regarded as being close to the electrode 58 as described above.
  • the wiring member 52 has a surface to be joined 52a on the peripheral surface of the top portion, which is used for joining with the electrode 58 of the solar cell 56.
  • the electrode 58 of the solar cell 56 has a silver paste 60 on its surface. It is sintered, and a part of its surface serves as a joint surface 58 a to be joined to the wiring member 52 .
  • the distance between the bonding surface 52a of the wiring member 52 and the bonding surface 58a of the electrode 58 of the solar cell 56 gradually increases outward from the contact portion C2 where the top of the wiring member 52 contacts the electrode 58 of the solar cell 56. It's wide. In other words, the distance between the surfaces to be joined 32a, 36a gradually increases continuously as the distance from the contact portion C2 increases.
  • the junction structure 50 joins the wiring members 52 and the electrodes 58 of the solar cells 56 by being manufactured in the same procedure as the junction structure of the first embodiment, except for the heat treatment step. Note that the Wood bath is unnecessary.
  • the plated portion 54 is formed between the bonding surface 52a of the wiring member 52 and the bonding surface 58a of the electrode 58 of the solar cell 56 in such a manner that the generation of voids is prevented or suppressed. As a result, the bonding between the wiring members 52 and the solar cells 56 is good.
  • the bonding between the wiring members 52 and the solar cells 56 can be changed from the solder generally applied bonding between the wiring members and the solar cells in a conventional solar cell module to the plating metal made of nickel.
  • the plating portion 54 of the plating portion 54 By replacing the bonding with the plating portion 54 of , good bonding between the wiring member 52 and the solar battery cell 56 is realized.
  • nickel used for the plating part 54 has a thermal expansion coefficient different from that of copper, which is the material of the wiring material 52, which is smaller than the difference between solder and copper. Detachment or the like of the wiring member 52 due to deterioration is less likely to occur.
  • the joint structure 50 in which the wiring members 52 and the solar cells 56 are joined it is preferable not to perform heat treatment, or to perform heat treatment for the purpose of relaxing (removing or reducing) the distortion of the plated portion 54 .
  • By relaxing the distortion of the plated portion 54 by heat treatment flexibility can be imparted to the connection between the plated portion 54, that is, the wiring material 52 and the electrode 58, and the temperature between the wiring material 52 and the solar cell 56 during use can be increased. Destruction of the plated portion 54 due to expansion and contraction due to change is suppressed, and the life of the solar cell module can be extended.
  • the above heat treatment is preferably performed at a temperature within the range of 250 to 800°C. Removal or relaxation of the strain of the plated portion 54 can be confirmed as a decrease in Vickers hardness.
  • the plating metal is nickel, when the hardness symbol is HV0.025, the Vickers hardness before heating is about 280 HV, while the Vickers hardness after heat treatment is about 220 to 120 HV.
  • the Vickers hardness of the plated portion 54 can be measured in micro Vickers by a known measuring method according to Japanese Industrial Standard JIS Z 2244.
  • (First embodiment) Preparation of samples
  • a plurality of samples of a joint structure in which a pair of objects to be joined made of stainless steel are joined at a plated portion are produced, and the joint strength is evaluated and the joint cross section is observed. ⁇ Analysis was performed.
  • a first joined body and a second joined body having a composition of SUS304 as stainless steel were prepared.
  • the first object to be joined was wire-shaped with a diameter of 0.5 mm and a length of 2 mm
  • the second object to be joined was a flat plate-shaped object with a thickness of 0.5 mm.
  • Nickel was used as the plating metal forming the plating portion.
  • the sample preparation method was the same as the manufacturing method in the first embodiment.
  • the first and second objects to be joined were subjected to a smoothing treatment to improve the surface roughness of the first and second objects to be joined.
  • the stainless steel surfaces of the first and second members to be joined were degreased with alkali and washed with acid to remove surface dust, oil, and the like.
  • the first joined body is brought into linear contact with the second joined body and fixed, the primary plating is performed in Wood's bath, and then the main plating is performed in sulfamic acid bath, The first joined body and the second joined body were joined at the plating portion.
  • the plating conditions were a plating solution temperature of 55° C., a plating current density of 1.5 A/dm 2 , and a plating width of 0.3 mm.
  • the sample was heat-treated in the air.
  • heat treatment was performed for 90 minutes at heat treatment temperatures of 400°C (673K), 500°C (773K), 600°C (873K), 700°C (973K), and 800°C (1073K).
  • Each sample (hereinafter referred to as a single temperature sample) was prepared.
  • a sample without heat treatment and a sample subjected to heat treatment sequentially from 400° C. to 800° C. in increments of 100° C. (hereinafter referred to as accumulated heat treatment samples) were also prepared.
  • FIGS. 13-16 are a single-temperature sample heat-treated at 400° C.
  • FIG. 14 is a single-temperature sample heat-treated at 500° C.
  • FIG. 15 is a single-temperature sample heat-treated at 700° C.
  • FIG. 16 is the cumulative heat-treated sample. are shown respectively.
  • the boundary portion between the first object to be joined and the plating portion and the boundary portion between the second object to be joined and the plating portion i.e., the diffusion region MR, where atoms such as iron and nickel atoms
  • the slope of the fluorescent X-ray intensity is almost vertical (large slope). From this, in the sample heat-treated at 400 ° C., diffusion of atoms such as iron constituting the first bonded body and the second bonded body into the plating portion and nickel atoms constituting the plating portion of the first bonding It can be seen that although there is diffusion to the body and the second body to be bonded, it does not progress much.
  • the slope of the fluorescence X-ray intensity of atoms such as iron and nickel atoms in the diffusion region MR is smaller than that in the single-temperature sample heat-treated at 400° C.
  • Atoms such as iron constituting the body and the second body are diffused into the plated part, and nickel atoms constituting the plated part are diffused into the first body and the second body.
  • the single-temperature sample heat-treated at 700 ° C. has a smaller gradient of fluorescent X-ray intensity of atoms such as iron and nickel atoms in the diffusion region MR than the single-temperature sample heat-treated at 500 ° C. It can be seen that the diffusion progresses further than in the case of heat treatment at the heat treatment temperature of .
  • the gradient of the fluorescent X-ray intensity of atoms such as iron and nickel atoms in the diffusion region MR is smaller in the cumulative heat treatment sample than in the single temperature sample heat treated at 700°C. From this, in the cumulative heat treatment sample, compared with the sample heat-treated at 700 ° C., the diffusion of atoms such as iron constituting the first joined body and the second joined body to the plated part and the formation of the plated part It can be seen that the diffusion of the nickel atoms to the first bonded body and the second bonded body progresses further.
  • a pipe-shaped first joined body made of stainless steel and having both ends opened and a lid-shaped second joined body closing one end of the first joined body are plated.
  • a sample of the joint structure joined by 1 was prepared, vacuum was drawn from the other end of the open pipe, and a leak test was conducted to evaluate the goodness of joint of the lid to the pipe.
  • the first pipe-shaped body to be joined had an outer diameter of 15 mm and an inner diameter of 8.3 mm, and the plated metal forming the plated portion was nickel.
  • a corner of one end closed by the lid-shaped second object to be joined was tapered from the outside to the inside by a length of 0.5 mm and a taper angle of 20°.
  • the first to-be-joined body and the second to-be-joined body were subjected to pretreatment to remove surface dust, oil, and the like.
  • the pretreatment conditions were the same as in the first embodiment.
  • the sample was immersed in a plating solution for plating with nickel (Ni) as a plating metal, and formed by taper processing. A plating process was performed to form a plated portion in the gap.
  • the first sample was continuously subjected to the sulfamic acid bath for 90 minutes, and the second sample was subjected to the sulfamic acid bath for 60 minutes, then once removed from the plating solution and again subjected to the sulfamic acid bath for 30 minutes. made respectively.
  • Other plating conditions were the same as in the first embodiment.
  • the leak test described above was performed on each of the prepared samples. As a result of the leak test, it was confirmed that sufficient bonding strength was obtained for the first sample, and the bonding was good. In addition, it was confirmed that the leak amount was further reduced in the second sample. From the results of this leak test, the joint structure joined by plating as described above can be applied not only to those requiring joint strength, but also to metal vacuum containers, liquid containers, cooling pipes, etc. I know there is. A leak test was performed on the first sample and the second sample before and after the heat treatment, but no obvious change in the amount of leak was observed before and after the heat treatment.
  • the taper angle which is the angle formed by the bonding surface of the first workpiece and the bonding surface of the second workpiece, is 2° or more and 25° or less. preferably within the range. If the taper angle is excessively large, the misorientation at the meeting interface becomes large, voids are likely to occur, and there is a possibility that the plating thickness becomes thicker and the plating time becomes longer. Therefore, by setting the taper angle to 25° or less, it is possible to shorten the time for forming the plated portion in the gap formed between the surfaces to be joined in the manufacturing process, which is preferable, and more preferably 15° or less. be.
  • the taper angle is too small, it becomes difficult for the plating solution to flow. Therefore, by setting the taper angle to 2° or more, the plating solution can be more reliably supplied to the gap, and the possibility of defects such as voids can be reduced, which is preferable, and more preferably 5°. ° or more.
  • the surfaces to be bonded of the first and second bodies to be bonded which are the same as those in the second embodiment, are subjected to a smoothing treatment to improve the surface roughness before the pretreatment.
  • a sample with and without the test was prepared. After plating these samples, differences in crystal growth were confirmed by observing cross sections in the vicinity of the plated portions for each.
  • surface roughness is improved for each bonding surface of the first bonding object and the second bonding surface by using an automatic polishing device AutoMet 250 manufactured by Buehle, and the arithmetic surface roughness is The value of thickness Ra is set to 3 ⁇ m or less.
  • the columnar crystals growing from the outer portion grow from the other surface to be bonded before the columnar crystals growing from the inner portion. It can be inferred that the growth of the columnar crystals from the inner portion stops before they meet, and voids are generated at the meeting interface AI.
  • a sample of a bonded structure was prepared by bonding a flat plate-shaped first bonded body and a second bonded body made of stainless steel at a plated portion. , observed and analyzed the joint cross section.
  • a first joined body and a second joined body having a composition of SUS304 as stainless steel were prepared.
  • the thickness of each of the first joined body and the second joined body was 0.2 mm, and the plating metal forming the plating portion was nickel.
  • the sample preparation method was the same as the manufacturing method in the first embodiment.
  • one side surface of the first member to be joined and one side surface of the second member to be joined were tapered so as to be inclined in a cross-sectional view.
  • the taper process is performed by linearly contacting the tip of one side surface of the first article to be joined and the tip of one side surface of the second article to be joined.
  • the taper angle between the two bodies to be joined was set to 5 degrees.
  • the stainless steel surfaces of the first and second members to be joined were degreased with alkali and washed with acid to remove surface dust, oil, and the like.
  • the two bodies to be bonded are placed on a glass plate while the tip of one side of the first body and the tip of one side of the second body are in linear contact.
  • the base plating treatment was performed in Wood's bath, and then the main plating treatment was performed in sulfamic acid bath to join the first joined body and the second joined body at the plated portion.
  • the conditions for the plating treatment were a plating solution temperature of 55° C., a plating current density of 1.5 A/dm 2 , and a plating width of 0.2 mm, that is, the entire surface in the thickness direction was plated.
  • the sample was heat-treated in the air.
  • a sample without heat treatment and a sample subjected to heat treatment sequentially from 400° C. to 800° C. in increments of 100° C. for 90 minutes were prepared.
  • the cross section (joint cross section) of the plated part and its vicinity was observed with a scanning electron microscope (SEM) for the sample that had not been heat treated.
  • SEM scanning electron microscope
  • SU5000 manufactured by Hitachi was used, and the crystal orientation was measured by backscattered electron diffraction (EBSD). As shown in FIG. 21, it was confirmed that columnar crystals were uniformly growing from each of the surfaces to be bonded of the first and second bodies to be bonded.
  • Example 5 In Example 5, a plurality of samples of a joint structure in which a pair of aluminum members to be joined were joined at a plated portion were prepared, and the joint strength was evaluated, and the joint cross section was observed and analyzed.
  • a first object to be joined having a composition of 99% Al and a second object to be joined having a composition of 99.5% aluminum (A1050P) were prepared.
  • the first object to be joined was wire-shaped with a diameter of 0.5 mm and a length of 2 mm, and the second object to be joined was a flat plate-shaped object with a thickness of 1 mm. Nickel was used as the plating metal forming the plating portion.
  • the sample preparation method was the same as the manufacturing method in the first embodiment.
  • the bonding strength was evaluated using the same method, conditions, and equipment as in the first example. As a result of the shear strength measurement, both the sample without heat treatment and the sample heat-treated at 150° C. broke at the interface between the object to be joined and the plated portion or at the interface between the plated portions. Some samples with a heat treatment temperature of 250° C. were broken in the joined bodies. Both the sample heat-treated at 350° C. and the sample heat-treated at 450° C. broke in the body to be joined. From this, it was confirmed that the bonding strength of each sample with a heat treatment temperature of 250° C. or higher was higher than that of the sample without heat treatment and the sample with a heat treatment temperature of 150° C.
  • the sample was heat-treated in the atmosphere.
  • a stainless steel test piece sample without bonding 200 ° C, 250 ° C, 300 ° C, 400 ° C, 500 C. and 600.degree. C. for 90 minutes, respectively, and samples subjected to heat treatment sequentially from 400.degree. C. to 800.degree.
  • Three identical samples were prepared for each sample, and the average value of three tensile tests was calculated for each sample. The results are shown in FIG.
  • the maximum load of the stainless steel test piece sample was set to 1.0, and the tensile strength was evaluated as a ratio to this.
  • the sample without heat treatment had the lowest tensile strength of 0.81. 0.82 for the sample heat-treated at 200°C (not shown in the graph), 0.90 for the sample heat-treated at 250°C (not shown in the graph), and 0.95 for the sample heat-treated at 300°C (not shown in the graph). , and 0.97 at 400° C. (not shown in the graph).
  • the samples heat-treated at 500° C. or higher and the samples heat-treated in sequence from 400° C. to 800° C. were evaluated as 1.0 because breakage occurred on the joined bodies.
  • it was confirmed that the samples heat-treated at 500° C. or higher exhibited bonding strength equivalent to that of stainless steel test piece samples. From the above, a clear increase in strength was confirmed in the samples heat-treated at 250° C. or higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

金属で構成された被接合体同士がめっき金属で強固に接合された接合構造体及び接合構造体の製造方法を提供する。接合構造体10は、第1の金属で構成された第1被接合体12と、第2の金属で構成された第2被接合体16と、第1被接合体12と第2被接合体16の間にめっき金属で構成され、第1被接合体12と第2被接合体16を接合するめっき部14と、を備える。めっき部14は、第1被接合体12と第2被接合体16の各被接合面12a,16aから略等距離の部分にめっき金属が会合された会合界面が形成されており、会合界面の近傍にめっき金属が再結晶した再結晶領域を有する、又は、会合界面の近傍にめっき金属が拡散した第1の拡散領域を有する。

Description

接合構造体及びその製造方法
 本明細書で開示される技術は、接合構造体及びその製造方法に関する。
 被接合体として金属材料同士を接合する接合構造体に関する技術として、溶接等の技術が広く用いられている。しかし、接合構造体のような金属材料接合構造でめっきを使う例は知られていない。一方で、例えば特許文献1には、半導体デバイスにおいて、被接合体としての銅製のチップ電極同士や銅製のチップ電極と銅製のリード線とを、主にニッケルで構成されるめっきで接合する技術が開示されている。特許文献1に開示される技術では、例えばチップ電極とリード線を一部接触させた状態で、当該接触部分の周辺にめっき液を流通させてめっきをすることにより、チップ電極とリード線との間にそれらを接合する接合部を形成している。
国際公開第2015/053356号
 上記特許文献1のようなめっき技術を、電極やリード線等以外の金属で形成された被接合体同士の接合に利用することも考えられる。しかしながら、めっきによる接合を電極等の接合以外の用途に利用する場合には、接合構造体について接合強度が不足することが考えられる。
 本発明は、上記の点に鑑みて創作されたもので、金属で構成された被接合体同士がめっき金属で強固に接合された接合構造体及び接合構造体の製造方法を提供することを目的とする。
 本発明に係る接合構造体は、第1の金属で構成された第1被接合体と、第2の金属で構成された第2被接合体と、前記第1被接合体と前記第2被接合体の間にめっき金属で構成され、前記第1被接合体と前記第2被接合体を接合するめっき部と、を備え、前記めっき部は、前記第1被接合体と前記第2被接合体の各被接合面から略等距離の部分に前記めっき金属が会合された会合界面が形成されており、前記会合界面の近傍に前記めっき金属が再結晶した再結晶領域を有する、又は、前記会合界面の近傍に前記めっき金属が拡散した第1の拡散領域を有する。
 本発明に係る他の接合構造体は、第1の金属で構成された第1被接合体と、第2の金属で構成された第2被接合体と、前記第1被接合体と前記第2被接合体の間にめっき金属で構成され、前記第1被接合体と前記第2被接合体を接合するめっき部と、を備え、前記第1被接合体と前記第2被接合体のうち少なくとも一方の被接合体と前記めっき部との境界部分に、前記少なくとも一方の被接合体を構成する金属と前記めっき金属とが拡散して混在する第2の拡散領域を有する。
 本発明に係る接合構造体の製造方法は、第1の金属で構成された第1被接合体と第2の金属で構成された第2被接合体の間にめっき液を浸入させ、前記第1被接合体と前記第2被接合体の間に、該第1被接合体と該第2被接合体の各被接合面から成長しためっき金属が会合した会合界面を形成させることで、前記第1被接合体と前記第2被接合体を前記めっき金属で接合する接合工程と、前記接合工程の後に、前記めっき金属に対して熱処理を行う熱処理工程と、を備え、前記熱処理工程は、前記会合界面に前記めっき金属が再結晶した再結晶領域を形成する。
 本発明に係る他の接合構造体の製造方法は、第1の金属で構成された第1被接合体と第2の金属で構成された第2被接合体の間にめっき液を浸入させ、前記第1被接合体と前記第2被接合体の間に、該第1被接合体と該第2被接合体の各被接合面から成長しためっき金属が会合した会合界面を形成させることで、前記第1被接合体と前記第2被接合体を前記めっき金属で接合する接合工程と、前記接合工程の後に、前記めっき金属に対して熱処理を行う熱処理工程と、を備え、前記熱処理工程は、前記めっき金属の融点をT1(K)とし、熱処理温度をT2(K)としたときに、T2≧T1×1/3の関係が成立する温度で熱処理を行う。
 本発明の接合構造体は、一対の被接合体の各被接合面から略等距離の部分にめっき金属が会合された会合界面が形成され、会合界面の近傍にめっき金属が再結晶した再結晶領域を有する、又は、会合界面の近傍にめっき金属が拡散した第1の拡散領域を有する。このため、会合界面を起点とする破断を防止ないし抑制することができ、金属で構成された被接合体同士がめっき金属で強固に接合された接合構造体を実現することができる。
第1実施形態に係る接合構造体の構成を示す概略断面図である。 接合構造体の要部を拡大した断面図である。 接合構造体の製造方法を示すフローチャートである。 第2実施形態に係る接合構造体の構成を示す概略図である。 接合構造体の要部を拡大した側面図である。 第3実施形態に係る接合構造体の上面図である。 図6におけるVII-VII断面図であって、要部を拡大した断面図である。 シェアテストの試験結果を示したグラフである。 熱処理前の被接合体とめっき部のSEM画像である。 400℃で熱処理した後の被接合体とめっき部のSEM画像である。 700℃で熱処理した後の被接合体とめっき部のSEM画像である。 400℃~800℃で累積的に熱処理した後の被接合体とめっき部のSEM画像である。 400℃で熱処理した後の被接合体とめっき部を示すSEM画像と元素ライン分析の結果を示すグラフである。 500℃で熱処理した後の被接合体とめっき部を示すSEM画像と元素ライン分析の結果を示すグラフである。 700℃で熱処理した後の被接合体とめっき部を示すSEM画像と元素ライン分析の結果を示すグラフである。 400℃~800℃で累積的に熱処理した後の被接合体とめっき部を示すSEM画像と元素ライン分析の結果を示すグラフである。 平滑化処理を行わなかった試料のめっき部の断面を拡大したSEM画像である。 平滑化処理を行った試料のめっき部の断面を拡大したSEM画像である。 平滑化処理を行わなかった試料のめっき部における結晶成長を示す模式図である。 第4実施例に係る接合構造体の模式図である。 熱処理を行わなかった接合構造体の被接合体とめっき部を示すBSE画像と対応する被接合体とめっき部のEBSD画像である。 400℃~800℃で累積的に熱処理した後の被接合体とめっき部を示すBSE画像と対応する被接合体とめっき部のEBSD画像である。 引張試験の試験結果を示したグラフである。
(第1実施形態)
 図1に示すように、接合構造体10は、ワイヤ状の第1被接合体12と板状の第2被接合体16とをめっき部14によって接合したものであり、第1被接合体12と第2被接合体16とめっき部14とを備える。第1被接合体12及び第2被接合体16は、それぞれ鉄系合金の一つであるステンレス鋼で形成されている。めっき部14は、第1被接合体12と第2被接合体16の間にめっき金属としてのニッケル(Ni)で構成される。このめっき部14は、めっき液を用いためっきにより形成されている。なお、本実施形態では、第1被接合体12を形成する第1の金属と第2被接合体16を形成する第2の金属が同じ金属であるが、異なる金属であってもよい。
 本実施形態では、説明の便宜上、断面が円形状で細長く延びたワイヤ状の第1被接合体12と表面が平坦な平板形状の第2被接合体16とを接合した接合構造体10について説明するが、第1被接合体12及び第2被接合体16の形状等やこれらにより構成される接合構造体10は、これに限定されるものではない。接合構造体10としては、例えば、熱交換機のパイプ同士、パイプと筐体を接合したもの、パイプと冷却フィン、冷却フィンと筐体を接合したもの、真空容器、ガスや液体配管の継ぎ手、ワイヤ同士を接合したワイヤメッシュ、ステンレス製触媒担体等のハニカム構造、メガネ等の部材の微小部分を接合したもの等のように、各種の部材同士を接合したもの等を挙げることができる。即ち、従来溶接やロウ付け等により接合されている構造体について、そのロウ付け等に代えてめっきによる低温での接合が可能となる。なお、本実施形態では、独立した部材である第1被接合体12と第2被接合体16とを一対の被接合体として説明しているが、例えば、一部が途切れた略円管状(側面視Cの字状)の当該途切れた部分を挟んで対向する各部位を一対の被接合体とみなすことができ、当該各部位の間にめっき部を形成して接合構造体としてもよい。
 第1被接合体12は、第2被接合体16の板面に沿って延伸する形で第2被接合体16の板面上に固定されている。即ち、第1被接合体12は、その延伸方向が第2被接合体16の板面の法線方向と直交する形で、当該延伸方向に沿って第2被接合体16と線状に接触している。第1被接合体12は、その表面の一部(第2被接合体16と対向する部分)が第2被接合体16との接合に供される被接合面12aとなっており、第2被接合体16は、その表面の一部(第1被接合体12と対向する部分)が第1被接合体12との接合に供される被接合面16aとなっている。
 第1被接合体12の被接合面12aと第2被接合体16の被接合面16aの間隔は、第1被接合体12と第2被接合体16との接触部C1から外側に向かって次第に広くなっている。換言すれば、両被接合面12a,16aは、これらの被接合面12a,16aの一部領域が互いに接触した接触部C1の位置から離れるにつれて、それらの間隔が連続的に漸増している。このように、接触部C1から外側に向かって間隔が漸増する被接合面12aと被接合面16aとの間にめっき部14が形成され、このめっき部14が第1被接合体12と第2被接合体16とに結合することによって、第1被接合体12と第2被接合体16とが接合している。
 本実施形態では、第1被接合体12と第2被接合体16とが線状に接触する態様を例示しているが、例えば略球状体の第1被接合体と板状の第2被接合体とを接合させた場合のように、第1被接合体12と第2被接合体16とが点状に接触してもよい。また、第1被接合体12と第2被接合体16とが点状又は線状に近接してもよい。即ち、両被接合面は、これらの被接合面の一部領域が互いに近接した位置から離れるにつれて、それらの間隔が連続的に漸増するものであってもよい。なお、被接合体同士が点状又は線状に近接するとは、各被接合体の被接合面の接近した部分が点状又は線状とみなせる状態で、その被接合面の接近した部分の間隔が小さいことを意味する。この被接合面の接近した部分の間隔は、被接合面の接近した部分から外側に向かう最大長さ、即ち、被接合面の接近した部分から被接合面の最も離れた部分までの長さに対して、1/5以下が好ましく、1/10以下がさらに好ましい。
 上記のように被接合面12a,16aの接触部C1から、あるいは近接した部分から外側に向かって被接合面同士の間隔を広くした構成は、詳細を後述するように、各被接合面からそれぞれ成長しためっき部14となる柱状晶が会合する部分でボイドの発生を防止ないし抑制する。これにより、第1被接合体12と第2被接合体16の接合強度を高めることができる。
 なお、例えば角柱状の第1被接合体の一つの面を板状の第2被接合体の表面に接触ないし、対向して近接させた場合のように、被接合体同士の一部が面状に接触、又は被接合体同士の一部が面状に近接する構成であってもよい。この場合、被接合面の接触部から、あるいは近接した部分から外側に向かって被接合面同士の間隔を広くした部分を有することが好ましい。この場合には、面状に接触又は近接した部分と間隔が漸増する部分との境界が、線状に接触又は近接することになる。したがって、このような構成であっても、当該接触部あるいは当該近接する部分から外側に向かって間隔が漸増する各被接合面からそれぞれ成長しためっき部となる柱状晶が会合する部分でボイドの発生が防止ないし抑制される。
 図2に示すように、めっき部14は、第1被接合体12の被接合面12aと第2被接合体16の被接合面16aとの間に、ボイドが無い状態で隙間なく形成されている。また、めっき部14は、その一部に会合界面AIを跨ぐ形で形成された再結晶領域RCを有している。再結晶領域RCは、後述する接合構造体10の製造過程において、各被接合面12a,16aから成長しためっき金属(本実施形態ではニッケル)の柱状晶が再結晶し、粒状晶となった粒状晶領域である。なお、後述するように、第1被接合体12及び第2被接合体16を構成する金属がめっき部14に、あるいはめっき部14のめっき金属が第1被接合体12及び第2被接合体16に拡散することによって、第1被接合体12及び第2被接合体16とめっき部14との境界、すなわち各被接合面12a,16aが明確でない場合があるが、図2では、便宜的に被接合面12a,16aを描いてある。
 接合構造体10の製造過程では、各被接合面12a,16aから成長した各柱状晶が、各被接合面12a,16aから略等距離の部分で会合(衝突)し、当該部分に被接合面12a,16aからそれぞれ延びた柱状晶同士の会合界面AIが形成される。接合構造体10では、製造過程において熱処理を行うことにより、会合界面で回復(原子の再配列)が生じ、第1の拡散領域MR1及び第2の拡散領域MR2が形成される。
 製造過程においてさらに高温長時間で熱処理を行うことにより接合構造体10では、めっき部14において、各被接合面12a,16aからそれぞれ略等距離の部分にめっき金属が再結晶した再結晶領域RCを形成してある。即ち、めっき部14において、会合界面AIを跨ぐようにめっき金属が再結晶した粒状晶を形成している。このため、結合強度が弱くめっき部14の破断の起点となる会合界面AIがめっき部14にはなく、会合界面AIを起点とする破断を防止ないし抑制することができる。その結果、接合構造体10は、第1被接合体12と第2被接合体16との接合強度が大きく、強固な接合となっている。
 本実施形態の接合構造体10では、再結晶領域RCがめっき部14の一部に形成されているが、再結晶領域RCがめっき部14に形成されていなくてもよい。再結晶領域RCが形成されていなくとも、回復温度以上では会合界面での拡散が生じ、界面強度が上昇する。製造過程において熱処理を行うことにより接合構造体10では、めっき部14において、結晶の回復(原子の再配列)が生じる。これにより、第1被接合体12と第2被接合体16の接合をより強固とすることができる。結晶の回復が生じたことは、例えば、めっき部14のビッカース硬度の低下により、又は、めっき部14に亜粒界(ないし亜結晶粒状組織)が形成されたことあるいは転位密度の減少を電子顕微鏡等で観察することにより確認することができる。
 めっき部14における結晶の回復は、例えば図2に第1の拡散領域MR1として示されるように会合界面AIの近傍にだけ形成されていてもよい。第1の拡散領域MR1は、会合界面AIを跨ぐ形でめっき部14を構成するめっき金属の原子(ニッケル原子)が拡散した領域である。即ち、第1の拡散領域MR1は、第1被接合体12の被接合面12aから成長した結晶を構成するめっき金属の原子と、第2被接合体16の被接合面16aから成長した結晶を構成するめっき金属の原子とが混在している。
 接合構造体10は、再結晶領域RCが形成されなくても、上記のように会合界面AIの近傍に第1の拡散領域MR1が形成された状態になれば、めっき部14に形成された会合界面AIにおける接合が強固となる。これにより、第1被接合体12と第2被接合体16の接合を強固なものにすることができる。なお、めっき部14における結晶の回復がめっき部14の全体に生じていれば第1被接合体12と第2被接合体16の接合をさらに強固とすることができる。
 上述したように、少なくともめっき部14の一部において接合構造体10の製造過程で生じる会合界面AIを跨ぐような再結晶領域RCが形成されていれば、第1被接合体12と第2被接合体16との接合強度を大きくすることができる。例えば、めっき部14のうち、会合界面AIの近傍にのみ再結晶領域RCが形成されて会合界面AIが消失し、再結晶領域RCの外側(被接合面12a,16a側)に再結晶していない領域(柱状晶で構成される領域)が形成されていてもよい。
 なお、接合構造体10の製造過程において熱処理を行わず、あるいは熱処理を行った結果として、めっき部14の会合界面AIが消失していなくとも、各被接合面12a,16aから成長する柱状晶の成長方向が一様であることにより、会合界面AIにおけるボイドの発生が防止ないし抑制されていれば、第1被接合体12と第2被接合体16との接合を劣化し難くまた強度が高い良好なものとすることができる。具体的には、めっき部14の断面において、一つの柱状晶の幅に対する長さが3倍以上の柱状晶のめっき部14の面積に対する面積率が50%以上であれば、第1被接合体12と第2被接合体16の間で良好な接合を得ることができる。さらに好ましくは66%以上であれば、ボイドの発生を効果的に抑制することができる。
 成長の結晶方位については、ニッケルの場合、<001>と<101>が優先成長方向であり、それらが混在する場合でも、柱状晶を呈しており、それらによる上記の割合が50%以上であることが好ましく、66%以上であることが好ましい。なお、結晶方位の表現については、結晶が立方晶の場合、<101>、<110>、<011>はそれぞれ等価であり、また、<100>、<010>、<001>も等価であり、同じ結晶方位群として扱われる。
 また、製造過程において上記の回復の温度以上で熱処理を行うことにより接合構造体10では、第1被接合体12とめっき部14との境界部分(被接合面12aの近傍)、及び第2被接合体16とめっき部14との境界部分(被接合面16aの近傍)に、それぞれ第2の拡散領域MR2が形成されている。第1被接合体12とめっき部14との境界部分に形成されている第2の拡散領域MR2は、第1被接合体12を構成するステンレス鋼の鉄等の原子と、めっき部14を構成するめっき金属の原子(ニッケル原子)とが混在する。この第2の拡散領域MR2では、第1被接合体12からめっき部14に向かって第1被接合体12を構成するステンレス鋼の鉄等の原子の割合が連続的に漸減し、めっき部14から第1被接合体12に向かってめっき金属のニッケル原子の割合が連続的に漸減している。
 同様に、第2被接合体16とめっき部14との境界部分に形成されている第2の拡散領域MR2は、第2被接合体16を構成するステンレス鋼の鉄等の原子と、めっき部14を構成するめっき金属の原子(ニッケル原子)とが混在する。この第2の拡散領域MR2では、第2被接合体16からめっき部14に向かって第2被接合体16を構成するステンレス鋼の鉄等の原子の割合が連続的に漸減し、めっき部14から第2被接合体16に向かってめっき金属のニッケル原子の割合が連続的に漸減している。
 上記のように接合構造体10は、第1被接合体12とめっき部14との境界部分、及び第2被接合体16とめっき部14との境界部分に、それぞれ第2の拡散領域MR2が形成されていることにより、第1被接合体12とめっき部14との境界部分及び第2被接合体16とめっき部14との境界部分における接合が強固となっている。このため、接合構造体10は、第1被接合体12と第2被接合体16の接合がより強固となっている。例えば各被接合体がステンレス鋼で構成され、めっき金属がニッケルである場合、上記の拡散領域はその厚みが5nm以上(10原子程度)であることが好ましい。このような厚みを拡散領域が持つことにより、十分な接合強度の上昇を得ることができる。なお、拡散領域の厚みは、各原子の拡散式に基づいて熱処理温度と熱処理時間から算出することができる。また、透過型電子顕微鏡(TEM)による断面解析等により、拡散領域の厚みを確認することができる。
 また、接合構造体10は、第1被接合体12及び第2被接合体16が鉄系合金の一つであるステンレス鋼で構成され、めっき部14がめっき金属としてのニッケルで構成されている。そして、ステンレス鋼が合金元素としてニッケルを含有し、固溶限を超えなければニッケルがステンレス側に拡散しても結晶構造の変化や析出物による劣化は少ないと考えられる。また、銅とニッケルも全率固溶体である。このように両被接合体が全率固溶体であると、異種金属間の金属間化合物などの異なる相がないため、第1被接合体12とめっき部14との間、及び第2被接合体16とめっき部14との間で、それぞれ強度に優れた接合を実現することができる。また、ステンレス鋼及びニッケルは、いずれも耐腐食性に優れている。したがって、接合構造体10は、強度に優れた接合が長期間維持される。
 接合構造体10では、第1被接合体12及び第2被接合体16がそれぞれステンレス鋼で構成されているが、第1被接合体12及び第2被接合体16を構成する金属はステンレス鋼に限定されない。被接合体を構成する金属は、各種のステンレス鋼を含む鉄系合金や銅あるいは銅合金等も好ましい。鉄系合金とは、普通鋼、工具鋼、ステンレスや耐熱鋼など高合金系鋼であるものをいう。また、めっき部14を構成するめっき金属をニッケルとしているが、ニッケルに限定されない。めっき部14を構成するめっき金属は、ニッケルの他ニッケル合金や、銅等も好ましい。ニッケル合金とは、亜鉛ニッケル、銅ニッケル合金等であるものをいう。被接合体を構成する金属とめっき部14を構成するめっき金属は上述のように全率固溶体であるか、固溶限の比較的大きい金属同士もしくは同一の金属であることが好ましい。被接合体を構成する金属とめっき金属が同一であれば、拡散により異なる相を形成しないからである。全率固溶体として、銅とニッケル、金と銀の組み合わせ等を挙げることができる。
 以下、図3を参照して、本実施形態に係る接合構造体10の製造方法について説明する。まず、平滑化工程S2において、第1被接合体12及び第2被接合体16を用意し、第1被接合体12及び第2被接合体16について各被接合面12a,16aを含む外面をそれぞれ機械加工あるいは、研磨することによりその表面粗さを改善し、平滑化する。平滑化後における第1被接合体12及び第2被接合体16の各被接合面12a,16aの表面粗さは、算術表面粗さRaの値が5μm以下であることが好ましく、3μm以下であることがより好ましい。
 なお、圧延版、あるいは引き抜き加工されたままの状態のもの等、表面粗さがそれほど大きくないものを被接合体として用いる場合、上記の平滑化処理は必ずしも行う必要はない。
 上記のように被接合面12a,16aを平滑化することにより、被接合面12a,16aごとにそれぞれから成長するめっき金属の柱状晶の成長方向を一様にする。即ち、各被接合面12a,16aからの柱状晶の成長方向が大きく異なったものとならないようにする。これにより、局所的に見て、一方の被接合面12aから成長する柱状晶のうちで外側の部分から成長する柱状晶が内側の部分から成長する柱状晶よりも先に他方の被接合面16aから成長する柱状晶に会合することがないので、内側の部分からの柱状晶が会合する前にその成長が停止することを防止ないし抑制し、めっき部14におけるボイドの発生を防止ないし抑制する。
 次に、前処理工程S4において、第1被接合体12の表面及び第2被接合体16の表面に対してアルカリ脱脂、及び酸洗浄を行い、表面の塵や油等を除去する。前処理工程S4の各処理は、接合する態様で第2被接合体16に第1被接合体12を固定した状態で行ってもよいし、それらが離れた状態で別々に行ってもよい。この前処理工程S4は、被接合体の材料に応じた処理を行えばよく、省略することもできる。
 前処理工程S4後の接合工程S6において、めっき処理を行って第1被接合体12の被接合面12aと第2被接合体16の被接合面16aとの間にめっき部14を形成し、第1被接合体12と第2被接合体16とを接合する。めっき処理は、第1被接合体12をその延伸方向に沿って第2被接合体16に対して線状に接触させた状態に両者を固定して行う。すなわち、第1被接合体12と第2被接合体16とを接合すべき状態に固定してめっき処理を行う。ステンレス鋼で形成されている第1被接合体12及び第2被接合体16に対して行うめっき処理では、下地めっき処理を行った後に本めっき処理を行う。
 下地めっき処理では、第1被接合体12及び第2被接合体16の表面に形成されている不動態膜を除去しながら、それらの表面にニッケル薄膜を形成する。この下地めっき処理としては、例えばウッド浴(Niストライクめっき)を用いる。下地めっき処理で形成された薄膜は、めっき部14の一部となる。被接合体が不動態膜を除去する必要がない場合、即ち被接合面が良好な被めっき性を有する場合には、このような下地めっき処理は不要である。
 本めっき処理では、例えばスルファミン酸浴を用いることができる。これにより、第1被接合体12の被接合面12aと第2被接合体16の被接合面16aとの間にめっき部14が形成される。このめっき処理では、めっき液の温度は約55℃であることが好ましい。なお、ウッド浴、スルファミン酸浴のように、電解めっきで処理を行う際には、第1被接合体12と第2被接合体16とが電気的に接続された状態とし、それぞれを等電位にしておくことが好ましく、又は、第1被接合体12と第2被接合体16とが電気的に導通するように接触もしくは別箇所で短絡させておくことが好ましい。
 本めっき処理に用いるめっき液は、被接合面12aと被接合面16aとの間隔が小さい領域から順次外側に向かって柱状晶の会合が生じるように調製されたものが好ましく用いられる。また、めっき処理に用いるめっき液は、めっき部の組織が柱状晶となり易い点から、光沢剤等の細粒化を促進する添加剤を含まないものが好ましく、同様な理由から本めっき処理時の電流密度を小さくすることが好ましい。例えば、光沢剤を添加して細粒化しためっき金属がニッケルのめっき液を用いた試料を作製し、上記のシェアテスト及び接合断面の観察を行ったところシェア強度は50Mpaに至らず、柱状晶の含有率は20%であった。これに対して、光沢剤が非含有である場合にはシェア強度は例えば100MPa以上、柱状晶の含有率は例えば80%以上を達成している。そのため、目的とするシェア強度や柱状晶の含有率、光沢などに応じて、光沢剤の添加(含有)量(ゼロを含む)を決定すればよい。
 両被接合体を構成する金属がいずれもアルミニウムである場合、直接電解めっきを行うことが困難であることから、両被接合体の被接合面に無電解ニッケルメッキを0.1~10μm程度を被着させた後に、被接合面の間隙を適正に設け、間隙に電解ニッケルめっきを成長させて、両被接合体の接合を行うことができる。このアルミニウム同士の接合の場合では、めっき後の熱処理条件は200℃以上600℃以下が好ましい。
 また、例えば、第1被接合体と第2被接合体のうち一方を構成する金属がアルミニウムであり他方を構成する金属がステンレス鋼である場合では、アルミニウムで構成された被接合体については無電解めっきでニッケルを被着しておき、ステンレス鋼で構成された被接合体については前処理をしておく。この後、両被接合体を接触させて固定した状態で、ウッド浴で下地めっき処理を行い、スルファミン酸浴で本めっき処理を行うことにより、アルミニウムとステンレス鋼をめっき金属で接合することができる。なお、この場合、ステンレス鋼で構成された被接合体については下地めっき処理までを行っておき、その後に両被接合体を接触させて本めっき処理を行うことで両被接合体を接合してもよい。
 なお、本実施形態では、第1被接合体12と第2被接合体16の表面全域に対してめっき処理を行っているが、接合に寄与しない部分にめっき処理を行わなくてもよい。この場合、めっき処理に先立って、第1被接合体12と第2被接合体16の表面のうちめっき処理が不要な部分(被接合面12a,16aを除いた部分)に予めレジスト膜等の有機膜を塗布することで、選択的にめっき処理を行うことができる。また、第1被接合体12及び第2被接合体16の表面のめっき処理が不要な部分の不動態膜を除去せずに、めっき処理を行うことでも選択的なめっき処理を行うことができる。
 第1被接合体12及び第2被接合体16に対して、上記のようにめっき処理を行うことで、被接合面12a,16aから細長いニッケルの柱状晶がそれぞれ成長する。第1被接合体12の被接合面12aから成長した柱状晶と第2被接合体16の被接合面16aから成長した柱状晶は、それらの先端同士が衝突して会合し、各被接合面12a,16aから略等距離の部分で会合界面AIを形成する。この会合界面AIは、各被接合面12a,16aの間隔が狭い箇所から広い箇所へと順に形成される。その結果、めっき部14におけるボイドの発生が防止ないし抑制される。
 次に、熱処理工程S8において、上記のように接合工程S6を経て各被接合体12,16がめっき部14で接合された構造体(以下、処理前接合構造体という)を加熱する熱処理を行う。例えば700℃、90minの条件で、大気中で熱処理を行う。再結晶温度は、融点の概ね1/3とされているので、この熱処理は、めっき部14を構成するめっき金属の融点をT1(K)とし、処理前接合構造体に対する熱処理温度をT2(K)としたときに、T2≧T1×1/3の関係が成立することが好ましい。例えば、めっき金属がニッケルの場合には、ニッケルの融点である1728Kの1/3である576K以上の温度で熱処理を行うことが好ましい。熱処理温度は、より好ましくはT1/3+98K以上である。もちろん、熱処理温度は、被接合体12、16、めっき部14の性能が劣化しない範囲内とすることが好ましい。本実施形態のように、被接合体12、16がステンレス鋼であり、めっき金属がニッケルの場合には、熱処理温度を300℃以上1150℃以下とすることが好ましい。
 上記の熱処理により、めっき部14において回復(原子の再配列)を生じさせ、会合界面AIの近傍に第1の拡散領域MR1を形成し、めっき部14と各被接合体12,16との界面に第2の拡散領域MR2を形成することができる。さらに高温域では柱状晶を粒状晶に再結晶させて再結晶領域RCを形成することができる。例えばめっき金属がニッケルの場合、上記の熱処理において、熱処理温度を250℃以上として処理前接合構造体を加熱することにより、第1被接合体12とめっき部14との境界部分(被接合面12aの近傍)において、第1被接合体12を構成するステンレス鋼の鉄等の原子がめっき部14側に拡散させ、めっき部14を構成するめっき金属の原子(ニッケル原子)が第1被接合体12側に拡散させる。また、第2被接合体16とめっき部14との境界部分(被接合面16aの近傍)では、第2被接合体16を構成するステンレス鋼の鉄等の原子がめっき部14側に拡散させ、めっき部14を構成するめっき金属の原子(ニッケル原子)が第2被接合体16側に拡散させる。これにより、第1被接合体12とめっき部14との境界部分、及び第2被接合体16とめっき部14との境界部分にそれぞれ第2の拡散領域MR2を形成することができる。
 なお、めっき部14の会合界面における回復(原子の再配列)が生じることにより、めっき部14におけるビッカース硬度が低下する。例えばめっき金属がニッケルの場合、硬さ記号をHV0.025としたとき、加熱前のビッカース硬度は約280HVであるのに対し、熱処理を行った後のビッカース硬度は約220~120HVとなる。なお、めっき部14のビッカース硬度は、日本工業規格JIS Z 2244に従った公知の測定方法により、マイクロビッカースで測定することができる。
 また、例えばめっき金属がニッケルの場合、処理前接合構造体を250℃以上の熱処理温度で加熱することにより、柱状晶を粒状晶に再結晶させて再結晶領域RCを形成することができる。この粒状晶への変化(再結晶)は、めっき部14のうち応力が強く加わっている会合界面AIから始まり、加熱時間を長くすること、再結晶した領域を広げることができる。再結晶した領域の広さは、熱処理温度、加熱時間などを調整することができる。
 以上の工程により接合構造体10が製造される。製造された接合構造体10は、第1被接合体12と第2被接合体16の接合が強固となっている。
(第2実施形態)
 図4に示すように、第2実施形態に係る接合構造体30は、交互に配された、M字状に繰り返し屈曲した第1被接合体32と第2被接合体36とをめっき部34によって接合したものである。なお、以下に詳細を説明する他は、第1実施形態と同様である。
 接合構造体30は、例えば、自動車や自動二輪車の排気系管内に対して取り付けられるハニカム状の排ガス浄化用のメタル担体として用いられるものであり、例えば第1被接合体32と第2被接合体36とが径方向に交互に配されて同心円状に巻かれた形態になっている。第1被接合体32及び第2被接合体36は、それぞれ鉄系合金の一つであるフェライト系のステンレス鋼を帯状にしたものを所定の形状に屈曲ないし湾曲させている。めっき部34は、第1被接合体32と第2被接合体36の間にめっき液を用いためっきにより、めっき金属としてのニッケル(Ni)で形成されている。なお、本実施形態では、第1被接合体32を形成する第1の金属と第2被接合体36を形成する第2の金属が同じ金属であるが、異なる金属であってもよい。
 第1被接合体32は、M字状に屈曲する屈曲部分がそれぞれ第2被接合体36に近接するとともに、第2被接合体36に固定されている。第1被接合体32及び第2被接合体36は、図面奥行き方向に幅を有しているので、第1被接合体32は、その屈曲部分が第2被接合体36と線状に接触している。図5に示すように、第1被接合体32は、その屈曲部分の先端部32bが第2被接合体36との接合に供される被接合面32aとなっており、第2被接合体36は、第1被接合体32と接触する部分の表面が第1被接合体32との接合に供される被接合面36aとなっている。
 図5に示すように、第1被接合体32の被接合面32aと第2被接合体36の被接合面36aの間隔は、第1被接合体32の屈曲部分の先端部32bから外側に向かって次第に広くなっている。換言すれば、両被接合面32a,36aの間隔は、先端部32bの位置から離れるにつれて連続的に漸増している。このように、先端部32bから外側に向かって間隔が漸増する被接合面32aと被接合面36aとの間にめっき部34が形成され、このめっき部34が第1被接合体32と第2被接合体36とに結合することによって、第1被接合体32と第2被接合体36とが接合している。
 接合構造体30は、第1実施形態の接合構造体と同様な手順で製造されることで第1被接合体32と第2被接合体36との接合強度が大きく、強固な接合となっている。接合工程においては、第1被接合体32と第2被接合体36との間にめっき液を流通させることでめっき部34が形成されるので、容易に第1被接合体32と第2被接合体36とを接合することができる。
 なお、上述した排ガス浄化用のメタル担体としては、ステンレス鋼で形成された被接合体同士を真空中でロウ付けにより接合した接合構造体や、セラミックスで形成された被接合体同士を接合した接合構造体が知られているが、真空中でロウ付けしたものは製造コストが嵩み、また、セラミックスを使用したものは圧力損失が増大するという問題があった。これに対し、接合構造体30は、従来のロウ付けにより接合されたメタル担体と同等の接合強度を維持しながら、製造コストが低減され、かつ圧力損失が増大することが防止ないし抑制される。
(第3実施形態)
 第3実施形態では、金属製の配線材と被接合面が金属製とされた太陽電池セルをめっき部で接合した接合構造体について説明する。図6及び図7に示すように、接合構造体50は、帯状に延在する一方の被接合体としての配線材52と他方の被接合体としての太陽電池セル56の表面に設けられた電極58とをめっき部54によって接合したものである。図6では、1つの太陽電池セル56を描いてあるが、実際には、複数の太陽電池セル56に配線材52がめっき部54によって接合されて太陽電池モジュールが構成される。本実施形態では、太陽電池セル56と配線材52とのうちの一方が第1被接合体であり他方が第2被接合体である。なお、以下に詳細を説明する他は、第1実施形態と同様である。
 配線材52は、銅で形成され、複数の太陽電池セル56を電気的に接続する。太陽電池セル56は、主としてシリコンで形成され、平板状である。めっき部54は、配線材52と太陽電池セル56の間に、めっき液を用いためっきによりめっき金属としてのニッケル(Ni)で形成されている。
 太陽電池セル56は、一方の面に複数の電極58が形成されている。複数の電極58は、それぞれ配線材52の延伸方向と直交する方向に線状に延びており、配線材52の延伸方向に互いに所定の間隔で配されている。配線材52は、太陽電池セル56と対向する面の全てが太陽電池セル56と接合されているのではなく、太陽電池セル56の電極58と交差している部分のみが電極58に接合されている。即ち、配線材52は、太陽電池セル56に対して局所的に接合されている。
 このように配線材52が局所的に接合されていることにより、太陽電池セル56と対向する面の全域が接合された構成に比して、めっき部54に加わる応力が効果的に緩和される。このため、めっき部54の耐久性が高められ、従来の太陽電池モジュールに比して太陽電池モジュールとしての接合構造体50の高寿命化が図られている。
 図7に示すように、配線材52は、その断面が太陽電池セル56の電極58と接触する側に突出する山型であり、その頂部が電極58に接触した状態で接合される。配線材52の頂部は、延伸方向に線状に延びているので、配線材52と電極58とは線状に接触している。なお、配線材52の延伸方向において、配線材52の頂部の一部または全部が電極58から離れていても、上述のように近接しているとみなせる範囲内であれば問題ない。配線材52は、頂部の周辺の表面が太陽電池セル56の電極58との接合に供される被接合面52aとなっており、太陽電池セル56の電極58は、その表面に銀ペースト60が焼結されており、その表面の一部が配線材52との接合に供される被接合面58aとなっている。
 配線材52の被接合面52aと太陽電池セル56の電極58の被接合面58aの間隔は、配線材52の頂部が太陽電池セル56の電極58に接触した接触部C2から外側に向かって次第に広くなっている。換言すれば、両被接合面32a,36aの間隔は、接触部C2の位置から離れるにつれて連続的に漸増している。
 接合構造体50は、熱処理工程を除いて、第1実施形態の接合構造体と同様な手順で製造されることで配線材52と太陽電池セル56の各電極58とを接合する。なお、ウッド浴は、不要である。めっき部54は、配線材52の被接合面52aと太陽電池セル56の電極58の被接合面58aとの間に、ボイドの発生が防止ないし抑制された状態で形成される。その結果、配線材52と太陽電池セル56との接合が良好なものとなっている。
 このように、配線材52と太陽電池セル56の接合を、従来の太陽電池モジュールにおいて配線材と太陽電池セルとの接合に一般的に適用されるはんだによる接合から、ニッケルで形成されためっき金属のめっき部54による接合に置き換えることにより、配線材52と太陽電池セル56の良好な接合を実現している。また、めっき部54に用いているニッケルは、配線材52の材料である銅との熱膨張係数の差が、はんだと銅との差よりも小さく繰り返しの温度変化に対して、めっき部54の劣化に起因する配線材52の剥離等が発生しづらい。
 配線材52と太陽電池セル56とを接合した接合構造体50の製造過程において、熱処理を行わないか、めっき部54のひずみを緩和(除去ないし低減)する目的で熱処理を行うことが好ましい。熱処理でめっき部54のひずみを緩和することにより、めっき部54すなわち配線材52と電極58との接合に柔軟性を持たせることができ、使用時の配線材52と太陽電池セル56との温度変化による伸縮に起因しためっき部54の破壊が抑制され、太陽電池モジュールの寿命を向上させることができる。
 上記の熱処理は、例えば、めっき金属がニッケルである場合、250~800℃の範囲内の温度で行うことが好ましい。めっき部54のひずみが除去ないし緩和されたことは、ビッカース硬度の低下として確認できる。めっき金属がニッケルである場合、硬さ記号をHV0.025としたとき、加熱前のビッカース硬度は約280HVであるのに対し、熱処理を行った後のビッカース硬度は約220~120HVとなる。なお、めっき部54のビッカース硬度は、日本工業規格JIS Z 2244に従った公知の測定方法により、マイクロビッカースで測定することができる。
(第1実施例)
(1)試料の作製
 第1実施例では、ステンレス鋼で形成された一対の被接合体をめっき部で接合した接合構造体の複数の試料を作製し、接合強度の評価、及び接合断面の観察・解析を行った。ステンレス鋼としてSUS304の組成の第1被接合体と第2被接合体を用意した。第1被接合体は、直径が0.5mm、長さ2mmのワイヤ状のものとし、第2被接合体は、厚み0.5mmの平坦な平板形状のものとした。めっき部を構成するめっき金属はニッケルとした。試料の作製方法は、上記の第1実施形態における製造方法と同様とした。
 試料の作製では、まず、第1被接合体及び第2被接合体について平滑化処理を行い、第1被接合体及び第2被接合体の表面粗さを改善した。次に、前処理として、第1被接合体及び第2被接合体の表面のステンレス鋼をアルカリ脱脂、酸洗浄し、表面の塵や油等を除去した。次に、接合処理として、第1被接合体を第2被接合体に対して線状に接触させて固定し、ウッド浴で下地めっき処理を行い、その後スルファミン酸浴で本めっき処理を行い、第1被接合体と第2被接合体をめっき部で接合した。めっき処理の条件は、めっき液の温度を55℃、めっきの電流密度を1.5A/dmとし、めっき幅を0.3mmとした。
 めっき処理の後、試料について大気中で熱処理を行った。熱処理温度の違いによる接合強度の違いを検証するため、熱処理温度を400℃(673K)、500℃(773K)、600℃(873K)、700℃(973K)、800℃(1073K)として90分間熱処理を行った各試料(以下、単温度試料という)を用意した。また、熱処理を行わない試料、及び400℃から800℃まで100℃刻みの各熱処理温度で順次熱処理を行った試料(以下、累積熱処理試料という)も用意した。
(2)シェアテスト
 各試料について、接合強度を評価するため、第1被接合体を第2被接合体から引き剥がすシェアテストを行い、シェア強度(MPa)を測定した。接合強度の測定には、ノードソン社製シェアテスター4000Plusを用いた。シェアテストは各試料についてそれぞれ10回行い、その平均値を求めた。各試料のシェア強度の測定結果を図8に示す。
 上記シェア強度の測定結果より、熱処理温度が300℃から800℃までの各単温度試料については、熱処理を行わなかった試料と比較していずれも接合強度の上昇が確認できた。この結果から、ニッケルの融点である1728Kの1/3である576K(303℃)以上の温度で熱処理を行うことで、めっき部に再結晶領域が効果的に形成され、第1被接合体と第2被接合体の接合が強固となることが確認できた。また、累積熱処理試料については、熱処理を行わなかった試料の接合強度の3倍程度まで接合強度が上昇しており、熱処理の効果が顕著に表れていることが確認できた。
(3)接合断面における結晶の観察
 まず、熱処理を行わなかった試料について、めっき部とその近傍の断面(接合断面)を走査型電子顕微鏡(SEM)で観察した。観察には、日立社製SU5000を使用し、後方散乱電子回析(EBSD)による結晶方位を測定した。図9に示すように、第1被接合体及び第2被接合体の各被接合面からそれぞれ柱状晶が一様に成長していることが確認できた。また、第2被接合部からの結晶成長は成長方向にほぼ<001>の結晶方位で占められており、その面積率は80%以上であることが確認できた。なお、このような柱状晶の面積率が50%以上、好ましくは66%以上であれば、ボイドの発生が効果的に抑制され、良好な接合を得ることができることを確認している。
 次に熱処理を行った各試料について、めっき部とその近傍の断面(接合断面)を走査型電子顕微鏡(SEM)で観察した。図10に示すように、400℃で熱処理した単温度試料では、柱状晶を確認できず、また会合界面AIの大部分が消失していることを確認できた。このことから、熱処理によってめっき部を構成するニッケルが会合界面AIを跨ぐように再結晶して粒状晶を形成し、接合が強固となっていることがわかる。
 また、図11に示すように、700℃で熱処理した単温度試料では、400℃で熱処理した試料よりも会合界面AIの消失が進んでほぼ完全に消失しており、400℃で熱処理した単温度試料よりも再結晶が進行していることが確認できた。また、700℃で熱処理した単温度試料では、400℃で熱処理した単温度試料よりも、第1被接合体とめっき部との境界線、及び第2被接合体とめっき部との境界線が不明瞭となっていた。このことから、より高い温度で熱処理を行うことによって、第1被接合体及び第2被接合体を構成する鉄等の原子のめっき部への拡散、及びめっき部を構成するニッケル原子の第1被接合体、第2被接合体への拡散がより進行したことがわかる。
 また、図12に示すように、累積熱処理試料では、700℃で熱処理した単温度試料よりも会合界面AIが消失して判別出来ないほどになっており、700℃で熱処理した単温度試料よりも再結晶がより進行していることが確認できた。また、累積熱処理試料では、700℃で熱処理した単温度試料よりも第1被接合体とめっき部との境界線、及び第2被接合体とめっき部との境界線が不明瞭となり判別出来ないほどになっていた。このことから、第1被接合体及び第2被接合体を構成する鉄等の原子のめっき部への拡散、及びめっき部を構成するニッケル原子の第1被接合体、第2被接合体への拡散がより一層進行していることがわかる。
(4)接合断面の分析
 熱処理を行った各試料について、めっき部とその近傍の断面(接合断面)における元素の拡散状況をエネルギー分散型X線分析(EDX)で測定し、元素ライン分析を行った。エネルギー分散型X線分析(EDX)及び元素ライン分析には、オックスフォード社製AZtecXmax50を使用した。この結果を、図13ないし図16に示す。図13は、400℃で熱処理した単温度試料、図14は、500℃で熱処理した単温度試料、図15は、700℃で熱処理した単温度試料、図16は、累積熱処理試料についての測定結果をそれぞれ示している。
 400℃で熱処理した単温度試料では、第1被接合体とめっき部との境界部分、及び第2被接合体とめっき部との境界部分、即ち拡散領域MRにおける鉄等の原子とニッケル原子の蛍光X線強度の傾きがほぼ垂直(傾きが大きい)となっている。このことから、400℃で熱処理した試料では、第1被接合体及び第2被接合体を構成する鉄等の原子のめっき部への拡散、及びめっき部を構成するニッケル原子の第1被接合体、第2被接合体への拡散があるもののあまり進行していないことがわかる。
 500℃で熱処理した単温度試料では、400℃で熱処理した単温度試料よりも、拡散領域MRにおける鉄等の原子とニッケル原子の蛍光X線強度の傾きが小さいことが確認でき、第1被接合体及び第2被接合体を構成する鉄等の原子のめっき部への拡散、及びめっき部を構成するニッケル原子の第1被接合体、第2被接合体への拡散が進行していることがわかる。また、700℃で熱処理した単温度試料では、500℃で熱処理した単温度試料よりも、拡散領域MRにおける鉄等の原子とニッケル原子の蛍光X線強度の傾きが小さいことが確認でき、500℃の熱処理温度で熱処理した場合よりもさらに拡散が進行していることがわかる。
 さらに、累積熱処理試料では、700℃で熱処理した単温度試料よりも、拡散領域MRにおける鉄等の原子とニッケル原子の蛍光X線強度の傾きが小さいことが確認できた。このことから、累積熱処理試料では、700℃で熱処理した試料と比較して、第1被接合体及び第2被接合体を構成する鉄等の原子のめっき部への拡散、及びめっき部を構成するニッケル原子の第1被接合体、第2被接合体への拡散がより進行していることがわかる。
(第2実施例)
 第2実施例では、ステンレス鋼で形成され、両端が開放されたパイプ状の第1被接合体と、この第1被接合体の一端を閉止する蓋状の第2被接合体とをめっき部で接合した接合構造体の試料を作製し、開放されたパイプの他端から真空引きを行い、リークテストを行うことで、パイプに対する蓋の接合の良好性について評価した。パイプ状の第1被接合体は、外径が15mm、内径が8.3mmのものを用い、めっき部を構成するめっき金属はニッケルとした。
 蓋状の第2被接合体で閉止される一端側の角部を外側から内側に向かって0.5mmの長さ、かつ20°のテーパ角でテーパ加工した。次に、第1被接合体及び第2被接合体に対して前処理を行い、表面の塵や油等を除去した。前処理の条件は第1実施例と同条件とした。次に、第1被接合体の一端を第2被接合体で閉止した状態で、試料をめっき金属としてのニッケル(Ni)でめっきするためのめっき液中に浸漬させ、テーパ加工により形成された間隙部にめっき部を形成するめっき処理を行った。本めっき処理として、スルファミン酸浴を連続的に90分行った第1試料と、スルファミン酸浴を60分間行った後一旦めっき液から取り出して再度スルファミン酸浴を30分間行った第2試料とをそれぞれ作製した。その他のめっき処理の条件は、第1実施例と同条件とした。
 作製した各試料について上述のリークテストを行った。リークテストの結果、第1試料については、十分な接合強度が得られており、接合が良好であることを確認できた。また、第2試料については、リーク量がさらに軽減されていることが確認できた。このリークテストの結果から、上記のようにめっき処理で接合した接合構造体は、接合強度が要求されるものだけでなく、金属製の真空容器や液体容器、冷却パイプ等にも応用できるものであることがわかる。なお、第1試料、第2試料について、熱処理の前後でリークテストを行ったが、熱処理前後においてリーク量の明らかな変化は見られなかった。
 なお、第2実施例で用いた試料に限らないが、第1被接合体の被接合面と第2被接合体の被接合面がなす角度であるテーパ角は、2°以上25°以下の範囲内であることが好ましい。テーパ角が過度に大きいと会合界面での方位差が大きくなり、ボイドを生じ易くなり、まためっき厚が厚くなりめっき時間が長くなる恐れがある。そこで、テーパ角は、25°以下とすることにより、製造過程において被接合面同士により形成される間隙部にめっき部を形成する時間を短くすることができるため好ましく、より好ましくは15°以下である。また、テーパ角が過度に小さいとめっき液の流入がし難くなる。そこで、テーパ角は、2°以上とすることにより、間隙部へのめっき液の供給がより確実に行われ、ボイドの発生等、欠陥が生じる可能性をより低くできるので好ましく、より好ましくは5°以上である。
(第3実施例)
 第3実施例では、第2実施例と同様の第1被接合体と第2被接合体について、前処理を行う前に、各被接合面について、表面粗さを改善する平滑化処理を行った試料と行わなかった試料をそれぞれ用意した。これらの試料に対してめっき処理を行った後、それぞれについてめっき部の近傍の断面を観察することで、結晶成長の違いを確認した。なお、平滑化処理では、Buehle社製自動研磨装置AutoMet250を用いて平面研磨することで、第1被接合体及び第2被接合体の各被接合面について表面粗さを改善し、算術表面粗さRaの値を3μm以下とした。
 観察の結果、旋盤加工のままで、平滑化処理を行わなかった試料については、図17に示すように、会合界面AIに複数のボイドが確認された。一方、平滑化処理を行った試料については、図18に示すように、会合界面AIにボイドを確認できなかった。これらより、図19に示すように、被接合面の表面粗さが改善されていない場合(表面粗さが大きい場合)には、各被接合面から成長する結晶が柱状晶であっても、各結晶の成長方向が一様に平行にならないものと推測できる。このため、局所的に見て、一方の被接合面から成長する柱状晶のうちで外側の部分から成長する柱状晶が内側の部分から成長する柱状晶よりも先に他方の被接合面から成長する柱状晶に会合して、内側の部分からの柱状晶の成長が会合する前に停止し、会合界面AIにボイドが発生するものと推測できる。
(第4実施例)
 第4実施例では、図20に示すように、ステンレス鋼で形成された平坦な板状の第1被接合体と第2被接合体とをめっき部で接合した接合構造体の試料を作製し、接合断面の観察・解析を行った。ステンレス鋼としてSUS304の組成の第1被接合体と第2被接合体を用意した。第1被接合体及び第2被接合体は、いずれも厚みが0.2mm、めっき部を構成するめっき金属はニッケルとした。試料の作製方法は、上記の第1実施形態における製造方法と同様とした。
 試料の作製では、まず、第1被接合体の一側面と第2被接合体の一側面をそれぞれ断面視で傾斜状となるようにテーパ加工した。テーパ加工は、テーパ加工を行った第1被接合体の一側面の先端部と第2被接合体の一側面の先端部とを線状に接触させた場合に、第1被接合体と第2被接合体とのなすテーパ角が5度となるようにした。次に、前処理として、第1被接合体及び第2被接合体の表面のステンレス鋼をアルカリ脱脂、酸洗浄し、表面の塵や油等を除去した。
 次に、接合処理として、第1被接合体の一側面の先端部と第2被接合体の一側面の先端部とを線状に接触させた状態で両被接合体をガラス板状に載せて固定し、ウッド浴で下地めっき処理を行い、その後スルファミン酸浴で本めっき処理を行い、第1被接合体と第2被接合体をめっき部で接合した。めっき処理の条件は、めっき液の温度を55℃、めっきの電流密度を1.5A/dmとし、めっき幅を0.2mm、即ち、板厚方向全面をめっきとした。
 めっき処理の後、試料について大気中で熱処理を行った。熱処理温度の有無による接合強度の違いを検証するため、熱処理を行わない試料、及び400℃から800℃まで100℃刻みの各熱処理温度で90分間順次熱処理を行った試料を用意した。
 まず、熱処理を行わなかった試料について、めっき部とその近傍の断面(接合断面)を走査型電子顕微鏡(SEM)で観察した。観察には、日立社製SU5000を使用し、後方散乱電子回析(EBSD)による結晶方位を測定した。図21に示すように、第1被接合体及び第2被接合体の各被接合面からそれぞれ柱状晶が一様に成長していることが確認できた。
 次に熱処理を行った試料について、めっき部とその近傍の断面(接合断面)を走査型電子顕微鏡(SEM)で観察した。図22に示すように、熱処理を行った試料では、柱状晶を確認できず、粒状晶が確認され、また、会合界面の大部分が消失していることを確認できた。このことから、熱処理によってめっき部を構成するニッケルが会合界面を跨ぐように再結晶して粒状晶を形成していることがわかる。なお、本実施例のように板状の被接合体同士を隣接させて接合する場合、例えば、両被接合体の一方又は両方の端部を相手側に向かって板厚方向の中央が山型の頂部となるように突出させて接触又は近接させ、両被接合体を接合してもよい。
(第5実施例)
 第5実施例では、アルミニウムで形成された一対の被接合体をめっき部で接合した接合構造体の複数の試料を作製し、接合強度の評価、及び接合断面の観察・解析を行った。アルミニウムとして99%Alの組成の第1被接合体と99.5%アルミニウム(A1050P)の第2被接合体を用意した。第1被接合体は、直径が0.5mm、長さ2mmのワイヤ状のものとし、第2被接合体は、厚み1mmの平坦な平板形状のものとした。めっき部を構成するめっき金属はニッケルとした。試料の作製方法は、上記の第1実施形態における製造方法と同様とした。
 めっき処理では、いずれの被接合体もアルミニウムであり、直接電解ニッケルめっきを行うことが困難なことから、表面に無電解Ni-10%Pめっきを1~6μm被着させたものを用意した。被接合体同士をめっきで接合した後、試料について大気中で熱処理を行った。熱処理温度の違いによる接合強度の違いを検証するため、熱処理温度を150℃、250℃、350℃、450℃として30分間熱処理を行った各試料を用意した。また、熱処理を行わない試料も用意した。
 接合強度の評価は第1実施例と同様の方法・条件、機器により行った。シェア強度の測定の結果、熱処理を行わなかった試料、熱処理温度が150℃の試料ではいずれも、被接合体とめっき部との界面、又はめっき部の会合界面で破断した。熱処理温度が250℃の試料では、被接合体中で破断したものも見られた。熱処理温度が350℃の試料、450℃の試料ではいずれも、全て被接合体中で破断した。このことから、熱処理温度が250℃以上の各試料では、熱処理を行わなかった試料及び熱処理温度が150℃の試料と比較して接合強度の上昇が確認できた。
(第6実施例)
 第6実施例では、ステンレス鋼で形成された一対の被接合体をめっき部で接合した接合構造体の複数の試料を作製し、引張試験を行った。ステンレス鋼としてSUS304の組成の第1被接合体と第2被接合体を用意した。第4実施例のものと同じ試料を作製し、第1被接合体及び第2被接合体は、いずれも厚みが0.2mm、めっき部を構成するめっき金属はニッケルとした。引張試験には、島津製作所社製精密万能試験機オートグラフAG-Xを用いた。
 めっき処理の後、試料について大気中で熱処理を行った。接合の有無、及び熱処理温度の有無による引張強度の違いを検証するため、接合を行っていないステンレス鋼の試験片試料、熱処理を行わない試料、200℃、250℃、300℃、400℃、500℃、600℃の熱処理温度でそれぞれ90分間熱処理を行った各試料、及び400℃から800℃まで100℃刻みの各熱処理温度で順次熱処理を行った試料をそれぞれ用意した。各試料について同じものをそれぞれ3つ用意し、各試料について3回の引張試験の平均値を算出した。図23にその結果を示す。
 本実施例では、ステンレス鋼の試験片試料の最大荷重を1.0とし、これに対する比で引張強度を評価した。熱処理を行っていない試料については、引張強度が最も低く、0.81であった。200℃で熱処理を行った試料は0.82(グラフでは不図示)、250℃で熱処理を行った試料では0.90(グラフでは不図示)、300℃では0.95(グラフでは不図示)、400℃では0.97(グラフでは不図示)であった。500℃以上で熱処理を行った試料、及び400℃から800℃まで順次熱処理を行った試料については全て被接合体上での破断が生じたので1.0と評価した。また、500℃以上で熱処理を行った試料は、ステンレス鋼の試験片試料と同等の接合強度を示すことが確認された。以上のことから、熱処理温度が250℃以上の試料では、明確な強度の上昇が確認された。
 10,30,50  接合構造体
 12,32  第1被接合体
 12a,16a,32a,36a,52a,58a  被接合面
 14,34,54  めっき部
 16,36  第2被接合体
 52  配線材(被接合体)
 56  太陽電池セル(被接合体)
 AI  会合界面
 MR1  第1の拡散領域
 MR2  第2の拡散領域
 RC  再結晶領域

 

Claims (11)

  1.  第1の金属で構成された第1被接合体と、
     第2の金属で構成された第2被接合体と、
     前記第1被接合体と前記第2被接合体の間にめっき金属で構成され、前記第1被接合体と前記第2被接合体を接合するめっき部と、
     を備え、
     前記めっき部は、前記第1被接合体と前記第2被接合体の各被接合面から略等距離の部分に前記めっき金属が会合された会合界面が形成されており、前記会合界面の近傍に前記めっき金属が再結晶した再結晶領域を有する、又は、前記会合界面の近傍に前記めっき金属が拡散した第1の拡散領域を有する、
     接合構造体。
  2.  第1の金属で構成された第1被接合体と、
     第2の金属で構成された第2被接合体と、
     前記第1被接合体と前記第2被接合体の間にめっき金属で構成され、前記第1被接合体と前記第2被接合体を接合するめっき部と、
     を備え、
     前記第1被接合体と前記第2被接合体のうち少なくとも一方の被接合体と前記めっき部との境界部分に、前記少なくとも一方の被接合体を構成する金属と前記めっき金属とが拡散して混在する第2の拡散領域を有する、
     接合構造体。
  3.  前記めっき部は、前記第1被接合体と前記第2被接合体の各被接合面から略等距離の部分に前記めっき金属が再結晶した再結晶領域を有する、
     請求項2に記載の接合構造体。
  4.  前記第1被接合体と前記第2被接合体が、点状又は線状に接触する、又は、点状又は線状に近接する領域を有する、
     請求項1~3のいずれか1項に記載の接合構造体。
  5.  前記第1被接合体と前記第2被接合体を構成する前記第1の金属及び前記第2の金属と、前記めっき金属とが同一又は全率固溶体である、
     請求項1~4のいずれか1項に記載の接合構造体。
  6.  前記第1被接合体と前記第2被接合体の少なくとも一つは鉄系合金で構成され、
     前記めっき金属はニッケルまたはニッケル合金で構成される、
     請求項1~4のいずれか1項に記載の接合構造体。
  7.  第1の金属で構成された第1被接合体と第2の金属で構成された第2被接合体の間にめっき液を浸入させ、前記第1被接合体と前記第2被接合体の間に、該第1被接合体と該第2被接合体の各被接合面から成長しためっき金属が会合した会合界面を形成させることで、前記第1被接合体と前記第2被接合体を前記めっき金属で接合する接合工程と、
     前記接合工程の後に、前記めっき金属に対して熱処理を行う熱処理工程と、
     を備え、
     前記熱処理工程は、前記会合界面に前記めっき金属が再結晶した再結晶領域を形成する、
     接合構造体の製造方法。
  8.  第1の金属で構成された第1被接合体と第2の金属で構成された第2被接合体の間にめっき液を浸入させ、前記第1被接合体と前記第2被接合体の間に、該第1被接合体と該第2被接合体の各被接合面から成長しためっき金属が会合した会合界面を形成させることで、前記第1被接合体と前記第2被接合体を前記めっき金属で接合する接合工程と、
     前記接合工程の後に、前記めっき金属に対して熱処理を行う熱処理工程と、
     を備え、
     前記熱処理工程は、前記めっき金属の融点をT1(K)とし、熱処理温度をT2(K)としたときに、T2≧T1×1/3の関係が成立する温度で熱処理を行う、
     接合構造体の製造方法。
  9.  前記熱処理工程は、前記会合界面を消失させる、
     請求項7又は8に記載の接合構造体の製造方法。
  10.  前記接合工程は、前記第1被接合体と前記第2被接合体の各被接合面の一部が、点状又は線状に接触した状態で、又は点状又は線状に近接した状態で、前記第1被接合体と前記第2被接合体の各被接合面の間隔が狭い箇所から広い箇所へと順に前記会合界面が形成される、
     請求項7~9のいずれか1項に記載の接合構造体の製造方法。
  11.  前記接合工程の前に、前記第1被接合体と前記第2被接合体の各被接合面を平滑化する平滑化工程を備える、
     請求項7~10のいずれか1項に記載の接合構造体の製造方法。

     
     
PCT/JP2022/008456 2021-03-01 2022-02-28 接合構造体及びその製造方法 WO2022186166A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/547,965 US20240165921A1 (en) 2021-03-01 2022-02-28 Joining structure and manufacturing method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021032158A JP2022133193A (ja) 2021-03-01 2021-03-01 接合構造体及びその製造方法
JP2021-032158 2021-03-01

Publications (1)

Publication Number Publication Date
WO2022186166A1 true WO2022186166A1 (ja) 2022-09-09

Family

ID=83153781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008456 WO2022186166A1 (ja) 2021-03-01 2022-02-28 接合構造体及びその製造方法

Country Status (3)

Country Link
US (1) US20240165921A1 (ja)
JP (1) JP2022133193A (ja)
WO (1) WO2022186166A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511326A (ja) * 1974-06-25 1976-01-08 Sumitomo Electric Industries Metsukimaeshorihoho
JPS5475432A (en) * 1977-11-28 1979-06-16 Furukawa Electric Co Ltd:The Manufacture of metal bar for plating
JP2013524495A (ja) * 2010-04-01 2013-06-17 ゾモント・ゲーエムベーハー 太陽電池および太陽電池を製造する方法
US20160225730A1 (en) * 2013-10-09 2016-08-04 Waseda University Electrode connection structure and electrode connection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511326A (ja) * 1974-06-25 1976-01-08 Sumitomo Electric Industries Metsukimaeshorihoho
JPS5475432A (en) * 1977-11-28 1979-06-16 Furukawa Electric Co Ltd:The Manufacture of metal bar for plating
JP2013524495A (ja) * 2010-04-01 2013-06-17 ゾモント・ゲーエムベーハー 太陽電池および太陽電池を製造する方法
US20160225730A1 (en) * 2013-10-09 2016-08-04 Waseda University Electrode connection structure and electrode connection method

Also Published As

Publication number Publication date
JP2022133193A (ja) 2022-09-13
US20240165921A1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
JP5846868B2 (ja) ステンレス鋼拡散接合製品の製造方法
BRPI0511998B1 (pt) Método para produzir um produto de revestimento e método para fabricar um artigo de manufaturada
TW200925319A (en) Tin-plated material for electronic part
KR102598376B1 (ko) 페라이트계 스테인리스 강판 및 그 제조 방법, 그리고, Al 계 도금 스테인리스 강판
TW200829358A (en) Method for bonding work pieces made of stainless steel, nickel or nickel alloys, method for producing a micro-structured component and micro-structured component
EP2741889A2 (en) Clad material for cooler, cooler for heat-generating device, and method of producing cooler for heat-generating device
Wan et al. Interfacial IMC growth of SAC305/Cu joint with a novel dual-layer of Ni (P)/Cu plating during solid-state aging
WO2022186166A1 (ja) 接合構造体及びその製造方法
US3129502A (en) Process for joining metallic parts
US20080217381A1 (en) Method for Bonding Work pieces and Micro-Structured Component
US3262490A (en) Process for joining metallic surfaces and products made thereby
TW201839156A (zh) 圓筒型濺鍍靶之製造方法及圓筒型濺鍍靶
EA004488B1 (ru) Способ изготовления электрода и электрод
Kumar et al. Study on requirement of nickel electroplating in OFE copper-316L stainless steel brazed joints
JP6904554B2 (ja) 熱交換器、及びその製造方法
JP2022095363A (ja) クラッド材および製造方法
JPH11254095A (ja) 連続鋳造用黒鉛鋳型
CN111266421B (zh) 铝钢复合材料及其制备方法和电站空冷设备
JP3798219B2 (ja) 鉄基合金部材同士の接合体及び接合方法
KR20080067919A (ko) 열교환기 및 그 제조방법
JP2020131251A (ja) アルミニウム部材と被接合部材との接合体の製造方法、及びアルミニウム部材と被接合部材とが、中間層を介して接合された接合体
CN108356376A (zh) 一种提高钎焊焊接接头性能的表面处理方法
JP6813142B1 (ja) Al系めっきステンレス鋼板、および、フェライト系ステンレス鋼板の製造方法
JP4482654B2 (ja) 高エネルギー密度利用機器用耐熱部材
JP2010042422A (ja) 鋼材とアルミニウム材料のろう付け接合構造およびろう付け方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18547965

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763221

Country of ref document: EP

Kind code of ref document: A1