WO2022186136A1 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
WO2022186136A1
WO2022186136A1 PCT/JP2022/008287 JP2022008287W WO2022186136A1 WO 2022186136 A1 WO2022186136 A1 WO 2022186136A1 JP 2022008287 W JP2022008287 W JP 2022008287W WO 2022186136 A1 WO2022186136 A1 WO 2022186136A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage element
spacer
axis direction
side plate
Prior art date
Application number
PCT/JP2022/008287
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 中畑
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2023503823A priority Critical patent/JPWO2022186136A1/ja
Publication of WO2022186136A1 publication Critical patent/WO2022186136A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device including power storage elements and side plates.
  • Patent Literature 1 discloses a power supply device (power storage device) in which an insulating spacer on the side of a battery cell (power storage element) has a pressing region (protrusion) protruding toward a side plate.
  • An object of the present invention is to provide a power storage device in which side plates can be easily attached to power storage elements.
  • a power storage device is a power storage device including a power storage element and a side plate arranged in a first direction of the power storage element, wherein the power storage element or the second side plate of the power storage element A spacer arranged in a second direction that intersects the one direction has a first surface that faces the side plate in a third direction that intersects the first direction and the second direction, and the side plate: It has a second surface facing the first surface in the third direction, and at least one of the first surface and the second surface is formed with a protrusion projecting toward the other.
  • the power storage device of the present invention it is possible to easily attach the side plate to the power storage element.
  • FIG. 1 is a perspective view showing the appearance of a power storage device according to an embodiment.
  • FIG. 2 is an exploded perspective view showing each component when the power storage device according to the embodiment is exploded.
  • FIG. 3 is a perspective view showing the structure of the storage device according to the embodiment.
  • 4A and 4B are a perspective view, a top view, and a front view showing the configuration of the spacer according to the embodiment.
  • FIG. 5 is a cross-sectional view showing the positional relationship between the spacer, the storage element, and the side plate according to the embodiment.
  • FIG. 6 is a cross-sectional view showing a step of assembling the side plate to the storage element and the spacer according to the embodiment.
  • FIG. 7A is a front view showing a configuration of a spacer according to Modification 1 of the embodiment
  • FIG. 7B is a front view showing a configuration of a spacer according to Modification 1 of the embodiment
  • FIG. 7C is a front view showing a configuration of a spacer according to Modification 1 of the embodiment
  • FIG. 8A and 8B are a front view and a perspective view showing a configuration of a side plate according to Modification 2 of the embodiment.
  • a power storage device is a power storage device including a power storage element and a side plate arranged in a first direction of the power storage element, wherein the power storage element or the second side plate of the power storage element A spacer arranged in a second direction that intersects the one direction has a first surface that faces the side plate in a third direction that intersects the first direction and the second direction, and the side plate: It has a second surface facing the first surface in the third direction, and at least one of the first surface and the second surface is formed with a protrusion projecting toward the other.
  • the projection may have a sloped surface that slopes away from the side plate in the first direction as it goes away from the power storage element in the third direction.
  • the protrusion since the protrusion has the inclined surface, when the side plate is attached to the storage element from the first direction, the side plate is attached to the storage element from the first direction along the inclined surface. Assemble. This makes it easier to attach the side plate to the storage element.
  • the side plate may have an insulating member on which the projection is formed.
  • the side plate has the insulating member, and the insulating member is formed with the projection. This makes it possible to realize a configuration that facilitates the attachment of the side plate to the storage element.
  • At least one of the first surface and the second surface may be formed with a plurality of projections projecting toward the other.
  • the power storage element or the spacer and the side plate of the power storage element in the first direction have first and second surfaces facing each other in the third direction.
  • a plurality of projections are formed on at least one of the surfaces so as to protrude toward the other surface.
  • the plurality of protrusions may be arranged at different positions in the first direction.
  • the plurality of protrusions formed on at least one of the first surface and the second surface of the storage element or spacer and side plate are arranged at different positions in the first direction. Therefore, when the side plate is assembled to the electric storage element from the first direction, the plurality of protrusions are sequentially contacted in the first direction. Therefore, since the assembling load due to the protrusion can be divided into a plurality of stages, the assembling load due to the protrusion can be reduced, and the side plate can be more easily attached to the power storage element.
  • the plurality of protrusions may be arranged at positions that do not overlap in the first direction.
  • the plurality of protrusions formed on at least one of the first surface and the second surface of the storage element or spacer and side plate are arranged at positions that do not overlap in the first direction.
  • the plurality of projections are arranged at positions that do not overlap in the first direction, when the side plate is assembled to the power storage element from the first direction, after contacting one projection in the first direction, the next contact with the protrusion of As a result, the mounting load due to the protrusion can be further reduced, and the mounting of the side plate to the power storage element can be further facilitated.
  • At least one protrusion among the plurality of protrusions may be arranged at a position overlapping with a part of the power storage element when viewed from the third direction.
  • the side plate makes the storage element more visible in the third direction. It can be held firmly. As a result, it is possible to improve the resistance to vibration or shock (load resistance) of the electric storage device while facilitating the attachment of the side plate to the electric storage element.
  • At least one projection among the plurality of projections may have an inclined surface that inclines away from the side plate in the first direction as it goes away from the power storage element in the third direction.
  • the side plate when the side plate is attached to the power storage element from the first direction, the side plate is moved along the inclined surface in the first direction. It is attached to the storage element from one direction. This makes it easier to attach the side plate to the storage element.
  • the side plate may have an insulating member formed with the plurality of projections.
  • the side plate has an insulating member, and the insulating member is formed with a plurality of projections. This makes it possible to realize a configuration that facilitates the attachment of the side plate to the storage element.
  • the present invention can be realized not only as such a power storage device, but also as a combination of a power storage element and a side plate, or a combination of a power storage element, a spacer and a side plate.
  • the direction in which a pair of electrode terminals in one storage element are aligned, the direction in which a pair of short sides of a container for one storage element are aligned, or the direction in which a pair of side plates are aligned is referred to as the first direction. and the X-axis direction.
  • the thickness direction of the storage element, spacer, or end plate is defined as the second direction and the Y-axis direction.
  • the direction in which the container body and lid of the container for the storage element are arranged, or the vertical direction, is defined as the third direction and the Z-axis direction.
  • X-axis direction, Y-axis direction, and Z-axis direction are directions that cross each other (perpendicularly in this embodiment).
  • the Z-axis direction may not be the vertical direction, but for convenience of explanation, the Z-axis direction will be described below as the vertical direction.
  • the positive direction of the X-axis indicates the direction of the arrow on the X-axis
  • the negative direction of the X-axis indicates the direction opposite to the positive direction of the X-axis.
  • the positive direction of the X-axis indicates the direction toward one side (right) when the power storage device is viewed from the direction in which the power storage elements are arranged (Y-axis direction).
  • the negative direction of the X-axis indicates the direction toward the other (left) when the power storage device is viewed from the direction in which the power storage elements are arranged (Y-axis direction).
  • the positive direction of the Y-axis indicates the direction toward the back when the power storage device is viewed from the direction in which the power storage elements are arranged (Y-axis direction).
  • the minus direction of the Y-axis indicates the direction toward the front when the power storage device is viewed from the direction in which the power storage elements are arranged (the Y-axis direction).
  • the Z-axis plus direction indicates the direction in which the terminals of the storage elements are arranged when the storage device is viewed from the direction in which the storage elements are arranged (Y-axis direction).
  • the negative direction of the Z-axis indicates the direction opposite to the direction in which the terminals of the storage elements are arranged when the storage device is viewed from the direction in which the storage elements are arranged (the Y-axis direction).
  • FIG. 1 is a perspective view showing the appearance of power storage device 10 according to the present embodiment.
  • FIG. 2 is an exploded perspective view showing each component when power storage device 10 according to the present embodiment is exploded.
  • the power storage device 10 is a device that can charge electricity from the outside and discharge electricity to the outside, and has a substantially rectangular parallelepiped shape in the present embodiment.
  • the power storage device 10 is a battery module (assembled battery) used for power storage, power supply, or the like.
  • the power storage device 10 is used for driving mobile bodies such as automobiles, motorcycles, water crafts, ships, snowmobiles, agricultural machinery, construction machinery, or railroad vehicles for electric railways, or for starting engines. Used as a battery or the like. Examples of such vehicles include electric vehicles (EV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and gasoline vehicles. Examples of railway vehicles for the electric railway include electric trains, monorails, linear motor cars, and hybrid trains having both diesel engines and electric motors.
  • the power storage device 10 can also be used as a stationary battery or the like for home or business use.
  • the power storage device 10 includes a plurality of power storage elements 100, a plurality of spacers 200 and 300, a pair of end plates 400, and a pair of side plates 500.
  • the side plates 500 has an insulator 600 .
  • the power storage device 10 also includes a bus bar that connects the power storage elements 100 in series or in parallel, but illustration and description thereof are omitted.
  • the power storage device 10 includes a busbar frame for positioning the busbars, an exterior body for housing the components, external terminals connected to external busbars, etc., and the state of charge of the power storage element 100.
  • a circuit board, fuses, relays, connectors, and other electric devices for monitoring or controlling the discharge state may be provided.
  • the power storage element 100 is a secondary battery (single battery) capable of charging and discharging electricity, and more specifically, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
  • the power storage element 100 has a flat rectangular parallelepiped shape (rectangular shape), and in the present embodiment, eight power storage elements 100 are arranged side by side in the Y-axis direction.
  • the size and shape of the power storage element 100, the number of power storage elements 100 to be arranged, and the like are not limited, and only one power storage element 100 may be arranged.
  • the storage element 100 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than a non-aqueous electrolyte secondary battery, or may be a capacitor.
  • the storage element 100 may be a primary battery.
  • the storage element 100 may be a battery using a solid electrolyte.
  • the storage element 100 may be a pouch-type storage element. A detailed description of the configuration of the storage element 100 will be given later.
  • the spacers 200 and 300 are plate-like and rectangular members that are arranged in the Y-axis direction (second direction) of the storage element 100 and electrically insulate the storage element 100 from other members. That is, the spacers 200 and 300 are arranged in the Y-axis plus direction or the Y-axis minus direction of the storage elements 100 to electrically insulate the storage elements 100 from each other or the storage elements 100 and the end plate 400 .
  • Spacers 200 and 300 are made of polycarbonate (PC), polypropylene (PP), polyethylene (PE), polystyrene (PS), polyphenylene sulfide resin (PPS), polyphenylene ether (PPE (including modified PPE)), polyethylene terephthalate (PET ), polybutylene terephthalate (PBT), polyetheretherketone (PEEK), tetrafluoroethylene-perfluoroalkyl vinyl ether (PFA), polytetrafluoroethylene (PTFE), polyethersulfone (PES), ABS resin, or It is formed of an electrically insulating member such as a composite material, a metal coated with an electrically insulating coating, or a heat insulating member such as a damper material.
  • an electrically insulating member such as a composite material, a metal coated with an electrically insulating coating, or a heat insulating member such as a damper material.
  • the spacer 200 is a plate-like and rectangular spacer (intermediate spacer) parallel to the XZ plane that is arranged between two adjacent power storage elements 100 and electrically insulates between the two power storage elements 100. . Specifically, the spacer 200 faces the long side surfaces 111 and is in contact with the long side surfaces 111 between the long side surfaces 111 of the later-described containers 110 of the two storage elements 100. placed. In the present embodiment, seven spacers 200 and eight energy storage elements 100 are arranged alternately in the Y-axis direction. The number is also appropriately changed according to the number of storage elements 100 . When power storage elements 100 are connected in parallel, spacer 200 may not be arranged between power storage elements 100 connected in parallel. A detailed description of the configuration of the spacer 200 will be given later.
  • the spacer 300 is arranged between the power storage element 100 at the end and the end plate 400, electrically insulates between the power storage element 100 at the end and the end plate 400, and has a flat plate shape parallel to the XZ plane. It is a rectangular spacer (end spacer). Two spacers 300 are arranged between the storage elements 100 at both ends in the Y-axis direction and the pair of end plates 400 . Specifically, the spacer 300 is provided between the long side surface 111 of the container 110 of the storage element 100 at the Y-axis direction end and the Y-axis direction surface of the end plate 400 . It is arranged in a state of facing and abutting the surface.
  • the spacer 300 has such a shape that the spacer 200 is divided in half in the Y-axis direction. That is, the spacer 300 positioned in the positive Y-axis direction has the same shape as the portion on the negative Y-axis direction side when the spacer 200 is divided in half in the Y-axis direction. The spacer 300 located in the negative Y-axis direction has the same shape as the portion on the positive Y-axis direction when the spacer 200 is divided in half in the Y-axis direction. Therefore, the detailed configuration of the spacer 300 is assumed to conform to the detailed configuration of the spacer 200 to be described later, and the description thereof is omitted.
  • FIG. 2 does not show the spacer 300 with a projection corresponding to the later-described projection 231 of the spacer 200 , the spacer 300 may have a projection similar to the projection 231 .
  • the end plate 400 and the side plate 500 are restraining members that externally press (constrain) the storage elements 100 in the direction in which the plurality of storage elements 100 are arranged (Y-axis direction). That is, the end plates 400 and the side plates 500 sandwich the plurality of power storage elements 100 from both sides in the alignment direction, thereby pressing (restraining) the power storage elements 100 included in the plurality of power storage elements 100 from both sides in the alignment direction. )do.
  • the end plates 400 are arranged on both sides of the plurality of energy storage elements 100 and the plurality of spacers 200 and 300 in the Y-axis direction, and sandwich and hold the plurality of energy storage elements 100 and the like from both sides in the alignment direction (Y-axis direction). It is a plate-shaped (flat block-shaped) restraining member (sandwiching member).
  • the pair of end plates 400 are arranged at positions sandwiching the plurality of energy storage elements 100 and the plurality of spacers 200 and 300 in the Y-axis direction (the stacking direction of the electrode bodies of the electrode bodies of the energy storage elements 100). to bound.
  • the end plate 400 is formed of a metal member such as steel or stainless steel from the viewpoint of securing strength, but the material is not particularly limited.
  • the end plate 400 may be made of a high-strength, electrically insulating member, or may be made of a metal member subjected to insulation treatment.
  • the side plate 500 is a plate-like elongated restraint member (restraint bar) arranged in the X-axis direction (first direction) of the plurality of power storage elements 100 and the plurality of spacers 200 and 300 .
  • the side plate 500 has both ends attached to a pair of end plates 400 and binds the pair of end plates 400 together to bind the plurality of power storage elements 100 and the plurality of spacers 200 and 300 .
  • the side plate 500 is arranged so as to extend in the Y-axis direction so as to straddle the plurality of storage elements 100 and the plurality of spacers 200 and 300, and the arrangement direction (Y axial direction).
  • a pair of side plates 500 are arranged on both sides of the plurality of energy storage elements 100 and the plurality of spacers 200 and 300 in the X-axis direction.
  • the pair of side plates 500 are attached to the X-axis direction end portions of the pair of end plates 400 at both Y-axis direction end portions. Accordingly, the pair of side plates 500 and the pair of end plates 400 sandwich and constrain the plurality of power storage elements 100 and the like from both sides in the X-axis direction and both sides in the Y-axis direction.
  • the side plate 500 is connected (joined) to the end plate 400 by a plurality of (three in this embodiment) connecting members 500a arranged in the Z-axis direction.
  • connecting member 500a is a bolt (screw), and is fastened by screwing with a female threaded portion formed in end plate 400. As shown in FIG.
  • the connection (joining) of the side plate 500 to the end plate 400 is not limited to fixing with bolts (screws), and may be joined by welding, adhesion, or the like.
  • the side plate 500 has the insulator 600 on the inner side (on the power storage element 100 side).
  • the insulators 600 are plate-shaped and elongated insulating members arranged on both sides of the plurality of power storage elements 100 and the plurality of spacers 200 and 300 in the X-axis direction and extending in the Y-axis direction.
  • the insulator 600 is arranged between the plurality of power storage elements 100 and the like and the side plate 500 (excluding the insulator 600 ) so as to straddle the plurality of power storage elements 100 and the plurality of spacers 200 and 300 .
  • insulator 600 electrically insulates power storage elements 100 from side plate 500 (excluding insulator 600).
  • the side plate 500 (excluding the insulator 600) is made of a metal member such as steel or stainless from the viewpoint of securing strength, like the end plate 400, but the material is not particularly limited.
  • the side plate 500 (excluding the insulator 600) may be formed of a high-strength, electrically insulating member, or may be a metal member subjected to insulation treatment.
  • the insulator 600 may be made of any electrically insulating material, and may be made of any electrically insulating material that can be used for the spacers 200 and 300 .
  • FIG. 3 is a perspective view showing the structure of the storage device 100 according to this embodiment. Specifically, FIG. 3 shows an enlarged appearance of one power storage element 100 out of the plurality of power storage elements 100 shown in FIG. Since the plurality of power storage elements 100 all have the same configuration, the configuration of one power storage element 100 will be described in detail below.
  • the electric storage element 100 includes a container 110 , a pair of electrode terminals 140 (positive electrode side and negative electrode side), and an upper gasket 150 . Inside the container 110, a lower gasket, an electrode body, a pair of current collectors (positive electrode side and negative electrode side), an electrolytic solution (non-aqueous electrolyte), etc. are accommodated, but illustration of these is omitted. . There is no particular limitation on the type of the electrolytic solution as long as it does not impair the performance of the storage element 100, and various types can be selected.
  • the electric storage element 100 may have spacers arranged on the side or below the electrode body, an insulating film that wraps the electrode body, and the like. Furthermore, an insulating film (shrink tube or the like) covering the outer surface of the container 110 may be arranged around the container 110 .
  • the material of the insulating film is not particularly limited as long as it can ensure electrical insulation required for the electric storage element 100 .
  • Materials for the insulating film include electrically insulating resins such as PC, PP, PE, PPS, PET, PBT, and ABS resins, epoxy resins, Kapton, Teflon (registered trademark), silicon, polyisoprene, and polychloride. vinyl, etc.
  • the container 110 is a rectangular parallelepiped (square or box-shaped) case having a container body 120 with an opening and a lid 130 closing the opening of the container body 120 .
  • the container main body 120 is a rectangular tubular member that constitutes the main body of the container 110 and has a bottom, and an opening is formed on the Z-axis positive direction side.
  • the lid body 130 is a rectangular plate-like member that constitutes the lid portion of the container 110 , and is arranged to extend in the X-axis direction on the Z-axis plus direction side of the container body 120 .
  • the container 110 (lid 130) has a gas discharge valve that releases the pressure when the pressure inside the container 110 is excessively increased, and an injection part for injecting an electrolytic solution into the container 110. etc. may be provided.
  • container 110 is not particularly limited, and weldable (joinable) metals such as stainless steel, aluminum, aluminum alloys, iron, and plated steel plates can be used. Resin can also be used as the material of the container 110 (container body 120 and lid 130).
  • the container 110 has a structure in which the container main body 120 and the lid 130 are joined by welding or the like after the electrode body and the like are accommodated inside the container main body 120, and the inside is sealed.
  • the container 110 has a pair of long side surfaces 111 on both side surfaces in the Y-axis direction, a pair of short side surfaces 112 on both side surfaces in the X-axis direction, and a bottom surface 113 on the negative Z-axis direction side.
  • the long side surface 111 is a rectangular planar portion that forms the long side surface of the container 110 and is arranged to face the adjacent spacers 200 or 300 in the Y-axis direction. Long side 111 is adjacent to short side 112 and bottom 113 and has a larger area than short side 112 .
  • the short side surface 112 is a rectangular planar portion that forms the short side surface of the container 110 and is arranged to face the side plate 500 in the X-axis direction. Short side 112 is adjacent to long side 111 and bottom 113 and has a smaller area than long side 111 .
  • the bottom surface 113 is a rectangular planar portion that forms the bottom surface of the container 110 and is arranged adjacent to the long side surface 111 and the short side surface 112 .
  • the electrode terminal 140 is a terminal member (a positive electrode terminal and a negative electrode terminal) of the storage element 100 arranged in the lid 130, and is electrically connected to the positive electrode plate and the negative electrode plate of the electrode body via a current collector.
  • the electrode terminal 140 is made of a metal material for leading electricity stored in the electrode body to the external space of the storage element 100 and for introducing electricity into the internal space of the storage element 100 to store the electricity in the electrode body. It is a member made of The electrode terminal 140 is made of aluminum, aluminum alloy, copper, copper alloy, or the like.
  • the electrode assembly is a power storage element (power generation element) formed by laminating a positive electrode plate, a negative electrode plate, and a separator.
  • the positive electrode plate is formed by forming a positive electrode active material layer on a positive electrode substrate layer, which is a collector foil made of a metal such as aluminum or an aluminum alloy.
  • the negative electrode plate is formed by forming a negative electrode active material layer on a negative electrode substrate layer, which is a collector foil made of a metal such as copper or a copper alloy.
  • the active material used for the positive electrode active material layer and the negative electrode active material layer any known material can be appropriately used as long as it can intercalate and deintercalate lithium ions.
  • the electrode body is formed by stacking electrode plates (a positive electrode plate and a negative electrode plate) in the Y-axis direction.
  • the electrode body includes a wound electrode body formed by winding electrode plates (a positive electrode plate and a negative electrode plate), and a laminated (stacked) electrode formed by stacking a plurality of flat plate-shaped electrode plates.
  • the electrode body may have any form, such as a body or a bellows-shaped electrode body in which an electrode plate is folded into a bellows shape.
  • the current collectors are conductive members (positive electrode current collector and negative electrode current collector) that are electrically connected to the electrode terminal 140 and the electrode body.
  • the positive electrode current collector is made of aluminum, an aluminum alloy, or the like, like the positive electrode substrate layer of the positive electrode plate, and the negative electrode current collector, like the negative electrode substrate layer of the negative electrode plate, is made of copper, a copper alloy, or the like.
  • the upper gasket 150 is a gasket that is arranged between the lid 130 and the electrode terminal 140 to electrically insulate and seal between the lid 130 and the electrode terminal 140 .
  • the lower gasket is a gasket that is placed between the lid 130 and the current collector to electrically insulate and seal between the lid 130 and the current collector.
  • the upper gasket 150 and the lower gasket may be made of any material that has electrical insulation.
  • FIG. 4A and 4B are a perspective view, a top view, and a front view showing the configuration of the spacer 200 according to this embodiment.
  • (a) of FIG. 4 is a perspective view showing an enlarged appearance of one spacer 200 out of the plurality of spacers 200 shown in FIG.
  • FIG. 4(b) shows projections 231 (231a, 231b) in the negative direction of the X-axis of the spacer 200 shown in (a) of FIG. It is a top view which expands and shows a structure.
  • FIG. 4 is a perspective view showing an enlarged appearance of one spacer 200 out of the plurality of spacers 200 shown in FIG.
  • FIG. 4(b) shows projections 231 (231a, 231b) in the negative direction of the X-axis of the spacer 200 shown in (a) of FIG. It is a top view which expands and shows a structure.
  • FIG. 4 shows projections 231 (231a, 231b) in the negative direction of the X-axis of the spacer 200 shown in (a) of FIG. It is a front view which expands and shows a structure.
  • the spacer 200 has the same shape at both ends in the X-axis direction. That is, the spacer 200 has a shape that is rotationally symmetrical when rotated 180° about an axis passing through the center position and parallel to the Z-axis direction. A rotationally symmetrical shape is preferable because it enables work to be performed without considering the orientation of the spacer during assembly.
  • the spacer 200 has a spacer body portion 210 , a pair of spacer side wall portions 220 , a pair of spacer top wall portions 230 and a pair of spacer bottom wall portions 240 .
  • the spacer body portion 210 is a flat plate-like and rectangular portion that constitutes the body of the spacer 200, and is arranged parallel to the XZ plane.
  • spacer main body 210 has long side surfaces in the Y-axis direction so as to cover the entire long side surface 111 of container 110 of power storage element 100 in the Y-axis plus direction or the Y-axis minus direction. 111 and is arranged in contact with the long side surface 111 .
  • the spacer side wall portion 220 is a plate-like and rectangular portion that protrudes in the Y-axis direction from the end portion of the spacer body portion 210 in the X-axis direction and extends in the Z-axis direction, and is arranged parallel to the YZ plane. . Specifically, a pair of spacer side wall portions 220 projecting from both ends of the spacer body 210 in the X-axis direction and extending in the Z-axis direction are arranged at both ends of the spacer 200 in the X-axis direction. ing. In the present embodiment, spacer side wall portion 220 is arranged along short side surface 112 of container 110 of power storage element 100 (see FIG. 5).
  • the spacer side wall portions 220 are short in the X-axis direction so as to cover half of the short side surface 112 of the container 110 on the Y-axis positive direction side or the Y-axis negative direction side on both sides of the power storage element 100 in the X-axis direction. It is arranged opposite to the side surface 112 . As a result, the entire short side surface 112 of the container 110 of the storage element 100 is covered by the spacer side wall portions 220 of the two spacers 200 sandwiching the storage element 100 in the Y-axis direction.
  • the spacer bottom wall portion 240 is a plate-like and rectangular portion that protrudes in the Y-axis direction from the end of the spacer body portion 210 in the negative Z-axis direction, and is arranged parallel to the XY plane. Specifically, a pair of spacer bottom wall portions 240 projecting to both sides in the Y-axis direction from both ends in the X-axis direction of the ends of the spacer body portion 210 in the negative Z-axis direction are arranged at both ends of the spacer 200 in the X-axis direction. ing. In the present embodiment, spacer bottom wall portion 240 is arranged along bottom surface 113 of container 110 of storage element 100 on the negative Z-axis direction side of storage element 100 (see FIG. 5).
  • the spacer bottom wall portion 240 is arranged in the Z-axis direction so as to cover half of the bottom surface 113 of the container 110 on the Y-axis positive direction side or the Y-axis negative direction side at both ends of the power storage element 100 in the X-axis direction. It is arranged to face the bottom surface 113 .
  • the spacer upper wall portion 230 is a plate-like and rectangular portion that protrudes in the Y-axis direction from the end portion of the spacer body portion 210 in the positive Z-axis direction, and is arranged parallel to the XY plane. Specifically, a pair of spacer upper wall portions 230 projecting to both sides in the Y-axis direction from both ends in the X-axis direction of the end portion of the spacer main body portion 210 in the positive Z-axis direction are arranged at both ends in the X-axis direction of the spacer 200 . ing. In the present embodiment, spacer upper wall portion 230 is arranged along lid 130 of container 110 of storage element 100 on the Z-axis positive direction side of storage element 100 (see FIG. 5).
  • the spacer upper wall portion 230 extends in the Z-axis direction so as to cover half of the lid 130 of the container 110 on the Y-axis positive direction side or the Y-axis negative direction side at both ends of the power storage element 100 in the X-axis direction. is arranged to face the lid body 130 at .
  • the spacer upper wall portion 230 has a first surface 230a that is one continuous surface (flat surface in the present embodiment) facing in the positive Z-axis direction.
  • a plurality of protrusions 231 are formed for the purpose.
  • the spacer 200 has a shape that is rotationally symmetrical when rotated 180° about an axis that passes through the center position and is parallel to the Z-axis direction. , the shapes match when rotated 180° about the axis.
  • the configuration of the spacer upper wall portion 230 in the negative direction of the X axis will be mainly described below, and the configuration of the spacer upper wall portion 230 in the positive direction of the X axis will be Simplify or omit.
  • the spacer upper wall portion 230 has two projections 231a and 231b as the plurality of projections 231. As shown in FIG.
  • the projections 231 (231a, 231b) are ribs in the shape of quartering a sphere.
  • the protrusion 231 has a shape corresponding to a portion located in the negative direction of the X-axis and the positive direction of the Z-axis when cut along a plane parallel to the XY plane and a plane parallel to the YZ plane passing through the center of the sphere. have.
  • the protrusion 231 has a semicircular shape in which the negative direction of the X-axis is a circular arc when viewed from the positive direction of the Z-axis, and the negative direction of the X-axis and the positive direction of the Z-axis when viewed from the negative direction of the Y-axis are circular arcs. It has a fan shape with an angle of 90°.
  • the projection 231 is elongated in the Y-axis direction and has a shape in which the surface in the negative direction of the X-axis is inclined.
  • the projection 231 has a curved inclined surface 231c that inclines in the positive direction of the X-axis toward the positive direction of the Z-axis (see (c) of FIG. 4).
  • power storage element 100 is arranged in the negative Z-axis direction of projection 231
  • side plate 500 is arranged in the negative X-axis direction of projection 231 (see FIG. 5, etc.). Therefore, at least one protrusion 231 among the plurality of protrusions 231 is arranged in a direction away from the side plate 500 in the X-axis direction (first direction) as it goes away from the power storage element 100 in the Z-axis direction (third direction). It has an inclined surface 231c that inclines to .
  • all protrusions 231 (231a and 231b) have inclined surfaces 231c.
  • the plurality of protrusions 231 are arranged at different positions in the X-axis direction (first direction). That is, the plurality of protrusions 231 are arranged at positions shifted in the X-axis direction (first direction). Specifically, the plurality of protrusions 231 (two protrusions 231a and 231b) are arranged at positions that do not overlap in the X-axis direction (first direction). That is, the plurality of protrusions 231 are arranged at positions spaced apart in the X-axis direction (first direction).
  • the plurality of protrusions 231 are arranged at different positions in the Y-axis direction (second direction) as well. That is, the plurality of protrusions 231 are arranged at positions shifted in the Y-axis direction (second direction) as well. Specifically, the plurality of protrusions 231 (two protrusions 231a and 231b) are arranged at positions that do not overlap in the Y-axis direction (second direction). That is, the plurality of protrusions 231 are arranged at positions spaced apart in the Y-axis direction (second direction). The plurality of protrusions 231 (two protrusions 231a and 231b) are arranged at the same position in the Z-axis direction (third direction).
  • the protrusion 231b is arranged in the positive direction of the X-axis and the negative direction of the Y-axis from the protrusion 231a.
  • a protrusion 231b is arranged in the negative direction of the X-axis and the positive direction of the Y-axis from the protrusion 231a.
  • the plurality of protrusions 231 are positioned at different positions in the X-axis direction (first direction) and are arranged in positions that do not overlap in the Y-axis direction. , a plurality of protrusions 231 can be easily formed.
  • At least one protrusion 231 of the plurality of protrusions 231 is arranged at a position overlapping with a part of the power storage element 100 when viewed from the Z-axis direction (third direction). That is, at least one protrusion 231 is arranged directly above the power storage element 100 .
  • all the projections 231 are arranged at positions overlapping with a part of the storage element 100 when viewed from the Z-axis direction. be done.
  • the two protrusions 231a and 231b are all arranged at positions overlapping the storage element 100 when viewed from the Z-axis direction (third direction).
  • only a portion of the projection 231a may be arranged at a position overlapping the power storage element 100, or only a portion of the projection 231b may be arranged at a position overlapping with the power storage element 100. It doesn't have to be.
  • FIG. 5 is a cross-sectional view showing the positional relationship between spacer 200, power storage element 100, and side plate 500 according to the present embodiment.
  • (a) of FIG. 5 is a diagram showing a cross section of power storage device 10 shown in FIG. 1 taken along a plane parallel to the XZ plane through line VV.
  • FIG. 5(b) is an enlarged cross-sectional view showing the configuration of the protrusion 231 in the negative direction of the X-axis of the spacer 200 shown in FIG. 5(a) and its surroundings.
  • FIG. 5 is a cross-sectional view showing the positional relationship between spacer 200, power storage element 100, and side plate 500 according to the present embodiment.
  • (a) of FIG. 5 is a diagram showing a cross section of power storage device 10 shown in FIG. 1 taken along a plane parallel to the XZ plane through line VV.
  • FIG. 5(b) is an enlarged cross-sectional view showing the configuration of the protrusion 231 in the negative direction of the X
  • FIG. 6 is a cross-sectional view showing a step of assembling the side plate 500 to the storage element 100 and the spacer 200 according to this embodiment.
  • FIG. 6 is a diagram corresponding to (b) of FIG. 5, and (a) of FIG. (b) of FIG. 6 shows the configuration during assembly, and (c) of FIG. 6 shows the configuration after assembly.
  • the side plate 500 has the insulator 600. As shown in FIGS. , and a plate bottom wall portion 530 .
  • the insulator 600 has an insulator body portion 610 , an insulator top wall portion 620 and an insulator bottom wall portion 630 . Since the pair of side plates 500 (insulators 600) have the same configuration, the side plate 500 (insulator 600) in the negative direction of the X axis will be described below, and the side plate 500 (insulator 600) in the positive direction of the X axis will be described. Explanations are simplified or omitted.
  • the plate body portion 510 is a plate-shaped and rectangular portion that is arranged in the negative X-axis direction of the insulator body portion 610 and extends in the Y-axis direction and parallel to the YZ plane. Plate body portion 510 is arranged in a state of being in contact with insulator body portion 610 in the X-axis direction.
  • the plate upper wall portion 520 is an elongated plate-like portion that protrudes in the positive X-axis direction from the end portion of the plate main body portion 510 in the positive Z-axis direction and extends in the Y-axis direction. Plate upper wall portion 520 is arranged in a state of being inserted and fitted into insulator upper wall portion 620 from the negative direction of the X-axis.
  • the plate bottom wall portion 530 is an elongated plate-like portion that protrudes in the positive X-axis direction from the end portion of the plate body portion 510 in the negative Z-axis direction and extends in the Y-axis direction. Plate bottom wall portion 530 is disposed in contact with insulator bottom wall portion 630 in the Z-axis direction in the negative Z-axis direction of insulator bottom wall portion 630 .
  • the insulator main body 610 is a plate-shaped and rectangular portion that is arranged in the negative X-axis direction of the plurality of storage elements 100 and the plurality of spacers 200 and 300 and extends in the Y-axis direction and parallel to the YZ plane.
  • the insulator body portion 610 is arranged in contact with the plurality of spacers 200 (spacer side wall portions 220) and 300 in the X-axis direction.
  • Insulator bottom wall portion 630 is an elongated plate-like portion that protrudes in the positive X-axis direction from the end of insulator body portion 610 in the negative Z-axis direction and extends in the Y-axis direction.
  • the insulator bottom wall portion 630 is arranged in contact with the plurality of spacers 200 (spacer bottom wall portions 240) and 300 in the Z-axis direction of the plurality of power storage elements 100 and the plurality of spacers 200 and 300 in the Z-axis direction. be done.
  • the insulator upper wall portion 620 is a long plate-like portion arranged in the Z-axis positive direction of the plurality of power storage elements 100 and the plurality of spacers 200 and 300 and extending in the Y-axis direction.
  • the insulator upper wall portion 620 protrudes in the positive direction of the X-axis from the end of the insulator main body portion 610 in the positive direction of the Z-axis, bends in the positive direction of the Z-axis, and bends in the negative direction of the X-axis as viewed from the positive direction of the Y-axis. It has a C-shaped shape.
  • a recess recessed in the positive direction of the X-axis is formed in the insulator upper wall portion 620, and the plate upper wall portion 520 is inserted and fitted into this recess.
  • the insulator upper wall portion 620 is arranged in contact with the plurality of protrusions 231 formed on the spacer upper wall portions 230 of the plurality of spacers 200 in the Z-axis direction.
  • the insulator upper wall portion 620 has a second surface 620a that is one continuous surface (a flat surface in the present embodiment) facing in the negative Z-axis direction.
  • the second surface 620a is a surface facing the first surface 230a of the spacer upper wall portion 230 of the spacer 200 in the Z-axis direction. That is, the spacer 200 has a first surface 230a facing the side plate 500 (insulator 600) in the Z-axis direction (third direction), and the side plate 500 (insulator 600) extends in the Z-axis direction (third direction). ) has a second surface 620a facing the first surface 230a.
  • a plurality of projections 231 projecting in the Z-axis direction (third direction) toward the second surface 620a are formed on the first surface 230a.
  • the insulator upper wall portion 620 is arranged on the second surface 620a in contact with the plurality of projections 231 formed on the first surface 230a of the spacer upper wall portion 230 of the plurality of spacers 200 in the Z-axis direction. .
  • the side plate 500 when the side plate 500 is attached to the storage element 100, the side plate 500 ( Insulator 600) is brought closer. Then, as shown in FIG. 6(b), the side plate 500 crushes the projection 231a of the spacer 200 via the insulator upper wall portion 620 of the insulator 600, while the X-axis plus the energy storage element 100 and the spacer 200. move in the direction Then, as shown in FIG. 6(c), the side plate 500 crushes the projection 231a of the spacer 200 with the insulator upper wall portion 620 of the insulator 600, and then crushes the projection 231b, so that the power storage element 100 and the spacer 200 are separated from each other.
  • FIG. 1 moves in the positive direction of the X-axis. That is, the side plate 500 (insulator 600) moves in the X-axis plus direction with respect to the storage element 100 and the spacer 200 while sequentially crushing the projections 231a and 231b of the spacer 200.
  • FIG. 1 shows that the side plate 500 (insulator 600) moves in the X-axis plus direction with respect to the storage element 100 and the spacer 200 while sequentially crushing the projections 231a and 231b of the spacer 200.
  • the projections 231 are crushed ribs, and the insulator upper wall portion 620 is formed in a state where the plurality of projections 231 (projections 231a and 231b) formed on the plurality of spacers 200 are crushed. , abut on the plurality of protrusions 231 in the Z-axis direction. This restricts the movement of the side plate 500 (insulator 600) with respect to the power storage element 100 and the spacer 200 in the Z-axis direction.
  • the projection 231 may be arranged at either position of the projections 231a and 231b, or may be arranged in a shape straddling the projections 231a and 231b.
  • the power storage element 100 or the spacer 200 and the side plate 500 have the first surfaces 230a and 230a facing each other in the third direction (Z-axis direction). It has a second surface 620a. At least one of the first surface 230a and the second surface 620a is provided with a protrusion 231 that protrudes toward the other. By doing so, when assembling the side plate 500 to the power storage element 100 from the first direction, the side plate 500 can be easily assembled to the power storage element 100 .
  • At least one of the first surface 230a and the second surface 620a (in the present embodiment, the first surface 230a of the spacer 200) of the storage element 100 or the spacer 200 and the side plate 500 has a A plurality of protrusions are formed.
  • At least one of the first surface 230a and the second surface 620a (in the present embodiment, the first surface 230a of the spacer 200) of the storage element 100 or the spacer 200 and the side plate 500 is provided with a plurality of protrusions 231.
  • the plurality of protrusions 231 are arranged at different positions in the first direction.
  • the plurality of projections 231 are sequentially contacted in the first direction. Therefore, since the assembling load due to the protrusion 231 can be divided into a plurality of stages, the assembling load due to the protrusion 231 can be reduced, and the side plate 500 can be easily attached to the power storage element 100 .
  • the plurality of projections 231 formed on at least one of the first surface 230a and the second surface 620a (in the present embodiment, the first surface 230a of the spacer 200) of the energy storage element 100 or the spacer 200 and the side plate 500 are They are arranged in a non-overlapping position in one direction. In this way, since the plurality of protrusions 231 are arranged at positions that do not overlap in the first direction, when assembling the side plate 500 to the power storage element 100 from the first direction, one protrusion 231 , the next protrusion 231 is contacted. As a result, the mounting load due to the projections 231 can be further reduced, so that the mounting of the side plate 500 to the power storage element 100 can be further facilitated.
  • the protrusion 231 is arranged at a position overlapping with a part of the power storage element 100 when viewed from the third direction. At least one protrusion 231 (both protrusions 231a and 231b in the present embodiment) of the plurality of protrusions 231 is arranged at a position overlapping a part of the power storage element 100 when viewed from the third direction. Thereby, the power storage element 100 can be held more firmly by the side plate 500 in the third direction. While assembling the side plate 500 to the power storage element 100 is facilitated, the vibration resistance or shock resistance performance (load resistance performance) of the power storage device 10 can be improved.
  • the protrusion 231 has an inclined surface 231c. At least one protrusion 231 (both protrusions 231a and 231b in this embodiment) of the plurality of protrusions 231 has an inclined surface 231c. Accordingly, when assembling the side plate 500 to the storage element 100 from the first direction, the side plate 500 can be assembled to the storage element 100 from the first direction along the inclined surface 231c. Assembly of the side plate 500 to the storage element 100 can be made easier.
  • the plurality of protrusions 231 are arranged at non-overlapping positions in the X-axis direction and the Y-axis direction, and are arranged at the same position in the Z-axis direction.
  • the plurality of protrusions 231 may be arranged at positions where they partially overlap in at least one of the X-axis direction and the Y-axis direction.
  • the plurality of protrusions 231 may be arranged at positions where they all overlap in the Y-axis direction.
  • the plurality of protrusions 231 may be arranged at different positions in the Z-axis direction (partially not overlapping or not entirely overlapping) due to the first surface 230a being inclined in the Z-axis direction. .
  • the plurality of protrusions 231 may be arranged at different positions in the X-axis direction.
  • all of the protrusions 231 are arranged at positions overlapping with a part of the storage element 100 when viewed from the Z-axis direction.
  • at least a part of the protrusion 231 may overlap a part of the power storage element 100 when viewed from the Z-axis direction.
  • not all protrusions 231 but at least one protrusion 231 may overlap the power storage element 100 when viewed from the Z-axis direction.
  • all the protrusions 231 do not have to overlap the power storage element 100 when viewed from the Z-axis direction.
  • all protrusions 231 have curved inclined surfaces 231c.
  • at least one protrusion 231 among the plurality of protrusions 231 may have the inclined surface 231c, and any of the protrusions 231 may not have the inclined surface 231c.
  • the inclined surface 231c may be a planar inclined surface instead of a curved inclined surface.
  • a configuration in which not all protrusions 231 have inclined surfaces 231c may be used.
  • any one of the spacers 200 may have a configuration different from that described above.
  • FIGS. 7A to 7C are front views showing configurations of spacers 201 to 203 according to Modification 1 of the present embodiment.
  • FIGS. 7A to 7C are diagrams corresponding to (c) of FIG. 4, in which the projections 232 to 234 of the spacers 201 to 203 in the negative direction of the X axis and their surroundings are shown from the front (the negative direction of the Y axis). direction) is shown in an enlarged manner.
  • spacers 201, 202 and 203 are arranged instead of the spacer 200 in the above embodiment.
  • Spacers 201, 202 and 203 have projections 232 (232a and 232b), projections 233 (233a and 233b), and projections 234 (234a) instead of projections 231 (231a and 231b) of spacer 200 in the above embodiment. and 234b). Since other configurations are the same as those of the above-described embodiment, detailed description thereof will be omitted.
  • the protrusions 232 are ribs formed on the first surface 230a of the spacer upper wall portion 230 of the spacer 201, and have a leaf spring shape (like a vaulting stool) with a hollow interior. ing. Like the plurality of protrusions 231, the plurality of protrusions 232 (232a and 232b) are arranged at different positions (non-overlapping positions) in the X-axis direction and at positions overlapping a part of the power storage element 100 when viewed from the Z-axis direction. and has an inclined surface 232c. In FIG.
  • the projections 233 are ribs formed on the first surface 230a of the spacer upper wall portion 230 of the spacer 202, and have the same plate spring shape as the projections 232, but have a spring 233d.
  • the protrusion 233 has a configuration in which the leaf spring is supported by the spring 233d.
  • the spring 233d may have any shape such as a spiral shape or a bellows shape, and may be made of any material such as metal or resin.
  • the plurality of protrusions 233 are arranged at different positions (non-overlapping positions) in the X-axis direction and at positions overlapping with a part of the power storage element 100 when viewed from the Z-axis direction. and has an inclined surface 233c.
  • the protrusions 234 (234a and 234b) are plungers provided on the first surface 230a of the spacer upper wall portion 230 of the spacer 203. Like the plurality of protrusions 231, the plurality of protrusions 234 (234a and 234b) are arranged at different positions (non-overlapping positions) in the X-axis direction and at positions overlapping part of the power storage element 100 when viewed from the Z-axis direction. and has an inclined surface 234c.
  • the same effects as those of the above-described embodiment can be obtained.
  • various types of projections can be used as the projections provided on the spacer.
  • the shape of the protrusion is not limited to the complex shape described above, and may be a columnar shape such as a cylindrical shape or a prismatic shape, or a simple shape such as a tubular shape such as a cylindrical shape or a rectangular shape, and the shape is not particularly limited.
  • the spacer has a first surface 230a facing the second surface 620a of the side plate 500, and the first surface 230a is formed with a plurality of projections projecting toward the second surface 620a.
  • the power storage element 100 has a first surface facing the second surface 620a of the side plate 500, and the first surface has a second surface A plurality of projections projecting toward 620a may be formed.
  • the power storage device may not include spacer 200 .
  • the protrusion is arranged at a position overlapping a part of the power storage element 100 (the part other than the protrusion) when viewed from the Z-axis direction (third direction).
  • the second surface 620a of the side plate 500 may have a plurality of projections projecting toward the first surface 230a.
  • insulator upper wall portion 620 of insulator 600 may have a plurality of projections, or if side plate 500 does not have insulator 600, plate upper wall portion 520 of side plate 500 may have a plurality of projections. may be formed.
  • the power storage element 100 or the spacer has a first surface facing the side plate 500 in the Z-axis direction (third direction), and at least one of the first surface and the second surface 620a has a A plurality of protrusions protruding in the Z-axis direction (third direction) may be formed.
  • the side plate 500 When the insulator 600 is formed with a plurality of projections, the side plate 500 has an insulating member (insulator 600) formed with a plurality of projections. In this case, the side plate 500 has a plurality of projections via an insulating member (insulator 600). This makes it possible to realize a configuration that facilitates assembly of the side plate 500 to the power storage element 100 .
  • FIG. 8A and 8B are a front view and a perspective view showing the configuration of a side plate 501 according to Modification 2 of the present embodiment. Specifically, (a) of FIG. 8 is a front view showing the configuration when the plate upper wall portion 520 of the side plate 501 is viewed from the front (Y-axis negative direction), and (b) of FIG. 4 is a perspective view showing the configuration when the plate upper wall portion 520 is viewed obliquely from below; FIG.
  • a side plate 501 is arranged instead of the side plate 500 in the above embodiment.
  • the side plate 501 has a second surface 520a on the plate upper wall portion 520, which faces the first surface of the storage element 100 or the spacer. (521a and 521b). Since other configurations are the same as those of the above-described embodiment, detailed description thereof will be omitted.
  • a plurality of protrusions 521 are portions formed by forming cutouts 520b in the plate upper wall portion 520 and bending the cutout portions in the negative Z-axis direction.
  • the plurality of protrusions 521 (521a and 521b) are arranged at different positions in the X-axis direction and at positions overlapping part of the storage element 100 when viewed in the Z-axis direction, and have inclined surfaces 521c.
  • the inclined surface 521c is inclined in the X-axis direction away from the side plate 501 (plate body portion 510) (X-axis positive direction) as it goes away from the power storage element 100 in the Z-axis direction (Z-axis positive direction). It is an inclined plane.
  • the protrusion 521 can be easily formed.
  • the plurality of protrusions on the power storage elements 100 or the spacers and the plurality of protrusions on the side plates 500 are alternately positioned. may be placed.
  • power storage element 100 or spacer and side plate 500 may be assembled such that the plurality of protrusions of power storage element 100 or spacer and the plurality of protrusions of side plate 500 are combined.
  • a configuration in which the power storage element 100 or the spacer has only one protrusion may be employed, and a configuration in which the side plate 500 has only one protrusion may be employed. That is, it suffices that the power storage element 100 or the spacer and the side plate 500 have a plurality of protrusions in total.
  • the present invention can be realized not only as such a power storage device, but also as a combination of the power storage element 100 and the side plate, or a combination of the power storage element 100, the spacer and the side plate.
  • the present invention can be applied to a power storage device or the like having a power storage element such as a lithium ion secondary battery.

Abstract

Provided is a power storage device (10) comprising a power storage element (100) and a side plate (500) arranged in a first direction of the power storage element (100), wherein: the power storage element (100) or a spacer (200) arranged in a second direction intersecting the first direction of the power storage element (100) has a first surface (230a) facing the side plate (500) in a third direction intersecting the first direction and the second direction; the side plate (500) has a second surface (620a) facing the first surface (230a) in the third direction; and formed on at least one of the first surface (230a) and the second surface (620a) is a projection (231) projecting toward the other thereof.

Description

蓄電装置power storage device
 本発明は、蓄電素子とサイドプレートとを備える蓄電装置に関する。 The present invention relates to a power storage device including power storage elements and side plates.
 従来、蓄電素子とサイドプレートとを備える蓄電装置において、蓄電素子または蓄電素子側方のスペーサ、及び、サイドプレートの一方が、他方に向けて突出する突起を有する構成が知られている。特許文献1には、電池セル(蓄電素子)側方の絶縁スペーサが、サイドプレートに向けて突出する押圧領域(突起)を有する電源装置(蓄電装置)が開示されている。 Conventionally, in a power storage device that includes a power storage element and a side plate, a configuration is known in which one of the power storage element or a spacer on the side of the power storage element and the side plate has a projection projecting toward the other. Patent Literature 1 discloses a power supply device (power storage device) in which an insulating spacer on the side of a battery cell (power storage element) has a pressing region (protrusion) protruding toward a side plate.
国際公開第2017/163696号WO2017/163696
 上記従来のような構成の蓄電装置において、蓄電素子またはスペーサとサイドプレートとの接触面積を大きくすると、耐振動または耐衝撃性能(耐荷重性能)の向上を図ることができる。このため、上記特許文献1に開示された従来の蓄電装置においては、スペーサの突起(押圧領域)とサイドプレートとの接触面積を大きくするのが望ましい。しかしながら、蓄電素子に対してサイドプレートを組み付ける際に、サイドプレートが突起に接触しながら組み付けられるため、突起とサイドプレートとの接触面積が大きいと、突起による組み付け負荷が大きくなり、蓄電素子に対するサイドプレートの組み付けが困難になるおそれがある。サイドプレートに突起が形成されている場合も同様に、突起と蓄電素子またはスペーサとの接触面積が大きいと、突起による組み付け負荷が大きくなり、蓄電素子に対するサイドプレートの組み付けが困難になるおそれがあることを本発明者は見出した。 In the power storage device having the above-described conventional configuration, if the contact area between the power storage element or the spacer and the side plate is increased, the vibration resistance or impact resistance performance (load resistance performance) can be improved. For this reason, in the conventional power storage device disclosed in Patent Document 1, it is desirable to increase the contact area between the projection (pressing region) of the spacer and the side plate. However, when the side plate is attached to the storage element, the side plate is attached while being in contact with the protrusions. Assembly of the plate may become difficult. Similarly, when projections are formed on the side plates, if the contact area between the projections and the energy storage element or spacer is large, the assembly load due to the projections increases, which may make it difficult to assemble the side plate to the energy storage element. The inventor has found that.
 本発明は、蓄電素子に対するサイドプレートの組み付けを容易にできる蓄電装置の提供を目的とする。 An object of the present invention is to provide a power storage device in which side plates can be easily attached to power storage elements.
 本発明の一態様に係る蓄電装置は、蓄電素子と、前記蓄電素子の第一方向に配置されるサイドプレートと、を備える蓄電装置であって、前記蓄電素子、または、前記蓄電素子の前記第一方向と交差する第二方向に配置されるスペーサは、前記第一方向及び前記第二方向と交差する第三方向において、前記サイドプレートに対向する第一面を有し、前記サイドプレートは、前記第三方向において、前記第一面に対向する第二面を有し、前記第一面及び前記第二面の少なくとも一方には、他方に向けて突出する突起が形成される。 A power storage device according to an aspect of the present invention is a power storage device including a power storage element and a side plate arranged in a first direction of the power storage element, wherein the power storage element or the second side plate of the power storage element A spacer arranged in a second direction that intersects the one direction has a first surface that faces the side plate in a third direction that intersects the first direction and the second direction, and the side plate: It has a second surface facing the first surface in the third direction, and at least one of the first surface and the second surface is formed with a protrusion projecting toward the other.
 本発明における蓄電装置によれば、蓄電素子に対するサイドプレートの組み付けを容易にできる。 According to the power storage device of the present invention, it is possible to easily attach the side plate to the power storage element.
図1は、実施の形態に係る蓄電装置の外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of a power storage device according to an embodiment. 図2は、実施の形態に係る蓄電装置を分解した場合の各構成要素を示す分解斜視図である。FIG. 2 is an exploded perspective view showing each component when the power storage device according to the embodiment is exploded. 図3は、実施の形態に係る蓄電素子の構成を示す斜視図である。FIG. 3 is a perspective view showing the structure of the storage device according to the embodiment. 図4は、実施の形態に係るスペーサの構成を示す斜視図、上面図及び正面図である。4A and 4B are a perspective view, a top view, and a front view showing the configuration of the spacer according to the embodiment. 図5は、実施の形態に係るスペーサと蓄電素子及びサイドプレートとの位置関係を示す断面図である。FIG. 5 is a cross-sectional view showing the positional relationship between the spacer, the storage element, and the side plate according to the embodiment. 図6は、実施の形態に係る蓄電素子及びスペーサにサイドプレートを組み付ける工程を示す断面図である。FIG. 6 is a cross-sectional view showing a step of assembling the side plate to the storage element and the spacer according to the embodiment. 図7Aは、実施の形態の変形例1に係るスペーサの構成を示す正面図である。7A is a front view showing a configuration of a spacer according to Modification 1 of the embodiment; FIG. 図7Bは、実施の形態の変形例1に係るスペーサの構成を示す正面図である。7B is a front view showing a configuration of a spacer according to Modification 1 of the embodiment; FIG. 図7Cは、実施の形態の変形例1に係るスペーサの構成を示す正面図である。7C is a front view showing a configuration of a spacer according to Modification 1 of the embodiment; FIG. 図8は、実施の形態の変形例2に係るサイドプレートの構成を示す正面図及び斜視図である。8A and 8B are a front view and a perspective view showing a configuration of a side plate according to Modification 2 of the embodiment. FIG.
 本発明の一態様に係る蓄電装置は、蓄電素子と、前記蓄電素子の第一方向に配置されるサイドプレートと、を備える蓄電装置であって、前記蓄電素子、または、前記蓄電素子の前記第一方向と交差する第二方向に配置されるスペーサは、前記第一方向及び前記第二方向と交差する第三方向において、前記サイドプレートに対向する第一面を有し、前記サイドプレートは、前記第三方向において、前記第一面に対向する第二面を有し、前記第一面及び前記第二面の少なくとも一方には、他方に向けて突出する突起が形成される。 A power storage device according to an aspect of the present invention is a power storage device including a power storage element and a side plate arranged in a first direction of the power storage element, wherein the power storage element or the second side plate of the power storage element A spacer arranged in a second direction that intersects the one direction has a first surface that faces the side plate in a third direction that intersects the first direction and the second direction, and the side plate: It has a second surface facing the first surface in the third direction, and at least one of the first surface and the second surface is formed with a protrusion projecting toward the other.
 これによれば、蓄電素子に対するサイドプレートの組み付けを容易にできる。 According to this, it is possible to easily attach the side plate to the storage element.
 前記突起は、前記第三方向において前記蓄電素子から離れる方向に向かうほど、前記第一方向において前記サイドプレートから離れる方向に傾斜する傾斜面を有する、としてもよい。 The projection may have a sloped surface that slopes away from the side plate in the first direction as it goes away from the power storage element in the third direction.
 これによれば、突起が傾斜面を有しているので、蓄電素子に対してサイドプレートを第一方向から組み付ける際に、当該傾斜面に沿ってサイドプレートを第一方向から蓄電素子に対して組み付ける。これにより、蓄電素子に対するサイドプレートの組み付けをさらに容易にできる。 According to this, since the protrusion has the inclined surface, when the side plate is attached to the storage element from the first direction, the side plate is attached to the storage element from the first direction along the inclined surface. Assemble. This makes it easier to attach the side plate to the storage element.
 前記サイドプレートは、前記突起が形成された絶縁部材を有する、としてもよい。 The side plate may have an insulating member on which the projection is formed.
 これによれば、サイドプレートが絶縁部材を有し、絶縁部材に突起が形成されている。これにより、蓄電素子に対するサイドプレートの組み付けを容易にする構成を実現できる。 According to this, the side plate has the insulating member, and the insulating member is formed with the projection. This makes it possible to realize a configuration that facilitates the attachment of the side plate to the storage element.
 前記第一面及び前記第二面の少なくとも一方には、他方に向けて突出する複数の突起が形成される、としてもよい。 At least one of the first surface and the second surface may be formed with a plurality of projections projecting toward the other.
 これによれば、蓄電装置において、蓄電素子またはスペーサ、及び、蓄電素子の第一方向のサイドプレートは、第三方向で対向する第一面及び第二面を有し、第一面及び第二面の少なくとも一方には、他方に向けて突出して配置される複数の突起が形成されている。これにより、蓄電素子に対してサイドプレートを第一方向から組み付ける際に、一つの突起に対する他方の部材の接触面積が減少する。したがって、突起による組み付け負荷を低減でき、蓄電素子に対するサイドプレートの組み付けをさらに容易にできる。 According to this, in the power storage device, the power storage element or the spacer and the side plate of the power storage element in the first direction have first and second surfaces facing each other in the third direction. A plurality of projections are formed on at least one of the surfaces so as to protrude toward the other surface. As a result, when the side plate is attached to the storage element from the first direction, the contact area of the other member with respect to one projection is reduced. Therefore, the mounting load due to the protrusion can be reduced, and the mounting of the side plate to the power storage element can be further facilitated.
 前記複数の突起は、前記第一方向において異なる位置に配置される、としてもよい。 The plurality of protrusions may be arranged at different positions in the first direction.
 これによれば、蓄電素子またはスペーサ及びサイドプレートが有する第一面及び第二面の少なくとも一方に形成される複数の突起は、第一方向において異なる位置に配置される。これにより、蓄電素子に対してサイドプレートを第一方向から組み付ける際に、第一方向において、複数の突起に順次接触していく。したがって、突起による組み付け負荷を複数段階に分けることができるため、突起による組み付け負荷を低減でき、蓄電素子に対するサイドプレートの組み付けをさらに容易にできる。 According to this, the plurality of protrusions formed on at least one of the first surface and the second surface of the storage element or spacer and side plate are arranged at different positions in the first direction. Thereby, when the side plate is assembled to the electric storage element from the first direction, the plurality of protrusions are sequentially contacted in the first direction. Therefore, since the assembling load due to the protrusion can be divided into a plurality of stages, the assembling load due to the protrusion can be reduced, and the side plate can be more easily attached to the power storage element.
 前記複数の突起は、前記第一方向において重ならない位置に配置される、としてもよい。 The plurality of protrusions may be arranged at positions that do not overlap in the first direction.
 これによれば、蓄電素子またはスペーサ及びサイドプレートが有する第一面及び第二面の少なくとも一方に形成される複数の突起は、第一方向において重ならない位置に配置される。このように、複数の突起を、第一方向において重ならない位置に配置すると、蓄電素子に対してサイドプレートを第一方向から組み付ける際に、第一方向において、1つの突起に接触した後に、次の突起に接触する。これにより、突起による組み付け負荷をさらに低減できるため、蓄電素子に対するサイドプレートの組み付けをさらに容易にできる。 According to this, the plurality of protrusions formed on at least one of the first surface and the second surface of the storage element or spacer and side plate are arranged at positions that do not overlap in the first direction. In this way, when the plurality of projections are arranged at positions that do not overlap in the first direction, when the side plate is assembled to the power storage element from the first direction, after contacting one projection in the first direction, the next contact with the protrusion of As a result, the mounting load due to the protrusion can be further reduced, and the mounting of the side plate to the power storage element can be further facilitated.
 前記複数の突起のうちの少なくとも1つの突起は、前記第三方向から見て、前記蓄電素子の一部と重なる位置に配置される、としてもよい。 At least one protrusion among the plurality of protrusions may be arranged at a position overlapping with a part of the power storage element when viewed from the third direction.
 これによれば、複数の突起のうちの少なくとも1つの突起が、第三方向から見て、蓄電素子の一部と重なる位置に配置されるので、第三方向において、サイドプレートで蓄電素子をより強固に保持できる。これにより、蓄電素子に対するサイドプレートの組み付けを容易にしつつ、蓄電装置の耐振動または耐衝撃性能(耐荷重性能)の向上を図ることができる。 According to this, since at least one of the plurality of protrusions is arranged at a position overlapping with a part of the storage element when viewed from the third direction, the side plate makes the storage element more visible in the third direction. It can be held firmly. As a result, it is possible to improve the resistance to vibration or shock (load resistance) of the electric storage device while facilitating the attachment of the side plate to the electric storage element.
 前記複数の突起のうち少なくとも1つの突起は、前記第三方向において前記蓄電素子から離れる方向に向かうほど、前記第一方向において前記サイドプレートから離れる方向に傾斜する傾斜面を有する、としてもよい。 At least one projection among the plurality of projections may have an inclined surface that inclines away from the side plate in the first direction as it goes away from the power storage element in the third direction.
 これによれば、複数の突起のうち少なくとも1つの突起が傾斜面を有しているので、蓄電素子に対してサイドプレートを第一方向から組み付ける際に、当該傾斜面に沿ってサイドプレートを第一方向から蓄電素子に対して組み付ける。これにより、蓄電素子に対するサイドプレートの組み付けをさらに容易にできる。 According to this, since at least one projection among the plurality of projections has the inclined surface, when the side plate is attached to the power storage element from the first direction, the side plate is moved along the inclined surface in the first direction. It is attached to the storage element from one direction. This makes it easier to attach the side plate to the storage element.
 前記サイドプレートは、前記複数の突起が形成された絶縁部材を有する、としてもよい。 The side plate may have an insulating member formed with the plurality of projections.
 これによれば、サイドプレートが絶縁部材を有し、絶縁部材に複数の突起が形成されている。これにより、蓄電素子に対するサイドプレートの組み付けを容易にする構成を実現できる。 According to this, the side plate has an insulating member, and the insulating member is formed with a plurality of projections. This makes it possible to realize a configuration that facilitates the attachment of the side plate to the storage element.
 本発明は、このような蓄電装置として実現できるだけでなく、蓄電素子とサイドプレートとの組み合わせ、または、蓄電素子とスペーサとサイドプレートとの組み合わせとしても実現できる。 The present invention can be realized not only as such a power storage device, but also as a combination of a power storage element and a side plate, or a combination of a power storage element, a spacer and a side plate.
 以下、図面を参照しながら、本発明の実施の形態(その変形例も含む)に係る蓄電装置について説明する。以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程、製造工程の順序等は、一例であり、本発明を限定する主旨ではない。各図において、寸法等は厳密に図示したものではない。各図において、同一または同様な構成要素については同じ符号を付している。 Power storage devices according to embodiments of the present invention (including modifications thereof) will be described below with reference to the drawings. All of the embodiments described below are generic or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, manufacturing processes, order of manufacturing processes, and the like shown in the following embodiments are examples, and are not intended to limit the present invention. In each drawing, dimensions and the like are not strictly illustrated. In each figure, the same reference numerals are given to the same or similar components.
 以下の説明及び図面中において、1つの蓄電素子における一対の電極端子の並び方向、1つの蓄電素子の容器における一対の短側面の対向方向、または、一対のサイドプレートの並び方向を、第一方向及びX軸方向と定義する。複数の蓄電素子の並び方向、複数のスペーサの並び方向、一対のエンドプレートの並び方向、蓄電素子とスペーサとエンドプレートとの並び方向、1つの蓄電素子の容器における一対の長側面の対向方向、または、蓄電素子、スペーサ若しくはエンドプレートの厚み方向を、第二方向及びY軸方向と定義する。蓄電素子の容器の容器本体と蓋体との並び方向、または、上下方向を、第三方向及びZ軸方向と定義する。これらX軸方向、Y軸方向及びZ軸方向は、互いに交差(本実施の形態では直交)する方向である。使用態様によってはZ軸方向が上下方向にならない場合も考えられるが、以下では説明の便宜のため、Z軸方向を上下方向として説明する。 In the following description and drawings, the direction in which a pair of electrode terminals in one storage element are aligned, the direction in which a pair of short sides of a container for one storage element are aligned, or the direction in which a pair of side plates are aligned is referred to as the first direction. and the X-axis direction. The direction in which a plurality of energy storage elements are arranged, the direction in which a plurality of spacers are arranged, the direction in which a pair of end plates are arranged, the direction in which the energy storage element, the spacer, and the end plate are arranged, the direction in which a pair of long sides of a container of one energy storage element face each other, Alternatively, the thickness direction of the storage element, spacer, or end plate is defined as the second direction and the Y-axis direction. The direction in which the container body and lid of the container for the storage element are arranged, or the vertical direction, is defined as the third direction and the Z-axis direction. These X-axis direction, Y-axis direction, and Z-axis direction are directions that cross each other (perpendicularly in this embodiment). Depending on the mode of use, the Z-axis direction may not be the vertical direction, but for convenience of explanation, the Z-axis direction will be described below as the vertical direction.
 以下の説明において、X軸プラス方向とは、X軸の矢印方向を示し、X軸マイナス方向とは、X軸プラス方向とは反対方向を示す。Y軸方向及びZ軸方向についても同様である。本実施の形態では、X軸プラス方向は、蓄電装置を蓄電素子の並ぶ方向(Y軸方向)から視たときに一方(右)に向かう方向を示す。X軸マイナス方向は、蓄電装置を蓄電素子の並ぶ方向(Y軸方向)から視たときに他方(左)に向かう方向を示す。Y軸プラス方向は、蓄電装置を蓄電素子の並ぶ方向(Y軸方向)から視たときに奥に向かう方向を示す。Y軸マイナス方向は、蓄電装置を蓄電素子の並ぶ方向(Y軸方向)から視たときに手前に向かう方向を示す。Z軸プラス方向は、蓄電装置を蓄電素子の並ぶ方向(Y軸方向)から視たときに蓄電素子の端子が配置される方向を示す。Z軸マイナス方向は、蓄電装置を蓄電素子の並ぶ方向(Y軸方向)から視たときに蓄電素子の端子が配置される方向とは反対の方向を示す。さらに、平行及び直交などの、相対的な方向または姿勢を示す表現は、厳密には、その方向または姿勢ではない場合も含む。2つの方向が直交している、とは、当該2つの方向が完全に直交していることを意味するだけでなく、実質的に直交していること、すなわち、数%程度の差異を含むことも意味する。 In the following description, the positive direction of the X-axis indicates the direction of the arrow on the X-axis, and the negative direction of the X-axis indicates the direction opposite to the positive direction of the X-axis. The same applies to the Y-axis direction and the Z-axis direction. In the present embodiment, the positive direction of the X-axis indicates the direction toward one side (right) when the power storage device is viewed from the direction in which the power storage elements are arranged (Y-axis direction). The negative direction of the X-axis indicates the direction toward the other (left) when the power storage device is viewed from the direction in which the power storage elements are arranged (Y-axis direction). The positive direction of the Y-axis indicates the direction toward the back when the power storage device is viewed from the direction in which the power storage elements are arranged (Y-axis direction). The minus direction of the Y-axis indicates the direction toward the front when the power storage device is viewed from the direction in which the power storage elements are arranged (the Y-axis direction). The Z-axis plus direction indicates the direction in which the terminals of the storage elements are arranged when the storage device is viewed from the direction in which the storage elements are arranged (Y-axis direction). The negative direction of the Z-axis indicates the direction opposite to the direction in which the terminals of the storage elements are arranged when the storage device is viewed from the direction in which the storage elements are arranged (the Y-axis direction). Furthermore, expressions indicating relative directions or orientations such as parallel and orthogonal include cases where they are not strictly the directions or orientations. Two directions are orthogonal, not only means that the two directions are completely orthogonal, but also substantially orthogonal, that is, including a difference of about several percent also means
 (実施の形態)
 [1 蓄電装置10の全般的な説明]
 まず、本実施の形態における蓄電装置10の全般的な説明を行う。図1は、本実施の形態に係る蓄電装置10の外観を示す斜視図である。図2は、本実施の形態に係る蓄電装置10を分解した場合の各構成要素を示す分解斜視図である。
(Embodiment)
[1 General description of power storage device 10]
First, a general description of power storage device 10 in the present embodiment will be given. FIG. 1 is a perspective view showing the appearance of power storage device 10 according to the present embodiment. FIG. 2 is an exploded perspective view showing each component when power storage device 10 according to the present embodiment is exploded.
 蓄電装置10は、外部からの電気を充電し、外部へ電気を放電できる装置であり、本実施の形態では、略直方体形状を有している。蓄電装置10は、電力貯蔵用途または電源用途等に使用される電池モジュール(組電池)である。具体的には、蓄電装置10は、自動車、自動二輪車、ウォータークラフト、船舶、スノーモービル、農業機械、建設機械、または、電気鉄道用の鉄道車両等の移動体の駆動用またはエンジン始動用等のバッテリ等として用いられる。上記の自動車としては、電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)及びガソリン自動車が例示される。上記の電気鉄道用の鉄道車両としては、電車、モノレール、リニアモーターカー、並びに、ディーゼル機関及び電気モーターの両方を備えるハイブリッド電車が例示される。蓄電装置10は、家庭用または事業用等に使用される定置用のバッテリ等としても用いることができる。 The power storage device 10 is a device that can charge electricity from the outside and discharge electricity to the outside, and has a substantially rectangular parallelepiped shape in the present embodiment. The power storage device 10 is a battery module (assembled battery) used for power storage, power supply, or the like. Specifically, the power storage device 10 is used for driving mobile bodies such as automobiles, motorcycles, water crafts, ships, snowmobiles, agricultural machinery, construction machinery, or railroad vehicles for electric railways, or for starting engines. Used as a battery or the like. Examples of such vehicles include electric vehicles (EV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and gasoline vehicles. Examples of railway vehicles for the electric railway include electric trains, monorails, linear motor cars, and hybrid trains having both diesel engines and electric motors. The power storage device 10 can also be used as a stationary battery or the like for home or business use.
 図1及び図2に示すように、蓄電装置10は、複数の蓄電素子100と、複数のスペーサ200及び300と、一対のエンドプレート400と、一対のサイドプレート500と、を備え、サイドプレート500はインシュレータ600を有している。蓄電装置10は、蓄電素子100同士を直列または並列に接続するバスバーも備えているが、図示及び説明は省略する。蓄電装置10は、上記の構成要素の他、上記バスバーの位置決めを行うバスバーフレーム、上記の構成要素を収容する外装体、外部のバスバー等と接続される外部端子、並びに、蓄電素子100の充電状態及び放電状態等を監視または制御する回路基板、ヒューズ、リレー及びコネクタ等の電気機器等を備えていてもよい。 As shown in FIGS. 1 and 2, the power storage device 10 includes a plurality of power storage elements 100, a plurality of spacers 200 and 300, a pair of end plates 400, and a pair of side plates 500. The side plates 500 has an insulator 600 . The power storage device 10 also includes a bus bar that connects the power storage elements 100 in series or in parallel, but illustration and description thereof are omitted. In addition to the components described above, the power storage device 10 includes a busbar frame for positioning the busbars, an exterior body for housing the components, external terminals connected to external busbars, etc., and the state of charge of the power storage element 100. Also, a circuit board, fuses, relays, connectors, and other electric devices for monitoring or controlling the discharge state may be provided.
 蓄電素子100は、電気を充電し、電気を放電できる二次電池(単電池)であり、より具体的には、リチウムイオン二次電池等の非水電解質二次電池である。蓄電素子100は、扁平な直方体形状(角形)を有しており、本実施の形態では、8個の蓄電素子100がY軸方向に並んで配列されている。蓄電素子100の大きさ、形状、及び、配列される蓄電素子100の個数等は限定されず、1つの蓄電素子100しか配置されていなくてもよい。蓄電素子100は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。蓄電素子100は、一次電池であってもよい。蓄電素子100は、固体電解質を用いた電池であってもよい。蓄電素子100は、パウチタイプの蓄電素子であってもよい。蓄電素子100の構成の詳細な説明については、後述する。 The power storage element 100 is a secondary battery (single battery) capable of charging and discharging electricity, and more specifically, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. The power storage element 100 has a flat rectangular parallelepiped shape (rectangular shape), and in the present embodiment, eight power storage elements 100 are arranged side by side in the Y-axis direction. The size and shape of the power storage element 100, the number of power storage elements 100 to be arranged, and the like are not limited, and only one power storage element 100 may be arranged. The storage element 100 is not limited to a non-aqueous electrolyte secondary battery, and may be a secondary battery other than a non-aqueous electrolyte secondary battery, or may be a capacitor. The storage element 100 may be a primary battery. The storage element 100 may be a battery using a solid electrolyte. The storage element 100 may be a pouch-type storage element. A detailed description of the configuration of the storage element 100 will be given later.
 スペーサ200及び300は、蓄電素子100のY軸方向(第二方向)に配置され、蓄電素子100と他の部材とを電気的に絶縁する平板状かつ矩形状の部材である。つまり、スペーサ200及び300は、蓄電素子100のY軸プラス方向またはY軸マイナス方向に配置されて、蓄電素子100同士、または、蓄電素子100とエンドプレート400とを電気的に絶縁する。スペーサ200及び300は、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ポリフェニレンサルファイド樹脂(PPS)、ポリフェニレンエーテル(PPE(変性PPEを含む))、ポリエチレンテレフタラート(PET)、ポリブチレンテレフタレート(PBT)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル(PFA)、ポリテトラフルオロエチレン(PTFE)、ポリエーテルサルフォン(PES)、ABS樹脂、若しくは、それらの複合材料等の電気的絶縁部材、電気的絶縁塗装をした金属、または、ダンマ材等の断熱性を有する部材等により形成されている。 The spacers 200 and 300 are plate-like and rectangular members that are arranged in the Y-axis direction (second direction) of the storage element 100 and electrically insulate the storage element 100 from other members. That is, the spacers 200 and 300 are arranged in the Y-axis plus direction or the Y-axis minus direction of the storage elements 100 to electrically insulate the storage elements 100 from each other or the storage elements 100 and the end plate 400 . Spacers 200 and 300 are made of polycarbonate (PC), polypropylene (PP), polyethylene (PE), polystyrene (PS), polyphenylene sulfide resin (PPS), polyphenylene ether (PPE (including modified PPE)), polyethylene terephthalate (PET ), polybutylene terephthalate (PBT), polyetheretherketone (PEEK), tetrafluoroethylene-perfluoroalkyl vinyl ether (PFA), polytetrafluoroethylene (PTFE), polyethersulfone (PES), ABS resin, or It is formed of an electrically insulating member such as a composite material, a metal coated with an electrically insulating coating, or a heat insulating member such as a damper material.
 スペーサ200は、隣り合う2つの蓄電素子100の間に配置され、当該2つの蓄電素子100の間を電気的に絶縁する、XZ平面に平行な平板状かつ矩形状のスペーサ(中間スペーサ)である。具体的には、スペーサ200は、当該2つの蓄電素子100が有する後述の容器110の長側面111同士の間において、当該長側面111と対向し、かつ、当該長側面111と当接した状態で配置される。本実施の形態では、7個のスペーサ200が8個の蓄電素子100とY軸方向に交互に並んで配置されているが、蓄電素子100の数が8個以外の場合には、スペーサ200の数も蓄電素子100の数に応じて適宜変更される。蓄電素子100が並列接続される場合、並列接続された蓄電素子100同士の間には、スペーサ200は配置されなくてもよい。スペーサ200の構成の詳細な説明については、後述する。 The spacer 200 is a plate-like and rectangular spacer (intermediate spacer) parallel to the XZ plane that is arranged between two adjacent power storage elements 100 and electrically insulates between the two power storage elements 100. . Specifically, the spacer 200 faces the long side surfaces 111 and is in contact with the long side surfaces 111 between the long side surfaces 111 of the later-described containers 110 of the two storage elements 100. placed. In the present embodiment, seven spacers 200 and eight energy storage elements 100 are arranged alternately in the Y-axis direction. The number is also appropriately changed according to the number of storage elements 100 . When power storage elements 100 are connected in parallel, spacer 200 may not be arranged between power storage elements 100 connected in parallel. A detailed description of the configuration of the spacer 200 will be given later.
 スペーサ300は、端部の蓄電素子100とエンドプレート400との間に配置され、当該端部の蓄電素子100とエンドプレート400との間を電気的に絶縁する、XZ平面に平行な平板状かつ矩形状のスペーサ(エンドスペーサ)である。Y軸方向両端部の蓄電素子100と一対のエンドプレート400との間に、2つのスペーサ300が配置される。具体的には、スペーサ300は、Y軸方向端部の蓄電素子100の容器110の長側面111とエンドプレート400のY軸方向の面との間において、当該長側面111及びエンドプレート400の当該面と対向し、かつ、当接した状態で配置される。 The spacer 300 is arranged between the power storage element 100 at the end and the end plate 400, electrically insulates between the power storage element 100 at the end and the end plate 400, and has a flat plate shape parallel to the XZ plane. It is a rectangular spacer (end spacer). Two spacers 300 are arranged between the storage elements 100 at both ends in the Y-axis direction and the pair of end plates 400 . Specifically, the spacer 300 is provided between the long side surface 111 of the container 110 of the storage element 100 at the Y-axis direction end and the Y-axis direction surface of the end plate 400 . It is arranged in a state of facing and abutting the surface.
 本実施の形態では、スペーサ300は、スペーサ200をY軸方向で半分に割ったような形状を有している。つまり、Y軸プラス方向に位置するスペーサ300は、スペーサ200をY軸方向で半分に割った場合のY軸マイナス方向側の部位と同様の形状を有している。Y軸マイナス方向に位置するスペーサ300は、スペーサ200をY軸方向で半分に割った場合のY軸プラス方向側の部位と同様の形状を有している。このため、スペーサ300の詳細な構成は、後述するスペーサ200の詳細な構成に準ずるものとして、その説明を省略する。図2では、スペーサ300に、スペーサ200が有する後述の突起231に相当する突起を図示していないが、スペーサ300は、当該突起231と同様の突起を有していてもよい。 In the present embodiment, the spacer 300 has such a shape that the spacer 200 is divided in half in the Y-axis direction. That is, the spacer 300 positioned in the positive Y-axis direction has the same shape as the portion on the negative Y-axis direction side when the spacer 200 is divided in half in the Y-axis direction. The spacer 300 located in the negative Y-axis direction has the same shape as the portion on the positive Y-axis direction when the spacer 200 is divided in half in the Y-axis direction. Therefore, the detailed configuration of the spacer 300 is assumed to conform to the detailed configuration of the spacer 200 to be described later, and the description thereof is omitted. Although FIG. 2 does not show the spacer 300 with a projection corresponding to the later-described projection 231 of the spacer 200 , the spacer 300 may have a projection similar to the projection 231 .
 エンドプレート400及びサイドプレート500は、複数の蓄電素子100の並び方向(Y軸方向)において、蓄電素子100を外方から圧迫(拘束)する拘束部材である。つまり、エンドプレート400及びサイドプレート500は、複数の蓄電素子100を当該並び方向の両側から挟み込むことで、複数の蓄電素子100に含まれるそれぞれの蓄電素子100を当該並び方向の両側から圧迫(拘束)する。 The end plate 400 and the side plate 500 are restraining members that externally press (constrain) the storage elements 100 in the direction in which the plurality of storage elements 100 are arranged (Y-axis direction). That is, the end plates 400 and the side plates 500 sandwich the plurality of power storage elements 100 from both sides in the alignment direction, thereby pressing (restraining) the power storage elements 100 included in the plurality of power storage elements 100 from both sides in the alignment direction. )do.
 エンドプレート400は、複数の蓄電素子100並びに複数のスペーサ200及び300のY軸方向両側に配置され、当該複数の蓄電素子100等を、これらの並び方向(Y軸方向)の両側から挟み込んで保持する板状(扁平なブロック状)の拘束部材(挟持部材)である。つまり、一対のエンドプレート400は、Y軸方向(蓄電素子100が有する電極体の極板の積層方向)において複数の蓄電素子100並びに複数のスペーサ200及び300を挟む位置に配置されて、これらを拘束する。エンドプレート400は、強度確保の観点等から、鋼またはステンレス等の金属製の部材で形成されているが、その材質は特に限定されない。エンドプレート400は、強度の高い電気的絶縁性の部材で形成されていてもよいし、金属製の部材に絶縁処理が施されていてもよい。 The end plates 400 are arranged on both sides of the plurality of energy storage elements 100 and the plurality of spacers 200 and 300 in the Y-axis direction, and sandwich and hold the plurality of energy storage elements 100 and the like from both sides in the alignment direction (Y-axis direction). It is a plate-shaped (flat block-shaped) restraining member (sandwiching member). In other words, the pair of end plates 400 are arranged at positions sandwiching the plurality of energy storage elements 100 and the plurality of spacers 200 and 300 in the Y-axis direction (the stacking direction of the electrode bodies of the electrode bodies of the energy storage elements 100). to bound. The end plate 400 is formed of a metal member such as steel or stainless steel from the viewpoint of securing strength, but the material is not particularly limited. The end plate 400 may be made of a high-strength, electrically insulating member, or may be made of a metal member subjected to insulation treatment.
 サイドプレート500は、複数の蓄電素子100並びに複数のスペーサ200及び300のX軸方向(第一方向)に配置される、板状かつ長尺状の拘束部材(拘束バー)である。具体的には、サイドプレート500は、両端が一対のエンドプレート400に取り付けられて、一対のエンドプレート400を繋ぐことで、複数の蓄電素子100並びに複数のスペーサ200及び300を拘束する。つまり、サイドプレート500は、複数の蓄電素子100並びに複数のスペーサ200及び300を跨ぐようにY軸方向に延設されて配置され、当該複数の蓄電素子100等に対してこれらの並び方向(Y軸方向)における拘束力を付与する。 The side plate 500 is a plate-like elongated restraint member (restraint bar) arranged in the X-axis direction (first direction) of the plurality of power storage elements 100 and the plurality of spacers 200 and 300 . Specifically, the side plate 500 has both ends attached to a pair of end plates 400 and binds the pair of end plates 400 together to bind the plurality of power storage elements 100 and the plurality of spacers 200 and 300 . In other words, the side plate 500 is arranged so as to extend in the Y-axis direction so as to straddle the plurality of storage elements 100 and the plurality of spacers 200 and 300, and the arrangement direction (Y axial direction).
 本実施の形態では、複数の蓄電素子100並びに複数のスペーサ200及び300のX軸方向両側に、一対のサイドプレート500が配置される。一対のサイドプレート500は、それぞれが、Y軸方向両端部において、一対のエンドプレート400のX軸方向端部に取り付けられる。これにより、一対のサイドプレート500は、一対のエンドプレート400とともに、当該複数の蓄電素子100等をX軸方向の両側及びY軸方向の両側から挟み込んで拘束する。具体的には、サイドプレート500は、Z軸方向に並ぶ複数(本実施の形態では、3つ)の接続部材500aによって、エンドプレート400に接続(接合)される。本実施の形態では、接続部材500aは、ボルト(ネジ)であり、エンドプレート400に形成された雌ネジ部と螺合により締結される。サイドプレート500のエンドプレート400への接続(接合)は、ボルト(ネジ)による固定には限定されず、溶接または接着等で接合されてもよい。 In the present embodiment, a pair of side plates 500 are arranged on both sides of the plurality of energy storage elements 100 and the plurality of spacers 200 and 300 in the X-axis direction. The pair of side plates 500 are attached to the X-axis direction end portions of the pair of end plates 400 at both Y-axis direction end portions. Accordingly, the pair of side plates 500 and the pair of end plates 400 sandwich and constrain the plurality of power storage elements 100 and the like from both sides in the X-axis direction and both sides in the Y-axis direction. Specifically, the side plate 500 is connected (joined) to the end plate 400 by a plurality of (three in this embodiment) connecting members 500a arranged in the Z-axis direction. In the present embodiment, connecting member 500a is a bolt (screw), and is fastened by screwing with a female threaded portion formed in end plate 400. As shown in FIG. The connection (joining) of the side plate 500 to the end plate 400 is not limited to fixing with bolts (screws), and may be joined by welding, adhesion, or the like.
 上述の通り、サイドプレート500は、内側(蓄電素子100側)に、インシュレータ600を有している。インシュレータ600は、複数の蓄電素子100並びに複数のスペーサ200及び300のX軸方向両側に配置され、かつ、Y軸方向に延設される板状かつ長尺状の絶縁部材である。つまり、インシュレータ600は、複数の蓄電素子100並びに複数のスペーサ200及び300を跨ぐように、当該複数の蓄電素子100等とサイドプレート500(インシュレータ600を除く)との間に配置される。これにより、インシュレータ600は、複数の蓄電素子100とサイドプレート500(インシュレータ600を除く)とを電気的に絶縁する。サイドプレート500(インシュレータ600を除く)は、エンドプレート400と同様に、強度確保の観点等から、鋼またはステンレス等の金属製の部材で形成されているが、その材質は特に限定されない。サイドプレート500(インシュレータ600を除く)は、強度の高い電気的絶縁性の部材で形成されていてもよいし、金属製の部材に絶縁処理が施されていてもよい。インシュレータ600は、電気的絶縁性を有する部材であればどのような材質で形成されていてもよく、スペーサ200及び300に使用可能ないずれかの電気的絶縁性の部材で形成できる。 As described above, the side plate 500 has the insulator 600 on the inner side (on the power storage element 100 side). The insulators 600 are plate-shaped and elongated insulating members arranged on both sides of the plurality of power storage elements 100 and the plurality of spacers 200 and 300 in the X-axis direction and extending in the Y-axis direction. In other words, the insulator 600 is arranged between the plurality of power storage elements 100 and the like and the side plate 500 (excluding the insulator 600 ) so as to straddle the plurality of power storage elements 100 and the plurality of spacers 200 and 300 . Thereby, insulator 600 electrically insulates power storage elements 100 from side plate 500 (excluding insulator 600). The side plate 500 (excluding the insulator 600) is made of a metal member such as steel or stainless from the viewpoint of securing strength, like the end plate 400, but the material is not particularly limited. The side plate 500 (excluding the insulator 600) may be formed of a high-strength, electrically insulating member, or may be a metal member subjected to insulation treatment. The insulator 600 may be made of any electrically insulating material, and may be made of any electrically insulating material that can be used for the spacers 200 and 300 .
 [2 蓄電素子100の説明]
 次に、蓄電素子100の構成について、詳細に説明する。図3は、本実施の形態に係る蓄電素子100の構成を示す斜視図である。具体的には、図3は、図2に示した複数の蓄電素子100のうちの1つの蓄電素子100の外観を拡大して示している。当該複数の蓄電素子100は、全て同様の構成を有しているため、以下では、1つの蓄電素子100の構成について詳細に説明する。
[2 Explanation of storage element 100]
Next, the configuration of the storage element 100 will be described in detail. FIG. 3 is a perspective view showing the structure of the storage device 100 according to this embodiment. Specifically, FIG. 3 shows an enlarged appearance of one power storage element 100 out of the plurality of power storage elements 100 shown in FIG. Since the plurality of power storage elements 100 all have the same configuration, the configuration of one power storage element 100 will be described in detail below.
 図3に示すように、蓄電素子100は、容器110と、一対(正極側及び負極側)の電極端子140と、上部ガスケット150と、を備えている。容器110の内方には、下部ガスケット、電極体、一対(正極側及び負極側)の集電体、及び、電解液(非水電解質)等が収容されているが、これらの図示は省略する。当該電解液としては、蓄電素子100の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択できる。 As shown in FIG. 3 , the electric storage element 100 includes a container 110 , a pair of electrode terminals 140 (positive electrode side and negative electrode side), and an upper gasket 150 . Inside the container 110, a lower gasket, an electrode body, a pair of current collectors (positive electrode side and negative electrode side), an electrolytic solution (non-aqueous electrolyte), etc. are accommodated, but illustration of these is omitted. . There is no particular limitation on the type of the electrolytic solution as long as it does not impair the performance of the storage element 100, and various types can be selected.
 蓄電素子100は、上記の構成要素の他、電極体の側方または下方等に配置されるスペーサ、及び、電極体等を包み込む絶縁フィルム等を有していてもよい。さらに、容器110の周囲には、容器110の外面を覆う絶縁フィルム(シュリンクチューブ等)が配置されていてもよい。当該絶縁フィルムの材質は、蓄電素子100に必要な電気的絶縁性を確保できるものであれば特に限定されない。当該絶縁フィルムの材質としては、PC、PP、PE、PPS、PET、PBTまたはABS樹脂等の電気的絶縁性の樹脂、エポキシ樹脂、カプトン、テフロン(登録商標)、シリコン、ポリイソプレン、及びポリ塩化ビニル等がある。 In addition to the components described above, the electric storage element 100 may have spacers arranged on the side or below the electrode body, an insulating film that wraps the electrode body, and the like. Furthermore, an insulating film (shrink tube or the like) covering the outer surface of the container 110 may be arranged around the container 110 . The material of the insulating film is not particularly limited as long as it can ensure electrical insulation required for the electric storage element 100 . Materials for the insulating film include electrically insulating resins such as PC, PP, PE, PPS, PET, PBT, and ABS resins, epoxy resins, Kapton, Teflon (registered trademark), silicon, polyisoprene, and polychloride. vinyl, etc.
 容器110は、開口が形成された容器本体120と、容器本体120の当該開口を閉塞する蓋体130と、を有する直方体形状(角形または箱形)のケースである。容器本体120は、容器110の本体部を構成する矩形筒状で底を備える部材であり、Z軸プラス方向側に開口が形成されている。蓋体130は、容器110の蓋部を構成する矩形状の板状部材であり、容器本体120のZ軸プラス方向側にX軸方向に延設されて配置されている。容器110(蓋体130)には、容器110内方の圧力が過度に上昇した場合に当該圧力を開放するガス排出弁、及び、容器110内方に電解液を注液するための注液部等が設けられていてもよい。容器110(容器本体120及び蓋体130)の材質は、特に限定されず、ステンレス鋼、アルミニウム、アルミニウム合金、鉄、メッキ鋼板など溶接可能(接合可能)な金属を使用できる。容器110(容器本体120及び蓋体130)の材質として樹脂を用いることもできる。 The container 110 is a rectangular parallelepiped (square or box-shaped) case having a container body 120 with an opening and a lid 130 closing the opening of the container body 120 . The container main body 120 is a rectangular tubular member that constitutes the main body of the container 110 and has a bottom, and an opening is formed on the Z-axis positive direction side. The lid body 130 is a rectangular plate-like member that constitutes the lid portion of the container 110 , and is arranged to extend in the X-axis direction on the Z-axis plus direction side of the container body 120 . The container 110 (lid 130) has a gas discharge valve that releases the pressure when the pressure inside the container 110 is excessively increased, and an injection part for injecting an electrolytic solution into the container 110. etc. may be provided. The material of container 110 (container body 120 and lid 130) is not particularly limited, and weldable (joinable) metals such as stainless steel, aluminum, aluminum alloys, iron, and plated steel plates can be used. Resin can also be used as the material of the container 110 (container body 120 and lid 130).
 容器110は、電極体等を容器本体120の内方に収容後、容器本体120と蓋体130とが溶接等によって接合されて、内部が密封される構造となっている。容器110は、Y軸方向両側の側面に一対の長側面111を有し、X軸方向両側の側面に一対の短側面112を有し、Z軸マイナス方向側に底面113を有している。長側面111は、容器110の長側面を形成する矩形状の平面部であり、隣り合うスペーサ200または300とY軸方向において対向して配置される。長側面111は、短側面112及び底面113に隣接し、短側面112よりも面積が大きい。短側面112は、容器110の短側面を形成する矩形状の平面部であり、サイドプレート500とX軸方向において対向して配置される。短側面112は、長側面111及び底面113に隣接し、長側面111よりも面積が小さい。底面113は、容器110の底面を形成する矩形状の平面部であり、長側面111及び短側面112に隣接して配置される。 The container 110 has a structure in which the container main body 120 and the lid 130 are joined by welding or the like after the electrode body and the like are accommodated inside the container main body 120, and the inside is sealed. The container 110 has a pair of long side surfaces 111 on both side surfaces in the Y-axis direction, a pair of short side surfaces 112 on both side surfaces in the X-axis direction, and a bottom surface 113 on the negative Z-axis direction side. The long side surface 111 is a rectangular planar portion that forms the long side surface of the container 110 and is arranged to face the adjacent spacers 200 or 300 in the Y-axis direction. Long side 111 is adjacent to short side 112 and bottom 113 and has a larger area than short side 112 . The short side surface 112 is a rectangular planar portion that forms the short side surface of the container 110 and is arranged to face the side plate 500 in the X-axis direction. Short side 112 is adjacent to long side 111 and bottom 113 and has a smaller area than long side 111 . The bottom surface 113 is a rectangular planar portion that forms the bottom surface of the container 110 and is arranged adjacent to the long side surface 111 and the short side surface 112 .
 電極端子140は、蓋体130に配置される蓄電素子100の端子部材(正極端子及び負極端子)であり、集電体を介して、電極体の正極板及び負極板に電気的に接続されている。つまり、電極端子140は、電極体に蓄えられている電気を蓄電素子100の外部空間に導出し、また、電極体に電気を蓄えるために蓄電素子100の内部空間に電気を導入するための金属製の部材である。電極端子140は、アルミニウム、アルミニウム合金、銅、銅合金などで形成されている。 The electrode terminal 140 is a terminal member (a positive electrode terminal and a negative electrode terminal) of the storage element 100 arranged in the lid 130, and is electrically connected to the positive electrode plate and the negative electrode plate of the electrode body via a current collector. there is That is, the electrode terminal 140 is made of a metal material for leading electricity stored in the electrode body to the external space of the storage element 100 and for introducing electricity into the internal space of the storage element 100 to store the electricity in the electrode body. It is a member made of The electrode terminal 140 is made of aluminum, aluminum alloy, copper, copper alloy, or the like.
 電極体は、正極板と負極板とセパレータとが積層されて形成された蓄電要素(発電要素)である。正極板は、アルミニウムまたはアルミニウム合金等の金属からなる集電箔である正極基材層上に正極活物質層が形成されたものである。負極板は、銅または銅合金等の金属からなる集電箔である負極基材層上に負極活物質層が形成されたものである。正極活物質層及び負極活物質層に用いられる活物質としては、リチウムイオンを吸蔵放出可能なものであれば、適宜公知の材料を使用できる。セパレータは、樹脂からなる微多孔性のシートまたは不織布等を用いることができる。本実施の形態では、電極体は、極板(正極板及び負極板)がY軸方向に積層されて形成されている。電極体は、極板(正極板及び負極板)が巻回されて形成された巻回型の電極体、複数の平板状の極板が積層されて形成された積層型(スタック型)の電極体、または、極板を蛇腹状に折り畳んだ蛇腹型の電極体等、どのような形態の電極体でもよい。 The electrode assembly is a power storage element (power generation element) formed by laminating a positive electrode plate, a negative electrode plate, and a separator. The positive electrode plate is formed by forming a positive electrode active material layer on a positive electrode substrate layer, which is a collector foil made of a metal such as aluminum or an aluminum alloy. The negative electrode plate is formed by forming a negative electrode active material layer on a negative electrode substrate layer, which is a collector foil made of a metal such as copper or a copper alloy. As the active material used for the positive electrode active material layer and the negative electrode active material layer, any known material can be appropriately used as long as it can intercalate and deintercalate lithium ions. A microporous sheet made of resin, a non-woven fabric, or the like can be used as the separator. In the present embodiment, the electrode body is formed by stacking electrode plates (a positive electrode plate and a negative electrode plate) in the Y-axis direction. The electrode body includes a wound electrode body formed by winding electrode plates (a positive electrode plate and a negative electrode plate), and a laminated (stacked) electrode formed by stacking a plurality of flat plate-shaped electrode plates. The electrode body may have any form, such as a body or a bellows-shaped electrode body in which an electrode plate is folded into a bellows shape.
 集電体は、電極端子140と電極体とに電気的に接続される導電性の部材(正極集電体及び負極集電体)である。正極集電体は、正極板の正極基材層と同様、アルミニウムまたはアルミニウム合金等で形成され、負極集電体は、負極板の負極基材層と同様、銅または銅合金等で形成されている。 The current collectors are conductive members (positive electrode current collector and negative electrode current collector) that are electrically connected to the electrode terminal 140 and the electrode body. The positive electrode current collector is made of aluminum, an aluminum alloy, or the like, like the positive electrode substrate layer of the positive electrode plate, and the negative electrode current collector, like the negative electrode substrate layer of the negative electrode plate, is made of copper, a copper alloy, or the like. there is
 上部ガスケット150は、蓋体130と電極端子140との間に配置され、蓋体130と電極端子140との間を電気的に絶縁し、かつ封止するガスケットである。下部ガスケットは、蓋体130と集電体との間に配置され、蓋体130と集電体との間を電気的に絶縁し、かつ封止するガスケットである。上部ガスケット150及び下部ガスケットは、電気的絶縁性を有していればどのような素材で形成されていてもよい。 The upper gasket 150 is a gasket that is arranged between the lid 130 and the electrode terminal 140 to electrically insulate and seal between the lid 130 and the electrode terminal 140 . The lower gasket is a gasket that is placed between the lid 130 and the current collector to electrically insulate and seal between the lid 130 and the current collector. The upper gasket 150 and the lower gasket may be made of any material that has electrical insulation.
 [3 スペーサ200の説明]
 次に、スペーサ200の構成について、詳細に説明する。図4は、本実施の形態に係るスペーサ200の構成を示す斜視図、上面図及び正面図である。具体的には、図4の(a)は、図2に示した複数のスペーサ200のうちの1つのスペーサ200の外観を拡大して示す斜視図である。図4の(b)は、図4の(a)に示したスペーサ200が有するX軸マイナス方向の突起231(231a、231b)及びその周辺を、上方(Z軸プラス方向)から見た場合の構成を拡大して示す上面図である。図4の(b)では、スペーサ200のY軸方向両側に2つの蓄電素子100を配置した場合の、当該2つの蓄電素子100の容器110も破線で示している。図4の(c)は、図4の(a)に示したスペーサ200が有するX軸マイナス方向の突起231(231a、231b)及びその周辺を、正面(Y軸マイナス方向)から見た場合の構成を拡大して示す正面図である。
[3 Description of Spacer 200]
Next, the configuration of spacer 200 will be described in detail. 4A and 4B are a perspective view, a top view, and a front view showing the configuration of the spacer 200 according to this embodiment. Specifically, (a) of FIG. 4 is a perspective view showing an enlarged appearance of one spacer 200 out of the plurality of spacers 200 shown in FIG. FIG. 4(b) shows projections 231 (231a, 231b) in the negative direction of the X-axis of the spacer 200 shown in (a) of FIG. It is a top view which expands and shows a structure. In FIG. 4B, the container 110 for the two storage elements 100 when the two storage elements 100 are arranged on both sides of the spacer 200 in the Y-axis direction is also indicated by broken lines. (c) of FIG. 4 shows projections 231 (231a, 231b) in the negative direction of the X-axis of the spacer 200 shown in (a) of FIG. It is a front view which expands and shows a structure.
 図4に示すように、スペーサ200は、X軸方向における両端部が同様の形状を有している。つまり、スペーサ200は、中心位置を通りZ軸方向に平行な軸を中心に180°回転させた場合に、回転対称となる形状を有している。回転対称な形状とすることで、組付け時にスペーサの向きを考慮することなく作業を行うことが可能となるので好ましい。スペーサ200は、スペーサ本体部210と、一対のスペーサ側壁部220と、一対のスペーサ上壁部230と、一対のスペーサ底壁部240と、を有している。 As shown in FIG. 4, the spacer 200 has the same shape at both ends in the X-axis direction. That is, the spacer 200 has a shape that is rotationally symmetrical when rotated 180° about an axis passing through the center position and parallel to the Z-axis direction. A rotationally symmetrical shape is preferable because it enables work to be performed without considering the orientation of the spacer during assembly. The spacer 200 has a spacer body portion 210 , a pair of spacer side wall portions 220 , a pair of spacer top wall portions 230 and a pair of spacer bottom wall portions 240 .
 スペーサ本体部210は、スペーサ200の本体を構成する平板状かつ矩形状の部位であり、XZ平面に平行に配置されている。本実施の形態では、スペーサ本体部210は、蓄電素子100のY軸プラス方向またはY軸マイナス方向に、蓄電素子100の容器110の長側面111の全面を覆うように、Y軸方向において長側面111と対向し、かつ、長側面111に当接した状態で配置される。 The spacer body portion 210 is a flat plate-like and rectangular portion that constitutes the body of the spacer 200, and is arranged parallel to the XZ plane. In the present embodiment, spacer main body 210 has long side surfaces in the Y-axis direction so as to cover the entire long side surface 111 of container 110 of power storage element 100 in the Y-axis plus direction or the Y-axis minus direction. 111 and is arranged in contact with the long side surface 111 .
 スペーサ側壁部220は、スペーサ本体部210のX軸方向端部からY軸方向に突出し、Z軸方向に延設される平板状かつ矩形状の部位であり、YZ平面に平行に配置されている。具体的には、スペーサ200のX軸方向両端部に、スペーサ本体部210のX軸方向両端部からY軸方向両側に突出し、Z軸方向に延設される一対のスペーサ側壁部220が配置されている。本実施の形態では、スペーサ側壁部220は、蓄電素子100の容器110の短側面112に沿って配置される(図5参照)。詳細には、スペーサ側壁部220は、蓄電素子100のX軸方向両側において、容器110の短側面112のY軸プラス方向側またはY軸マイナス方向側の半分を覆うように、X軸方向において短側面112と対向して配置される。これにより、蓄電素子100をY軸方向で挟む2つのスペーサ200のスペーサ側壁部220によって、蓄電素子100の容器110の短側面112の全面が覆われる。 The spacer side wall portion 220 is a plate-like and rectangular portion that protrudes in the Y-axis direction from the end portion of the spacer body portion 210 in the X-axis direction and extends in the Z-axis direction, and is arranged parallel to the YZ plane. . Specifically, a pair of spacer side wall portions 220 projecting from both ends of the spacer body 210 in the X-axis direction and extending in the Z-axis direction are arranged at both ends of the spacer 200 in the X-axis direction. ing. In the present embodiment, spacer side wall portion 220 is arranged along short side surface 112 of container 110 of power storage element 100 (see FIG. 5). Specifically, the spacer side wall portions 220 are short in the X-axis direction so as to cover half of the short side surface 112 of the container 110 on the Y-axis positive direction side or the Y-axis negative direction side on both sides of the power storage element 100 in the X-axis direction. It is arranged opposite to the side surface 112 . As a result, the entire short side surface 112 of the container 110 of the storage element 100 is covered by the spacer side wall portions 220 of the two spacers 200 sandwiching the storage element 100 in the Y-axis direction.
 スペーサ底壁部240は、スペーサ本体部210のZ軸マイナス方向端部からY軸方向に突出する平板状かつ矩形状の部位であり、XY平面に平行に配置されている。具体的には、スペーサ200のX軸方向両端部に、スペーサ本体部210のZ軸マイナス方向端部のX軸方向両端部からY軸方向両側に突出する一対のスペーサ底壁部240が配置されている。本実施の形態では、スペーサ底壁部240は、蓄電素子100のZ軸マイナス方向側において、蓄電素子100の容器110の底面113に沿って配置される(図5参照)。詳細には、スペーサ底壁部240は、蓄電素子100のX軸方向両端部において、容器110の底面113のY軸プラス方向側またはY軸マイナス方向側の半分を覆うように、Z軸方向において底面113と対向して配置される。 The spacer bottom wall portion 240 is a plate-like and rectangular portion that protrudes in the Y-axis direction from the end of the spacer body portion 210 in the negative Z-axis direction, and is arranged parallel to the XY plane. Specifically, a pair of spacer bottom wall portions 240 projecting to both sides in the Y-axis direction from both ends in the X-axis direction of the ends of the spacer body portion 210 in the negative Z-axis direction are arranged at both ends of the spacer 200 in the X-axis direction. ing. In the present embodiment, spacer bottom wall portion 240 is arranged along bottom surface 113 of container 110 of storage element 100 on the negative Z-axis direction side of storage element 100 (see FIG. 5). Specifically, the spacer bottom wall portion 240 is arranged in the Z-axis direction so as to cover half of the bottom surface 113 of the container 110 on the Y-axis positive direction side or the Y-axis negative direction side at both ends of the power storage element 100 in the X-axis direction. It is arranged to face the bottom surface 113 .
 スペーサ上壁部230は、スペーサ本体部210のZ軸プラス方向端部からY軸方向に突出する平板状かつ矩形状の部位であり、XY平面に平行に配置されている。具体的には、スペーサ200のX軸方向両端部に、スペーサ本体部210のZ軸プラス方向端部のX軸方向両端部からY軸方向両側に突出する一対のスペーサ上壁部230が配置されている。本実施の形態では、スペーサ上壁部230は、蓄電素子100のZ軸プラス方向側において、蓄電素子100の容器110の蓋体130に沿って配置される(図5参照)。詳細には、スペーサ上壁部230は、蓄電素子100のX軸方向両端部において、容器110の蓋体130のY軸プラス方向側またはY軸マイナス方向側の半分を覆うように、Z軸方向において蓋体130と対向して配置される。 The spacer upper wall portion 230 is a plate-like and rectangular portion that protrudes in the Y-axis direction from the end portion of the spacer body portion 210 in the positive Z-axis direction, and is arranged parallel to the XY plane. Specifically, a pair of spacer upper wall portions 230 projecting to both sides in the Y-axis direction from both ends in the X-axis direction of the end portion of the spacer main body portion 210 in the positive Z-axis direction are arranged at both ends in the X-axis direction of the spacer 200 . ing. In the present embodiment, spacer upper wall portion 230 is arranged along lid 130 of container 110 of storage element 100 on the Z-axis positive direction side of storage element 100 (see FIG. 5). More specifically, the spacer upper wall portion 230 extends in the Z-axis direction so as to cover half of the lid 130 of the container 110 on the Y-axis positive direction side or the Y-axis negative direction side at both ends of the power storage element 100 in the X-axis direction. is arranged to face the lid body 130 at .
 スペーサ上壁部230は、Z軸プラス方向に向く連続した1つの面(本実施の形態では、平面)である第一面230aを有し、第一面230aには、Z軸プラス方向に突出する複数の突起231が形成されている。上述の通り、スペーサ200は、中心位置を通りZ軸方向に平行な軸を中心に180°回転させた場合に、回転対称となる形状を有しているため、一対のスペーサ上壁部230は、当該軸を中心に180°回転させた場合に形状が一致する。このため、以下では、一対のスペーサ上壁部230のうち、X軸マイナス方向のスペーサ上壁部230の構成を中心に説明し、X軸プラス方向のスペーサ上壁部230の構成の説明は、簡略化または省略する。 The spacer upper wall portion 230 has a first surface 230a that is one continuous surface (flat surface in the present embodiment) facing in the positive Z-axis direction. A plurality of protrusions 231 are formed for the purpose. As described above, the spacer 200 has a shape that is rotationally symmetrical when rotated 180° about an axis that passes through the center position and is parallel to the Z-axis direction. , the shapes match when rotated 180° about the axis. Therefore, of the pair of spacer upper wall portions 230, the configuration of the spacer upper wall portion 230 in the negative direction of the X axis will be mainly described below, and the configuration of the spacer upper wall portion 230 in the positive direction of the X axis will be Simplify or omit.
 図4の(a)に加え、図4の(b)及び(c)に示すように、スペーサ上壁部230は、第一面230aからZ軸プラス方向に突出する複数の突起231を有している。本実施の形態では、スペーサ上壁部230は、当該複数の突起231として、2つの突起231a及び231bを有している。 As shown in (b) and (c) of FIG. 4 in addition to (a) of FIG. ing. In this embodiment, the spacer upper wall portion 230 has two projections 231a and 231b as the plurality of projections 231. As shown in FIG.
 突起231(231a、231b)は、球体を4等分した形状のリブである。具体的には、突起231は、球体の中心を通りXY平面に平行な面及びYZ平面に平行な面で切断した場合の、X軸マイナス方向かつZ軸プラス方向に位置する部分に対応する形状を有している。これにより、突起231は、Z軸プラス方向から見てX軸マイナス方向が円弧となる半円形状を有し、Y軸マイナス方向から見てX軸マイナス方向かつZ軸プラス方向が円弧となる中心角が90°の扇形を有する。つまり、突起231は、Y軸方向に長く、X軸マイナス方向の面が傾斜した形状を有している。 The projections 231 (231a, 231b) are ribs in the shape of quartering a sphere. Specifically, the protrusion 231 has a shape corresponding to a portion located in the negative direction of the X-axis and the positive direction of the Z-axis when cut along a plane parallel to the XY plane and a plane parallel to the YZ plane passing through the center of the sphere. have. As a result, the protrusion 231 has a semicircular shape in which the negative direction of the X-axis is a circular arc when viewed from the positive direction of the Z-axis, and the negative direction of the X-axis and the positive direction of the Z-axis when viewed from the negative direction of the Y-axis are circular arcs. It has a fan shape with an angle of 90°. In other words, the projection 231 is elongated in the Y-axis direction and has a shape in which the surface in the negative direction of the X-axis is inclined.
 具体的には、突起231は、Z軸プラス方向に向かうほどX軸プラス方向に傾斜する曲面状の傾斜面231cを有している(図4の(c)参照)。本実施の形態では、突起231のZ軸マイナス方向に蓄電素子100が配置され、突起231のX軸マイナス方向にサイドプレート500が配置される(図5等参照)。このため、複数の突起231のうち少なくとも1つの突起231は、Z軸方向(第三方向)において蓄電素子100から離れる方向に向かうほど、X軸方向(第一方向)においてサイドプレート500から離れる方向に傾斜する傾斜面231cを有している。本実施の形態では、全ての突起231(231a及び231b)が、傾斜面231cを有している。 Specifically, the projection 231 has a curved inclined surface 231c that inclines in the positive direction of the X-axis toward the positive direction of the Z-axis (see (c) of FIG. 4). In the present embodiment, power storage element 100 is arranged in the negative Z-axis direction of projection 231, and side plate 500 is arranged in the negative X-axis direction of projection 231 (see FIG. 5, etc.). Therefore, at least one protrusion 231 among the plurality of protrusions 231 is arranged in a direction away from the side plate 500 in the X-axis direction (first direction) as it goes away from the power storage element 100 in the Z-axis direction (third direction). It has an inclined surface 231c that inclines to . In the present embodiment, all protrusions 231 (231a and 231b) have inclined surfaces 231c.
 複数の突起231(2つの突起231a及び231b)は、X軸方向(第一方向)において異なる位置に配置されている。つまり、複数の突起231は、X軸方向(第一方向)においてずれた位置に配置されている。具体的には、複数の突起231(2つの突起231a及び231b)は、X軸方向(第一方向)において重ならない位置に配置されている。つまり、複数の突起231は、X軸方向(第一方向)において離間した位置に配置されている。さらに、複数の突起231(2つの突起231a及び231b)は、Y軸方向(第二方向)においても異なる位置に配置されている。つまり、複数の突起231は、Y軸方向(第二方向)においてもずれた位置に配置されている。具体的には、複数の突起231(2つの突起231a及び231b)は、Y軸方向(第二方向)において重ならない位置に配置されている。つまり、複数の突起231は、Y軸方向(第二方向)において離間した位置に配置されている。複数の突起231(2つの突起231a及び231b)は、Z軸方向(第三方向)においては、同じ位置に配置されている。 The plurality of protrusions 231 (two protrusions 231a and 231b) are arranged at different positions in the X-axis direction (first direction). That is, the plurality of protrusions 231 are arranged at positions shifted in the X-axis direction (first direction). Specifically, the plurality of protrusions 231 (two protrusions 231a and 231b) are arranged at positions that do not overlap in the X-axis direction (first direction). That is, the plurality of protrusions 231 are arranged at positions spaced apart in the X-axis direction (first direction). Furthermore, the plurality of protrusions 231 (two protrusions 231a and 231b) are arranged at different positions in the Y-axis direction (second direction) as well. That is, the plurality of protrusions 231 are arranged at positions shifted in the Y-axis direction (second direction) as well. Specifically, the plurality of protrusions 231 (two protrusions 231a and 231b) are arranged at positions that do not overlap in the Y-axis direction (second direction). That is, the plurality of protrusions 231 are arranged at positions spaced apart in the Y-axis direction (second direction). The plurality of protrusions 231 (two protrusions 231a and 231b) are arranged at the same position in the Z-axis direction (third direction).
 本実施の形態では、X軸マイナス方向のスペーサ上壁部230においては、突起231aよりもX軸プラス方向かつY軸マイナス方向に、突起231bが配置されている。X軸プラス方向のスペーサ上壁部230においては、突起231aよりもX軸マイナス方向かつY軸プラス方向に、突起231bが配置されている。このように、複数の突起231(2つの突起231a及び231b)が、X軸方向(第一方向)において異なる位置にされ、Y軸方向において重ならない位置に配置されるので、スペーサ200の製造時に、複数の突起231を容易に形成できる。 In the present embodiment, on the spacer upper wall portion 230 in the negative X-axis direction, the protrusion 231b is arranged in the positive direction of the X-axis and the negative direction of the Y-axis from the protrusion 231a. In the spacer upper wall portion 230 in the positive direction of the X-axis, a protrusion 231b is arranged in the negative direction of the X-axis and the positive direction of the Y-axis from the protrusion 231a. In this way, the plurality of protrusions 231 (two protrusions 231a and 231b) are positioned at different positions in the X-axis direction (first direction) and are arranged in positions that do not overlap in the Y-axis direction. , a plurality of protrusions 231 can be easily formed.
 複数の突起231のうちの少なくとも1つの突起231は、Z軸方向(第三方向)から見て、蓄電素子100の一部と重なる位置に配置される。つまり、蓄電素子100の直上に、少なくとも1つの突起231が配置される。具体的には、図4の(b)に示すように、全ての突起231(2つの突起231a及び231bの双方)が、Z軸方向から見て、蓄電素子100の一部と重なる位置に配置される。本実施の形態では、2つの突起231a及び231bの全部が、Z軸方向(第三方向)から見て蓄電素子100と重なる位置に配置されている。Z軸方向(第三方向)から見て、突起231aの一部しか蓄電素子100と重なる位置に配置されていなくてもよいし、突起231bの一部しか蓄電素子100と重なる位置に配置されていなくてもよい。 At least one protrusion 231 of the plurality of protrusions 231 is arranged at a position overlapping with a part of the power storage element 100 when viewed from the Z-axis direction (third direction). That is, at least one protrusion 231 is arranged directly above the power storage element 100 . Specifically, as shown in (b) of FIG. 4, all the projections 231 (both of the two projections 231a and 231b) are arranged at positions overlapping with a part of the storage element 100 when viewed from the Z-axis direction. be done. In the present embodiment, the two protrusions 231a and 231b are all arranged at positions overlapping the storage element 100 when viewed from the Z-axis direction (third direction). When viewed in the Z-axis direction (third direction), only a portion of the projection 231a may be arranged at a position overlapping the power storage element 100, or only a portion of the projection 231b may be arranged at a position overlapping with the power storage element 100. It doesn't have to be.
 [4 スペーサ200と蓄電素子100及びサイドプレート500との位置関係の説明]
 次に、スペーサ200と蓄電素子100及びサイドプレート500との位置関係について、詳細に説明する。図5は、本実施の形態に係るスペーサ200と蓄電素子100及びサイドプレート500との位置関係を示す断面図である。具体的には、図5の(a)は、図1に示した蓄電装置10を、V-V線を通りXZ平面に平行な面で切断した場合の断面を示す図である。図5の(b)は、図5の(a)に示したスペーサ200が有するX軸マイナス方向の突起231及びその周辺の構成を拡大して示す断面図である。図6は、本実施の形態に係る蓄電素子100及びスペーサ200にサイドプレート500を組み付ける工程を示す断面図である。具体的には、図6は、図5の(b)に対応する図であり、図6の(a)は、蓄電素子100及びスペーサ200にサイドプレート500を組み付ける前の構成を示し、図6の(b)は、組み付けている途中の構成を示し、図6の(c)は、組み付けた後の構成を示している。
[4 Description of Positional Relationship Between Spacer 200, Energy Storage Element 100, and Side Plate 500]
Next, the positional relationship between the spacer 200, the storage element 100, and the side plate 500 will be described in detail. FIG. 5 is a cross-sectional view showing the positional relationship between spacer 200, power storage element 100, and side plate 500 according to the present embodiment. Specifically, (a) of FIG. 5 is a diagram showing a cross section of power storage device 10 shown in FIG. 1 taken along a plane parallel to the XZ plane through line VV. FIG. 5(b) is an enlarged cross-sectional view showing the configuration of the protrusion 231 in the negative direction of the X-axis of the spacer 200 shown in FIG. 5(a) and its surroundings. FIG. 6 is a cross-sectional view showing a step of assembling the side plate 500 to the storage element 100 and the spacer 200 according to this embodiment. Specifically, FIG. 6 is a diagram corresponding to (b) of FIG. 5, and (a) of FIG. (b) of FIG. 6 shows the configuration during assembly, and (c) of FIG. 6 shows the configuration after assembly.
 上述の通り、サイドプレート500はインシュレータ600を有しているが、図2及び図5に示すように、サイドプレート500のインシュレータ600を除く部分は、プレート本体部510と、プレート上壁部520と、プレート底壁部530と、を有している。インシュレータ600は、インシュレータ本体部610と、インシュレータ上壁部620と、インシュレータ底壁部630と、を有している。一対のサイドプレート500(インシュレータ600)は同様の構成を有するため、以下では、X軸マイナス方向のサイドプレート500(インシュレータ600)について説明し、X軸プラス方向のサイドプレート500(インシュレータ600)についての説明は、簡略化または省略する。 As described above, the side plate 500 has the insulator 600. As shown in FIGS. , and a plate bottom wall portion 530 . The insulator 600 has an insulator body portion 610 , an insulator top wall portion 620 and an insulator bottom wall portion 630 . Since the pair of side plates 500 (insulators 600) have the same configuration, the side plate 500 (insulator 600) in the negative direction of the X axis will be described below, and the side plate 500 (insulator 600) in the positive direction of the X axis will be described. Explanations are simplified or omitted.
 プレート本体部510は、インシュレータ本体部610のX軸マイナス方向に配置され、Y軸方向に延設されるYZ平面に平行な板状かつ矩形状の部位である。プレート本体部510は、インシュレータ本体部610に、X軸方向で当接した状態で配置される。プレート上壁部520は、プレート本体部510のZ軸プラス方向の端部からX軸プラス方向に突出し、かつ、Y軸方向に延設される長尺状かつ板状の部位である。プレート上壁部520は、インシュレータ上壁部620に、X軸マイナス方向から挿入され嵌合された状態で配置される。プレート底壁部530は、プレート本体部510のZ軸マイナス方向の端部からX軸プラス方向に突出し、かつ、Y軸方向に延設される長尺状かつ板状の部位である。プレート底壁部530は、インシュレータ底壁部630のZ軸マイナス方向において、インシュレータ底壁部630にZ軸方向で当接した状態で配置される。 The plate body portion 510 is a plate-shaped and rectangular portion that is arranged in the negative X-axis direction of the insulator body portion 610 and extends in the Y-axis direction and parallel to the YZ plane. Plate body portion 510 is arranged in a state of being in contact with insulator body portion 610 in the X-axis direction. The plate upper wall portion 520 is an elongated plate-like portion that protrudes in the positive X-axis direction from the end portion of the plate main body portion 510 in the positive Z-axis direction and extends in the Y-axis direction. Plate upper wall portion 520 is arranged in a state of being inserted and fitted into insulator upper wall portion 620 from the negative direction of the X-axis. The plate bottom wall portion 530 is an elongated plate-like portion that protrudes in the positive X-axis direction from the end portion of the plate body portion 510 in the negative Z-axis direction and extends in the Y-axis direction. Plate bottom wall portion 530 is disposed in contact with insulator bottom wall portion 630 in the Z-axis direction in the negative Z-axis direction of insulator bottom wall portion 630 .
 インシュレータ本体部610は、複数の蓄電素子100並びに複数のスペーサ200及び300のX軸マイナス方向に配置され、Y軸方向に延設されるYZ平面に平行な板状かつ矩形状の部位である。インシュレータ本体部610は、複数のスペーサ200(スペーサ側壁部220)及び300に、X軸方向で当接した状態で配置される。インシュレータ底壁部630は、インシュレータ本体部610のZ軸マイナス方向の端部からX軸プラス方向に突出し、かつ、Y軸方向に延設される長尺状かつ板状の部位である。インシュレータ底壁部630は、複数の蓄電素子100並びに複数のスペーサ200及び300のZ軸マイナス方向において、複数のスペーサ200(スペーサ底壁部240)及び300にZ軸方向で当接した状態で配置される。 The insulator main body 610 is a plate-shaped and rectangular portion that is arranged in the negative X-axis direction of the plurality of storage elements 100 and the plurality of spacers 200 and 300 and extends in the Y-axis direction and parallel to the YZ plane. The insulator body portion 610 is arranged in contact with the plurality of spacers 200 (spacer side wall portions 220) and 300 in the X-axis direction. Insulator bottom wall portion 630 is an elongated plate-like portion that protrudes in the positive X-axis direction from the end of insulator body portion 610 in the negative Z-axis direction and extends in the Y-axis direction. The insulator bottom wall portion 630 is arranged in contact with the plurality of spacers 200 (spacer bottom wall portions 240) and 300 in the Z-axis direction of the plurality of power storage elements 100 and the plurality of spacers 200 and 300 in the Z-axis direction. be done.
 インシュレータ上壁部620は、複数の蓄電素子100並びに複数のスペーサ200及び300のZ軸プラス方向に配置され、Y軸方向に延設される長尺状かつ板状の部位である。インシュレータ上壁部620は、インシュレータ本体部610のZ軸プラス方向の端部からX軸プラス方向に突出し、Z軸プラス方向に折れ曲がり、かつ、X軸マイナス方向に折れ曲がった、Y軸プラス方向から見てC字状の形状を有している。これにより、インシュレータ上壁部620には、X軸プラス方向に凹む凹部が形成され、この凹部に、プレート上壁部520が挿入されて嵌合される。インシュレータ上壁部620は、複数のスペーサ200のスペーサ上壁部230に形成された複数の突起231に、Z軸方向で当接した状態で配置される。 The insulator upper wall portion 620 is a long plate-like portion arranged in the Z-axis positive direction of the plurality of power storage elements 100 and the plurality of spacers 200 and 300 and extending in the Y-axis direction. The insulator upper wall portion 620 protrudes in the positive direction of the X-axis from the end of the insulator main body portion 610 in the positive direction of the Z-axis, bends in the positive direction of the Z-axis, and bends in the negative direction of the X-axis as viewed from the positive direction of the Y-axis. It has a C-shaped shape. As a result, a recess recessed in the positive direction of the X-axis is formed in the insulator upper wall portion 620, and the plate upper wall portion 520 is inserted and fitted into this recess. The insulator upper wall portion 620 is arranged in contact with the plurality of protrusions 231 formed on the spacer upper wall portions 230 of the plurality of spacers 200 in the Z-axis direction.
 具体的には、インシュレータ上壁部620は、Z軸マイナス方向に向く連続した1つの面(本実施の形態では、平面)である第二面620aを有している。第二面620aは、スペーサ200のスペーサ上壁部230の第一面230aに、Z軸方向で対向する面である。つまり、スペーサ200は、Z軸方向(第三方向)において、サイドプレート500(インシュレータ600)に対向する第一面230aを有し、サイドプレート500(インシュレータ600)は、Z軸方向(第三方向)において、第一面230aに対向する第二面620aを有している。そして、第一面230aには、第二面620aに向けてZ軸方向(第三方向)に突出する複数の突起231が形成されている。インシュレータ上壁部620は、第二面620aにおいて、複数のスペーサ200のスペーサ上壁部230の第一面230aに形成された複数の突起231に、Z軸方向で当接した状態で配置される。 Specifically, the insulator upper wall portion 620 has a second surface 620a that is one continuous surface (a flat surface in the present embodiment) facing in the negative Z-axis direction. The second surface 620a is a surface facing the first surface 230a of the spacer upper wall portion 230 of the spacer 200 in the Z-axis direction. That is, the spacer 200 has a first surface 230a facing the side plate 500 (insulator 600) in the Z-axis direction (third direction), and the side plate 500 (insulator 600) extends in the Z-axis direction (third direction). ) has a second surface 620a facing the first surface 230a. A plurality of projections 231 projecting in the Z-axis direction (third direction) toward the second surface 620a are formed on the first surface 230a. The insulator upper wall portion 620 is arranged on the second surface 620a in contact with the plurality of projections 231 formed on the first surface 230a of the spacer upper wall portion 230 of the plurality of spacers 200 in the Z-axis direction. .
 さらに具体的には、図6の(a)に示すように、蓄電素子100に対してサイドプレート500が組み付けられる場合、蓄電素子100及びスペーサ200に向けて、X軸マイナス方向からサイドプレート500(インシュレータ600)が近付けられる。そして、図6の(b)に示すように、サイドプレート500が、インシュレータ600のインシュレータ上壁部620を介してスペーサ200の突起231aを潰しながら、蓄電素子100及びスペーサ200に対してX軸プラス方向に移動する。そして、図6の(c)に示すように、サイドプレート500は、インシュレータ600のインシュレータ上壁部620で、スペーサ200の突起231aを潰した後に、突起231bも潰しながら、蓄電素子100及びスペーサ200に対してX軸プラス方向に移動する。つまり、サイドプレート500(インシュレータ600)は、スペーサ200の突起231a及び231bを順次潰しながら、蓄電素子100及びスペーサ200に対してX軸プラス方向に移動する。 More specifically, as shown in (a) of FIG. 6, when the side plate 500 is attached to the storage element 100, the side plate 500 ( Insulator 600) is brought closer. Then, as shown in FIG. 6(b), the side plate 500 crushes the projection 231a of the spacer 200 via the insulator upper wall portion 620 of the insulator 600, while the X-axis plus the energy storage element 100 and the spacer 200. move in the direction Then, as shown in FIG. 6(c), the side plate 500 crushes the projection 231a of the spacer 200 with the insulator upper wall portion 620 of the insulator 600, and then crushes the projection 231b, so that the power storage element 100 and the spacer 200 are separated from each other. moves in the positive direction of the X-axis. That is, the side plate 500 (insulator 600) moves in the X-axis plus direction with respect to the storage element 100 and the spacer 200 while sequentially crushing the projections 231a and 231b of the spacer 200. FIG.
 このように、突起231(突起231a及び231b)は、潰しリブであり、インシュレータ上壁部620は、複数のスペーサ200に形成された複数の突起231(突起231a及び231b)が潰された状態で、これら複数の突起231にZ軸方向で当接する。これにより、蓄電素子100及びスペーサ200に対するサイドプレート500(インシュレータ600)のZ軸方向における移動が規制される。 Thus, the projections 231 (projections 231a and 231b) are crushed ribs, and the insulator upper wall portion 620 is formed in a state where the plurality of projections 231 (projections 231a and 231b) formed on the plurality of spacers 200 are crushed. , abut on the plurality of protrusions 231 in the Z-axis direction. This restricts the movement of the side plate 500 (insulator 600) with respect to the power storage element 100 and the spacer 200 in the Z-axis direction.
 本実施の形態として、突起231が複数配置される場合について説明したが、本発明の実施の形態は、突起231が一つだけ配置されてもよい。この場合、突起231は突起231a及び231bのいずれかの位置に配置されてもよいし、突起231aと231bに跨るような形状で配置されてもよい。 Although the case where a plurality of projections 231 are arranged has been described as the present embodiment, only one projection 231 may be arranged in the embodiment of the present invention. In this case, the projection 231 may be arranged at either position of the projections 231a and 231b, or may be arranged in a shape straddling the projections 231a and 231b.
 [5 効果の説明]
 以上のように、本発明の実施の形態に係る蓄電装置10によれば、蓄電素子100またはスペーサ200、及び、サイドプレート500は、第三方向(Z軸方向)で対向する第一面230a及び第二面620aを有している。そして、第一面230a及び第二面620aの少なくとも一方には、他方に向けて突出して配置される突起231が形成されている。こうすることで、蓄電素子100に対してサイドプレート500を第一方向から組み付ける際に、蓄電素子100に対するサイドプレート500の組み付けを容易にできる。
[5 Explanation of effect]
As described above, according to the power storage device 10 according to the embodiment of the present invention, the power storage element 100 or the spacer 200 and the side plate 500 have the first surfaces 230a and 230a facing each other in the third direction (Z-axis direction). It has a second surface 620a. At least one of the first surface 230a and the second surface 620a is provided with a protrusion 231 that protrudes toward the other. By doing so, when assembling the side plate 500 to the power storage element 100 from the first direction, the side plate 500 can be easily assembled to the power storage element 100 .
 蓄電素子100またはスペーサ200及びサイドプレート500が有する第一面230a及び第二面620aの少なくとも一方(本実施の形態では、スペーサ200の第一面230a)には、他方に向けて突出して配置される複数の突起が形成されている。これにより、蓄電素子に対してサイドプレートを第一方向から組み付ける際に、一つの突起に対する他方の部材の接触面積が減少する。したがって、突起による組み付け負荷を低減でき、蓄電素子に対するサイドプレートの組み付けをさらに容易にできる。 At least one of the first surface 230a and the second surface 620a (in the present embodiment, the first surface 230a of the spacer 200) of the storage element 100 or the spacer 200 and the side plate 500 has a A plurality of protrusions are formed. As a result, when the side plate is attached to the storage element from the first direction, the contact area of the other member with respect to one projection is reduced. Therefore, the mounting load due to the protrusion can be reduced, and the mounting of the side plate to the power storage element can be further facilitated.
 このように、蓄電素子100またはスペーサ200及びサイドプレート500が有する第一面230a及び第二面620aの少なくとも一方(本実施の形態では、スペーサ200の第一面230a)に複数の突起231を設け、複数の突起231を、第一方向において異なる位置に配置する。これにより、蓄電素子100に対してサイドプレート500を第一方向から組み付ける際に、第一方向において、複数の突起231に順次接触していく。したがって、突起231による組み付け負荷を複数段階に分けることができるため、突起231による組み付け負荷を低減でき、蓄電素子100に対するサイドプレート500の組み付けを容易にできる。 Thus, at least one of the first surface 230a and the second surface 620a (in the present embodiment, the first surface 230a of the spacer 200) of the storage element 100 or the spacer 200 and the side plate 500 is provided with a plurality of protrusions 231. , the plurality of protrusions 231 are arranged at different positions in the first direction. As a result, when the side plate 500 is assembled to the power storage element 100 from the first direction, the plurality of projections 231 are sequentially contacted in the first direction. Therefore, since the assembling load due to the protrusion 231 can be divided into a plurality of stages, the assembling load due to the protrusion 231 can be reduced, and the side plate 500 can be easily attached to the power storage element 100 .
 蓄電素子100またはスペーサ200及びサイドプレート500が有する第一面230a及び第二面620aの少なくとも一方(本実施の形態では、スペーサ200の第一面230a)に形成される複数の突起231は、第一方向において重ならない位置に配置される。このように、複数の突起231を、第一方向において重ならない位置に配置されるので、蓄電素子100に対してサイドプレート500を第一方向から組み付ける際に、第一方向において、1つの突起231に接触した後に、次の突起231に接触する。これにより、突起231による組み付け負荷をさらに低減できるため、蓄電素子100に対するサイドプレート500の組み付けをさらに容易にできる。 The plurality of projections 231 formed on at least one of the first surface 230a and the second surface 620a (in the present embodiment, the first surface 230a of the spacer 200) of the energy storage element 100 or the spacer 200 and the side plate 500 are They are arranged in a non-overlapping position in one direction. In this way, since the plurality of protrusions 231 are arranged at positions that do not overlap in the first direction, when assembling the side plate 500 to the power storage element 100 from the first direction, one protrusion 231 , the next protrusion 231 is contacted. As a result, the mounting load due to the projections 231 can be further reduced, so that the mounting of the side plate 500 to the power storage element 100 can be further facilitated.
 突起231が、第三方向から見て、蓄電素子100の一部と重なる位置に配置される。複数の突起231のうちの少なくとも1つの突起231(本実施の形態では、突起231a及び231bの双方)が、第三方向から見て、蓄電素子100の一部と重なる位置に配置される。これにより、第三方向において、サイドプレート500で蓄電素子100をより強固に保持できる。蓄電素子100に対するサイドプレート500の組み付けを容易にしつつ、蓄電装置10の耐振動または耐衝撃性能(耐荷重性能)の向上を図ることができる。 The protrusion 231 is arranged at a position overlapping with a part of the power storage element 100 when viewed from the third direction. At least one protrusion 231 (both protrusions 231a and 231b in the present embodiment) of the plurality of protrusions 231 is arranged at a position overlapping a part of the power storage element 100 when viewed from the third direction. Thereby, the power storage element 100 can be held more firmly by the side plate 500 in the third direction. While assembling the side plate 500 to the power storage element 100 is facilitated, the vibration resistance or shock resistance performance (load resistance performance) of the power storage device 10 can be improved.
 突起231が傾斜面231cを有している。複数の突起231のうち少なくとも1つの突起231(本実施の形態では、突起231a及び231bの双方)が、傾斜面231cを有している。これにより、蓄電素子100に対してサイドプレート500を第一方向から組み付ける際に、傾斜面231cに沿ってサイドプレート500を第一方向から蓄電素子100に対して組み付けることができる。蓄電素子100に対するサイドプレート500の組み付けをさらに容易にできる。 The protrusion 231 has an inclined surface 231c. At least one protrusion 231 (both protrusions 231a and 231b in this embodiment) of the plurality of protrusions 231 has an inclined surface 231c. Accordingly, when assembling the side plate 500 to the storage element 100 from the first direction, the side plate 500 can be assembled to the storage element 100 from the first direction along the inclined surface 231c. Assembly of the side plate 500 to the storage element 100 can be made easier.
 [6 変形例の説明]
 以上、本実施の形態に係る蓄電装置10について説明したが、本発明は、上記実施の形態には限定されない。今回開示された実施の形態は、全ての点で例示であって制限的なものではなく、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。
[6 Description of modified example]
Although power storage device 10 according to the present embodiment has been described above, the present invention is not limited to the above embodiment. The embodiments disclosed this time are illustrative in all respects and are not restrictive, and the scope of the present invention includes all modifications within the meaning and range of equivalents to the claims. .
 上記実施の形態では、複数の突起231は、X軸方向及びY軸方向において重ならない位置に配置され、Z軸方向において同じ位置に配置されていることとした。しかし、複数の突起231は、X軸方向及びY軸方向の少なくとも一方向において、一部が重なる位置に配置されていてもよい。複数の突起231は、Y軸方向において全部が重なる位置に配置されていてもよい。複数の突起231は、第一面230aがZ軸方向に傾斜している等により、Z軸方向において異なる位置(一部が重ならない、または、全部が重ならない位置)に配置されていてもよい。つまり、複数の突起231は、X軸方向において異なる位置に配置されていればよい。 In the above embodiment, the plurality of protrusions 231 are arranged at non-overlapping positions in the X-axis direction and the Y-axis direction, and are arranged at the same position in the Z-axis direction. However, the plurality of protrusions 231 may be arranged at positions where they partially overlap in at least one of the X-axis direction and the Y-axis direction. The plurality of protrusions 231 may be arranged at positions where they all overlap in the Y-axis direction. The plurality of protrusions 231 may be arranged at different positions in the Z-axis direction (partially not overlapping or not entirely overlapping) due to the first surface 230a being inclined in the Z-axis direction. . In other words, the plurality of protrusions 231 may be arranged at different positions in the X-axis direction.
 上記実施の形態では、突起231の全部を、Z軸方向から見て、蓄電素子100の一部と重なる位置に配置している。しかし、突起231の全部ではなく、突起231の少なくとも一部が、Z軸方向から見て、蓄電素子100の一部と重なっていればよい。または、全ての突起231ではなく、少なくとも1つの突起231が、Z軸方向から見て、蓄電素子100と重なっていればよい。または、全ての突起231が、Z軸方向から見て、蓄電素子100と重なっていなくてもよい。 In the above embodiment, all of the protrusions 231 are arranged at positions overlapping with a part of the storage element 100 when viewed from the Z-axis direction. However, at least a part of the protrusion 231 , not all of the protrusion 231 , may overlap a part of the power storage element 100 when viewed from the Z-axis direction. Alternatively, not all protrusions 231 but at least one protrusion 231 may overlap the power storage element 100 when viewed from the Z-axis direction. Alternatively, all the protrusions 231 do not have to overlap the power storage element 100 when viewed from the Z-axis direction.
 上記実施の形態では、全ての突起231が曲面状の傾斜面231cを有していることとした。しかし、複数の突起231のうち少なくとも1つの突起231が傾斜面231cを有していればよく、いずれかの突起231は傾斜面231cを有していなくてもよい。傾斜面231cは、曲面状の傾斜面ではなく、平面状の傾斜面であってもよい。または、全ての突起231が傾斜面231cを有していない構成でもよい。 In the above embodiment, all protrusions 231 have curved inclined surfaces 231c. However, at least one protrusion 231 among the plurality of protrusions 231 may have the inclined surface 231c, and any of the protrusions 231 may not have the inclined surface 231c. The inclined surface 231c may be a planar inclined surface instead of a curved inclined surface. Alternatively, a configuration in which not all protrusions 231 have inclined surfaces 231c may be used.
 上記実施の形態では、全てのスペーサ200が同様の構成を有していることとしたが、いずれかのスペーサ200が上述とは異なる構成を有していてもよい。 Although all the spacers 200 have the same configuration in the above embodiment, any one of the spacers 200 may have a configuration different from that described above.
 上記実施の形態において、以下のように変形を加えてもよい。図7A~図7Cは、本実施の形態の変形例1に係るスペーサ201~203の構成を示す正面図である。具体的には、図7A~図7Cは、図4の(c)に対応する図であり、スペーサ201~203が有するX軸マイナス方向の突起232~234及びその周辺を、正面(Y軸マイナス方向)から見た場合の構成を拡大して示している。 The above embodiment may be modified as follows. 7A to 7C are front views showing configurations of spacers 201 to 203 according to Modification 1 of the present embodiment. Specifically, FIGS. 7A to 7C are diagrams corresponding to (c) of FIG. 4, in which the projections 232 to 234 of the spacers 201 to 203 in the negative direction of the X axis and their surroundings are shown from the front (the negative direction of the Y axis). direction) is shown in an enlarged manner.
 図7A、図7B及び図7Cに示すように、本変形例では、上記実施の形態におけるスペーサ200に代えて、スペーサ201、202及び203が配置されている。スペーサ201、202及び203は、上記実施の形態におけるスペーサ200が有する突起231(231a及び231b)に代えて、突起232(232a及び232b)、突起233(233a及び233b)、及び、突起234(234a及び234b)を有している。その他の構成については、上記実施の形態と同様であるため、詳細な説明は省略する。 As shown in FIGS. 7A, 7B and 7C, in this modified example, spacers 201, 202 and 203 are arranged instead of the spacer 200 in the above embodiment. Spacers 201, 202 and 203 have projections 232 (232a and 232b), projections 233 (233a and 233b), and projections 234 (234a) instead of projections 231 (231a and 231b) of spacer 200 in the above embodiment. and 234b). Since other configurations are the same as those of the above-described embodiment, detailed description thereof will be omitted.
 突起232(232a及び232b)は、スペーサ201のスペーサ上壁部230の第一面230aに形成されたリブであり、内方が中空の板バネ形状(跳び箱の踏み台のような形状)を有している。複数の突起232(232a及び232b)は、複数の突起231と同様に、X軸方向において異なる位置(重ならない位置)、及び、Z軸方向から見て蓄電素子100の一部と重なる位置に配置され、かつ、傾斜面232cを有している。図7Aでは、突起232のX軸プラス方向(第一方向)側の端部と第一面230aとが繋がっているが、突起232のX軸プラス方向(第一方向)側の端部と第一面230aとが繋がっていなくてもよい。 The protrusions 232 (232a and 232b) are ribs formed on the first surface 230a of the spacer upper wall portion 230 of the spacer 201, and have a leaf spring shape (like a vaulting stool) with a hollow interior. ing. Like the plurality of protrusions 231, the plurality of protrusions 232 (232a and 232b) are arranged at different positions (non-overlapping positions) in the X-axis direction and at positions overlapping a part of the power storage element 100 when viewed from the Z-axis direction. and has an inclined surface 232c. In FIG. 7A, the end of the projection 232 on the X-axis plus direction (first direction) side and the first surface 230a are connected, but the end of the projection 232 on the X-axis plus direction (first direction) side and the first surface 230a are connected. It does not have to be connected to the one surface 230a.
 突起233(233a及び233b)は、スペーサ202のスペーサ上壁部230の第一面230aに形成されたリブであり、突起232と同様の板バネ形状であるが、ばね233dを有している。つまり、突起233は、板バネをばね233dで支える構成を有している。ばね233dは、らせん状、蛇腹状等どのような形状を有していてもよいし、金属製、樹脂製等、どのような材質で形成されていてもよい。複数の突起233(233a及び233b)は、複数の突起231と同様に、X軸方向において異なる位置(重ならない位置)、及び、Z軸方向から見て蓄電素子100の一部と重なる位置に配置され、かつ、傾斜面233cを有している。 The projections 233 (233a and 233b) are ribs formed on the first surface 230a of the spacer upper wall portion 230 of the spacer 202, and have the same plate spring shape as the projections 232, but have a spring 233d. In other words, the protrusion 233 has a configuration in which the leaf spring is supported by the spring 233d. The spring 233d may have any shape such as a spiral shape or a bellows shape, and may be made of any material such as metal or resin. Like the plurality of protrusions 231, the plurality of protrusions 233 (233a and 233b) are arranged at different positions (non-overlapping positions) in the X-axis direction and at positions overlapping with a part of the power storage element 100 when viewed from the Z-axis direction. and has an inclined surface 233c.
 突起234(234a及び234b)は、スペーサ203のスペーサ上壁部230の第一面230aに設けられたプランジャーである。複数の突起234(234a及び234b)は、複数の突起231と同様に、X軸方向において異なる位置(重ならない位置)、及び、Z軸方向から見て蓄電素子100の一部と重なる位置に配置され、かつ、傾斜面234cを有している。 The protrusions 234 (234a and 234b) are plungers provided on the first surface 230a of the spacer upper wall portion 230 of the spacer 203. Like the plurality of protrusions 231, the plurality of protrusions 234 (234a and 234b) are arranged at different positions (non-overlapping positions) in the X-axis direction and at positions overlapping part of the power storage element 100 when viewed from the Z-axis direction. and has an inclined surface 234c.
 以上のように、本変形例に係る蓄電装置によれば、上記実施の形態と同様の効果を奏する。本変形例のように、スペーサに設けられる突起として、種々の形態の突起を用いることができる。当該突起の形状として、上述した複雑な形状ではなく、円柱形状若しくは角柱形状等の柱状、または、円筒形状若しくは角筒形状等の筒状等の単純な形状でもよく、その形状は特に限定されない。 As described above, according to the power storage device according to this modified example, the same effects as those of the above-described embodiment can be obtained. As in this modified example, various types of projections can be used as the projections provided on the spacer. The shape of the protrusion is not limited to the complex shape described above, and may be a columnar shape such as a cylindrical shape or a prismatic shape, or a simple shape such as a tubular shape such as a cylindrical shape or a rectangular shape, and the shape is not particularly limited.
 このように、スペーサは、サイドプレート500の第二面620aに対向する第一面230aを有しており、第一面230aに、第二面620aに向けて突出する複数の突起が形成されている。しかしながら、スペーサの突起に加えて、または、スペーサの突起に代えて、蓄電素子100が、サイドプレート500の第二面620aに対向する第一面を有し、当該第一面に、第二面620aに向けて突出する複数の突起が形成されていてもよい。この場合、蓄電装置は、スペーサ200を備えていなくてもよい。蓄電素子100が突起を有する場合には、当該突起は、Z軸方向(第三方向)から見て、蓄電素子100の一部(当該突起以外の部分)と重なる位置に配置される。 Thus, the spacer has a first surface 230a facing the second surface 620a of the side plate 500, and the first surface 230a is formed with a plurality of projections projecting toward the second surface 620a. there is However, in addition to the spacer projections or instead of the spacer projections, the power storage element 100 has a first surface facing the second surface 620a of the side plate 500, and the first surface has a second surface A plurality of projections projecting toward 620a may be formed. In this case, the power storage device may not include spacer 200 . When the power storage element 100 has a protrusion, the protrusion is arranged at a position overlapping a part of the power storage element 100 (the part other than the protrusion) when viewed from the Z-axis direction (third direction).
 さらに、蓄電素子100若しくはスペーサの突起に加えて、または、当該突起に代えて、サイドプレート500の第二面620aに、第一面230aに向けて突出する複数の突起が形成されていてもよい。この場合、インシュレータ600のインシュレータ上壁部620に複数の突起が形成されていてもよいし、サイドプレート500がインシュレータ600を有していない場合には、サイドプレート500のプレート上壁部520に複数の突起が形成されていてもよい。つまり、蓄電素子100またはスペーサは、Z軸方向(第三方向)において、サイドプレート500に対向する第一面を有し、第一面及び第二面620aの少なくとも一方には、他方に向けてZ軸方向(第三方向)に突出する複数の突起が形成されていればよい。 Furthermore, in addition to or instead of the projections of the storage element 100 or the spacer, the second surface 620a of the side plate 500 may have a plurality of projections projecting toward the first surface 230a. . In this case, insulator upper wall portion 620 of insulator 600 may have a plurality of projections, or if side plate 500 does not have insulator 600, plate upper wall portion 520 of side plate 500 may have a plurality of projections. may be formed. That is, the power storage element 100 or the spacer has a first surface facing the side plate 500 in the Z-axis direction (third direction), and at least one of the first surface and the second surface 620a has a A plurality of protrusions protruding in the Z-axis direction (third direction) may be formed.
 インシュレータ600に複数の突起が形成される場合、サイドプレート500は、複数の突起が形成された絶縁部材(インシュレータ600)を有している。この場合、サイドプレート500が絶縁部材(インシュレータ600)を介して複数の突起を有している。これにより、蓄電素子100に対するサイドプレート500の組み付けを容易にする構成を実現できる。 When the insulator 600 is formed with a plurality of projections, the side plate 500 has an insulating member (insulator 600) formed with a plurality of projections. In this case, the side plate 500 has a plurality of projections via an insulating member (insulator 600). This makes it possible to realize a configuration that facilitates assembly of the side plate 500 to the power storage element 100 .
 上述のサイドプレート500のプレート上壁部520に突起が形成される構成の一例として、以下に具体的に説明する。図8は、本実施の形態の変形例2に係るサイドプレート501の構成を示す正面図及び斜視図である。具体的には、図8の(a)は、サイドプレート501のプレート上壁部520を正面(Y軸マイナス方向)から見た場合の構成を示す正面図であり、図8の(b)は、プレート上壁部520を斜め下方から見た場合の構成を示す斜視図である。 An example of a configuration in which protrusions are formed on the plate upper wall portion 520 of the side plate 500 described above will be specifically described below. 8A and 8B are a front view and a perspective view showing the configuration of a side plate 501 according to Modification 2 of the present embodiment. Specifically, (a) of FIG. 8 is a front view showing the configuration when the plate upper wall portion 520 of the side plate 501 is viewed from the front (Y-axis negative direction), and (b) of FIG. 4 is a perspective view showing the configuration when the plate upper wall portion 520 is viewed obliquely from below; FIG.
 図8に示すように、本変形例では、上記実施の形態におけるサイドプレート500に代えて、サイドプレート501が配置されている。サイドプレート501は、プレート上壁部520に、蓄電素子100またはスペーサの第一面に対向する第二面520aを有しており、第二面520aからZ軸マイナス方向に突出する複数の突起521(521a及び521b)を有している。その他の構成については、上記実施の形態と同様であるため、詳細な説明は省略する。 As shown in FIG. 8, in this modified example, a side plate 501 is arranged instead of the side plate 500 in the above embodiment. The side plate 501 has a second surface 520a on the plate upper wall portion 520, which faces the first surface of the storage element 100 or the spacer. (521a and 521b). Since other configurations are the same as those of the above-described embodiment, detailed description thereof will be omitted.
 複数の突起521(521a及び521b)は、プレート上壁部520に切り欠き520bが形成されて、切り欠かれた部分がZ軸マイナス方向に折り曲げられて形成された部位である。複数の突起521(521a及び521b)は、X軸方向において異なる位置、及び、Z軸方向から見て蓄電素子100の一部と重なる位置に配置され、かつ、傾斜面521cを有している。傾斜面521cは、Z軸方向において蓄電素子100から離れる方向(Z軸プラス方向)に向かうほど、X軸方向においてサイドプレート501(プレート本体部510)から離れる方向(X軸プラス方向)に傾斜する傾斜面である。特に、本変形例のように、サイドプレート501を切り欠いて、切り欠いた部分を折り曲げると、突起521を容易に形成できる。 A plurality of protrusions 521 (521a and 521b) are portions formed by forming cutouts 520b in the plate upper wall portion 520 and bending the cutout portions in the negative Z-axis direction. The plurality of protrusions 521 (521a and 521b) are arranged at different positions in the X-axis direction and at positions overlapping part of the storage element 100 when viewed in the Z-axis direction, and have inclined surfaces 521c. The inclined surface 521c is inclined in the X-axis direction away from the side plate 501 (plate body portion 510) (X-axis positive direction) as it goes away from the power storage element 100 in the Z-axis direction (Z-axis positive direction). It is an inclined plane. In particular, by notching the side plate 501 and bending the notched portion as in this modified example, the protrusion 521 can be easily formed.
 蓄電素子100に対してサイドプレート500、501を第一方向から組み付ける際に、突起232、233、234、521が変形する。突起232、233、234、521は、変形することによる付勢力を利用して、蓄電素子100及びスペーサ200に対するサイドプレート500(インシュレータ600)のZ軸方向における移動を規制する。このように、本変形例に係る蓄電装置によれば、上記実施の形態と同様の効果を奏する。 When the side plates 500 and 501 are assembled to the power storage element 100 from the first direction, the protrusions 232, 233, 234 and 521 are deformed. Protrusions 232 , 233 , 234 , 521 restrict movement of side plate 500 (insulator 600 ) with respect to power storage element 100 and spacer 200 in the Z-axis direction by utilizing biasing force due to deformation. Thus, according to the power storage device according to this modification, the same effects as those of the above-described embodiment can be obtained.
 本変形例の形態として、突起232、233、234、521のそれぞれが複数配置される場合について説明したが、本発明の実施の形態は、突起232、233、234、521のそれぞれが一つだけ配置されてもよい。突起232、233、234、521のそれぞれが複数配置されることで、突起による組み付け負荷をさらに低減できるため、蓄電素子に対するサイドプレートの組み付けをさらに容易にできるので好ましい。 Although a case where a plurality of each of the projections 232, 233, 234, 521 are arranged has been described as the form of this modification, only one each of the projections 232, 233, 234, 521 is provided in the embodiment of the present invention. may be placed. By arranging a plurality of each of the projections 232, 233, 234, 521, the mounting load due to the projections can be further reduced, and the mounting of the side plate to the power storage element can be further facilitated, which is preferable.
 蓄電素子100またはスペーサの突起に加えて、サイドプレート500にも突起が形成される場合、蓄電素子100またはスペーサの複数の突起とサイドプレート500の複数の突起とが、互い違いとなる位置に交互に配置されてもよい。この場合、蓄電素子100またはスペーサの複数の突起とサイドプレート500の複数の突起とが組み合わされるように、蓄電素子100またはスペーサとサイドプレート500とが組み付けられることにしてもよい。蓄電素子100またはスペーサが1つの突起しか有していない構成でもよいし、サイドプレート500が1つの突起しか有していない構成でもよい。つまり、蓄電素子100またはスペーサとサイドプレート500とが、合計で複数の突起を有していればよい。 When protrusions are formed on the side plates 500 in addition to the protrusions on the power storage elements 100 or the spacers, the plurality of protrusions on the power storage elements 100 or the spacers and the plurality of protrusions on the side plates 500 are alternately positioned. may be placed. In this case, power storage element 100 or spacer and side plate 500 may be assembled such that the plurality of protrusions of power storage element 100 or spacer and the plurality of protrusions of side plate 500 are combined. A configuration in which the power storage element 100 or the spacer has only one protrusion may be employed, and a configuration in which the side plate 500 has only one protrusion may be employed. That is, it suffices that the power storage element 100 or the spacer and the side plate 500 have a plurality of protrusions in total.
 上記実施の形態及びその変形例に含まれる構成要素を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。 Forms constructed by arbitrarily combining the constituent elements included in the above embodiments and modifications thereof are also included within the scope of the present invention.
 本発明は、このような蓄電装置として実現できるだけでなく、蓄電素子100とサイドプレートとの組み合わせ、または、蓄電素子100とスペーサとサイドプレートとの組み合わせとしても実現できる。 The present invention can be realized not only as such a power storage device, but also as a combination of the power storage element 100 and the side plate, or a combination of the power storage element 100, the spacer and the side plate.
 本発明は、リチウムイオン二次電池等の蓄電素子を備えた蓄電装置等に適用できる。 The present invention can be applied to a power storage device or the like having a power storage element such as a lithium ion secondary battery.
 10 蓄電装置
 100 蓄電素子
 110 容器
 140 電極端子
 200、201、202、203、300 スペーサ
 210 スペーサ本体部
 220 スペーサ側壁部
 230 スペーサ上壁部
 230a 第一面
 231、231a、231b、232、232a、232b、233、233a、233b、234、234a、234b、521、521a、521b 突起
 231c、232c、233c、234c、521c 傾斜面
 233d ばね
 240 スペーサ底壁部
 400 エンドプレート
 500、501 サイドプレート
 510 プレート本体部 520 プレート上壁部
 520a、620a 第二面
 520b 切り欠き
 530 プレート底壁部
 600 インシュレータ
 610 インシュレータ本体部
 620 インシュレータ上壁部
 630 インシュレータ底壁部
10 power storage device 100 power storage element 110 container 140 electrode terminal 200, 201, 202, 203, 300 spacer 210 spacer main body 220 spacer side wall 230 spacer upper wall 230a first surface 231, 231a, 231b, 232, 232a, 232b, 233, 233a, 233b, 234, 234a, 234b, 521, 521a, 521b Projection 231c, 232c, 233c, 234c, 521c Inclined surface 233d Spring 240 Spacer bottom wall 400 End plate 500, 501 Side plate 510 Plate body 520 Plate Upper wall portions 520a, 620a Second surface 520b Notch 530 Plate bottom wall portion 600 Insulator 610 Insulator body portion 620 Insulator upper wall portion 630 Insulator bottom wall portion

Claims (9)

  1.  蓄電素子と、前記蓄電素子の第一方向に配置されるサイドプレートと、を備える蓄電装置であって、
     前記蓄電素子、または、前記蓄電素子の前記第一方向と交差する第二方向に配置されるスペーサは、前記第一方向及び前記第二方向と交差する第三方向において、前記サイドプレートに対向する第一面を有し、
     前記サイドプレートは、前記第三方向において、前記第一面に対向する第二面を有し、
     前記第一面及び前記第二面の少なくとも一方には、他方に向けて突出する突起が形成される
     蓄電装置。
    A power storage device comprising a power storage element and a side plate arranged in a first direction of the power storage element,
    The energy storage element or a spacer arranged in a second direction intersecting the first direction of the energy storage element faces the side plate in a third direction intersecting the first direction and the second direction. having a first side,
    the side plate has a second surface facing the first surface in the third direction;
    A power storage device in which at least one of the first surface and the second surface is formed with a projection projecting toward the other.
  2.  前記突起は、前記第三方向において前記蓄電素子から離れる方向に向かうほど、前記第一方向において前記サイドプレートから離れる方向に傾斜する傾斜面を有する
     請求項1に記載の蓄電装置。
    The power storage device according to claim 1, wherein the protrusion has an inclined surface that slopes away from the side plate in the first direction as it goes away from the power storage element in the third direction.
  3.  前記サイドプレートは、前記突起が形成された絶縁部材を有する
     請求項1または2に記載の蓄電装置。
    The power storage device according to claim 1 or 2, wherein the side plate has an insulating member on which the projection is formed.
  4.  前記第一面及び前記第二面の少なくとも一方には、他方に向けて突出する複数の突起が形成される
     請求項1に記載の蓄電装置。
    The power storage device according to claim 1, wherein at least one of the first surface and the second surface is formed with a plurality of protrusions projecting toward the other.
  5.  前記複数の突起は、前記第一方向において異なる位置に配置される
     請求項4に記載の蓄電装置。
    The power storage device according to claim 4, wherein the plurality of protrusions are arranged at different positions in the first direction.
  6.  前記複数の突起は、前記第一方向において重ならない位置に配置される
     請求項4または5に記載の蓄電装置。
    The power storage device according to claim 4 or 5, wherein the plurality of protrusions are arranged at positions that do not overlap in the first direction.
  7.  前記複数の突起のうちの少なくとも1つの突起は、前記第三方向から見て、前記蓄電素子の一部と重なる位置に配置される
     請求項4~6に記載の蓄電装置。
    7. The power storage device according to claim 4, wherein at least one of the plurality of protrusions is arranged at a position overlapping with a portion of the power storage element when viewed from the third direction.
  8.  前記複数の突起のうち少なくとも1つの突起は、前記第三方向において前記蓄電素子から離れる方向に向かうほど、前記第一方向において前記サイドプレートから離れる方向に傾斜する傾斜面を有する
     請求項4~7のいずれか1項に記載の蓄電装置。
    At least one projection among the plurality of projections has an inclined surface that inclines away from the side plate in the first direction as it goes away from the power storage element in the third direction. The power storage device according to any one of the above.
  9.  前記サイドプレートは、前記複数の突起が形成された絶縁部材を有する
     請求項4~8のいずれか1項に記載の蓄電装置。
    The power storage device according to any one of claims 4 to 8, wherein the side plate has an insulating member on which the plurality of projections are formed.
PCT/JP2022/008287 2021-03-02 2022-02-28 Power storage device WO2022186136A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023503823A JPWO2022186136A1 (en) 2021-03-02 2022-02-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-032386 2021-03-02
JP2021032386 2021-03-02

Publications (1)

Publication Number Publication Date
WO2022186136A1 true WO2022186136A1 (en) 2022-09-09

Family

ID=83153729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008287 WO2022186136A1 (en) 2021-03-02 2022-02-28 Power storage device

Country Status (2)

Country Link
JP (1) JPWO2022186136A1 (en)
WO (1) WO2022186136A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163696A1 (en) * 2016-03-23 2017-09-28 三洋電機株式会社 Power supply device
JP2019169373A (en) * 2018-03-23 2019-10-03 株式会社Gsユアサ Power storage device
WO2020166182A1 (en) * 2019-02-12 2020-08-20 三洋電機株式会社 Battery module
WO2020202664A1 (en) * 2019-03-29 2020-10-08 三洋電機株式会社 Power source device, and electric vehicle and electricity storage device employing same
WO2021033476A1 (en) * 2019-08-22 2021-02-25 三洋電機株式会社 Power supply device, and electric vehicle and electrical storage device each equipped with same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163696A1 (en) * 2016-03-23 2017-09-28 三洋電機株式会社 Power supply device
JP2019169373A (en) * 2018-03-23 2019-10-03 株式会社Gsユアサ Power storage device
WO2020166182A1 (en) * 2019-02-12 2020-08-20 三洋電機株式会社 Battery module
WO2020202664A1 (en) * 2019-03-29 2020-10-08 三洋電機株式会社 Power source device, and electric vehicle and electricity storage device employing same
WO2021033476A1 (en) * 2019-08-22 2021-02-25 三洋電機株式会社 Power supply device, and electric vehicle and electrical storage device each equipped with same

Also Published As

Publication number Publication date
JPWO2022186136A1 (en) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2022255100A1 (en) Power storage device
WO2021187114A1 (en) Power storage device
WO2022186136A1 (en) Power storage device
EP4195389A1 (en) Power storage device
JP7427903B2 (en) Power storage device
WO2023013466A1 (en) Power storage device
WO2022254937A1 (en) Power storage apparatus
WO2023223961A1 (en) Power storage device
WO2023032562A1 (en) Power storage device
WO2023053831A1 (en) Power storage device
WO2022255162A1 (en) Power storage device
WO2021145272A1 (en) Power storage device
JP7419902B2 (en) Power storage device
WO2021187133A1 (en) Power storage device
WO2022255017A1 (en) Power storage device
WO2020184068A1 (en) Power storage device
WO2022255161A1 (en) Power storage device
JP2022186359A (en) power storage device
US20230275327A1 (en) Energy storage apparatus
WO2022191231A1 (en) Power storage device
WO2022196479A1 (en) Power storage device
WO2021187219A1 (en) Power storage device
WO2023176752A1 (en) Electricity storage device and method for manufacturing electricity storage device
WO2022230428A1 (en) Power storage device
WO2024043254A1 (en) Power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503823

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763192

Country of ref document: EP

Kind code of ref document: A1