WO2022186105A1 - 防水通音部材 - Google Patents

防水通音部材 Download PDF

Info

Publication number
WO2022186105A1
WO2022186105A1 PCT/JP2022/008159 JP2022008159W WO2022186105A1 WO 2022186105 A1 WO2022186105 A1 WO 2022186105A1 JP 2022008159 W JP2022008159 W JP 2022008159W WO 2022186105 A1 WO2022186105 A1 WO 2022186105A1
Authority
WO
WIPO (PCT)
Prior art keywords
waterproof sound
sound
waterproof
layer
permeable membrane
Prior art date
Application number
PCT/JP2022/008159
Other languages
English (en)
French (fr)
Inventor
史朗 野坂
嘉治 加藤
Original Assignee
セーレン株式会社
史朗 野坂
嘉治 加藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セーレン株式会社, 史朗 野坂, 嘉治 加藤 filed Critical セーレン株式会社
Priority to CN202280016518.7A priority Critical patent/CN116888977A/zh
Priority to JP2023503798A priority patent/JPWO2022186105A1/ja
Publication of WO2022186105A1 publication Critical patent/WO2022186105A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/14Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a face layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones

Definitions

  • the present invention relates to a waterproof sound-transmitting member that is less likely to increase sound loss due to compression when incorporated into a housing.
  • Electrical and electronic products such as mobile phones, smartphones, smart watches, cordless phones, portable media players, portable game devices, digital cameras, digital video cameras, earphones (hereafter simply referred to as "electrical products", but the concept also includes electronic products)
  • a waterproof sound-permeable member that prevents water from entering the housing and has a small acoustic loss is attached to the openings of the sound generating section and the sound receiving section.
  • the waterproof sound-permeable member is composed of a waterproof sound-permeable membrane and a support layer laminated on the periphery thereof, and has a sound-permeable region where the waterproof sound-permeable membrane is exposed.
  • the support layer maintains the shape of the member and joins it to the housing, allowing sound to pass through the waterproof sound-permeable membrane in the sound-permeable area.
  • a waterproof sound-transmitting member is sometimes used by being incorporated in an electrical product in a compressed state for the purpose of suppressing water ingress and sound leakage from the interface with the housing.
  • the waterproof sound-permeable membrane By using a soft material for the waterproof sound-permeable membrane and lightening the basis weight, the sound loss of the waterproof sound-permeable member is reduced. In order to lighten the basis weight, it is effective to select a material with a low specific gravity or to have a porous structure. However, the waterproof sound-permeable membrane, which is made of soft material and has a porous structure, is easily deformed by compression.
  • Patent Document 1 discloses a waterproof sound-permeable membrane that reduces sound loss by using a soft material such as polyurethane.
  • Patent Document 2 discloses a waterproof sound-permeable member that uses a soft material such as silicone rubber for the waterproof sound-permeable membrane so that the sound loss does not increase when the pressure is returned to normal after water pressure is applied.
  • Patent Document 3 discloses a waterproof sound-transmitting member that reduces distortion of transmitted sound by using a polyolefin resin foam for a support layer in the waterproof sound-transmitting member.
  • the waterproof sound-permeable membrane which is made of soft material and has a porous structure, has a small acoustic loss, but is easily deformed by external forces. If such a waterproof sound-permeable membrane is used for a waterproof sound-permeable member, it will be distorted when it is compressed and incorporated into a housing, resulting in an increase in acoustic loss.
  • the waterproof sound-permeable member using a waterproof sound-permeable membrane made of a soft material disclosed in Patent Document 1 is not suitable for incorporation into a housing with a high compressibility.
  • An object of the present invention is to provide a waterproof sound-transmitting member that can be used at a high compressibility.
  • it is intended to provide a waterproof sound-permeable member that can be compressed and built into a housing even if a waterproof sound-permeable membrane made of a soft material with small sound loss is used, and that makes it possible to keep the sound loss low as a whole. aim.
  • the present inventors devised a combination of the waterproof sound-permeable membrane and the support layer, and found that the stress required to compress the waterproof sound-permeable member by 40% in the direction perpendicular to the membrane surface is 1 to 1.
  • the inventors have found that by setting the pressure to 600 kPa, the acoustic loss can be reduced when used at a high compression rate, and have completed the present invention.
  • the present invention relates to a waterproof sound-transmitting member described below.
  • a waterproof sound-permeable member having a support layer laminated on at least one side of a waterproof sound-permeable membrane, wherein the waterproof sound-permeable membrane has exposed sound-permeable regions on both sides, and
  • a waterproof sound-transmitting member characterized in that the stress required to compress 40% in the vertical direction is 1 to 600 kPa.
  • the waterproof sound-transmitting member according to (3) wherein the sheet having a stress of 600 kPa or less required for 40% compression in the vertical direction includes a sheet layer made of a synthetic resin porous material.
  • the synthetic resin porous material is a synthetic resin porous material selected from the group consisting of polyolefin resins, polyurethane resins and acrylic resins. .
  • the layer using a sheet having a stress of 600 kPa or less required for 40% compression in the vertical direction accounts for 40% or more of the thickness of the entire waterproof sound-transmitting member.
  • a waterproof sound-permeable member having a waterproof sound-permeable membrane and a support layer is compressed in its thickness direction (perpendicular to the film surface of the waterproof sound-permeable membrane) when it is incorporated into a housing.
  • the force applied by compression is applied to the waterproof sound-permeable membrane through the support layer. If an excessive force is applied to the waterproof sound-permeable membrane, it will be distorted, impeding vibration due to incident sound and increasing acoustic loss.
  • the waterproof sound-transmitting member is incorporated into the housing at a high compressibility by setting the stress required to compress the waterproof sound-transmitting member by 40% in the direction perpendicular to the membrane surface to 600 kPa or less. It is possible to reduce the acoustic loss by reducing the force applied to the waterproof sound-permeable membrane. Such technical effects can be achieved more reliably by optimally combining the material of the support layer, the material of the membrane, the shape of the member, and the like.
  • the waterproof sound-permeable membrane adopts an easily deformable membrane with a relatively low tensile elastic modulus
  • the support layer also has a certain thickness correspondingly and combines materials with small compressive stress, so that when it is incorporated in the housing, It is possible to prevent an increase in acoustic loss due to compression of .
  • FIG. 1 is a cross-sectional view of an example of the configuration of a waterproof sound-transmitting member of the present invention
  • FIG. 1 is a plan view of an example of the configuration of a waterproof sound-transmitting member of the present invention
  • FIG. 1 is a schematic diagram of an acoustic measurement device
  • FIG. 1 is a schematic diagram of a compression test
  • a waterproof sound-permeable member is a waterproof sound-permeable member having a support layer laminated on at least one surface of a waterproof sound-permeable membrane, wherein the waterproof sound-permeable membrane has sound-permeable regions exposed on both sides,
  • the waterproof sound-transmitting member is characterized by having a stress of 1 to 600 kPa required for compressing it by 40% in the direction perpendicular to the membrane surface.
  • Fig. 1 shows an example of the configuration of the waterproof sound-permeable member of the present invention.
  • a waterproof sound-permeable member 1 of the present invention is formed by laminating a support layer 3 on both sides of a waterproof sound-permeable membrane 2 so as to be arranged around the periphery of a sound-permeable region 4 .
  • Waterproof sound-permeable member (1) construction
  • the waterproof sound-transmitting member of the present invention sound is transmitted through this sound-transmitting region.
  • the incident sound vibrates the waterproof sound-permeable membrane and is transmitted to the opposite surface. That is, in the waterproof sound-permeable member of the present invention, the support layer is laminated on the portion other than the sound-permeable region of the waterproof sound-permeable membrane.
  • the waterproof sound-permeable member is compressed in the direction perpendicular to the surface of the waterproof sound-permeable membrane (thickness direction of the member) and incorporated into the housing.
  • the force applied by compression is applied to the waterproof sound-permeable membrane through the support layer.
  • distortion occurs, which impedes vibration due to incident sound and increases acoustic loss.
  • the waterproof The stress required to compress the sound member by 40% must be 600 kPa or less, preferably 400 kPa or less, and more preferably 300 kPa or less.
  • the stress required for the waterproof sound-transmitting member to compress 40% in the direction must be 1 kPa or more, preferably 20 kPa or more, and more preferably 40 kPa or more.
  • FIG. 4 shows an outline of the method for measuring compressive stress in the present invention.
  • 1 is a waterproof sound-transmitting member
  • 17 is a parallel plate
  • 18 is the compression direction.
  • a compression test sandwiches a test piece between two parallel plates with a compression tester and applies a load to obtain the stress.
  • the test piece waterproof sound-permeable member
  • the test piece waterproof sound-permeable member
  • the support layers of the waterproof sound-transmitting member are provided on both sides of the waterproof sound-transmitting membrane, the support layers on both sides are placed in contact with the parallel plates.
  • the support layer of the waterproof sound-permeable member is provided only on one side of the waterproof sound-permeable membrane, the waterproof sound-permeable membrane and the support layer are placed in contact with the parallel plates.
  • the parallel plates are moved in a direction perpendicular to the surface of the waterproof sound-permeable membrane so that a compressive force is applied in the direction perpendicular to the surface of the waterproof sound-permeable membrane, thereby narrowing the distance between the two parallel plates. , applying a compressive force to the waterproof sound-permeable member.
  • the “stress required for 40% compression” in the present invention is obtained when the thickness of the waterproof sound-permeable member (the total thickness of the support layer and the waterproof sound-permeable membrane) is taken as 100% and the thickness is compressed by 40% ( It can be calculated by measuring the stress when the thickness after compression is compressed to 60% of the thickness before compression) and dividing it by the area of the support layer.
  • the area of the support layer refers to the area of the part where the support layer contacts the parallel plate of the compression tester when the support layer is a single layer or when a plurality of support layers are laminated and the shape is constant.
  • the vertical direction perpendicular to the membrane surface of the waterproof sound-permeable membrane or the direction of compression, which is the part where force is applied when compressed. It is calculated by the area of the part where multiple support layers overlap most.
  • the outermost layer of the support layer (the layer in contact with the parallel plate) has a large area and the inner layer has a small area, the stress is applied to the area of the inner layer that overlaps vertically, so the area of the support layer is It becomes the area of the inner layer.
  • the area of the outermost layer of the support layer is small and the area of the inner layer is large, stress is applied to the area of the outermost layer, so the area of the support layer is the area of the outermost layer.
  • the waterproof sound-permeable membrane used in the waterproof sound-permeable member of the present invention is a membrane that allows the passage of sound and blocks the passage of water. have. The more flexible the waterproof sound-permeable membrane is, the easier it is to vibrate, and the smaller the acoustic loss.
  • the waterproof sound-permeable membrane preferably has a tensile modulus, which is an index of its softness, of 20 MPa or less, more preferably 10 MPa or less.
  • the tensile elastic modulus of the waterproof sound-transmitting membrane is preferably 0.5 MPa or more, more preferably 2 MPa or more, in order to reduce the strain due to compression of the waterproof sound-transmitting member and reduce the sound loss.
  • the 100% modulus which is an index of softness of the material, is preferably 1 to 20 MPa.
  • the 100% modulus of the material is the physical property of the material itself that constitutes the waterproof sound-permeable membrane, and is not affected by the porous structure or the like.
  • the 100% modulus of the present invention is a value measured with a nonporous membrane obtained by drying after dissolving a waterproof sound-permeable membrane in a solvent.
  • the waterproof sound-permeable membrane of the present invention preferably has a water pressure resistance of 10 to 400 kPa, more preferably 30 to 400 kPa, according to JIS L 1092 B method (high water pressure method).
  • a water pressure resistance 10 to 400 kPa, more preferably 30 to 400 kPa, according to JIS L 1092 B method (high water pressure method).
  • the breaking elongation of the waterproof sound-permeable membrane is preferably 100-500%, more preferably 150-400%, and particularly preferably 80-260%. If the elongation at break is 100 to 500%, good sound permeability and sufficient waterproofness can be maintained.
  • the air permeability of the waterproof sound-permeable membrane is preferably 3 to 500 seconds/100 mL, more preferably 3 to 300 seconds/100 mL, according to the JIS L 1096 Gurley method. If the air permeability is 3 to 500 seconds/100 mL, good sound permeability can be obtained.
  • the waterproof sound-permeable membrane of the present invention has a sound permeability of less than 10 dB at a frequency of 1 kHz, less than 5 dB at a frequency of 2 kHz, and less than 5 dB at a frequency of 5 kHz.
  • the material constituting the waterproof sound-permeable membrane used in the present invention is not particularly limited, it is preferably a relatively soft material as described above, and more preferably within the above 100% modulus range ( A soft synthetic resin that satisfies 1 to 20 MPa) is used.
  • the waterproof sound-permeable membrane is preferably porous because it becomes softer when it is made into a porous membrane. It is more preferable to use a polyurethane resin porous membrane because the structure is easy to control.
  • Polyurethane resins include polyester-based polyurethane, polyether-based polyurethane, and polycarbonate-based polyurethane. At least one of these is preferably used, and two or more may be used in combination.
  • the polyurethane resin is a resin obtained by polymerizing an isocyanate component and a polyol component.
  • isocyanate components include aliphatic diisocyanates, aromatic diisocyanates, and alicyclic diisocyanates, which may be used alone or in combination of two or more.
  • Specific examples of aliphatic diisocyanates include 1,6-hexamethylene diisocyanate.
  • the aromatic diisocyanate includes xylylene diisocyanate, 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate and the like.
  • Alicyclic diisocyanates include 1,4-cyclohexane diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate and the like. Moreover, you may use a trifunctional or more functional isocyanate as needed.
  • polyester polyol using polyethylene adipate, polybutylene adipate, polycaprolactone polyol or the like; polycarbonate polyol using polyhexamethylene carbonate or the like; polyethylene glycol, polypropylene glycol, polytetramethylene glycol or the like. polyether polyols and the like. These can be used either singly or in combination of two or more.
  • additives may be added to the polyurethane resin as necessary.
  • additives include water repellents, cross-linking agents, inorganic fine particles, plasticizers, antioxidants, UV absorbers, smoothing agents such as amide wax, anti-hydrolysis agents, pigments, anti-yellowing agents, and matting agents. etc.
  • the synthetic resin porous membrane is preferably a porous membrane obtained by solidifying a synthetic resin solution containing a synthetic resin and a water-soluble polar organic solvent in water.
  • a method for producing such a porous film taking the above-described polyurethane resin as an example, a polyurethane resin solution containing a polyurethane resin, inorganic fine particles and a polar organic solvent is applied to one side of a suitable release substrate. and then immersing the applied polyurethane resin solution in water to solidify the polyurethane resin.
  • the polyurethane resin solution can contain inorganic fine particles whose surfaces have been hydrophobized.
  • Inorganic fine particles with a hydrophobic surface have a high affinity with polar organic solvents. Concentration of organic solvent is high. Therefore, in the step of immersing the polyurethane resin solution in water to solidify the polyurethane resin, pores are formed around the inorganic fine particles whose surfaces have been hydrophobized. Thus, it is possible to efficiently form a porous membrane made of polyurethane resin.
  • the inorganic fine particles include carbonates such as calcium carbonate and magnesium carbonate; silicic acid such as silicon dioxide and diatomaceous earth; silicates such as talc and zeolite; hydroxides such as aluminum hydroxide and magnesium hydroxide; Sulfates such as calcium sulfate; Borate salts such as aluminum borate and zinc borate; Titanates such as potassium titanate; Metal oxides such as zinc oxide and titanium oxide; can.
  • carbonates such as calcium carbonate and magnesium carbonate
  • silicic acid such as silicon dioxide and diatomaceous earth
  • silicates such as talc and zeolite
  • hydroxides such as aluminum hydroxide and magnesium hydroxide
  • Sulfates such as calcium sulfate
  • Borate salts such as aluminum borate and zinc borate
  • Titanates such as potassium titanate
  • Metal oxides such as zinc oxide and titanium oxide; can.
  • inorganic fine particles may be either porous or non-porous.
  • shape of the inorganic fine particles is not particularly limited and may be regular shapes such as polygonal, needle-like, spherical, cubic, spindle-like, plate-like, or irregular shapes.
  • the above inorganic fine particles may be used singly or in combination of two or more.
  • fine particles of calcium carbonate or fine particles of silicon dioxide are preferable because they adsorb a large amount of a polar organic solvent such as N,N-dimethylformamide and easily form micropores.
  • the content of the inorganic fine particles cannot be generalized because it varies depending on the type, but it is usually preferably 1 to 75% by mass based on the total solid content of the polyurethane resin solution. Sufficient porosity can be obtained when the content is 1% by mass or more. When the content is 75% by mass or less, the resulting microporous membrane maintains strength, particularly tensile strength, and provides sufficient waterproofness.
  • the content of the inorganic fine particles is preferably 3 to 40% by mass with respect to the total solid content of the polyurethane resin solution.
  • Polar organic solvents include N,N-dimethylformamide and N,N-dimethylacetamide.
  • a waterproof sound-permeable membrane is, for example, a polyurethane resin solution containing a synthetic resin mainly composed of polyurethane resin, 1 to 75% by mass of inorganic fine particles with respect to the total solid content, and a polar organic solvent, It can be produced by coating on a release substrate.
  • Examples of methods for applying the polyurethane resin solution to the releasable substrate include methods using a floating knife coater, roll-on knife coater, comma coater, reverse coater, lip coater, roll coater, die coater, and the like.
  • the coating amount of the polyurethane resin solution is preferably 10 to 200 g/m 2 , more preferably 10 to 750 g/m 2 in terms of solid content. By setting the coating amount within this range, a porous film having a thickness of 10 to 150 ⁇ m can be obtained. That is, the waterproof sound-permeable membrane of the present invention preferably has a thickness of 10 to 150 ⁇ m, more preferably 15 to 80 ⁇ m.
  • the polyurethane resin solution After the step of applying the polyurethane resin solution to the releasable base material, the polyurethane resin solution is immersed in water at 10 to 40°C. During this process, water penetrates into the polyurethane resin solution, and the polar organic solvent contained in the polyurethane resin solution is almost completely replaced with water, thereby solidifying the polyurethane resin.
  • the immersion time in water is preferably 30 seconds to 10 minutes, more preferably 1 to 5 minutes. If the immersion time is less than 30 seconds, solidification of the polyurethane resin may be incomplete, and sufficient pores may not be formed, failing to obtain waterproofness and sound permeability. If the immersion time exceeds 10 minutes, the productivity will decrease.
  • the method for producing a polyurethane resin porous membrane described above can also be applied to synthetic resins other than polyurethane resins.
  • a polyurethane resin is suitable because of its flexibility and the ease with which a porous structure can be formed.
  • the porous membrane thus obtained may be subjected to water-repellent finishing as a post-treatment.
  • water repellent agents used for water repellent finishing include paraffin water repellent agents, silicone water repellent agents, and fluorine-based water repellent agents.
  • fluorine-based water repellents are preferable because they can impart high water repellency.
  • the water-repellent finishing can be applied by a conventional method such as a padding method or a spray method.
  • the waterproof sound-permeable membrane used in the present invention may be a rubber-like elastic body (thermosetting elastomer (rubber-based)) in addition to the synthetic resin porous membrane such as the polyurethane resin porous membrane described above.
  • the rubber-like elastic body is not particularly limited as long as it is a material having rubber-like elasticity, and examples thereof include silicone rubber, ethylene-propylene-diene rubber (EPDM), acrylic rubber and natural rubber. Among them, silicone rubber is desirably used because of its excellent properties such as heat resistance and chemical resistance.
  • the waterproof sound-permeable membrane used in the present invention preferably has a thickness of 10 to 150 ⁇ m, more preferably 15 to 80 ⁇ m. If the film is too thick, the sound permeability will be low and it will not be possible to use it for small electronic products with large restrictions on the built-in space.
  • Supporting Layer (1) Configuration of Supporting Layer
  • the supporting layer has a function of supporting and fixing the waterproof sound-transmitting member to the housing, and improving the handleability of the waterproof sound-transmitting member, in addition to the waterproof function.
  • the support layer can absorb compression pressure when incorporated into a housing, and can reinforce and stabilize the shape of the membrane.
  • the support layer is laminated on at least one side of the waterproof sound-permeable membrane, and may be laminated on only one side or on both sides. Further, the support layer is laminated not on the entire surface of the waterproof sound-permeable membrane but on a part thereof.
  • the support layers are laminated on both sides of the waterproof sound-permeable membrane.
  • the support layers are laminated on both sides of the waterproof sound-permeable membrane, it is possible to prevent the waterproof sound-permeable membrane from coming into direct contact with the housing when the waterproof sound-permeable member is incorporated into the housing. Defects are less likely to occur.
  • the layer constituting the support layer may be a single layer or a plurality of laminated layers, but it is necessary to compress at least a part of the layers constituting the support layer (or as a whole) by 40% in the vertical direction. It is preferable to include a layer using a sheet with a stress of 600 kPa or less, more preferably a layer using a sheet with a stress of 300 kPa or less.
  • the "vertical direction" in the layers constituting the support layer refers to the thickness direction of the layer or the direction perpendicular to the film surface of the waterproof sound-permeable membrane when laminated with the waterproof sound-permeable membrane.
  • the layer is preferably a layer using a sheet having a stress of 600 kPa or less required for 40% compression in the vertical direction, more preferably 40% compression in the vertical direction.
  • This is a layer using a sheet with a stress of 300 kPa or less required for
  • the support layer is composed of a plurality of layers
  • at least one of the layers constituting the support layer is preferably a layer using a sheet having a stress of 600 kPa or less required for 40% compression in the vertical direction, and more preferably. is a layer using a sheet with a stress of 300 kPa or less required for 40% compression in the vertical direction.
  • the support layer is composed of multiple layers, there are no particular restrictions on the layer structure, but the sheet with a stress of 600 kPa or less required to compress 40% in the vertical direction (hereinafter referred to as "sheet with compressive stress of 600 kPa or less").
  • sheet with compressive stress of 600 kPa or less As the layer using , a plurality of layers using sheets having different resin types or different compressive stresses within the above range may be laminated.
  • a layer using a hard sheet whose stress required to compress 40% in the vertical direction exceeds 600 kPa (a layer that hardly deforms when compressed during use) can be provided as a spacer layer.
  • the sheet with compressive stress of 600 kPa or less is preferably made of a synthetic resin material.
  • synthetic resins include polyolefin-based resins, polyurethane-based resins, polyacrylic-based resins, and polyester-based resins.
  • Polyolefin resins include polyethylene, polypropylene, and polyvinyl acetate.
  • Polyurethane-based resins include polyester-based polyurethanes, polyether-based polyurethanes, polycarbonate-based polyurethanes, and the like.
  • Polyacrylic resins include polyacrylic acid esters and polymethacrylic acid esters.
  • Polyester-based resins include polyethylene terephthalate (PET), polybutylene terephthalate, and the like.
  • polyvinyl chloride acrylic rubber, and silicone rubber.
  • synthetic resins selected from the group consisting of polyolefin resins, polyacrylic resins and polyurethane resins are used.
  • the synthetic resin material may be porous or non-porous, but in order to keep the stress required for 40% compression in the vertical direction to 600 kPa or less, a sheet layer (constituting a sheet) composed of a porous synthetic resin material is required. It is preferable to use a sheet mainly composed of the layer to be coated.
  • synthetic resin porous materials include polyolefin-based porous materials such as polyethylene and polypropylene, polyurethane-based porous materials, acrylic resin-based porous materials, and the like.
  • Sheet layers made of materials other than synthetic resin porous materials include, for example, sheet layers (auxiliary layers) made of nonporous synthetic resin materials such as nonporous polyester resin materials.
  • the thickness of the auxiliary layer is not particularly limited, but it is preferable that the stress required to compress the entire sheet in the vertical direction by 40% is 600 kPa or less.
  • the thickness of the sheet layer composed of is preferably 50% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • a sheet having a compressive stress of 600 kPa or less may be provided with an adhesive layer on at least one side thereof.
  • the adhesive layer may be provided on only one side of the sheet or on both sides.
  • the adhesive layer can be formed, for example, by applying an adhesive. Examples of adhesives include acrylic adhesives, silicone adhesives, rubber adhesives, and the like.
  • the thickness of the adhesive layer is not particularly limited, but it is preferable that the stress required to compress the entire sheet in the vertical direction by 40% is 600 kPa or less.
  • the thickness of the sheet layer made of the material is preferably 50% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the stress required to compress the entire sheet in the vertical direction by 40% is preferably 600 kPa or less.
  • the thickness of the sheet layer made of the material is preferably 50% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the layer (waterproof adhesive layer) using a sheet having a compressive stress of 600 kPa or less provided with an adhesive layer is preferably an adhesive waterproof tape obtained by applying an adhesive to one or both sides of a core material made of a synthetic resin porous material. mentioned.
  • a double-sided adhesive waterproof tape is used in which an adhesive is applied to both sides of a core material made of a synthetic resin porous material.
  • Such a waterproof adhesive layer has a waterproof function and an adhesive function at the interface between the waterproof sound-permeable membrane and the support layer, the interface between the layers using each sheet in the support layer, the interface between the support layer and the housing, and the like.
  • a sheet with a compressive stress of 600 kPa or less may not have an adhesive layer.
  • a layer (cushion layer) using a sheet having a compressive stress of 600 kPa or less without an adhesive layer compresses the cushion layer and fixes it to the housing by its repulsive force, thereby forming a boundary between the housing and the waterproof sound-transmitting member. Can be used to enhance waterproofness.
  • the cushion layer can also be the outermost layer of the support layer.
  • the thickness of the sheet with a compressive stress of 600 kPa or less is not particularly limited, it is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, still more preferably 100 ⁇ m or more, and particularly preferably 150 ⁇ m or more.
  • the upper limit of the thickness is not particularly limited, the thickness is preferably 3000 ⁇ m or less, more preferably 1500 ⁇ m or less, still more preferably 600 ⁇ m or less, and particularly preferably 400 ⁇ m or less.
  • the physical properties of sheets with a compressive stress of 600 kPa or less generally do not depend on the type of resin.
  • the stress is more preferably 50-300 kPa, more preferably 80-250 kPa.
  • the stress required for 40% compression in the vertical direction is more preferably 0.5. 1 to 100 kPa, more preferably 0.1 to 30 kPa, particularly preferably 0.1 to 10 kPa.
  • the support layer it is preferable to combine layers of various resin types as necessary.
  • the sheet having a compressive stress of 600 kPa or less includes a sheet mainly composed of a sheet layer made of a polyolefin-based resin porous material and provided with an adhesive layer on both sides.
  • Spacer Layer A layer using a hard sheet exhibiting high compressive stress can be provided as a spacer layer on a part of the support layer.
  • the spacer layer is preferably made of a non-porous synthetic resin, specifically a polyester film such as non-porous polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the spacer layer is expected to play a role in adjusting the total thickness of the waterproof sound-transmitting member and stabilizing it by supporting the structure (maintaining the thickness without deformation when the waterproof sound-transmitting member is compressed and used). It is
  • the spacer layer may or may not have an adhesive layer.
  • an adhesive waterproof tape having an adhesive applied to one or both sides thereof, or a PET film to which no adhesive is applied can be used.
  • the spacer layer is a hard layer that hardly deforms when compressed during use, and it is not easy to compress the thickness by 40%. Although it is certain, it is not necessarily clear, but at least the compressive stress is preferably 1 MPa or more, more preferably 10 MPa or more, and particularly preferably 100 MPa or more.
  • the thickness of one spacer layer is not particularly limited, it is preferably 5 to 200 ⁇ m, more preferably 5 to 150 ⁇ m.
  • the total thickness is preferably 10-300 ⁇ m, more preferably 20-250 ⁇ m.
  • the support layer is laminated on at least one side of the waterproof sound-permeable membrane, and has functions of fixing the waterproof sound-permeable member to the housing and improving handling. .
  • the support layer may be laminated on only one side of the waterproof sound-permeable membrane or may be laminated on both sides.
  • the support layers are laminated on both sides of the waterproof sound-permeable membrane.
  • the support layers are laminated on both sides of the waterproof sound-permeable membrane, it is possible to prevent the waterproof sound-permeable membrane from coming into direct contact with the housing when the waterproof sound-permeable member is incorporated into the housing. Defects due to are less likely to occur.
  • the support layer may be a single layer or multiple layers.
  • one side can be a single layer and the other side can be a single layer. In this case, both may be the same layer or different layers of different types of materials.
  • one side can be a single layer and the other side can be multi-layered.
  • the support layers on both sides can also be multi-layered.
  • the support layer When the support layer is a single layer, the support layer preferably consists of a layer using a sheet having a compressive stress of 600 kPa or less, and is laminated on the waterproof sound-permeable membrane.
  • the support layer has a plurality of layers, it is preferable that at least one layer is a layer using a sheet having a compressive stress of 600 kPa or less. This can improve the waterproofness of the boundary between the waterproof sound-permeable membrane and the support layer.
  • the layer using a sheet made of soft material with a compressive stress of 600 kPa or less suppresses the compressive stress of the entire waterproof sound-permeable member by 40%, and reduces the force applied to the waterproof sound-permeable membrane when it is incorporated into the housing with a high compressibility. can serve to reduce acoustic loss.
  • At least one layer is a layer using a sheet having a compressive stress of 600 kPa or less.
  • a sheet mainly containing a sheet layer made of the above-described synthetic resin porous material can be preferably used.
  • the sheet having a compressive stress of 600 kPa or less for example, a sheet mainly composed of a sheet layer made of a polyolefin resin porous material and preferably having a compressive stress of about 50 to 300 kPa, or a polyurethane resin porous material or polyacrylic sheet.
  • a sheet mainly composed of a sheet layer made of a porous resin material and preferably having a compressive stress of about 0.1 to 100 kPa can be used.
  • a waterproof adhesive layer with an adhesive layer and/or a cushion layer without an adhesive layer can be used.
  • a layer having a pressure-sensitive adhesive layer, a layer having no pressure-sensitive adhesive layer, or various layers having different compressive stresses are combined, or a spacer layer is used as appropriate to design a support layer having a desired compressive stress and thickness. becomes possible.
  • a waterproof sound-permeable member having a stress of 1 to 600 kPa required for compressing the waterproof sound-permeable membrane by 40% in the direction perpendicular to the membrane surface can be obtained. can be done.
  • the waterproof sound-transmitting member of the present invention can be produced by laminating the sheets, films, membranes, etc. that constitute each layer based on the design described above, formed into a desired shape as appropriate.
  • a lamination method there is a method of laminating each layer by a known means such as a pressure bonding method.
  • the multi-layer structure includes one or more waterproof adhesive layers or cushion layers, and can be combined with one or two or more spacer layers as necessary.
  • two or more layers of waterproof adhesive layers of different types may be laminated
  • two or more layers of cushion layers of different types may be laminated
  • a combination of waterproof adhesive layers and cushion layers may be laminated.
  • One or more spacer layers can be combined as needed.
  • At least one of the layers constituting the support layer is preferably a waterproof adhesive layer.
  • a support layer containing a layer preferably a waterproof adhesive layer or a cushion layer
  • a layer preferably a waterproof adhesive layer or a cushion layer
  • a spacer layer preferably an adhesive waterproof tape whose core material is a nonporous synthetic resin such as nonporous PET or a nonporous synthetic resin film such as a nonporous PET film
  • a spacer layer is formed between the waterproof sound-permeable membrane and the layer using a sheet with a compressive stress of 600 kPa or less contained in the support layer, the layer structure of the entire waterproof sound-permeable member is stabilized. Moreover, it is also possible to provide a spacer layer on both sides of a layer using a sheet having a compressive stress of 600 kPa or less contained in the support layer and to sandwich the layer, thereby further stabilizing the layer structure of the waterproof sound-transmitting member as a whole. can.
  • a waterproof adhesive layer is arranged on one side of the waterproof sound-permeable membrane, and the same or different waterproof adhesive layer is arranged on the opposite side.
  • a waterproof adhesive layer or a spacer layer is arranged on one side of the waterproof sound-permeable membrane, and a cushion layer is arranged on the other side.
  • a waterproof adhesive layer or a spacer layer is arranged on one side of the waterproof sound-permeable membrane, a spacer layer is arranged on the opposite side in contact with the waterproof sound-permeable membrane, and a waterproof adhesive layer or a cushion layer is further laminated.
  • ⁇ A waterproof adhesive layer or spacer layer is placed on one side of the waterproof sound-permeable membrane, a spacer layer is placed on the opposite side in contact with the waterproof sound-permeable membrane, a waterproof adhesive layer or cushion layer is laminated thereon, and a spacer is further added. Laminate the layers.
  • the thickness of the support layer (the thickness of the layer in the case of a single layer, or the total thickness of the constituent layers in the case of a multi-layer structure) is not particularly limited, but is preferably 30 to 3000 ⁇ m, more preferably 100 to 1500 ⁇ m, and still more preferably. is 300-1000 ⁇ m, particularly preferably 500-800 ⁇ m.
  • the thickness of each layer using a sheet having a compressive stress of 600 kPa or less is preferably 30 to 3000 ⁇ m, more preferably 100 to 1500 ⁇ m, as in the case of a single layer.
  • the total thickness of the layers using a sheet having a compressive stress of 600 kPa or less preferably accounts for 30% or more, more preferably 40% or more, particularly 40% or more of the total thickness of the waterproof sound-transmitting member. Preferably it is 50% or more.
  • the total thickness of the layers using sheets with a compressive stress of 600 kPa or less is the total thickness of the waterproof sound-transmitting member. It is desirable to make it preferably 60% or more, more preferably 70 to 98%, even more preferably 85 to 98%, and particularly preferably 90 to 96%.
  • the total thickness of the layers using a sheet with a compressive stress of 600 kPa or less is the total thickness of the waterproof sound-permeable member.
  • the thickness of the waterproof sound-transmitting member refers to the thickness of the thickest portion of the waterproof sound-transmitting member including the waterproof sound-transmitting membrane and the support layer.
  • the support layer is laminated on the periphery of the waterproof sound-permeable membrane so as not to interfere with the vibration of the waterproof sound-permeable membrane.
  • the support layer should have a constant cross-section in the horizontal direction (parallel to the membrane surface) with respect to the surface of the waterproof sound-permeable membrane. preferable.
  • the (membrane surface) of the support layer laminated on the waterproof sound-permeable membrane ) is preferably 1 mm 2 or more, more preferably 5 mm 2 or more.
  • the support layer laminated on the waterproof sound-permeable membrane is necessary.
  • the area is preferably 50 mm 2 or less, more preferably 30 mm 2 or less.
  • a waterproof sound-permeable member consisting of a waterproof sound-permeable membrane and a support layer laminated on its periphery, the part where the waterproof sound-permeable membrane is exposed without the support layer being laminated, that is, the waterproof sound-permeable membrane Sound penetrates through the sound area.
  • the area of the sound-permeable region is preferably 0.5 mm 2 or more, more preferably 1.5 mm 2 or more.
  • the smaller the area the more stable the shape becomes, the more difficult it is to be distorted, and the smaller the acoustic loss during compression.
  • the degree of circularity calculated by the formula (1) is preferably 0.45 to 1, more preferably 0.6 to 1. is more preferable. Moreover, it is preferable not to have a corner.
  • Fig. 2 shows an example of the configuration of the waterproof sound-permeable member of the present invention.
  • the waterproof sound-permeable member 1 of the present invention preferably has a circular shape, and the support layer 3 is laminated on one or both surfaces of the waterproof sound-permeable membrane 2 so as to be formed along the periphery of the sound-permeable region 4 .
  • the microphone jig 13 has a box-like shape made of metal, and is provided with an opening 14 through which sound is incident on the outer surface thereof, and has a waterproof sound-transmitting member mounting portion with a predetermined clearance, to which the waterproof sound-transmitting member 1 is mounted. There is an internal space 15 sealed with , and the MEMS analog microphone 12 is arranged in the internal space 15 .
  • a speaker 11 , an opening 14 , a waterproof sound-transmitting member 1 , and a MEMS analog microphone 12 are arranged in a straight line without being blocked by the structure of the microphone jig 13 .
  • the opening 14 is circular with a diameter of 1 mm, the distance from the waterproof sound-transmitting member 1 to the MEMS analog microphone 12 in the internal space 15 is 6 mm, and the volume of the internal space is 27 mm 3 .
  • the microphone jig 13 was placed at a position 4.5 cm from the speaker 11 so that the plane on which the opening 14 was provided was parallel to the sound generating portion of the speaker (so that the sound was incident vertically).
  • the acoustic loss was calculated as the difference between the sound pressure level measured only with the microphone jig and the sound pressure level measured with the waterproof sound-transmitting member attached to the opening of the microphone jig. The lower the acoustic loss, the higher the sound permeability.
  • the gap between the waterproof sound-transmitting member mounting portion was appropriately adjusted, and the sound loss at a compression rate of 0% and at a compression rate of 40% of the waterproof sound-transmitting member was measured.
  • ⁇ dBV was calculated by subtracting the acoustic loss at a compression rate of 0% from the acoustic loss at a compression rate of 40%. The smaller this value, the more suppressed the increase in acoustic loss due to compression. Ten samples were measured, and the average value and standard deviation were calculated.
  • the plain weave is woven using 80 dtex/24 filament 6 nylon multifilament yarn for the warp and 80 dtex/34 filament 6 nylon multifilament yarn for the weft, with a warp density of 120/2.54 cm and a weft density of 90. /2.54 cm.
  • Example 1 A polyurethane resin solution having the following formulation was prepared. ⁇ prescription> MP865PS; 100 parts by mass (manufactured by DIC, polyurethane resin, solid content 30% by mass, 100% modulus 11 MPa) Laseroid LU2850M; 65 parts by mass (manufactured by Dainichiseika Kogyo Co., Ltd., silica fine particle dispersion, solid content 20% by mass) Dilac Black L1584; 4 parts by mass (manufactured by DIC Corporation, black pigment, solid content 25% by mass) N,N-dimethylformamide; 28 parts by mass
  • the polyurethane resin solution was applied onto the release base material using a knife-on roll coater in a coating thickness such that the resulting waterproof sound-permeable membrane had a thickness of 30 ⁇ m. Then, it was immersed in water at 20° C. for 1.5 minutes to completely solidify. Next, after washing in hot water at 50° C. for 5 minutes, it was dried by heat treatment at 130° C. for 2 minutes, and the release substrate was removed to obtain a waterproof sound-permeable membrane. As a result of measuring the tensile elastic modulus of the waterproof sound-permeable membrane, it was 3.9 MPa, the water pressure resistance was 70 kPa, and the air permeability was 19 seconds/100 mL.
  • the waterproof sound-permeable membrane was punched into a rectangle with a long side length of 4.4 mm and a short side length of 3.4 mm using a Thomson die.
  • the supporting layer was shaped like a rectangle having a long side length of 4.4 mm and a short side length of 3.4 mm, and having an elliptical opening with a long axis diameter of 2.4 mm and a short axis diameter of 1.4 mm at the center. Then, it was punched using a Thomson die.
  • the support layer includes double-sided adhesive waterproof tape 1 (manufactured by Sekisui Chemical Co., Ltd., trade name "5225VSB”; porous polyethylene; thickness 250 ⁇ m) and double-sided adhesive waterproof tape 2 (manufactured by Sekisui Chemical Co., Ltd., trade name "5240VSB”). "; porous polyethylene; thickness 400 ⁇ m).
  • a double-sided adhesive waterproof tape 1, a waterproof sound-permeable membrane, and a double-sided adhesive waterproof tape 2 were laminated in this order and pressed together to produce a waterproof sound-permeable member.
  • the thickness of the waterproof sound-transmitting member was 680 ⁇ m.
  • the sound-permeable region had an area of 2.64 mm 2 and a circularity of 0.9, and the support layer had an area of 12.3 mm 2 .
  • the stress required to compress double-sided adhesive waterproof tape 1 by 40% was 111 kPa, and the stress required to compress double-sided adhesive waterproof tape 2 by 40% was 175 kPa.
  • the double-sided adhesive waterproof tape 1 accounted for 36.8% of the total thickness of the waterproof sound-transmitting member, and the double-sided adhesive waterproof tape 2 accounted for 58.8% of the total thickness of the waterproof sound-transmitting member, totaling 95.6%.
  • Table 1 shows the results of measuring the sound loss, water pressure resistance, and stress required for 40% compression of the waterproof sound-transmitting member at compression ratios of 0% and 40%.
  • double-sided adhesive waterproof tape 1 manufactured by Sekisui Chemical Co., Ltd., product name "5225VSB”; thickness 250 ⁇ m
  • double-sided adhesive waterproof tape 3 manufactured by Nitto Denko Co., Ltd., product name "No. 5601”; nonporous 10 ⁇ m thick double-sided adhesive waterproof tape 1 and 1 cushion material 1 (manufactured by INOAC Corporation, trade name “PORON SR-S15P”; porous polyurethane resin + PET; thickness 500 ⁇ m).
  • a waterproof sound-transmitting member was produced in the same manner as in Example 1, except that the sound membrane, the double-sided adhesive waterproof tape 3, the cushion material 1, and the double-sided adhesive waterproof tape 3 were laminated in this order.
  • the thickness of the waterproof sound-transmitting member was 800 ⁇ m.
  • the stress required to compress the double-sided adhesive waterproof tape 1 by 40% is 111 kPa, and the stress required to compress the cushion material 1 by 40% is 0.2 kPa. Since the core material of the double-sided adhesive waterproof tape 3 is non-porous PET and it is difficult to compress the double-sided adhesive waterproof tape 3 by 40%, the stress required to compress the double-sided adhesive waterproof tape 3 by 40% is at least 6 Clearly above 1569 kPa, the upper measurement limit at 0.25 mm 2 .
  • the double-sided adhesive waterproof tape 1 accounted for 31.2% of the total thickness of the waterproof sound-transmitting member, and the cushion material 1 accounted for 62.5% of the total thickness of the waterproof sound-transmitting member, for a total of 93.7%.
  • Table 1 shows the results of measuring the sound loss, water pressure resistance, and stress required for 40% compression of the waterproof sound-transmitting member at compression ratios of 0% and 40%.
  • Double-sided adhesive waterproof tape 1 manufactured by Sekisui Chemical Co., Ltd., product name "5225VSB”; thickness 250 ⁇ m
  • double-sided adhesive waterproof tape 3 manufactured by Nitto Denko Co., Ltd., product name "No.
  • waterproof sound-transmitting member was produced in the same manner as in Example 1, except that the waterproof tape 3, the cushioning material 2, and the double-sided adhesive waterproof tape 3 were laminated in this order.
  • the thickness of the waterproof sound-transmitting member was 700 ⁇ m.
  • the stress required to compress the double-sided adhesive waterproof tape 1 by 40% was 111 kPa, and the stress required to compress the cushion material 2 by 40% was 1 kPa.
  • the stress required to compress the double-sided adhesive waterproof tape 3 by 40% was 1569 kPa or more.
  • the double-sided adhesive waterproof tape 1 accounted for 35.7% of the total thickness of the waterproof sound-transmitting member, and the cushion material 2 accounted for 57.1% of the total thickness of the waterproof sound-transmitting member, totaling 92.8%.
  • Table 1 shows the results of measuring the sound loss, water pressure resistance, and stress required for 40% compression of the waterproof sound-transmitting member at compression ratios of 0% and 40%.
  • Double-sided adhesive waterproof tape 1 manufactured by Sekisui Chemical Co., Ltd., product name "5225VSB”; thickness 250 ⁇ m
  • double-sided adhesive waterproof tape 3 manufactured by Nitto Denko Co., Ltd., product name "No.
  • a waterproof sound-transmitting member was produced in the same manner as in Example 1, except that the waterproof tape 3, the cushion material 3, and the double-sided adhesive waterproof tape 3 were laminated in this order.
  • the thickness of the waterproof sound-transmitting member was 700 ⁇ m.
  • the stress required to compress the double-sided adhesive waterproof tape 1 by 40% was 111 kPa, and the stress required to compress the cushion material 3 by 40% was 2 kPa.
  • the stress required to compress the double-sided adhesive waterproof tape 3 by 40% was 1569 kPa or more.
  • the double-sided adhesive waterproof tape 1 accounted for 35.7% of the total thickness of the waterproof sound-transmitting member, and the cushion material 3 accounted for 57.1% of the total thickness of the waterproof sound-transmitting member, totaling 92.8%.
  • Table 1 shows the results of measuring the sound loss, water pressure resistance, and stress required for 40% compression of the waterproof sound-transmitting member at compression ratios of 0% and 40%.
  • the waterproof sound-permeable membrane is circular with a diameter of 4 mm
  • the support layer is circular with a diameter of 4 mm
  • Nonporous PET; thickness 150 ⁇ m) and double-sided adhesive waterproof tape 5 manufactured by Nitto Denko Corporation, product name “No.
  • a cushioning material 2 manufactured by Inoac Corporation, trade name “PORON SR-S40P”; porous polyurethane resin + PET; thickness 400 ⁇ m
  • a PET film having a thickness of 50 ⁇ m a double-sided adhesive waterproof tape 4
  • a waterproof A waterproof sound-transmitting member was produced in the same manner as in Example 1, except that the sound membrane, the double-sided adhesive waterproof tape 5, the PET film, the double-sided adhesive waterproof tape 5, and the cushion material 2 were laminated in this order.
  • the thickness of the waterproof sound-transmitting member was 730 ⁇ m.
  • the sound-permeable region had an area of 3.8 mm 2 and a degree of circularity of 1, and the area of the support layer was 8.8 mm 2 .
  • the stress required to compress the cushion material 2 by 40% was 1 kPa.
  • the stress required to compress the double-sided adhesive waterproof tape 4, the double-sided adhesive waterproof tape 5, and the PET film having a thickness of 50 ⁇ m by 40% was 1569 kPa or more, respectively.
  • the cushion material 2 occupied 54.8% of the total thickness of the waterproof sound-transmitting member.
  • Table 1 shows the results of measuring the sound loss, water pressure resistance, and stress required for 40% compression of the waterproof sound-transmitting member at compression ratios of 0% and 40%.
  • Example 6 A waterproof sound-transmitting member was produced in the same manner as in Example 5, except that the support layer was circular with a diameter of 6 mm and had a circular opening with a diameter of 2.2 mm at its center. The thickness of the waterproof sound-transmitting member was 730 ⁇ m. The sound-permeable region had an area of 3.8 mm 2 and a degree of circularity of 1, and the area of the support layer was 24.5 mm 2 .
  • the stress required to compress the cushion material 2 by 40% was 1 kPa.
  • the cushion material 2 occupied 54.8% of the total thickness of the waterproof sound-transmitting member.
  • Table 1 shows the results of measuring the sound loss, water pressure resistance, and stress required for 40% compression of the waterproof sound-transmitting member at compression ratios of 0% and 40%.
  • Example 7 In the support layer, double-sided adhesive waterproof tape 4 (manufactured by Nitto Denko Corporation, product name "No.5615”; thickness 150 ⁇ m) and double-sided adhesive waterproof tape 5 (manufactured by Nitto Denko Corporation, product name "No.5605”; thickness 50 ⁇ m) 2 layers, cushion material 4 (manufactured by INOAC Corporation, trade name “PORON SR-S20P”; porous polyurethane + PET; thickness 400 ⁇ m), and a PET film with a thickness of 50 ⁇ m, double-sided adhesive waterproof tape 4,
  • a waterproof sound-permeable member was produced in the same manner as in Example 5, except that the waterproof sound-permeable membrane, the double-sided adhesive waterproof tape 5, the PET film, the double-sided adhesive waterproof tape 5, and the cushion material 4 were laminated in this order.
  • the thickness of the waterproof sound-transmitting member was 730 ⁇ m.
  • the stress required to compress the cushion material 4 by 40% was 0.2 kPa.
  • the cushion material 4 occupied 54.8% of the total thickness of the waterproof sound-transmitting member.
  • Table 1 shows the results of measuring the sound loss, water pressure resistance, and stress required for 40% compression of the waterproof sound-transmitting member at compression ratios of 0% and 40%.
  • Example 8 A waterproof sound-transmitting member was produced in the same manner as in Example 7, except that the support layer was circular with a diameter of 6 mm and had a circular opening with a diameter of 2.2 mm at its center. The thickness of the waterproof sound-transmitting member was 730 ⁇ m. The sound-permeable region had an area of 3.8 mm 2 and a degree of circularity of 1, and the area of the support layer was 24.5 mm 2 .
  • the stress required to compress the cushion material 4 by 40% was 0.2 kPa.
  • the cushion material 4 occupied 54.8% of the total thickness of the waterproof sound-transmitting member.
  • Table 1 shows the results of measuring the sound loss, water pressure resistance, and stress required for 40% compression of the waterproof sound-transmitting member at compression ratios of 0% and 40%.
  • Example 9 In the support layer, double-sided adhesive waterproof tape 1 (manufactured by Sekisui Chemical Co., Ltd., trade name "5225VSB”; thickness 250 ⁇ m) and double-sided adhesive waterproof tape 6 (manufactured by Sekisui Chemical Co., Ltd., trade name "5230VSB”; porous polyethylene
  • a waterproof sound-permeable member was produced in the same manner as in Example 1, except that the double-sided adhesive waterproof tape 1, the waterproof sound-permeable membrane, and the double-sided adhesive waterproof tape 6 were laminated in this order.
  • the thickness of the waterproof sound-transmitting member was 580 ⁇ m.
  • the stress required to compress the double-sided adhesive waterproof tape 6 by 40% was 234 kPa.
  • the stress required to compress the double-sided adhesive waterproof tape 1 by 40% was 111 kPa.
  • the double-sided adhesive waterproof tape 6 accounted for 51.7% of the total thickness of the waterproof sound-transmitting member, and the double-sided adhesive waterproof tape 1 accounted for 43.1% of the total thickness of the waterproof sound-transmitting member, totaling 94.8%. .
  • Table 1 shows the results of measuring the sound loss, water pressure resistance, and stress required for 40% compression of the waterproof sound-transmitting member at compression ratios of 0% and 40%.
  • Double-sided adhesive waterproof tape 7 manufactured by Sekisui Chemical Co., Ltd., trade name "5230SKB”; porous polyethylene; thickness 300 ⁇ m
  • double-sided adhesive waterproof tape 8 manufactured by Sekisui Chemical Co., Ltd., trade name "5225SKB”;
  • a waterproof sound-permeable member was produced in the same manner as in Example 1, except that a double-sided adhesive waterproof tape 7, a waterproof sound-permeable membrane, and a double-sided adhesive waterproof tape 8 were laminated in this order using porous polyethylene (thickness: 250 ⁇ m).
  • the stress required to compress the double-sided adhesive waterproof tape 7 by 40% was 780 kPa.
  • the stress required to compress the double-sided adhesive waterproof tape 8 by 40% was 682 kPa.
  • the thickness of the waterproof sound-transmitting member was 580 ⁇ m.
  • Table 1 shows the results of measuring the sound loss, water pressure resistance, and stress required for 40% compression of the waterproof sound-transmitting member at compression ratios of 0% and 40%. Since the stress required for 40% compression is large, when a waterproof sound-permeable membrane with a low tensile modulus is used and compressed by 40%, the acoustic loss increases, making it unsuitable for use in compression.
  • Double-sided adhesive waterproof tape 7 (manufactured by Sekisui Chemical Co., Ltd., trade name “5230SKB”; porous polyethylene; thickness 300 ⁇ m) was used as the support layer, and two layers of double-sided adhesive waterproof tape 7, waterproof sound-permeable membrane, and double-sided adhesive waterproof tape were used.
  • a waterproof sound-transmitting member was produced in the same manner as in Example 1, except that the tapes 7 were laminated in order.
  • the stress required to compress the double-sided adhesive waterproof tape 7 by 40% was 780 kPa.
  • the thickness of the waterproof sound-transmitting member was 630 ⁇ m.
  • Table 1 shows the results of measuring the sound loss, water pressure resistance, and stress required for 40% compression of the waterproof sound-transmitting member at compression ratios of 0% and 40%. Since the stress required for 40% compression is large, when a waterproof sound-permeable membrane with a low tensile modulus is used and compressed by 40%, the acoustic loss increases, making it unsuitable for use in compression.
  • Double-sided adhesive waterproof tape 1 manufactured by Sekisui Chemical Co., Ltd., trade name “5225VSB” (porous polyethylene: thickness 250 ⁇ m)
  • Double-sided adhesive waterproof tape 2 manufactured by Sekisui Chemical Co., Ltd., trade name “5240VSB” (porous polyethylene: thickness 400 ⁇ m)
  • Double-sided adhesive waterproof tape 3 manufactured by Nitto Denko Corporation, trade name “No. 5601” (nonporous PET film: thickness 10 ⁇ m)
  • Double-sided adhesive waterproof tape 4 manufactured by Nitto Denko Corporation, trade name “No. 5615” (nonporous PET film: thickness 150 ⁇ m)
  • Double-sided adhesive waterproof tape 5 manufactured by Nitto Denko Corporation, trade name "No. 5605” (nonporous PET film: thickness 50 ⁇ m)
  • Double-sided adhesive waterproof tape 6 manufactured by Sekisui Chemical Co., Ltd., trade name “5230VSB” (porous polyethylene: thickness 300 ⁇ m)
  • Double-sided adhesive waterproof tape 7 manufactured by Sekisui Chemical Co., Ltd., trade name “5230SKB” (porous polyethylene: thickness 300 ⁇ m)
  • Double-sided adhesive waterproof tape 8 manufactured by Sekisui Chemical Co., Ltd., trade name “5225SKB” (porous polyethylene: thickness 250 ⁇ m)
  • ⁇ Cushion material 1 manufactured by INOAC Corporation, trade name “PORON SR-S15P” (porous polyurethane resin 450 ⁇ m + nonporous PET 50 ⁇ m: total thickness 500 ⁇ m)
  • ⁇ Cushion material 2 manufactured by INOAC Corporation, trade name “PORON SR-S40P (porous polyurethane resin 350 ⁇ m + nonporous PET 50 ⁇ m: total thickness 400 ⁇ m)
  • ⁇ Cushion material 3 manufactured by Iwatani Corporation, trade name “ISR-ACF-TH (porous acrylic resin; thickness 400 ⁇ m)
  • Cushion material 4 manufactured by INOAC Corporation, trade name “PORON SR-S20P (porous polyurethane resin 350 ⁇ m + nonporous PET 50 ⁇ m: total thickness 400 ⁇ m)
  • the double-sided adhesive waterproof tapes 1, 2, 6 and the cushioning materials 1, 2, 3, 4 correspond to the "sheet having a stress of 600 kPa or less required to compress vertically by 40%" of the present invention.
  • the double-sided adhesive waterproof tapes 3, 4, 5 correspond to spacer layers.
  • the waterproof sound-permeable member according to the present invention has high waterproofness, and even if it is compressed to prevent sound interference in the housing, it has low acoustic loss and does not impair the acoustic characteristics of microphones and speakers. Therefore, the waterproof sound-transmitting member of the present invention can be suitably used for waterproof protection of microphones and speakers of electrical products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】高い防水性を有するとともに、筐体内の音の干渉を防ぐために圧縮して使用しても、音響損失が低くマイクやスピーカーの音響特性を損なわない、電気製品のマイクやスピーカーの防水保護に好適に用いることができる防水通音部材を提供する。 【解決手段】防水通音膜の少なくとも片面に支持層を積層し、防水通音膜が両面とも露出した通音領域を設け、防水通音部材の膜面に対して垂直方向に40%圧縮するのに必要な応力が1~600kPaである防水通音部材とする。 

Description

防水通音部材
 本発明は、筐体組み込み時の圧縮で音響損失が増加しにくい防水通音部材に関する。
 携帯電話機、スマートフォン、スマートウォッチ、コードレス電話、ポータブルメディアプレーヤー、ポータブルゲーム機器、デジタルカメラ、デジタルビデオカメラ、イヤホンなどの電気・電子製品(以下、単に「電気製品」というが、電子製品も含まれる概念で使用する。)は、その筺体構造にマイクやスピーカーなどの受音部や発音部を持ち、それぞれに対応する位置に開口が設けられ、この開口を介して音の伝達が行われる。
 スマートフォンの普及に代表されるように、これら電気製品はしばしば屋外環境や、家庭内での水回り環境下で使用される場面が増えており、防水構造とすることが望まれている。例えばスマートフォンにおいては防水機能を備えた商品が一般的になりつつある。
 従来、前記発音部および受音部における開口部には、筐体内部への水の浸入を防ぎつつ音響損失が小さい防水通音部材が取り付けられている。防水通音部材は、防水通音膜とその周縁部に積層された支持層からなっており、防水通音膜が露出した通音領域を有する。
 支持層によって部材の形状維持や筐体との接合がなされ、通音領域の防水通音膜を通して音が透過する。防水通音部材は、筐体との界面からの浸水や音漏れを抑制する目的で、圧縮状態で電気製品に組み込まれて使用されることがある。
 防水通音膜に柔らかい素材を用いることや、目付を軽くすることで防水通音部材の音響損失は小さくなる。目付を軽くするには、比重の軽い素材を選定することや、多孔構造にすることが効果的である。しかしながら、素材が柔らかく、多孔構造の防水通音膜は、圧縮によって変形しやすい。
 ポリウレタンのような柔らかい素材を用いることで音響損失を小さくした防水通音膜が特許文献1に開示されている。防水通音膜にシリコーンゴムのような柔らかい素材を用いることで、水圧がかかった後に常圧に戻した際に、音響損失が増加しない防水通音部材が特許文献2に開示されている。防水通音部材中の支持層にポリオレフィン系樹脂発泡体を用いることで、透過した音のゆがみを低減した防水通音部材が特許文献3に開示されている。
WO2015/105052 特開2014-7738号公報 特開2015-142282号公報
 素材が柔らかく多孔構造の防水通音膜は、音響損失が小さいが、外力によって変形しやすい。そのような防水通音膜を防水通音部材に用いると、筐体に圧縮して組み込まれた際に歪みが生じて音響損失が増加する。
 特許文献1に開示されている柔らかい素材の防水通音膜を用いた防水通音部材は、圧縮率が高い筐体への組み込みには適さない。
 特許文献2に開示されている柔らかい素材の防水通音膜を用いた防水通音部材は、水圧で防水通音膜が歪んだ後に、常圧に戻ると歪みが解消して音響損失が元に戻る。しかしながら、防水通音部材を圧縮して組み込み、防水通音膜に常時圧力がかかる構成での音響損失については考慮されていない。
 特許文献3に開示されている、支持層に発泡体を用いる防水通音部材では、支持層の干渉による音の歪みを低減している。支持層の損失弾性率や損失弾性係数といった動的粘弾性に着目されているが、柔軟性は考慮されていない。防水通音部材を圧縮して組み込んだときの防水通音膜の歪みに関しても考慮されていない。
 本発明は、高い圧縮率で使用可能な防水通音部材を提供することを目的とする。特に、音響損失が小さい柔らかい素材の防水通音膜を使用しても筐体に圧縮して組み込むことができ、全体として音響損失を低く抑えることを可能にした防水通音部材を提供することを目的とする。
 本発明者らは、鋭意検討した結果、防水通音膜と支持層との組み合わせを工夫し、防水通音部材の膜面に対して垂直方向に40%圧縮するのに必要な応力が1~600kPaとなるようにすることで、高い圧縮率での使用において音響損失を小さくすることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下に示す防水通音部材に関する。
(1)防水通音膜の少なくとも片面に支持層が積層された防水通音部材であって、防水通音膜が両面とも露出した通音領域があり、前記防水通音膜の膜面に対して垂直方向に40%圧縮するのに必要な応力が1~600kPaであることを特徴とする、防水通音部材。
(2)防水通音膜の両面に支持層が積層されていることを特徴とする、(1)記載の防水通音部材。
(3)支持層が単層又は複数層で構成されており、少なくとも垂直方向に40%圧縮するのに必要な応力が600kPa以下のシートを用いた層を含む、(1)又は(2)記載の防水通音部材。
(4)前記垂直方向に40%圧縮するのに必要な応力が600kPa以下のシートが、合成樹脂多孔質材料からなるシート層を含む、(3)記載の防水通音部材。
(5)前記合成樹脂多孔質材料が、ポリオレフィン系樹脂、ポリウレタン樹脂及びアクリル樹脂からなる群から選択される合成樹脂の多孔質材料であることを特徴とする、(4)記載の防水通音部材。
(6)支持層を構成する層のうち、前記垂直方向に40%圧縮するのに必要な応力が600kPa以下のシートを用いた層が、防水通音部材全体の厚みの40%以上を占める、(3)~(5)のいずれかに記載の防水通音部材。
(7)防水通音膜の引張弾性率が0.5~20MPaであることを特徴とする、(1)~(6)のいずれかに記載の防水通音部材。
(8)防水通音膜が、100%モジュラスが1~20MPaの素材を含有することを特徴とする、(1)~(7)のいずれかに記載の防水通音部材。
(9)防水通音膜がポリウレタン樹脂からなることを特徴とする、(1)~(8)のいずれかに記載の防水通音部材。
(10)防水通音膜の少なくとも片面に積層された支持層の面積が1~50mmであることを特徴とする、(1)~(9)のいずれかに記載の防水通音部材。
(11)通音領域の平面形状が、角を有さず、円形度が0.45~1であることを特徴とする、(1)~(10)のいずれかに記載の防水通音部材。
(12)通音領域の面積が0.5~40mmであることを特徴とする、(1)~(11)のいずれかに記載の防水通音部材。
(13)防水通音膜の周縁部に支持層が積層されていることを特徴とする、(1)~(12)のいずれかに記載の防水通音部材。
 防水通音膜と支持層とを有する防水通音部材は、筐体に組み込まれる際にその厚み方向(防水通音膜の膜面に対して垂直方向)に圧縮される。圧縮によってかかる力は、支持層を通じて防水通音膜にかかる。防水通音膜に過度な力がかかると歪みが生じ、入射した音による振動が阻害されて音響損失が増大する。
 本発明によれば、防水通音部材の膜面に対して垂直方向に40%圧縮するのに必要な応力を600kPa以下とすることにより、防水通音部材を高い圧縮率で筐体に組み込んだ際に防水通音膜にかかる力を低減して音響損失を小さくすることができる。このような技術的効果は、支持層の素材、膜の素材、部材の形状などを、最適に組み合わせることによってより確実に実現することができる。
 すなわち、防水通音膜として比較的引張弾性率の低い変形し易い膜を採用し、支持層もそれに合わせてある程度の厚みを有し圧縮応力の小さい材質を組み合わせることで、筐体に組み込んだ際の圧縮による音響損失の増大を防ぐことができる。
本発明の防水通音部材の構成の一例の断面図である。 本発明の防水通音部材の構成の一例の平面図である。 音響測定装置の概略図である。 圧縮試験の概略図である。
 本発明に係る防水通音部材は、防水通音膜の少なくとも一方側の面に支持層が積層された防水通音部材であって、防水通音膜が両面とも露出した通音領域があり、防水通音部材の膜面に対して垂直方向に40%圧縮するのに必要な応力が1~600kPaであることを特徴とする。
 図1に本発明の防水通音部材の構成の一例を示す。図1によれば、本発明の防水通音部材1は、防水通音膜2の両面に支持層3が、通音領域4の周縁に配置するよう積層されている。
1.防水通音部材
(1)構成
 本発明の防水通音部材は、防水通音膜と支持層とを含み、支持層は防水通音膜の少なくとも一方の面の、少なくとも一部に積層されている。さらに、支持層が積層されておらず防水通音膜が両面とも露出した領域(=通音領域)を有する。
 本発明の防水通音部材においては、この通音領域を通して音が透過する。入射した音は、防水通音膜を振動させて反対面に透過する。すなわち、本発明の防水通音部材では、防水通音膜の通音領域以外の部分に支持層が積層されている。
(2)圧縮応力
 防水通音部材は、防水通音膜の膜面に対して垂直方向(部材の厚み方向)に圧縮されて筐体に組み込まれる。圧縮によってかかる力は、支持層を通じて防水通音膜にかかる。防水通音膜に過度な力がかかると、歪みが生じて入射した音による振動が阻害されて音響損失が増大する。
 防水通音部材を高い圧縮率で筐体に組み込んだ際に防水通音膜にかかる力を低減して音響損失を小さくするには、防水通音膜の膜面に対して垂直方向に防水通音部材が40%圧縮するのに必要な応力が600kPa以下であることが必要であり、400kPa以下であることが好ましく、300kPa以下であることがさらに好ましい。
 一方で、防水通音部材を筐体に押し付けて固定することで、防水通音膜の振動によるエネルギーの散逸が抑制されて音響損失が小さくなるため、防水通音膜の膜面に対して垂直方向に防水通音部材が40%圧縮するのに必要な応力が1kPa以上である必要があり、20kPa以上であることが好ましく、40kPa以上であることがさらに好ましい。
 本発明における圧縮応力の測定方法の概略を図4に示す。図4中、1は防水通音部材、17は平行板、18は圧縮方向である。
 一般に圧縮試験は、圧縮試験機で2枚の平行板に試験片をはさみ、荷重を加えて応力を求める。本発明では、平行板面が防水通音膜の膜面に対して平行になるように試験片(防水通音部材)を平行板で挟み込む。その際、防水通音部材の支持層が防水通音膜の両面に設けられている場合は、両面の支持層が平行板と接するように設置される。一方、防水通音部材の支持層が防水通音膜の片面にのみ設けられている場合は、防水通音膜と支持層がそれぞれ平行板と接するように設置される。
 そして、防水通音膜の膜面に対して垂直方向に圧縮力が加わるように、平行板を防水通音膜の膜面に対して垂直方向に移動させて2枚の平行板の間隔を狭め、防水通音部材に圧縮力を加える。
 本発明の「40%圧縮するのに必要な応力」は、防水通音部材の厚み(支持層と防水通音膜の厚みの合計)を100%とし、その厚みの40%を圧縮したとき(圧縮後の厚みが圧縮前の厚みの60%に圧縮されたとき)の応力を計測し、支持層の面積で除することで算出することができる。
 なお、支持層の面積とは、支持層が単層の場合及び複数の支持層が積層されてその形状が一定の場合、支持層が圧縮試験機の平行板と接触する部分の面積をいう。ただし、複数の支持層が積層されてその形状が一定でない場合においては、圧縮したときに力がかかる部分である、鉛直方向(防水通音膜の膜面に対して垂直の方向あるいは圧縮方向)にみて複数の支持層が最も重なりあっている部分の面積で計算する。
 例えば、支持層の最外層(平行板と接触する層)の面積が大きく、内層に小さい面積を積層した場合、応力は、鉛直方向に重なっている内層の面積にかかるため、支持層の面積は内層の面積となる。一方、支持層の最外層の面積が小さく、内層に大きい面積を積層した場合、応力は最外層の面積にかかるため、支持層の面積は最外層の面積となる。
2.防水通音膜
(1)膜の物性
 本発明の防水通音部材に用いられる防水通音膜は、音の通過を許容し水の通過を遮断する膜であり、少なくとも一部に通音領域を有する。防水通音膜は柔軟なほど振動しやすく、音響損失が小さくなる。防水通音膜においては、その柔らかさの指標である引張弾性率が、20MPa以下であることが好ましく、10MPa以下であることがより好ましい。
 一方で、防水通音部材の圧縮による歪みを低減して音響損失を小さくするために防水通音膜の引張弾性率は0.5MPa以上であることが好ましく、2MPa以上であることがより好ましい。
 防水通音膜の引張弾性率を小さくするには、柔らかい素材を用いることが効果的である。素材の柔らかさの指標である100%モジュラスが1~20MPaであることが好ましい。素材の100%モジュラスは、防水通音膜を構成する材料そのものの物性であり、多孔構造などの影響を受けない。本発明の100%モジュラスは、防水通音膜を溶媒に溶解した後に乾燥するなどして得られる無孔膜で測定した値である。
 また、本発明の防水通音膜は、JIS L 1092 B法(高水圧法)による耐水圧が10~400kPaであることが好ましく、30~400kPaであることがより好ましい。耐水圧が10~400kPaの範囲であると、高い通音性と防水性が得られる。
 防水通音膜の破断伸度は100~500%であることが好ましく、さらに好ましくは150~400%、特に好ましくは80~260%である。破断伸度が100~500%であれば、良好な通音性と、十分な防水性を保持することができる。
 防水通音膜の通気度は、JIS L 1096ガーレ法において3~500秒/100mLであることが好ましく、3~300秒/100mLであることがより好ましい。通気度が3~500秒/100mLであれば、良好な通音性を持つことができる。
 また、本発明の防水通音膜は、周波数1kHzの音響損失が10dB未満、周波数2kHzの音響損失が5dB未満、周波数5kHzの音響損失が5dB未満となる通音性を有する。
(2)膜の材料
 本発明で用いられる防水通音膜を構成する材料は特に限定されるものではないが、上述したように比較的柔らかい素材が好ましく、より好ましくは上記100%モジュラスの範囲(1~20MPa)を満たす柔らかい合成樹脂を用いる。
 具体的には、ポリウレタン樹脂やシリコーンゴムなどのエラストマーを用いることが好ましい。また、防水通音膜は、多孔質膜とすることでより柔らかくなるため、多孔質であることが好ましい。構造を制御しやすい点で、ポリウレタン樹脂多孔質膜を用いることがより好ましい。
 ポリウレタン樹脂としては、ポリエステル系ポリウレタン、ポリエーテル系ポリウレタン、ポリカーボネート系ポリウレタン等が挙げられる。これらの中から少なくとも1種を用いることが好ましく、また2種以上を混合して用いてもよい。
 ここでポリウレタン樹脂とは、イソシアネート成分とポリオール成分とを重合反応させて得られる樹脂である。
 イソシアネート成分としては、脂肪族系ジイソシアネート、芳香族系ジイソシアネート、脂環族系ジイソシアネートなどが挙げられ、単独または2種以上で用いられる。脂肪族系ジイソシアネートの具体例としては、1,6-ヘキサメチレンジイソシアネート等が挙げられる。芳香族系ジイソシアネートとしては、キシリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート等が挙げられる。脂環族系ジイソシアネートとしては、1,4-シクロヘキサンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等が挙げられる。また、必要に応じて、3官能以上のイソシアネートを使用してもよい。
 一方、ポリオール成分としては、ポリエチレンアジペート、ポリブチレンアジペート、ポリカプロラクトンポリオール等を用いてなるポリエステルポリオール; ポリヘキサメチレンカーボネート等を用いてなるポリカーボネートポリオール; ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等を用いてなるポリエーテルポリオールなどが挙げられる。これらはいずれか1種または2種以上を組み合わせて用いることができる。
 また、前記ポリウレタン樹脂には、必要に応じ、各種添加剤を添加してもよい。添加剤としては、例えば、撥水剤、架橋剤、無機微粒子、可塑剤、酸化防止剤、紫外線吸収剤、アミドワックス等の平滑剤、加水分解防止剤、顔料、黄変防止剤、およびマット剤などが挙げられる。
 合成樹脂の多孔質膜としては、合成樹脂と水に可溶な極性有機溶剤を含む合成樹脂溶液を水中で凝固させてなる多孔質膜であることが好ましい。かかる多孔質膜を製造する方法としては、前述したポリウレタン樹脂を例にすると、ポリウレタン樹脂と無機微粒子と極性有機溶剤とを含んでなるポリウレタン樹脂溶液を、適当な離型性基材の片面に塗布した後、塗布されたポリウレタン樹脂溶液を水中に浸漬してポリウレタン樹脂を凝固させることにより製造する方法が挙げられる。
 ここで、ポリウレタン樹脂溶液は、表面が疎水化された無機微粒子を含むことができる。表面が疎水化された無機微粒子は極性有機溶剤との親和性が高いため、溶液中、表面が疎水化された無機微粒子の周囲を極性有機溶剤が取り囲むような状態で存在し、局所的に極性有機溶剤の濃度が高くなっている。そのため、ポリウレタン樹脂溶液を水中に浸漬してポリウレタン樹脂を凝固させる工程において、表面が疎水化された無機微粒子の周囲で空孔が形成される。こうして、ポリウレタン樹脂からなる多孔質膜を効率よく形成させることが可能となる。
 前記無機微粒子としては、例えば、炭酸カルシウム、炭酸マグネシウムなどの炭酸塩;二酸化ケイ素、珪藻土などの珪酸; タルク、ゼオライトなどの珪酸塩; 水酸化アルミニウム、水酸化マグネシウムなどの水酸化物;硫酸バリウム、硫酸カルシウムなどの硫酸塩; 硼酸アルミニウム、硼酸亜鉛などの硼酸塩; チタン酸カリウムなどのチタン酸塩; 酸化亜鉛、酸化チタンなどの金属酸化物; カーボンブラックなどの炭素物などの微粒子を挙げることができる。
 これらの無機微粒子は多孔質または無孔質のいずれであってもよい。また、無機微粒子の形状は、多角形状、針状、球状、立方体状、紡錘状、板状などの定形状、あるいは不定形状など、特に限定されない。上記の無機微粒子は1種単独で、または2種以上組み合わせて用いることができる。なかでも、N,N-ジメチルホルムアミド等の極性有機溶媒の吸着量が多く、微細孔を形成しやすいという理由から、炭酸カルシウム微粒子または二酸化ケイ素微粒子が好ましい。
 前記無機微粒子の含有量は、その種類によって異なるため一概にはいえないが、通常、ポリウレタン樹脂溶液の全固形分に対し1~75質量%であることが好ましい。含有量が1質量%以上であることにより十分な多孔性が得られる。含有量が75質量%以下であることにより、得られる微多孔質膜の強度、特には引張強度を維持し、十分な防水性が得られる。無機微粒子の含有量は、ポリウレタン樹脂溶液の全固形分に対して3~40質量%であることが好ましい。
 極性有機溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
 好ましい実施形態にかかる防水通音膜は、例えば、ポリウレタン樹脂主体の合成樹脂と、全固形分に対し1~75質量%の無機微粒子と、極性有機溶剤と、を含んでなるポリウレタン樹脂溶液を、離型性基材に塗布することにより製造することができる。
 ポリウレタン樹脂溶液を離型性基材に塗布する方法としては、例えば、フローティングナイフコータ、ロールオンナイフコータ、コンマコータ、リバースコータ、リップコータ、ロールコータ、ダイコータなどを用いた方法を挙げることができる。
 ポリウレタン樹脂溶液の塗布量は、固形分量として、10~200g/mであることが好ましく、10~750g/mであることがより好ましい。塗布量をこの範囲に設定することにより、10~150μmの厚みを有する多孔質膜が得られる。すなわち、本発明の防水通音膜は、厚みが好ましくは10~150μmであり、より好ましくは15~80μmである。
 ポリウレタン樹脂溶液を離型性基材に塗布する工程に次いで、ポリウレタン樹脂溶液を10~40℃の水中に浸漬する。この過程で、ポリウレタン樹脂溶液の内部に水が浸入するとともに、ポリウレタン樹脂溶液に含まれる極性有機溶剤がほぼ完全に水と置き換わることによって、ポリウレタン樹脂が凝固する。
 水中の浸漬時間は、30秒間~10分間であることが好ましく、1~5分間であることがより好ましい。浸漬時間が30秒間未満であると、ポリウレタン樹脂の凝固が不完全となり、十分な空孔が形成されず防水性や通音性が得られないおそれがある。浸漬時間が10分間を超えると、生産性が低下する。
 次いで、30~80℃の温水中で3~15分間洗浄して、残留する極性有機溶剤を除去した後、50~150℃で1~10分間熱処理して乾燥する。その後、離型性基材を除去して、ポリウレタン樹脂からなる多孔質膜が形成される。
 上述したポリウレタン樹脂多孔質膜の製造方法は、ポリウレタン樹脂以外の合成樹脂に対して適用することもできる。本発明では、柔軟性と多孔構造のできやすさからポリウレタン樹脂が適しているが、他の合成樹脂でも同様の方法で多孔質膜を製造し使用することができる。
 かくして得られた多孔質膜は、後処理として撥水加工が施されてもよい。これにより、防水性をよりいっそう向上させることができる。撥水加工に用いられる撥水剤としては、パラフィン系撥水剤、シリコーン系撥水剤、およびフッ素系撥水剤などを挙げることができる。なかでも、高い撥水性を付与することができるという点で、フッ素系撥水剤が好ましい。撥水加工は、パディング法、またはスプレー法などの常法に従い施すことができる。
 本発明で用いられる防水通音膜は、上述したポリウレタン樹脂多孔質膜などの合成樹脂多孔質膜の他に、ゴム状弾性体(熱硬化性エラストマー(ゴム系))であってもよい。ゴム状弾性体は、ゴム状弾性を有する材料であれば特に限定されないが、例えばシリコーンゴム、エチレン・プロピレン・ジエンゴム(EPDM)、アクリルゴム及び天然ゴム等が挙げられる。なかでも、耐熱性及び耐薬品性等の優れた特性を有するシリコーンゴムが、望ましく用いられる。
(3)膜の厚み
 本発明で用いられる防水通音膜は、厚みが好ましくは10~150μmであり、より好ましくは15~80μmである。膜が厚すぎると通音性が低くなるとともに、内蔵スペースの制約が大きい小型電気製品に使用できなくなり、薄すぎると強度が低下して破損しやすくなる場合がある。
2.支持層
(1)支持層の構成
 支持層は、防水機能のほか、防水通音部材を筐体へ支持・固定したり、防水通音部材の取り扱い性を向上させたりする機能を有する。また、支持層によって筐体へ組み込んだときの圧縮圧力を吸収させたり、膜の補強・形状安定などを図ったりすることができる。
 支持層は防水通音膜の少なくとも一方の面に積層されており、片面のみに積層されていても両面に積層されていてもよい。また、支持層は防水通音膜の膜面全体ではなく一部に積層されている。
 好ましくは、支持層は防水通音膜の両面に積層されている。支持層が防水通音膜の両面に積層されていると、防水通音部材を筐体に組み込むときに防水通音膜が直接筐体と接触しないようにすることができるため、傷や変形による欠点が発生しにくくなる。
 防水通音部材の膜面に対して垂直方向に40%圧縮するのに必要な応力を1~600kPaと小さくするには、支持層のすくなくとも一部に柔らかい材料を用いることが有効である。
 支持層を構成する層は単層でもよく複数の層が積層されていてもよいが、支持層を構成する層の少なくとも一部に(あるいは全体として)、垂直方向に40%圧縮するのに必要な応力が600kPa以下のシートを用いた層を含むことが好ましく、300kPa以下のシートを用いた層を含むことがより好ましい。
 支持層としてこのような圧縮応力の小さいシートを用いた層を含み、比較的引張弾性率が低く変形しやすい防水通音膜と組み合わせることにより、機器に組み込んだ際の圧縮による音響損失の増大を格段に抑えることができる。なお、支持層を構成する層における「垂直方向」とは、当該層の厚み方向あるいは防水通音膜と積層したときに防水通音膜の膜面に対して垂直となる方向をいう。
 支持層が単層の場合、その層は、垂直方向に40%圧縮するのに必要な応力が600kPa以下のシートを用いた層であることが好ましく、より好ましくは垂直方向に40%圧縮するのに必要な応力が300kPa以下のシートを用いた層である。
 支持層が複数層からなる場合、その支持層を構成する層の少なくとも一層は、垂直方向に40%圧縮するのに必要な応力が600kPa以下のシートを用いた層であることが好ましく、より好ましくは垂直方向に40%圧縮するのに必要な応力が300kPa以下のシートを用いた層である。
 支持層が複数層からなる場合、層構成について特に制限はないが、上記垂直方向に40%圧縮するのに必要な応力が600kPa以下のシート(以下、「圧縮応力600kPa以下のシート」とする)を用いた層として、異なる樹脂種や上記範囲内で異なる圧縮応力を有するシートを用いた層を複数層積層してもよい。
 また、それに加えて、垂直方向に40%圧縮するのに必要な応力が600kPaを超える硬いシートを用いた層(使用時の圧縮ではほとんど変形しない層)を、スペーサー層として設けることもできる。
(2)圧縮応力600kPa以下のシートを用いた層
 圧縮応力600kPa以下のシートは、好ましくは合成樹脂材料から構成される。合成樹脂としては、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリアクリル系樹脂、ポリエステル系樹脂などが挙げられる。
 ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリ酢酸ビニル等が挙げられる。ポリウレタン系樹脂としては、ポリエステル系ポリウレタン、ポリエーテル系ポリウレタン、ポリカーボネート系ポリウレタン等が挙げられる。
 ポリアクリル系樹脂としては、ポリアクリル酸エステル、ポリメタクリル酸エステル等が挙げられる。ポリエステル系樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテエレフタレート等が挙げられる。
 その他にポリ塩化ビニル、アクリルゴム、シリコーンゴム等が挙げられる。好ましくは、ポリオレフィン系樹脂、ポリアクリル系樹脂及びポリウレタン樹脂からなる群から選択される合成樹脂が用いられる。
 合成樹脂材料は多孔質でも無孔質でもよいが、垂直方向に40%圧縮するのに必要な応力を600kPa以下とするには、多孔質の合成樹脂材料で構成されるシート層(シートを構成する層)を主体としたシートとするのが好ましい。合成樹脂多孔質材料としては、ポリエチレン、ポリプロピレン等のポリオレフィン系多孔質材、ポリウレタン系多孔質材、アクリル樹脂系多孔質材などが挙げられる。
 前記合成樹脂多孔質材料で構成されるシート層を主体とするシートとしては、合成樹脂多孔質材料で構成されるシート層のみからなるものであっても、合成樹脂多孔質材料を主体とし、それ以外のシート層を含むものであってもよい。合成樹脂多孔質材料以外の材料からなるシート層としては、例えば無孔質のポリエステル系樹脂材料などの無孔質の合成樹脂材料からなるシート層(補助層)が挙げられる。
 補助層の厚みは特に制限されないが、当該シート全体として垂直方向に40%圧縮するのに必要な応力が600kPa以下となるようにすることが好ましく、そのため、シート全体の厚みに対する合成樹脂多孔質材料からなるシート層の厚みは、好ましくは50%以上、より好ましくは70%以上、特に好ましくは80%以上とする。
 圧縮応力600kPa以下のシートは、その少なくとも片面に粘着剤層が設けられていてもよい。粘着剤層を設けるのは当該シートの片面のみであっても両面であっても良い。粘着剤層は、例えば粘着剤を塗布することによって形成することができる。粘着剤としては、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤等が挙げられる。
 粘着剤層の厚みは特に制限されないが、当該シート全体として垂直方向に40%圧縮するのに必要な応力が600kPa以下となるようにすることが好ましく、そのため、シート全体の厚みに対する合成樹脂多孔質材料からなるシート層の厚みが、好ましくは50%以上、より好ましくは70%以上、特に好ましくは80%以上となるようにする。
 上記補助層及び粘着剤層をともに設ける場合も、当該シート全体として垂直方向に40%圧縮するのに必要な応力が600kPa以下となるようにすることが好ましく、シート全体の厚みに対する合成樹脂多孔質材料からなるシート層の厚みが、好ましくは50%以上、より好ましくは70%以上、特に好ましくは80%以上となるようにする。
 粘着剤層を設けた圧縮応力600kPa以下のシートを用いた層(防水粘着層)として好ましくは、合成樹脂多孔質材からなる芯材の片面又は両面に粘着剤を塗布してなる粘着防水テープが挙げられる。好ましくは、合成樹脂多孔質材からなる芯材の両面に粘着剤を塗布してなる両面粘着防水テープが用いられる。かかる防水粘着層は、防水通音膜と支持層との界面、支持層内の各シートを用いた層の界面、支持層と筐体の界面などにおける防水機能や粘着機能を有する。
 圧縮応力600kPa以下のシートには粘着剤層が設けられていなくてもよい。粘着剤層を有しない圧縮応力600kPa以下のシートを用いた層(クッション層)は、当該クッション層を圧縮させてその反発力で筐体に固定し、筐体と防水通音部材との境界の防水性を高めるのに用いることができる。クッション層は支持層の最外層とすることもできる。
 圧縮応力600kPa以下のシートの厚みは特に制限されないが、好ましくは10μm以上、より好ましくは30μm以上、さらに好ましくは100μm以上、特に好ましくは150μm以上の厚みを有する。厚みの上限も特に制限されないが、好ましくは3000μm以下、より好ましくは1500μm以下、さらに好ましくは600μm以下、特に好ましくは400μm以下の厚みを有する。
 圧縮応力600kPa以下のシートの物性はおおむね樹脂種によらないが、圧縮応力600kPa以下のシートがポリオレフィン系樹脂多孔質材からなるシート層を主体とする場合、垂直方向に40%圧縮するのに必要な応力は、より好ましくは50~300kPa、さらに好ましくは80~250kPaである。
 圧縮応力600kPa以下のシートがポリウレタン系樹脂多孔質材又はポリアクリル系樹脂多孔質材からなるシート層を主体とする場合、垂直方向に40%圧縮するのに必要な応力は、より好ましくは0.1~100kPa、さらに好ましくは0.1~30kPa、特に好ましくは0.1~10kPaである。支持層を構成する際には、必要に応じて様々な樹脂種の層を組み合わせることが好ましい。
 圧縮応力600kPa以下のシートとしてより具体的には、ポリオレフィン系樹脂多孔質材からなるシート層を主体とし、両面に粘着剤層を設けたシートが挙げられる。あるいは、ポリウレタン系樹脂多孔質材又はポリアクリル系樹脂多孔質材からなるシート層を主体とし、無孔質PET層を補助層として含むシートが挙げられる。
(3)スペーサー層
 支持層の一部には、高い圧縮応力を示す硬いシートを用いた層を、スペーサー層として設けることができる。スペーサー層は、無孔質の合成樹脂により形成されることが好ましく、具体的には無孔質ポリエチレンテレフタレート(PET)等のポリエステルフィルムが挙げられる。
 スペーサー層は、防水通音部材の総厚の調整と構造の支持による安定化(防水通音部材が圧縮されて使用されるときに変形せずに厚みなどを維持すること)などの役割が期待されている。スペーサー層には粘着剤層が設けられていてもいなくてもよい。例えば、その片面又は両面に粘着剤を塗布してなる粘着防水テープ、あるいは粘着剤が塗布されていないPETフィルムを用いることができる。
 スペーサー層は使用時の圧縮ではほとんど変形しない硬い層であり厚みを40%圧縮すること自体が容易でなく、少なくとも垂直方向に40%圧縮するのに必要な応力が600kPaを超える範囲であることは確実であるものの必ずしも明確ではないが、少なくとも当該圧縮応力が1MPa以上であることが好ましく、さらに好ましくは10MPa以上、特に好ましくは100MPa以上である。
 スペーサー層一層の厚みは特に制限されないが、好ましくは5~200μm、より好ましくは5~150μmである。スペーサー層が支持層内に複数層含まれる場合、その合計厚みは好ましくは10~300μm、より好ましくは20~250μmである。
(4)支持層の構造
 (i)層構成
 支持層は防水通音膜の少なくとも一方の面に積層されており、防水通音部材の筐体への固定や、取り扱い性を向上させる機能を有する。支持層は防水通音膜の片面のみに積層されていても両面に積層されていてもよい。
 好ましくは、支持層は防水通音膜の両面に積層されている。支持層が防水通音膜の両面に積層されていると、防水通音部材を筐体に組みこむときに防水通音膜が直接筐体と接触しないようにすることができるため、傷や変形による欠点が発生しにくくなる。
 防水通音膜の片面のみに支持層がある場合、支持層は単層でも複数層であっても良い。
 防水通音膜の両面に支持層がある場合、一方の面を単層とし、もう一方の面も単層とすることができる。この場合、両者は同じ層であっても異なる種類の材料からなる異なる層であってもよい。
 防水通音膜の両面に支持層がある場合、一方の面を単層とし、もう一方の面を複数層とすることができる。また、両面の支持層を複数層とすることもできる。
 支持層が単層の場合、該支持層は圧縮応力600kPa以下のシートを用いた層からなり、防水通音膜に積層されているのが好ましい。支持層が複数層の場合、少なくとも一層が圧縮応力600kPa以下のシートを用いた層であるようにするのが好ましい。これにより防水通音膜と支持層の境界の防水性を高めることができる。
 柔らかい素材からなる圧縮応力600kPa以下のシートを用いた層は防水通音部材全体の40%圧縮応力を抑制し、高い圧縮率で筐体に組み込んだ際に防水通音膜にかかる力を低減して音響損失を小さくする役割を果たすことができる。
 支持層が複数層の場合、上述したとおり、少なくとも一層が圧縮応力600kPa以下のシートを用いた層であるようにすることが好ましい。圧縮応力600kPa以下のシートを用いた層として好ましくは、上述した合成樹脂多孔質材からなるシート層を主体として含むシートを用いることができる。
 より具体的には、圧縮応力600kPa以下のシートとして、例えばポリオレフィン系樹脂多孔質材からなるシート層を主体とし好ましくは圧縮応力50~300kPa程度を有するシート、あるいはポリウレタン系樹脂多孔質材やポリアクリル系樹脂多孔質材からなるシート層を主体とし好ましくは圧縮応力0.1~100kPa程度を有するシートを用いることができる。あるいは、粘着剤層を有する防水粘着層、及び/又は、粘着剤層を有しないクッション層を用いることができる。
 これらの粘着剤層を有する層、粘着剤層を有しない層、あるいは圧縮応力が異なる種々の層を組み合わせて、あるいはさらに適宜スペーサー層を用い、所望の圧縮応力及び厚みを有する支持層を設計することが可能となる。そして、これらを適切な防水通音膜と組み合わせることにより、防水通音膜の膜面に対して垂直方向に40%圧縮するのに必要な応力が1~600kPaである防水通音部材を得ることができる。
 なお、本発明の防水通音部材は、上記設計に基づいて各層を構成するシート、フィルム、膜等を適宜所望の形状に形成して積層することにより作製することができる。積層方法としては、圧着法など公知の手段で各層を貼り合わせる方法が挙げられる。
 複数層の構成としては、防水粘着層又はクッション層を一層以上含み、これに一層又は二層以上のスペーサー層を必要に応じて組み合わせることができる。また、異なる種類の防水粘着層を二層以上積層したり、異なる種類のクッション層を二層以上積層したり、あるいは防水粘着層とクッション層を組み合わせて積層したりすることもでき、さらにこれに一層又は二層以上のスペーサー層を必要に応じて組み合わせることもできる。
 なお支持層を構成する層のうち、少なくとも一層は防水粘着層とすることが好ましい。
 より具体的には、防水通音膜の片側又は両側に、同一又は異なる種類の圧縮応力600kPa以下のシートを用いた層(好ましくは防水粘着層又はクッション層)を含む支持層を積層する。支持層には、スペーサー層(好ましくは芯材が無孔質PET等の無孔質合成樹脂からなる粘着防水テープあるいは無孔質PETフィルム等の無孔質合成樹脂フィルム)が必要に応じて適宜積層されていてもよい。
 防水通音膜と、支持層に含まれる圧縮応力600kPa以下のシートを用いた層との間にスペーサー層が形成されていると、防水通音部材全体の層構成が安定化する。また、支持層に含まれる圧縮応力600kPa以下のシートを用いた層の両側にスペーサー層を設けて挟み込む形にすることもでき、それによりさらに防水通音部材全体の層構成を安定化させることができる。
 防水通音膜と支持層の構成に関し、好ましい具体例を以下に示すが、これに限られるものではない。
・防水通音膜の片側に防水粘着層を配置し、反対側に同一又は異なる防水粘着層を配置する。
・防水通音膜の片側に防水粘着層又はスペーサー層を配置し、反対側にクッション層を配置する。
・防水通音膜の片側に防水粘着層又はスペーサー層を配置し、反対側の防水通音膜に接する面にスペーサー層を配置しさらに防水粘着層又はクッション層を積層する。
・防水通音膜の片側に防水粘着層又はスペーサー層を配置し、反対側の防水通音膜に接する面にスペーサー層を配置し、その上に防水粘着層又はクッション層を積層し、さらにスペーサー層を積層する。
 支持層の厚み(単層の場合はその層の厚み、複数層で構成される場合は構成層の合計厚み)は特に制限されないが、好ましくは30~3000μm、より好ましくは100~1500μm、さらに好ましくは300~1000μm、特に好ましくは500~800μmである。
 そのうち、圧縮応力600kPa以下のシートを用いた層の一層分の厚みは単層のときと同じく、好ましくは30~3000μm、さらに好ましくは100~1500μmである。
 支持層を構成する層のうち、圧縮応力600kPa以下のシートを用いた層の厚みが合計で、防水通音部材の厚み全体の30%以上を占めることが好ましく、より好ましくは40%以上、特に好ましくは50%以上である。
 圧縮応力600kPa以下のシートを用いた層が防水通音膜の両面に設けられている場合、圧縮応力600kPa以下のシートを用いた層の厚みが合計で、防水通音部材の厚み全体に対して好ましくは60%以上、より好ましくは70~98%、さらに好ましくは85~98%、特に好ましくは90~96%となるようにすることが望ましい。
 圧縮応力600kPa以下のシートを用いた層が防水通音膜の片面のみに設けられている場合、圧縮応力600kPa以下のシートを用いた層の厚みが合計で、防水通音部材の厚み全体に対して好ましくは40%以上、より好ましくは50%以上、さらに好ましくは50~70%、特に好ましくは50~60%となるようにすることが望ましい。
 ここで、防水通音部材の厚みとは、防水通音膜と支持層とを含む防水通音部材中最も厚い部分の厚みをいう。
 (ii)支持層の形状
 防水通音膜の両面に支持層を積層する場合、積層された両面の支持層が、防水通音膜面の垂直方向からみたときに同形状で重なりあう位置にあることが、圧縮でかかる力が防水通音膜に伝わりにくくなるため好ましい。
 支持層は防水通音膜の周縁部に積層されていることが、防水通音膜の振動を妨げないため好ましい。また、支持層の形状は、防水通音膜面に対して水平方向(膜面と平行)の断面が一定の形状であることが、圧縮でかかる力が防水通音膜に伝わりにくくなるため、好ましい。
 防水通音部材の圧縮でかかる応力を偏りにくくし、防水通音膜の通音領域の歪みを低減して音響損失を小さくするには、防水通音膜に積層された支持層の(膜面と平行方向の断面の)面積は1mm以上にすることが好ましく、5mm以上にすることがより好ましい。
 一方で、省スペース化による電気製品の小型化に寄与するとともに、圧縮に必要な力を小さくして筐体への負荷を低減されるためには、防水通音膜に積層された支持層の面積は50mm以下にすることが好ましく、30mm以下にすることがより好ましい。
3.通音領域
 防水通音膜とその周縁部に積層された支持層からなる防水通音部材においては、支持層が積層されておらず防水通音膜が露出した部分、すなわち防水通音膜の通音領域を通して音が透過する。
 通音領域は、広いほど音響損失が小さくなるため、通音領域の面積は0.5mm以上であることが好ましく、1.5mm以上であることがより好ましい。一方で、面積が小さいほど形状が安定して歪みにくくなり、圧縮時の音響損失が小さくなるため、通音領域の面積は40mm以下が好ましく、20mm以下がより好ましい。
 通音領域の平面形状は、円形やそれに近い形状が安定して歪みにくいため、数式(1)で計算される円形度が0.45~1であることが好ましく、0.6~1であることがより好ましい。また、角を有さないことが好ましい。
(数1)
 円形度=4×円周率×面積÷[周長]  ・・・数式(1)
 図2に本発明の防水通音部材の構成の一例を示す。本発明の防水通音部材1は、好ましくは円形であり、防水通音膜2の片面又は両面に、通音領域4の周縁に形成されるように支持層3が積層されている。
 以下、実施例により本発明をさらに詳しく説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の実施例および比較例における各物性値の測定および評価は以下の方法に従った。
(1)音響損失
 音響損失測定について図3を用いて説明する。無響箱16内でスピーカー11からTSP信号で周波数1kHzを含む、音圧94dBの音を出し、マイク治具13に内蔵したMEMS(ADMP401)アナログマイクロフォン12の出力をアナライザーでデジタルに変換して、解析ソフトウェア(Audiomatica社製CLIO Pocket)で解析を行い、周波数1kHzの音圧レベルを測定した。
 マイク治具13は、金属性の箱型であり、外面に音の入射する開口部14が設けられており、所定の隙間の防水通音部材取り付け部があり、防水通音部材1を取り付けることで密閉される内部空間15があり、内部空間15にはMEMSアナログマイクロフォン12が配置されている。
 スピーカー11、開口部14、防水通音部材1、MEMSアナログマイクロフォン12が、マイク治具13の構造物に遮られずに直線上に配置されている。開口部14は直径1mmの円形であり、内部空間15の防水通音部材1からMEMSアナログマイクロフォン12までの距離が6mm、内部空間の容積が27mmである。
 マイク治具13は、スピーカー11から4.5cmの位置で、開口部14が設けられた平面がスピーカーの発音部に対して平行になるように(音が垂直に入射するように)配置した。
 マイク治具のみで測定した音圧レベルと、マイク治具の開口部に防水通音部材を貼り付けて測定した音圧レベルの差を、音響損失として算出した。音響損失が低いほど、通音性が高い。
 防水通音部材取り付け部の隙間を適宜調整し、防水通音部材の圧縮率0%の音響損失と、圧縮率40%の音響損失をそれぞれ測定した。圧縮率40%の音響損失から圧縮率0%の音響損失を差し引いてΔdBVを算出した。この値が小さいほど、圧縮による音響損失の増大が抑制されている。測定は10個のサンプルについて行い、平均値と標準偏差を算出した。
(2)引張試験
 幅50mm×長さ80mmの試験片を、引張試験機(商品名「オートグラフAG-IS型」、株式会社島津製作所製)につかみ間隔50mmで取り付け、引張速度150mm/分で引張試験を行った。測定温度は22℃、測定湿度は65%であった。得られた応力-ひずみ曲線の初期の傾きを防水通音膜の断面積(mm)で除し、引張弾性率(MPa)を算出した。上記測定を、試験片がタテ、ヨコ90°変わるにようにしてそれぞれ5回、計10回行い、平均値を求めた。
(3)耐水圧
 JIS L 1092B法(高水圧法)に準じて測定をした。ただし、防水通音部材は測定面積が不足しているため、円形の穴をあけたSUS板に、防水通音部材を貼り付けて測定し、水漏れの判定は一点で行った。防水通音膜の測定に際して、膜の変形による破断を防ぐため、多孔質膜の耐水圧に影響を与え難い平織物を水圧がかかる面と逆側に重ねて測定した。平織物は、経糸に80dtex/24フィラメントの6ナイロンマルチフィラメント糸、緯糸に80dtex/34フィラメントの6ナイロンマルチフィラメント糸を用いて製織されており、経糸密度120本/2.54cm、緯糸密度90本/2.54cmであった。
(4)厚み
 走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製 S-3000N)を用いて、300~5000 倍の垂直断面写真を撮影し、防水通音部材の厚みを測定した。
(5)圧縮応力
 圧縮試験機(カトーテック株式会社製 KES-G5)を用いて、実施例で使用する防水通音部材1を図4に示すように設置し、平行板17を圧縮方向18(防水通音膜の膜面に対して垂直方向)へ移動させ荷重を加えた。防水通音部材の最大厚み(支持層と防水通音膜の厚みの合計)の40%を圧縮するのに必要な力を測定し、支持層の面積(鉛直方向に重なる面積)を除することで、応力を算出した。測定部は2cmの円形のアタッチメントを用い、圧縮速度は0.01mm/minとした。測定は5個のサンプルについて行い、平均値を求めた。
 支持層に使用したクッション材、両面粘着防水テープ及び無孔質PETフィルムについての個別の圧縮応力は、それぞれ予め別途2.5mm×2.5mm=6.25mmにカットしたものについて測定した。各測定はいずれも5個のサンプルについて行い、平均値を求めた。
 なお、無孔質PETや芯材に無孔質PETのみを使用したものは、40%圧縮自体が困難であることから、サンプルサイズ6.25mmでの測定上限である1569kPa以上の値を出すことは困難であった。
[実施例1]
 下記処方からなるポリウレタン樹脂溶液を作製した。
<処方>
 MP865PS;100質量部
(DIC社製、ポリウレタン樹脂、固形分30質量%、100%モジュラス11MPa)
 レザロイドLU2850M;65質量部
(大日精化工業株式会社製、シリカ微粒子分散液、固形分20質量%)
 ダイラックブラックL1584;4質量部
(DIC株式会社製、黒顔料、固形分25質量%)
 N,N-ジメチルホルムアミド;28質量部
 次いで、離型基材上に、前記ポリウレタン樹脂溶液を、ナイフオンロールコーターを用いて、得られる防水通音膜の厚さが30μmとなる塗工厚で塗付した。次いで、20℃の水中に1.5分間浸漬して完全凝固させた。次いで、50℃の温水中で5分間洗浄した後、130℃で2分間熱処理して乾燥し、離型基材を除去して防水通音膜を得た。防水通音膜の引張弾性率を測定した結果、3.9MPa、耐水圧は70kPa、通気度は19秒/100mLであった。
 防水通音膜を長辺の長さ4.4mm、短辺の長さ3.4mmの長方形にトムソン型を用いて打ち抜いた。支持層を長辺の長さ4.4mm、短辺の長さ3.4mmの長方形で、その中心に、長軸直径2.4mm、短軸直径1.4mmの楕円形の開口部を有するように、トムソン型を用いて打ち抜いた。
 支持層には、両面粘着防水テープ1(積水化学工業株式会社製、商品名「5225VSB」;多孔質ポリエチレン;厚み250μm)と、両面粘着防水テープ2(積水化学工業株式会社製、商品名「5240VSB」;多孔質ポリエチレン;厚み400μm)を用いた。
 両面粘着防水テープ1、防水通音膜、両面粘着防水テープ2の順に積層し圧着して防水通音部材を作製した。防水通音部材の厚みは680μmであった。通音領域は面積2.64mm、円形度0.9であり、支持層の面積は12.3mmだった。
 両面粘着防水テープ1を40%圧縮するのに必要な応力は111kPa、両面粘着防水テープ2を40%圧縮するのに必要な応力は175kPaだった。両面粘着防水テープ1は防水通音部材の厚み全体の36.8%、両面粘着防水テープ2は防水通音部材の厚み全体の58.8%であり、合計95.6%を占めていた。
 防水通音部材の圧縮率0%と40%の音響損失、耐水圧、40%圧縮に必要な応力を測定した結果を表1に示した。
 40%圧縮するのに必要な応力が小さい防水通音部材にすることで、引張弾性率の低い防水通音膜を用いて40%圧縮しても、音響損失が増加しにくかった。
[実施例2]
 支持層に、両面粘着防水テープ1(積水化学工業株式会社製、商品名「5225VSB」;厚み250μm)と、両面粘着防水テープ3(日東電工株式会社製、商品名「No.5601」;無孔質PET;厚み10μm)2層と、クッション材1(株式会社イノアックコーポレーション製、商品名「PORON SR-S15P」;多孔質ポリウレタン樹脂+PET;厚み500μm)を用いて、両面粘着防水テープ1、防水通音膜、両面粘着防水テープ3、クッション材1、両面粘着防水テープ3の順に積層した以外は、実施例1と同様に防水通音部材を作製した。防水通音部材の厚みは800μmであった。
 両面粘着防水テープ1を40%圧縮するのに必要な応力は111kPa、クッション材1を40%圧縮するのに必要な応力は0.2kPaである。なお、両面粘着防水テープ3は、芯材が無孔質PETであり40%圧縮自体が困難であることから、両面粘着防水テープ3を40%圧縮するのに必要な応力は、少なくともサンプルサイズ6.25mmでの測定上限である1569kPa以上であることは明らかである。
 両面粘着防水テープ1は防水通音部材の厚み全体の31.2%、クッション材1は防水通音部材の厚み全体の62.5%であり、合計93.7%を占めていた。
 防水通音部材の圧縮率0%と40%の音響損失、耐水圧、40%圧縮に必要な応力を測定した結果を表1に示した。
 40%圧縮するのに必要な応力が小さい防水通音部材にすることで、引張弾性率の低い防水通音膜を用いて40%圧縮しても、音響損失が増加しにくかった。
[実施例3]
 支持層に、両面粘着防水テープ1(積水化学工業株式会社製、商品名「5225VSB」;厚み250μm)と、両面粘着防水テープ3(日東電工株式会社製、商品名「No.5601」;厚み10μm)2層と、クッション材2(株式会社イノアックコーポレーション製、商品名「PORON SR-S40P」;多孔質ポリウレタン樹脂+PET;厚み400μm)を用いて、両面粘着防水テープ1、防水通音膜、両面粘着防水テープ3、クッション材2、両面粘着防水テープ3の順に積層した以外は、実施例1と同様に防水通音部材を作製した。防水通音部材の厚みは700μmであった。
 両面粘着防水テープ1を40%圧縮するのに必要な応力は111kPa、クッション材2を40%圧縮するのに必要な応力は1kPaであった。両面粘着防水テープ3を40%圧縮するのに必要な応力は1569kPa以上であった。両面粘着防水テープ1は防水通音部材の厚み全体の35.7%、クッション材2は防水通音部材の厚み全体の57.1%であり、合計92.8%を占めていた。
 防水通音部材の圧縮率0%と40%の音響損失、耐水圧、40%圧縮に必要な応力を測定した結果を表1に示した。
 40%圧縮するのに必要な応力が小さい防水通音部材にすることで、引張弾性率の低い防水通音膜を用いて40%圧縮しても、音響損失が増加しにくかった。
[実施例4]
 支持層に、両面粘着防水テープ1(積水化学工業株式会社製、商品名「5225VSB」;厚み250μm)と、両面粘着防水テープ3(日東電工株式会社製、商品名「No.5601」;厚み10μm)2層と、クッション材3(岩谷産業株式会社製、商品名「ISR-ACF-TH」;多孔質アクリル樹脂;厚み400μm)を用いて、両面粘着防水テープ1、防水通音膜、両面粘着防水テープ3、クッション材3、両面粘着防水テープ3の順に積層した以外は、実施例1と同様に防水通音部材を作製した。防水通音部材の厚みは700μmであった。
 両面粘着防水テープ1を40%圧縮するのに必要な応力は111kPa、クッション材3を40%圧縮するのに必要な応力は2kPaであった。両面粘着防水テープ3を40%圧縮するのに必要な応力は1569kPa以上であった。両面粘着防水テープ1は防水通音部材の厚み全体の35.7%、クッション材3は防水通音部材の厚み全体の57.1%であり、合計92.8%を占めていた。
 防水通音部材の圧縮率0%と40%の音響損失、耐水圧、40%圧縮に必要な応力を測定した結果を表1に示した。
 40%圧縮するのに必要な応力が小さい防水通音部材にすることで、引張弾性率の低い防水通音膜を用いて40%圧縮しても、音響損失が増加しにくかった。
[実施例5]
 防水通音膜を直径4mmの円形とし、支持層を直径4mmの円形で、その中心に直径2.2mmの円形の開口部を有するようにし、支持層に、両面粘着防水テープ4(日東電工株式会社製、商品名「No.5615」;無孔質PET;厚み150μm)と、両面粘着防水テープ5(日東電工株式会社製、商品名「No.5605」;無孔質PET;厚み50μm)2層と、クッション材2(株式会社イノアックコーポレーション製、商品名「PORON SR-S40P」;多孔質ポリウレタン樹脂+PET;厚み400μm)と、厚み50μmのPETフィルムを用いて、両面粘着防水テープ4、防水通音膜、両面粘着防水テープ5、PETフィルム、両面粘着防水テープ5、クッション材2の順に積層した以外は、実施例1と同様に防水通音部材を作製した。防水通音部材の厚みは730μmであった。通音領域は面積3.8mm、円形度1であり、支持層の面積は8.8mmだった。
 クッション材2を40%圧縮するのに必要な応力は1kPaであった。両面粘着防水テープ4、両面粘着防水テープ5及び厚み50μmのPETフィルムを40%圧縮するのに必要な応力は、それぞれ1569kPa以上であった。クッション材2は防水通音部材の厚み全体の54.8%を占めていた。
 防水通音部材の圧縮率0%と40%の音響損失、耐水圧、40%圧縮に必要な応力を測定した結果を表1に示した。
 40%圧縮するのに必要な応力が小さい防水通音部材にすることで、引張弾性率の低い防水通音膜を用いて40%圧縮しても、音響損失が増加しにくかった。
[実施例6]
 支持層を直径6mmの円形で、その中心に直径2.2mmの円形の開口部を有するようにした以外は、実施例5と同様に防水通音部材を作製した。防水通音部材の厚みは730μmであった。通音領域は面積3.8mm、円形度1であり、支持層の面積は24.5mmだった。
 クッション材2を40%圧縮するのに必要な応力は1kPaだった。クッション材2は防水通音部材の厚み全体の54.8%を占めていた。
 防水通音部材の圧縮率0%と40%の音響損失、耐水圧、40%圧縮に必要な応力を測定した結果を表1に示した。
 40%圧縮するのに必要な応力が小さい防水通音部材にすることで、引張弾性率の低い防水通音膜を用いて40%圧縮しても、音響損失が増加しにくかった。
[実施例7]
 支持層に、両面粘着防水テープ4(日東電工株式会社製、商品名「No.5615」;厚み150μm)と、両面粘着防水テープ5(日東電工株式会社製、商品名「No.5605」;厚み50μm)2層と、クッション材4(株式会社イノアックコーポレーション製、商品名「PORON SR-S20P」;多孔質ポリウレタン+PET;厚み400μm)と、厚み50μmのPETフィルムを用いて、両面粘着防水テープ4、防水通音膜、両面粘着防水テープ5、PETフィルム、両面粘着防水テープ5、クッション材4、の順に積層した以外は、実施例5と同様に防水通音部材を作製した。防水通音部材の厚みは730μmであった。
 クッション材4を40%圧縮するのに必要な応力は0.2kPaだった。クッション材4は防水通音部材の厚み全体の54.8%を占めていた。
 防水通音部材の圧縮率0%と40%の音響損失、耐水圧、40%圧縮に必要な応力を測定した結果を表1に示した。
 40%圧縮するのに必要な応力が小さい防水通音部材にすることで、引張弾性率の低い防水通音膜を用いて40%圧縮しても、音響損失が増加しにくかった。
[実施例8]
支持層を直径6mmの円形で、その中心に直径2.2mmの円形の開口部を有するようにした以外は、実施例7と同様に防水通音部材を作製した。防水通音部材の厚みは730μmであった。通音領域は面積3.8mm、円形度1であり、支持層の面積は24.5mmだった。
 クッション材4を40%圧縮するのに必要な応力は0.2kPaだった。クッション材4は防水通音部材の厚み全体の54.8%を占めていた。
 防水通音部材の圧縮率0%と40%の音響損失、耐水圧、40%圧縮に必要な応力を測定した結果を表1に示した。
 40%圧縮するのに必要な応力が小さい防水通音部材にすることで、引張弾性率の低い防水通音膜を用いて40%圧縮しても、音響損失が増加しにくかった。
[実施例9]
 支持層に、両面粘着防水テープ1(積水化学工業株式会社製、商品名「5225VSB」;厚み250μm)と、両面粘着防水テープ6(積水化学工業株式会社製、商品名「5230VSB」;多孔質ポリエチレン;厚み300μm)を用いて、両面粘着防水テープ1、防水通音膜、両面粘着防水テープ6の順に積層した以外は、実施例1と同様に防水通音部材を作製した。防水通音部材の厚みは580μmであった。
 両面粘着防水テープ6を40%圧縮するのに必要な応力は234kPaだった。両面粘着防水テープ1を40%圧縮するのに必要な応力は111kPaだった。両面粘着防水テープ6は防水通音部材の厚み全体の51.7%、両面粘着防水テープ1は防水通音部材の厚み全体の43.1%であり、合計で94.8%を占めていた。
 防水通音部材の圧縮率0%と40%の音響損失、耐水圧、40%圧縮に必要な応力を測定した結果を表1に示した。
 40%圧縮するのに必要な応力が小さい防水通音部材にすることで、引張弾性率の低い防水通音膜を用いて40%圧縮しても、音響損失が増加しにくかった。
[比較例1]
 支持層に、両面粘着防水テープ7(積水化学工業株式会社製、商品名「5230SKB」;多孔質ポリエチレン;厚み300μm)、両面粘着防水テープ8(積水化学工業株式会社製、商品名「5225SKB」;多孔質ポリエチレン;厚み250μm)を用いて、両面粘着防水テープ7、防水通音膜、両面粘着防水テープ8の順に積層した以外は、実施例1と同様に防水通音部材を作製した。両面粘着防水テープ7を40%圧縮するのに必要な応力は780kPaだった。両面粘着防水テープ8を40%圧縮するのに必要な応力は682kPaだった。防水通音部材の厚みは580μmであった。
 防水通音部材の圧縮率0%と40%の音響損失、耐水圧、40%圧縮に必要な応力を測定した結果を表1に示した。
 40%圧縮に必要な応力が大きいため、引張弾性率の低い防水通音膜を用いて40%圧縮すると、音響損失が増大しており、圧縮での使用に適さなかった。
[比較例2]
 支持層に、両面粘着防水テープ7(積水化学工業株式会社製、商品名「5230SKB」;多孔質ポリエチレン;厚み300μm)2層を用いて、両面粘着防水テープ7、防水通音膜、両面粘着防水テープ7の順に積層した以外は、実施例1と同様に防水通音部材を作製した。両面粘着防水テープ7を40%圧縮するのに必要な応力は780kPaだった。防水通音部材の厚みは630μmであった。
 防水通音部材の圧縮率0%と40%の音響損失、耐水圧、40%圧縮に必要な応力を測定した結果を表1に示した。
 40%圧縮に必要な応力が大きいため、引張弾性率の低い防水通音膜を用いて40%圧縮すると、音響損失が増大しており、圧縮での使用に適さなかった。
 なお、上記実施例及び比較例で使用した材料の内訳は以下の通りである。
・両面粘着防水テープ1;積水化学工業株式会社製、商品名「5225VSB」(多孔質ポリエチレン:厚み250μm)
・両面粘着防水テープ2;積水化学工業株式会社製、商品名「5240VSB」(多孔質ポリエチレン:厚み400μm)
・両面粘着防水テープ3;日東電工株式会社製、商品名「No.5601」(無孔質PETフィルム:厚み10μm)
・両面粘着防水テープ4;日東電工株式会社製、商品名「No.5615」(無孔質PETフィルム:厚み150μm)
・両面粘着防水テープ5;日東電工株式会社製、商品名「No.5605」(無孔質PETフィルム:厚み50μm)
・両面粘着防水テープ6;積水化学工業株式会社製、商品名「5230VSB」(多孔質ポリエチレン:厚み300μm)
・両面粘着防水テープ7;積水化学工業株式会社製、商品名「5230SKB」(多孔質ポリエチレン:厚み300μm)
・両面粘着防水テープ8;積水化学工業株式会社製、商品名「5225SKB」(多孔質ポリエチレン:厚み250μm)
・クッション材1;株式会社イノアックコーポレーション製、商品名「PORON SR-S15P」(多孔質ポリウレタン樹脂450μm+無孔質PET50μm:総厚み500μm)
・クッション材2;株式会社イノアックコーポレーション製、商品名「PORON SR-S40P(多孔質ポリウレタン樹脂350μm+無孔質PET50μm:総厚み400μm)
・クッション材3;岩谷産業株式会社製、商品名「ISR-ACF-TH(多孔質アクリル樹脂;厚み400μm)
・クッション材4;株式会社イノアックコーポレーション製、商品名「PORON SR-S20P(多孔質ポリウレタン樹脂350μm+無孔質PET50μm:総厚み400μm)
 なお、両面粘着防水テープ1,2,6,クッション材1,2,3,4は、本発明の「垂直方向に40%圧縮するのに必要な応力が600kPa以下のシート」に該当する。両面粘着防水テープ3,4,5はスペーサー層に該当する。
Figure JPOXMLDOC01-appb-T000001
 本発明にかかる防水通音部材は、高い防水性を有するとともに、筐体内の音の干渉を防ぐために圧縮して使用しても、音響損失が低くマイクやスピーカーの音響特性を損なわない。そのため本発明の防水通音部材は、電気製品のマイクやスピーカーの防水保護に好適に用いることができる。
1:防水通音部材
2:防水通音膜
3:支持層
4:通音領域
11:スピーカー
12:MEMSアナログマイクロフォン
13:マイク治具
14:開口部
15:内部空間
16:無響箱
17:平行板
18:圧縮方向

Claims (13)

  1.  防水通音膜の少なくとも片面に支持層が積層された防水通音部材であって、防水通音膜が両面とも露出した通音領域があり、前記防水通音膜の膜面に対して垂直方向に40%圧縮するのに必要な応力が1~600kPaであることを特徴とする、防水通音部材。
  2.  防水通音膜の両面に支持層が積層されていることを特徴とする、請求項1記載の防水通音部材。
  3.  支持層が単層又は複数層で構成されており、少なくとも垂直方向に40%圧縮するのに必要な応力が600kPa以下のシートを用いた層を含む、請求項1又は2記載の防水通音部材。
  4.  前記垂直方向に40%圧縮するのに必要な応力が600kPa以下のシートが、合成樹脂多孔質材料からなるシート層を含む、請求項3記載の防水通音部材。
  5.  前記合成樹脂多孔質材料が、ポリオレフィン系樹脂、ポリウレタン樹脂及びアクリル樹脂からなる群から選択される合成樹脂の多孔質材料であることを特徴とする、請求項4記載の防水通音部材。
  6.  支持層を構成する層のうち、前記垂直方向に40%圧縮するのに必要な応力が600kPa以下のシートを用いた層が、防水通音部材全体の厚みの40%以上を占める、請求項3~5のいずれかに記載の防水通音部材。
  7.  防水通音膜の引張弾性率が0.5~20MPaであることを特徴とする、請求項1~6のいずれかに記載の防水通音部材。
  8.  防水通音膜が、100%モジュラスが1~20MPaの素材を含有することを特徴とする、請求項1~7のいずれかに記載の防水通音部材。
  9.  防水通音膜がポリウレタン樹脂からなることを特徴とする、請求項1~8のいずれかに記載の防水通音部材。
  10.  防水通音膜の少なくとも片面に積層された支持層の面積が1~50mmであることを特徴とする、請求項1~9のいずれかに記載の防水通音部材。
  11.  通音領域の平面形状が、角を有さず、円形度が0.45~1であることを特徴とする、請求項1~10のいずれかに記載の防水通音部材。
  12.  通音領域の面積が0.5~40mmであることを特徴とする、請求項1~11のいずれかに記載の防水通音部材。
  13.  防水通音膜の周縁部に支持層が積層されていることを特徴とする、請求項1~12のいずれかに記載の防水通音部材。
     
     
PCT/JP2022/008159 2021-03-01 2022-02-28 防水通音部材 WO2022186105A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280016518.7A CN116888977A (zh) 2021-03-01 2022-02-28 防水透音构件
JP2023503798A JPWO2022186105A1 (ja) 2021-03-01 2022-02-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-031996 2021-03-01
JP2021031996 2021-03-01

Publications (1)

Publication Number Publication Date
WO2022186105A1 true WO2022186105A1 (ja) 2022-09-09

Family

ID=83154420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008159 WO2022186105A1 (ja) 2021-03-01 2022-02-28 防水通音部材

Country Status (3)

Country Link
JP (1) JPWO2022186105A1 (ja)
CN (1) CN116888977A (ja)
WO (1) WO2022186105A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179631A1 (ja) * 2012-05-31 2013-12-05 日東電工株式会社 音響部品用保護部材及び防水ケース
WO2015105052A1 (ja) * 2014-01-13 2015-07-16 セーレン株式会社 通音防水膜およびその製造方法
WO2019093394A1 (ja) * 2017-11-09 2019-05-16 日東電工株式会社 防水通音部材とこれを備える電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179631A1 (ja) * 2012-05-31 2013-12-05 日東電工株式会社 音響部品用保護部材及び防水ケース
WO2015105052A1 (ja) * 2014-01-13 2015-07-16 セーレン株式会社 通音防水膜およびその製造方法
WO2019093394A1 (ja) * 2017-11-09 2019-05-16 日東電工株式会社 防水通音部材とこれを備える電子機器

Also Published As

Publication number Publication date
JPWO2022186105A1 (ja) 2022-09-09
CN116888977A (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
US9906849B2 (en) Sound-transmitting waterproof film and method for producing same
EP2683176B1 (en) Waterproof sound-transmitting film and electrical product
US11529788B2 (en) Waterproof sound-transmitting sheet
JP6656110B2 (ja) 防水通音カバー、防水通音カバー部材および音響装置
EP2779693B1 (en) Waterproof sound transmitting member
US10694287B2 (en) Waterproof sound-transmitting sheet
WO2007010766A1 (ja) 積層シート及びその製造方法
KR20140075633A (ko) 방수통음시트 및 이의 제조 방법
JP2005011972A (ja) 被研磨加工物の保持材およびこの保持材の製造方法
WO2022186105A1 (ja) 防水通音部材
KR102318787B1 (ko) 경화성 지지층을 포함하는 음향 보호 커버
KR101448674B1 (ko) 방수통음시트 및 이의 제조 방법
JP2019069602A (ja) 積層体および巻回体
KR102519268B1 (ko) 방수통음시트
US11270679B2 (en) Waterproof sound-transmitting sheet
JP6522039B2 (ja) 保護フィルム付膜片、保護フィルム付膜片の保護フィルム除去方法および電気装置の製造方法
US20220348393A1 (en) Cover member and member supply assembly including same
JP7253611B2 (ja) 硬化性サポート層を含む音響保護カバー
KR102669812B1 (ko) 방수 통음 시트 및 방수 통음 시트 제조 방법
JP7439693B2 (ja) 吸音材
TW202246055A (zh) 構件供給用片材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503798

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280016518.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763161

Country of ref document: EP

Kind code of ref document: A1