WO2022185966A1 - Film forming method and film forming apparatus - Google Patents

Film forming method and film forming apparatus Download PDF

Info

Publication number
WO2022185966A1
WO2022185966A1 PCT/JP2022/006909 JP2022006909W WO2022185966A1 WO 2022185966 A1 WO2022185966 A1 WO 2022185966A1 JP 2022006909 W JP2022006909 W JP 2022006909W WO 2022185966 A1 WO2022185966 A1 WO 2022185966A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
organic
substrate
target
region
Prior art date
Application number
PCT/JP2022/006909
Other languages
French (fr)
Japanese (ja)
Inventor
暁志 布瀬
一希 山田
敬 並川
Original Assignee
東京エレクトロン株式会社
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社, ダイキン工業株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2022185966A1 publication Critical patent/WO2022185966A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present disclosure relates to a film forming method and a film forming apparatus.
  • the selective deposition method described in Patent Document 1 selectively forms a passivation layer from a vapor phase reactant on the first surface of the first surface and the second surface which are made of different materials.
  • the first surface is formed of metal and the second surface is formed of dielectric.
  • the passivation layer formed on the first surface is then used to selectively deposit a layer of interest on the second surface from the vapor phase reactants.
  • the substrate is then exposed to plasma to remove the passivation layer.
  • the plasma contains oxygen.
  • the plasma may contain hydrogen and the like, and may contain argon and the like.
  • the atomic layer deposition method described in Patent Document 2 prepares a substrate including a first surface and a second surface of different materials, the substrate including a passivation layer on the second surface.
  • a deposition cycle is then performed comprising alternately and sequentially contacting the substrate with a first precursor and a second reactant comprising oxygen.
  • a second reactant reacts with the first precursor to form a dielectric material on the first surface.
  • the passivation layer is ashed with the second reactant during each deposition cycle.
  • the second reactant is an oxidizing agent.
  • the atomic layer deposition method described in Patent Document 3 is a method for selectively depositing oxide thin films on dielectric surfaces compared to metal surfaces.
  • the method performs a deposition cycle that includes alternately and sequentially contacting the substrate with a first precursor and a second reactant.
  • the second reactant includes a plasma formed in a gas that does not contain oxygen, for example a plasma that is formed in a gas that contains hydrogen.
  • a passivation layer is selectively deposited on the metal surface prior to beginning the deposition cycle and etched by the second reactant during the deposition cycle.
  • One aspect of the present disclosure provides a technique of selectively forming a target film in a desired region using an organic film, and etching the organic film through a reaction between the material of the target film and the organic film.
  • a film formation method of one aspect of the present disclosure includes the following (A) to (D).
  • (A) Prepare a substrate having, on its surface, a first region where a first film is exposed and a second region where a second film made of a material different from the first film is exposed.
  • (B) supplying an organic compound containing a perfluoroether group to the surface of the substrate to selectively form an organic film on the second region of the first region and the second region;
  • C Using the organic film formed in the second region, a first target film is selectively formed in the first region of the first region and the second region.
  • (D) reacting the material of the first target film with the organic film to etch the organic film;
  • a target film can be selectively formed in a desired region using an organic film, and the organic film can be etched by a reaction between the material of the target film and the organic film.
  • FIG. 1 is a flow chart showing a film forming method according to one embodiment.
  • FIG. 2 is a flow chart showing an example of the subroutine of step S4.
  • FIG. 3A is a diagram showing an example of step S1.
  • FIG. 3B is a diagram showing an example of step S3.
  • FIG. 3C is a diagram showing an example in the middle of step S4.
  • FIG. 3D is a diagram showing an example of step S4 subsequent to FIG. 3C.
  • FIG. 3E is a diagram showing an example of step S6.
  • FIG. 4 is a plan view showing a film forming apparatus according to one embodiment. 5 is a cross-sectional view showing an example of the first processing section of FIG. 4.
  • FIG. 6A is a diagram showing depth distributions of Co atoms and C atoms in Experimental Examples 1 and 2.
  • FIG. 6B is a diagram showing the depth direction distribution of Al atoms in Experimental Examples 1 and 2.
  • FIG. 6C is a diagram showing the depth direction distribution of F atoms in Experimental Examples 1 and 2.
  • FIG. 7A is a diagram showing the concentration distribution of various atoms in the depth direction in Experimental Example 3.
  • FIG. 7B is a diagram showing XPS spectra when the cut depth reaches D1 or D2 in Experimental Examples 3 and 4.
  • FIG. 8A is a diagram showing the concentration distribution of various atoms in the depth direction in Experimental Example 5.
  • FIG. 8B is a diagram showing XPS spectra before the substrate surface is ground in Experimental Examples 3 and 5.
  • FIG. 9 is a diagram showing the concentration distribution of various atoms in the depth direction in Experimental Example 6.
  • the film forming method includes steps S1 to S6 shown in FIG. 1, for example.
  • the film formation method may include at least steps S1, S3, and S4, and may not include steps S2 and S6, for example. Further, the film forming method may include steps other than steps S1 to S6 shown in FIG.
  • Step S1 in FIG. 1 includes preparing a substrate 1, as shown in FIG. 3A.
  • Preparing the substrate 1 includes, for example, placing a carrier C on the film forming apparatus 100 shown in FIG. A carrier C accommodates a plurality of substrates 1 .
  • the substrate 1 has an underlying substrate 10 such as a silicon wafer or a compound semiconductor wafer.
  • Compound semiconductor wafers are not particularly limited, but are, for example, GaAs wafers, SiC wafers, GaN wafers, or InP wafers.
  • a substrate 1 has a dielectric film 11 formed on a base substrate 10 .
  • a conductive film or the like may be formed between the dielectric film 11 and the underlying substrate 10 .
  • the dielectric film 11 is, for example, an interlayer insulating film.
  • the interlayer insulating film is preferably a low dielectric constant (Low-k) film.
  • the dielectric film 11 is not particularly limited, but is, for example, a SiO film, SiN film, SiOC film, SiON film, or SiOCN film.
  • the SiO film means a film containing silicon (Si) and oxygen (O).
  • the atomic ratio of Si and O in the SiO film is not limited to 1:1. The same applies to the SiN film, SiOC film, SiON film, and SiOCN film.
  • the substrate 1 also has a metal film 12 formed on the base substrate 10 .
  • the metal film 12 is not particularly limited, it is, for example, a Cu film, a Co film, a Ru film, or a W film.
  • the substrate 1 has, on its surface, a first area A1 where the dielectric film 11 is exposed and a second area A2 where the metal film 12 is exposed.
  • the film exposed in the first region A1 is also called the first film.
  • the film exposed in the second region A2 is also called a second film.
  • the first film and the second film may be made of different materials.
  • the first area A1 and the second area A2 are provided on one side of the substrate 1 in the thickness direction (for example, on the surface side).
  • the number of first regions A1 is one in FIGS. 3A to 3E, but may be plural.
  • two first regions A1 may be arranged so as to sandwich the second region A2.
  • the number of second regions A2 is one in FIGS. 3A to 3E, but may be plural.
  • two second regions A2 may be arranged so as to sandwich the first region A1.
  • the first area A1 and the second area A2 are adjacent in FIGS. 3A-3E, they may be separated.
  • the substrate 1 may have a third area (not shown) on its surface in addition to the first area A1 and the second area A2.
  • the third region is a region where the third film made of a material different from that of the first film and the second film is exposed.
  • the third area may be arranged between the first area A1 and the second area A2, or may be arranged outside the first area A1 and the second area A2.
  • the substrate 1 may further have a third region where a barrier film (not shown) is exposed on its surface.
  • the third area is formed between the first area A1 and the second area A2.
  • the barrier film is formed along the recess and suppresses metal diffusion from the metal film 12 to the dielectric film 11 .
  • the barrier film is not particularly limited, it is, for example, a TaN film or a TiN film.
  • the TaN film means a film containing tantalum (Ta) and nitrogen (N).
  • the atomic ratio of Ta and N in the TaN film is not limited to 1:1. The same is true for the TiN film.
  • the substrate 1 further has a fourth region on its surface where the liner film (not shown) is exposed.
  • a fourth area is formed between the second area A2 and the third area.
  • a liner film is formed over the barrier film to assist in the formation of the metal film 12 .
  • a metal film 12 is formed on the liner film.
  • the liner film is not particularly limited, it is, for example, a Co film or a Ru film.
  • Step S2 in FIG. 1 includes cleaning the surface of the substrate 1.
  • step S2 uses a device for irradiating the surface of the substrate 1 with ultraviolet rays to generate ozone in the device.
  • the organic matter adhering to the surface of the substrate 1 can be ashed with ozone.
  • the surface of the metal film 12 can be moderately oxidized with ozone. If the natural oxide film is removed in advance as will be described later, the density of oxygen atoms becomes the desired density. As a result, a dense organic film 13 can be formed on the surface of the metal film 12 in step S3, which will be described later.
  • step S2 may include supplying a reducing gas such as H 2 gas to the surface of the substrate 1 to remove a natural oxide film formed on the surface of the substrate 1 .
  • the natural oxide film is formed on the surface of the metal film 12, for example.
  • the reducing gas may be plasmatized.
  • the reducing gas may be used by being mixed with a rare gas such as Ar gas.
  • step S3 of FIG. 1 the organic compound is supplied to the surface of the substrate 1, and as shown in FIG. form 13.
  • the method of forming the organic film 13 is a physical vapor deposition method, a chemical vapor deposition (CVD) method, or an atomic layer deposition (ALD) method.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • PVD physical vapor deposition
  • the material of the organic film 13 is the same as the so-called Self-Assembled Monolayer (SAM) material.
  • SAM Self-Assembled Monolayer
  • the organic compound that is the material of the organic film 13 is represented by the following formula (1) or (2), for example.
  • each Rf independently represents an alkyl group having 1 to 16 carbon atoms which may be substituted with one or more fluorine atoms.
  • alkyl group having 1 to 16 carbon atoms in the alkyl group having 1 to 16 carbon atoms which may be substituted with one or more fluorine atoms may be linear or branched.
  • the number of carbon atoms in the straight or branched chain of the "alkyl group having 1 to 16 carbon atoms" is preferably 1 to 6, more preferably 1 to 3.
  • the "alkyl group having 1 to 16 carbon atoms” is particularly preferably a linear alkyl group having 1 to 3 carbon atoms.
  • Rf is preferably an alkyl group having 1 to 16 carbon atoms substituted with one or more fluorine atoms. Further, Rf is more preferably a CF 2 H—C 1-15 fluoroalkylene group or a C 1-16 perfluoroalkyl group. Moreover, Rf is particularly preferably a perfluoroalkyl group having 1 to 16 carbon atoms.
  • a “perfluoroalkyl group having 1 to 16 carbon atoms” may be linear or branched.
  • the number of carbon atoms in the straight or branched chain of the "perfluoroalkyl group having 1 to 16 carbon atoms” is preferably 1 to 6, more preferably 1 to 3.
  • the "perfluoroalkyl group having 1 to 16 carbon atoms” is particularly preferably a linear perfluoroalkyl group having 1 to 3 carbon atoms.
  • the “straight-chain perfluoroalkyl group having 1 to 3 carbon atoms” is specifically —CF 3 , —CF 2 CF 3 , or —CF 2 CF 2 CF 3 .
  • PFPE is each independently -(OC 6 F 12 ) a -(OC 5 F 10 ) b -(OC 4 F 8 ) c -(OC 3 F 6 ) d -(OC 2 F 4 ) e -(OCF 2 ) f -.
  • a, b, c, d, e, and f are each independently integers of 0 or more and 200 or less, and the sum of a, b, c, d, e, and f is at least 1;
  • Each of a, b, c, d, e, and f is preferably an integer of 0 or more and 100 or less.
  • the sum of a, b, c, d, e, and f is preferably 5 or more, more preferably 10 or more.
  • the sum of a, b, c, d, e, and f may be 10 or more and 100 or less.
  • the order of existence of each repeating unit enclosed in parentheses with a, b, c, d, e, or f is arbitrary.
  • repeating units may be linear or branched, but preferably linear.
  • - ( OC6F12 )- is - ( OCF2CF2CF2CF2CF2 )-, - ( OCF ( CF3 ) CF2CF2CF2 ) -, - ( OCF 2 CF (CF 3 ) CF 2 CF 2 CF 2 )-, - (OCF 2 CF 2 CF (CF 3 ) CF 2 CF 2 )-, - (OCF 2 CF 2 CF 2 CF (CF 3 ) CF 2 )-, -(OCF 2 CF 2 CF 2 CF(CF 3 ))-, etc., but preferably -(OCF 2 CF 2 CF 2 CF 2 CF 2 CF 2 )-.
  • - ( OC5F10 )- is - ( OCF2CF2CF2CF2 )-, - ( OCF ( CF3 ) CF2CF2CF2 )-, - ( OCF2CF ( CF3 ) CF 2 CF 2 )-, -(OCF 2 CF 2 CF(CF 3 )CF 2 )-, -(OCF 2 CF 2 CF 2 CF(CF 3 ))-, but preferably -( OCF 2 CF 2 CF 2 CF 2 CF 2 )—.
  • -( OC4F8 )- is - ( OCF2CF2CF2CF2 )-, - ( OCF ( CF3 ) CF2CF2 )-, - ( OCF2CF ( CF3 ) CF2 )- , -( OCF2CF2CF ( CF3 ))-, -(OC( CF3 ) 2CF2 )-, -( OCF2C (CF3)2 ) - , -(OCF ( CF3 )CF( CF 3 ))-, -(OCF(C 2 F 5 )CF 2 )-, or -(OCF 2 CF(C 2 F 5 ))-, preferably -(OCF 2 CF 2 CF 2 CF 2 )-.
  • -(OC 3 F 6 )- is any of -(OCF 2 CF 2 CF 2 )-, -(OCF(CF 3 )CF 2 )-, or -(OCF 2 CF(CF 3 ))- but preferably -(OCF 2 CF 2 CF 2 )-.
  • -(OC 2 F 4 )- may be either -(OCF 2 CF 2 )- or -(OCF(CF 3 ))-, but is preferably -(OCF 2 CF 2 )- be.
  • each PFPE is independently -(OC 3 F 6 ) d - (d is an integer of 1 or more and 200 or less, preferably 5 or more and 200 or less, more preferably 10 or more and 200 or less).
  • Each PFPE is independently -(OCF 2 CF 2 CF 2 ) d - (d is an integer of 1 or more and 200 or less, preferably 5 or more and 200 or less, more preferably 10 or more and 200 or less), or -(OCF ( CF 3 )CF 2 ) d ⁇ (d is an integer of 1 or more and 200 or less, preferably 5 or more and 200 or less, more preferably 10 or more and 200 or less).
  • Each PRPF is more preferably independently -(OCF 2 CF 2 CF 2 ) d - (d is an integer of 1 or more and 200 or less, preferably 5 or more and 200 or less, more preferably 10 or more and 200 or less).
  • each PFPE is independently -(OC 4 F 8 ) c -(OC 3 F 6 ) d -(OC 2 F 4 ) e -(OCF 2 ) f -.
  • c and d are each independently an integer of 0 or more and 30 or less
  • e and f are each independently 1 or more and 200 or less, preferably 5 or more and 200 or less, more preferably 10 or more and 200 or less
  • the order of occurrence of each repeating unit bracketed with c, d, e, or f, which is an integer, is arbitrary.
  • Each PFPE is preferably independently -(OCF 2 CF 2 CF 2 CF 2 ) c -(OCF 2 CF 2 CF 2 ) d -(OCF 2 CF 2 ) e -(OCF 2 ) f - .
  • each PFPE may independently be -(OC 2 F 4 ) e -(OCF 2 ) f -.
  • e and f are each independently an integer of 1 or more and 200 or less, preferably 5 or more and 200 or less, more preferably 10 or more and 200 or less, and each repetition bracketed with e or f
  • the order in which the units are present is arbitrary.
  • each PFPE is independently a group represented by -(R 6 -R 7 ) q -.
  • R6 is OCF2 or OC2F4 , preferably OC2F4 .
  • R7 is a group selected from the group consisting of OC2F4 , OC3F6 , OC4F8 , OC5F10 , and OC6F12 , or independently selected from these groups is a combination of two or three groups that are R7 is a group selected from the group consisting of OC2F4 , OC3F6 and OC4F8 , or a combination of two or three groups independently selected from these groups is preferred.
  • the combination of two or three groups independently selected from the group consisting of OC 2 F 4 , OC 3 F 6 and OC 4 F 8 is not particularly limited, but for example -OC 2 F 4 OC 3 F 6 -, -OC 2 F 4 OC 4 F 8 -, -OC 3 F 6 OC 2 F 4 -, -OC 3 F 6 OC 3 F 6 -, -OC 3 F 6 OC 4 F 8 -, -OC 4 F 8OC4F8- , -OC4F8OC3F6- , -OC4F8OC2F4- , -OC2F4OC2F4OC3F6- , -OC2F4OC2F4OC3F6- , -OC2F4OC _ _ _ _ _ _ _ _ _ 2F4OC4F8- , -OC2F4OC3F6- , -OC2F4OC4OC3F6- , -OC2F4OC
  • q is an integer of 2-100, preferably an integer of 2-50.
  • OC2F4 , OC3F6 , OC4F8 , OC5F10 and OC6F12 can be either linear or branched , preferably linear.
  • each PFPE is preferably independently -(OC 2 F 4 -OC 3 F 6 ) q - or -(OC 2 F 4 -OC 4 F 8 ) q -.
  • each X independently represents a single bond or a divalent to decavalent organic group.
  • X is a perfluoropolyether portion (that is, Rf-PFPE portion or -PFPE- portion) that mainly provides water repellency, surface slipperiness, etc. in the compound represented by formula (1) or (2); It is understood as a linker that connects the binding portion (ie group A) that provides the ability to bind to the substrate. Therefore, X may be any organic group as long as the compound represented by formula (1) or (2) can exist stably.
  • is an integer of 1-9
  • ⁇ ' is an integer of 1-9
  • ⁇ and ⁇ ' can vary depending on the valence of X.
  • the sum of ⁇ and ⁇ ' is the same as the valence of X.
  • is 9 and ⁇ ' is 1, ⁇ is 5 and ⁇ ' is 5, or ⁇ is 1 and ⁇ ' can be 9.
  • is the value obtained by subtracting 1 from the valence of X.
  • X is preferably a divalent to heptavalent, more preferably divalent to tetravalent, particularly preferably divalent organic group.
  • X is a divalent to tetravalent organic group
  • is 1 to 3
  • ⁇ ' is 1.
  • X is a divalent organic group
  • is 1
  • ⁇ ' is 1.
  • the formulas (1) and (2) are represented by the following formulas (3) and (4).
  • X is each independently, but not particularly limited to, for example, a divalent group represented by formula (5) below.
  • R 31 represents a single bond, —(CH 2 ) s′ —, or an o-, m-, or p-phenylene group, preferably —(CH 2 ) s′ —.
  • s' is an integer of 1 to 20, preferably an integer of 1 to 6, more preferably an integer of 1 to 3, particularly preferably 1 or 2.
  • X a represents —(X b ) l′ —, and each occurrence of X b is independently —O—, —S—, o-, m-, or p-phenylene group, —C( O)O—, —Si(R 33 ) 2 —, —(Si(R 33 ) 2 O) m′′ —Si(R 33 ) 2 —, —CONR 34 —, —O—CONR 34 —, —NR 34 represents a group selected from the group consisting of -, and -(CH 2 ) n' -, wherein each occurrence of R 33 is independently at each occurrence a phenyl group, a C 1-6 alkyl group, or a C 1-6 alkoxy; group, preferably a phenyl group or a C 1-6 alkyl group, more preferably a methyl group, each occurrence of R 34 is independently a hydrogen atom, a phenyl group, or
  • n′′ at each occurrence is independently an integer of 1-100, preferably an integer of 1-20.
  • n', at each occurrence, is independently an integer from 1 to 20, preferably an integer from 1 to 6, more preferably an integer from 1 to 3.
  • l' is an integer of 1-10, preferably an integer of 1-5, more preferably an integer of 1-3.
  • p1 is 0 or 1;
  • q1 is 0 or 1;
  • At least one of p1 and q1 is 1, and the order of existence of each repeating unit enclosed in parentheses with p1 or q1 is arbitrary.
  • R 31 and X a are one or more selected from the group consisting of a fluorine atom, a C 1-3 alkyl group, and a C 1-3 fluoroalkyl group may be substituted by a substituent of
  • Each X is preferably independently -(R 31 ) p1 -(X a ) q1 -R 32 -.
  • R 32 represents a single bond, -(CH 2 ) t' -, or an o-, m- or p-phenylene group, preferably -(CH 2 ) t' -.
  • t' is an integer of 1-20, preferably an integer of 2-6, more preferably an integer of 2-3.
  • R 32 (typically the hydrogen atom of R 32 ) is substituted with one or more substituents selected from the group consisting of a fluorine atom, a C 1-3 alkyl group and a C 1-3 fluoroalkyl group; good too.
  • Each X preferably and independently can be a C 1-20 alkylene group, —R 31 —X c —R 32 —, or —X d —R 32 —.
  • R 31 and R 32 have the same meanings as above.
  • X is more preferably each independently a C 1-20 alkylene group, —(CH 2 ) s′ —X c —, —(CH 2 ) s′ —X c —(CH 2 ) t′ —, —X d —, or —X d —(CH 2 ) t′ —.
  • s' and t' have the same meanings as above.
  • X c is —O—, —S—, —C(O)O—, —CONR 34 —, —O—CONR 34 —, —Si(R 33 ) 2 —, —(Si(R 33 ) 2 O ) m′′ —Si(R 33 ) 2 —, —O—(CH 2 ) u′ —(Si(R 33 ) 2 O) m” —Si(R 33 ) 2 —, —O—(CH 2 ) u ' -Si(R 33 ) 2 -O-Si(R 33 ) 2 -CH 2 CH 2 -Si(R 33 ) 2 -O-Si(R 33 ) 2 -, -O-(CH 2 ) u' - Si(OCH 3 ) 2 OSi(OCH 3 ) 2 —, —CONR 34 —(CH 2 ) u′ —(Si(R 33 ) 2 O)
  • X d is —S—, —C(O)O—, —CONR 34 —, —CONR 34 —(CH 2 ) u′b —(Si(R 33 ) 2 O) m′′ —Si(R 33 ) 2- , -CONR 34 -(CH 2 ) u' -N(R 34 )-, or -CONR 34 -(o-, m-, or p-phenylene)-Si(R 33 ) 2 -.
  • each symbol has the same meaning as above.
  • each X is independently a C 1-20 alkylene group, —(CH 2 ) s′ —X c —(CH 2 ) t′ —, or —X d —(CH 2 ) t′ — can be In this formula, each symbol has the same meaning as above.
  • each X is independently a C 1-20 alkylene group, —(CH 2 ) s′ —O—(CH 2 ) t′ —, —(CH 2 ) s′ —(Si(R 33 ) 2 O) m′′ —Si(R 33 ) 2 —(CH 2 ) t′ —, —(CH 2 ) s′ —O—(CH 2 ) u′ —(Si(R 33 ) 2 O) m” —Si(R 33 ) 2 —(CH 2 ) t′ —, or —(CH 2 ) s′ —O—(CH 2 ) t′ —Si(R 33 ) 2 —(CH 2 ) u′ —Si( R 33 ) 2 -(C v H 2v )-.
  • R 33 , m′′, s′, t′ and u′ have the same meanings as above, v is an integer of 1
  • -(C v H 2v )- may be linear or branched, for example -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH(CH 3 ) -, or -CH(CH 3 )CH 2 -.
  • Each X is independently one or more substituents selected from the group consisting of a fluorine atom, a C 1-3 alkyl group, and a C 1-3 fluoroalkyl group (preferably a C 1-3 perfluoroalkyl group) It may be substituted by a group.
  • each X may independently be other than a —O—C 1-6 alkylene group.
  • X includes, for example, groups represented by the following formulas (6) to (12).
  • each R 41 is independently a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or a C 1-6 alkoxy group, preferably a methyl group.
  • D is -CH 2 O(CH 2 ) 2 -, -CH 2 O(CH 2 ) 3 -, -CF 2 O(CH 2 ) 3 -, -(CH 2 ) 2 -, -(CH 2 ) 3 -, -(CH 2 ) 4 -, -CONH-(CH 2 ) 3 -, -CON(CH 3 )-(CH 2 ) 3 -, -CON(Ph)-(CH 2 ) 3 - (Ph is phenyl is a group selected from the group consisting of ) and groups represented by the following formula (13).
  • each R 42 is independently a hydrogen atom, a C 1-6 alkyl group or a C 1-6 alkoxy group, preferably a methyl group or a methoxy group, more preferably is a methyl group.
  • E is —(CH 2 ) n — (n is an integer from 2 to 6)
  • D is attached to the PFPE of the molecular backbone, and E is opposite to PFPE.
  • X examples include: —CH 2 O(CH 2 ) 2 —, —CH 2 O(CH 2 ) 3 —, —CH 2 O(CH 2 ) 6 —, —CH 2 O(CH 2 ) 3 Si(CH 3 ) 2 OSi(CH 3 ) 2 (CH 2 ) 2 —, —CH 2 O(CH 2 ) 3 Si(CH 3 ) 2 OSi(CH 3 ) 2 OSi(CH 3 ) 2 (CH 2 ) 2 —, —CH 2 O(CH 2 ) 3 Si(CH 3 ) 2 O(Si(CH 3 ) 2 O) 2 Si(CH 3 ) 2 (CH 2 ) 2 —, —CH 2 O(CH 2 ) 3 Si(CH 3 ) 2 O(Si(CH 3 ) 2 O) 3 Si(CH 3 ) 2 (CH 2 ) 2 —, —CH 2 O(CH 2 ) 3 Si(CH 3 ) 2 O(Si(CH 3 ) 2 O) 3 Si(CH 3
  • each X is independently a group represented by the following formula (16).
  • x, y, and z are each independently an integer of 0 to 10, the sum of x, y, and z is 1 or more, and each parenthesized repeating unit The order of existence is arbitrary.
  • Each occurrence of R 16 is independently an oxygen atom, phenylene, carbazolylene, —NR 26 — (R 26 represents a hydrogen atom or an organic group), or a divalent organic group, preferably oxygen It is an atom or a divalent polar group.
  • R 27 is a hydrogen atom or a lower alkyl represents a group.
  • a "lower alkyl group” is, for example, an alkyl group having 1 to 6 carbon atoms (eg, methyl, ethyl, or n-propyl), which may be substituted with one or more fluorine atoms.
  • each occurrence of R 17 is independently a hydrogen atom, a fluorine atom, or a lower fluoroalkyl group, preferably a fluorine atom.
  • the number of carbon atoms in the "lower fluoroalkyl group” is, for example, 1-6.
  • the "lower fluoroalkyl group” is preferably a fluoroalkyl group having 1 to 3 carbon atoms or a perfluoroalkyl group having 1 to 3 carbon atoms, more preferably a trifluoromethyl group or a pentafluoroethyl group, particularly preferably is a trifluoromethyl group.
  • examples of X include groups represented by formulas (17) to (24).
  • each R 41 is independently a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or a C 1-6 alkoxy group, preferably a methyl group.
  • any some of the Ts are the following groups attached to PFPE of the molecular backbone.
  • each R 42 is independently a hydrogen atom, a C 1-6 alkyl group or a C 1-6 alkoxy group, preferably a methyl group or a methoxy group, more preferably is a methyl group.
  • Ts are —(CH 2 ) n′′ — (where n′′ is an integer from 2 to 6) attached to groups opposite PFPE on the molecular backbone, and if present, the remaining Ts are Each is independently a methyl group, a phenyl group, a C 1-6 alkoxy group, a radical scavenging group, or an ultraviolet absorbing group.
  • the radical scavenging group is not particularly limited as long as it can scavenge radicals generated by light irradiation. , hindered amines, hindered phenols, residues of triazines, and the like.
  • the ultraviolet absorbing group is not particularly limited as long as it can absorb ultraviolet rays, and examples thereof include benzotriazoles, hydroxybenzophenones, esters of substituted and unsubstituted benzoic acid or salicylic acid compounds, acrylates or alkoxycinnamates, and oxamides. , oxanilides, benzoxazinones, benzoxazole residues, and the like.
  • preferred radical-scavenging groups or UV-absorbing groups include groups represented by the following formulas (26) to (28).
  • each X may independently be a trivalent to decavalent organic group.
  • the perfluoropolyether group-containing compound (reactive perfluoropolyether group-containing silane compound) used in the present embodiment has a number average molecular weight of 1,000 to 30,000, preferably 1,500 to 30,000, and more preferably 2,000 to 30,000. 10000.
  • the organic compound has, at one end of its molecular chain, a functional group that selectively chemisorbs to the second region A2 out of the first region A1 and the second region A2.
  • the organic compound is, for example, a carboxylic acid-based compound, a thiol-based compound, or a phosphonic acid-based compound.
  • Carboxylic acid-based compounds, thiol-based compounds, and phosphonic acid-based compounds are more likely to chemically adsorb to the metal film 12 than to the dielectric film 11 . Therefore, when the dielectric film 11 is exposed in the first region A1 and the metal film 12 is exposed in the second region A2, the organic film is selectively applied to the second region A2 between the first region A1 and the second region A2. A membrane 13 is formed.
  • the first film is the dielectric film 11
  • the second film is the metal film 12
  • the organic film 13 is selectively formed on the metal film 12 between the dielectric film 11 and the metal film 12.
  • the technology of the present disclosure is not limited to this.
  • the first film may be a metal film
  • the second film may be a dielectric film
  • the organic film 13 may be selectively formed on the dielectric film between the metal film and the dielectric film.
  • the organic compound contains a perfluoroether group.
  • Organic compounds containing perfluoroether groups may be commercially available, such as Demnum (registered trademark) from Daikin Industries, Ltd., or Fomblin (registered trademark) from Ausimont. used, and those having a carboxylic acid at the end are used. Specifically, for example, Demnum carboxylic acid (DMCA) or fomblin carboxylic acid (FBCA) is used.
  • Demnum carboxylic acid is a compound represented by CF 3 —(CF 2 CF 2 CF 2 O) n —COOH. —(CF 2 CF 2 CF 2 O) n — (n is an integer of 1 or more) is a perfluoroether group. n is 200 or less, for example.
  • Fomblin carboxylic acid is a compound represented by CF 3 —(CF 2 OCF 2 CF 2 O) n —COOH. —(CF 2 OCF 2 CF 2 O) n — (n is an integer of 1 or more) is a perfluoroether group. n is 200 or less, for example.
  • a perfluoroether group has an ether group.
  • the ether group traps the material of the first target film 14, such as an organometallic compound or a metal oxide, in step S4, which will be described later.
  • the first target film 14 is an aluminum oxide film, it traps organoaluminum compounds or aluminum oxides.
  • a perfluoroether group has a CF bond and produces a metal fluorocarbon by reaction with an organometallic compound or a metal oxide.
  • the metal fluorocarbide can be vaporized at a temperature lower than the decomposition temperature of the organic film 13 and removed by evacuation.
  • the amount of the material of the first target film 14 trapped inside the organic film 13 can be controlled by the amount of oxygen in one molecule of the organic compound.
  • fomblin carboxylic acid and Demnum carboxylic acid having the same molecular weight fomblin carboxylic acid has a larger amount of oxygen per molecule and a larger trap amount.
  • the above step S3 may include supplying a plurality of organic compounds having different compositions to the surface of the substrate 1.
  • Fomblin carboxylic acid and Demnum carboxylic acid may be applied to the surface of substrate 1 .
  • the trap amount can be controlled by controlling the mixing ratio of a plurality of organic compounds having different compositions.
  • step S4 of FIG. 1 the organic film 13 formed in the second region A2 is used to selectively form the first region A1 of the first region A1 and the second region A2.
  • Forming a target film 14 is included.
  • the first target film 14 is, for example, a dielectric film.
  • a new dielectric film can be laminated on the dielectric film 11 prepared in advance.
  • the first target film 14 is not particularly limited, but for example, an aluminum oxide film (AlO film), a silicon oxide film (SiO film), a silicon nitride film (SiN film), a zirconium oxide film (ZrO film), or a hafnium oxide film ( HfO film) and the like.
  • AlO film means a film containing aluminum (Al) and oxygen (O).
  • the atomic ratio of Al and O in the AlO film is not limited to 1:1. The same is true for the SiO film, SiN film, ZrO film, and HfO film.
  • the method of forming the first target film 14 is, for example, physical vapor deposition, chemical vapor deposition (CVD), or atomic layer deposition (ALD).
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • a metal oxide is used as the material of the first target film 14
  • PVD physical vapor deposition
  • Physical vapor deposition methods include, for example, electron beam evaporation.
  • an organometallic compound is used as the material of the first target film 14
  • the CVD method or the ALD method is used.
  • an organometallic compound gas and an oxidizing gas or a nitriding gas are alternately supplied to the surface of the substrate 1 .
  • an organoaluminum compound gas such as TMA (trimethylaluminum) gas and an oxidizing gas such as water vapor (H 2 O gas) are alternately supplied to the surface of the substrate 1 .
  • TMA trimethylaluminum
  • H 2 O gas water vapor
  • the AlO film forming method includes steps S41 to S45 shown in FIG. 2, for example.
  • step S41 the surface of the substrate 1 is supplied with an organoaluminum compound gas.
  • step S42 an inert gas such as Ar gas is supplied to the surface of the substrate 1 to purge excess organoaluminum compound gas that has not chemically adsorbed onto the surface of the substrate 1.
  • step S43 an oxidizing gas is supplied to the surface of the substrate 1.
  • an inert gas such as Ar gas is supplied to the surface of the substrate 1 to purge excess oxidizing gas that has not chemically adsorbed onto the surface of the substrate 1.
  • step S45 it is checked whether steps S41 to S44 have been performed a set number of times.
  • the set number of times in step S45 is set according to the target film thickness of the AlO film, and is, for example, 20 to 80 times. If the number of times of execution has not reached the set number of times (step S45, NO), steps S41 to S44 are executed again. On the other hand, if the number of times of execution has reached the set number of times (step S45, YES), the film thickness of the AlO film has reached the target film thickness, so this process is terminated.
  • Step S4 An example of processing conditions for step S4 is shown below.
  • Flow rate of TMA gas 50 sccm Processing time: 0.1 sec to 2 sec
  • Step S42 Ar gas flow rate: 1000 sccm to 8000 sccm Processing time: 0.5 sec to 2 sec
  • Step S43 H 2 O gas flow rate 50 sccm to 200 sccm
  • Processing time 0.5 sec to 2 sec
  • Step S44 Ar gas flow rate: 1000 sccm to 8000 sccm Processing time: 0.5 sec to 5 sec
  • Processing conditions common to steps S41 to S44 Processing temperature 100°C to 250°C Processing pressure: 133 Pa to 1200 Pa.
  • the organic film 13 inhibits the deposition of the first target film 14 while incorporating a desired amount of the material of the first target film 14 (eg, an organometallic compound).
  • the organic film 13 has hydrophobicity derived from a perfluoroether group and inhibits the chemisorption of water vapor, thereby inhibiting the deposition of the first target film 14 .
  • the step S4 includes reacting the organic film 13 with the material of the first target film 14 introduced into the organic film 13 to etch the organic film 13, as shown in FIG. 3C.
  • Materials that react with the organic film 13 of the first target film 14 include organometallic compounds such as TMA, or metal oxides.
  • a metal fluorocarbon is generated by the reaction between the organometallic compound or the metal oxide and the perfluoroether group of the organic film 13 .
  • the metal fluorocarbide can be vaporized at a temperature lower than the decomposition temperature of the organic film 13 and removed by evacuation.
  • the organic film 13 can be etched with the material of the first target film 14 and the organic film 13 can be removed. Further, according to the present embodiment, by removing the organic film 13, the material of the first target film 14 that has entered into the organic film 13 can also be removed. Therefore, the first target layer 14 can be selectively formed in the first area A1 of the first area A1 and the second area A2.
  • the material of the first target film 14 is intentionally taken into the organic film 13 when the first target film 14 is formed, and the taken-in material of the first target film 14 is used.
  • the organic film 13 is etched. Therefore, the step of supplying a dedicated etchant to the substrate 1 becomes unnecessary.
  • the amount of etching of the organic film 13 with the material of the first target film 14 can be controlled by the supply amount of the material of the first target film 14 , the amount of oxygen in one molecule of the organic compound, or the temperature of the substrate 1 . .
  • etching can be performed if the amount of material supplied for the first target film 14 is such that it can react with the organic film 13 at the temperature of the substrate 1 .
  • the supply amount of the material for the first target film 14, the amount of oxygen in one molecule of the organic compound, or the temperature of the substrate 1 are appropriately controlled within the amount capable of reacting.
  • the organic film 13 is etched with the material of the first target film 14 during the formation of the first target film 14 . More specifically, in step S41, the organic film 13 is etched with the TMA gas while the TMA gas is being supplied.
  • the substrate 1 is heated such that the etching of the organic film 13 proceeds during the formation of the first target film 14 .
  • the heating temperature of the substrate 1 is, for example, 100.degree. C. to 250.degree.
  • the throughput can be improved by proceeding with the etching while supplying the TMA gas.
  • the organic film 13 is etched with the material of the first target film 14 during the formation of the first target film 14, but after the formation of the first target film 14, the temperature of the substrate 1 is raised and the It is also possible to etch the organic film 13 with the material of the target film 14 .
  • step S4 most of the organic film 13 may be removed, as shown in FIG. 3D.
  • the organic film 13 may not remain on the surface of the substrate 1 after step S4. If the organic film 13 is removed during the formation of the first target film 14, a dedicated step for removing the organic film 13 after the formation of the first target film 14 can be omitted.
  • step S5 of FIG. 1 it is checked whether steps S3 to S4 have been performed a set number of times.
  • the set number of times in step S5 may be one, but preferably a plurality of times. That is, it is preferable to repeat a series of processes including forming the organic film 13, forming the first target film 14, and etching the organic film 13 with the material of the first target film 14. .
  • the organic film 13 can be replenished, and the first target film 14 can be formed more selectively.
  • step S5 If the number of times of implementation has not reached the set number of times (step S5, NO), steps S3 and S4 are performed again.
  • the set number of times of step S5 is set according to the final target film thickness of the AlO film.
  • step S5 YES
  • the film thickness of the AlO film has reached the final target film thickness, so the next step S6 is executed.
  • Step S6 of FIG. 1 includes forming a second target film 15 of a material different from that of the first target film 14 in the second region A2 from which the organic film 13 has been removed, as shown in FIG. 3E.
  • the method of forming the second target film 15 is, for example, a physical vapor deposition method, a chemical vapor deposition (CVD) method, or an atomic layer deposition (ALD) method.
  • the second target film 15 is, for example, a metal film. A new metal film can be laminated on the metal film 12 prepared in advance.
  • the film forming apparatus 100 includes a first processing section 200A, a second processing section 200B, a third processing section 200C, a fourth processing section 200D, a transport section 400, and a control section 500.
  • the film forming apparatus 100 includes a first processing section 200A, a second processing section 200B, a third processing section 200C, a fourth processing section 200D, a transport section 400, and a control section 500.
  • the second processing unit 200B performs step S3 in FIG. 200 C of 3rd process parts implement FIG.1 S4.
  • the fourth processing unit 200D implements step S6 in FIG.
  • the first processing section 200A, the second processing section 200B, the third processing section 200C, and the fourth processing section 200D have the same structure.
  • the transport section 400 transports the substrate 1 to the first processing section 200A, the second processing section 200B, the third processing section 200C, and the fourth processing section 200D.
  • the control unit 500 controls the first processing unit 200A, the second processing unit 200B, the third processing unit 200C, the fourth processing unit 200D, and the transport unit 400.
  • the transport section 400 has a first transport chamber 401 and a first transport mechanism 402 .
  • the internal atmosphere of the first transfer chamber 401 is an air atmosphere.
  • a first transport mechanism 402 is provided inside the first transport chamber 401 .
  • the first transport mechanism 402 includes an arm 403 that holds the substrate 1 and travels along rails 404 .
  • the rail 404 extends in the direction in which the carriers C are arranged.
  • the transport section 400 also has a second transport chamber 411 and a second transport mechanism 412 .
  • the internal atmosphere of the second transfer chamber 411 is a vacuum atmosphere.
  • a second transport mechanism 412 is provided inside the second transport chamber 411 .
  • the second transport mechanism 412 includes an arm 413 that holds the substrate 1, and the arm 413 is arranged movably in the vertical and horizontal directions and rotatable around the vertical axis.
  • a first processing section 200A, a second processing section 200B, a third processing section 200C, and a fourth processing section 200D are connected to the second transfer chamber 411 through different gate valves G.
  • the transport section 400 has a load lock chamber 421 between the first transport chamber 401 and the second transport chamber 411 .
  • the internal atmosphere of the load lock chamber 421 is switched between a vacuum atmosphere and an atmospheric atmosphere by a pressure regulating mechanism (not shown).
  • a pressure regulating mechanism not shown
  • the inside of the second transfer chamber 411 can always be maintained in a vacuum atmosphere.
  • the flow of gas from the first transfer chamber 401 to the second transfer chamber 411 can be suppressed.
  • Gate valves G are provided between the first transfer chamber 401 and the load lock chamber 421 and between the second transfer chamber 411 and the load lock chamber 421 .
  • the control unit 500 is, for example, a computer, and has a CPU (Central Processing Unit) 501 and a storage medium 502 such as a memory.
  • the storage medium 502 stores programs for controlling various processes executed in the film forming apparatus 100 .
  • the control unit 500 controls the operation of the film forming apparatus 100 by causing the CPU 501 to execute programs stored in the storage medium 502 .
  • the control unit 500 controls the first processing unit 200A, the second processing unit 200B, the third processing unit 200C, the fourth processing unit 200D, and the transfer unit 400 to carry out the film forming method described above.
  • the first transport mechanism 402 takes out the substrate 1 from the carrier C, transports the taken out substrate 1 to the load lock chamber 421 , and exits from the load lock chamber 421 .
  • the internal atmosphere of the load lock chamber 421 is switched from the air atmosphere to the vacuum atmosphere.
  • the second transport mechanism 412 takes out the substrate 1 from the load lock chamber 421 and transports the taken out substrate 1 to the first processing section 200A.
  • the first processing unit 200A performs step S2.
  • the second transport mechanism 412 takes out the substrate 1 from the first processing section 200A and transports the taken out substrate 1 to the second processing section 200B.
  • the atmosphere around the substrate 1 can be maintained in a vacuum atmosphere, and oxidation of the substrate 1 can be suppressed.
  • the second processing unit 200B performs step S3.
  • the second transport mechanism 412 takes out the substrate 1 from the second processing section 200B and transports the taken out substrate 1 to the third processing section 200C.
  • the atmosphere around the substrate 1 can be maintained in a vacuum atmosphere, and the deterioration of the blocking performance of the organic film 13 can be suppressed.
  • step S4 the third processing unit 200C performs step S4. Subsequently, the control unit 500 checks whether steps S3 to S4 have been performed a set number of times. If the number of times of execution has not reached the set number of times, steps S3 to S4 are executed again. After that, the second transport mechanism 412 takes out the substrate 1 from the third processing section 200C and transports the taken out substrate 1 to the fourth processing section 200D. During this time, the atmosphere around the substrate 1 can be maintained in a vacuum atmosphere.
  • the fourth processing unit 200D performs step S6.
  • the second transport mechanism 412 takes out the substrate 1 from the fourth processing section 200 ⁇ /b>D, transports the taken out substrate 1 to the load lock chamber 421 , and exits from the load lock chamber 421 .
  • the internal atmosphere of the load lock chamber 421 is switched from the vacuum atmosphere to the air atmosphere.
  • the first transport mechanism 402 takes out the substrate 1 from the load lock chamber 421 and stores the taken out substrate 1 in the carrier C. As shown in FIG. Then, the processing of the substrate 1 ends.
  • the first processing section 200A will be described with reference to FIG. Note that the second processing unit 200B, the third processing unit 200C, and the fourth processing unit 200D are configured in the same manner as the first processing unit 200A, so illustration and description thereof will be omitted.
  • the first processing section 200A includes a substantially cylindrical airtight processing container 210 .
  • An exhaust chamber 211 is provided in the central portion of the bottom wall of the processing container 210 .
  • the exhaust chamber 211 has, for example, a substantially cylindrical shape protruding downward.
  • An exhaust pipe 212 is connected to the exhaust chamber 211 , for example, on the side surface of the exhaust chamber 211 .
  • An exhaust source 272 is connected to the exhaust pipe 212 via a pressure controller 271 .
  • the pressure controller 271 includes a pressure regulating valve such as a butterfly valve.
  • the exhaust pipe 212 is configured such that the inside of the processing container 210 can be decompressed by the exhaust source 272 .
  • the pressure controller 271 and the exhaust source 272 constitute a gas exhaust mechanism 270 that exhausts the gas inside the processing container 210 .
  • a transfer port 215 is provided on the side surface of the processing container 210 .
  • the transfer port 215 is opened and closed by a gate valve G.
  • Substrates 1 are carried in and out between the processing container 210 and the second transfer chamber 411 (see FIG. 4) through a transfer port 215 .
  • a stage 220 that is a holding portion for holding the substrate 1 is provided in the processing container 210 .
  • the stage 220 horizontally holds the substrate 1 with the surface of the substrate 1 on which the first film and the second film are formed facing upward.
  • the stage 220 has a substantially circular shape in plan view and is supported by a support member 221 .
  • the surface of the stage 220 is formed with a substantially circular recess 222 for placing the substrate 1 having a diameter of 300 mm, for example.
  • the recess 222 has an inner diameter slightly larger than the diameter of the substrate 1 .
  • the depth of the concave portion 222 is substantially the same as the thickness of the substrate 1, for example.
  • the stage 220 is made of a ceramic material such as aluminum nitride (AlN).
  • the stage 220 may be made of a metal material such as nickel (Ni).
  • a guide ring for guiding the substrate 1 may be provided on the periphery of the surface of the stage 220 instead of the concave
  • a grounded lower electrode 223 is embedded in the stage 220, for example.
  • a heating mechanism 224 is embedded under the lower electrode 223 .
  • the heating mechanism 224 heats the substrate 1 placed on the stage 220 to a set temperature by receiving power from a power supply (not shown) based on a control signal from the control unit 500 (see FIG. 4).
  • the entire stage 220 is made of metal, the entire stage 220 functions as a lower electrode, so the lower electrode 223 does not have to be embedded in the stage 220 .
  • the stage 220 is provided with a plurality of (for example, three) lifting pins 231 for holding and lifting the substrate 1 placed on the stage 220 .
  • the material of the lifting pins 231 may be, for example, ceramics such as alumina (Al 2 O 3 ), quartz, or the like.
  • a lower end of the lifting pin 231 is attached to a support plate 232 .
  • the support plate 232 is connected to an elevating mechanism 234 provided outside the processing container 210 via an elevating shaft 233 .
  • the elevating mechanism 234 is installed, for example, in the lower part of the exhaust chamber 211.
  • the bellows 235 is provided between the lifting mechanism 234 and an opening 219 for the lifting shaft 233 formed on the lower surface of the exhaust chamber 211 .
  • the shape of the support plate 232 may be a shape that allows it to move up and down without interfering with the support member 221 of the stage 220 .
  • the elevating pin 231 is configured to be movable between above the surface of the stage 220 and below the surface of the stage 220 by means of an elevating mechanism 234 .
  • a gas supply unit 240 is provided on the ceiling wall 217 of the processing container 210 via an insulating member 218 .
  • the gas supply part 240 forms an upper electrode and faces the lower electrode 223 .
  • a high-frequency power source 252 is connected to the gas supply unit 240 via a matching device 251 .
  • a plasma generator 250 that generates plasma includes a matching box 251 and a high frequency power supply 252 .
  • the plasma generation unit 250 is not limited to capacitively coupled plasma, and may generate other plasma such as inductively coupled plasma. Note that the first processing unit 200A does not need to include the plasma generation unit 250 when the plasma processing is unnecessary.
  • the gas supply unit 240 has a hollow gas supply chamber 241 .
  • a large number of holes 242 for distributing and supplying the processing gas into the processing container 210 are, for example, evenly arranged on the lower surface of the gas supply chamber 241 .
  • a heating mechanism 243 is embedded above, for example, the gas supply chamber 241 in the gas supply unit 240 .
  • the heating mechanism 243 is heated to a set temperature by receiving power from a power supply (not shown) based on a control signal from the controller 500 .
  • a gas supply mechanism 260 is connected to the gas supply chamber 241 via a gas supply path 261 .
  • the gas supply mechanism 260 supplies the gas used in at least one of steps S2 to S4 and S6 in FIG.
  • the gas supply mechanism 260 includes an individual pipe for each type of gas, an on-off valve provided in the middle of the individual pipe, and a flow controller provided in the middle of the individual pipe.
  • the on-off valve opens the individual pipe, gas is supplied from the supply source to the gas supply path 261 .
  • the amount of supply is controlled by a flow controller.
  • the opening/closing valve closes the individual pipe, the supply of gas from the supply source to the gas supply path 261 is stopped.
  • Example 1 a substrate including a Co film having a thickness of 100 nm formed by a PVD method was prepared, the surface of the Co film was irradiated with ultraviolet rays, ozone was generated, and the ozone removed organic matter adhering to the surface of the Co film. At the same time, the oxygen density on the Co film surface was made constant.
  • FBCA Fomblin carboxylic acid
  • the substrate was heated at 230°C for 30 minutes in vacuum to remove excess FBCA physically adsorbed on the Co film surface.
  • an organic film was formed with FBCA chemically adsorbed on the Co film surface.
  • the substrate was not heated during deposition of FBCA in Experimental Example 1, it may be heated.
  • Al 2 O 3 aluminum oxide
  • the supply amount was an amount corresponding to a film thickness of 6 nm.
  • the film thickness was measured with an ellipsometer by supplying aluminum oxide on the SiO 2 film instead of the organic film.
  • the temperature of the substrate was set to room temperature when aluminum oxide was supplied onto the organic film. This is to prevent the reaction between aluminum oxide and the organic film and to check the amount of aluminum oxide trapped inside the organic film.
  • 6A to 6C show concentration distributions of various atoms in the depth direction measured by the XPS method.
  • Experimental Example 2 the substrate was treated in the same manner as in Experimental Example 1, except that Demnum carboxylic acid (DMCA) was prepared instead of FBCA. Thereafter, grinding the substrate surface and measuring the composition of the substrate surface by the XPS method were repeated. 6A to 6C show concentration distributions of various atoms in the depth direction measured by the XPS method.
  • DMCA Demnum carboxylic acid
  • the concentration of C atoms decreased and the concentration of Co atoms increased until the cut depth reached D0. Further, after the depth reached D0, the concentration of C atoms became almost constant, and the concentration of Co atoms became almost constant.
  • D0 corresponds to the interface between the organic film and the Co film.
  • the reason why the concentration of C atoms does not become zero even if the depth is deeper than D0 is due to the background of the XPS spectrum.
  • FBCA has a larger residual amount of aluminum oxide. This is because FBCA traps more aluminum oxide, and FBCA has more oxygen per molecule than FBCA and DMCA, which have the same molecular weight.
  • FBCA has a higher concentration of F atoms near the interface between the organic film and the Co film.
  • Example 3 when aluminum oxide was supplied onto the organic film, the temperature of the substrate was set to 230° C., the reaction between aluminum oxide and the organic film (FBCA) was promoted, and the organic film was etched. The substrate was processed as in Example 1. Thereafter, grinding the substrate surface and measuring the composition of the substrate surface by the XPS method were repeated.
  • FIG. 7A shows the concentration distribution of various atoms in the depth direction measured by the XPS method. Further, the solid line in FIG. 7B shows the XPS spectrum when the cut depth reaches D1.
  • the substrate was treated in the same manner as in Experimental Example 3, except that aluminum oxide was supplied to the Co film surface without depositing FBCA on the Co film surface. After that, the substrate surface was scraped, and XPS spectra were measured when the scraped depths reached D1 and D2 (D2>D1).
  • the XPS spectrum when the depth reaches D1 is shown by a dashed line in FIG. 7B
  • the XPS spectrum when the depth reaches D2 is shown by a dashed line in FIG. 7B.
  • the film thickness of the aluminum oxide film in Experimental Example 3 was 2.8 nm, while the film thickness of the aluminum oxide film in Experimental Example 4 was 7.5 nm. Met. Therefore, it can be seen that the deposition of the aluminum oxide film can be restricted by forming an organic film on the surface of the Co film in advance.
  • Example 5 the substrate was treated in the same manner as in Experimental Example 3, except that the supply amount of aluminum oxide was reduced to an amount corresponding to a film thickness of 3 nm. Thereafter, grinding the substrate surface and measuring the composition of the substrate surface by the XPS method were repeated.
  • FIG. 8A shows the concentration distribution of various atoms in the depth direction measured by the XPS method. Further, the XPS spectrum before grinding the substrate surface is shown by a solid line in FIG. 8B. In addition, in FIG. 8B, the dashed line indicates the XPS before the substrate surface was cut in Experimental Example 3. As shown in FIG.
  • Example 6 the substrate was treated in the same manner as in Experimental Example 3, except that DMCA was used instead of FBCA as the organic compound that is the raw material of the organic film. Thereafter, grinding the substrate surface and measuring the composition of the substrate surface by the XPS method were repeated.
  • FIG. 9 shows the concentration distribution of various atoms in the depth direction measured by the XPS method.

Abstract

This film forming method includes the following steps (A) to (D). (A): To prepare a substrate that has a surface having a first region in which a first film is exposed and a second region in which a second film is exposed, the second film being formed of a material that is different from the material of the first film. (B): To selectively form an organic film on the second region among the first region and the second region by supplying an organic compound that contains a perfluoroether group to the surface of the substrate. (C): To selectively form a first object film on the first region among the first region and the second region by using the organic film, which has been formed on the second region. (D): To etch the organic film by having the organic film and a material of the first object film react with each other.

Description

成膜方法及び成膜装置Film forming method and film forming apparatus
 本開示は、成膜方法及び成膜装置に関する。 The present disclosure relates to a film forming method and a film forming apparatus.
 特許文献1に記載の選択的堆積法は、材料が異なる第1表面と第2表面のうち第1表面上にパッシベーション層を気相反応物質から選択的に形成する。第1表面は金属で形成され、第2表面は誘電体で形成される。その後、第1表面上に形成されたパッシベーション層を用いて、第2表面上に対象の層を気相反応物質から選択的に堆積する。その後、基板をプラズマに暴露し、パッシベーション層を除去する。プラズマは、酸素を含む。プラズマは、水素等を含んでもよく、アルゴン等を含んでもよい。 The selective deposition method described in Patent Document 1 selectively forms a passivation layer from a vapor phase reactant on the first surface of the first surface and the second surface which are made of different materials. The first surface is formed of metal and the second surface is formed of dielectric. The passivation layer formed on the first surface is then used to selectively deposit a layer of interest on the second surface from the vapor phase reactants. The substrate is then exposed to plasma to remove the passivation layer. The plasma contains oxygen. The plasma may contain hydrogen and the like, and may contain argon and the like.
 特許文献2に記載の原子層堆積法は、材料が異なる第1表面と第2表面を含む基材であって、第2表面上にパッシベーション層を含む基材を準備する。その後、基材を、第1前駆体と、酸素を含む第2反応物質とに交互にかつ連続的に接触させることを含む堆積サイクルを実施する。第2反応物質は、第1前駆体と反応して第1表面上に誘電材料を形成する。パッシベーション層は、各堆積サイクル中に第2反応物質によってアッシングされる。第2反応物質は、酸化剤である。 The atomic layer deposition method described in Patent Document 2 prepares a substrate including a first surface and a second surface of different materials, the substrate including a passivation layer on the second surface. A deposition cycle is then performed comprising alternately and sequentially contacting the substrate with a first precursor and a second reactant comprising oxygen. A second reactant reacts with the first precursor to form a dielectric material on the first surface. The passivation layer is ashed with the second reactant during each deposition cycle. The second reactant is an oxidizing agent.
 特許文献3に記載の原子層堆積法は、金属表面と比較して誘電体表面上に酸化物薄膜
を選択的に堆積させる方法である。この方法は、基材を、第1前駆体と、第2反応物質とに交互にかつ連続的に接触させることを含む堆積サイクルを実施する。第2反応物質は、酸素を含まないガス中で形成されるプラズマを含み、例えば、水素を含むガス中で生成されるプラズマを含む。パッシベーション層は、堆積サイクルを開始する前に金属表面上に選択的に堆積され、堆積サイクル中に第2反応物質によってエッチングされる。
The atomic layer deposition method described in Patent Document 3 is a method for selectively depositing oxide thin films on dielectric surfaces compared to metal surfaces. The method performs a deposition cycle that includes alternately and sequentially contacting the substrate with a first precursor and a second reactant. The second reactant includes a plasma formed in a gas that does not contain oxygen, for example a plasma that is formed in a gas that contains hydrogen. A passivation layer is selectively deposited on the metal surface prior to beginning the deposition cycle and etched by the second reactant during the deposition cycle.
日本国特開2018-137435号公報Japanese Patent Application Laid-Open No. 2018-137435 日本国特開2019-195059号公報Japanese Patent Application Laid-Open No. 2019-195059 日本国特表2020-520126号公報Japanese special table 2020-520126
 本開示の一態様は、有機膜を用いて対象膜を所望の領域に選択的に形成し、且つ対象膜の材料と有機膜の反応によって有機膜をエッチングする、技術を提供する。 One aspect of the present disclosure provides a technique of selectively forming a target film in a desired region using an organic film, and etching the organic film through a reaction between the material of the target film and the organic film.
 本開示の一態様の成膜方法は、下記(A)~(D)を含む。(A)第1膜が露出する第1領域と、前記第1膜とは異なる材料で形成される第2膜が露出する第2領域とを表面に有する基板を準備する。(B)前記基板の前記表面に対してパーフルオロエーテル基を含む有機化合物を供給し、前記第1領域と前記第2領域のうち前記第2領域に選択的に有機膜を形成する。(C)前記第2領域に形成した前記有機膜を用い、前記第1領域と前記第2領域のうち前記第1領域に選択的に第1対象膜を形成する。(D)前記第1対象膜の材料と前記有機膜とを反応させ、前記有機膜をエッチングする。 A film formation method of one aspect of the present disclosure includes the following (A) to (D). (A) Prepare a substrate having, on its surface, a first region where a first film is exposed and a second region where a second film made of a material different from the first film is exposed. (B) supplying an organic compound containing a perfluoroether group to the surface of the substrate to selectively form an organic film on the second region of the first region and the second region; (C) Using the organic film formed in the second region, a first target film is selectively formed in the first region of the first region and the second region. (D) reacting the material of the first target film with the organic film to etch the organic film;
 本開示の一態様によれば、有機膜を用いて対象膜を所望の領域に選択的に形成でき、且つ対象膜の材料と有機膜の反応によって有機膜をエッチングできる。 According to one aspect of the present disclosure, a target film can be selectively formed in a desired region using an organic film, and the organic film can be etched by a reaction between the material of the target film and the organic film.
図1は、一実施形態に係る成膜方法を示すフローチャートである。FIG. 1 is a flow chart showing a film forming method according to one embodiment. 図2は、ステップS4のサブルーチンの一例を示すフローチャートである。FIG. 2 is a flow chart showing an example of the subroutine of step S4. 図3Aは、ステップS1の一例を示す図である。FIG. 3A is a diagram showing an example of step S1. 図3Bは、ステップS3の一例を示す図である。FIG. 3B is a diagram showing an example of step S3. 図3Cは、ステップS4の途中の一例を示す図である。FIG. 3C is a diagram showing an example in the middle of step S4. 図3Dは、図3Cに続いてステップS4の一例を示す図である。FIG. 3D is a diagram showing an example of step S4 subsequent to FIG. 3C. 図3Eは、ステップS6の一例を示す図である。FIG. 3E is a diagram showing an example of step S6. 図4は、一実施形態に係る成膜装置を示す平面図である。FIG. 4 is a plan view showing a film forming apparatus according to one embodiment. 図5は、図4の第1処理部の一例を示す断面図である。5 is a cross-sectional view showing an example of the first processing section of FIG. 4. FIG. 図6Aは、実験例1及び実験例2のCo原子及びC原子の深さ方向分布を示す図である。6A is a diagram showing depth distributions of Co atoms and C atoms in Experimental Examples 1 and 2. FIG. 図6Bは、実験例1及び実験例2のAl原子の深さ方向分布を示す図である。6B is a diagram showing the depth direction distribution of Al atoms in Experimental Examples 1 and 2. FIG. 図6Cは、実験例1及び実験例2のF原子の深さ方向分布を示す図である。6C is a diagram showing the depth direction distribution of F atoms in Experimental Examples 1 and 2. FIG. 図7Aは、実験例3の各種原子の深さ方向における濃度分布を示す図である。7A is a diagram showing the concentration distribution of various atoms in the depth direction in Experimental Example 3. FIG. 図7Bは、実験例3及び4で削った深さがD1又はD2に達した時のXPSスペクトルを示す図である。FIG. 7B is a diagram showing XPS spectra when the cut depth reaches D1 or D2 in Experimental Examples 3 and 4. FIG. 図8Aは、実験例5の各種原子の深さ方向における濃度分布を示す図である。8A is a diagram showing the concentration distribution of various atoms in the depth direction in Experimental Example 5. FIG. 図8Bは、実験例3及び5で基板表面を削る前のXPSスペクトルを示す図である。8B is a diagram showing XPS spectra before the substrate surface is ground in Experimental Examples 3 and 5. FIG. 図9は、実験例6の各種原子の深さ方向における濃度分布を示す図である。9 is a diagram showing the concentration distribution of various atoms in the depth direction in Experimental Example 6. FIG.
 以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In addition, in each drawing, the same reference numerals are given to the same or corresponding configurations, and explanations thereof may be omitted.
 先ず、図1~図2及び図3A~図3Eを参照して、本実施形態に係る成膜方法について説明する。成膜方法は、例えば図1に示すステップS1~S6を含む。なお、成膜方法は、少なくともステップS1、S3、S4を含めばよく、例えばステップS2、S6を含まなくてもよい。また、成膜方法は、図1に示すステップS1~S6以外のステップを含んでもよい。 First, a film forming method according to the present embodiment will be described with reference to FIGS. 1 to 2 and FIGS. 3A to 3E. The film forming method includes steps S1 to S6 shown in FIG. 1, for example. Note that the film formation method may include at least steps S1, S3, and S4, and may not include steps S2 and S6, for example. Further, the film forming method may include steps other than steps S1 to S6 shown in FIG.
 図1のステップS1は、図3Aに示すように、基板1を準備することを含む。基板1を準備することは、例えば、図4に示す成膜装置100にキャリアCを載置することを含む。キャリアCは、複数の基板1を収容する。 Step S1 in FIG. 1 includes preparing a substrate 1, as shown in FIG. 3A. Preparing the substrate 1 includes, for example, placing a carrier C on the film forming apparatus 100 shown in FIG. A carrier C accommodates a plurality of substrates 1 .
 基板1は、シリコンウェハ又は化合物半導体ウェハ等の下地基板10を有する。化合物半導体ウェハは、特に限定されないが、例えばGaAsウェハ、SiCウェハ、GaNウェハ、又はInPウェハである。 The substrate 1 has an underlying substrate 10 such as a silicon wafer or a compound semiconductor wafer. Compound semiconductor wafers are not particularly limited, but are, for example, GaAs wafers, SiC wafers, GaN wafers, or InP wafers.
 基板1は、下地基板10の上に形成される誘電体膜11を有する。誘電体膜11と下地基板10の間に、導電膜等が形成されてもよい。誘電体膜11は、例えば層間絶縁膜である。層間絶縁膜は、好ましくは低誘電率(Low-k)膜である。 A substrate 1 has a dielectric film 11 formed on a base substrate 10 . A conductive film or the like may be formed between the dielectric film 11 and the underlying substrate 10 . The dielectric film 11 is, for example, an interlayer insulating film. The interlayer insulating film is preferably a low dielectric constant (Low-k) film.
 誘電体膜11は、特に限定されないが、例えばSiO膜、SiN膜、SiOC膜、SiON膜、又はSiOCN膜である。ここで、SiO膜とは、シリコン(Si)と酸素(O)を含む膜という意味である。SiO膜におけるSiとOの原子比は1:1には限定されない。SiN膜、SiOC膜、SiON膜、及びSiOCN膜について同様である。 The dielectric film 11 is not particularly limited, but is, for example, a SiO film, SiN film, SiOC film, SiON film, or SiOCN film. Here, the SiO film means a film containing silicon (Si) and oxygen (O). The atomic ratio of Si and O in the SiO film is not limited to 1:1. The same applies to the SiN film, SiOC film, SiON film, and SiOCN film.
 また、基板1は、下地基板10の上に形成される金属膜12を有する。金属膜12は特に限定されないが、例えば、Cu膜、Co膜、Ru膜、又はW膜である。 The substrate 1 also has a metal film 12 formed on the base substrate 10 . Although the metal film 12 is not particularly limited, it is, for example, a Cu film, a Co film, a Ru film, or a W film.
 図3Aに示すように、基板1は、その表面に、誘電体膜11が露出する第1領域A1と、金属膜12が露出する第2領域A2とを有する。第1領域A1に露出する膜を、第1膜とも呼ぶ。また、第2領域A2に露出する膜を、第2膜とも呼ぶ。第1膜と第2膜は、異なる材料で形成されればよい。第1領域A1と第2領域A2とは、基板1の板厚方向片側(例えば、表面側)に設けられる。 As shown in FIG. 3A, the substrate 1 has, on its surface, a first area A1 where the dielectric film 11 is exposed and a second area A2 where the metal film 12 is exposed. The film exposed in the first region A1 is also called the first film. Also, the film exposed in the second region A2 is also called a second film. The first film and the second film may be made of different materials. The first area A1 and the second area A2 are provided on one side of the substrate 1 in the thickness direction (for example, on the surface side).
 第1領域A1の数は、図3A~図3Eでは1つであるが、複数でもよい。例えば2つの第1領域A1が第2領域A2を挟むように配置されてもよい。同様に、第2領域A2の数は、図3A~図3Eでは1つであるが、複数でもよい。例えば2つの第2領域A2が第1領域A1を挟むように配置されてもよい。第1領域A1と第2領域A2は、図3A~図3Eでは隣接しているが、離れていてもよい。 The number of first regions A1 is one in FIGS. 3A to 3E, but may be plural. For example, two first regions A1 may be arranged so as to sandwich the second region A2. Similarly, the number of second regions A2 is one in FIGS. 3A to 3E, but may be plural. For example, two second regions A2 may be arranged so as to sandwich the first region A1. Although the first area A1 and the second area A2 are adjacent in FIGS. 3A-3E, they may be separated.
 基板1は、その表面に、第1領域A1及び第2領域A2に加えて、不図示の第3領域を有してもよい。第3領域は、第1膜及び第2膜とは異なる材料の第3膜が露出する領域である。第3領域は、第1領域A1と第2領域A2との間に配置されてもよいし、第1領域A1及び第2領域A2の外に配置されてもよい。 The substrate 1 may have a third area (not shown) on its surface in addition to the first area A1 and the second area A2. The third region is a region where the third film made of a material different from that of the first film and the second film is exposed. The third area may be arranged between the first area A1 and the second area A2, or may be arranged outside the first area A1 and the second area A2.
 例えば、基板1は、その表面に、不図示のバリア膜が露出する第3領域を更に有してもよい。この場合、第3領域は、第1領域A1と第2領域A2の間に形成される。バリア膜は、凹部に沿って形成され、金属膜12から誘電体膜11への金属拡散を抑制する。バリア膜は、特に限定されないが、例えば、TaN膜、又はTiN膜である。ここで、TaN膜とは、タンタル(Ta)と窒素(N)を含む膜という意味である。TaN膜におけるTaとNの原子比は1:1には限定されない。TiN膜について同様である。 For example, the substrate 1 may further have a third region where a barrier film (not shown) is exposed on its surface. In this case, the third area is formed between the first area A1 and the second area A2. The barrier film is formed along the recess and suppresses metal diffusion from the metal film 12 to the dielectric film 11 . Although the barrier film is not particularly limited, it is, for example, a TaN film or a TiN film. Here, the TaN film means a film containing tantalum (Ta) and nitrogen (N). The atomic ratio of Ta and N in the TaN film is not limited to 1:1. The same is true for the TiN film.
 また、基板1は、その表面に、不図示のライナー膜が露出する第4領域を更に有する。第4領域は、第2領域A2と第3領域の間に形成される。ライナー膜は、バリア膜の上に形成され、金属膜12の形成を支援する。金属膜12は、ライナー膜の上に形成される。ライナー膜は、特に限定されないが、例えば、Co膜、又はRu膜である。 In addition, the substrate 1 further has a fourth region on its surface where the liner film (not shown) is exposed. A fourth area is formed between the second area A2 and the third area. A liner film is formed over the barrier film to assist in the formation of the metal film 12 . A metal film 12 is formed on the liner film. Although the liner film is not particularly limited, it is, for example, a Co film or a Ru film.
 図1のステップS2は、基板1の表面をクリーニングすることを含む。例えば、ステップS2は、基板1の表面に対して紫外線を照射する装置を利用し、装置中でオゾンを生成する。オゾンで基板1の表面に付着した有機物をアッシングできる。また、オゾンで金属膜12の表面を適度に酸化できる。予め後述するように自然酸化膜を除去しておけば、酸素原子の密度が所望の密度になる。その結果、後述のステップS3において、金属膜12の表面に緻密な有機膜13を形成できる。 Step S2 in FIG. 1 includes cleaning the surface of the substrate 1. For example, step S2 uses a device for irradiating the surface of the substrate 1 with ultraviolet rays to generate ozone in the device. The organic matter adhering to the surface of the substrate 1 can be ashed with ozone. Moreover, the surface of the metal film 12 can be moderately oxidized with ozone. If the natural oxide film is removed in advance as will be described later, the density of oxygen atoms becomes the desired density. As a result, a dense organic film 13 can be formed on the surface of the metal film 12 in step S3, which will be described later.
 なお、ステップS2は、基板1の表面に対してHガス等の還元性ガスを供給し、基板1の表面に形成される自然酸化膜を除去することを含んでもよい。自然酸化膜は、例えば金属膜12の表面に形成されたものである。還元性ガスは、プラズマ化されてもよい。また、還元性ガスは、Arガス等の希ガスと混合して用いられてもよい。 Note that step S2 may include supplying a reducing gas such as H 2 gas to the surface of the substrate 1 to remove a natural oxide film formed on the surface of the substrate 1 . The natural oxide film is formed on the surface of the metal film 12, for example. The reducing gas may be plasmatized. Also, the reducing gas may be used by being mixed with a rare gas such as Ar gas.
 図1のステップS3は、基板1の表面に対して有機化合物を供給し、図3Bに示すように、第1領域A1と第2領域A2のうち、第2領域A2に選択的に、有機膜13を形成する。 In step S3 of FIG. 1, the organic compound is supplied to the surface of the substrate 1, and as shown in FIG. form 13.
 有機膜13を形成する方法は、物理蒸着法、化学蒸着法(Chemical Vapor Deposition:CVD)法、又は原子層堆積法(Atomoic Layer Deposition:ALD)法である。有機化合物の分子量が大きい場合、物理蒸着法(Physical Vapor Deposition:PVD)を用いることが好ましい。 The method of forming the organic film 13 is a physical vapor deposition method, a chemical vapor deposition (CVD) method, or an atomic layer deposition (ALD) method. When the molecular weight of the organic compound is large, it is preferable to use physical vapor deposition (PVD).
 有機膜13の材料は、いわゆる自己組織化単分子膜(Self-Assembled Monolayer:SAM)の材料と同様の物である。有機膜13の材料である有機化合物は、例えば下記の式(1)又は(2)で表される。 The material of the organic film 13 is the same as the so-called Self-Assembled Monolayer (SAM) material. The organic compound that is the material of the organic film 13 is represented by the following formula (1) or (2), for example.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(1)中、Rfは、それぞれ独立して、1以上のフッ素原子により置換されていてもよい炭素数1~16のアルキル基を表す。 In formula (1), each Rf independently represents an alkyl group having 1 to 16 carbon atoms which may be substituted with one or more fluorine atoms.
 1以上のフッ素原子により置換されていてもよい炭素数1~16のアルキル基における「炭素数1~16のアルキル基」は、直鎖であっても、分枝鎖であってもよい。「炭素数1~16のアルキル基」の直鎖又は分枝鎖の炭素数は、1~6であることが好ましく、1~3であることがより好ましい。「炭素数1~16のアルキル基」は、直鎖の炭素数1~3のアルキル基であることが特に好ましい。 The "alkyl group having 1 to 16 carbon atoms" in the alkyl group having 1 to 16 carbon atoms which may be substituted with one or more fluorine atoms may be linear or branched. The number of carbon atoms in the straight or branched chain of the "alkyl group having 1 to 16 carbon atoms" is preferably 1 to 6, more preferably 1 to 3. The "alkyl group having 1 to 16 carbon atoms" is particularly preferably a linear alkyl group having 1 to 3 carbon atoms.
 Rfは、1以上のフッ素原子により置換されている炭素数1~16のアルキル基であることが好ましい。また、Rfは、CFH-C1-15フルオロアルキレン基、又は炭素数1~16のパーフルオロアルキル基であることがより好ましい。また、Rfは、炭素数1~16のパーフルオロアルキル基であることが特に好ましい。 Rf is preferably an alkyl group having 1 to 16 carbon atoms substituted with one or more fluorine atoms. Further, Rf is more preferably a CF 2 H—C 1-15 fluoroalkylene group or a C 1-16 perfluoroalkyl group. Moreover, Rf is particularly preferably a perfluoroalkyl group having 1 to 16 carbon atoms.
 「炭素数1~16のパーフルオロアルキル基」は、直鎖であっても、分枝鎖であってもよい。「炭素数1~16のパーフルオロアルキル基」の直鎖又は分枝鎖の炭素数は、1~6であることが好ましく、1~3であることがより好ましい。「炭素数1~16のパーフルオロアルキル基」は、直鎖の炭素数1~3のパーフルオロアルキル基であることが特に好ましい。「直鎖の炭素数1~3のパーフルオロアルキル基」は、具体的には、-CF、-CFCF、又は-CFCFCFである。 A “perfluoroalkyl group having 1 to 16 carbon atoms” may be linear or branched. The number of carbon atoms in the straight or branched chain of the "perfluoroalkyl group having 1 to 16 carbon atoms" is preferably 1 to 6, more preferably 1 to 3. The "perfluoroalkyl group having 1 to 16 carbon atoms" is particularly preferably a linear perfluoroalkyl group having 1 to 3 carbon atoms. The “straight-chain perfluoroalkyl group having 1 to 3 carbon atoms” is specifically —CF 3 , —CF 2 CF 3 , or —CF 2 CF 2 CF 3 .
 式(1)及び(2)中、PFPEは、それぞれ独立して、-(OC12-(OC10-(OC-(OC-(OC-(OCF-を表す。 In formulas (1) and (2), PFPE is each independently -(OC 6 F 12 ) a -(OC 5 F 10 ) b -(OC 4 F 8 ) c -(OC 3 F 6 ) d -(OC 2 F 4 ) e -(OCF 2 ) f -.
 a、b、c、d、e、及びfは、それぞれ独立して、0以上200以下の整数であって、a、b、c、d、e、及びfの和は少なくとも1である。a、b、c、d、e、及びfは、それぞれ独立して、0以上100以下の整数であることが好ましい。a、b、c、d、e、及びfの和は、5以上であることが好ましく、10以上であることがより好ましい。具体的には、a、b、c、d、e、及びfの和は、10以上100以下であってもよい。また、a、b、c、d、e、又はfを付して括弧でくくられた各繰り返し単位の存在順序は任意である。 a, b, c, d, e, and f are each independently integers of 0 or more and 200 or less, and the sum of a, b, c, d, e, and f is at least 1; Each of a, b, c, d, e, and f is preferably an integer of 0 or more and 100 or less. The sum of a, b, c, d, e, and f is preferably 5 or more, more preferably 10 or more. Specifically, the sum of a, b, c, d, e, and f may be 10 or more and 100 or less. Moreover, the order of existence of each repeating unit enclosed in parentheses with a, b, c, d, e, or f is arbitrary.
 これら繰り返し単位は、直鎖状であっても、分枝鎖状であってもよいが、直鎖状であることが好ましい。例えば、-(OC12)-は、-(OCFCFCFCFCFCF)-、-(OCF(CF)CFCFCFCF)-、-(OCFCF(CF)CFCFCF)-、-(OCFCFCF(CF)CFCF)-、-(OCFCFCFCF(CF)CF)-、-(OCFCFCFCFCF(CF))-等であってもよいが、好ましくは-(OCFCFCFCFCFCF)-である。-(OC10)-は、-(OCFCFCFCFCF)-、-(OCF(CF)CFCFCF)-、-(OCFCF(CF)CFCF)-、-(OCFCFCF(CF)CF)-、-(OCFCFCFCF(CF))-等であってもよいが、好ましくは-(OCFCFCFCFCF)-である。-(OC)-は、-(OCFCFCFCF)-、-(OCF(CF)CFCF)-、-(OCFCF(CF)CF)-、-(OCFCFCF(CF))-、-(OC(CFCF)-、-(OCFC(CF)-、-(OCF(CF)CF(CF))-、-(OCF(C)CF)-、又は-(OCFCF(C))-のいずれであってもよいが、好ましくは-(OCFCFCFCF)-である。-(OC)-は、-(OCFCFCF)-、-(OCF(CF)CF)-、又は-(OCFCF(CF))-のいずれであってもよいが、好ましくは-(OCFCFCF)-である。また、-(OC)-は、-(OCFCF)-又は-(OCF(CF))-のいずれであってもよいが、好ましくは-(OCFCF)-である。 These repeating units may be linear or branched, but preferably linear. For example, - ( OC6F12 )- is - ( OCF2CF2CF2CF2CF2CF2 )-, - ( OCF ( CF3 ) CF2CF2CF2CF2 ) -, - ( OCF 2 CF (CF 3 ) CF 2 CF 2 CF 2 )-, - (OCF 2 CF 2 CF (CF 3 ) CF 2 CF 2 )-, - (OCF 2 CF 2 CF 2 CF (CF 3 ) CF 2 )- , -(OCF 2 CF 2 CF 2 CF 2 CF(CF 3 ))-, etc., but preferably -(OCF 2 CF 2 CF 2 CF 2 CF 2 CF 2 )-. - ( OC5F10 )- is - ( OCF2CF2CF2CF2CF2 )-, - ( OCF ( CF3 ) CF2CF2CF2 )-, - ( OCF2CF ( CF3 ) CF 2 CF 2 )-, -(OCF 2 CF 2 CF(CF 3 )CF 2 )-, -(OCF 2 CF 2 CF 2 CF(CF 3 ))-, but preferably -( OCF 2 CF 2 CF 2 CF 2 CF 2 )—. -( OC4F8 )- is - ( OCF2CF2CF2CF2 )-, - ( OCF ( CF3 ) CF2CF2 )-, - ( OCF2CF ( CF3 ) CF2 )- , -( OCF2CF2CF ( CF3 ))-, -(OC( CF3 ) 2CF2 )-, -( OCF2C (CF3)2 ) - , -(OCF ( CF3 )CF( CF 3 ))-, -(OCF(C 2 F 5 )CF 2 )-, or -(OCF 2 CF(C 2 F 5 ))-, preferably -(OCF 2 CF 2 CF 2 CF 2 )-. -(OC 3 F 6 )- is any of -(OCF 2 CF 2 CF 2 )-, -(OCF(CF 3 )CF 2 )-, or -(OCF 2 CF(CF 3 ))- but preferably -(OCF 2 CF 2 CF 2 )-. In addition, -(OC 2 F 4 )- may be either -(OCF 2 CF 2 )- or -(OCF(CF 3 ))-, but is preferably -(OCF 2 CF 2 )- be.
 一の態様において、PFPEは、それぞれ独立して、-(OC-(dは1以上200以下、好ましくは5以上200以下、より好ましくは10以上200以下の整数)である。PFPEは、それぞれ独立して、-(OCFCFCF-(dは1以上200以下、好ましくは5以上200以下、より好ましくは10以上200以下の整数)、又は-(OCF(CF)CF-(dは1以上200以下、好ましくは5以上200以下、より好ましくは10以上200以下の整数)であることが好ましい。PRPFは、それぞれ独立して、-(OCFCFCF-(dは1以上200以下、好ましくは5以上200以下、より好ましくは10以上200以下の整数)であることがより好ましい。 In one aspect, each PFPE is independently -(OC 3 F 6 ) d - (d is an integer of 1 or more and 200 or less, preferably 5 or more and 200 or less, more preferably 10 or more and 200 or less). Each PFPE is independently -(OCF 2 CF 2 CF 2 ) d - (d is an integer of 1 or more and 200 or less, preferably 5 or more and 200 or less, more preferably 10 or more and 200 or less), or -(OCF ( CF 3 )CF 2 ) d − (d is an integer of 1 or more and 200 or less, preferably 5 or more and 200 or less, more preferably 10 or more and 200 or less). Each PRPF is more preferably independently -(OCF 2 CF 2 CF 2 ) d - (d is an integer of 1 or more and 200 or less, preferably 5 or more and 200 or less, more preferably 10 or more and 200 or less). .
 別の態様において、PFPEは、それぞれ独立して、-(OC-(OC-(OC-(OCF-である。このとき、c及びdは、それぞれ独立して0以上30以下の整数であり、e及びfは、それぞれ独立して1以上200以下、好ましくは5以上200以下、より好ましくは10以上200以下の整数であり、c、d、e、又はfを付して括弧でくくられた各繰り返し単位の存在順序は任意である。PFPEは、それぞれ独立して、-(OCFCFCFCF-(OCFCFCF-(OCFCF-(OCF-であることが好ましい。一の態様において、PFPEは、それぞれ独立して、-(OC-(OCF-であってもよい。このとき、e及びfは、それぞれ独立して1以上200以下、好ましくは5以上200以下、より好ましくは10以上200以下の整数であり、e又はfを付して括弧でくくられた各繰り返し単位の存在順序は任意である。 In another aspect, each PFPE is independently -(OC 4 F 8 ) c -(OC 3 F 6 ) d -(OC 2 F 4 ) e -(OCF 2 ) f -. At this time, c and d are each independently an integer of 0 or more and 30 or less, e and f are each independently 1 or more and 200 or less, preferably 5 or more and 200 or less, more preferably 10 or more and 200 or less The order of occurrence of each repeating unit bracketed with c, d, e, or f, which is an integer, is arbitrary. Each PFPE is preferably independently -(OCF 2 CF 2 CF 2 CF 2 ) c -(OCF 2 CF 2 CF 2 ) d -(OCF 2 CF 2 ) e -(OCF 2 ) f - . In one aspect, each PFPE may independently be -(OC 2 F 4 ) e -(OCF 2 ) f -. At this time, e and f are each independently an integer of 1 or more and 200 or less, preferably 5 or more and 200 or less, more preferably 10 or more and 200 or less, and each repetition bracketed with e or f The order in which the units are present is arbitrary.
 さらに別の態様において、PFPEは、それぞれ独立して、-(R-R-で表される基である。Rは、OCF又はOCであり、好ましくはOCである。Rは、OC、OC、OC、OC10、及びOC12からなる群から選択される基であるか、又はこれらの基から独立して選択される2又は3の基の組み合わせである。Rは、OC、OC及びOCからなる群から選択される基であるか、又はこれらの基から独立して選択される2又は3の基の組み合わせであることが好ましい。OC、OC、及びOCからなる群から独立して選択される2又は3の基の組み合わせとしては、特に限定されないが、例えば-OCOC-、-OCOC-、-OCOC-、-OCOC-、-OCOC-、-OCOC-、-OCOC-、-OCOC-、-OCOCOC-、-OCOCOC-、-OCOCOC-、-OCOCOC-、-OCOCOC-、-OCOCOC-、-OCOCOC-、-OCOCOC-、-OCOCOC-等が挙げられる。qは、2~100の整数、好ましくは2~50の整数である。OC、OC、OC、OC10、及びOC12は、直鎖又は分枝鎖のいずれであってもよく、好ましくは直鎖である。この態様において、PFPEは、それぞれ独立して、-(OC-OC-又は-(OC-OC-であることが好ましい。 In yet another aspect, each PFPE is independently a group represented by -(R 6 -R 7 ) q -. R6 is OCF2 or OC2F4 , preferably OC2F4 . R7 is a group selected from the group consisting of OC2F4 , OC3F6 , OC4F8 , OC5F10 , and OC6F12 , or independently selected from these groups is a combination of two or three groups that are R7 is a group selected from the group consisting of OC2F4 , OC3F6 and OC4F8 , or a combination of two or three groups independently selected from these groups is preferred. The combination of two or three groups independently selected from the group consisting of OC 2 F 4 , OC 3 F 6 and OC 4 F 8 is not particularly limited, but for example -OC 2 F 4 OC 3 F 6 -, -OC 2 F 4 OC 4 F 8 -, -OC 3 F 6 OC 2 F 4 -, -OC 3 F 6 OC 3 F 6 -, -OC 3 F 6 OC 4 F 8 -, -OC 4 F 8OC4F8- , -OC4F8OC3F6- , -OC4F8OC2F4- , -OC2F4OC2F4OC3F6- , -OC2F4OC _ _ _ _ _ _ _ _ _ _ 2F4OC4F8- , -OC2F4OC3F6OC2F4- , -OC2F4OC3F6OC3F6- , -OC2F4OC4F8OC2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ F 4 -, -OC 3 F 6 OC 2 F 4 OC 2 F 4 -, -OC 3 F 6 OC 2 F 4 OC 3 F 6 -, -OC 3 F 6 OC 3 F 6 OC 2 F 4 -, - OC 4 F 8 OC 2 F 4 OC 2 F 4 - and the like. q is an integer of 2-100, preferably an integer of 2-50. OC2F4 , OC3F6 , OC4F8 , OC5F10 and OC6F12 can be either linear or branched , preferably linear. In this aspect, each PFPE is preferably independently -(OC 2 F 4 -OC 3 F 6 ) q - or -(OC 2 F 4 -OC 4 F 8 ) q -.
 式(1)及び(2)中、Aは、各出現においてそれぞれ独立して、第1領域A1と第2領域A2のうち、第2領域A2に選択的に化学吸着する官能基を表し、例えば-COOH、-SH、又は-P(=O)(OH)を表す。 In formulas (1) and (2), A each independently represents a functional group that selectively chemisorbs to the second region A2 of the first region A1 and the second region A2 at each occurrence, for example Represents -COOH, -SH, or -P(=O)(OH) 2 .
 式(1)及び(2)中、Xは、それぞれ独立して、単結合又は2価~10価の有機基を表す。Xは、式(1)又は(2)で表される化合物において、主に撥水性、表面滑り性等を提供するパーフルオロポリエーテル部(すなわち、Rf-PFPE部又は-PFPE-部)と、基材との結合能を提供する結合部(すなわち、A基)とを連結するリンカーと解される。従って、Xは、式(1)又は(2)で表される化合物が安定に存在し得るものであれば、いずれの有機基であってもよい。 In formulas (1) and (2), each X independently represents a single bond or a divalent to decavalent organic group. X is a perfluoropolyether portion (that is, Rf-PFPE portion or -PFPE- portion) that mainly provides water repellency, surface slipperiness, etc. in the compound represented by formula (1) or (2); It is understood as a linker that connects the binding portion (ie group A) that provides the ability to bind to the substrate. Therefore, X may be any organic group as long as the compound represented by formula (1) or (2) can exist stably.
 式(1)及び(2)中、αは1~9の整数であり、α’は1~9の整数である。α及びα’は、Xの価数に応じて変化し得る。式(1)においては、α及びα’の和は、Xの価数と同じである。例えば、Xが10価の有機基である場合、α及びα’の和は10であり、例えばαが9且つα’が1、αが5且つα’が5、又はαが1且つα’が9となり得る。また、Xが2価の有機基である場合、α及びα’は1である。式(2)においては、αはXの価数から1を引いた値である。 In formulas (1) and (2), α is an integer of 1-9, and α' is an integer of 1-9. α and α' can vary depending on the valence of X. In formula (1), the sum of α and α' is the same as the valence of X. For example, if X is a decavalent organic group, the sum of α and α' is 10, for example, α is 9 and α' is 1, α is 5 and α' is 5, or α is 1 and α' can be 9. Also, when X is a divalent organic group, α and α' are 1. In Equation (2), α is the value obtained by subtracting 1 from the valence of X.
 Xは、好ましくは2~7価、より好ましくは2~4価、特に好ましくは2価の有機基である。 X is preferably a divalent to heptavalent, more preferably divalent to tetravalent, particularly preferably divalent organic group.
 一の態様において、Xは2~4価の有機基であり、αは1~3であり、α’は1である。 In one embodiment, X is a divalent to tetravalent organic group, α is 1 to 3, and α' is 1.
 別の態様において、Xは2価の有機基であり、αは1であり、α’は1である。この場合、式(1)及び(2)は、下記式(3)及び(4)で表される。 In another embodiment, X is a divalent organic group, α is 1, and α' is 1. In this case, the formulas (1) and (2) are represented by the following formulas (3) and (4).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(3)及び(4)の好ましい態様において、Xは、それぞれ独立して、特に限定されるものではないが、例えば、下記式(5)で表される2価の基である。 In preferred embodiments of formulas (3) and (4), X is each independently, but not particularly limited to, for example, a divalent group represented by formula (5) below.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(5)中、R31は、単結合、-(CHs’-、若しくはo-、m-、又はp-フェニレン基を表し、好ましくは-(CHs’-である。s’は、1~20の整数、好ましくは1~6の整数、より好ましくは1~3の整数、特に好ましくは1又は2である。Xは、-(Xl’-を表し、Xは、各出現においてそれぞれ独立して、-O-、-S-、o-、m-、又はp-フェニレン基、-C(O)O-、-Si(R33-、-(Si(R33O)m”-Si(R33-、-CONR34-、-O-CONR34-、-NR34-、及び-(CHn’-からなる群から選択される基を表す。R33は、各出現においてそれぞれ独立して、フェニル基、C1-6アルキル基、又はC1-6アルコキシ基を表し、好ましくはフェニル基又はC1-6アルキル基であり、より好ましくはメチル基である。R34は、各出現においてそれぞれ独立して、水素原子、フェニル基、又はC1-6アルキル基(好ましくはメチル基)を表す。m”は、各出現において、それぞれ独立して、1~100の整数、好ましくは1~20の整数である。n’は、各出現において、それぞれ独立して、1~20の整数、好ましくは1~6の整数、より好ましくは1~3の整数である。l’は、1~10の整数、好ましくは1~5の整数、より好ましくは1~3の整数である。p1は、0又は1である。q1は、0又は1である。p1又はq1の少なくとも一方は1であり、p1又はq1を付して括弧でくくられた各繰り返し単位の存在順序は任意である。なお、R31及びX(典型的にはR31及びXの水素原子)は、フッ素原子、C1-3アルキル基、及びC1-3フルオロアルキル基からなる群から選択される1以上の置換基により置換されていてもよい。 In formula (5), R 31 represents a single bond, —(CH 2 ) s′ —, or an o-, m-, or p-phenylene group, preferably —(CH 2 ) s′ —. s' is an integer of 1 to 20, preferably an integer of 1 to 6, more preferably an integer of 1 to 3, particularly preferably 1 or 2. X a represents —(X b ) l′ —, and each occurrence of X b is independently —O—, —S—, o-, m-, or p-phenylene group, —C( O)O—, —Si(R 33 ) 2 —, —(Si(R 33 ) 2 O) m″ —Si(R 33 ) 2 —, —CONR 34 —, —O—CONR 34 —, —NR 34 represents a group selected from the group consisting of -, and -(CH 2 ) n' -, wherein each occurrence of R 33 is independently at each occurrence a phenyl group, a C 1-6 alkyl group, or a C 1-6 alkoxy; group, preferably a phenyl group or a C 1-6 alkyl group, more preferably a methyl group, each occurrence of R 34 is independently a hydrogen atom, a phenyl group, or a C 1-6 alkyl group; represents a group (preferably a methyl group). m″ at each occurrence is independently an integer of 1-100, preferably an integer of 1-20. n', at each occurrence, is independently an integer from 1 to 20, preferably an integer from 1 to 6, more preferably an integer from 1 to 3. l' is an integer of 1-10, preferably an integer of 1-5, more preferably an integer of 1-3. p1 is 0 or 1; q1 is 0 or 1; At least one of p1 and q1 is 1, and the order of existence of each repeating unit enclosed in parentheses with p1 or q1 is arbitrary. R 31 and X a (typically hydrogen atoms of R 31 and X a ) are one or more selected from the group consisting of a fluorine atom, a C 1-3 alkyl group, and a C 1-3 fluoroalkyl group may be substituted by a substituent of
 Xは、それぞれ独立して、-(R31p1-(Xq1-R32-であることが好ましい。R32は、単結合、-(CHt’-、若しくはo-、m-、又はp-フェニレン基を表し、好ましくは-(CHt’-である。t’は、1~20の整数、好ましくは2~6の整数、より好ましくは2~3の整数である。R32(典型的にはR32の水素原子)は、フッ素原子、C1-3アルキル基、及びC1-3フルオロアルキル基からなる群から選択される1以上の置換基により置換されていてもよい。 Each X is preferably independently -(R 31 ) p1 -(X a ) q1 -R 32 -. R 32 represents a single bond, -(CH 2 ) t' -, or an o-, m- or p-phenylene group, preferably -(CH 2 ) t' -. t' is an integer of 1-20, preferably an integer of 2-6, more preferably an integer of 2-3. R 32 (typically the hydrogen atom of R 32 ) is substituted with one or more substituents selected from the group consisting of a fluorine atom, a C 1-3 alkyl group and a C 1-3 fluoroalkyl group; good too.
 Xは、好ましくは、それぞれ独立して、C1-20アルキレン基、-R31-X-R32-、又は-X-R32-であり得る。この式中、R31及びR32は、上記と同意義である。 Each X preferably and independently can be a C 1-20 alkylene group, —R 31 —X c —R 32 —, or —X d —R 32 —. In this formula, R 31 and R 32 have the same meanings as above.
 Xは、より好ましくは、それぞれ独立して、C1-20アルキレン基、-(CHs’-X-、-(CHs’-X-(CHt’-、-X-、又は-X-(CHt’-である。この式中、s’及びt’は、上記と同意義である。 X is more preferably each independently a C 1-20 alkylene group, —(CH 2 ) s′ —X c —, —(CH 2 ) s′ —X c —(CH 2 ) t′ —, —X d —, or —X d —(CH 2 ) t′ —. In this formula, s' and t' have the same meanings as above.
 Xは、-O-、-S-、-C(O)O-、-CONR34-、-O-CONR34-、-Si(R33-、-(Si(R33O)m”-Si(R33-、-O-(CHu’-(Si(R33O)m”-Si(R33-、-O-(CHu’-Si(R33-O-Si(R33-CHCH-Si(R33-O-Si(R33-、-O-(CHu’-Si(OCHOSi(OCH-、-CONR34-(CHu’-(Si(R33O)m”-Si(R33-、-CONR34-(CHu’-N(R34)-、又は-CONR34-(o-、m-、又はp-フェニレン)-Si(R33-を表す。このとき、R33、R34、及びm”は、上記と同意義である。u’は、1~20の整数、好ましくは2~6の整数、より好ましくは2~3の整数である。Xは、好ましくは-O-である。 X c is —O—, —S—, —C(O)O—, —CONR 34 —, —O—CONR 34 —, —Si(R 33 ) 2 —, —(Si(R 33 ) 2 O ) m″ —Si(R 33 ) 2 —, —O—(CH 2 ) u′ —(Si(R 33 ) 2 O) m” —Si(R 33 ) 2 —, —O—(CH 2 ) u ' -Si(R 33 ) 2 -O-Si(R 33 ) 2 -CH 2 CH 2 -Si(R 33 ) 2 -O-Si(R 33 ) 2 -, -O-(CH 2 ) u' - Si(OCH 3 ) 2 OSi(OCH 3 ) 2 —, —CONR 34 —(CH 2 ) u′ —(Si(R 33 ) 2 O) m″ —Si(R 33 ) 2 —, —CONR 34 —( CH 2 ) u′ —N(R 34 )—, or —CONR 34 —(o-, m-, or p-phenylene)—Si(R 33 ) 2 —, where R 33 , R 34 , and m″ have the same meanings as above. u' is an integer of 1-20, preferably an integer of 2-6, more preferably an integer of 2-3. X c is preferably -O-.
 Xは、-S-、-C(O)O-、-CONR34-、-CONR34-(CHu’b-(Si(R33O)m”-Si(R33-、-CONR34-(CHu’-N(R34)-、又は-CONR34-(o-、m-、又はp-フェニレン)-Si(R33-を表す。この式中、各記号は、上記と同意義である。 X d is —S—, —C(O)O—, —CONR 34 —, —CONR 34 —(CH 2 ) u′b —(Si(R 33 ) 2 O) m″ —Si(R 33 ) 2- , -CONR 34 -(CH 2 ) u' -N(R 34 )-, or -CONR 34 -(o-, m-, or p-phenylene)-Si(R 33 ) 2 -. In the formula, each symbol has the same meaning as above.
 より好ましくは、Xは、それぞれ独立して、C1-20アルキレン基、-(CHs’-X-(CHt’-、又は-X-(CHt’-であり得る。この式中、各記号は、上記と同意義である。 More preferably, each X is independently a C 1-20 alkylene group, —(CH 2 ) s′ —X c —(CH 2 ) t′ —, or —X d —(CH 2 ) t′ — can be In this formula, each symbol has the same meaning as above.
 特に好ましくは、Xは、それぞれ独立して、C1-20アルキレン基、-(CHs’-O-(CHt’-、-(CHs’-(Si(R33O)m”-Si(R33-(CHt’-、-(CHs’-O-(CHu’-(Si(R33O)m”-Si(R33-(CHt’-、又は-(CHs’-O-(CHt’-Si(R33-(CHu’-Si(R33-(C2v)-である。R33、m”、s’、t’、及びu’は、上記と同意義であり、vは1~20の整数、好ましくは2~6の整数、より好ましくは2~3の整数である。 Particularly preferably, each X is independently a C 1-20 alkylene group, —(CH 2 ) s′ —O—(CH 2 ) t′ —, —(CH 2 ) s′ —(Si(R 33 ) 2 O) m″ —Si(R 33 ) 2 —(CH 2 ) t′ —, —(CH 2 ) s′ —O—(CH 2 ) u′ —(Si(R 33 ) 2 O) m” —Si(R 33 ) 2 —(CH 2 ) t′ —, or —(CH 2 ) s′ —O—(CH 2 ) t′ —Si(R 33 ) 2 —(CH 2 ) u′ —Si( R 33 ) 2 -(C v H 2v )-. R 33 , m″, s′, t′ and u′ have the same meanings as above, v is an integer of 1 to 20, preferably an integer of 2 to 6, more preferably an integer of 2 to 3 .
 -(C2v)-は、直鎖であっても、分枝鎖であってもよく、例えば、-CHCH-、-CHCHCH-、-CH(CH)-、又は-CH(CH)CH-であり得る。 -(C v H 2v )- may be linear or branched, for example -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH(CH 3 ) -, or -CH(CH 3 )CH 2 -.
 Xは、それぞれ独立して、フッ素原子、C1-3アルキル基、及びC1-3フルオロアルキル基(好ましくは、C1-3パーフルオロアルキル基)からなる群から選択される1以上の置換基により置換されていてもよい。 Each X is independently one or more substituents selected from the group consisting of a fluorine atom, a C 1-3 alkyl group, and a C 1-3 fluoroalkyl group (preferably a C 1-3 perfluoroalkyl group) It may be substituted by a group.
 一の態様において、Xは、それぞれ独立して、-O-C1-6アルキレン基以外であり得る。 In one aspect, each X may independently be other than a —O—C 1-6 alkylene group.
 別の態様において、Xとしては、例えば下記式(6)~(12)で表される基が挙げられる。 In another aspect, X includes, for example, groups represented by the following formulas (6) to (12).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(6)~(12)中、R41は、それぞれ独立して、水素原子、フェニル基、炭素数1~6のアルキル基、又はC1-6アルコキシ基であり、好ましくはメチル基である。Dは、-CHO(CH-、-CHO(CH-、-CFO(CH-、-(CH-、-(CH-、-(CH-、-CONH-(CH-、-CON(CH)-(CH-、-CON(Ph)-(CH-(Phはフェニルを意味する)、及び下記式(13)で表される基からなる群から選択される基である。 In formulas (6) to (12), each R 41 is independently a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or a C 1-6 alkoxy group, preferably a methyl group. . D is -CH 2 O(CH 2 ) 2 -, -CH 2 O(CH 2 ) 3 -, -CF 2 O(CH 2 ) 3 -, -(CH 2 ) 2 -, -(CH 2 ) 3 -, -(CH 2 ) 4 -, -CONH-(CH 2 ) 3 -, -CON(CH 3 )-(CH 2 ) 3 -, -CON(Ph)-(CH 2 ) 3 - (Ph is phenyl is a group selected from the group consisting of ) and groups represented by the following formula (13).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(13)中、R42は、それぞれ独立して、水素原子、C1-6のアルキル基、又はC1-6のアルコキシ基であり、好ましくはメチル基又はメトキシ基であり、より好ましくはメチル基である。 In formula (13), each R 42 is independently a hydrogen atom, a C 1-6 alkyl group or a C 1-6 alkoxy group, preferably a methyl group or a methoxy group, more preferably is a methyl group.
 式(6)~(12)中、Eは、-(CH-(nは2~6の整数)であり、Dは、分子主鎖のPFPEに結合し、Eは、PFPEと反対の基に結合する。 In formulas (6) to (12), E is —(CH 2 ) n — (n is an integer from 2 to 6), D is attached to the PFPE of the molecular backbone, and E is opposite to PFPE. to the group of
 Xの具体的な例としては、例えば:
-CHO(CH-、
-CHO(CH-、
-CHO(CH-、
-CHO(CHSi(CHOSi(CH(CH-、
-CHO(CHSi(CHOSi(CHOSi(CH(CH-、
-CHO(CHSi(CHO(Si(CHO)Si(CH(CH-、
-CHO(CHSi(CHO(Si(CHO)Si(CH(CH-、
-CHO(CHSi(CHO(Si(CHO)10Si(CH(CH-、
-CHO(CHSi(CHO(Si(CHO)20Si(CH(CH-、
-CHOCFCHFOCF-、
-CHOCFCHFOCFCF-、
-CHOCFCHFOCFCFCF-、
-CHOCHCFCFOCF-、
-CHOCHCFCFOCFCF-、
-CHOCHCFCFOCFCFCF-、
-CHOCHCFCFOCF(CF)CFOCF-、
-CHOCHCFCFOCF(CF)CFOCFCF-、
-CHOCHCFCFOCF(CF)CFOCFCFCF-、
-CHOCHCHFCFOCF-、
-CHOCHCHFCFOCFCF-、
-CHOCHCHFCFOCFCFCF-、
-CHOCHCHFCFOCF(CF)CFOCF-、
-CHOCHCHFCFOCF(CF)CFOCFCF-、
-CHOCHCHFCFOCF(CF)CFOCFCFCF-、
-CHOCH(CHCHSi(OCHOSi(OCH(CHSi(OCHOSi(OCH(CH-、
-CHOCHCHCHSi(OCHOSi(OCH(CH-、
-CHOCHCHCHSi(OCHCHOSi(OCHCH(CH-、
-CHOCHCHCHSi(OCHOSi(OCH(CH-、
-CHOCHCHCHSi(OCHCHOSi(OCHCH(CH-、
-(CH-、
-(CH-、
-(CH-、
-(CH-、
-(CH-、
-CONH-(CH-、
-CON(CH)-(CH-、
-CON(Ph)-(CH-(式中、Phはフェニルを意味する)、
-CONH-(CH-、
-CON(CH)-(CH-、
-CON(Ph)-(CH-(式中、Phはフェニルを意味する)、
-CONH-(CHNH(CH-、
-CONH-(CHNH(CH-、
-CHO-CONH-(CH-、
-CHO-CONH-(CH-、
-S-(CH-、
-(CHS(CH-、
-CONH-(CHSi(CHOSi(CH(CH-、
-CONH-(CHSi(CHOSi(CHOSi(CH(CH-、
-CONH-(CHSi(CHO(Si(CHO)Si(CH(CH-、
-CONH-(CHSi(CHO(Si(CHO)Si(CH(CH-、
-CONH-(CHSi(CHO(Si(CHO)10Si(CH(CH-、
-CONH-(CHSi(CHO(Si(CHO)20Si(CH(CH-、
-C(O)O-(CH-、
-C(O)O-(CH-、
-CH-O-(CH-Si(CH-(CH-Si(CH-(CH-、
-CH-O-(CH-Si(CH-(CH-Si(CH-CH(CH)-、
-CH-O-(CH-Si(CH-(CH-Si(CH-(CH-、
-CH-O-(CH-Si(CH-(CH-Si(CH-CH(CH)-CH-、
-OCH-、
-O(CH-、
-OCFHCF-、
下記式(14)で表される基、
下記式(15)で表される基、
等が挙げられる。
Specific examples of X include:
—CH 2 O(CH 2 ) 2 —,
—CH 2 O(CH 2 ) 3 —,
—CH 2 O(CH 2 ) 6 —,
—CH 2 O(CH 2 ) 3 Si(CH 3 ) 2 OSi(CH 3 ) 2 (CH 2 ) 2 —,
—CH 2 O(CH 2 ) 3 Si(CH 3 ) 2 OSi(CH 3 ) 2 OSi(CH 3 ) 2 (CH 2 ) 2 —,
—CH 2 O(CH 2 ) 3 Si(CH 3 ) 2 O(Si(CH 3 ) 2 O) 2 Si(CH 3 ) 2 (CH 2 ) 2 —,
—CH 2 O(CH 2 ) 3 Si(CH 3 ) 2 O(Si(CH 3 ) 2 O) 3 Si(CH 3 ) 2 (CH 2 ) 2 —,
—CH 2 O(CH 2 ) 3 Si(CH 3 ) 2 O(Si(CH 3 ) 2 O) 10 Si(CH 3 ) 2 (CH 2 ) 2 —,
—CH 2 O(CH 2 ) 3 Si(CH 3 ) 2 O(Si(CH 3 ) 2 O) 20 Si(CH 3 ) 2 (CH 2 ) 2 —,
—CH 2 OCF 2 CHFOCF 2 —,
—CH 2 OCF 2 CHFOCF 2 CF 2 —,
-CH2OCF2CHFOCF2CF2CF2- , _ _ _
-CH2OCH2CF2CF2OCF2- , _ _ _
-CH2OCH2CF2CF2OCF2CF2- , _ _ _ _
-CH2OCH2CF2CF2OCF2CF2CF2- , _ _ _ _ _
-CH2OCH2CF2CF2OCF ( CF3 ) CF2OCF2- , _
-CH2OCH2CF2CF2OCF ( CF3 ) CF2OCF2CF2- , _ _
-CH2OCH2CF2CF2OCF ( CF3 ) CF2OCF2CF2CF2- , _ _ _
-CH2OCH2CHFCF2OCF2- , _ _
-CH2OCH2CHFCF2OCF2CF2- , _ _ _
-CH2OCH2CHFCF2OCF2CF2CF2- , _ _ _ _
-CH2OCH2CHFCF2OCF ( CF3 ) CF2OCF2- ,
-CH2OCH2CHFCF2OCF ( CF3 ) CF2OCF2CF2- , _
-CH2OCH2CHFCF2OCF ( CF3 ) CF2OCF2CF2CF2- , _ _
-CH2OCH2 ( CH2 ) 7CH2Si ( OCH3) 2OSi ( OCH3) 2 ( CH2 ) 2Si ( OCH3) 2OSi ( OCH3) 2 ( CH2 ) 2- ,
-CH2OCH2CH2CH2Si ( OCH3) 2OSi ( OCH3 ) 2 ( CH2 ) 3- ,
-CH2OCH2CH2CH2Si ( OCH2CH3 ) 2OSi ( OCH2CH3 ) 2 ( CH2 ) 3- ,
-CH2OCH2CH2CH2Si ( OCH3 ) 2OSi ( OCH3 ) 2 ( CH2 ) 2- ,
-CH2OCH2CH2CH2Si ( OCH2CH3 ) 2OSi ( OCH2CH3 ) 2 ( CH2 ) 2- ,
-(CH 2 ) 2 -,
-(CH 2 ) 3 -,
-(CH 2 ) 4 -,
-(CH 2 ) 5 -,
-( CH2 ) 6- ,
—CONH—(CH 2 ) 3 —,
-CON(CH 3 )-(CH 2 ) 3 -,
-CON(Ph)-(CH 2 ) 3 - (wherein Ph means phenyl),
—CONH—(CH 2 ) 6 —,
-CON(CH 3 )-(CH 2 ) 6 -,
-CON(Ph)-(CH 2 ) 6 - (wherein Ph means phenyl),
-CONH-(CH 2 ) 2 NH(CH 2 ) 3 -,
-CONH-( CH2 ) 6NH ( CH2 ) 3- ,
—CH 2 O—CONH—(CH 2 ) 3 —,
—CH 2 O—CONH—(CH 2 ) 6 —,
-S-(CH 2 ) 3 -,
-(CH 2 ) 2 S(CH 2 ) 3 -,
—CONH—(CH 2 ) 3 Si(CH 3 ) 2 OSi(CH 3 ) 2 (CH 2 ) 2 —,
—CONH—(CH 2 ) 3 Si(CH 3 ) 2 OSi(CH 3 ) 2 OSi(CH 3 ) 2 (CH 2 ) 2 —,
—CONH—(CH 2 ) 3 Si(CH 3 ) 2 O(Si(CH 3 ) 2 O) 2 Si(CH 3 ) 2 (CH 2 ) 2 —,
—CONH—(CH 2 ) 3 Si(CH 3 ) 2 O(Si(CH 3 ) 2 O) 3 Si(CH 3 ) 2 (CH 2 ) 2 —,
—CONH—(CH 2 ) 3 Si(CH 3 ) 2 O(Si(CH 3 ) 2 O) 10 Si(CH 3 ) 2 (CH 2 ) 2 —,
—CONH—(CH 2 ) 3 Si(CH 3 ) 2 O(Si(CH 3 ) 2 O) 20 Si(CH 3 ) 2 (CH 2 ) 2 —,
—C(O)O—(CH 2 ) 3 —,
—C(O)O—(CH 2 ) 6 —,
—CH 2 —O—(CH 2 ) 3 —Si(CH 3 ) 2 —(CH 2 ) 2 —Si(CH 3 ) 2 —(CH 2 ) 2 —,
—CH 2 —O—(CH 2 ) 3 —Si(CH 3 ) 2 —(CH 2 ) 2 —Si(CH 3 ) 2 —CH(CH 3 )—,
—CH 2 —O—(CH 2 ) 3 —Si(CH 3 ) 2 —(CH 2 ) 2 —Si(CH 3 ) 2 —(CH 2 ) 3 —,
—CH 2 —O—(CH 2 ) 3 —Si(CH 3 ) 2 —(CH 2 ) 2 —Si(CH 3 ) 2 —CH(CH 3 )—CH 2 —,
-OCH2- ,
—O(CH 2 ) 3 —,
-OCFHCF2- ,
a group represented by the following formula (14),
a group represented by the following formula (15),
etc.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 さらに別の態様において、Xは、それぞれ独立して、下記式(16)で表される基である。 In yet another aspect, each X is independently a group represented by the following formula (16).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(16)中、x、y、及びzは、それぞれ独立して、0~10の整数であり、x、y、及びzの和は1以上であり、括弧でくくられた各繰り返し単位の存在順序は任意である。R16は、各出現においてそれぞれ独立して、酸素原子、フェニレン、カルバゾリレン、-NR26-(R26は、水素原子又は有機基を表す)、又は2価の有機基であり、好ましくは、酸素原子又は2価の極性基である。 In formula (16), x, y, and z are each independently an integer of 0 to 10, the sum of x, y, and z is 1 or more, and each parenthesized repeating unit The order of existence is arbitrary. Each occurrence of R 16 is independently an oxygen atom, phenylene, carbazolylene, —NR 26 — (R 26 represents a hydrogen atom or an organic group), or a divalent organic group, preferably oxygen It is an atom or a divalent polar group.
 「2価の極性基」としては、特に限定されないが、-C(O)-、-C(=NR27)-、及び-C(O)NR27-(R27は、水素原子又は低級アルキル基を表す)が挙げられる。「低級アルキル基」は、例えば、炭素数1~6のアルキル基(例えばメチル、エチル、又はn-プロピル)であり、これらは1以上のフッ素原子により置換されていてもよい。 The "divalent polar group" is not particularly limited, but -C(O)-, -C(=NR 27 )-, and -C(O)NR 27 - (R 27 is a hydrogen atom or a lower alkyl represents a group). A "lower alkyl group" is, for example, an alkyl group having 1 to 6 carbon atoms (eg, methyl, ethyl, or n-propyl), which may be substituted with one or more fluorine atoms.
 式(16)中、R17は、各出現においてそれぞれ独立して、水素原子、フッ素原子、又は低級フルオロアルキル基であり、好ましくはフッ素原子である。「低級フルオロアルキル基」の炭素数は、例えば、1~6である。「低級フルオロアルキル基」は、好ましくは炭素数1~3のフルオロアルキル基又は炭素数1~3のパーフルオロアルキル基であり、より好ましくはトリフルオロメチル基又はペンタフルオロエチル基であり、特に好ましくはトリフルオロメチル基である。 In formula (16), each occurrence of R 17 is independently a hydrogen atom, a fluorine atom, or a lower fluoroalkyl group, preferably a fluorine atom. The number of carbon atoms in the "lower fluoroalkyl group" is, for example, 1-6. The "lower fluoroalkyl group" is preferably a fluoroalkyl group having 1 to 3 carbon atoms or a perfluoroalkyl group having 1 to 3 carbon atoms, more preferably a trifluoromethyl group or a pentafluoroethyl group, particularly preferably is a trifluoromethyl group.
 さらに別の態様において、Xの例として、式(17)~(24)で表される基が挙げられる。 In yet another aspect, examples of X include groups represented by formulas (17) to (24).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式(17)~(24)中、R41は、それぞれ独立して、水素原子、フェニル基、炭素数1~6のアルキル基、又はC1-6アルコキシ基であり、好ましくはメチル基である。 In formulas (17) to (24), each R 41 is independently a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or a C 1-6 alkoxy group, preferably a methyl group. .
 各Xにおいて、Tのうち任意のいくつかは、分子主鎖のPFPEに結合する以下の基である。
-CHO(CH-、
-CHO(CH-、
-CFO(CH-、
-(CH-、
-(CH-、
-(CH-、
-CONH-(CH-、
-CON(CH)-(CH-、
-CON(Ph)-(CH-(式中、Phはフェニルを意味する)、
又は下記式(25)で表される基。
In each X, any some of the Ts are the following groups attached to PFPE of the molecular backbone.
—CH 2 O(CH 2 ) 2 —,
—CH 2 O(CH 2 ) 3 —,
—CF 2 O(CH 2 ) 3 —,
-(CH 2 ) 2 -,
-(CH 2 ) 3 -,
-(CH 2 ) 4 -,
—CONH—(CH 2 ) 3 —,
-CON(CH 3 )-(CH 2 ) 3 -,
-CON(Ph)-(CH 2 ) 3 - (wherein Ph means phenyl),
Or a group represented by the following formula (25).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 式(25)中、R42は、それぞれ独立して、水素原子、C1-6のアルキル基、又はC1-6のアルコキシ基であり、好ましくはメチル基又はメトキシ基であり、より好ましくはメチル基である。 In formula (25), each R 42 is independently a hydrogen atom, a C 1-6 alkyl group or a C 1-6 alkoxy group, preferably a methyl group or a methoxy group, more preferably is a methyl group.
 別のTのいくつかは、分子主鎖のPFPEと反対の基に結合する-(CHn”-(n”は2~6の整数)であり、存在する場合、残りのTは、それぞれ独立して、メチル基、フェニル基、C1-6アルコキシ基、ラジカル捕捉基、又は紫外線吸収基である。 Some of the other Ts are —(CH 2 ) n″ — (where n″ is an integer from 2 to 6) attached to groups opposite PFPE on the molecular backbone, and if present, the remaining Ts are Each is independently a methyl group, a phenyl group, a C 1-6 alkoxy group, a radical scavenging group, or an ultraviolet absorbing group.
 ラジカル捕捉基は、光照射で生じるラジカルを捕捉できるものであれば特に限定されないが、例えば、ベンゾフェノン類、ベンゾトリアゾール類、安息香酸エステル類、サリチル酸フェニル類、クロトン酸類、マロン酸エステル類、オルガノアクリレート類、ヒンダードアミン類、ヒンダードフェノール類、トリアジン類の残基等であり得る。 The radical scavenging group is not particularly limited as long as it can scavenge radicals generated by light irradiation. , hindered amines, hindered phenols, residues of triazines, and the like.
 紫外線吸収基は、紫外線を吸収できるものであれば特に限定されないが、例えば、ベンゾトリアゾール類、ヒドロキシベンゾフェノン類、置換及び未置換安息香酸又はサリチル酸化合物のエステル類、アクリレート又はアルコキシシンナメート類、オキサミド類、オキサニリド類、ベンゾキサジノン類、ベンゾキサゾール類の残基等であり得る。 The ultraviolet absorbing group is not particularly limited as long as it can absorb ultraviolet rays, and examples thereof include benzotriazoles, hydroxybenzophenones, esters of substituted and unsubstituted benzoic acid or salicylic acid compounds, acrylates or alkoxycinnamates, and oxamides. , oxanilides, benzoxazinones, benzoxazole residues, and the like.
 好ましい態様において、好ましいラジカル捕捉基又は紫外線吸収基としては、下記式(26)~(28)で表される基が挙げられる。 In preferred embodiments, preferred radical-scavenging groups or UV-absorbing groups include groups represented by the following formulas (26) to (28).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 この態様において、Xは、それぞれ独立して、3~10価の有機基であり得る。 In this aspect, each X may independently be a trivalent to decavalent organic group.
 本実施形態で用いられるパーフルオロポリエーテル基含有化合物(反応性パーフルオロポリエーテル基含有シラン化合物)の数平均分子量は、1000~30000であり、好ましくは1500~30000であり、より好ましくは2000~10000である。 The perfluoropolyether group-containing compound (reactive perfluoropolyether group-containing silane compound) used in the present embodiment has a number average molecular weight of 1,000 to 30,000, preferably 1,500 to 30,000, and more preferably 2,000 to 30,000. 10000.
 有機化合物は、第1領域A1と第2領域A2のうち、第2領域A2に選択的に化学吸着する官能基を分子鎖の一端に有する。有機化合物は、例えばカルボン酸系化合物、チオール系化合物、又はホスホン酸系化合物である。例えば、上記式(1)及び(2)中、Aは、各出現においてそれぞれ独立して、第1領域A1と第2領域A2のうち、第2領域A2に選択的に化学吸着する官能基を表し、例えば-COOH、-SH、又は-P(=O)(OH)を表す。 The organic compound has, at one end of its molecular chain, a functional group that selectively chemisorbs to the second region A2 out of the first region A1 and the second region A2. The organic compound is, for example, a carboxylic acid-based compound, a thiol-based compound, or a phosphonic acid-based compound. For example, in the above formulas (1) and (2), each occurrence of A independently represents a functional group that selectively chemisorbs to the second region A2 of the first region A1 and the second region A2. for example —COOH, —SH, or —P(=O)(OH) 2 .
 カルボン酸系化合物、チオール系化合物、及びホスホン酸系化合物は、誘電体膜11に比べて金属膜12に化学吸着しやすい。従って、第1領域A1に誘電体膜11が露出し、第2領域A2に金属膜12が露出する場合、第1領域A1と第2領域A2のうち、第2領域A2に選択的に、有機膜13が形成される。 Carboxylic acid-based compounds, thiol-based compounds, and phosphonic acid-based compounds are more likely to chemically adsorb to the metal film 12 than to the dielectric film 11 . Therefore, when the dielectric film 11 is exposed in the first region A1 and the metal film 12 is exposed in the second region A2, the organic film is selectively applied to the second region A2 between the first region A1 and the second region A2. A membrane 13 is formed.
 なお、本実施形態では、第1膜が誘電体膜11であって第2膜が金属膜12であり、誘電体膜11と金属膜12のうち金属膜12に選択的に有機膜13が形成されるが、本開示の技術はこれに限定されない。例えば、第1膜が金属膜であって第2膜が誘電体膜であり、金属膜と誘電体膜のうち誘電体膜に選択的に有機膜13が形成されてもよい。 In this embodiment, the first film is the dielectric film 11, the second film is the metal film 12, and the organic film 13 is selectively formed on the metal film 12 between the dielectric film 11 and the metal film 12. However, the technology of the present disclosure is not limited to this. For example, the first film may be a metal film, the second film may be a dielectric film, and the organic film 13 may be selectively formed on the dielectric film between the metal film and the dielectric film.
 有機化合物は、パーフルオロエーテル基を含む。パーフルオロエーテル基を含む有機化合物は、市販のものであってよく、例えば、ダイキン工業社製のデムナム(Demnum)(登録商標)、又はアウジモント社製のフォンブリン(Fomblin)(登録商標)などが用いられ、末端にカルボン酸を形成した物が用いられる。具体的には、例えば、デムナムカルボン酸(DMCA)、又はフォンブリンカルボン酸(FBCA)などが用いられる。 The organic compound contains a perfluoroether group. Organic compounds containing perfluoroether groups may be commercially available, such as Demnum (registered trademark) from Daikin Industries, Ltd., or Fomblin (registered trademark) from Ausimont. used, and those having a carboxylic acid at the end are used. Specifically, for example, Demnum carboxylic acid (DMCA) or fomblin carboxylic acid (FBCA) is used.
 デムナムカルボン酸(DMCA)は、CF-(CFCFCFO)-COOHで表される化合物である。-(CFCFCFO)-(nは1以上の整数)がパーフルオロエーテル基である。nは、例えば200以下である。 Demnum carboxylic acid (DMCA) is a compound represented by CF 3 —(CF 2 CF 2 CF 2 O) n —COOH. —(CF 2 CF 2 CF 2 O) n — (n is an integer of 1 or more) is a perfluoroether group. n is 200 or less, for example.
 フォンブリンカルボン酸(FBCA)は、CF-(CFOCFCFO)-COOHで表される化合物である。-(CFOCFCFO)-(nは1以上の整数)がパーフルオロエーテル基である。nは、例えば200以下である。 Fomblin carboxylic acid (FBCA) is a compound represented by CF 3 —(CF 2 OCF 2 CF 2 O) n —COOH. —(CF 2 OCF 2 CF 2 O) n — (n is an integer of 1 or more) is a perfluoroether group. n is 200 or less, for example.
 パーフルオロエーテル基は、エーテル基を有する。エーテル基は、後述するステップS4において、第1対象膜14の材料、例えば有機金属化合物、又は金属酸化物をトラップする。例えば、第1対象膜14が酸化アルミニウム膜である場合、有機アルミニウム化合物、又はアルミニウム酸化物をトラップする。 A perfluoroether group has an ether group. The ether group traps the material of the first target film 14, such as an organometallic compound or a metal oxide, in step S4, which will be described later. For example, if the first target film 14 is an aluminum oxide film, it traps organoaluminum compounds or aluminum oxides.
 有機膜13の内部に第1対象膜14の材料をトラップすることで、第1対象膜14の材料と有機膜13とを反応させることができる。パーフルオロエーテル基は、CF結合を有しており、有機金属化合物、又は金属酸化物との反応によって、フッ化炭化金属を生成する。フッ化炭化金属は、有機膜13の分解する温度よりも低い温度で、気化でき、排気によって除去できる。 By trapping the material of the first target film 14 inside the organic film 13, the material of the first target film 14 and the organic film 13 can be reacted. A perfluoroether group has a CF bond and produces a metal fluorocarbon by reaction with an organometallic compound or a metal oxide. The metal fluorocarbide can be vaporized at a temperature lower than the decomposition temperature of the organic film 13 and removed by evacuation.
 有機膜13の内部に第1対象膜14の材料をトラップする量は、有機化合物の1分子中の酸素量で制御できる。有機化合物の1分子中の酸素量が多いほど、トラップ量が多い。分子量が同じフォンブリンカルボン酸とデムナムカルボン酸とでは、フォンブリンカルボン酸の方が、1分子中の酸素量が多く、トラップ量が多い。 The amount of the material of the first target film 14 trapped inside the organic film 13 can be controlled by the amount of oxygen in one molecule of the organic compound. The larger the amount of oxygen in one molecule of the organic compound, the larger the amount of traps. Among fomblin carboxylic acid and Demnum carboxylic acid having the same molecular weight, fomblin carboxylic acid has a larger amount of oxygen per molecule and a larger trap amount.
 上記のステップS3は、組成の異なる複数の有機化合物を基板1の表面に対して供給することを含んでもよい。例えば、フォンブリンカルボン酸とデムナムカルボン酸とを基板1の表面に対して供給してもよい。組成の異なる複数の有機化合物の混合比を制御することで、トラップ量を制御できる。 The above step S3 may include supplying a plurality of organic compounds having different compositions to the surface of the substrate 1. For example, Fomblin carboxylic acid and Demnum carboxylic acid may be applied to the surface of substrate 1 . The trap amount can be controlled by controlling the mixing ratio of a plurality of organic compounds having different compositions.
 図1のステップS4は、図3Cに示すように、第2領域A2に形成した有機膜13を用いて、第1領域A1と第2領域A2のうちの第1領域A1に選択的に第1対象膜14を形成することを含む。第1対象膜14は、例えば誘電体膜である。予め準備した誘電体膜11の上に、新たに誘電体膜を積層できる。 In step S4 of FIG. 1, as shown in FIG. 3C, the organic film 13 formed in the second region A2 is used to selectively form the first region A1 of the first region A1 and the second region A2. Forming a target film 14 is included. The first target film 14 is, for example, a dielectric film. A new dielectric film can be laminated on the dielectric film 11 prepared in advance.
 第1対象膜14は、特に限定されないが、例えば酸化アルミニウム膜(AlO膜)、酸化シリコン膜(SiO膜)、窒化シリコン膜(SiN膜)、酸化ジルコニウム膜(ZrO膜)、又は酸化ハフニウム膜(HfO膜)等である。ここで、AlO膜とは、アルミニウム(Al)と酸素(O)を含む膜という意味である。AlO膜におけるAlとOの原子比は1:1には限定されない。SiO膜、SiN膜、ZrO膜、及びHfO膜について同様である。 The first target film 14 is not particularly limited, but for example, an aluminum oxide film (AlO film), a silicon oxide film (SiO film), a silicon nitride film (SiN film), a zirconium oxide film (ZrO film), or a hafnium oxide film ( HfO film) and the like. Here, the AlO film means a film containing aluminum (Al) and oxygen (O). The atomic ratio of Al and O in the AlO film is not limited to 1:1. The same is true for the SiO film, SiN film, ZrO film, and HfO film.
 第1対象膜14を形成する方法は、例えば、物理蒸着法、化学蒸着法(CVD)法、又は原子層堆積法(ALD)法である。第1対象膜14の材料として金属酸化物が用いられる場合、物理蒸着(PVD)法が用いられる。物理蒸着法は、例えば電子ビーム蒸着を含む。一方、第1対象膜14の材料として有機金属化合物が用いられる場合、CVD法又はALD法が用いられる。 The method of forming the first target film 14 is, for example, physical vapor deposition, chemical vapor deposition (CVD), or atomic layer deposition (ALD). When a metal oxide is used as the material of the first target film 14, a physical vapor deposition (PVD) method is used. Physical vapor deposition methods include, for example, electron beam evaporation. On the other hand, when an organometallic compound is used as the material of the first target film 14, the CVD method or the ALD method is used.
 第1対象膜14をALD法で形成する場合、有機金属化合物ガスと、酸化ガス又は窒化ガスとが、基板1の表面に対して交互に供給される。例えばAlO膜をALD法で形成する場合、TMA(トリメチルアルミニウム)ガスなどの有機アルミニウム化合物ガスと、水蒸気(HOガス)などの酸化ガスとが、基板1の表面に対して交互に供給される。 When forming the first target film 14 by the ALD method, an organometallic compound gas and an oxidizing gas or a nitriding gas are alternately supplied to the surface of the substrate 1 . For example, when an AlO film is formed by the ALD method, an organoaluminum compound gas such as TMA (trimethylaluminum) gas and an oxidizing gas such as water vapor (H 2 O gas) are alternately supplied to the surface of the substrate 1 . be.
 AlO膜の成膜方法は、例えば図2に示すステップS41~S45を含む。先ず、ステップS41では、基板1の表面に対して有機アルミニウム化合物ガスを供給する。次に、ステップS42では、基板1の表面に対してArガス等の不活性ガスを供給し、基板1の表面に化学吸着しなかった余剰の有機アルミニウム化合物ガスをパージする。次に、ステップS43では、基板1の表面に対して酸化ガスを供給する。次に、ステップS44では、基板1の表面に対してArガス等の不活性ガスを供給し、基板1の表面に化学吸着しなかった余剰の酸化ガスをパージする。なお、ステップS41とステップS43の順番は逆でもよい。 The AlO film forming method includes steps S41 to S45 shown in FIG. 2, for example. First, in step S41, the surface of the substrate 1 is supplied with an organoaluminum compound gas. Next, in step S42, an inert gas such as Ar gas is supplied to the surface of the substrate 1 to purge excess organoaluminum compound gas that has not chemically adsorbed onto the surface of the substrate 1. FIG. Next, in step S43, an oxidizing gas is supplied to the surface of the substrate 1. As shown in FIG. Next, in step S44, an inert gas such as Ar gas is supplied to the surface of the substrate 1 to purge excess oxidizing gas that has not chemically adsorbed onto the surface of the substrate 1. FIG. Note that the order of steps S41 and S43 may be reversed.
 次に、ステップS45では、ステップS41~S44を設定回数実施したか否かをチェックする。ステップS45の設定回数は、AlO膜の目標膜厚に応じて設定されるが、例えば20回~80回である。実施回数が設定回数に達していない場合(ステップS45、NO)、ステップS41~S44を再度実施する。一方、実施回数が設定回数に達している場合(ステップS45、YES)、AlO膜の膜厚が目標膜厚に達しているので、今回の処理を終了する。 Next, in step S45, it is checked whether steps S41 to S44 have been performed a set number of times. The set number of times in step S45 is set according to the target film thickness of the AlO film, and is, for example, 20 to 80 times. If the number of times of execution has not reached the set number of times (step S45, NO), steps S41 to S44 are executed again. On the other hand, if the number of times of execution has reached the set number of times (step S45, YES), the film thickness of the AlO film has reached the target film thickness, so this process is terminated.
 ステップS4の処理条件の一例を下記に示す。
・ステップS41
TMAガスの流量:50sccm
処理時間:0.1sec~2sec
・ステップS42
Arガスの流量:1000sccm~8000sccm
処理時間:0.5sec~2sec
・ステップS43
Oガスの流量:50sccm~200sccm
処理時間:0.5sec~2sec
・ステップS44
Arガスの流量:1000sccm~8000sccm
処理時間:0.5sec~5sec
・ステップS41~S44に共通の処理条件
処理温度:100℃~250℃
処理圧力:133Pa~1200Pa。
An example of processing conditions for step S4 is shown below.
・Step S41
Flow rate of TMA gas: 50 sccm
Processing time: 0.1 sec to 2 sec
・Step S42
Ar gas flow rate: 1000 sccm to 8000 sccm
Processing time: 0.5 sec to 2 sec
・Step S43
H 2 O gas flow rate: 50 sccm to 200 sccm
Processing time: 0.5 sec to 2 sec
・Step S44
Ar gas flow rate: 1000 sccm to 8000 sccm
Processing time: 0.5 sec to 5 sec
・Processing conditions common to steps S41 to S44 Processing temperature: 100°C to 250°C
Processing pressure: 133 Pa to 1200 Pa.
 第1対象膜14の形成中に、有機膜13は、第1対象膜14の材料(例えば有機金属化合物)を所望の量取り込みつつ、第1対象膜14の堆積を阻害する。例えば、有機膜13は、パーフルオロエーテル基に由来する疎水性を有しており、水蒸気の化学吸着を阻害することで、第1対象膜14の堆積を阻害する。 During the formation of the first target film 14, the organic film 13 inhibits the deposition of the first target film 14 while incorporating a desired amount of the material of the first target film 14 (eg, an organometallic compound). For example, the organic film 13 has hydrophobicity derived from a perfluoroether group and inhibits the chemisorption of water vapor, thereby inhibiting the deposition of the first target film 14 .
 上記ステップS4は、図3Cに示すように、有機膜13の内部に取り込んだ第1対象膜14の材料と、有機膜13とを反応させ、有機膜13をエッチングすることを含む。第1対象膜14の有機膜13と反応させる材料は、TMAなどの有機金属化合物、又は金属酸化物を含む。 The step S4 includes reacting the organic film 13 with the material of the first target film 14 introduced into the organic film 13 to etch the organic film 13, as shown in FIG. 3C. Materials that react with the organic film 13 of the first target film 14 include organometallic compounds such as TMA, or metal oxides.
 有機金属化合物、又は金属酸化物と、有機膜13のパーフルオロエーテル基との反応によって、フッ化炭化金属が生成する。フッ化炭化金属は、有機膜13の分解する温度よりも低い温度で、気化でき、排気によって除去できる。 A metal fluorocarbon is generated by the reaction between the organometallic compound or the metal oxide and the perfluoroether group of the organic film 13 . The metal fluorocarbide can be vaporized at a temperature lower than the decomposition temperature of the organic film 13 and removed by evacuation.
 本実施形態によれば、第1対象膜14の材料で有機膜13をエッチングでき、有機膜13を除去できる。また、本実施形態によれば、有機膜13を除去することで、有機膜13の内部に入り込んだ第1対象膜14の材料をも除去できる。従って、第1対象膜14を、第1領域A1と第2領域A2のうちの第1領域A1に選択的に形成できる。 According to this embodiment, the organic film 13 can be etched with the material of the first target film 14 and the organic film 13 can be removed. Further, according to the present embodiment, by removing the organic film 13, the material of the first target film 14 that has entered into the organic film 13 can also be removed. Therefore, the first target layer 14 can be selectively formed in the first area A1 of the first area A1 and the second area A2.
 本実施形態によれば、従来とは異なり、第1対象膜14の成膜時に、第1対象膜14の材料を有機膜13の内部に故意に取り込み、取り込んだ第1対象膜14の材料で有機膜13をエッチングする。それゆえ、専用のエッチャントを基板1に対して供給するステップが不要になる。 According to the present embodiment, unlike the prior art, the material of the first target film 14 is intentionally taken into the organic film 13 when the first target film 14 is formed, and the taken-in material of the first target film 14 is used. The organic film 13 is etched. Therefore, the step of supplying a dedicated etchant to the substrate 1 becomes unnecessary.
 第1対象膜14の材料で有機膜13をエッチングするエッチング量は、第1対象膜14の材料の供給量、有機化合物の一分子中の酸素量、又は基板1の温度で制御することができる。例えば、第1対象膜14の材料の供給量が基板1の温度で有機膜13と反応できる量であればエッチングすることができる。反応できる量内で、第1対象膜14の材料の供給量、有機化合物の一分子中の酸素量、又は基板1の温度を適宜制御する。 The amount of etching of the organic film 13 with the material of the first target film 14 can be controlled by the supply amount of the material of the first target film 14 , the amount of oxygen in one molecule of the organic compound, or the temperature of the substrate 1 . . For example, etching can be performed if the amount of material supplied for the first target film 14 is such that it can react with the organic film 13 at the temperature of the substrate 1 . The supply amount of the material for the first target film 14, the amount of oxygen in one molecule of the organic compound, or the temperature of the substrate 1 are appropriately controlled within the amount capable of reacting.
 本実施形態では、第1対象膜14の形成中に、第1対象膜14の材料で有機膜13をエッチングする。より詳細には、ステップS41において、TMAガスの供給中に、TMAガスで有機膜13をエッチングする。第1対象膜14の形成中に有機膜13のエッチングが進むように、基板1が加熱される。基板1の加熱温度は、例えば100℃~250℃である。TMAガスの供給中にエッチングを進めることで、スループットを向上できる。 In this embodiment, the organic film 13 is etched with the material of the first target film 14 during the formation of the first target film 14 . More specifically, in step S41, the organic film 13 is etched with the TMA gas while the TMA gas is being supplied. The substrate 1 is heated such that the etching of the organic film 13 proceeds during the formation of the first target film 14 . The heating temperature of the substrate 1 is, for example, 100.degree. C. to 250.degree. The throughput can be improved by proceeding with the etching while supplying the TMA gas.
 なお、本実施形態では、第1対象膜14の形成中に、第1対象膜14の材料で有機膜13をエッチングするが、第1対象膜14の形成後に、基板1の温度を上げ、第1対象膜14の材料で有機膜13をエッチングすることも可能である。 In this embodiment, the organic film 13 is etched with the material of the first target film 14 during the formation of the first target film 14, but after the formation of the first target film 14, the temperature of the substrate 1 is raised and the It is also possible to etch the organic film 13 with the material of the target film 14 .
 ステップS4では、図3Dに示すように、ほとんどの有機膜13が、除去されてもよい。ステップS4の後には、有機膜13が、基板1の表面に残らなくてもよい。第1対象膜14の成膜中に有機膜13を除去すれば、第1対象膜14の成膜後に、有機膜13を除去する専用のステップを省くことができる。 In step S4, most of the organic film 13 may be removed, as shown in FIG. 3D. The organic film 13 may not remain on the surface of the substrate 1 after step S4. If the organic film 13 is removed during the formation of the first target film 14, a dedicated step for removing the organic film 13 after the formation of the first target film 14 can be omitted.
 図1のステップS5では、ステップS3~S4を設定回数実施したか否かをチェックする。ステップS5の設定回数は、1回でもよいが、複数回であることが好ましい。つまり、有機膜13を形成することと、第1対象膜14を形成することと、第1対象膜14の材料で有機膜13をエッチングすることとを含む一連の処理を繰り返し実施することが好ましい。第1対象膜14を形成する途中で、有機膜13を補給でき、第1対象膜14をより選択的に形成できる。 In step S5 of FIG. 1, it is checked whether steps S3 to S4 have been performed a set number of times. The set number of times in step S5 may be one, but preferably a plurality of times. That is, it is preferable to repeat a series of processes including forming the organic film 13, forming the first target film 14, and etching the organic film 13 with the material of the first target film 14. . During the formation of the first target film 14, the organic film 13 can be replenished, and the first target film 14 can be formed more selectively.
 実施回数が設定回数に達していない場合(ステップS5、NO)、ステップS3~S4を再度実施する。ステップS5の設定回数は、AlO膜の最終目標の膜厚に応じて設定される。一方、実施回数が設定回数に達している場合(ステップS5、YES)、AlO膜の膜厚が最終目標の膜厚に達しているので、次のステップS6を実施する。 If the number of times of implementation has not reached the set number of times (step S5, NO), steps S3 and S4 are performed again. The set number of times of step S5 is set according to the final target film thickness of the AlO film. On the other hand, if the number of times of execution has reached the set number of times (step S5, YES), the film thickness of the AlO film has reached the final target film thickness, so the next step S6 is executed.
 図1のステップS6では、図3Eに示すように、有機膜13が除去された第2領域A2に、第1対象膜14とは異なる材料で第2対象膜15を形成することを含む。第2対象膜15を形成する方法は、例えば、物理蒸着法、化学蒸着法(CVD)法、又は原子層堆積法(ALD)法である。第2対象膜15は、例えば金属膜である。予め準備した金属膜12の上に、新たに金属膜を積層できる。 Step S6 of FIG. 1 includes forming a second target film 15 of a material different from that of the first target film 14 in the second region A2 from which the organic film 13 has been removed, as shown in FIG. 3E. The method of forming the second target film 15 is, for example, a physical vapor deposition method, a chemical vapor deposition (CVD) method, or an atomic layer deposition (ALD) method. The second target film 15 is, for example, a metal film. A new metal film can be laminated on the metal film 12 prepared in advance.
 [成膜装置]
 次に、図4を参照して、上記の成膜方法を実施する成膜装置100について説明する。図4に示すように、成膜装置100は、第1処理部200Aと、第2処理部200Bと、第3処理部200Cと、第4処理部200Dと、搬送部400と、制御部500とを有する。第1処理部200Aは、図1のステップS2を実施する。第2処理部200Bは、図1のステップS3を実施する。第3処理部200Cは、図1のステップS4を実施する。第4処理部200Dは、図1のステップS6を実施する。第1処理部200Aと、第2処理部200Bと、第3処理部200Cと、第4処理部200Dとは、同様の構造を有する。従って、第1処理部200Aのみで、図1のステップS2~S4及びS6の全てを実施することも可能である。搬送部400は、第1処理部200A、第2処理部200B、第3処理部200C、及び第4処理部200Dに対して、基板1を搬送する。制御部500は、第1処理部200A、第2処理部200B、第3処理部200C、第4処理部200D、及び搬送部400を制御する。
[Deposition equipment]
Next, with reference to FIG. 4, a film forming apparatus 100 for carrying out the above film forming method will be described. As shown in FIG. 4, the film forming apparatus 100 includes a first processing section 200A, a second processing section 200B, a third processing section 200C, a fourth processing section 200D, a transport section 400, and a control section 500. have 200 A of 1st process parts implement FIG.1 S2. The second processing unit 200B performs step S3 in FIG. 200 C of 3rd process parts implement FIG.1 S4. The fourth processing unit 200D implements step S6 in FIG. The first processing section 200A, the second processing section 200B, the third processing section 200C, and the fourth processing section 200D have the same structure. Therefore, it is also possible to perform all steps S2 to S4 and S6 in FIG. 1 only by the first processing unit 200A. The transport section 400 transports the substrate 1 to the first processing section 200A, the second processing section 200B, the third processing section 200C, and the fourth processing section 200D. The control unit 500 controls the first processing unit 200A, the second processing unit 200B, the third processing unit 200C, the fourth processing unit 200D, and the transport unit 400. FIG.
 搬送部400は、第1搬送室401と、第1搬送機構402とを有する。第1搬送室401の内部雰囲気は、大気雰囲気である。第1搬送室401の内部に、第1搬送機構402が設けられる。第1搬送機構402は、基板1を保持するアーム403を含み、レール404に沿って走行する。レール404は、キャリアCの配列方向に延びている。 The transport section 400 has a first transport chamber 401 and a first transport mechanism 402 . The internal atmosphere of the first transfer chamber 401 is an air atmosphere. A first transport mechanism 402 is provided inside the first transport chamber 401 . The first transport mechanism 402 includes an arm 403 that holds the substrate 1 and travels along rails 404 . The rail 404 extends in the direction in which the carriers C are arranged.
 また、搬送部400は、第2搬送室411と、第2搬送機構412とを有する。第2搬送室411の内部雰囲気は、真空雰囲気である。第2搬送室411の内部に、第2搬送機構412が設けられる。第2搬送機構412は、基板1を保持するアーム413を含み、アーム413は、鉛直方向及び水平方向に移動可能に、且つ鉛直軸周りに回転可能に配置される。第2搬送室411には、異なるゲートバルブGを介して第1処理部200Aと第2処理部200Bと第3処理部200Cと第4処理部200Dとが接続される。 The transport section 400 also has a second transport chamber 411 and a second transport mechanism 412 . The internal atmosphere of the second transfer chamber 411 is a vacuum atmosphere. A second transport mechanism 412 is provided inside the second transport chamber 411 . The second transport mechanism 412 includes an arm 413 that holds the substrate 1, and the arm 413 is arranged movably in the vertical and horizontal directions and rotatable around the vertical axis. A first processing section 200A, a second processing section 200B, a third processing section 200C, and a fourth processing section 200D are connected to the second transfer chamber 411 through different gate valves G. FIG.
 更に、搬送部400は、第1搬送室401と第2搬送室411の間に、ロードロック室421を有する。ロードロック室421の内部雰囲気は、図示しない調圧機構により真空雰囲気と大気雰囲気との間で切り換えられる。これにより、第2搬送室411の内部を常に真空雰囲気に維持できる。また、第1搬送室401から第2搬送室411にガスが流れ込むのを抑制できる。第1搬送室401とロードロック室421の間、及び第2搬送室411とロードロック室421の間には、ゲートバルブGが設けられる。 Furthermore, the transport section 400 has a load lock chamber 421 between the first transport chamber 401 and the second transport chamber 411 . The internal atmosphere of the load lock chamber 421 is switched between a vacuum atmosphere and an atmospheric atmosphere by a pressure regulating mechanism (not shown). Thereby, the inside of the second transfer chamber 411 can always be maintained in a vacuum atmosphere. In addition, the flow of gas from the first transfer chamber 401 to the second transfer chamber 411 can be suppressed. Gate valves G are provided between the first transfer chamber 401 and the load lock chamber 421 and between the second transfer chamber 411 and the load lock chamber 421 .
 制御部500は、例えばコンピュータであり、CPU(Central Processing Unit)501と、メモリ等の記憶媒体502とを有する。記憶媒体502には、成膜装置100において実行される各種の処理を制御するプログラムが格納される。制御部500は、記憶媒体502に記憶されたプログラムをCPU501に実行させることにより、成膜装置100の動作を制御する。制御部500は、第1処理部200Aと第2処理部200Bと第3処理部200Cと第4処理部200Dと搬送部400とを制御し、上記の成膜方法を実施する。 The control unit 500 is, for example, a computer, and has a CPU (Central Processing Unit) 501 and a storage medium 502 such as a memory. The storage medium 502 stores programs for controlling various processes executed in the film forming apparatus 100 . The control unit 500 controls the operation of the film forming apparatus 100 by causing the CPU 501 to execute programs stored in the storage medium 502 . The control unit 500 controls the first processing unit 200A, the second processing unit 200B, the third processing unit 200C, the fourth processing unit 200D, and the transfer unit 400 to carry out the film forming method described above.
 次に、成膜装置100の動作について説明する。先ず、第1搬送機構402が、キャリアCから基板1を取り出し、取り出した基板1をロードロック室421に搬送し、ロードロック室421から退出する。次に、ロードロック室421の内部雰囲気が大気雰囲気から真空雰囲気に切り換えられる。その後、第2搬送機構412が、ロードロック室421から基板1を取り出し、取り出した基板1を第1処理部200Aに搬送する。 Next, the operation of the film forming apparatus 100 will be described. First, the first transport mechanism 402 takes out the substrate 1 from the carrier C, transports the taken out substrate 1 to the load lock chamber 421 , and exits from the load lock chamber 421 . Next, the internal atmosphere of the load lock chamber 421 is switched from the air atmosphere to the vacuum atmosphere. After that, the second transport mechanism 412 takes out the substrate 1 from the load lock chamber 421 and transports the taken out substrate 1 to the first processing section 200A.
 次に、第1処理部200Aが、ステップS2を実施する。その後、第2搬送機構412が、第1処理部200Aから基板1を取り出し、取り出した基板1を第2処理部200Bに搬送する。この間、基板1の周辺雰囲気を真空雰囲気に維持でき、基板1の酸化を抑制できる。 Next, the first processing unit 200A performs step S2. After that, the second transport mechanism 412 takes out the substrate 1 from the first processing section 200A and transports the taken out substrate 1 to the second processing section 200B. During this time, the atmosphere around the substrate 1 can be maintained in a vacuum atmosphere, and oxidation of the substrate 1 can be suppressed.
 次に、第2処理部200Bが、ステップS3を実施する。その後、第2搬送機構412が、第2処理部200Bから基板1を取り出し、取り出した基板1を第3処理部200Cに搬送する。この間、基板1の周辺雰囲気を真空雰囲気に維持でき、有機膜13のブロック性能の低下を抑制できる。 Next, the second processing unit 200B performs step S3. After that, the second transport mechanism 412 takes out the substrate 1 from the second processing section 200B and transports the taken out substrate 1 to the third processing section 200C. During this time, the atmosphere around the substrate 1 can be maintained in a vacuum atmosphere, and the deterioration of the blocking performance of the organic film 13 can be suppressed.
 次に、第3処理部200Cが、ステップS4を実施する。続いて、制御部500は、ステップS3~S4を設定回数実施したか否かをチェックする。実施回数が設定回数に達していない場合、ステップS3~S4を再度実施する。その後、第2搬送機構412が、第3処理部200Cから基板1を取り出し、取り出した基板1を第4処理部200Dに搬送する。この間、基板1の周辺雰囲気を真空雰囲気に維持できる。 Next, the third processing unit 200C performs step S4. Subsequently, the control unit 500 checks whether steps S3 to S4 have been performed a set number of times. If the number of times of execution has not reached the set number of times, steps S3 to S4 are executed again. After that, the second transport mechanism 412 takes out the substrate 1 from the third processing section 200C and transports the taken out substrate 1 to the fourth processing section 200D. During this time, the atmosphere around the substrate 1 can be maintained in a vacuum atmosphere.
 次に、第4処理部200Dが、ステップS6を実施する。その後、第2搬送機構412が、第4処理部200Dから基板1を取り出し、取り出した基板1をロードロック室421に搬送し、ロードロック室421から退出する。続いて、ロードロック室421の内部雰囲気が真空雰囲気から大気雰囲気に切り換えられる。その後、第1搬送機構402が、ロードロック室421から基板1を取り出し、取り出した基板1をキャリアCに収容する。そして、基板1の処理が終了する。 Next, the fourth processing unit 200D performs step S6. After that, the second transport mechanism 412 takes out the substrate 1 from the fourth processing section 200</b>D, transports the taken out substrate 1 to the load lock chamber 421 , and exits from the load lock chamber 421 . Subsequently, the internal atmosphere of the load lock chamber 421 is switched from the vacuum atmosphere to the air atmosphere. After that, the first transport mechanism 402 takes out the substrate 1 from the load lock chamber 421 and stores the taken out substrate 1 in the carrier C. As shown in FIG. Then, the processing of the substrate 1 ends.
 次に、図5を参照して、第1処理部200Aについて説明する。なお、第2処理部200B、第3処理部200C及び第4処理部200Dは、第1処理部200Aと同様に構成されるので、図示及び説明を省略する。 Next, the first processing section 200A will be described with reference to FIG. Note that the second processing unit 200B, the third processing unit 200C, and the fourth processing unit 200D are configured in the same manner as the first processing unit 200A, so illustration and description thereof will be omitted.
 第1処理部200Aは、略円筒状の気密な処理容器210を備える。処理容器210の底壁の中央部には、排気室211が設けられている。排気室211は、下方に向けて突出する例えば略円筒状の形状を備える。排気室211には、例えば排気室211の側面において、排気配管212が接続されている。 The first processing section 200A includes a substantially cylindrical airtight processing container 210 . An exhaust chamber 211 is provided in the central portion of the bottom wall of the processing container 210 . The exhaust chamber 211 has, for example, a substantially cylindrical shape protruding downward. An exhaust pipe 212 is connected to the exhaust chamber 211 , for example, on the side surface of the exhaust chamber 211 .
 排気配管212には、圧力制御器271を介して排気源272が接続されている。圧力制御器271は、例えばバタフライバルブ等の圧力調整バルブを備える。排気配管212は、排気源272によって処理容器210内を減圧できるように構成されている。圧力制御器271と、排気源272とで、処理容器210内のガスを排出するガス排出機構270が構成される。 An exhaust source 272 is connected to the exhaust pipe 212 via a pressure controller 271 . The pressure controller 271 includes a pressure regulating valve such as a butterfly valve. The exhaust pipe 212 is configured such that the inside of the processing container 210 can be decompressed by the exhaust source 272 . The pressure controller 271 and the exhaust source 272 constitute a gas exhaust mechanism 270 that exhausts the gas inside the processing container 210 .
 処理容器210の側面には、搬送口215が設けられている。搬送口215は、ゲートバルブGによって開閉される。処理容器210内と第2搬送室411(図4参照)との間における基板1の搬入出は、搬送口215を介して行われる。 A transfer port 215 is provided on the side surface of the processing container 210 . The transfer port 215 is opened and closed by a gate valve G. Substrates 1 are carried in and out between the processing container 210 and the second transfer chamber 411 (see FIG. 4) through a transfer port 215 .
 処理容器210内には、基板1を保持する保持部であるステージ220が設けられている。ステージ220は、基板1の第1膜及び第2膜が形成された表面を上に向けて、基板1を水平に保持する。ステージ220は、平面視で略円形状に形成されており、支持部材221によって支持されている。ステージ220の表面には、例えば直径が300mmの基板1を載置するための略円形状の凹部222が形成されている。凹部222は、基板1の直径よりも僅かに大きい内径を有する。凹部222の深さは、例えば基板1の厚さと略同一に構成される。ステージ220は、例えば窒化アルミニウム(AlN)等のセラミックス材料により形成されている。また、ステージ220は、ニッケル(Ni)等の金属材料により形成されていてもよい。なお、凹部222の代わりにステージ220の表面の周縁部に基板1をガイドするガイドリングを設けてもよい。 A stage 220 that is a holding portion for holding the substrate 1 is provided in the processing container 210 . The stage 220 horizontally holds the substrate 1 with the surface of the substrate 1 on which the first film and the second film are formed facing upward. The stage 220 has a substantially circular shape in plan view and is supported by a support member 221 . The surface of the stage 220 is formed with a substantially circular recess 222 for placing the substrate 1 having a diameter of 300 mm, for example. The recess 222 has an inner diameter slightly larger than the diameter of the substrate 1 . The depth of the concave portion 222 is substantially the same as the thickness of the substrate 1, for example. The stage 220 is made of a ceramic material such as aluminum nitride (AlN). Also, the stage 220 may be made of a metal material such as nickel (Ni). A guide ring for guiding the substrate 1 may be provided on the periphery of the surface of the stage 220 instead of the concave portion 222 .
 ステージ220には、例えば接地された下部電極223が埋設される。下部電極223の下方には、加熱機構224が埋設される。加熱機構224は、制御部500(図4参照)からの制御信号に基づいて電源部(図示せず)から給電されることによって、ステージ220に載置された基板1を設定温度に加熱する。ステージ220の全体が金属によって構成されている場合には、ステージ220の全体が下部電極として機能するので、下部電極223をステージ220に埋設しなくてよい。ステージ220には、ステージ220に載置された基板1を保持して昇降するための複数本(例えば3本)の昇降ピン231が設けられている。昇降ピン231の材料は、例えばアルミナ(Al)等のセラミックスや石英等であってよい。昇降ピン231の下端は、支持板232に取り付けられている。支持板232は、昇降軸233を介して処理容器210の外部に設けられた昇降機構234に接続されている。 A grounded lower electrode 223 is embedded in the stage 220, for example. A heating mechanism 224 is embedded under the lower electrode 223 . The heating mechanism 224 heats the substrate 1 placed on the stage 220 to a set temperature by receiving power from a power supply (not shown) based on a control signal from the control unit 500 (see FIG. 4). When the entire stage 220 is made of metal, the entire stage 220 functions as a lower electrode, so the lower electrode 223 does not have to be embedded in the stage 220 . The stage 220 is provided with a plurality of (for example, three) lifting pins 231 for holding and lifting the substrate 1 placed on the stage 220 . The material of the lifting pins 231 may be, for example, ceramics such as alumina (Al 2 O 3 ), quartz, or the like. A lower end of the lifting pin 231 is attached to a support plate 232 . The support plate 232 is connected to an elevating mechanism 234 provided outside the processing container 210 via an elevating shaft 233 .
 昇降機構234は、例えば排気室211の下部に設置されている。ベローズ235は、排気室211の下面に形成された昇降軸233用の開口部219と昇降機構234との間に設けられている。支持板232の形状は、ステージ220の支持部材221と干渉せずに昇降できる形状であってもよい。昇降ピン231は、昇降機構234によって、ステージ220の表面の上方と、ステージ220の表面の下方との間で、昇降自在に構成される。 The elevating mechanism 234 is installed, for example, in the lower part of the exhaust chamber 211. The bellows 235 is provided between the lifting mechanism 234 and an opening 219 for the lifting shaft 233 formed on the lower surface of the exhaust chamber 211 . The shape of the support plate 232 may be a shape that allows it to move up and down without interfering with the support member 221 of the stage 220 . The elevating pin 231 is configured to be movable between above the surface of the stage 220 and below the surface of the stage 220 by means of an elevating mechanism 234 .
 処理容器210の天壁217には、絶縁部材218を介してガス供給部240が設けられている。ガス供給部240は、上部電極を成しており、下部電極223に対向している。ガス供給部240には、整合器251を介して高周波電源252が接続されている。高周波電源252から上部電極(ガス供給部240)に450kHz~100MHzの高周波電力を供給することによって、上部電極(ガス供給部240)と下部電極223との間に高周波電界が生成され、容量結合プラズマが生成する。プラズマを生成するプラズマ生成部250は、整合器251と、高周波電源252と、を含む。なお、プラズマ生成部250は、容量結合プラズマに限らず、誘導結合プラズマなど他のプラズマを生成するものであってもよい。なお、プラズマ処理が不要である場合には、第1処理部200Aはプラズマ生成部250を備えなくてもよい。 A gas supply unit 240 is provided on the ceiling wall 217 of the processing container 210 via an insulating member 218 . The gas supply part 240 forms an upper electrode and faces the lower electrode 223 . A high-frequency power source 252 is connected to the gas supply unit 240 via a matching device 251 . By supplying high frequency power of 450 kHz to 100 MHz from the high frequency power supply 252 to the upper electrode (gas supply unit 240), a high frequency electric field is generated between the upper electrode (gas supply unit 240) and the lower electrode 223, and capacitively coupled plasma is generated. is generated. A plasma generator 250 that generates plasma includes a matching box 251 and a high frequency power supply 252 . The plasma generation unit 250 is not limited to capacitively coupled plasma, and may generate other plasma such as inductively coupled plasma. Note that the first processing unit 200A does not need to include the plasma generation unit 250 when the plasma processing is unnecessary.
 ガス供給部240は、中空状のガス供給室241を備える。ガス供給室241の下面には、処理容器210内へ処理ガスを分散供給するための多数の孔242が例えば均等に配置されている。ガス供給部240における例えばガス供給室241の上方には、加熱機構243が埋設されている。加熱機構243は、制御部500からの制御信号に基づいて電源部(図示せず)から給電されることによって、設定温度に加熱される。 The gas supply unit 240 has a hollow gas supply chamber 241 . A large number of holes 242 for distributing and supplying the processing gas into the processing container 210 are, for example, evenly arranged on the lower surface of the gas supply chamber 241 . A heating mechanism 243 is embedded above, for example, the gas supply chamber 241 in the gas supply unit 240 . The heating mechanism 243 is heated to a set temperature by receiving power from a power supply (not shown) based on a control signal from the controller 500 .
 ガス供給室241には、ガス供給路261を介して、ガス供給機構260が接続される。ガス供給機構260は、ガス供給路261を介してガス供給室241に、図1のステップS2~S4及びS6の少なくとも1つで用いられるガスを供給する。ガス供給機構260は、図示しないが、ガスの種類毎に、個別配管と、個別配管の途中に設けられる開閉バルブと、個別配管の途中に設けられる流量制御器とを含む。開閉バルブが個別配管を開くと、供給源からガス供給路261にガスが供給される。その供給量は流量制御器によって制御される。一方、開閉バルブが個別配管を閉じると、供給源からガス供給路261へのガスの供給が停止される。 A gas supply mechanism 260 is connected to the gas supply chamber 241 via a gas supply path 261 . The gas supply mechanism 260 supplies the gas used in at least one of steps S2 to S4 and S6 in FIG. Although not shown, the gas supply mechanism 260 includes an individual pipe for each type of gas, an on-off valve provided in the middle of the individual pipe, and a flow controller provided in the middle of the individual pipe. When the on-off valve opens the individual pipe, gas is supplied from the supply source to the gas supply path 261 . The amount of supply is controlled by a flow controller. On the other hand, when the opening/closing valve closes the individual pipe, the supply of gas from the supply source to the gas supply path 261 is stopped.
 [実験データ]
 以下、実験データについて説明する。
[Experimental data]
Experimental data will be described below.
 <実験例1及び2>
 実験例1では、PVD法で成膜した厚み100nmのCo膜を含む基板を準備し、Co膜表面に対して紫外線を照射し、オゾンを生成し、オゾンでCo膜表面に付着した有機物を除去すると共に、Co膜表面における酸素密度を一定化した。
<Experimental Examples 1 and 2>
In Experimental Example 1, a substrate including a Co film having a thickness of 100 nm formed by a PVD method was prepared, the surface of the Co film was irradiated with ultraviolet rays, ozone was generated, and the ozone removed organic matter adhering to the surface of the Co film. At the same time, the oxygen density on the Co film surface was made constant.
 次に、室温で、Co膜表面に有機膜をPVD法で成膜した。有機膜の材料である有機化合物としては、分子量が4000程度のフォンブリンカルボン酸(FBCA)を用意した。50μlのFBCAを、るつぼに入れて気化させ、室温のCo膜表面に蒸着させた。 Next, at room temperature, an organic film was formed on the surface of the Co film by PVD. Fomblin carboxylic acid (FBCA) having a molecular weight of about 4000 was prepared as an organic compound which is a material of the organic film. 50 μl of FBCA was vaporized in a crucible and evaporated onto the Co film surface at room temperature.
 次に、真空中で、基板を230℃で30分間加熱し、Co膜表面に物理吸着した余剰のFBCAを除去した。その結果、Co膜表面に化学吸着したFBCAで有機膜を形成した。なお、実験例1ではFBCAの蒸着時に基板を加熱しなかったが、加熱してもよい。 Next, the substrate was heated at 230°C for 30 minutes in vacuum to remove excess FBCA physically adsorbed on the Co film surface. As a result, an organic film was formed with FBCA chemically adsorbed on the Co film surface. Although the substrate was not heated during deposition of FBCA in Experimental Example 1, it may be heated.
 次に、電子ビーム蒸着法で、酸化アルミニウム(Al)を、有機膜の上に供給した。その供給量は、膜厚6nmに相当する量であった。ここで、膜厚は、有機膜の代わりに、SiO膜の上に酸化アルミニウムを供給し、エリプソメーターで測定した。 Next, aluminum oxide (Al 2 O 3 ) was supplied onto the organic film by an electron beam evaporation method. The supply amount was an amount corresponding to a film thickness of 6 nm. Here, the film thickness was measured with an ellipsometer by supplying aluminum oxide on the SiO 2 film instead of the organic film.
 酸化アルミニウムを有機膜の上に供給する際に、基板の温度は室温に設定した。これは、酸化アルミニウムと有機膜との反応を防止し、有機膜の内部にトラップされる酸化アルミニウムの量を調べるためである。 The temperature of the substrate was set to room temperature when aluminum oxide was supplied onto the organic film. This is to prevent the reaction between aluminum oxide and the organic film and to check the amount of aluminum oxide trapped inside the organic film.
 その後、基板表面を削ることと、基板表面の組成をX線光電子分光(X-ray Photoelectron Spectroscopy:XPS)法で測定することとを繰り返し実施した。XPS法で測定した各種原子の深さ方向における濃度分布を図6A~図6Cに示す。 After that, scraping the substrate surface and measuring the composition of the substrate surface by the X-ray Photoelectron Spectroscopy (XPS) method were repeated. 6A to 6C show concentration distributions of various atoms in the depth direction measured by the XPS method.
 一方、実験例2では、FBCAの代わりに、デムナムカルボン酸(DMCA)を用意した以外、実験例1と同様に基板を処理した。その後、基板表面を削ることと、基板表面の組成をXPS法で測定することとを繰り返し実施した。XPS法で測定した各種原子の深さ方向における濃度分布を図6A~図6Cに示す。 On the other hand, in Experimental Example 2, the substrate was treated in the same manner as in Experimental Example 1, except that Demnum carboxylic acid (DMCA) was prepared instead of FBCA. Thereafter, grinding the substrate surface and measuring the composition of the substrate surface by the XPS method were repeated. 6A to 6C show concentration distributions of various atoms in the depth direction measured by the XPS method.
 図6Aから明らかなように、削った深さがD0に達するまでは、C原子の濃度が低くなると共に、Co原子の濃度が高くなった。また、深さがD0に達した後は、C原子の濃度がほぼ一定になると共に、Co原子の濃度がほぼ一定になった。 As is clear from FIG. 6A, the concentration of C atoms decreased and the concentration of Co atoms increased until the cut depth reached D0. Further, after the depth reached D0, the concentration of C atoms became almost constant, and the concentration of Co atoms became almost constant.
 C原子の濃度分布と、Co原子の濃度分布から、D0が有機膜とCo膜との界面に相当すると推定される。なお、深さがD0より深くなっても、C原子の濃度がゼロにならないのは、XPSスペクトルのバックグラウンドに起因する。 From the concentration distribution of C atoms and the concentration distribution of Co atoms, it is estimated that D0 corresponds to the interface between the organic film and the Co film. The reason why the concentration of C atoms does not become zero even if the depth is deeper than D0 is due to the background of the XPS spectrum.
 図6Bから明らかなように、FBCAとDMCAとでは、FBCAの方が、酸化アルミニウムの残存量が多いことが分かる。これは、FBCAの方がより多くの酸化アルミニウムをトラップしたためであり、分子量が同じFBCAとDMCAとでは、FBCAの方が、1分子中の酸素量が多いからである。 As is clear from FIG. 6B, between FBCA and DMCA, FBCA has a larger residual amount of aluminum oxide. This is because FBCA traps more aluminum oxide, and FBCA has more oxygen per molecule than FBCA and DMCA, which have the same molecular weight.
 図6Cから明らかなように、FBCAとDMCAとでは、FBCAの方が、有機膜とCo膜との界面付近において、F原子の濃度が高いことが分かる。F原子の濃度が高いほど、フッ化炭化金属が揮発しやすい。 As is clear from FIG. 6C, between FBCA and DMCA, FBCA has a higher concentration of F atoms near the interface between the organic film and the Co film. The higher the concentration of F atoms, the easier it is for the metal fluorocarbon to volatilize.
 <実験例3及び4>
 実験例3では、酸化アルミニウムを有機膜の上に供給する際に、基板の温度を230℃に設定し、酸化アルミニウムと有機膜(FBCA)との反応を進め、有機膜をエッチングした以外、実験例1と同様に基板を処理した。その後、基板表面を削ることと、基板表面の組成をXPS法で測定することとを繰り返し実施した。XPS法で測定した各種原子の深さ方向における濃度分布を、図7Aに示す。また、削った深さがD1に達した時のXPSスペクトルを、図7Bに実線で示す。
<Experimental Examples 3 and 4>
In Experimental Example 3, when aluminum oxide was supplied onto the organic film, the temperature of the substrate was set to 230° C., the reaction between aluminum oxide and the organic film (FBCA) was promoted, and the organic film was etched. The substrate was processed as in Example 1. Thereafter, grinding the substrate surface and measuring the composition of the substrate surface by the XPS method were repeated. FIG. 7A shows the concentration distribution of various atoms in the depth direction measured by the XPS method. Further, the solid line in FIG. 7B shows the XPS spectrum when the cut depth reaches D1.
 一方、実験例4では、Co膜表面にFBCAを蒸着することなく、Co膜表面に酸化アルミニウムを供給した以外、実験例3と同様に基板を処理した。その後、基板表面を削り、削った深さがD1とD2(D2>D1)に達した時にXPSスペクトルを測定した。深さがD1に達した時のXPSスペクトルを図7Bに一点鎖線で示し、深さがD2に達した時のXPSスペクトルを図7Bに破線で示す。 On the other hand, in Experimental Example 4, the substrate was treated in the same manner as in Experimental Example 3, except that aluminum oxide was supplied to the Co film surface without depositing FBCA on the Co film surface. After that, the substrate surface was scraped, and XPS spectra were measured when the scraped depths reached D1 and D2 (D2>D1). The XPS spectrum when the depth reaches D1 is shown by a dashed line in FIG. 7B, and the XPS spectrum when the depth reaches D2 is shown by a dashed line in FIG. 7B.
 図7Aから明らかなように、実験例3では、深さが少なくともD1(D1>D0)に達するまでは、Al原子の濃度も、C原子の濃度も、O原子の濃度も、F原子の濃度も、Co原子の濃度も一定であった。これは、実験例3では、有機膜が完全にエッチングされ、基板表面に酸化アルミニウムの膜が形成されたことを意味する。 As is clear from FIG. 7A, in Experimental Example 3, until the depth reaches at least D1 (D1>D0), the concentration of Al atoms, the concentration of C atoms, the concentration of O atoms, and the concentration of F atoms Also, the concentration of Co atoms was constant. This means that in Experimental Example 3, the organic film was completely etched and an aluminum oxide film was formed on the substrate surface.
 図7Bに実線で示すように実験例3では深さがD1に達した時にCo原子のピークが認められたのに対し、図7Bに一点鎖線で示すように実験例4では深さがD1に達した時にCo原子のピークは認められなかった。これは、実験例3と実験例4とでは、実験例3の方が酸化アルミニウム膜の膜厚が薄かったことを表している。 As shown by the solid line in FIG. 7B, in Experimental Example 3, a peak of Co atoms was observed when the depth reached D1. No Co atom peak was observed when the peak was reached. This indicates that the film thickness of the aluminum oxide film in Experimental Example 3 was thinner than in Experimental Example 3 and Experimental Example 4.
 エリプソメーターで酸化アルミニウム膜の膜厚を実際に測定したところ、実験例3における酸化アルミニウムの膜厚は2.8nmであったのに対し、実験例4における酸化アルミニウム膜の膜厚は7.5nmであった。従って、予めCo膜表面に有機膜を形成すれば、酸化アルミニウム膜の堆積を制限できたこと分かる。 When the film thickness of the aluminum oxide film was actually measured with an ellipsometer, the film thickness of the aluminum oxide film in Experimental Example 3 was 2.8 nm, while the film thickness of the aluminum oxide film in Experimental Example 4 was 7.5 nm. Met. Therefore, it can be seen that the deposition of the aluminum oxide film can be restricted by forming an organic film on the surface of the Co film in advance.
 なお、図7Bに破線で示すように、実験例4でも深さがD2(D2>D1)に達した時には、実験例3で深さがD1に達した時と同様に、Co原子のピークが認められた。 As shown by the dashed line in FIG. 7B, when the depth reaches D2 (D2>D1) in Experimental Example 4, the peak of the Co atoms is the same as when the depth reaches D1 in Experimental Example 3. Admitted.
 <実験例5>
 実験例5では、酸化アルミニウムの供給量を膜厚3nmに相当する量に減らした以外、実験例3と同様に基板を処理した。その後、基板表面を削ることと、基板表面の組成をXPS法で測定することとを繰り返し実施した。XPS法で測定した各種原子の深さ方向における濃度分布を、図8Aに示す。また、基板表面を削る前のXPSスペクトルを、図8Bに実線で示す。なお、図8Bにおいて、破線は、実験例3において、基板表面を削る前のXPSを示す。
<Experimental example 5>
In Experimental Example 5, the substrate was treated in the same manner as in Experimental Example 3, except that the supply amount of aluminum oxide was reduced to an amount corresponding to a film thickness of 3 nm. Thereafter, grinding the substrate surface and measuring the composition of the substrate surface by the XPS method were repeated. FIG. 8A shows the concentration distribution of various atoms in the depth direction measured by the XPS method. Further, the XPS spectrum before grinding the substrate surface is shown by a solid line in FIG. 8B. In addition, in FIG. 8B, the dashed line indicates the XPS before the substrate surface was cut in Experimental Example 3. As shown in FIG.
 図8Aから明らかなように、実験例5では、削った深さがD3に達するまでは、C原子及びF原子の濃度が低くなると共に、Co原子の濃度が高くなった。また、深さがD3に達した後は、C原子及びF原子の濃度がほぼ一定になると共に、Co原子の濃度がほぼ一定になった。従って、実験例5では、深さD3に相当する膜厚の有機膜が残っていたことがわかる。 As is clear from FIG. 8A, in Experimental Example 5, the concentration of C atoms and F atoms decreased and the concentration of Co atoms increased until the cut depth reached D3. Moreover, after the depth reached D3, the concentration of C atoms and F atoms became almost constant, and the concentration of Co atoms became almost constant. Therefore, in Experimental Example 5, it can be seen that an organic film having a film thickness corresponding to the depth D3 remained.
 図8Bに実線で示すように実験例5ではCF結合に起因するC原子のピークが認められたのに対し、図8Bに破線で示すように実験例3ではCF結合に起因するC原子のピークが認められなかった。これは、実験例5では、実験例3に比べて、酸化アルミニウムの供給量を減らしたので、有機膜(FBCA)が残っていたことを表している。従って、酸化アルミニウムの供給量で、有機膜のエッチング量を制御できることが分かる。 As shown by the solid line in FIG. 8B, in Experimental Example 5, a peak of C atoms due to CF bonds was observed, whereas in Experimental Example 3, as indicated by the broken line in FIG. was not accepted. This indicates that in Experimental Example 5, the amount of aluminum oxide supplied was reduced compared to Experimental Example 3, so that the organic film (FBCA) remained. Therefore, it can be seen that the etching amount of the organic film can be controlled by the supply amount of aluminum oxide.
 <実験例6>
 実験例6では、有機膜の原料である有機化合物としてFBCAの代わりにDMCAを用いた以外、実験例3と同様に基板を処理した。その後、基板表面を削ることと、基板表面の組成をXPS法で測定することとを繰り返し実施した。XPS法で測定した各種原子の深さ方向における濃度分布を、図9に示す。
<Experimental example 6>
In Experimental Example 6, the substrate was treated in the same manner as in Experimental Example 3, except that DMCA was used instead of FBCA as the organic compound that is the raw material of the organic film. Thereafter, grinding the substrate surface and measuring the composition of the substrate surface by the XPS method were repeated. FIG. 9 shows the concentration distribution of various atoms in the depth direction measured by the XPS method.
 図9から明らかなように、実験例6では、削った深さがD4に達するまでは、C原子及びF原子の濃度が低くなると共に、Co原子の濃度が高くなった。従って、実験例6では、実験例3とは異なり、酸化アルミニウムの供給後も、有機膜が残っていたことがわかる。分子量が同じFBCAとDMCAとでは、DMCAの方が、1分子中の酸素量が少なく、エッチング量も少なくなるからである。従って、1分子中の酸素量で、有機膜のエッチング量を制御できることが分かる。 As is clear from FIG. 9, in Experimental Example 6, the concentration of C atoms and F atoms decreased and the concentration of Co atoms increased until the cut depth reached D4. Therefore, in Experimental Example 6, unlike Experimental Example 3, the organic film remained even after the supply of aluminum oxide. This is because between FBCA and DMCA, which have the same molecular weight, DMCA has a smaller amount of oxygen per molecule and a smaller amount of etching. Therefore, it can be seen that the etching amount of the organic film can be controlled by the amount of oxygen in one molecule.
 以上、本開示に係る成膜方法及び成膜装置の実施形態について説明したが、本開示は上記実施形態などに限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 Although the embodiments of the film forming method and film forming apparatus according to the present disclosure have been described above, the present disclosure is not limited to the above embodiments. Various changes, modifications, substitutions, additions, deletions, and combinations are possible within the scope of the claims. These also naturally belong to the technical scope of the present disclosure.
 本出願は、2021年3月5日に日本国特許庁に出願した特願2021-035675号に基づく優先権を主張するものであり、特願2021-035675号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2021-035675 filed with the Japan Patent Office on March 5, 2021, and the entire contents of Japanese Patent Application No. 2021-035675 are incorporated into this application. .
1  基板
1a 表面
11 誘電体膜(第1膜)
12 金属膜(第2膜)
13 有機膜
14 第1対象膜
A1 第1領域
A2 第2領域
1 substrate 1a surface 11 dielectric film (first film)
12 metal film (second film)
13 Organic film 14 First target film A1 First region A2 Second region

Claims (18)

  1.  第1膜が露出する第1領域と、前記第1膜とは異なる材料で形成される第2膜が露出する第2領域とを表面に有する基板を準備することと、
     前記基板の前記表面に対してパーフルオロエーテル基を含む有機化合物を供給し、前記第1領域と前記第2領域のうち前記第2領域に選択的に有機膜を形成することと、
     前記第2領域に形成した前記有機膜を用い、前記第1領域と前記第2領域のうち前記第1領域に選択的に第1対象膜を形成することと、
     前記第1対象膜の材料と前記有機膜とを反応させ、前記有機膜をエッチングすることと、
     を含む、成膜方法。
    Preparing a substrate having on its surface a first region where a first film is exposed and a second region where a second film made of a material different from the first film is exposed;
    supplying an organic compound containing a perfluoroether group to the surface of the substrate to selectively form an organic film on the second region of the first region and the second region;
    selectively forming a first target film in the first region out of the first region and the second region using the organic film formed in the second region;
    reacting the material of the first target film with the organic film to etch the organic film;
    A film forming method, comprising:
  2.  前記第1対象膜の形成中に、前記第1対象膜の材料で前記有機膜をエッチングする、請求項1に記載の成膜方法。 2. The film forming method according to claim 1, wherein the organic film is etched with the material of the first target film during the formation of the first target film.
  3.  前記第1対象膜の形成後に、前記基板の温度を上げ、前記第1対象膜の材料で前記有機膜をエッチングする、請求項1に記載の成膜方法。 2. The film formation method according to claim 1, wherein after the formation of the first target film, the temperature of the substrate is raised and the organic film is etched with the material of the first target film.
  4.  前記有機膜を形成することは、組成の異なる複数の前記有機化合物を前記基板の前記表面に対して供給することを含む、請求項1~3のいずれか1項に記載の成膜方法。 The film forming method according to any one of claims 1 to 3, wherein forming the organic film includes supplying a plurality of the organic compounds having different compositions to the surface of the substrate.
  5.  前記有機化合物の前記パーフルオロエーテル基は、-(CFCFCFO)-(nは1以上の整数)、又は-(CFOCFCFO)-(nは1以上の整数)である、請求項1~4のいずれか1項に記載の成膜方法。 The perfluoroether group of the organic compound is -(CF 2 CF 2 CF 2 O) n - (n is an integer of 1 or more) or -(CF 2 OCF 2 CF 2 O) n - (n is 1 or more Integer of), the film forming method according to any one of claims 1 to 4.
  6.  前記有機化合物は、カルボン酸系化合物、チオール系化合物、又はホスホン酸系化合物である、請求項1~5のいずれか1項に記載の成膜方法。 The film forming method according to any one of claims 1 to 5, wherein the organic compound is a carboxylic acid compound, a thiol compound, or a phosphonic acid compound.
  7.  前記有機膜を形成する方法は、物理蒸着法、化学蒸着法、又は原子層堆積法である、請求項1~6のいずれか1項に記載の成膜方法。 The film forming method according to any one of claims 1 to 6, wherein the method for forming the organic film is physical vapor deposition, chemical vapor deposition, or atomic layer deposition.
  8.  前記第1膜は誘電体膜であり、前記第2膜は金属膜である、請求項1~7のいずれか1項に記載の成膜方法。 The film forming method according to any one of claims 1 to 7, wherein the first film is a dielectric film and the second film is a metal film.
  9.  前記第1対象膜は、誘電体膜である、請求項8に記載の成膜方法。 The film forming method according to claim 8, wherein the first target film is a dielectric film.
  10.  前記第1対象膜は、酸化アルミニウム膜、酸化シリコン膜、窒化シリコン膜、酸化ジルコニウム膜、又は酸化ハフニウム膜である、請求項9に記載の成膜方法。 The film forming method according to claim 9, wherein the first target film is an aluminum oxide film, a silicon oxide film, a silicon nitride film, a zirconium oxide film, or a hafnium oxide film.
  11.  前記第1対象膜の前記有機膜と反応させる前記材料は、有機金属化合物、又は金属酸化物を含む、請求項9又は10に記載の成膜方法。 11. The film formation method according to claim 9, wherein the material to be reacted with the organic film of the first target film includes an organometallic compound or a metal oxide.
  12.  前記第1対象膜の前記有機膜と反応させる前記材料は、トリメチルアルミニウムを含む、請求項11に記載の成膜方法。 12. The film formation method according to claim 11, wherein said material to be reacted with said organic film of said first target film includes trimethylaluminum.
  13.  前記第1対象膜を形成する方法は、物理蒸着法、化学蒸着法、又は原子層堆積法である、請求項1~12のいずれか1項に記載の成膜方法。 The film forming method according to any one of claims 1 to 12, wherein the method for forming the first target film is physical vapor deposition, chemical vapor deposition, or atomic layer deposition.
  14.  前記第1対象膜の前記材料で前記有機膜をエッチングするエッチング量を、前記第1対象膜の前記材料の供給量、前記有機化合物の一分子中の酸素量、又は前記基板の温度で制御することを含む、請求項1~13のいずれか1項に記載の成膜方法。 The amount of etching of the organic film with the material of the first target film is controlled by the supply amount of the material of the first target film, the amount of oxygen in one molecule of the organic compound, or the temperature of the substrate. The film forming method according to any one of claims 1 to 13, comprising:
  15.  前記有機膜が除去された前記第2領域に、前記第1対象膜とは異なる材料で第2対象膜を形成することを含む、請求項1~14のいずれか1項に記載の成膜方法。 15. The film forming method according to claim 1, further comprising forming a second target film of a material different from that of the first target film in the second region from which the organic film has been removed. .
  16.  前記第2対象膜は、金属膜である、請求項15に記載の成膜方法。 The film forming method according to claim 15, wherein the second target film is a metal film.
  17.  前記有機膜を形成することと、前記第1対象膜を形成することと、前記第1対象膜の前記材料で前記有機膜をエッチングすることとを含む一連の処理を、繰り返し実施する、請求項1~16のいずれか1項に記載に成膜方法。 3. A series of processes including forming the organic film, forming the first target film, and etching the organic film with the material of the first target film are repeatedly performed. 17. The film forming method according to any one of 1 to 16.
  18.  処理容器と、
     前記処理容器の内部で前記基板を保持する保持部と、
     前記処理容器の内部にガスを供給するガス供給機構と、
     前記処理容器の内部からガスを排出するガス排出機構と、
     前記処理容器に対して前記基板を搬入出する搬送機構と、
     前記ガス供給機構、前記ガス排出機構及び前記搬送機構を制御し、請求項1~17のいずれか1項に記載の成膜方法を実施する制御部と、
     を備える、成膜装置。
    a processing vessel;
    a holding unit that holds the substrate inside the processing container;
    a gas supply mechanism for supplying gas to the inside of the processing container;
    a gas discharge mechanism for discharging gas from the inside of the processing container;
    a transport mechanism for loading and unloading the substrate with respect to the processing container;
    a control unit that controls the gas supply mechanism, the gas discharge mechanism, and the transport mechanism, and performs the film formation method according to any one of claims 1 to 17;
    A film forming apparatus.
PCT/JP2022/006909 2021-03-05 2022-02-21 Film forming method and film forming apparatus WO2022185966A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-035675 2021-03-05
JP2021035675A JP2022135709A (en) 2021-03-05 2021-03-05 Film deposition method and film deposition apparatus

Publications (1)

Publication Number Publication Date
WO2022185966A1 true WO2022185966A1 (en) 2022-09-09

Family

ID=83154386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006909 WO2022185966A1 (en) 2021-03-05 2022-02-21 Film forming method and film forming apparatus

Country Status (2)

Country Link
JP (1) JP2022135709A (en)
WO (1) WO2022185966A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018137435A (en) * 2017-02-14 2018-08-30 エーエスエム アイピー ホールディング ビー.ブイ. Selective passivation and selective deposition
JP2019195059A (en) * 2018-05-02 2019-11-07 エーエスエム アイピー ホールディング ビー.ブイ. Selective layer formation using deposition and removal
WO2020091016A1 (en) * 2018-11-02 2020-05-07 東京エレクトロン株式会社 Film forming method and film forming apparatus
JP2020520126A (en) * 2017-05-16 2020-07-02 エーエスエム アイピー ホールディング ビー.ブイ. Selective PEALD of oxide on dielectric
JP2021127508A (en) * 2020-02-14 2021-09-02 東京エレクトロン株式会社 Film formation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018137435A (en) * 2017-02-14 2018-08-30 エーエスエム アイピー ホールディング ビー.ブイ. Selective passivation and selective deposition
JP2020520126A (en) * 2017-05-16 2020-07-02 エーエスエム アイピー ホールディング ビー.ブイ. Selective PEALD of oxide on dielectric
JP2019195059A (en) * 2018-05-02 2019-11-07 エーエスエム アイピー ホールディング ビー.ブイ. Selective layer formation using deposition and removal
WO2020091016A1 (en) * 2018-11-02 2020-05-07 東京エレクトロン株式会社 Film forming method and film forming apparatus
JP2021127508A (en) * 2020-02-14 2021-09-02 東京エレクトロン株式会社 Film formation method

Also Published As

Publication number Publication date
JP2022135709A (en) 2022-09-15

Similar Documents

Publication Publication Date Title
JP6845252B2 (en) Compositions for depositing silicon-containing membranes and methods using them
US6991959B2 (en) Method of manufacturing silicon carbide film
JP5268130B2 (en) Method for forming an oxygen-containing silicon carbide film
KR100933374B1 (en) Method for film formation of porous membrane and computer readable recording medium
KR20120112054A (en) Cleaning method and film deposition method
JP2021044534A (en) Film deposition method
WO2005098961A1 (en) Method of forming gate insulating film, storage medium and computer program
US20020182385A1 (en) Atomic layer passivation
US20230037372A1 (en) Film formation method and film formation apparatus
WO2021044882A1 (en) Film formation method
WO2022185966A1 (en) Film forming method and film forming apparatus
JP2022055462A (en) Film deposition method and film deposition apparatus
JP2021057563A (en) Film formation method
KR20090006769A (en) Method of forming porous film and computer-readable recording medium
WO2021161830A1 (en) Film formation mehtod
US20230009551A1 (en) Film formation method and film formation apparatus
WO2023176535A1 (en) Film forming method and film forming apparatus
WO2023132245A1 (en) Film forming method and film forming apparatus
WO2023276795A1 (en) Film formation method and film formation device
WO2024070696A1 (en) Film formation method and film formation device
WO2023153284A1 (en) Film formation method and film formation device
WO2022124087A1 (en) Film formation method
WO2023182039A1 (en) Film formation method and film formation device
WO2024090275A1 (en) Film forming method and film forming apparatus
WO2021060110A1 (en) Film-forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763022

Country of ref document: EP

Kind code of ref document: A1