WO2021044882A1 - Film formation method - Google Patents

Film formation method Download PDF

Info

Publication number
WO2021044882A1
WO2021044882A1 PCT/JP2020/031752 JP2020031752W WO2021044882A1 WO 2021044882 A1 WO2021044882 A1 WO 2021044882A1 JP 2020031752 W JP2020031752 W JP 2020031752W WO 2021044882 A1 WO2021044882 A1 WO 2021044882A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
substrate
film forming
sam
gas
Prior art date
Application number
PCT/JP2020/031752
Other languages
French (fr)
Japanese (ja)
Inventor
健次 大内
秀司 東雲
河野 有美子
進一 池
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020092874A external-priority patent/JP2021044534A/en
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US17/753,490 priority Critical patent/US20220336205A1/en
Priority to CN202080060096.4A priority patent/CN114303230A/en
Priority to KR1020227009466A priority patent/KR20220050198A/en
Publication of WO2021044882A1 publication Critical patent/WO2021044882A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • photography technology is widely used as a technology for selectively forming a film on a specific region on the surface of a substrate.
  • an insulating film is formed, a dual damascene structure having trenches and via holes is formed by photolithography and etching, and a conductive film such as Cu is embedded in the trenches and via holes to form wiring.
  • the present disclosure provides a film forming method capable of improving the productivity of a semiconductor device using selective film forming.
  • One aspect of the present disclosure is a film forming method for selectively forming a film on a substrate, which comprises a preparation step, a first film forming step, a second film forming step, and a first removing step.
  • a substrate in which the first film and the second film are exposed on the surface is prepared.
  • a compound for forming a self-assembled monolayer having a functional group containing fluorine and carbon and suppressing the formation of the third film is supplied onto the substrate.
  • a self-assembled monolayer is formed on the first film.
  • a third film is formed on the second film.
  • the surface of the substrate is irradiated with at least one of ions and active species to remove the third film formed in the vicinity of the self-assembled monolayer.
  • the third membrane is a membrane that is easier to form a volatile compound by combining with fluorine and carbon contained in the self-assembled monolayer than the first membrane.
  • the productivity of semiconductor devices using selective film formation can be improved.
  • FIG. 1 is a schematic view showing an example of a film forming system according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart showing an example of the film forming method according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing an example of a substrate prepared in the preparation step of the first embodiment.
  • FIG. 4 is a cross-sectional view showing an example of a substrate after SAM is formed on the first film in the first embodiment.
  • FIG. 5 is a cross-sectional view showing an example of a substrate after the third film is formed on the second film in the first embodiment.
  • FIG. 6 is a schematic cross-sectional view showing an example of a plasma processing apparatus used in the first removal step.
  • FIG. 1 is a schematic view showing an example of a film forming system according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart showing an example of the film forming method according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing an example of
  • FIG. 7 is a cross-sectional view showing an example of the substrate after the nuclei of the third film on the SAM have been removed in the first embodiment.
  • FIG. 8 is a cross-sectional view showing an example of the substrate after the SAM on the first film has been removed in the first embodiment.
  • FIG. 9 is a flowchart showing an example of the film forming method in the second embodiment.
  • FIG. 10 is a cross-sectional view showing an example of a substrate prepared in the preparation step of the second embodiment.
  • FIG. 11 is a cross-sectional view showing an example of the substrate after the SAM is formed on the metal wiring in the second embodiment.
  • FIG. 12 is a cross-sectional view showing an example of the substrate after the dielectric film is formed in the second embodiment.
  • FIG. 13 is a cross-sectional view showing an example of the substrate after the SAM has been removed in the second embodiment.
  • FIG. 14 is a cross-sectional view showing an example of the substrate after the SAM is further formed on the metal wiring in the second embodiment.
  • FIG. 15 is a cross-sectional view showing an example of a substrate after the dielectric film is further formed on the dielectric film in the second embodiment.
  • FIG. 16 is a cross-sectional view showing an example of the substrate after the SAM has been removed in the second embodiment.
  • FIG. 17 is a flowchart showing another example of the film forming method in the second embodiment.
  • FIG. 18 is a flowchart showing still another example of the film forming method in the second embodiment.
  • a substrate having an exposed metal film and an insulating film on the surface is prepared, and a SAM that suppresses the film formation of the oxide film is formed on the metal film. Then, an oxide film is formed on the insulating film. At this time, since the film formation of the oxide film on the metal film is suppressed by SAM, the oxide film is not formed on the metal film.
  • the nucleus of the oxide film may grow on the SAM as well. As a result, if the film formation of the oxide film is continued, the oxide film is also formed on the SAM. Therefore, it is necessary to remove the nuclei of the oxide film formed on the SAM when the film formation of the oxide film on the insulating film has progressed to some extent. After the nuclei of the oxide film on the SAM are removed, the SAM is replenished on the metal film, and the oxide film is formed again on the insulating film.
  • an oxide film is formed on the insulating film.
  • the core of the oxide film formed on the SAM can be removed by etching with, for example, a fluorocarbon-based gas.
  • a fluorocarbon-based gas since the fluorocarbon-based gas is supplied to the entire substrate, the oxide film formed on the insulating film is also etched, and the film thickness of the oxide film is reduced. Therefore, even if the film thickness of the oxide film, the removal of the nuclei on the SAM, and the replenishment of the SAM are repeated, the film thickness of the oxide film formed on the insulating film does not easily reach the desired film thickness. Therefore, it is required to improve the productivity of the entire process for selectively forming an oxide film having a desired film thickness only on the insulating film.
  • the present disclosure provides a technique capable of improving the productivity of a semiconductor device using selective film formation.
  • FIG. 1 is a schematic view showing an example of a film forming system 100 according to an embodiment of the present disclosure.
  • the film forming system 100 includes a SAM supply device 200, a film forming device 300, a plasma processing device 400, and a plasma processing device 500. These devices are connected to the four side walls of the vacuum transfer chamber 101 having a heptagonal planar shape via a gate valve G, respectively.
  • the film forming system 100 is a multi-chamber type vacuum processing system.
  • the inside of the vacuum transfer chamber 101 is exhausted by a vacuum pump and maintained at a predetermined degree of vacuum.
  • the film forming system 100 uses the SAM supply device 200, the film forming device 300, the plasma processing device 400, and the plasma processing device 500 to expose the first film and the second film on the surface of the substrate W.
  • a third film is selectively formed on the film 2.
  • the SAM supply device 200 forms a SAM in the region of the first film of the substrate W by supplying the gas of the organic compound for forming the SAM to the surface of the substrate W.
  • the SAM in the present embodiment has a function of adsorbing on the surface of the first film and suppressing the film formation of the third film.
  • the organic compound for forming SAM has a functional group containing fluorine and carbon.
  • the organic compound for forming the SAM connects, for example, a binding functional group adsorbed on the surface of the first film, a functional functional group containing fluorine and carbon, and a binding functional group and a functional functional group. It is an organic compound having an alkyl chain.
  • a thiol compound represented by the general formula "R-SH” can be used as the organic compound for forming the SAM.
  • R includes a fluorine atom and a carbon atom.
  • Thiol compounds have the property of adsorbing on the surface of metals such as gold and copper and not on the surface of oxides and carbon. Examples of such thiol compounds include CF 3 (CF 2 ) 15 CH 2 CH 2 SH, CF 3 (CF 2 ) 7 CH 2 CH 2 SH, CF 3 (CF 2 ) 5 CH 2 CH 2 SH, HS. -(CH 2 ) 11- O- (CH 2 ) 2- (CF 2 ) 5- CF 3 or HS- (CH 2 ) 11- O-CH 2- C 6 F 5 etc. can be used.
  • the organic compound for forming the SAM is represented by, for example, the general formula "R-Si (OCH 3 ) 3 " or "R-SiCl 3 ".
  • Organic silane compounds can be used.
  • RP O
  • OH OH
  • the first membrane is a membrane on which SAM is more easily adsorbed than the second membrane.
  • the third membrane is a membrane that is easier to form a volatile compound by binding with fluorine and carbon contained in SAM than the first membrane.
  • the film forming apparatus 300 forms a third film on the second film of the substrate W on which the SAM is formed by the SAM supply device 200.
  • the film forming apparatus 300 forms a third film on the region of the second film of the substrate W by ALD (Atomic Layer Deposition) using the raw material gas and the reaction gas.
  • ALD Atomic Layer Deposition
  • the raw material gas for example, a gas such as silane chloride or dimethylsilane chloride can be used.
  • the reaction gas for example, H 2 O gas or N 2 O gas can be used.
  • the plasma processing apparatus 400 irradiates at least one of ions and active species on the substrate W on which the third film is formed by the film forming apparatus 300.
  • the plasma processing apparatus 400 irradiates the substrate W with ions and active species contained in the plasma by exposing the substrate W to plasma of a rare gas such as Ar gas.
  • the plasma may be generated by using a plurality of types of rare gases (for example, He gas and Ar gas).
  • the plasma processing device 500 removes the SAM remaining on the first film by further exposing the surface of the substrate W irradiated with ions and active species by the plasma processing device 400 to plasma.
  • the plasma processing apparatus 500 removes the SAM remaining on the first film by, for example, generating a hydrogen gas plasma and exposing the surface of the substrate W to the hydrogen gas plasma.
  • the plasma processing apparatus 500 may use plasma of another gas such as oxygen gas to remove the SAM remaining on the first film.
  • the SAM remaining on the first film may be removed by using a highly reactive gas such as ozone gas without using plasma.
  • Three load lock chambers 102 are connected to the other three side walls of the vacuum transfer chamber 101 via a gate valve G1.
  • An air transport chamber 103 is provided on the opposite side of the vacuum transport chamber 101 with the load lock chamber 102 in between.
  • Each of the three load lock chambers 102 is connected to the atmospheric transport chamber 103 via a gate valve G2.
  • the load lock chamber 102 controls the pressure between the atmospheric pressure and the vacuum when the substrate W is transported between the atmospheric transport chamber 103 and the vacuum transport chamber 101.
  • Three ports 105 for mounting a carrier (FOUP (Front-Opening Unified Pod), etc.) C for accommodating the substrate W are provided on the side surface of the air transport chamber 103 opposite to the side surface on which the gate valve G2 is provided. Has been done. Further, an alignment chamber 104 for aligning the substrate W is provided on the side wall of the air transport chamber 103. A downflow of clean air is formed in the air transport chamber 103.
  • FOUP Front-Opening Unified Pod
  • a transfer mechanism 106 such as a robot arm is provided in the vacuum transfer chamber 101.
  • the transport mechanism 106 transports the substrate W between the SAM supply device 200, the film forming device 300, the plasma processing device 400, the plasma processing device 500, and each load lock chamber 102.
  • the transport mechanism 106 has two independently movable arms 107a and 107b.
  • a transport mechanism 108 such as a robot arm is provided in the atmospheric transport chamber 103.
  • the transport mechanism 108 transports the substrate W between each carrier C, each load lock chamber 102, and an alignment chamber 104.
  • the film forming system 100 includes a control device 110 having a memory, a processor, and an input / output interface.
  • the memory stores a program executed by the processor and a recipe including conditions for each process.
  • the processor executes a program read from the memory and controls each part of the film forming system 100 via the input / output interface based on the recipe stored in the memory.
  • FIG. 2 is a flowchart showing an example of the film forming method according to the first embodiment.
  • a third film is selectively formed on the second film.
  • a film is formed.
  • the film forming method shown in the flowchart of FIG. 2 is realized by the control device 110 controlling each part of the film forming system 100.
  • the preparation process is executed (S10).
  • the substrate W having the first film 11 and the second film 12 on the base material 10 is prepared.
  • FIG. 3 is a cross-sectional view showing an example of the substrate W prepared in the preparation step of the first embodiment.
  • the base material 10 is, for example, silicon
  • the first film 11 is a metal film such as copper
  • the second film 12 is an insulating film such as a silicon oxide film.
  • the substrate W prepared in step S10 is accommodated in the carrier C and set in the port 105. Then, it is taken out from the carrier C by the transport mechanism 108, passed through the alignment chamber 104, and then carried into one of the load lock chambers 102. Then, after the inside of the load lock chamber 102 is evacuated, the substrate W is carried out from the load lock chamber 102 by the transport mechanism 106 and carried into the SAM supply device 200.
  • the first film forming step is executed (S11).
  • the gas of the organic compound for forming the SAM is supplied into the SAM supply device 200 into which the substrate W is carried.
  • the molecules of the organic compound supplied into the SAM supply device 200 are not adsorbed on the surface of the second film 12 on the substrate W, but are adsorbed on the surface of the first film 11 and are adsorbed on the surface of the first film 11.
  • SAM is formed in.
  • the main processing conditions in the first film forming step of step S11 are as follows, for example.
  • Temperature of substrate W 100 to 350 ° C (preferably 150 ° C) Pressure: 1-100 Torr (preferably 50 Torr) Flow rate of gas of organic compound: 50-500 sccm (preferably 250 sccm) Processing time: 10 to 300 seconds (preferably 30 seconds)
  • FIG. 4 is a cross-sectional view showing an example of the substrate W after the SAM 13 is formed on the first film 11 in the first embodiment.
  • the substrate W is carried out from the SAM supply device 200 by the transport mechanism 106 and carried into the film forming apparatus 300.
  • the second film forming step is executed (S12).
  • a third film such as an oxide film is formed on the substrate W by ALD.
  • the third film formed on the substrate W by ALD is, for example, a silicon oxide film.
  • the ALD cycle including the adsorption step, the first purging step, the reaction step, and the second purging step is repeated a predetermined number of times.
  • a raw material gas such as a gas of silane chloride is supplied into the film forming apparatus 300.
  • the molecules of the raw material gas are chemically adsorbed on the surface of the second film 12.
  • the molecules of the raw material gas are hardly adsorbed on the SAM 13.
  • the main treatment conditions in the adsorption step are as follows, for example. Temperature of substrate W: 100 to 350 ° C. (preferably 200 ° C.) Pressure: 1-10 Torr (preferably 5 Torr) Flow rate of raw material gas: 10-500 sccm (preferably 250 sccm) Processing time: 0.3 to 10 seconds (preferably 1 second)
  • an inert gas such as nitrogen gas is supplied into the film forming apparatus 300, so that molecules of the raw material gas excessively adsorbed on the second film 12 are removed.
  • the main processing conditions in the first purging step are as follows, for example. Temperature of substrate W: 100 to 350 ° C. (preferably 200 ° C.) Pressure: 1-10 Torr (preferably 5 Torr) Flow rate of inert gas: 500-5000 sccm (preferably 2000 sccm) Processing time: 0.3 to 10 seconds (preferably 5 seconds)
  • the reaction step in the deposition apparatus 300, for example, be reacted gas supply, such as the H 2 O gas, the molecules of the reaction gas and the molecules of the adsorbed raw material gas on the second film 12 reacts, the second A silicon oxide film (third film 14) is formed on the film 12.
  • the third film 14 is hardly formed on the SAM 13.
  • the main treatment conditions in the reaction step are as follows, for example. Temperature of substrate W: 100 to 350 ° C. (preferably 200 ° C.) Pressure: 1-10 Torr (preferably 5 Torr) Flow rate of reaction gas: 100-2000 sccm (preferably 250 sccm) Processing time: 0.3 to 10 seconds (preferably 1 second)
  • the unreacted raw material gas molecules and the like on the second film 12 are removed by supplying an inert gas such as nitrogen gas into the film forming apparatus 300.
  • the main processing conditions in the second purging step are the same as the processing conditions in the first purging step described above.
  • FIG. 5 is a cross-sectional view showing an example of the substrate W after the third film 14 is formed in the first embodiment.
  • the region of SAM 13 on the first membrane 11 is also exposed to the raw material gas and the reaction gas. Further, the ability of the SAM 13 to suppress the film formation of the third film 14 is not perfect. Therefore, by repeating the ALD cycle, for example, as shown in FIG. 5, the nucleus 15 of the third film 14 may be formed on the SAM 13.
  • the substrate W is carried out from the film forming apparatus 300 by the conveying mechanism 106 and carried into the plasma processing apparatus 400.
  • the first removal step of step S13 is performed by, for example, the plasma processing apparatus 400 as shown in FIG.
  • FIG. 6 is a schematic cross-sectional view showing an example of the plasma processing apparatus 400 used in the first removing step.
  • the plasma processing apparatus 400 in this embodiment is, for example, a capacitively coupled parallel plate plasma processing apparatus.
  • the plasma processing apparatus 400 has, for example, a processing container 410 whose surface is formed of anodized aluminum or the like and in which a substantially cylindrical space is formed.
  • the processing container 410 is grounded for security.
  • a substantially cylindrical stage 420 on which the substrate W is placed is provided in the processing container 410.
  • the stage 420 is made of, for example, aluminum or the like.
  • a high frequency power supply 421 is connected to the stage 420.
  • the high frequency power supply 421 supplies high frequency power of a predetermined frequency (for example, 400 kHz to 13.5 MHz) used for attracting (bias) ions to the stage 420.
  • An exhaust port 411 is provided at the bottom of the processing container 410.
  • An exhaust device 413 is connected to the exhaust port 411 via an exhaust pipe 412.
  • the exhaust device 413 has a vacuum pump such as a turbo molecular pump, and can reduce the pressure inside the processing container 410 to a desired degree of vacuum.
  • An opening 414 for carrying in and out the substrate W is formed on the side wall of the processing container 410, and the opening 414 is opened and closed by the gate valve G.
  • a shower head 430 is provided above the stage 420 so as to face the stage 420.
  • the shower head 430 is supported on the upper part of the processing container 410 via the insulating member 415.
  • the stage 420 and the shower head 430 are provided in the processing container 410 so as to be substantially parallel to each other.
  • the shower head 430 has a top plate holding portion 431 and a top plate 432.
  • the top plate holding portion 431 is formed of, for example, aluminum whose surface has been anodized, and the top plate 432 is detachably supported under the top plate holding portion 431.
  • a diffusion chamber 433 is formed in the top plate holding portion 431.
  • An introduction port 436 communicating with the diffusion chamber 433 is formed in the upper part of the top plate holding portion 431, and a plurality of flow paths 434 communicating with the diffusion chamber 433 are formed in the bottom portion of the top plate holding portion 431.
  • a gas supply source 438 is connected to the introduction port 436 via a pipe.
  • the gas supply source 438 is a source of a rare gas such as Ar gas. Rare gas is an example of treated gas.
  • the top plate 432 is formed with a plurality of through holes 435 that penetrate the top plate 432 in the thickness direction.
  • One through-hole 435 communicates with one flow path 434.
  • the rare gas supplied from the gas supply source 438 into the diffusion chamber 433 via the introduction port 436 diffuses in the diffusion chamber 433 and showers into the processing container 410 through the plurality of flow paths 434 and the through ports 435. Is supplied to.
  • a high frequency power supply 437 is connected to the top plate holding portion 431 of the shower head 430.
  • the high-frequency power supply 437 supplies high-frequency power of a predetermined frequency used for generating plasma to the top plate holding unit 431.
  • the frequency of the high frequency power used to generate the plasma is, for example, a frequency in the range of 450 kHz to 2.5 GHz.
  • the high-frequency power supplied to the top plate holding portion 431 is radiated into the processing container 410 from the lower surface of the top plate holding portion 431.
  • the rare gas supplied into the processing container 410 is turned into plasma by the high frequency power radiated to the processing container 410.
  • the active species contained in the plasma is irradiated on the surface of the substrate W.
  • the ions contained in the plasma are drawn into the surface of the substrate W by the bias power supplied to the stage 420 by the high frequency power supply 421, and are irradiated on the surface of the substrate W.
  • the SAM 13 on the first film 11 is excited, and the fluorine and carbon contained in the SAM 13 and the third film formed on the SAM 13 are excited. 14 nuclei 15 react. Then, the nucleus 15 of the third film 14 formed on the SAM 13 becomes a volatile silicon fluoride compound and is removed from the SAM 13.
  • the main processing conditions in the first removing step of step S13 are as follows, for example.
  • Temperature of substrate W 30 to 350 ° C (preferably 200 ° C) Pressure: Several mTorr-100 Torr (preferably 10 mTorr) Rare gas flow rate: 10-1000 sccm (preferably 100 sccm) High frequency power for plasma generation: 100-5000W (preferably 2000W) High frequency power for bias: 10 to 1000 W (preferably 100 W) Processing time: 1 to 300 seconds (preferably 30 seconds)
  • FIG. 7 is a cross-sectional view showing an example of the substrate W after the core 15 of the third film 14 on the SAM 13 has been removed in the first embodiment.
  • the surface of the substrate W is irradiated with at least one of the ions contained in the plasma and the active species, a part of the SAM 13 on the first film 11 is decomposed, and the nucleus 15 of the third film 14 on the SAM 13 is decomposed. And the nucleus 15 of the third membrane 14 on the SAM 13 is removed.
  • the substrate W is carried out from the plasma processing device 400 by the transport mechanism 106 and carried into the plasma processing device 500.
  • the second removal step is executed (S14).
  • a plasma of hydrogen gas is generated in the plasma processing apparatus 500 into which the substrate W is carried.
  • the plasma processing apparatus 500 for example, an apparatus having the same structure as the plasma processing apparatus 400 described with reference to FIG. 6 can be used.
  • the main processing conditions in the second removing step of step S14 are as follows, for example.
  • Temperature of substrate W 30 to 350 ° C (preferably 200 ° C)
  • Pressure Several mTorr-100 Torr (preferably 50 Torr)
  • Hydrogen gas flow rate 10-1000 sccm (preferably 200 sccm)
  • High frequency power for plasma generation 100-5000W (preferably 2000W)
  • High frequency power for bias 10 to 1000 W (preferably 100 W)
  • Processing time 1 to 300 seconds (preferably 30 seconds)
  • FIG. 8 is a cross-sectional view showing an example of the substrate W after the SAM 13 on the first film 11 has been removed in the first embodiment.
  • step S11 it is determined whether or not the processes of steps S11 to S14 have been executed a predetermined number of times (S15).
  • the predetermined number of times is the number of times that the processes of steps S11 to S14 are repeated until a third film 14 having a predetermined thickness is formed on the second film 12. If steps S11 to S14 have not been executed a predetermined number of times (S15: No), the process shown in step S11 is executed again.
  • steps S11 to S14 are executed a predetermined number of times (S15: Yes)
  • the substrate W is carried out from the plasma processing device 500 by the transport mechanism 106 and carried into one of the load lock chambers 102.
  • the substrate W is carried out from the load lock chamber 102 by the transport mechanism 108 and returned to the carrier C.
  • the film forming method shown in this flowchart is completed.
  • the nuclei 15 of the third film 14 formed on the SAM 13 are removed by dry etching using a fluorocarbon-based gas, the nuclei 15 are removed, but a film is formed on the second film 12.
  • the third film 14 that has been formed is also etched. Therefore, it takes a long time to form the third film 14 having a predetermined thickness on the second film 12, and it is difficult to improve the productivity of the semiconductor device using the substrate W.
  • step S11 SAM13 containing fluorine and carbon is selectively formed on the first film 11, and in step S13, at least one of ions and active species is formed on the entire substrate W. Irradiate.
  • the SAM 13 on the first membrane 11 is decomposed, and the nucleus 15 of the third membrane 14 on the SAM 13 is removed as a volatile silicon fluoride compound by the fluorine and carbon contained in the SAM 13.
  • the third film 14 formed on the second film 12 has almost no fluorine atoms and carbon atoms, even if at least one of an ion and an active species is irradiated, the third film is formed. 14 is hardly etched. Therefore, a third film 14 having a predetermined thickness can be formed on the second film 12 at an early stage, and the productivity of the semiconductor device using the substrate W can be improved.
  • the film forming method in the present embodiment is a film forming method for selectively forming a film on the substrate W, and includes a preparation step, a first film forming step, and a second film forming step. , The first removal step and the like.
  • the substrate W on which the first film 11 and the second film 12 are exposed is prepared.
  • a compound for forming a self-assembled monolayer having a functional group containing fluorine and carbon and suppressing the formation of the third film 14 is supplied onto the substrate W.
  • the SAM 13 is formed on the first film 11.
  • the third film 14 is formed on the second film 12.
  • the surface of the substrate W is irradiated with at least one of ions and active species to remove the third film 14 formed in the vicinity of the SAM 13.
  • the third film 14 is a film that is easier to form a volatile compound by binding with fluorine and carbon contained in SAM 13 than the first film 11. Thereby, the productivity of the semiconductor device using the selective film formation can be improved.
  • the surface of the substrate W is irradiated with at least one of an ion and an active species, so that the core 15 of the third film 14 formed on the SAM 13 is formed. Will be removed. Thereby, the productivity of the semiconductor device using the selective film formation can be improved.
  • the film forming method in the above-described embodiment further includes a second removing step of removing the SAM 13 on the first film 11, which is executed after the first removing step. Further, the first film forming step, the second film forming step, the first removing step, and the second removing step are repeated a plurality of times in this order. As a result, a third film 14 having a desired thickness can be quickly formed on the second film 12 by selective film formation.
  • the surface of the substrate W is exposed to the plasma of the processing gas, so that at least one of the ions and the active species contained in the plasma is irradiated on the surface of the substrate W. ..
  • the processing gas is, for example, a rare gas.
  • the first film 11 may be, for example, a metal film
  • the second film 12 may be, for example, an insulating film
  • the third film 14 may be, for example, an oxide film. It may be.
  • the organic compound for forming the SAM 13 is an organic compound having a binding functional group adsorbed on the surface of the first film 11 and a functional functional group containing fluorine and carbon. ..
  • the organic compound for forming SAM 13 is, for example, a thiol-based compound, an organic silane-based compound, a phosphonic acid-based compound, or an isocyanate-based compound. As a result, the SAM 13 can be selectively formed on the surface of the first film 11.
  • FIG. 9 is a flowchart showing an example of the film forming method in the second embodiment.
  • a third film is selectively formed on the second film. Is formed.
  • the film forming method illustrated in the flowchart of FIG. 9 is realized by the control device 110 controlling each part of the film forming system 100.
  • FIGS. 10 to 16 an example of the film forming method according to the second embodiment will be described with reference to FIGS. 10 to 16.
  • the plasma processing apparatus 500 is not used in the film forming method in this embodiment.
  • the preparation process is executed (S20).
  • the substrate W in which the barrier film 51 and the metal wiring 50 are embedded in the groove of the interlayer insulating film 52 formed of the Low-k material is prepared.
  • FIG. 10 is a cross-sectional view showing an example of the substrate W prepared in the preparation step of the second embodiment.
  • the metal wiring 50 is an example of the first film
  • the barrier film 51 and the interlayer insulating film 52 are examples of the second film.
  • the metal wiring 50 is, for example, copper
  • the barrier film 51 is, for example, tantalum nitride
  • the interlayer insulating film 52 is, for example, a silicon oxide film.
  • the substrate W prepared in step S20 is accommodated in the carrier C and set in the port 105. Then, it is taken out from the carrier C by the transport mechanism 108, passed through the alignment chamber 104, and then carried into one of the load lock chambers 102. Then, after the inside of the load lock chamber 102 is evacuated, the substrate W is carried out from the load lock chamber 102 by the transport mechanism 106 and carried into the SAM supply device 200.
  • the first film forming step is executed (S21).
  • the gas of the organic compound for forming the SAM is supplied into the SAM supply device 200 into which the substrate W is carried.
  • the organic compound for forming the SAM for example, a thiol-based compound having a functional group containing a carbon atom and a fluorine atom can be used.
  • the molecules of the organic compound supplied into the SAM supply device 200 are not adsorbed on the surfaces of the barrier film 51 and the interlayer insulating film 52 on the substrate W, but are adsorbed on the surface of the metal wiring 50, and are adsorbed on the metal wiring 50.
  • the main processing conditions in the first film forming step of step S21 are the same as the main processing conditions in the first film forming step of step S11 of the first embodiment.
  • FIG. 11 is a cross-sectional view showing an example of the substrate W after the SAM 53 is formed on the metal wiring 50 in the second embodiment.
  • the substrate W is carried out from the SAM supply device 200 by the transport mechanism 106 and carried into the film forming apparatus 300.
  • the second film forming step is executed (S22).
  • the dielectric film 54 is formed on the substrate W by ALD in the film forming apparatus 300 to which the substrate W is carried.
  • the dielectric film 54 is an example of a third film.
  • the dielectric film 54 is, for example, aluminum oxide.
  • the ALD cycle including the adsorption step, the first purging step, the reaction step, and the second purging step is repeated a predetermined number of times.
  • a raw material gas such as TMA (trimethylaluminum) gas is supplied into the film forming apparatus 300.
  • TMA trimethylaluminum
  • the main treatment conditions in the adsorption step are as follows, for example. Temperature of substrate W: 80 to 250 ° C. (preferably 150 ° C.) Pressure: 0.1-10 Torr (preferably 3 Torr) Flow rate of raw material gas: 1 to 300 sccm (preferably 50 sccm) Processing time: 0.1 to 5 seconds (preferably 0.2 seconds)
  • the raw material gas excessively adsorbed on the barrier film 51 and the interlayer insulating film 52 by supplying a rare gas such as argon gas or an inert gas such as nitrogen gas into the film forming apparatus 300. Molecules are removed.
  • the main processing conditions in the first purging step are as follows, for example. Temperature of substrate W: 80 to 250 ° C. (preferably 150 ° C.) Pressure: 0.1-10 Torr (preferably 3 Torr) Flow rate of inert gas: 5 to 15 slm (preferably 10 slm) Processing time: 0.1 to 15 seconds (preferably 2 seconds)
  • the reaction step in the deposition apparatus 300, for example, it is reacted gas supply, such as the H 2 O gas, and molecules adsorbed material gas reacts on the molecules of the reaction gas and the barrier film 51 and the interlayer insulating film 52, Aluminum oxide (dielectric film 54) is formed on the barrier film 51 and the interlayer insulating film 52. At this time, since there are almost no molecules of the raw material gas on the SAM 53, the dielectric film 54 is hardly formed on the SAM 53.
  • the main treatment conditions in the reaction step are as follows, for example. Temperature of substrate W: 80 to 250 ° C. (preferably 150 ° C.) Pressure: 0.1-10 Torr (preferably 3 Torr) Flow rate of reaction gas: 10-500 sccm (preferably 100 sccm) Processing time: 0.1-5 seconds (preferably 0.5 seconds)
  • rare gas such as argon gas and inert gas such as nitrogen gas are supplied into the film forming apparatus 300, so that unreacted raw material gas molecules and the like on the substrate W are removed. ..
  • the main processing conditions in the second purging step are the same as the processing conditions in the first purging step described above.
  • the dielectric is dielectric on the barrier film 51 and the interlayer insulating film 52, for example, as shown in FIG. A body film 54 is formed.
  • FIG. 12 is a cross-sectional view showing an example of the substrate W after the dielectric film 54 is formed in the second embodiment.
  • the region of the SAM 53 on the metal wiring 50 is also exposed to the raw material gas and the reaction gas. Further, the ability of the SAM 53 to suppress the film formation of the dielectric film 54 is not perfect. Therefore, by repeating the above ALD cycle, a nucleus of the dielectric film 54 may be formed on the SAM 53, for example, as shown in FIG. Further, in the process of growing the dielectric film 54 by repeating the ALD cycle, the dielectric film 54 also grows in the lateral direction, and as shown in FIG. 12, for example, a part of the dielectric film 54 is a metal wiring 50. Protrude into the area. As a result, the width of the opening of the dielectric film 54 becomes a width ⁇ W1 narrower than the width ⁇ W0 of the region of the metal wiring 50.
  • the first removal step of step S23 is performed by, for example, the plasma processing apparatus 400 as shown in FIG.
  • the plasma processing device 400 of the present embodiment may not be provided with the high frequency power supply 421.
  • the processing gas is turned into plasma, and at least one of the ions and active species contained in the plasma is irradiated on the substrate W.
  • the SAM 53 on the metal wiring 50 is excited, the fluorine and carbon contained in the SAM 53 react with the core of the dielectric film 54 formed on the SAM 53, and the core of the dielectric film 54 is volatile. It becomes a fluorine compound and is removed from the SAM53.
  • the SAM 53 adjacent to the dielectric film 54 is excited, and the active species having fluorine and carbon contained in the SAM 53 is generated. To. Then, the active species having fluorine and carbon reacts with the side portion of the dielectric film 54 adjacent to the SAM 53. As a result, the side portion of the dielectric film 54 protruding into the region of the metal wiring 50 is removed as a volatile fluorine compound or a volatile compound containing fluorine and carbon.
  • FIG. 13 is a cross-sectional view showing an example of the substrate W after the SAM 53 has been removed in the second embodiment.
  • the width of the via can be made wider than the width of the metal wiring 50, and the width of the via can be increased. It is possible to suppress an increase in the resistance value. Since the active species produced by exciting the SAM 53 has a short lifetime, it is deactivated before reaching the upper surface of the dielectric film 54. Therefore, the upper surface of the dielectric film 54 is hardly etched by the active species generated by exciting the SAM 53.
  • the processing gas used in step S23 is, for example, hydrogen gas.
  • the treatment gas as long as it is a hydrogen-containing gas, a gas containing at least one of ammonia gas, hydrazine gas, and hydrocarbon gas such as methane can be used in addition to hydrogen gas.
  • the SAM 53 on the metal wiring 50 is removed. Therefore, in the present embodiment, the second removal step for the purpose of removing the SAM 53 is not executed.
  • the main processing conditions in the first removing step of step S23 are as follows, for example. Temperature of substrate W: 50 to 300 ° C (preferably 150 ° C) Pressure: 0.1 Torr to 50 Torr (preferably 2 Torr) Flow rate of processing gas: 200-3000 sccm (preferably 1000 sccm) High frequency power for plasma generation: 50-1000W (preferably 200W) Processing time: 1-60 seconds (preferably 10 seconds)
  • steps S21 to S23 have been executed a predetermined number of times (S24).
  • the predetermined number of times is the number of times that the processes of steps S21 to S23 are repeated until the dielectric film 54 having a predetermined thickness is formed on the interlayer insulating film 52.
  • steps S21 to S23 have not been executed a predetermined number of times (S24: No)
  • the process shown in step S21 is executed again, so that the SAM 53 is formed on the surface of the metal wiring 50, for example, as shown in FIG. A film is formed.
  • the dielectric film 54 is further formed on the barrier film 51 and the dielectric film 54.
  • a part of the dielectric film 54 protrudes again into the region of the metal wiring 50, and the width of the opening of the dielectric film 54 is larger than the width ⁇ W0 of the region of the metal wiring 50. It has a narrow width ⁇ W3.
  • step S23 by executing the process shown in step S23 again, the active species containing fluorine and carbon contained in the SAM 53 protruded into the core of the dielectric film 54 on the SAM 53 and the region of the metal wiring 50.
  • the side portion of the dielectric film 54 is removed.
  • the width of the opening of the dielectric film 54 expands to a width ⁇ W4 wider than the width ⁇ W0 of the region of the metal wiring 50.
  • the width of the opening of the dielectric film 54 is maintained wider than the width ⁇ W0 of the region of the metal wiring 50, and an arbitrary thickness is formed around the metal wiring 50.
  • the dielectric film 54 of the above can be formed.
  • the surface of the substrate W is irradiated with at least one of ions and active species to remove the side portion of the dielectric film 54 adjacent to the SAM 53.
  • the width of the opening of the dielectric film 54 can be made wider than the width of the region of the metal wiring 50.
  • the surface of the substrate W is exposed to the plasma of the processing gas, so that at least one of the ions and the active species contained in the plasma is irradiated on the surface of the substrate W.
  • the processing gas is, for example, a hydrogen-containing gas.
  • the third film 14 was formed by ALD in the second film forming step of step S12, but the disclosed technique is not limited to this.
  • the third film 14 may be formed by CVD (Chemical Vapor Deposition).
  • the substrate W is exposed to the plasma of the rare gas, so that the surface of the substrate W is irradiated with the ions contained in the plasma.
  • the disclosed technology is not limited to this.
  • the surface of the substrate W may be irradiated with ions using a focused ion beam device or the like.
  • the film forming system 100 is provided with one SAM supply device 200, one film forming device 300, one plasma processing device 400, and one plasma processing device 500.
  • the plasma processing device 400 and the plasma processing device 500 may be realized by one plasma processing device.
  • the film forming system 100 may be provided with a plurality of devices that perform the most time-consuming processing, and the other processing may be realized by one device. For example, when the process of step S11 takes a long time, a plurality of SAM supply devices 200 for performing the process of step S11 may be provided, and one device for performing the processes of S12 to S14 may be provided. As a result, it is possible to reduce the processing waiting time when processing a plurality of substrates W.
  • the first film forming step, the second film forming step, and the first removing step are repeatedly executed in this order, but the disclosed technique is limited to this. Absent.
  • the first film forming step (S30) and the first removal (S31) may be performed one or more times in this order.
  • FIG. 17 is a flowchart showing another example of the film forming method in the second embodiment.
  • the process performed in the first film forming step of step S30 is the same as the process performed in the first film forming step of step S21, and the process performed in the first removing step of step S31 is the process performed in step S23. It is the same as the process performed in the first removal step.
  • a dielectric film 54 having a sufficient thickness is formed in the second film forming step of step S22. Then, by repeating the first film forming step of step S30 and the first removing step of step S31, the width of the opening of the dielectric film 54 can be made wider than the width of the region of the metal wiring 50.
  • a process (S33) for determining whether or not the processes S21 to S23 and the processes S30 to S32 have been repeated a predetermined number of times may be executed.
  • the processing gas used in the first removal step of the second embodiment described above is a hydrogen-containing gas, but the disclosed technique is not limited to this.
  • the processing gas may contain a rare gas such as argon gas in addition to the hydrogen-containing gas.

Abstract

This film formation method for selectively forming a film on a substrate comprises a preparation step, a first film formation step, a second film formation step and a first removal step. In the preparation step, a substrate having a surface to which a first film and a second film are exposed is prepared. In the first film formation step, a self-assembled monolayer film is formed on the first film by supplying a compound for forming a self-assembled monolayer film that suppresses the formation of a third film, said compound having a functional group containing a fluorine atom and a carbon atom, onto the substrate. In the second film formation step, a third film is formed on the second film. In the first removal step, the third film formed in the vicinity of the self-assembled monolayer film is removed by irradiating the surface of the substrate with at least either ions or active species. Meanwhile, the third film is more likely to form a volatile compound than the first film by being combined with fluorine atoms and carbon atoms contained in the self-assembled monolayer film.

Description

成膜方法Film formation method
 本開示の種々の側面および実施形態は、成膜方法に関する。 Various aspects and embodiments of the present disclosure relate to film formation methods.
 半導体デバイスの製造において、基板の表面の特定の領域に選択的に膜を形成する技術として、フォトグラフィ技術が広く用いられている。例えば、下層配線形成後に絶縁膜を成膜し、フォトリソグラフィおよびエッチングによりトレンチおよびビアホールを有するデュアルダマシン構造を形成し、トレンチおよびビアホールにCu等の導電膜を埋め込んで配線を形成する。 In the manufacture of semiconductor devices, photography technology is widely used as a technology for selectively forming a film on a specific region on the surface of a substrate. For example, after forming the lower layer wiring, an insulating film is formed, a dual damascene structure having trenches and via holes is formed by photolithography and etching, and a conductive film such as Cu is embedded in the trenches and via holes to form wiring.
 しかし、近年、半導体デバイスの微細化が益々進んでおり、フォトリソグラフィ技術では位置合わせ精度が十分でない場合も生じている。 However, in recent years, the miniaturization of semiconductor devices has been progressing more and more, and there are cases where the alignment accuracy is not sufficient with the photolithography technology.
 このため、フォトリソグラフィ技術を用いずに、基板の表面の特定の領域に、選択的に膜を形成する手法が求められている。そのような手法として、膜形成を望まない基板の表面の領域に自己組織化単分子膜(Self-Assembled Monolayer:SAM)を形成する技術が提案されている(例えば特許文献1~4および非特許文献1~4参照)。SAMが形成された基板の表面の領域には所定の膜が形成されないため、SAMが形成されていない基板の表面の領域にのみ所定の膜を形成することができる。 Therefore, there is a demand for a method of selectively forming a film on a specific region on the surface of a substrate without using photolithography technology. As such a method, a technique for forming a self-assembled monolayer (SAM) in a region on the surface of a substrate for which film formation is not desired has been proposed (for example, Patent Documents 1 to 4 and non-patents). References 1 to 4). Since the predetermined film is not formed in the surface region of the substrate on which the SAM is formed, the predetermined film can be formed only in the surface region of the substrate on which the SAM is not formed.
特表2007-501902号公報Special Table 2007-501902 特表2007-533156号公報Special Table 2007-533156 特表2010-540773号公報Special Table 2010-540773 特表2013-520028号公報Japanese Patent Application Laid-Open No. 2013-520028
 本開示は、選択成膜を用いた半導体デバイスの生産性を向上させることができる成膜方法を提供する。 The present disclosure provides a film forming method capable of improving the productivity of a semiconductor device using selective film forming.
 本開示の一側面は、基板に選択的に成膜を行う成膜方法であって、準備工程と、第1の成膜工程と、第2の成膜工程と、第1の除去工程とを含む。準備工程では、表面に第1の膜と第2の膜とが露出している基板が準備される。第1の成膜工程では、フッ素および炭素を含む官能基を有し、第3の膜の成膜を抑制する自己組織化単分子膜を成膜するための化合物を基板上に供給することにより、第1の膜上に自己組織化単分子膜が成膜される。第2の成膜工程では、第2の膜上に第3の膜が成膜される。第1の除去工程では、基板の表面にイオンおよび活性種の少なくともいずれかを照射することにより、自己組織化単分子膜の近傍に形成された第3の膜が除去される。また、第3の膜は、第1の膜よりも、自己組織化単分子膜に含まれるフッ素および炭素と結びついて揮発性の化合物を作りやすい膜である。 One aspect of the present disclosure is a film forming method for selectively forming a film on a substrate, which comprises a preparation step, a first film forming step, a second film forming step, and a first removing step. Including. In the preparatory step, a substrate in which the first film and the second film are exposed on the surface is prepared. In the first film forming step, a compound for forming a self-assembled monolayer having a functional group containing fluorine and carbon and suppressing the formation of the third film is supplied onto the substrate. , A self-assembled monolayer is formed on the first film. In the second film forming step, a third film is formed on the second film. In the first removal step, the surface of the substrate is irradiated with at least one of ions and active species to remove the third film formed in the vicinity of the self-assembled monolayer. Further, the third membrane is a membrane that is easier to form a volatile compound by combining with fluorine and carbon contained in the self-assembled monolayer than the first membrane.
 本開示の種々の側面および実施形態によれば、選択成膜を用いた半導体デバイスの生産性を向上させることができる。 According to various aspects and embodiments of the present disclosure, the productivity of semiconductor devices using selective film formation can be improved.
図1は、本開示の一実施形態における成膜システムの一例を示す模式図である。FIG. 1 is a schematic view showing an example of a film forming system according to an embodiment of the present disclosure. 図2は、第1の実施形態における成膜方法の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of the film forming method according to the first embodiment. 図3は、第1の実施形態の準備工程において準備される基板の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a substrate prepared in the preparation step of the first embodiment. 図4は、第1の実施形態において第1の膜上にSAMが成膜された後の基板の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a substrate after SAM is formed on the first film in the first embodiment. 図5は、第1の実施形態において第2の膜上に第3の膜が成膜された後の基板の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of a substrate after the third film is formed on the second film in the first embodiment. 図6は、第1の除去工程に用いられるプラズマ処理装置の一例を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing an example of a plasma processing apparatus used in the first removal step. 図7は、第1の実施形態においてSAM上の第3の膜の核が除去された後の基板の一例を示す断面図である。FIG. 7 is a cross-sectional view showing an example of the substrate after the nuclei of the third film on the SAM have been removed in the first embodiment. 図8は、第1の実施形態において第1の膜上のSAMが除去された後の基板の一例を示す断面図である。FIG. 8 is a cross-sectional view showing an example of the substrate after the SAM on the first film has been removed in the first embodiment. 図9は、第2の実施形態における成膜方法の一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of the film forming method in the second embodiment. 図10は、第2の実施形態の準備工程において準備される基板の一例を示す断面図である。FIG. 10 is a cross-sectional view showing an example of a substrate prepared in the preparation step of the second embodiment. 図11は、第2の実施形態において金属配線上にSAMが成膜された後の基板の一例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of the substrate after the SAM is formed on the metal wiring in the second embodiment. 図12は、第2の実施形態において誘電体膜が成膜された後の基板の一例を示す断面図である。FIG. 12 is a cross-sectional view showing an example of the substrate after the dielectric film is formed in the second embodiment. 図13は、第2の実施形態においてSAMが除去された後の基板の一例を示す断面図である。FIG. 13 is a cross-sectional view showing an example of the substrate after the SAM has been removed in the second embodiment. 図14は、第2の実施形態において金属配線上にさらにSAMが成膜された後の基板の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of the substrate after the SAM is further formed on the metal wiring in the second embodiment. 図15は、第2の実施形態において誘電体膜上に誘電体膜がさらに成膜された後の基板の一例を示す断面図である。FIG. 15 is a cross-sectional view showing an example of a substrate after the dielectric film is further formed on the dielectric film in the second embodiment. 図16は、第2の実施形態においてSAMが除去された後の基板の一例を示す断面図である。FIG. 16 is a cross-sectional view showing an example of the substrate after the SAM has been removed in the second embodiment. 図17は、第2の実施形態における成膜方法の他の例を示すフローチャートである。FIG. 17 is a flowchart showing another example of the film forming method in the second embodiment. 図18は、第2の実施形態における成膜方法のさらなる他の例を示すフローチャートである。FIG. 18 is a flowchart showing still another example of the film forming method in the second embodiment.
 以下に、開示される成膜方法の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態により、開示される成膜方法が限定されるものではない。 Hereinafter, embodiments of the disclosed film forming method will be described in detail with reference to the drawings. The disclosed film forming method is not limited by the following embodiments.
 ところで、従来の選択成膜では、表面に金属膜および絶縁膜が露出している基板が準備され、金属膜上に、酸化膜の成膜を抑制するSAMが形成される。そして、絶縁膜上に酸化膜が成膜される。この時、金属膜上への酸化膜の成膜がSAMにより抑制されるため、金属膜上には酸化膜が成膜されない。 By the way, in the conventional selective film formation, a substrate having an exposed metal film and an insulating film on the surface is prepared, and a SAM that suppresses the film formation of the oxide film is formed on the metal film. Then, an oxide film is formed on the insulating film. At this time, since the film formation of the oxide film on the metal film is suppressed by SAM, the oxide film is not formed on the metal film.
 しかし、SAMにおける酸化膜の成膜の抑制能力は完全ではないため、SAM上にも酸化膜の核が成長する場合がある。これにより、酸化膜の成膜を続けると、SAM上にも酸化膜が成膜されてしまう。そのため、絶縁膜上での酸化膜の成膜がある程度進行した段階で、SAM上に形成された酸化膜の核を除去する必要がある。SAM上の酸化膜の核が除去された後、金属膜上にSAMが補充され、再び絶縁膜上への酸化膜の成膜が行われる。SAM上の酸化膜の核が除去された後、金属膜上にSAMが残っていれば、金属膜上に残存しているSAMが除去された上で、金属膜上にSAMが補充され、再び絶縁膜上への酸化膜の成膜が行われる。酸化膜の成膜、SAM上の核の除去、およびSAMの補充が、この順番で繰り返されることにより、絶縁膜上に所望の厚さの酸化膜を成膜することができる。 However, since the ability of SAM to suppress the formation of an oxide film is not perfect, the nucleus of the oxide film may grow on the SAM as well. As a result, if the film formation of the oxide film is continued, the oxide film is also formed on the SAM. Therefore, it is necessary to remove the nuclei of the oxide film formed on the SAM when the film formation of the oxide film on the insulating film has progressed to some extent. After the nuclei of the oxide film on the SAM are removed, the SAM is replenished on the metal film, and the oxide film is formed again on the insulating film. If the SAM remains on the metal film after the nucleus of the oxide film on the SAM is removed, the SAM remaining on the metal film is removed, the SAM is replenished on the metal film, and the SAM is replenished again. An oxide film is formed on the insulating film. By repeating the formation of the oxide film, the removal of the nuclei on the SAM, and the replenishment of the SAM in this order, an oxide film having a desired thickness can be formed on the insulating film.
 ここで、SAM上に形成された酸化膜の核は、例えばフルオロカーボン系のガスを用いたエッチングにより除去することができる。しかし、フルオロカーボン系のガスは、基板全体に供給されるため、絶縁膜上に形成された酸化膜もエッチングされてしまい、酸化膜の膜厚が減少してしまう。そのため、酸化膜の成膜、SAM上の核の除去、およびSAMの補充が繰り返されても、絶縁膜上に成膜される酸化膜の膜厚がなかなか所望の膜厚に達しない。従って、絶縁膜のみに選択的に所望の膜厚の酸化膜を成膜する処理全体の生産性の向上が求められている。 Here, the core of the oxide film formed on the SAM can be removed by etching with, for example, a fluorocarbon-based gas. However, since the fluorocarbon-based gas is supplied to the entire substrate, the oxide film formed on the insulating film is also etched, and the film thickness of the oxide film is reduced. Therefore, even if the film thickness of the oxide film, the removal of the nuclei on the SAM, and the replenishment of the SAM are repeated, the film thickness of the oxide film formed on the insulating film does not easily reach the desired film thickness. Therefore, it is required to improve the productivity of the entire process for selectively forming an oxide film having a desired film thickness only on the insulating film.
 そこで、本開示は、選択成膜を用いた半導体デバイスの生産性を向上させることができる技術を提供する。 Therefore, the present disclosure provides a technique capable of improving the productivity of a semiconductor device using selective film formation.
(第1の実施形態)
[成膜システム]
 図1は、本開示の一実施形態における成膜システム100の一例を示す模式図である。成膜システム100は、SAM供給装置200、成膜装置300、プラズマ処理装置400、およびプラズマ処理装置500を有する。これら装置は、平面形状が七角形をなす真空搬送室101の4つの側壁にそれぞれゲートバルブGを介して接続されている。成膜システム100は、マルチチャンバータイプの真空処理システムである。真空搬送室101内は、真空ポンプにより排気されて所定の真空度に保たれている。成膜システム100は、SAM供給装置200、成膜装置300、プラズマ処理装置400、およびプラズマ処理装置500を用いて、表面に第1の膜および第2の膜が露出している基板Wの第2の膜上に第3の膜を選択的に成膜する。
(First Embodiment)
[Film formation system]
FIG. 1 is a schematic view showing an example of a film forming system 100 according to an embodiment of the present disclosure. The film forming system 100 includes a SAM supply device 200, a film forming device 300, a plasma processing device 400, and a plasma processing device 500. These devices are connected to the four side walls of the vacuum transfer chamber 101 having a heptagonal planar shape via a gate valve G, respectively. The film forming system 100 is a multi-chamber type vacuum processing system. The inside of the vacuum transfer chamber 101 is exhausted by a vacuum pump and maintained at a predetermined degree of vacuum. The film forming system 100 uses the SAM supply device 200, the film forming device 300, the plasma processing device 400, and the plasma processing device 500 to expose the first film and the second film on the surface of the substrate W. A third film is selectively formed on the film 2.
 SAM供給装置200は、基板Wの表面に、SAMを形成するための有機化合物のガスを供給することにより、基板Wの第1の膜の領域にSAMを成膜する。本実施形態におけるSAMは、第1の膜の表面に吸着し、第3の膜の成膜を抑制する機能を有する。 The SAM supply device 200 forms a SAM in the region of the first film of the substrate W by supplying the gas of the organic compound for forming the SAM to the surface of the substrate W. The SAM in the present embodiment has a function of adsorbing on the surface of the first film and suppressing the film formation of the third film.
 本実施形態において、SAMを形成するための有機化合物は、フッ素および炭素を含む官能基を有する。SAMを形成するための有機化合物は、例えば、第1の膜の表面に吸着する結合性官能基、フッ素および炭素を含む機能性官能基、および、結合性官能基と機能性官能基とをつなぐアルキル鎖を有する有機化合物である。 In the present embodiment, the organic compound for forming SAM has a functional group containing fluorine and carbon. The organic compound for forming the SAM connects, for example, a binding functional group adsorbed on the surface of the first film, a functional functional group containing fluorine and carbon, and a binding functional group and a functional functional group. It is an organic compound having an alkyl chain.
 第1の膜が例えば金や銅等である場合、SAMを形成するための有機化合物としては、例えば一般式「R-SH」で表されるチオール系化合物を用いることができる。ここで、「R」には、フッ素原子および炭素原子が含まれる。チオール系化合物は、金や銅等の金属の表面には吸着し、酸化物やカーボンの表面には吸着しない性質を有する。このようなチオール系化合物としては、例えばCF3(CF215CH2CH2SH、CF3(CF27CH2CH2SH、CF3(CF25CH2CH2SH、HS-(CH211-O-(CH22-(CF25-CF3、またはHS-(CH211-O-CH2-C65等を用いることができる。 When the first film is, for example, gold or copper, a thiol compound represented by the general formula "R-SH" can be used as the organic compound for forming the SAM. Here, "R" includes a fluorine atom and a carbon atom. Thiol compounds have the property of adsorbing on the surface of metals such as gold and copper and not on the surface of oxides and carbon. Examples of such thiol compounds include CF 3 (CF 2 ) 15 CH 2 CH 2 SH, CF 3 (CF 2 ) 7 CH 2 CH 2 SH, CF 3 (CF 2 ) 5 CH 2 CH 2 SH, HS. -(CH 2 ) 11- O- (CH 2 ) 2- (CF 2 ) 5- CF 3 or HS- (CH 2 ) 11- O-CH 2- C 6 F 5 etc. can be used.
 なお、第1の膜が例えばシリコン窒化膜等である場合、SAMを形成するための有機化合物としては、例えば一般式「R-Si(OCH33」または「R-SiCl3」で表される有機シラン系化合物を用いることができる。また、第1の膜が例えば酸化アルミニウム等である場合、SAMを形成するための有機化合物としては、例えば一般式「R-P(=O)(OH)2」で表されるホスホン酸系化合物を用いることができる。また、第1の膜が例えば酸化タンタル等である場合、SAMを形成するための有機化合物としては、例えば一般式「R-N=C=O」で表されるイソシアナート系化合物を用いることができる。 When the first film is, for example, a silicon nitride film, the organic compound for forming the SAM is represented by, for example, the general formula "R-Si (OCH 3 ) 3 " or "R-SiCl 3 ". Organic silane compounds can be used. When the first membrane is, for example, aluminum oxide, the organic compound for forming the SAM is, for example, a phosphonic acid compound represented by the general formula "RP (= O) (OH) 2". Can be used. When the first membrane is, for example, tantalum pentoxide, an isocyanate compound represented by the general formula "RN = C = O" may be used as the organic compound for forming the SAM. it can.
 本実施形態において、第1の膜は、第2の膜よりもSAMが吸着しやすい膜である。また、第3の膜は、第1の膜よりも、SAMに含まれるフッ素および炭素と結びついて揮発性の化合物を作りやすい膜である。このような第1の膜、第2の膜、第3の膜、およびSAMの材料の組み合わせとしては、例えば、以下の表1~表4に示されるような組み合わせが考えられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 なお、上記表1~表4に示された組み合わせでは、第1の膜の材料と第2の膜の材料とが異なり、かつ、第1の膜の材料と第3の膜の材料とが異なることを前提としている。
In the present embodiment, the first membrane is a membrane on which SAM is more easily adsorbed than the second membrane. Further, the third membrane is a membrane that is easier to form a volatile compound by binding with fluorine and carbon contained in SAM than the first membrane. As such a combination of the first film, the second film, the third film, and the material of the SAM, for example, the combinations shown in Tables 1 to 4 below can be considered.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
In the combinations shown in Tables 1 to 4, the material of the first film and the material of the second film are different, and the material of the first film and the material of the third film are different. It is assumed that.
 成膜装置300は、SAM供給装置200によってSAMが成膜された基板Wの第2の膜上に第3の膜を成膜する。本実施形態において、成膜装置300は、原料ガスおよび反応ガスを用いたALD(Atomic Layer Deposition)により、基板Wの第2の膜の領域に第3の膜を成膜する。原料ガスとしては、例えば塩化シランまたはジメチル塩化シラン等のガスを用いることができる。反応ガスとしては、例えばH2OガスまたはN2Oガス等を用いることができる。 The film forming apparatus 300 forms a third film on the second film of the substrate W on which the SAM is formed by the SAM supply device 200. In the present embodiment, the film forming apparatus 300 forms a third film on the region of the second film of the substrate W by ALD (Atomic Layer Deposition) using the raw material gas and the reaction gas. As the raw material gas, for example, a gas such as silane chloride or dimethylsilane chloride can be used. As the reaction gas, for example, H 2 O gas or N 2 O gas can be used.
 プラズマ処理装置400は、成膜装置300によって第3の膜が成膜された基板W上にイオンおよび活性種の少なくともいずれかを照射する。本実施形態において、プラズマ処理装置400は、基板WをArガス等の希ガスのプラズマに晒すことにより、プラズマに含まれるイオンおよび活性種を基板W上に照射する。なお、プラズマは、複数種類の希ガス(例えばHeガスとArガス)を用いて生成されてもよい。 The plasma processing apparatus 400 irradiates at least one of ions and active species on the substrate W on which the third film is formed by the film forming apparatus 300. In the present embodiment, the plasma processing apparatus 400 irradiates the substrate W with ions and active species contained in the plasma by exposing the substrate W to plasma of a rare gas such as Ar gas. The plasma may be generated by using a plurality of types of rare gases (for example, He gas and Ar gas).
 プラズマ処理装置500は、プラズマ処理装置400によってイオンおよび活性種が照射された基板Wの表面をさらにプラズマに晒すことにより、第1の膜上に残存しているSAMを除去する。本実施形態において、プラズマ処理装置500は、例えば水素ガスのプラズマを生成し、基板Wの表面を水素ガスのプラズマに晒すことにより、第1の膜上に残存しているSAMを除去する。なお、プラズマ処理装置500は、酸素ガス等の他のガスのプラズマを用いて第1の膜上に残存しているSAMを除去してもよい。また、第1の膜上に残存しているSAMは、プラズマを用いずに、オゾンガス等の反応性の高いガスを用いて除去されてもよい。 The plasma processing device 500 removes the SAM remaining on the first film by further exposing the surface of the substrate W irradiated with ions and active species by the plasma processing device 400 to plasma. In the present embodiment, the plasma processing apparatus 500 removes the SAM remaining on the first film by, for example, generating a hydrogen gas plasma and exposing the surface of the substrate W to the hydrogen gas plasma. The plasma processing apparatus 500 may use plasma of another gas such as oxygen gas to remove the SAM remaining on the first film. Further, the SAM remaining on the first film may be removed by using a highly reactive gas such as ozone gas without using plasma.
 真空搬送室101の他の3つの側壁には、3つのロードロック室102がゲートバルブG1を介して接続されている。ロードロック室102を挟んで真空搬送室101の反対側には、大気搬送室103が設けられている。3つのロードロック室102のそれぞれは、ゲートバルブG2を介して大気搬送室103に接続されている。ロードロック室102は、大気搬送室103と真空搬送室101との間で基板Wを搬送する際に、大気圧と真空との間で圧力制御を行う。 Three load lock chambers 102 are connected to the other three side walls of the vacuum transfer chamber 101 via a gate valve G1. An air transport chamber 103 is provided on the opposite side of the vacuum transport chamber 101 with the load lock chamber 102 in between. Each of the three load lock chambers 102 is connected to the atmospheric transport chamber 103 via a gate valve G2. The load lock chamber 102 controls the pressure between the atmospheric pressure and the vacuum when the substrate W is transported between the atmospheric transport chamber 103 and the vacuum transport chamber 101.
 大気搬送室103のゲートバルブG2が設けられた側面とは反対側の側面には、基板Wを収容するキャリア(FOUP(Front-Opening Unified Pod)等)Cを取り付けるための3つのポート105が設けられている。また、大気搬送室103の側壁には、基板Wのアライメントを行うためのアライメント室104が設けられている。大気搬送室103内には清浄空気のダウンフローが形成される。 Three ports 105 for mounting a carrier (FOUP (Front-Opening Unified Pod), etc.) C for accommodating the substrate W are provided on the side surface of the air transport chamber 103 opposite to the side surface on which the gate valve G2 is provided. Has been done. Further, an alignment chamber 104 for aligning the substrate W is provided on the side wall of the air transport chamber 103. A downflow of clean air is formed in the air transport chamber 103.
 真空搬送室101内には、ロボットアーム等の搬送機構106が設けられている。搬送機構106は、SAM供給装置200、成膜装置300、プラズマ処理装置400、プラズマ処理装置500、およびそれぞれのロードロック室102の間で基板Wを搬送する。搬送機構106は、独立に移動可能な2つのアーム107aおよび107bを有する。 A transfer mechanism 106 such as a robot arm is provided in the vacuum transfer chamber 101. The transport mechanism 106 transports the substrate W between the SAM supply device 200, the film forming device 300, the plasma processing device 400, the plasma processing device 500, and each load lock chamber 102. The transport mechanism 106 has two independently movable arms 107a and 107b.
 大気搬送室103内には、ロボットアーム等の搬送機構108が設けられている。搬送機構108は、それぞれのキャリアC、それぞれのロードロック室102、およびアライメント室104の間で基板Wを搬送する。 A transport mechanism 108 such as a robot arm is provided in the atmospheric transport chamber 103. The transport mechanism 108 transports the substrate W between each carrier C, each load lock chamber 102, and an alignment chamber 104.
 成膜システム100は、メモリ、プロセッサ、および入出力インターフェイスを有する制御装置110を有する。メモリには、プロセッサによって実行されるプログラム、および、各処理の条件等を含むレシピが格納されている。プロセッサは、メモリから読み出したプログラムを実行し、メモリ内に記憶されたレシピに基づいて、入出力インターフェイスを介して、成膜システム100の各部を制御する。 The film forming system 100 includes a control device 110 having a memory, a processor, and an input / output interface. The memory stores a program executed by the processor and a recipe including conditions for each process. The processor executes a program read from the memory and controls each part of the film forming system 100 via the input / output interface based on the recipe stored in the memory.
[成膜方法]
 図2は、第1の実施形態における成膜方法の一例を示すフローチャートである。本実施形態では、例えば図1に示された成膜システム100により、表面に第1の膜および第2の膜が露出している基板Wにおいて、第2の膜上に選択的に第3の膜が成膜される。図2のフローチャートに示された成膜方法は、制御装置110が成膜システム100の各部を制御することによって実現される。以下では、第1の実施形態における成膜方法の一例を、図3~図8を参照しながら説明する。
[Film film method]
FIG. 2 is a flowchart showing an example of the film forming method according to the first embodiment. In the present embodiment, for example, by the film forming system 100 shown in FIG. 1, in the substrate W in which the first film and the second film are exposed on the surface, a third film is selectively formed on the second film. A film is formed. The film forming method shown in the flowchart of FIG. 2 is realized by the control device 110 controlling each part of the film forming system 100. Hereinafter, an example of the film forming method according to the first embodiment will be described with reference to FIGS. 3 to 8.
 まず、準備工程が実行される(S10)。ステップS10の準備工程では、例えば図3に示されるように、基材10上に第1の膜11および第2の膜12を有する基板Wが準備される。図3は、第1の実施形態の準備工程において準備される基板Wの一例を示す断面図である。本実施形態において、基材10は、例えばシリコン等であり、第1の膜11は、例えば銅等の金属膜であり、第2の膜12は、例えばシリコン酸化膜等の絶縁膜である。 First, the preparation process is executed (S10). In the preparation step of step S10, for example, as shown in FIG. 3, the substrate W having the first film 11 and the second film 12 on the base material 10 is prepared. FIG. 3 is a cross-sectional view showing an example of the substrate W prepared in the preparation step of the first embodiment. In the present embodiment, the base material 10 is, for example, silicon, the first film 11 is a metal film such as copper, and the second film 12 is an insulating film such as a silicon oxide film.
 ステップS10において準備された基板Wは、キャリアCに収容されてポート105にセットされる。そして、搬送機構108によってキャリアCから取り出され、アライメント室104を経由した後に、いずれかのロードロック室102内に搬入される。そして、ロードロック室102内が真空排気された後、搬送機構106によって、基板Wがロードロック室102から搬出され、SAM供給装置200内に搬入される。 The substrate W prepared in step S10 is accommodated in the carrier C and set in the port 105. Then, it is taken out from the carrier C by the transport mechanism 108, passed through the alignment chamber 104, and then carried into one of the load lock chambers 102. Then, after the inside of the load lock chamber 102 is evacuated, the substrate W is carried out from the load lock chamber 102 by the transport mechanism 106 and carried into the SAM supply device 200.
 次に、第1の成膜工程が実行される(S11)。ステップS11の第1の成膜工程では、基板Wが搬入されたSAM供給装置200内に、SAMを形成するための有機化合物のガスが供給される。SAM供給装置200内に供給された有機化合物の分子は、基板W上において、第2の膜12の表面には吸着せず、第1の膜11の表面に吸着し、第1の膜11上にSAMを形成する。ステップS11の第1の成膜工程における主な処理条件は、例えば以下の通りである。
  基板Wの温度:100~350℃(好ましくは150℃)
  圧力:1~100Torr(好ましくは50Torr)
  有機化合物のガスの流量:50~500sccm(好ましくは250sccm)
  処理時間:10~300秒(好ましくは30秒)
Next, the first film forming step is executed (S11). In the first film forming step of step S11, the gas of the organic compound for forming the SAM is supplied into the SAM supply device 200 into which the substrate W is carried. The molecules of the organic compound supplied into the SAM supply device 200 are not adsorbed on the surface of the second film 12 on the substrate W, but are adsorbed on the surface of the first film 11 and are adsorbed on the surface of the first film 11. SAM is formed in. The main processing conditions in the first film forming step of step S11 are as follows, for example.
Temperature of substrate W: 100 to 350 ° C (preferably 150 ° C)
Pressure: 1-100 Torr (preferably 50 Torr)
Flow rate of gas of organic compound: 50-500 sccm (preferably 250 sccm)
Processing time: 10 to 300 seconds (preferably 30 seconds)
 これにより、基板Wの状態は、例えば図4のようになる。図4は、第1の実施形態において第1の膜11上にSAM13が成膜された後の基板Wの一例を示す断面図である。ステップS11の処理が実行された後、基板Wは、搬送機構106によってSAM供給装置200から搬出され、成膜装置300内に搬入される。 As a result, the state of the substrate W becomes, for example, as shown in FIG. FIG. 4 is a cross-sectional view showing an example of the substrate W after the SAM 13 is formed on the first film 11 in the first embodiment. After the process of step S11 is executed, the substrate W is carried out from the SAM supply device 200 by the transport mechanism 106 and carried into the film forming apparatus 300.
 次に、第2の成膜工程が実行される(S12)。ステップS12の第2の成膜工程では、基板Wが搬入された成膜装置300において、ALDにより基板W上に酸化膜等の第3の膜が成膜される。本実施形態において、ALDにより基板W上に成膜される第3の膜は、例えばシリコン酸化膜である。ALDでは、吸着工程、第1のパージ工程、反応工程、および第2のパージ工程を含むALDサイクルが所定回数繰り返される。 Next, the second film forming step is executed (S12). In the second film forming step of step S12, in the film forming apparatus 300 to which the substrate W is carried in, a third film such as an oxide film is formed on the substrate W by ALD. In the present embodiment, the third film formed on the substrate W by ALD is, for example, a silicon oxide film. In ALD, the ALD cycle including the adsorption step, the first purging step, the reaction step, and the second purging step is repeated a predetermined number of times.
 吸着工程では、成膜装置300内に、例えば塩化シランのガス等の原料ガスが供給される。これにより、原料ガスの分子が第2の膜12の表面に化学吸着する。ただし、原料ガスの分子はSAM13上にはほとんど吸着しない。吸着工程における主な処理条件は、例えば以下の通りである。
  基板Wの温度:100~350℃(好ましくは200℃)
  圧力:1~10Torr(好ましくは5Torr)
  原料ガスの流量:10~500sccm(好ましくは250sccm)
  処理時間:0.3~10秒(好ましくは1秒)
In the adsorption step, a raw material gas such as a gas of silane chloride is supplied into the film forming apparatus 300. As a result, the molecules of the raw material gas are chemically adsorbed on the surface of the second film 12. However, the molecules of the raw material gas are hardly adsorbed on the SAM 13. The main treatment conditions in the adsorption step are as follows, for example.
Temperature of substrate W: 100 to 350 ° C. (preferably 200 ° C.)
Pressure: 1-10 Torr (preferably 5 Torr)
Flow rate of raw material gas: 10-500 sccm (preferably 250 sccm)
Processing time: 0.3 to 10 seconds (preferably 1 second)
 第1のパージ工程では、窒素ガス等の不活性ガスが成膜装置300内に供給されることにより、第2の膜12上に過剰に吸着した原料ガスの分子が除去される。第1のパージ工程における主な処理条件は、例えば以下の通りである。
  基板Wの温度:100~350℃(好ましくは200℃)
  圧力:1~10Torr(好ましくは5Torr)
  不活性ガスの流量:500~5000sccm(好ましくは2000sccm)
  処理時間:0.3~10秒(好ましくは5秒)
In the first purging step, an inert gas such as nitrogen gas is supplied into the film forming apparatus 300, so that molecules of the raw material gas excessively adsorbed on the second film 12 are removed. The main processing conditions in the first purging step are as follows, for example.
Temperature of substrate W: 100 to 350 ° C. (preferably 200 ° C.)
Pressure: 1-10 Torr (preferably 5 Torr)
Flow rate of inert gas: 500-5000 sccm (preferably 2000 sccm)
Processing time: 0.3 to 10 seconds (preferably 5 seconds)
 反応工程では、成膜装置300内に、例えばH2Oガス等の反応ガスが供給され、反応ガスの分子と第2の膜12上に吸着した原料ガスの分子とが反応し、第2の膜12上にシリコン酸化膜(第3の膜14)が成膜される。このとき、SAM13上にはほとんど原料ガスの分子が存在しないので、SAM13上には第3の膜14がほとんど成膜されない。反応工程における主な処理条件は、例えば以下の通りである。
  基板Wの温度:100~350℃(好ましくは200℃)
  圧力:1~10Torr(好ましくは5Torr)
  反応ガスの流量:100~2000sccm(好ましくは250sccm)
  処理時間:0.3~10秒(好ましくは1秒)
In the reaction step, in the deposition apparatus 300, for example, be reacted gas supply, such as the H 2 O gas, the molecules of the reaction gas and the molecules of the adsorbed raw material gas on the second film 12 reacts, the second A silicon oxide film (third film 14) is formed on the film 12. At this time, since there are almost no molecules of the raw material gas on the SAM 13, the third film 14 is hardly formed on the SAM 13. The main treatment conditions in the reaction step are as follows, for example.
Temperature of substrate W: 100 to 350 ° C. (preferably 200 ° C.)
Pressure: 1-10 Torr (preferably 5 Torr)
Flow rate of reaction gas: 100-2000 sccm (preferably 250 sccm)
Processing time: 0.3 to 10 seconds (preferably 1 second)
 第2のパージ工程では、窒素ガス等の不活性ガスが成膜装置300内に供給されることにより、第2の膜12上の未反応の原料ガスの分子等が除去される。第2のパージ工程における主な処理条件は、前述の第1のパージ工程における処理条件と同様である。 In the second purging step, the unreacted raw material gas molecules and the like on the second film 12 are removed by supplying an inert gas such as nitrogen gas into the film forming apparatus 300. The main processing conditions in the second purging step are the same as the processing conditions in the first purging step described above.
 吸着工程、第1のパージ工程、反応工程、および第2のパージ工程を含むALDサイクルが所定回数繰り返されることにより、例えば図5に示されるように、第2の膜12上に第3の膜14が成膜される。図5は、第1の実施形態において第3の膜14が成膜された後の基板Wの一例を示す断面図である。 By repeating the ALD cycle including the adsorption step, the first purging step, the reaction step, and the second purging step a predetermined number of times, a third film is formed on the second film 12, for example, as shown in FIG. 14 is formed. FIG. 5 is a cross-sectional view showing an example of the substrate W after the third film 14 is formed in the first embodiment.
 なお、第1の膜11上のSAM13の領域も原料ガスや反応ガスに晒される。また、SAM13における第3の膜14の成膜の抑制能力は完全ではない。そのため、上記ALDサイクルが繰り返されることにより、例えば図5に示されるように、SAM13上に第3の膜14の核15が形成される場合がある。 The region of SAM 13 on the first membrane 11 is also exposed to the raw material gas and the reaction gas. Further, the ability of the SAM 13 to suppress the film formation of the third film 14 is not perfect. Therefore, by repeating the ALD cycle, for example, as shown in FIG. 5, the nucleus 15 of the third film 14 may be formed on the SAM 13.
 SAM13上に第3の膜14の核15が形成された後も、上記ALDサイクルが繰り返されると、核15が成長し、やがてSAM13上にも第3の膜14が形成されてしまう。これを防止するために、核15が第3の膜14に成長する前に、SAM13上に形成された核15を除去する必要がある。ステップS12の処理が実行された後、基板Wは、搬送機構106によって成膜装置300から搬出され、プラズマ処理装置400内に搬入される。 Even after the nucleus 15 of the third film 14 is formed on the SAM 13, if the above ALD cycle is repeated, the nucleus 15 grows and eventually the third film 14 is also formed on the SAM 13. In order to prevent this, it is necessary to remove the nucleus 15 formed on the SAM 13 before the nucleus 15 grows on the third film 14. After the processing of step S12 is executed, the substrate W is carried out from the film forming apparatus 300 by the conveying mechanism 106 and carried into the plasma processing apparatus 400.
 次に、第1の除去工程が実行される(S13)。ステップS13の第1の除去工程は、例えば図6に示されるようなプラズマ処理装置400によって実行される。図6は、第1の除去工程に用いられるプラズマ処理装置400の一例を示す概略断面図である。本実施形態におけるプラズマ処理装置400は、例えば容量結合型平行平板プラズマ処理装置である。プラズマ処理装置400は、例えば表面が陽極酸化処理されたアルミニウム等によって形成され、内部に略円筒形状の空間が形成された処理容器410を有する。処理容器410は保安接地されている。 Next, the first removal step is executed (S13). The first removal step of step S13 is performed by, for example, the plasma processing apparatus 400 as shown in FIG. FIG. 6 is a schematic cross-sectional view showing an example of the plasma processing apparatus 400 used in the first removing step. The plasma processing apparatus 400 in this embodiment is, for example, a capacitively coupled parallel plate plasma processing apparatus. The plasma processing apparatus 400 has, for example, a processing container 410 whose surface is formed of anodized aluminum or the like and in which a substantially cylindrical space is formed. The processing container 410 is grounded for security.
 処理容器410内には、基板Wが載置される略円筒形状のステージ420が設けられている。ステージ420は、例えばアルミニウム等で形成されている。ステージ420には、高周波電源421が接続されている。高周波電源421は、イオンの引き込み(バイアス)に用いられる所定の周波数(例えば400kHz~13.5MHz)の高周波電力をステージ420に供給する。 A substantially cylindrical stage 420 on which the substrate W is placed is provided in the processing container 410. The stage 420 is made of, for example, aluminum or the like. A high frequency power supply 421 is connected to the stage 420. The high frequency power supply 421 supplies high frequency power of a predetermined frequency (for example, 400 kHz to 13.5 MHz) used for attracting (bias) ions to the stage 420.
 処理容器410の底部には、排気口411が設けられている。排気口411には、排気管412を介して排気装置413が接続されている。排気装置413は、例えばターボ分子ポンプ等の真空ポンプを有しており、処理容器410内を所望の真空度まで減圧することができる。 An exhaust port 411 is provided at the bottom of the processing container 410. An exhaust device 413 is connected to the exhaust port 411 via an exhaust pipe 412. The exhaust device 413 has a vacuum pump such as a turbo molecular pump, and can reduce the pressure inside the processing container 410 to a desired degree of vacuum.
 処理容器410の側壁には、基板Wを搬入および搬出するための開口414が形成されており、開口414は、ゲートバルブGによって開閉される。 An opening 414 for carrying in and out the substrate W is formed on the side wall of the processing container 410, and the opening 414 is opened and closed by the gate valve G.
 ステージ420の上方には、ステージ420と対向するようにシャワーヘッド430が設けられている。シャワーヘッド430は、絶縁部材415を介して処理容器410の上部に支持されている。ステージ420とシャワーヘッド430とは、互いに略平行となるように処理容器410内に設けられている。 A shower head 430 is provided above the stage 420 so as to face the stage 420. The shower head 430 is supported on the upper part of the processing container 410 via the insulating member 415. The stage 420 and the shower head 430 are provided in the processing container 410 so as to be substantially parallel to each other.
 シャワーヘッド430は、天板保持部431および天板432を有する。天板保持部431は、例えば表面が陽極酸化処理されたアルミニウム等により形成されており、その下部に天板432を着脱自在に支持する。 The shower head 430 has a top plate holding portion 431 and a top plate 432. The top plate holding portion 431 is formed of, for example, aluminum whose surface has been anodized, and the top plate 432 is detachably supported under the top plate holding portion 431.
 天板保持部431には、拡散室433が形成されている。天板保持部431の上部には、拡散室433に連通する導入口436が形成されており、天板保持部431の底部には、拡散室433に連通する複数の流路434が形成されている。導入口436には、配管を介してガス供給源438が接続されている。ガス供給源438は、Arガス等の希ガスの供給源である。希ガスは、処理ガスの一例である。 A diffusion chamber 433 is formed in the top plate holding portion 431. An introduction port 436 communicating with the diffusion chamber 433 is formed in the upper part of the top plate holding portion 431, and a plurality of flow paths 434 communicating with the diffusion chamber 433 are formed in the bottom portion of the top plate holding portion 431. There is. A gas supply source 438 is connected to the introduction port 436 via a pipe. The gas supply source 438 is a source of a rare gas such as Ar gas. Rare gas is an example of treated gas.
 天板432には、天板432を厚さ方向に貫通する複数の貫通口435が形成されている。1つの貫通口435は、1つの流路434に連通している。ガス供給源438から導入口436を介して拡散室433内に供給された希ガスは、拡散室433内を拡散し、複数の流路434および貫通口435を介して処理容器410内にシャワー状に供給される。 The top plate 432 is formed with a plurality of through holes 435 that penetrate the top plate 432 in the thickness direction. One through-hole 435 communicates with one flow path 434. The rare gas supplied from the gas supply source 438 into the diffusion chamber 433 via the introduction port 436 diffuses in the diffusion chamber 433 and showers into the processing container 410 through the plurality of flow paths 434 and the through ports 435. Is supplied to.
 シャワーヘッド430の天板保持部431には、高周波電源437が接続されている。高周波電源437は、プラズマの発生に用いられる所定の周波数の高周波電力を天板保持部431に供給する。プラズマの発生に用いられる高周波電力の周波数は、例えば450kHz~2.5GHzの範囲内の周波数である。天板保持部431に供給された高周波電力は、天板保持部431の下面から処理容器410内に放射される。処理容器410内に供給された希ガスは、処理容器410に放射された高周波電力によってプラズマ化される。そして、プラズマに含まれる活性種が基板Wの表面に照射される。また、プラズマに含まれるイオンが、高周波電源421によってステージ420に供給されたバイアス電力によって基板Wの表面に引き込まれ、基板Wの表面に照射される。 A high frequency power supply 437 is connected to the top plate holding portion 431 of the shower head 430. The high-frequency power supply 437 supplies high-frequency power of a predetermined frequency used for generating plasma to the top plate holding unit 431. The frequency of the high frequency power used to generate the plasma is, for example, a frequency in the range of 450 kHz to 2.5 GHz. The high-frequency power supplied to the top plate holding portion 431 is radiated into the processing container 410 from the lower surface of the top plate holding portion 431. The rare gas supplied into the processing container 410 is turned into plasma by the high frequency power radiated to the processing container 410. Then, the active species contained in the plasma is irradiated on the surface of the substrate W. Further, the ions contained in the plasma are drawn into the surface of the substrate W by the bias power supplied to the stage 420 by the high frequency power supply 421, and are irradiated on the surface of the substrate W.
 基板W上にイオンおよび活性種の少なくともいずれかが照射されることにより、第1の膜11上のSAM13が励起され、SAM13に含まれるフッ素および炭素と、SAM13上に形成された第3の膜14の核15とが反応する。そして、SAM13上に形成された第3の膜14の核15は、揮発性のフッ化シリコン化合物となって、SAM13上から除去される。ステップS13の第1の除去工程における主な処理条件は、例えば以下の通りである。
  基板Wの温度:30~350℃(好ましくは200℃)
  圧力:数mTorr~100Torr(好ましくは10mTorr)
  希ガスの流量:10~1000sccm(好ましくは100sccm)
  プラズマ生成用の高周波電力:100~5000W(好ましくは2000W)
  バイアス用の高周波電力:10~1000W(好ましくは100W)
  処理時間:1~300秒(好ましくは30秒)
By irradiating the substrate W with at least one of an ion and an active species, the SAM 13 on the first film 11 is excited, and the fluorine and carbon contained in the SAM 13 and the third film formed on the SAM 13 are excited. 14 nuclei 15 react. Then, the nucleus 15 of the third film 14 formed on the SAM 13 becomes a volatile silicon fluoride compound and is removed from the SAM 13. The main processing conditions in the first removing step of step S13 are as follows, for example.
Temperature of substrate W: 30 to 350 ° C (preferably 200 ° C)
Pressure: Several mTorr-100 Torr (preferably 10 mTorr)
Rare gas flow rate: 10-1000 sccm (preferably 100 sccm)
High frequency power for plasma generation: 100-5000W (preferably 2000W)
High frequency power for bias: 10 to 1000 W (preferably 100 W)
Processing time: 1 to 300 seconds (preferably 30 seconds)
 これにより、基板Wの状態は、例えば図7のようになる。図7は、第1の実施形態においてSAM13上の第3の膜14の核15が除去された後の基板Wの一例を示す断面図である。基板Wの表面にプラズマに含まれるイオンおよび活性種の少なくともいずれかが照射されることにより、第1の膜11上のSAM13の一部が分解し、SAM13上の第3の膜14の核15と反応し、SAM13上の第3の膜14の核15が除去される。一方、第3の膜14上にイオンおよび活性種の少なくともいずれかが照射されても、第3の膜14はほとんど削れず、第3の膜14の膜厚はほとんど変わらない。ステップS13の処理が実行された後、基板Wは、搬送機構106によってプラズマ処理装置400から搬出され、プラズマ処理装置500内に搬入される。 As a result, the state of the substrate W becomes, for example, as shown in FIG. FIG. 7 is a cross-sectional view showing an example of the substrate W after the core 15 of the third film 14 on the SAM 13 has been removed in the first embodiment. When the surface of the substrate W is irradiated with at least one of the ions contained in the plasma and the active species, a part of the SAM 13 on the first film 11 is decomposed, and the nucleus 15 of the third film 14 on the SAM 13 is decomposed. And the nucleus 15 of the third membrane 14 on the SAM 13 is removed. On the other hand, even if the third film 14 is irradiated with at least one of an ion and an active species, the third film 14 is hardly scraped and the film thickness of the third film 14 is almost unchanged. After the processing of step S13 is executed, the substrate W is carried out from the plasma processing device 400 by the transport mechanism 106 and carried into the plasma processing device 500.
 次に、第2の除去工程が実行される(S14)。ステップS14の第2の除去工程では、基板Wが搬入されたプラズマ処理装置500内に、例えば水素ガスのプラズマが生成される。プラズマ処理装置500は、例えば図6を用いて説明したプラズマ処理装置400と同様の構造の装置を用いることができる。ステップS14の第2の除去工程における主な処理条件は、例えば以下の通りである。
  基板Wの温度:30~350℃(好ましくは200℃)
  圧力:数mTorr~100Torr(好ましくは50Torr)
  水素ガスの流量:10~1000sccm(好ましくは200sccm)
  プラズマ生成用の高周波電力:100~5000W(好ましくは2000W)
  バイアス用高周波電力:10~1000W(好ましくは100W)
  処理時間:1~300秒(好ましくは30秒)
Next, the second removal step is executed (S14). In the second removal step of step S14, for example, a plasma of hydrogen gas is generated in the plasma processing apparatus 500 into which the substrate W is carried. As the plasma processing apparatus 500, for example, an apparatus having the same structure as the plasma processing apparatus 400 described with reference to FIG. 6 can be used. The main processing conditions in the second removing step of step S14 are as follows, for example.
Temperature of substrate W: 30 to 350 ° C (preferably 200 ° C)
Pressure: Several mTorr-100 Torr (preferably 50 Torr)
Hydrogen gas flow rate: 10-1000 sccm (preferably 200 sccm)
High frequency power for plasma generation: 100-5000W (preferably 2000W)
High frequency power for bias: 10 to 1000 W (preferably 100 W)
Processing time: 1 to 300 seconds (preferably 30 seconds)
 これにより、第1の膜11上に残存しているSAM13が全て除去され、基板Wの状態は、例えば図8のようになる。図8は、第1の実施形態において第1の膜11上のSAM13が除去された後の基板Wの一例を示す断面図である。 As a result, all the SAM 13 remaining on the first film 11 is removed, and the state of the substrate W becomes, for example, FIG. FIG. 8 is a cross-sectional view showing an example of the substrate W after the SAM 13 on the first film 11 has been removed in the first embodiment.
 次に、ステップS11~S14の処理が所定回数実行されたか否かが判定される(S15)。所定回数とは、第2の膜12上に所定の厚さの第3の膜14が形成されるまでステップS11~S14の処理が繰り返される回数である。ステップS11~S14が所定回数実行されていない場合(S15:No)、再びステップS11に示された処理が実行される。 Next, it is determined whether or not the processes of steps S11 to S14 have been executed a predetermined number of times (S15). The predetermined number of times is the number of times that the processes of steps S11 to S14 are repeated until a third film 14 having a predetermined thickness is formed on the second film 12. If steps S11 to S14 have not been executed a predetermined number of times (S15: No), the process shown in step S11 is executed again.
 一方、ステップS11~S14が所定回数実行された場合(S15:Yes)、搬送機構106によって、基板Wがプラズマ処理装置500から搬出され、いずれかのロードロック室102内に搬入される。そして、ロードロック室102内が大気圧に戻された後、搬送機構108によって基板Wがロードロック室102から搬出され、キャリアCに戻される。そして、本フローチャートに示された成膜方法が終了する。 On the other hand, when steps S11 to S14 are executed a predetermined number of times (S15: Yes), the substrate W is carried out from the plasma processing device 500 by the transport mechanism 106 and carried into one of the load lock chambers 102. Then, after the inside of the load lock chamber 102 is returned to the atmospheric pressure, the substrate W is carried out from the load lock chamber 102 by the transport mechanism 108 and returned to the carrier C. Then, the film forming method shown in this flowchart is completed.
 ここで、SAM13上に形成された第3の膜14の核15をフルオロカーボン系のガスを用いたドライエッチングにより除去するとすれば、核15は除去されるものの、第2の膜12上に成膜された第3の膜14もエッチングされてしまう。そのため、第2の膜12上に所定の厚さの第3の膜14を成膜するのに要する時間が長くなり、基板Wを用いた半導体デバイスの生産性の向上が難しい。 Here, if the nuclei 15 of the third film 14 formed on the SAM 13 are removed by dry etching using a fluorocarbon-based gas, the nuclei 15 are removed, but a film is formed on the second film 12. The third film 14 that has been formed is also etched. Therefore, it takes a long time to form the third film 14 having a predetermined thickness on the second film 12, and it is difficult to improve the productivity of the semiconductor device using the substrate W.
 これに対し、本実施形態では、ステップS11において、第1の膜11上にフッ素および炭素を含むSAM13を選択的に成膜し、ステップS13において、基板W全体にイオンおよび活性種の少なくともいずれかを照射する。これにより、第1の膜11上のSAM13が分解し、SAM13に含まれるフッ素および炭素によってSAM13上の第3の膜14の核15が揮発性のフッ化シリコン化合物となって除去される。 On the other hand, in the present embodiment, in step S11, SAM13 containing fluorine and carbon is selectively formed on the first film 11, and in step S13, at least one of ions and active species is formed on the entire substrate W. Irradiate. As a result, the SAM 13 on the first membrane 11 is decomposed, and the nucleus 15 of the third membrane 14 on the SAM 13 is removed as a volatile silicon fluoride compound by the fluorine and carbon contained in the SAM 13.
 一方、第2の膜12上に成膜された第3の膜14には、フッ素原子および炭素原子がほとんど存在しないため、イオンおよび活性種の少なくともいずれかが照射されても、第3の膜14はほとんどエッチングされない。そのため、第2の膜12上に所定の厚さの第3の膜14を早期に成膜することができ、基板Wを用いた半導体デバイスの生産性を向上させることができる。 On the other hand, since the third film 14 formed on the second film 12 has almost no fluorine atoms and carbon atoms, even if at least one of an ion and an active species is irradiated, the third film is formed. 14 is hardly etched. Therefore, a third film 14 having a predetermined thickness can be formed on the second film 12 at an early stage, and the productivity of the semiconductor device using the substrate W can be improved.
 以上、第1の実施形態について説明した。上記したように、本実施形態における成膜方法は、基板Wに選択的に成膜を行う成膜方法であって、準備工程と、第1の成膜工程と、第2の成膜工程と、第1の除去工程とを含む。準備工程では、表面に第1の膜11と第2の膜12とが露出している基板Wが準備される。第1の成膜工程では、フッ素および炭素を含む官能基を有し、第3の膜14の成膜を抑制する自己組織化単分子膜を成膜するための化合物を基板W上に供給することにより、第1の膜11上にSAM13が成膜される。第2の成膜工程では、第2の膜12上に第3の膜14が成膜される。第1の除去工程では、基板Wの表面にイオンおよび活性種の少なくともいずれかを照射することにより、SAM13の近傍に形成された第3の膜14が除去される。また、第3の膜14は、第1の膜11よりも、SAM13に含まれるフッ素および炭素と結びついて揮発性の化合物を作りやすい膜である。これにより、選択成膜を用いた半導体デバイスの生産性を向上させることができる。 The first embodiment has been described above. As described above, the film forming method in the present embodiment is a film forming method for selectively forming a film on the substrate W, and includes a preparation step, a first film forming step, and a second film forming step. , The first removal step and the like. In the preparatory step, the substrate W on which the first film 11 and the second film 12 are exposed is prepared. In the first film forming step, a compound for forming a self-assembled monolayer having a functional group containing fluorine and carbon and suppressing the formation of the third film 14 is supplied onto the substrate W. As a result, the SAM 13 is formed on the first film 11. In the second film forming step, the third film 14 is formed on the second film 12. In the first removal step, the surface of the substrate W is irradiated with at least one of ions and active species to remove the third film 14 formed in the vicinity of the SAM 13. Further, the third film 14 is a film that is easier to form a volatile compound by binding with fluorine and carbon contained in SAM 13 than the first film 11. Thereby, the productivity of the semiconductor device using the selective film formation can be improved.
 また、上記した実施形態における第1の除去工程では、基板Wの表面にイオンおよび活性種の少なくともいずれかが照射されることにより、SAM13の上に形成された第3の膜14の核15が除去される。これにより、選択成膜を用いた半導体デバイスの生産性を向上させることができる。 Further, in the first removal step in the above-described embodiment, the surface of the substrate W is irradiated with at least one of an ion and an active species, so that the core 15 of the third film 14 formed on the SAM 13 is formed. Will be removed. Thereby, the productivity of the semiconductor device using the selective film formation can be improved.
 また、上記した実施形態における成膜方法には、第1の除去工程の後に実行される、第1の膜11上のSAM13を除去する第2の除去工程がさらに含まれる。また、第1の成膜工程、第2の成膜工程、第1の除去工程、および第2の除去工程は、この順番で複数回繰り返される。これにより、選択成膜により第2の膜12上に所望の厚さの第3の膜14を迅速に成膜することができる。 Further, the film forming method in the above-described embodiment further includes a second removing step of removing the SAM 13 on the first film 11, which is executed after the first removing step. Further, the first film forming step, the second film forming step, the first removing step, and the second removing step are repeated a plurality of times in this order. As a result, a third film 14 having a desired thickness can be quickly formed on the second film 12 by selective film formation.
 また、上記した実施形態における第1の除去工程では、基板Wの表面が処理ガスのプラズマに晒されることにより、プラズマに含まれるイオンおよび活性種の少なくともいずれかが基板Wの表面に照射される。処理ガスは、例えば希ガスである。これにより、基板Wの表面にイオンおよび活性種の少なくともいずれかを効率的に照射することができる。 Further, in the first removing step in the above-described embodiment, the surface of the substrate W is exposed to the plasma of the processing gas, so that at least one of the ions and the active species contained in the plasma is irradiated on the surface of the substrate W. .. The processing gas is, for example, a rare gas. As a result, the surface of the substrate W can be efficiently irradiated with at least one of ions and active species.
 また、上記した実施形態において、第1の膜11は、例えば金属膜であってもよく、第2の膜12は、例えば絶縁膜であってもよく、第3の膜14は、例えば酸化膜であってもよい。これにより、選択成膜により第2の膜12上に所望の厚さの第3の膜14を迅速に成膜することができる。 Further, in the above-described embodiment, the first film 11 may be, for example, a metal film, the second film 12 may be, for example, an insulating film, and the third film 14 may be, for example, an oxide film. It may be. As a result, a third film 14 having a desired thickness can be quickly formed on the second film 12 by selective film formation.
 また、上記した実施形態において、SAM13を形成するための有機化合物は、第1の膜11の表面に吸着する結合性官能基と、フッ素および炭素を含む機能性官能基とを有する有機化合物である。具体的には、SAM13を形成するための有機化合物は、例えば、チオール系化合物、有機シラン系化合物、ホスホン酸系化合物、またはイソシアナート系化合物である。これにより、第1の膜11の表面に選択的にSAM13を成膜することができる。 Further, in the above-described embodiment, the organic compound for forming the SAM 13 is an organic compound having a binding functional group adsorbed on the surface of the first film 11 and a functional functional group containing fluorine and carbon. .. Specifically, the organic compound for forming SAM 13 is, for example, a thiol-based compound, an organic silane-based compound, a phosphonic acid-based compound, or an isocyanate-based compound. As a result, the SAM 13 can be selectively formed on the surface of the first film 11.
(第2の実施形態)
 図9は、第2の実施形態における成膜方法の一例を示すフローチャートである。本実施形態では、図1に例示された成膜システム100により、表面に第1の膜および第2の膜が露出している基板Wにおいて、第2の膜上に選択的に第3の膜が成膜される。図9のフローチャートに例示された成膜方法は、制御装置110が成膜システム100の各部を制御することによって実現される。以下では、第2の実施形態における成膜方法の一例を、図10~図16を参照しながら説明する。なお、本実施形態における成膜方法では、プラズマ処理装置500は使用されない。
(Second Embodiment)
FIG. 9 is a flowchart showing an example of the film forming method in the second embodiment. In the present embodiment, in the substrate W in which the first film and the second film are exposed on the surface by the film forming system 100 illustrated in FIG. 1, a third film is selectively formed on the second film. Is formed. The film forming method illustrated in the flowchart of FIG. 9 is realized by the control device 110 controlling each part of the film forming system 100. Hereinafter, an example of the film forming method according to the second embodiment will be described with reference to FIGS. 10 to 16. The plasma processing apparatus 500 is not used in the film forming method in this embodiment.
 まず、準備工程が実行される(S20)。ステップS20の準備工程では、例えば図10に示されるように、Low-k材料により形成された層間絶縁膜52の溝にバリア膜51および金属配線50が埋め込まれた基板Wが準備される。図10は、第2の実施形態の準備工程において準備される基板Wの一例を示す断面図である。金属配線50は第1の膜の一例であり、バリア膜51および層間絶縁膜52は第2の膜の一例である。本実施形態において、金属配線50は例えば銅、バリア膜51は例えば窒化タンタル、層間絶縁膜52は例えばシリコン酸化膜である。 First, the preparation process is executed (S20). In the preparation step of step S20, for example, as shown in FIG. 10, the substrate W in which the barrier film 51 and the metal wiring 50 are embedded in the groove of the interlayer insulating film 52 formed of the Low-k material is prepared. FIG. 10 is a cross-sectional view showing an example of the substrate W prepared in the preparation step of the second embodiment. The metal wiring 50 is an example of the first film, and the barrier film 51 and the interlayer insulating film 52 are examples of the second film. In the present embodiment, the metal wiring 50 is, for example, copper, the barrier film 51 is, for example, tantalum nitride, and the interlayer insulating film 52 is, for example, a silicon oxide film.
 ステップS20において準備された基板Wは、キャリアCに収容されてポート105にセットされる。そして、搬送機構108によってキャリアCから取り出され、アライメント室104を経由した後に、いずれかのロードロック室102内に搬入される。そして、ロードロック室102内が真空排気された後、搬送機構106によって、基板Wがロードロック室102から搬出され、SAM供給装置200内に搬入される。 The substrate W prepared in step S20 is accommodated in the carrier C and set in the port 105. Then, it is taken out from the carrier C by the transport mechanism 108, passed through the alignment chamber 104, and then carried into one of the load lock chambers 102. Then, after the inside of the load lock chamber 102 is evacuated, the substrate W is carried out from the load lock chamber 102 by the transport mechanism 106 and carried into the SAM supply device 200.
 次に、第1の成膜工程が実行される(S21)。ステップS21の第1の成膜工程では、基板Wが搬入されたSAM供給装置200内に、SAMを形成するための有機化合物のガスが供給される。SAMを形成するための有機化合物としては、例えば炭素原子およびフッ素原子を含む官能基を有するチオール系化合物を用いることができる。SAM供給装置200内に供給された有機化合物の分子は、基板W上において、バリア膜51および層間絶縁膜52の表面には吸着せず、金属配線50の表面に吸着し、金属配線50上にSAMを形成する。ステップS21の第1の成膜工程における主な処理条件は、第1の実施形態のステップS11の第1の成膜工程における主な処理条件と同様である。 Next, the first film forming step is executed (S21). In the first film forming step of step S21, the gas of the organic compound for forming the SAM is supplied into the SAM supply device 200 into which the substrate W is carried. As the organic compound for forming the SAM, for example, a thiol-based compound having a functional group containing a carbon atom and a fluorine atom can be used. The molecules of the organic compound supplied into the SAM supply device 200 are not adsorbed on the surfaces of the barrier film 51 and the interlayer insulating film 52 on the substrate W, but are adsorbed on the surface of the metal wiring 50, and are adsorbed on the metal wiring 50. Form SAM. The main processing conditions in the first film forming step of step S21 are the same as the main processing conditions in the first film forming step of step S11 of the first embodiment.
 これにより、基板Wの状態は、例えば図11のようになる。図11は、第2の実施形態において金属配線50上にSAM53が成膜された後の基板Wの一例を示す断面図である。ステップS21の処理が実行された後、基板Wは、搬送機構106によってSAM供給装置200から搬出され、成膜装置300内に搬入される。 As a result, the state of the substrate W becomes, for example, as shown in FIG. FIG. 11 is a cross-sectional view showing an example of the substrate W after the SAM 53 is formed on the metal wiring 50 in the second embodiment. After the process of step S21 is executed, the substrate W is carried out from the SAM supply device 200 by the transport mechanism 106 and carried into the film forming apparatus 300.
 次に、第2の成膜工程が実行される(S22)。ステップS22の第2の成膜工程では、基板Wが搬入された成膜装置300において、ALDにより基板W上に誘電体膜54が成膜される。誘電体膜54は、第3の膜の一例である。本実施形態において、誘電体膜54は、例えば酸化アルミニウムである。ALDでは、吸着工程、第1のパージ工程、反応工程、および第2のパージ工程を含むALDサイクルが所定回数繰り返される。 Next, the second film forming step is executed (S22). In the second film forming step of step S22, the dielectric film 54 is formed on the substrate W by ALD in the film forming apparatus 300 to which the substrate W is carried. The dielectric film 54 is an example of a third film. In this embodiment, the dielectric film 54 is, for example, aluminum oxide. In ALD, the ALD cycle including the adsorption step, the first purging step, the reaction step, and the second purging step is repeated a predetermined number of times.
 吸着工程では、成膜装置300内に、例えばTMA(トリメチルアルミニウム)のガス等の原料ガスが供給される。これにより、原料ガスの分子がバリア膜51および層間絶縁膜52の表面に化学吸着する。ただし、原料ガスの分子はSAM53上にはほとんど吸着しない。吸着工程における主な処理条件は、例えば以下の通りである。
  基板Wの温度:80~250℃(好ましくは150℃)
  圧力:0.1~10Torr(好ましくは3Torr)
  原料ガスの流量:1~300sccm(好ましくは50sccm)
  処理時間:0.1~5秒(好ましくは0.2秒)
In the adsorption step, a raw material gas such as TMA (trimethylaluminum) gas is supplied into the film forming apparatus 300. As a result, the molecules of the raw material gas are chemically adsorbed on the surfaces of the barrier film 51 and the interlayer insulating film 52. However, the molecules of the raw material gas are hardly adsorbed on the SAM 53. The main treatment conditions in the adsorption step are as follows, for example.
Temperature of substrate W: 80 to 250 ° C. (preferably 150 ° C.)
Pressure: 0.1-10 Torr (preferably 3 Torr)
Flow rate of raw material gas: 1 to 300 sccm (preferably 50 sccm)
Processing time: 0.1 to 5 seconds (preferably 0.2 seconds)
 第1のパージ工程では、アルゴンガス等の希ガスや窒素ガス等の不活性ガスが成膜装置300内に供給されることにより、バリア膜51および層間絶縁膜52上に過剰に吸着した原料ガスの分子が除去される。第1のパージ工程における主な処理条件は、例えば以下の通りである。
  基板Wの温度:80~250℃(好ましくは150℃)
  圧力:0.1~10Torr(好ましくは3Torr)
  不活性ガスの流量:5~15slm(好ましくは10slm)
  処理時間:0.1~15秒(好ましくは2秒)
In the first purging step, the raw material gas excessively adsorbed on the barrier film 51 and the interlayer insulating film 52 by supplying a rare gas such as argon gas or an inert gas such as nitrogen gas into the film forming apparatus 300. Molecules are removed. The main processing conditions in the first purging step are as follows, for example.
Temperature of substrate W: 80 to 250 ° C. (preferably 150 ° C.)
Pressure: 0.1-10 Torr (preferably 3 Torr)
Flow rate of inert gas: 5 to 15 slm (preferably 10 slm)
Processing time: 0.1 to 15 seconds (preferably 2 seconds)
 反応工程では、成膜装置300内に、例えばH2Oガス等の反応ガスが供給され、反応ガスの分子とバリア膜51および層間絶縁膜52上に吸着した原料ガスの分子とが反応し、バリア膜51および層間絶縁膜52上に酸化アルミニウム(誘電体膜54)が成膜される。このとき、SAM53上にはほとんど原料ガスの分子が存在しないので、SAM53上には誘電体膜54がほとんど成膜されない。反応工程における主な処理条件は、例えば以下の通りである。
  基板Wの温度:80~250℃(好ましくは150℃)
  圧力:0.1~10Torr(好ましくは3Torr)
  反応ガスの流量:10~500sccm(好ましくは100sccm)
  処理時間:0.1~5秒(好ましくは0.5秒)
In the reaction step, in the deposition apparatus 300, for example, it is reacted gas supply, such as the H 2 O gas, and molecules adsorbed material gas reacts on the molecules of the reaction gas and the barrier film 51 and the interlayer insulating film 52, Aluminum oxide (dielectric film 54) is formed on the barrier film 51 and the interlayer insulating film 52. At this time, since there are almost no molecules of the raw material gas on the SAM 53, the dielectric film 54 is hardly formed on the SAM 53. The main treatment conditions in the reaction step are as follows, for example.
Temperature of substrate W: 80 to 250 ° C. (preferably 150 ° C.)
Pressure: 0.1-10 Torr (preferably 3 Torr)
Flow rate of reaction gas: 10-500 sccm (preferably 100 sccm)
Processing time: 0.1-5 seconds (preferably 0.5 seconds)
 第2のパージ工程では、アルゴンガス等の希ガスや窒素ガス等の不活性ガスが成膜装置300内に供給されることにより、基板W上の未反応の原料ガスの分子等が除去される。第2のパージ工程における主な処理条件は、前述の第1のパージ工程における処理条件と同様である。 In the second purging step, rare gas such as argon gas and inert gas such as nitrogen gas are supplied into the film forming apparatus 300, so that unreacted raw material gas molecules and the like on the substrate W are removed. .. The main processing conditions in the second purging step are the same as the processing conditions in the first purging step described above.
 吸着工程、第1のパージ工程、反応工程、および第2のパージ工程を含むALDサイクルが所定回数繰り返されることにより、例えば図12に示されるように、バリア膜51および層間絶縁膜52上に誘電体膜54が成膜される。図12は、第2の実施形態において誘電体膜54が成膜された後の基板Wの一例を示す断面図である。 By repeating the ALD cycle including the adsorption step, the first purging step, the reaction step, and the second purging step a predetermined number of times, the dielectric is dielectric on the barrier film 51 and the interlayer insulating film 52, for example, as shown in FIG. A body film 54 is formed. FIG. 12 is a cross-sectional view showing an example of the substrate W after the dielectric film 54 is formed in the second embodiment.
 ここで、金属配線50上のSAM53の領域も原料ガスや反応ガスに晒される。また、SAM53における誘電体膜54の成膜の抑制能力は完全ではない。そのため、上記ALDサイクルが繰り返されることにより、例えば図5に示されたように、SAM53上に誘電体膜54の核が形成される場合がある。また、ALDサイクルの繰り返しにより誘電体膜54が成長する過程で、誘電体膜54が横方向にも成長し、例えば図12に示されるように、誘電体膜54の一部が金属配線50の領域にせり出す。これにより、誘電体膜54の開口部の幅が、金属配線50の領域の幅ΔW0よりも狭い幅ΔW1となる。 Here, the region of the SAM 53 on the metal wiring 50 is also exposed to the raw material gas and the reaction gas. Further, the ability of the SAM 53 to suppress the film formation of the dielectric film 54 is not perfect. Therefore, by repeating the above ALD cycle, a nucleus of the dielectric film 54 may be formed on the SAM 53, for example, as shown in FIG. Further, in the process of growing the dielectric film 54 by repeating the ALD cycle, the dielectric film 54 also grows in the lateral direction, and as shown in FIG. 12, for example, a part of the dielectric film 54 is a metal wiring 50. Protrude into the area. As a result, the width of the opening of the dielectric film 54 becomes a width ΔW1 narrower than the width ΔW0 of the region of the metal wiring 50.
 次に、第1の除去工程が実行される(S23)。ステップS23の第1の除去工程は、例えば図6に示されたようなプラズマ処理装置400によって実行される。なお、本実施形態のプラズマ処理装置400には、高周波電源421が設けられていなくてもよい。第1の除去工程では、処理ガスがプラズマ化され、プラズマに含まれるイオンおよび活性種の少なくともいずれかが基板W上に照射される。これにより、金属配線50上のSAM53が励起され、SAM53に含まれるフッ素および炭素と、SAM53上に形成された誘電体膜54の核とが反応し、誘電体膜54の核は、揮発性のフッ素化合物となって、SAM53上から除去される。 Next, the first removal step is executed (S23). The first removal step of step S23 is performed by, for example, the plasma processing apparatus 400 as shown in FIG. The plasma processing device 400 of the present embodiment may not be provided with the high frequency power supply 421. In the first removal step, the processing gas is turned into plasma, and at least one of the ions and active species contained in the plasma is irradiated on the substrate W. As a result, the SAM 53 on the metal wiring 50 is excited, the fluorine and carbon contained in the SAM 53 react with the core of the dielectric film 54 formed on the SAM 53, and the core of the dielectric film 54 is volatile. It becomes a fluorine compound and is removed from the SAM53.
 また、プラズマに含まれるイオンおよび活性種の少なくともいずれか基板W上に照射されることにより、誘電体膜54に隣接するSAM53が励起され、SAM53に含まれるフッ素および炭素を有する活性種が生成される。そして、フッ素および炭素を有する活性種と、SAM53に隣接する誘電体膜54の側部とが反応する。これにより、金属配線50の領域にせり出した誘電体膜54の側部は、揮発性のフッ素化合物もしくはフッ素と炭素が含まれる揮発性の化合物となって除去される。 Further, by irradiating at least one of the ions and the active species contained in the plasma on the substrate W, the SAM 53 adjacent to the dielectric film 54 is excited, and the active species having fluorine and carbon contained in the SAM 53 is generated. To. Then, the active species having fluorine and carbon reacts with the side portion of the dielectric film 54 adjacent to the SAM 53. As a result, the side portion of the dielectric film 54 protruding into the region of the metal wiring 50 is removed as a volatile fluorine compound or a volatile compound containing fluorine and carbon.
 これにより、例えば図13に示されるように、誘電体膜54の開口部の幅が、金属配線50の領域の幅ΔW0よりも広い幅ΔW2に広がる。図13は、第2の実施形態においてSAM53が除去された後の基板Wの一例を示す断面図である。これにより、この後の工程で誘電体膜54の開口部に金属配線50に接続されるビアが形成された場合に、ビアの幅を金属配線50の幅よりも広くすることができ、ビアの抵抗値の上昇を抑制することができる。なお、SAM53が励起されることにより生成された活性種は、寿命が短いため、誘電体膜54の上面に到達する前に失活する。そのため、SAM53が励起されることにより生成された活性種によって誘電体膜54の上面はほとんどエッチングされない。 As a result, as shown in FIG. 13, for example, the width of the opening of the dielectric film 54 is widened to a width ΔW2 wider than the width ΔW0 of the region of the metal wiring 50. FIG. 13 is a cross-sectional view showing an example of the substrate W after the SAM 53 has been removed in the second embodiment. As a result, when a via connected to the metal wiring 50 is formed in the opening of the dielectric film 54 in the subsequent step, the width of the via can be made wider than the width of the metal wiring 50, and the width of the via can be increased. It is possible to suppress an increase in the resistance value. Since the active species produced by exciting the SAM 53 has a short lifetime, it is deactivated before reaching the upper surface of the dielectric film 54. Therefore, the upper surface of the dielectric film 54 is hardly etched by the active species generated by exciting the SAM 53.
 本実施形態において、ステップS23で用いられる処理ガスは、例えば水素ガスである。なお、処理ガスとしては、水素含有ガスであれば、水素ガスの他、アンモニアガス、ヒドラジンのガス、およびメタン等の炭化水素ガスの少なくともいずれかを含むガスを用いることができる。なお、ステップS23が実行されることにより、金属配線50上のSAM53が除去される。そのため、本実施形態では、SAM53の除去を目的とした第2の除去工程は実行されない。 In the present embodiment, the processing gas used in step S23 is, for example, hydrogen gas. As the treatment gas, as long as it is a hydrogen-containing gas, a gas containing at least one of ammonia gas, hydrazine gas, and hydrocarbon gas such as methane can be used in addition to hydrogen gas. By executing step S23, the SAM 53 on the metal wiring 50 is removed. Therefore, in the present embodiment, the second removal step for the purpose of removing the SAM 53 is not executed.
 ステップS23の第1の除去工程における主な処理条件は、例えば以下の通りである。
  基板Wの温度:50~300℃(好ましくは150℃)
  圧力:0.1Torr~50Torr(好ましくは2Torr)
  処理ガスの流量:200~3000sccm(好ましくは1000sccm)
  プラズマ生成用の高周波電力:50~1000W(好ましくは200W)
  処理時間:1~60秒(好ましくは10秒)
The main processing conditions in the first removing step of step S23 are as follows, for example.
Temperature of substrate W: 50 to 300 ° C (preferably 150 ° C)
Pressure: 0.1 Torr to 50 Torr (preferably 2 Torr)
Flow rate of processing gas: 200-3000 sccm (preferably 1000 sccm)
High frequency power for plasma generation: 50-1000W (preferably 200W)
Processing time: 1-60 seconds (preferably 10 seconds)
 次に、ステップS21~S23の処理が所定回数実行されたか否かが判定される(S24)。所定回数とは、層間絶縁膜52上に所定の厚さの誘電体膜54が形成されるまでステップS21~S23の処理が繰り返される回数である。ステップS21~S23が所定回数実行されていない場合(S24:No)、再びステップS21に示された処理が実行されることにより、例えば図14に示されるように、金属配線50の表面にSAM53が成膜される。 Next, it is determined whether or not the processes of steps S21 to S23 have been executed a predetermined number of times (S24). The predetermined number of times is the number of times that the processes of steps S21 to S23 are repeated until the dielectric film 54 having a predetermined thickness is formed on the interlayer insulating film 52. When steps S21 to S23 have not been executed a predetermined number of times (S24: No), the process shown in step S21 is executed again, so that the SAM 53 is formed on the surface of the metal wiring 50, for example, as shown in FIG. A film is formed.
 そして、再びステップS22に示された処理が実行されることにより、バリア膜51および誘電体膜54上に誘電体膜54がさらに成膜される。これにより、例えば図15に示されるように、誘電体膜54の一部が金属配線50の領域に再びせり出し、誘電体膜54の開口部の幅が、金属配線50の領域の幅ΔW0よりも狭い幅ΔW3となる。 Then, by executing the process shown in step S22 again, the dielectric film 54 is further formed on the barrier film 51 and the dielectric film 54. As a result, for example, as shown in FIG. 15, a part of the dielectric film 54 protrudes again into the region of the metal wiring 50, and the width of the opening of the dielectric film 54 is larger than the width ΔW0 of the region of the metal wiring 50. It has a narrow width ΔW3.
 そして、再びステップS23に示された処理が実行されることにより、SAM53に含まれるフッ素および炭素を有する活性種により、SAM53上の誘電体膜54の核、および、金属配線50の領域にせり出した誘電体膜54の側部が除去される。これにより、例えば図16に示されるように、誘電体膜54の開口部の幅が、金属配線50の領域の幅ΔW0よりも広い幅ΔW4に広がる。 Then, by executing the process shown in step S23 again, the active species containing fluorine and carbon contained in the SAM 53 protruded into the core of the dielectric film 54 on the SAM 53 and the region of the metal wiring 50. The side portion of the dielectric film 54 is removed. As a result, for example, as shown in FIG. 16, the width of the opening of the dielectric film 54 expands to a width ΔW4 wider than the width ΔW0 of the region of the metal wiring 50.
 このように、ステップS21~S23が繰り返されることにより、誘電体膜54の開口部の幅を、金属配線50の領域の幅ΔW0よりも広く維持しつつ、金属配線50の周囲に任意の厚さの誘電体膜54を成膜することが可能となる。 By repeating steps S21 to S23 in this way, the width of the opening of the dielectric film 54 is maintained wider than the width ΔW0 of the region of the metal wiring 50, and an arbitrary thickness is formed around the metal wiring 50. The dielectric film 54 of the above can be formed.
 以上、第2の実施形態について説明した。本実施形態における第1の除去工程では、基板Wの表面にイオンおよび活性種の少なくともいずれかが照射されることにより、SAM53に隣接する誘電体膜54の側部が除去される。これにより、誘電体膜54の開口部の幅を、金属配線50の領域の幅よりも広くすることができる。 The second embodiment has been described above. In the first removing step in the present embodiment, the surface of the substrate W is irradiated with at least one of ions and active species to remove the side portion of the dielectric film 54 adjacent to the SAM 53. Thereby, the width of the opening of the dielectric film 54 can be made wider than the width of the region of the metal wiring 50.
 また、本実施形態における第1の除去工程では、基板Wの表面が処理ガスのプラズマに晒されることにより、プラズマに含まれるイオンおよび活性種の少なくともいずれかが基板Wの表面に照射される。処理ガスは、例えば水素含有ガスである。これにより、基板Wの表面にイオンおよび活性種の少なくともいずれかを効率的に照射することができる。 Further, in the first removal step in the present embodiment, the surface of the substrate W is exposed to the plasma of the processing gas, so that at least one of the ions and the active species contained in the plasma is irradiated on the surface of the substrate W. The processing gas is, for example, a hydrogen-containing gas. As a result, the surface of the substrate W can be efficiently irradiated with at least one of ions and active species.
[その他]
 なお、本願に開示された技術は、上記した実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
[Other]
The technique disclosed in the present application is not limited to the above-described embodiment, and many modifications can be made within the scope of the gist thereof.
 例えば、上記した第1の実施形態では、ステップS12の第2の成膜工程において、ALDにより第3の膜14が成膜されたが、開示の技術はこれに限られない。他の例として、ステップS12の第2の成膜工程では、CVD(Chemical Vapor Deposition)により第3の膜14が成膜されてもよい。 For example, in the first embodiment described above, the third film 14 was formed by ALD in the second film forming step of step S12, but the disclosed technique is not limited to this. As another example, in the second film forming step of step S12, the third film 14 may be formed by CVD (Chemical Vapor Deposition).
 また、上記した第1の実施形態では、ステップS13の第1の除去工程において、基板Wが希ガスのプラズマに晒されることにより、基板Wの表面にプラズマに含まれるイオンが照射されたが、開示の技術はこれに限られない。例えば集束イオンビーム装置等を用いて、基板Wの表面にイオンが照射されてもよい。 Further, in the first embodiment described above, in the first removal step of step S13, the substrate W is exposed to the plasma of the rare gas, so that the surface of the substrate W is irradiated with the ions contained in the plasma. The disclosed technology is not limited to this. For example, the surface of the substrate W may be irradiated with ions using a focused ion beam device or the like.
 また、上記した第1の実施形態において、成膜システム100には、SAM供給装置200、成膜装置300、プラズマ処理装置400、およびプラズマ処理装置500がそれぞれ1台ずつ設けられるが、開示の技術はこれに限られない。例えば、プラズマ処理装置400とプラズマ処理装置500とは、1台のプラズマ処理装置によって実現されてもよい。また、例えば、成膜システム100には、最も時間のかかる処理を行う装置が複数設けられ、それ以外の処理については、1台の装置で実現するようにしてもよい。例えば、ステップS11の処理に時間がかかる場合、ステップS11の処理を行うSAM供給装置200が複数設けられ、S12~S14の処理を行う装置が1台設けられてもよい。これにより、複数の基板Wを処理する場合の処理の待ち時間を削減することができる。 Further, in the first embodiment described above, the film forming system 100 is provided with one SAM supply device 200, one film forming device 300, one plasma processing device 400, and one plasma processing device 500. Is not limited to this. For example, the plasma processing device 400 and the plasma processing device 500 may be realized by one plasma processing device. Further, for example, the film forming system 100 may be provided with a plurality of devices that perform the most time-consuming processing, and the other processing may be realized by one device. For example, when the process of step S11 takes a long time, a plurality of SAM supply devices 200 for performing the process of step S11 may be provided, and one device for performing the processes of S12 to S14 may be provided. As a result, it is possible to reduce the processing waiting time when processing a plurality of substrates W.
 また、上記した第2の実施形態では、第1の成膜工程、第2の成膜工程、および第1の除去工程が、この順番で繰り返し実行されるが、開示の技術はこれに限られない。例えば図17に示されるように、第1の成膜工程(S21)、第2の成膜工程(S22)、および第1の除去工程(S23)が実行された後に、第1の成膜工程(S30)および第1の除去(S31)がこの順番で1回以上実行されてもよい。図17は、第2の実施形態における成膜方法の他の例を示すフローチャートである。ステップS30の第1の成膜工程において行われる処理は、ステップS21の第1の成膜工程において行われる処理と同じであり、ステップS31の第1の除去工程において行われる処理は、ステップS23の第1の除去工程において行われる処理と同じである。図17に例示された成膜方法では、ステップS22の第2の成膜工程において十分な厚さの誘電体膜54が成膜される。そして、ステップS30の第1の成膜工程とステップS31の第1の除去工程が繰り返されることで、誘電体膜54の開口部の幅を金属配線50の領域の幅よりも広げることができる。 Further, in the second embodiment described above, the first film forming step, the second film forming step, and the first removing step are repeatedly executed in this order, but the disclosed technique is limited to this. Absent. For example, as shown in FIG. 17, after the first film forming step (S21), the second film forming step (S22), and the first removing step (S23) are executed, the first film forming step (S30) and the first removal (S31) may be performed one or more times in this order. FIG. 17 is a flowchart showing another example of the film forming method in the second embodiment. The process performed in the first film forming step of step S30 is the same as the process performed in the first film forming step of step S21, and the process performed in the first removing step of step S31 is the process performed in step S23. It is the same as the process performed in the first removal step. In the film forming method illustrated in FIG. 17, a dielectric film 54 having a sufficient thickness is formed in the second film forming step of step S22. Then, by repeating the first film forming step of step S30 and the first removing step of step S31, the width of the opening of the dielectric film 54 can be made wider than the width of the region of the metal wiring 50.
 また、例えば図18に示されるように、S21~S23の処理、および、S30~S32の処理が所定回数繰り返されたか否かを判定する処理(S33)が実行されてもよい。これにより、ステップS22において誘電体膜54の膜厚が大きくなる過ぎ、誘電体膜54の開口部が閉塞してしまうことを防止することができる。 Further, for example, as shown in FIG. 18, a process (S33) for determining whether or not the processes S21 to S23 and the processes S30 to S32 have been repeated a predetermined number of times may be executed. As a result, it is possible to prevent the thickness of the dielectric film 54 from becoming too large in step S22 and the opening of the dielectric film 54 from being blocked.
 また、上記した第2の実施形態の第1の除去工程で用いられる処理ガスは、水素含有ガスであるが、開示の技術はこれに限られない。例えば、処理ガスには、水素含有ガスの他に、アルゴンガス等の希ガスが含まれていてもよい。 Further, the processing gas used in the first removal step of the second embodiment described above is a hydrogen-containing gas, but the disclosed technique is not limited to this. For example, the processing gas may contain a rare gas such as argon gas in addition to the hydrogen-containing gas.
 なお、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 It should be considered that the embodiment disclosed this time is an example in all respects and is not restrictive. Indeed, the above embodiments can be embodied in a variety of forms. Further, the above-described embodiment may be omitted, replaced or changed in various forms without departing from the scope of the appended claims and the purpose thereof.
C キャリア
G ゲートバルブ
W 基板
10 基材
11 第1の膜
12 第2の膜
13 SAM
14 第3の膜
15 核
100 成膜システム
101 真空搬送室
102 ロードロック室
103 大気搬送室
104 アライメント室
105 ポート
106 搬送機構
107 アーム
108 搬送機構
110 制御装置
200 SAM供給装置
300 成膜装置
400 プラズマ処理装置
410 処理容器
411 排気口
412 排気管
413 排気装置
414 開口
415 絶縁部材
420 ステージ
421 高周波電源
430 シャワーヘッド
431 天板保持部
432 天板
433 拡散室
434 流路
435 貫通口
436 導入口
437 高周波電源
438 ガス供給源
500 プラズマ処理装置
50 金属配線
51 バリア膜
52 層間絶縁膜
53 SAM
54 誘電体膜
C Carrier G Gate valve W Substrate 10 Substrate 11 First film 12 Second film 13 SAM
14 Third film 15 Nuclear 100 Film formation system 101 Vacuum transfer chamber 102 Load lock chamber 103 Atmospheric transport chamber 104 Alignment chamber 105 Port 106 Transport mechanism 107 Arm 108 Transport mechanism 110 Control device 200 SAM supply device 300 Film formation device 400 Plasma processing Equipment 410 Processing container 411 Exhaust port 412 Exhaust pipe 413 Exhaust device 414 Opening 415 Insulation member 420 Stage 421 High frequency power supply 430 Shower head 431 Top plate holding part 432 Top plate 433 Diffusion chamber 434 Flow path 435 Through port 436 Introduction port 437 High frequency power supply 438 Gas supply source 500 Plasma processing device 50 Metal wiring 51 Barrier film 52 Interlayer insulation film 53 SAM
54 Dielectric film

Claims (11)

  1.  基板に選択的に成膜を行う成膜方法において、
     表面に第1の膜と第2の膜とが露出している基板を準備する準備工程と、
     フッ素および炭素を含む官能基を有し、第3の膜の成膜を抑制する自己組織化単分子膜を成膜するための化合物を前記基板上に供給することにより、前記第1の膜上に前記自己組織化単分子膜を成膜する第1の成膜工程と、
     前記第2の膜上に前記第3の膜を成膜する第2の成膜工程と、
     前記基板の表面にイオンおよび活性種の少なくともいずれかを照射することにより、前記自己組織化単分子膜の近傍に形成された前記第3の膜を除去する第1の除去工程と
    を含み、
     前記第3の膜は、前記第1の膜よりも、前記自己組織化単分子膜に含まれるフッ素および炭素と結びついて揮発性の化合物を作りやすい膜である成膜方法。
    In a film forming method in which a film is selectively formed on a substrate,
    A preparatory step for preparing a substrate on which the first film and the second film are exposed on the surface, and
    By supplying a compound for forming a self-assembled monolayer having a functional group containing fluorine and carbon and suppressing the formation of the third film onto the substrate, the first film is coated. In the first film formation step of forming the self-assembled monolayer,
    A second film forming step of forming the third film on the second film, and
    A first removal step of removing the third film formed in the vicinity of the self-assembled monolayer by irradiating the surface of the substrate with at least one of an ion and an active species is included.
    A film forming method in which the third film is a film that is easier to form a volatile compound by combining with fluorine and carbon contained in the self-assembled monolayer than the first film.
  2.  前記第1の除去工程では、
     前記基板の表面にイオンおよび活性種の少なくともいずれかが照射されることにより、前記自己組織化単分子膜の上に形成された前記第3の膜の核が除去される請求項1に記載の成膜方法。
    In the first removal step,
    The first aspect of the present invention, wherein when the surface of the substrate is irradiated with at least one of an ion and an active species, the nucleus of the third membrane formed on the self-assembled monolayer is removed. Film formation method.
  3.  前記第1の除去工程では、
     前記基板の表面にイオンおよび活性種の少なくともいずれかが照射されることにより、前記自己組織化単分子膜に隣接する前記第3の膜の側部が除去される請求項1に記載の成膜方法。
    In the first removal step,
    The film formation according to claim 1, wherein the side portion of the third film adjacent to the self-assembled monolayer is removed by irradiating the surface of the substrate with at least one of an ion and an active species. Method.
  4.  前記第1の成膜工程、前記第2の成膜工程、および前記第1の除去工程は、この順番で複数回繰り返される請求項1から3のいずれか一項に記載の成膜方法。 The film forming method according to any one of claims 1 to 3, wherein the first film forming step, the second film forming step, and the first removing step are repeated a plurality of times in this order.
  5.  前記第1の成膜工程、前記第2の成膜工程、および前記第1の除去工程が実行された後に、前記第1の成膜工程および前記第1の除去工程がこの順番で1回以上実行される請求項1から3のいずれか一項に記載の成膜方法。 After the first film forming step, the second film forming step, and the first removing step are executed, the first film forming step and the first removing step are performed once or more in this order. The film forming method according to any one of claims 1 to 3, which is carried out.
  6.  前記第1の除去工程の後に実行される、前記第1の膜上の前記自己組織化単分子膜を除去する第2の除去工程をさらに含み、
     前記第1の成膜工程、前記第2の成膜工程、前記第1の除去工程、および前記第2の除去工程は、この順番で複数回繰り返される請求項1から3のいずれか一項に記載の成膜方法。
    Further comprising a second removal step of removing the self-assembled monolayer on the first membrane, which is performed after the first removal step.
    The first film forming step, the second film forming step, the first removing step, and the second removing step are repeated a plurality of times in this order according to any one of claims 1 to 3. The film forming method described.
  7.  前記第1の除去工程では、前記基板の表面が処理ガスのプラズマに晒されることにより、前記プラズマに含まれるイオンおよび活性種の少なくともいずれかが前記基板の表面に照射される請求項1から6のいずれか一項に記載の成膜方法。 In the first removal step, when the surface of the substrate is exposed to the plasma of the processing gas, at least one of the ions and the active species contained in the plasma is irradiated on the surface of the substrate, claims 1 to 6. The film forming method according to any one of the above.
  8.  前記処理ガスは、希ガスおよび水素含有ガスの少なくともいずれかを含む請求項7に記載の成膜方法。 The film forming method according to claim 7, wherein the processing gas contains at least one of a rare gas and a hydrogen-containing gas.
  9.  前記第1の膜は、金属膜であり、
     前記第2の膜は、絶縁膜であり、
     前記第3の膜は、酸化膜である請求項1から8のいずれか一項に記載の成膜方法。
    The first film is a metal film and
    The second film is an insulating film.
    The film forming method according to any one of claims 1 to 8, wherein the third film is an oxide film.
  10.  前記自己組織化単分子膜を成膜するための化合物は、前記第1の膜の表面に吸着する結合性官能基と、フッ素および炭素を含む機能性官能基とを有する請求項1から9のいずれか一項に記載の成膜方法。 The compound for forming the self-assembled monolayer has claims 1 to 9 having a binding functional group adsorbed on the surface of the first film and a functional functional group containing fluorine and carbon. The film forming method according to any one of the items.
  11.  前記自己組織化単分子膜を成膜するための化合物は、チオール系化合物、有機シラン系化合物、ホスホン酸系化合物、またはイソシアナート系化合物である請求項10に記載の成膜方法。 The film forming method according to claim 10, wherein the compound for forming the self-assembled monolayer is a thiol compound, an organic silane compound, a phosphonic acid compound, or an isocyanate compound.
PCT/JP2020/031752 2019-09-05 2020-08-24 Film formation method WO2021044882A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/753,490 US20220336205A1 (en) 2019-09-05 2020-08-24 Film formation method
CN202080060096.4A CN114303230A (en) 2019-09-05 2020-08-24 Film forming method
KR1020227009466A KR20220050198A (en) 2019-09-05 2020-08-24 film formation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-162078 2019-09-05
JP2019162078 2019-09-05
JP2020-092874 2020-05-28
JP2020092874A JP2021044534A (en) 2019-09-05 2020-05-28 Film deposition method

Publications (1)

Publication Number Publication Date
WO2021044882A1 true WO2021044882A1 (en) 2021-03-11

Family

ID=74852797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031752 WO2021044882A1 (en) 2019-09-05 2020-08-24 Film formation method

Country Status (1)

Country Link
WO (1) WO2021044882A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124087A1 (en) * 2020-12-09 2022-06-16 東京エレクトロン株式会社 Film formation method
WO2022270304A1 (en) * 2021-06-22 2022-12-29 東京エレクトロン株式会社 Film forming method and film forming device
US20230002890A1 (en) * 2021-07-02 2023-01-05 Applied Materials, Inc. Multiple surface and fluorinated blocking compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017087138A1 (en) * 2015-11-20 2017-05-26 Applied Materials, Inc. Self-aligned shielding of silicon oxide
JP2017137564A (en) * 2015-11-16 2017-08-10 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Cvd assisted by aerosol having low vapor pressure
JP2019102483A (en) * 2017-11-28 2019-06-24 東京エレクトロン株式会社 Etching method and etching apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137564A (en) * 2015-11-16 2017-08-10 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Cvd assisted by aerosol having low vapor pressure
WO2017087138A1 (en) * 2015-11-20 2017-05-26 Applied Materials, Inc. Self-aligned shielding of silicon oxide
JP2019102483A (en) * 2017-11-28 2019-06-24 東京エレクトロン株式会社 Etching method and etching apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124087A1 (en) * 2020-12-09 2022-06-16 東京エレクトロン株式会社 Film formation method
WO2022270304A1 (en) * 2021-06-22 2022-12-29 東京エレクトロン株式会社 Film forming method and film forming device
US20230002890A1 (en) * 2021-07-02 2023-01-05 Applied Materials, Inc. Multiple surface and fluorinated blocking compounds

Similar Documents

Publication Publication Date Title
JP2021044534A (en) Film deposition method
CN108899266B (en) Method and apparatus for depositing silicon oxide on metal layer
WO2021044882A1 (en) Film formation method
WO2022039032A1 (en) Film formation method and film formation system
US9741558B2 (en) Selectively lateral growth of silicon oxide thin film
CN111373507A (en) SiO2Selective growth on dielectric surfaces in the presence of copper
TWI721022B (en) Methods for formation of low-k aluminum-containing etch stop films
US20160326646A1 (en) Method for forming manganese-containing film
JP2017208469A (en) Oxide film removing method and removing device, and contact forming method and contact forming system
KR20180116327A (en) Substrate processing method
CN114512398A (en) Substrate processing method and substrate processing system
WO2020184212A1 (en) Method for forming film
WO2022124087A1 (en) Film formation method
WO2022190889A1 (en) Film formation method and film formation system
WO2023282131A1 (en) Etching method
WO2022070909A1 (en) Film deposition method and film deposition device
WO2023176535A1 (en) Film forming method and film forming apparatus
WO2023276795A1 (en) Film formation method and film formation device
TW202225442A (en) Amorphous carbon for gap fill

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227009466

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20860292

Country of ref document: EP

Kind code of ref document: A1