WO2022185927A1 - Spatial floating image display device - Google Patents

Spatial floating image display device Download PDF

Info

Publication number
WO2022185927A1
WO2022185927A1 PCT/JP2022/006269 JP2022006269W WO2022185927A1 WO 2022185927 A1 WO2022185927 A1 WO 2022185927A1 JP 2022006269 W JP2022006269 W JP 2022006269W WO 2022185927 A1 WO2022185927 A1 WO 2022185927A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
display device
floating image
spatial
Prior art date
Application number
PCT/JP2022/006269
Other languages
French (fr)
Japanese (ja)
Inventor
浩二 平田
浩司 藤田
寿紀 杉山
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2022185927A1 publication Critical patent/WO2022185927A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens

Definitions

  • the present invention relates to the technology of a spatially floating image display device that displays a spatially floating image to the driver of an automobile, train, aircraft, etc. (also referred to as a "vehicle"), and allows the driver to observe the image of the spatially floating image as a real image.
  • the present invention relates to a technology of a spatially floating image display device using such an optical system.
  • HUD Head-Up-Display
  • Japanese Patent Laying-Open No. 2015-194707 discloses an example of a HUD device.
  • the HUD makes the position where the virtual image is established farther from the driver's viewpoint in order to reduce the movement of the driver's viewpoint, and can display augmented reality (AR) in which the virtual image is superimposed on the real scene that the driver is visually recognizing.
  • AR augmented reality
  • the above-mentioned HUD device uses an optical system including a concave mirror (having the action of a convex lens) to provide a virtual image of the image displayed on the image display device such as a liquid crystal display as an enlarged image to the driver.
  • the windshield 6 of an automobile has a radius of curvature Rv in the vertical direction and a radius of curvature Rh in the horizontal direction different from each other, and generally has a relationship of Rh>Rv.
  • the reflecting surface is the toroidal surface of the concave mirror 401 .
  • the shape of the concave mirror 401 is designed to correct the virtual image magnification due to the shape of the windshield 6 . That is, the shape of the concave mirror 401 has different average curvature radii in the horizontal and vertical directions so as to correct the difference between the vertical curvature radius Rh and the horizontal curvature radius Rv of the windshield 6 .
  • An object of the present invention is to provide a suitable spatial floating image display device in consideration of the above problems.
  • a floating image display device in space includes a liquid crystal display panel as an image source (image display device) and a polarization direction specific to the image source. and a light source device for supplying light of A light source device includes a point-like or planar light source, optical means for reducing the divergence angle of light from the light source, and a light guide having a reflective surface that propagates to an image source.
  • the light guide is arranged to face the image source, has a reflecting surface inside or on the surface for reflecting the light from the light source toward the image source, and propagates the light to the image source.
  • the video source modulates the light intensity in accordance with the video signal.
  • the light source device adjusts part or all of the divergence angle of the light flux incident on the image source from the light source by the shape and surface roughness of the reflecting surface provided on the light source device.
  • a spatially floating image display device forms a spatially floating image in the air by reflecting an image light flux having a narrow divergence angle from an image source with a retroreflective optical member.
  • the spatially floating image display device may be provided with polarization conversion means for aligning the light from the light source into a specific direction of polarization in order to improve the contrast performance of the spatially floating image.
  • the image light from the image source has narrow-angle divergence characteristics, and an unnecessary light beam is formed between the image source and the retroreflective optical member.
  • a light shielding member that shields light and considering the layout of the optical system so that external light does not enter the retroreflective optical member, the generation of ghosts is reduced.
  • the surface roughness of the reflective surface of the retroreflective optical member is reduced to a predetermined value or less per unit length. improve.
  • the spatially floating image display device is provided with a mechanism capable of changing the distance between the image source and the retroreflective optical member, thereby enabling the display position of the spatially floating image to be changed.
  • a reflecting optical member is arranged between the retroreflecting optical member and the retroreflecting image and serves also as an optical path folding means, and this reflecting optical member has an optical refractive power.
  • Information in the depth direction is added so that the aggregate of image forming points of the spatially floating image has a convex shape facing the viewer.
  • FIG. 1 is a diagram showing an example of a usage pattern of a spatially floating image display device according to an embodiment of the present invention
  • FIG. FIG. 10 is a top view of a vehicle equipped with a spatially floating imaging device, and an explanatory diagram for explaining the difference in radius of curvature of the windshield
  • FIG. 10 is a top view of a vehicle equipped with a spatially floating imaging device, and an explanatory diagram for explaining the difference in radius of curvature of the windshield
  • 1 is a diagram showing a first embodiment of a configuration of a main part when a spatially floating image display device is installed in an automobile;
  • FIG. 10 is a diagram showing a second embodiment of the configuration of the main parts when the spatially floating image display device is installed in an automobile;
  • 1A and 1B are diagrams showing an example of a configuration of a main part and a configuration of a retroreflective optical part for explaining the principle of a floating image display device according to an embodiment of the present invention;
  • FIG. 1A and 1B are diagrams showing an example of a configuration of a main part and a configuration of a retroreflective optical part for explaining the principle of a floating image display device according to an embodiment of the present invention;
  • FIG. It is a figure which shows the problem of a spatial floating image display apparatus.
  • FIG. 5 is a characteristic diagram showing the relationship between the surface roughness of a retroreflective optical member and the blur amount of a retroreflected image
  • FIG. 4 is a diagram showing another embodiment of the configuration of the main parts of the spatial floating image display device according to one embodiment of the present invention
  • FIG. 4 is a diagram for explaining the principle of forming a spatially floating image in the spatially floating image display device according to an embodiment of the present invention
  • FIG. 4 is an explanatory diagram of forming a spatially floating image in the spatially floating image display device according to an embodiment of the present invention
  • 1 is a diagram showing the configuration of a spatially floating image display device according to an example
  • FIG. 10 is a diagram showing another configuration of the spatial floating image display device according to one embodiment; It is a sectional view showing an example of concrete composition of a light source device. It is a sectional view showing an example of concrete composition of a light source device. It is a sectional view showing an example of concrete composition of a light source device. It is a sectional view showing an example of concrete composition of a light source device. It is a sectional view showing an example of concrete composition of a light source device. It is a sectional view showing an example of concrete composition of a light source device. It is a sectional view showing an example of concrete composition of a light source device. It is a sectional view showing an example of concrete composition of a light source device. It is a sectional view showing an example of concrete composition of a light source device. It is a sectional view showing an example of concrete composition of a light source device. It is a sectional view showing an example of concrete composition of a light source device.
  • FIG. 4 is an explanatory diagram for explaining diffusion characteristics of a display device;
  • FIG. 4 is an explanatory diagram for explaining diffusion characteristics of a display device;
  • FIG. 4 is an explanatory diagram for explaining diffusion characteristics of a display device;
  • FIG. 4 is an explanatory diagram for explaining diffusion characteristics of a display device;
  • It is a sectional view showing an example of concrete composition of a light source device. It is a figure which shows an example of a concrete structure of a light source device. It is a figure which shows an example of a concrete structure of a light source device. It is a figure which shows an example of a concrete structure of a light source device. It is a figure which shows an example of a concrete structure of a light source device.
  • FIG. 4 is an explanatory diagram for explaining diffusion characteristics of a display device.
  • FIG. 4 is a characteristic diagram showing reflection characteristics of glass with respect to light incident angles due to differences in polarization components;
  • FIG. 3 is a characteristic diagram showing spectral irradiance of sunlight; It is a figure which shows the principal part structure at the time of installing HUD of the former (comparative example) in a motor vehicle.
  • the retroreflective optical member shown as an example of the prior art is a hexahedron
  • a plurality of ghost images from the first ghost image G1 to the sixth ghost image G6 are generated in addition to the regular spatial floating image R1. Occur.
  • the ghost image which is the same space-floating image
  • the hexahedron shown in FIG. 6 is shown.
  • a ghost image is generated in an optical member that obtains a retroreflection image by at least two retroreflections.
  • the hexahedron having the projection-shaped reflecting surfaces has been described above, it goes without saying that the same effect can be obtained with a hexahedron having reflecting surfaces that are concave with respect to the surroundings.
  • FIG. 1 is a schematic configuration diagram for explaining the superiority of the space-floating image display device according to the present embodiment when used for in-vehicle use.
  • a spatially floating image display device 1000 that obtains a spatially floating image without using the windshield 6 of an automobile will be described.
  • the spatially floating image display device 1000 obtains a spatially floating image 220 in the interior space of the own vehicle at an eye point 8 (described in detail later) corresponding to the line of sight of the driver.
  • eye point 8 described in detail later
  • a visual effect similar to that of forming a pseudo virtual image V1 in front of the vehicle can be obtained.
  • a spatially floating image 220 when viewed from an eye point 8, a conventional HUD is used to project a projected member 6 (in this embodiment, the inner surface of the windshield, i.e., the surface facing the driver inside the vehicle).
  • the spatially floating image 220 (corresponding virtual image V1) can be superimposed on the real scene visually recognized by the driver, in the same manner as in the case of viewing the virtual image V1 reflected by the surface).
  • the information displayed as the space floating image 220 includes, for example, vehicle information, foreground information captured by a camera (not shown) such as a surveillance camera or an around viewer, scenery around the vehicle before starting, a speedometer, and an engine. information such as a tachometer and remaining energy display.
  • the floating image display device 1000 includes the image display device 4 that displays the image corresponding to the information and projects the corresponding image light, and the image displayed on the image display device 4 that reflects the image displayed in the space. and a retroreflective optical member 2100 (in other words, a retroreflective optical element) that forms a floating image 220 .
  • the retroreflective optical member 2100 has a spatially movable structure (shown as vertically movable in the drawing), and by moving it up and down, the position where the spatially floating image 220 is formed can be moved diagonally up and down ( can be moved up and down).
  • the inclination angle ⁇ e changes by moving up and down the position where the spatially floating image 220 viewed by the driver from the eyebox (a predetermined space including the eyepoint 8) is formed.
  • an effect equivalent to changing the display position of the virtual image in the conventional HUD can be obtained.
  • the display position of the spatially floating image 220 can be adjusted vertically and horizontally according to the movement of the line of sight. can also be moved to
  • the image light from the image display device 4 is once returned by a reflecting mirror (in other words, folding mirror) 2110 provided on the optical path between the image display device 4 and the retroreflective optical member 2100 .
  • a reflecting mirror in other words, folding mirror
  • the retroreflective optical member 2100 By moving the retroreflective optical member 2100 and changing the distance between the reflecting mirror 2110 and the retroreflective optical member 2100, the optical distance from the image display device 4 to the retroreflective optical member 2100 can be changed.
  • the distance between the reflecting mirror 2110 and the retroreflective optical member 2100 can be lengthened. Then, the position of the space-floating image 220 obtained after being reflected by the retroreflective optical member 2100 can be set to a higher position in the vertical direction in the drawing, which is associated with the virtual image far away from the driver. Thereby, the position where the spatially floating image 220 is formed can be made higher than, for example, the upper surface (not shown) of the dashboard of the vehicle.
  • the retroreflective optical member 2100 upward in the drawing the distance between the reflecting mirror 2110 and the retroreflective optical member 2100 can be shortened. As a result, the position where the floating image 220 is formed can be lowered.
  • FIG. A spatially floating image display device 1000 includes an image display device 4, a retroreflective optical member 2100, and the like.
  • the image displayed on the image display device 4 is preferably displayed by emphasizing the shadow of the display image in order to emphasize the depth direction.
  • a liquid crystal display panel is used which modulates the light supplied from the light source device 10 in accordance with a video signal and emits light of a specific polarized wave.
  • An image of a specific polarized wave (here, S polarized wave) modulated by this liquid crystal display panel is transmitted through a beam splitter or a reflective polarizing plate 2140 that transmits S polarized light and reflects P polarized light. , enters the reflection mirror 2110 and is reflected by the retroreflective optical member 2100 disposed on the bottom surface of the floating image display device 1000 to form the floating image 220 .
  • a ⁇ /4 plate 215 is provided on the image light incident surface of the retroreflective optical member 2100 .
  • the S-polarized image light is incident on and reflected by the retroreflective optical member 2100, passes through the ⁇ /4 plate 215 twice, and is thereby converted into P-polarized light.
  • the P-polarized image light is reflected by a reflecting mirror 2110 , reflected by a beam splitter or a reflective polarizing plate 2140 , and reflected by a reflecting optical element 2120 provided above the floating image display device 1000 .
  • the shape of the reflecting surface of the reflecting optical element 2120 is, for example, convex toward the driver side, the spatially floating image is also curved in the depth direction at the periphery of the screen center, so that when viewed from the driver A spatially floating image (stereoscopic spatially floating image) to which information in the depth direction is artificially added can be obtained.
  • the displayed image is a person or the like, adding a shadow portion emphasizes the three-dimensional spatial floating image.
  • the image light forming the spatially floating image described above is emitted from the opening 41 provided in the dashboard 48, and the spatially floating image 220 is obtained at the position shown in the drawing (the position in front of the windshield 6 in the vehicle). be able to.
  • the imaging position of the spatial floating image obtained at this time is formed on the line segment connecting the reflective optical element 2120 and the viewpoint, and the image is formed above the upper end of the reflective optical element 2120, which is different from the conventional AR-HUD.
  • the windshield is not used as an optical system, so even if the radius of curvature or inclination of the windshield changes depending on the design of the car, it will not be affected, and the space is highly adaptable to different vehicle types. It becomes a floating image display device.
  • the reflective optical element 2120 can use a reflective film obtained by coating or depositing a metal reflective film with a stepper, a beam splitter that selectively reflects a specific polarized wave, or a reflective polarizing plate. This has the following effects. When the angle of incidence of the outside light component such as sunlight incident from the windshield 6 is large, as shown in FIG. 21, the reflectance of S-polarized light is high. Therefore, the P-polarized light component enters the interior of the vehicle. Reflective optical element 2120 selectively reflects this P-polarized component.
  • optical components behind the reflective optical element 2120 (lower side in the figure) (components in the housing of the floating image display device 1000, image display device 4 (liquid crystal display panel), beam splitter or reflective polarization External light does not enter the plate 2140, the retroreflective optical member 2100, etc.).
  • the reliability of the optical parts, the image display device 4 (liquid crystal display panel), the polarizing plate (not shown) arranged on the image light emitting side of the liquid crystal display panel, and the like is not impaired.
  • the reflective optical element 2120 is even better if it has a characteristic of reflecting light with a wavelength of 800 nm or more and ultraviolet rays, which contribute to temperature rise, among the spectral radiant energies of the sunlight shown in FIG. 22 .
  • the retroreflective optical member 2100 is configured to be movable in the vertical direction in the drawing, so that the position where the floating image 220 is formed can be moved vertically. can move.
  • the depression angle of the spatially floating image 220 seen from the driver's eye point 8 changes, and the image display distance and size of the spatially floating image 220 are changed in a pseudo manner with respect to the actual scene visually recognized by the driver. be able to.
  • a camera (not shown) is provided to detect the line of sight of the driver, and by tracking the line of sight of the driver, the display position of the spatially floating image 220 is interlocked with the position of the line of sight.
  • the image displayed as the space floating image 220 at this time should preferably be alert information that matches the actual scenery that the driver is seeing, thereby realizing attention while driving.
  • the reflecting mirror 2120 arranged at the final position on the optical path of the device is removed, part or all of the image light passes through the windshield 6 and A floating image 60 can be displayed on the inner surface of the vehicle 6 or at a position above the windshield 6 outside the vehicle.
  • the video display device 4 in the second example is a liquid crystal display panel that modulates the light supplied from the light source device 10 in accordance with the video signal and emits it as light of a specific polarized wave. use.
  • An image of a specific polarized wave (here, S-polarized wave) modulated by the liquid crystal display panel is transmitted through a beam splitter or a reflective polarizing plate 2140 that transmits S-polarized light and reflects P-polarized light. It is reflected by the retroreflective optical member 2100 to form a spatially floating image 220 .
  • a ⁇ /4 plate 215 is provided on the image light incident surface of the retroreflective optical member 2100 .
  • the S-polarized image light enters the retroreflective optical member 2100 and is reflected, so that it passes through the ⁇ /4 plate 215 twice and is converted into P-polarized light.
  • the P-polarized image light is reflected by the beam splitter or reflective polarizing plate 2140, reflected by the reflecting mirror 2120 provided above, and reflected by the reflecting optical element 2120 provided above the spatial floating image display device 1000. be.
  • the spatially floating image is also curved in the depth direction at the periphery of the screen center, so that when viewed from the driver A three-dimensional spatial floating image to which information in the depth direction is artificially added can be obtained.
  • adding a shadow portion emphasizes the three-dimensional spatial floating image.
  • the image light that forms the spatially floating image described above is emitted from the opening 41 provided in the dashboard 48 .
  • a spatially floating image 220 can be obtained at a predetermined position.
  • the imaging position of the spatially floating image obtained at this time is formed on the line segment connecting the reflective optical element 2120 and the viewpoint.
  • An image can be superimposed as a real image on a part of the real scene viewed by a person while driving.
  • the windshield is not used as an optical system, so even if the radius of curvature or inclination of the windshield changes depending on the design of the car, it will not be affected, and the space is highly adaptable to different vehicle types. It becomes a floating image display device.
  • the reflective optical element 2120 selectively reflects the P-polarized component entering the interior of the vehicle as described above (FIG. 21). Therefore, external light does not enter the optical parts behind the reflecting mirror 2120, and the reliability of the optical parts, the liquid crystal display panel 4 and the like is not impaired. Furthermore, the characteristics of the reflective optical element 2120 are even better if they are the same characteristics as in the first example (FIG. 22). Also, as in the example shown in FIG. 1, the retroreflective optical member 2100 is configured to be movable in the horizontal direction in the drawing. As a result, in this embodiment, the position where the three-dimensional spatial floating image 220 is formed can be moved diagonally up and down.
  • the depression angle of the space floating image 220 visible from the driver's eye point 8 changes, and the image display distance and size of the space floating image 220 which is pseudo-stereoscopic with respect to the actual scene visually recognized by the driver changes. can be changed.
  • a high-resolution image is displayed in a floating state on the extension line of the opening 41 on the dashboard 48 (for example, the optical path of the light reflected by the reflecting optical element 2120). It can be displayed as a visible stereoscopic spatial floating image 220 .
  • the divergence angle of the image light emitted from the opening 41 of the spatially floating image display device 1000 is made small, ie, an acute angle, and is arranged to have a specific polarization. As a result, only regular reflected light is efficiently reflected to the retroreflective optical member 2100 .
  • the light utilization efficiency is high, and the ghost image that occurs in addition to the above-mentioned main space floating image, which has been a problem in the conventional retroreflection method, can be suppressed, and clear space floating can be obtained.
  • the configuration including the light source (light source device 10) of the present embodiment it is possible to provide a novel and highly usable spatial floating image display device capable of significantly reducing power consumption. Further, as described above, it is possible to provide a spatially floating image display device for a vehicle capable of displaying a so-called unidirectional spatially floating image that can be viewed inside or outside the vehicle through the windshield 6 of the vehicle. .
  • the oblique direction of the transparent member 100 such as glass (the direction of the plane of the transparent member 100 as shown in the figure and the predetermined direction with an angle to the direction perpendicular to it.
  • the direction of the axis 5001) is provided with the display device 1 that diverges image light of a specific polarized wave to a narrow angle.
  • the display device 1 includes a liquid crystal display panel 11 which is a video source and emits video light, and a light source device 13 (in other words, a backlight) which generates specific polarized light having narrow-angle diffusion characteristics.
  • the specific polarized image light from the display device 1 is reflected by the polarization separation member 101 having a film that selectively reflects the specific polarized image light provided on the transparent member 100 , and the reflected light is reflected on the optical axis 5002 . incident on the retroreflective optical member 2 in a direction.
  • the polarized light separation member 101 is formed in a sheet shape and adhered to the surface of the transparent member 100 .
  • a ⁇ /4 plate 2 b is provided on the image light incident surface of the retroreflective optical member 2 .
  • the image light is passed through the ⁇ /4 plate 2b twice, once upon entering the retroreflective optical member 2 and once upon exiting, thereby undergoing polarization conversion from the specific polarized wave to the other polarized wave.
  • the polarization separating member 101 that selectively reflects the image light of the specific polarized wave has the property of transmitting the polarized light of the other polarized wave that has undergone polarization conversion. Therefore, in the direction of the optical axis 5002 , the image light of the specific polarized wave after the polarization conversion is transmitted through the polarization separation member 101 .
  • the image light transmitted through the polarization separation member 101 forms a space floating image 220 which is a real image at a predetermined position outside the transparent member 100 in the direction of the optical axis 5003 .
  • the light that forms the spatially floating image 220 is a set of light rays that converge from the retroreflective optical member 2 to the optical image of the spatially floating image 220, and these rays continue to pass through the optical image of the spatially floating image 220. Go straight. Therefore, the spatially floating image 220 is an image having high directivity, unlike diffuse image light formed on a screen by a general projector or the like. Therefore, in the configuration of FIGS. 5A and 5B, when the user (corresponding eye point) views the spatial floating image 220 from the direction of the arrow A, the spatial floating image 220 is viewed as a suitable bright image.
  • the spatial floating image 220 cannot be viewed as an image at all.
  • This highly directional characteristic is useful for systems that display video information that only the driver (user with an eyepoint position corresponding to direction A) needs, and systems that display video information required by other people outside the vehicle (direction B) facing the driver. It is very suitable for use in a system for displaying highly confidential images that should be kept confidential from other people in the vehicle, such as a person who has an eye point corresponding to the vehicle.
  • the polarization axes of the reflected image light may become uneven.
  • part of the image light whose polarization axes are not aligned is reflected by the polarization separation member 101 described above and returns to the display device 1 .
  • This light may be re-reflected on the image display surface of the liquid crystal display panel 11 constituting the display device 1 to generate a ghost image as described above and degrade the image quality of the spatially floating image 220 . Therefore, in this embodiment, the image display surface of the display device 1 is provided with the absorptive polarizing plate 12 .
  • Image light emitted from the display device 1 is transmitted through the absorptive polarizing plate 12 , and reflected light returning from the polarization separation member 101 is absorbed by the absorptive polarizing plate 12 .
  • the re-reflection and the like can be suppressed, and deterioration in image quality due to a ghost image of the spatially floating image 220 can be prevented.
  • polarization separation member 101 for example, a reflective polarizing plate, a metal multilayer film that reflects a specific polarized wave, or the like can be used.
  • FIG. 5B shows the surface shape of the retroreflective optical member manufactured by Nippon Carbide Industry Co., Ltd. used in this study as a typical retroreflective optical member 2 .
  • This retroreflective optical member has hexagonal prisms regularly arranged in the plane. Light rays incident on the inside of the regularly arranged hexagonal prisms are reflected by the walls and bottom surfaces of the hexagonal prisms and emitted as retroreflected light in a direction corresponding to the incident light, thereby forming a spatial floating image 220 shown in FIG. 5A. to form a normal image R1 (an image formed at a predetermined position).
  • a reflective surface is provided on the bottom surface so that the hexagonal prism in the figure becomes a surface in contact with the air, a hexagonal corner surface is formed on the upper part of the reflective surface, the hexahedron and the hexagonal prism are hollow, and the remaining The same effect can be obtained even if the portion is filled with resin.
  • the spatially floating image display device of the present invention displays a spatially floating image, which is a real image, based on the image displayed on the display device 1 .
  • the resolution of this spatially floating image largely depends on the resolution of the liquid crystal display panel 11 as well as the external shape D and the pitch P of the retroreflective optical member 2 (hexagonal prism) shown in FIG. 5B.
  • the effective resolution of the spatially floating image is reduced to about 1 ⁇ 3.
  • the diameter D and the pitch P of the retroreflective optical member 2 be close to one pixel of the liquid crystal display panel 11.
  • the pitch ratios of the respective elements out of integral multiples of one pixel.
  • the retroreflective optical member 2 is arranged so that no one side of the retroreflective optical member 2 overlaps any one side of one pixel of the liquid crystal display panel 11 .
  • the inventor created a display device 1 by combining a liquid crystal display panel with a pixel pitch of 40 ⁇ m and a light source device having a characteristic of a narrow divergence angle (for example, a divergence angle of 15°) of the present embodiment. asked for a relationship.
  • a narrow divergence angle for example, a divergence angle of 15°
  • the amount of blur l that deteriorates visibility is preferably 40% or less of the pixel size, and is almost inconspicuous if it is 15% or less.
  • the surface roughness of the reflective surface (surface roughness 6010 of the retroreflecting surface in FIG. 6) for which the amount of blur l at this time is an allowable amount has an average roughness of 160 nm or less in the range of the measurement distance of 40 ⁇ m, and is less conspicuous. It has been found that the surface roughness of the reflecting surface is desirably 120 nm or less in order to obtain the blur amount l. Therefore, it is desirable to reduce the surface roughness of the retroreflective optical member described above, and to reduce the surface roughness including the reflecting film forming the reflecting surface and its protective film to the above-described value or less.
  • a roll press method for molding is a method of aligning the retroreflecting portions (hexagonal prisms in FIG. 6) and shaping them on the film.
  • the reverse shape of the shape to be shaped is formed on the surface of the roll, UV curable resin is applied on the base material for fixing, and it is passed between the rolls to shape the required shape, and the UV to obtain a retroreflective optical member 2 having a desired shape.
  • the display device 1 of the present embodiment shown in FIGS. 5A and 5B includes a liquid crystal display panel 11 and a light source device 13 that generates specific polarized light having narrow-angle diffusion characteristics, which will be described later in detail. It is possible to reduce the possibility that the image light is incident obliquely (FIG. 6) on the retroreflective optical member 2 thus formed. As a result, even if a ghost image occurs, the luminance is low, resulting in a structurally excellent device. ⁇ Example 3 of spatial floating image display device>
  • FIGS. 8A, 8B, 8C, 9A, and 9B are examples of the spatial floating image display device for in-vehicle use of the present invention.
  • FIG. 8A is a diagram showing another example of the main configuration of the spatial floating image display device according to one embodiment of the present invention.
  • FIG. 8B is a diagram for explaining the principle of spatial floating image formation of the spatial floating image display device according to one embodiment of the present invention.
  • FIG. 8C is an explanatory diagram of forming a spatially floating image in the spatially floating image display device according to one embodiment of the present invention.
  • FIG. 9A is a diagram showing the configuration of a spatially floating image display device according to an example.
  • FIG. 9B is a diagram showing another configuration of the spatially floating image display device according to one embodiment.
  • the display device 1 includes a liquid crystal display panel 11 as an image display element, and a light source device 13 for generating specific polarized light having narrow-angle diffusion characteristics. be done.
  • the liquid crystal display panel 11 is composed of a liquid crystal display panel selected within a range from a small screen size of about 3 inches to a large screen size exceeding 80 inches. For example, if the image light from the liquid crystal display panel 11 is P-polarized light, it passes through the polarization separating member 101 that transmits P-polarized light and travels toward the retroreflective optical member 2 .
  • a ⁇ /4 plate 21 is provided on the light incident surface of the retroreflective optical member 2, and the polarization conversion is performed by passing the image light twice, and the specific polarized wave (P polarized wave) is converted to the other polarized wave (S polarized wave). ).
  • the other polarized wave (S polarized wave) is reflected by the polarization separation member 101, and when a reflecting mirror 300b (illustrated as a plane mirror in FIG. 8A) is provided outside the transparent member 100, As shown, a real plane image 3 (space floating image) is displayed.
  • a reflecting mirror 300a illustrated as a convex mirror in FIG.
  • a spatially floating image can be obtained by using a mirror having a convex surface (described as a convex surface in this embodiment) on the viewing side of the image.
  • the image plane can be convex with respect to the viewer.
  • FIG. 8B is a diagram showing image forming conditions of image forming points (convex surfaces) of spatially floating images (stereoscopic images) in the XZ plane and the XY plane, respectively.
  • the viewing direction of the viewer is recognized by the camera, and the shadow (shown in gray in FIG. 8C) produced when light is incident from this direction is superimposed on the video signal of the original image.
  • the three-dimensional effect is emphasized by adding shadows to the images floating in space.
  • the imaging point of the spatially floating image can be moved in the depth direction according to the shape of the folding mirror, and shadows in the spatially floating image can be emphasized.
  • this image processing and adding a shadow portion to the displayed image it is possible to display a pseudo-stereoscopic spatial floating image that emphasizes the three-dimensional effect.
  • P-polarized waves are indicated by solid lines and S-polarized waves by dashed lines.
  • the image light from the liquid crystal display panel 11 may be S-polarized.
  • the spatial floating image can be obtained.
  • the orientation and position of 3 can be adjusted.
  • the polarization splitting member 101 shown in FIG. 9B is rotated in the direction of rotation in the figure in order to reflect the specific polarized wave in a state inclined in a direction inclined with respect to the plane of the paper. can be moved forward and backward.
  • a convex mirror as the reflecting mirror 300 shown in FIGS. 9A and 9B, a pseudo-stereoscopic spatial floating image is obtained as shown in FIG. It goes without saying that the orientation and position can be adjusted.
  • the amount of external light entering the retroreflective optical element via the reflecting mirror 300 can be reduced.
  • the light intensity of the ghost image is also reduced.
  • the image quality of the obtained stereoscopic spatial floating image is greatly improved.
  • a metal multilayer film is formed as the reflecting film of the reflecting mirror 300, and the characteristic is such that the reflectance of a specific polarized wave (S polarized wave in this embodiment) is 85% or more, and on the other hand, the P polarized wave has a reflectance of 85% or more. If the reflectance is set to 20% or less (the transmittance is 70% or more), external light will not enter the retroreflective optical element 2 and generate a ghost image that deteriorates the image quality of the image.
  • the reflecting mirror 300 when the reflecting mirror 300 is removed, the plane image 3b of the real image is displayed in the direction perpendicular to the drawing (the direction of the plane of the transparent member 100).
  • the plane image 3b of the real image is displayed in the direction perpendicular to the drawing (the direction of the plane of the transparent member 100).
  • the configuration is such that the polarization separation member 101 can be rotated. By rotating the polarization separation member 101, the orientation and position of the spatially floating images 3 (3a and 3b) can be adjusted.
  • An absorptive polarizing plate 12 is provided on the external light entrance window of the transparent member 100 .
  • the absorptive polarizing plate 12 absorbs the P-wave external light component and illumination light.
  • the polarization axes of part of the image light may become uneven. In that case, the image light passes through the polarization separation member 101 and returns to the display device 1 .
  • This light is reflected again by the image display surface of the liquid crystal display panel 11 constituting the display device 1, generates a ghost image, and significantly degrades the image quality of the image floating in space. Therefore, in this embodiment, as shown in FIGS.
  • the absorptive polarizing plate 12 is also provided on the image display surface of the display device 1 .
  • the absorptive polarizing plate 12 By absorbing the image light that has returned to the display device 1 with the absorptive polarizing plate 12, deterioration of the image quality due to the ghost image of the image floating in space is prevented.
  • the light blocking member 25 provided on the inner surface of the transparent member 100 at a portion other than the absorptive polarizing plate 12 of the external light entrance window prevents the external light from entering.
  • the polarization separating member 101 is formed of a reflective polarizing plate, a transparent member formed of a metal multilayer film that reflects a specific polarized wave, or the like.
  • a light shielding member (not shown) for shielding oblique image light other than the regular image light forming the spatially floating image may be provided between the polarization separation member 101 and the liquid crystal display panel 11 . Also, between the retroreflective optical member 2 and the polarization separating member 101, a light shielding member (not shown) for shielding oblique image light other than normal image light may be provided. Furthermore, as described above, a light shielding member (not shown) is also provided so that external light does not directly enter the retroreflective optical member 2, and shields oblique light that causes a ghost image. The inventor confirmed through experiments that as a result, the occurrence of ghost images is suppressed. ⁇ Reflective polarizing plate>
  • the reflective polarizing plate with the grid structure of this embodiment has deteriorated characteristics with respect to light from a direction perpendicular to the polarization axis. For this reason, specifications along the polarization axis are desirable, and the light source (light source device 13) of this embodiment, which can emit image light emitted from the liquid crystal display panel 11 at a narrow angle, is an ideal light source. In addition, the characteristics in the horizontal direction are similarly degraded with respect to oblique light. Considering the above characteristics, a configuration example of this embodiment will be described below, in which a light source capable of emitting image light from the liquid crystal display panel at a narrower angle is used as the backlight of the liquid crystal display panel. This makes it possible to provide high-contrast spatial floating images. ⁇ Display device>
  • the display device 1 of the present embodiment includes an image display element (liquid crystal display panel) 11 and a light source device 13 constituting a light source thereof. is shown as an exploded perspective view.
  • This image display element (liquid crystal display panel) 11 has a narrow angle diffusion characteristic by light from a light source device 13, which is a backlight device, as indicated by arrows (outgoing light beams) 30 in FIG. It obtains an illumination light beam with characteristics similar to laser light whose polarization plane is aligned in one direction, and emits image light modulated according to the input image signal. . Then, the image light is reflected by the retroreflective optical member 2 and transmitted through the window glass to form a spatially floating image, which is a real image (see FIG. 1).
  • the display device 1 of this embodiment includes a liquid crystal display panel 11 that constitutes the display device 1, a light direction conversion panel 54 that controls the directivity of the light flux emitted from the light source device 13, and It is configured with a narrow angle diffuser (not shown) as required. That is, polarizing plates are provided on both sides of the liquid crystal display panel 11, and image light of a specific polarized wave is emitted after modulating the intensity of the light according to the image signal (see the arrow (outgoing light beam) 30 in FIG. 10). It has become.
  • the display device 1 of the present embodiment projects a desired image as light of a specific polarized wave with high directivity (straightness) toward the retroreflective optical member 2 via the light direction conversion panel 54. , after being reflected by the retroreflective optical member 2, the light is transmitted toward the viewer's eyes inside/outside the vehicle (space) to form a spatially floating image.
  • a protective cover may be provided on the surface of the light direction conversion panel 54 described above.
  • the display device 1 including the light source device 13 and the liquid crystal display panel 11 has the following: can be configured. That is, the display device 1 projects light from the light source device 13 (see the arrow (emitted light flux) 30 in FIG. 10) toward the retroreflective optical member 2, reflects the light from the retroreflective optical member 2, and then projects it onto the window glass.
  • a transparent sheet (not shown) provided on the surface of the projector can also control the directivity so as to form a spatially floating image at a desired position.
  • this transparent sheet controls the imaging position of the spatially floating image while imparting high directivity by an optical component such as a Fresnel lens or a linear Fresnel lens.
  • an optical component such as a Fresnel lens or a linear Fresnel lens.
  • the image light from the display device 1 efficiently reaches the observer outside the window glass (for example, sidewalk) with high directivity (straightness) like laser light.
  • the display device 1 including the LED (Light Emitting Diode) element 201 of the light source device 13 ⁇ Example 1 of display device>
  • the light source device 13 is made of, for example, plastic, and includes an LED element 201 and a light guide 203 inside. As shown in FIG. 11 and the like, the end face of the light guide 203 is gradually cut off toward the light receiving part in order to convert the diverging light from each LED element 201 into a substantially parallel light flux.
  • a lens shape is provided that has a shape that increases the area and that has the effect of gradually decreasing the divergence angle by performing total reflection multiple times while propagating inside.
  • a liquid crystal display panel 11 constituting the display device 1 is attached to the upper surface of the light guide 203 .
  • An LED element 201 as a semiconductor light source and an LED substrate 202 on which a control circuit for the LED element 201 is mounted are attached to one side surface (the left end surface in this example) of the case of the light source device 13 .
  • a heat sink which is a member for cooling the heat generated by the LED elements 201 and the control circuit, may be attached to the outer surface of the LED substrate 202 .
  • the frame (not shown) of the liquid crystal display panel 11 attached to the upper surface of the case of the light source device 13 is electrically connected to the liquid crystal display panel 11 attached to the frame and further to the liquid crystal display panel 11 .
  • FPC Flexible Printed Circuits: flexible printed circuit board
  • a new display device that has not existed in the past, which is similar to a surface emitting laser image source driven by a video signal, can be obtained.
  • a laser beam having the same size as the image obtained by the display device 1 using a laser device. Therefore, in this embodiment, for example, light close to the above-described surface emitting laser image light is obtained from a luminous flux from a general light source provided with an LED element.
  • FIGS. 11 and 12 are sectional views, only one LED element 201 constituting the light source is shown.
  • the light from the plurality of LED elements 201 is converted into substantially collimated light by the shape of the light receiving end face 203a of the light guide 203. As shown in FIG. For this reason, the light-receiving portion of the end surface of the light guide 203 and the LED element 201 are attached while maintaining a predetermined positional relationship.
  • Each of the light guides 203 is made of translucent resin such as acryl.
  • the LED light-receiving surface at the end of the light guide 203 has, for example, a conical convex outer peripheral surface obtained by rotating the parabolic cross section, and the top of the outer peripheral surface is convex to the central part of the top. (that is, a convex lens surface), and a convex lens surface projecting outward (or a concave lens surface recessed inward) may be provided at the center of the planar portion of the light receiving end surface 203a of the light guide 203. ) (not shown, similar to FIG. 13 and the like to be described later).
  • the outer shape of the light receiving portion of the light guide body to which the LED element 201 is attached is a paraboloid that forms a conical outer peripheral surface.
  • the external shape of the light receiving portion of the light guide is set within a range in which the light emitted from the LED element 201 in the peripheral direction can be totally reflected inside the outer peripheral surface.
  • a reflective surface is formed on the outer shape of the light receiving portion of the light guide.
  • the LED elements 201 are arranged at predetermined positions on the surface of the LED board 202, which is the circuit board.
  • the LED substrate 202 is fixed to a light-receiving end surface 203a, which is an LED collimator, so that the LED elements 201 on the surface thereof are located in the central portions of the recesses described above.
  • the shape of the light receiving end face 203a of the light guide 203 makes it possible to extract the light emitted from the LED element 201 as substantially parallel light, thereby improving the utilization efficiency of the generated light. Become.
  • the light source device 13 shown in FIG. 10 and the like is configured by attaching a light source unit in which a plurality of LED elements 201 as a light source are arranged on a light receiving end face 203a which is a light receiving portion provided on the end face of the light guide 203. ing.
  • the divergent luminous flux from the LED element 201 is converted into substantially parallel light by the lens shape of the light receiving end face 203a of the end face of the light guide body 203, and the light is guided inside the light guide body 203 as indicated by the arrow (in the direction parallel to the drawing).
  • the light is emitted by the luminous flux direction converting means 204 toward the liquid crystal display panel 11 arranged substantially parallel to the light guide 203 (in the direction perpendicular to the front of the drawing).
  • the distribution in other words, density
  • the luminous flux direction changing means 204 described above converts the luminous flux propagating in the light guide 203 into a , toward the liquid crystal display panel 11 arranged substantially parallel to it (direction perpendicular to the front of the drawing).
  • the liquid crystal display panel 11 faces the center of the screen and the viewpoint is placed at the same position as the screen diagonal dimension, if the relative luminance ratio is 20% or more when comparing the luminance of the screen center and the screen peripheral part, There is no practical problem, and if it exceeds 30%, the characteristics will be even better.
  • the light source device 13 includes, for example, a light guide 203 formed of plastic or the like and provided with a light beam direction changing means 204 on its surface or inside, an LED element 201 as a light source, a reflection sheet 205, a retardation plate 206, It is composed of a lenticular lens and the like.
  • a liquid crystal display panel 11 is attached as an image display element, which has polarizing plates on the light source light entrance surface and the image light exit surface.
  • the display device 1 may have the following configuration.
  • a film or sheet-like reflective polarizing plate 49 is provided on the light source light incidence surface (lower surface in the drawing) of the liquid crystal display panel 11 corresponding to the light source device 13 .
  • the light source device 13 selectively reflects a polarized wave (for example, P wave) 212 on one side of the natural light flux 210 emitted from the LED element 201, and is provided on one side (lower side in the drawing) of the light guide 203. The light is reflected by the reflection sheet 205 and directed toward the liquid crystal display panel 11 again.
  • a polarized wave for example, P wave
  • a ⁇ /4 plate which is a retardation plate, is provided between the reflection sheet 205 and the light guide 203 or between the light guide 203 and the reflective polarizing plate 49 .
  • the light is reflected by the reflection sheet 205 and passed through the ⁇ /4 plate twice to convert the reflected light flux from P-polarized light to S-polarized light, thereby improving the utilization efficiency of the light source light as image light.
  • the image light flux (arrow 213 in FIG. 11) whose light intensity is modulated by the image signal in the liquid crystal display panel 11 is incident on the retroreflective optical member 2100 as shown in FIG. And via the reflecting mirror 2120, a space floating image, which is a real image, is obtained in the space inside the vehicle, which is inside the windshield 6, or in the space outside the vehicle.
  • the display device 1 may have the following configuration.
  • a film or sheet-like reflective polarizing plate 49 is provided on the light source light incident surface (lower surface in the drawing) of the liquid crystal display panel 11 corresponding to the light source device 13 .
  • the light source device 13 selectively reflects a polarized wave (for example, an S wave) 211 on one side of the natural light flux 210 emitted from the LED element 201, and is provided on one side (lower side in the drawing) of the light guide 203. The light is reflected by the reflection sheet 205 and directed toward the liquid crystal display panel 11 again.
  • a polarized wave for example, an S wave
  • a ⁇ /4 plate which is a retardation plate, is provided between the reflection sheet 205 and the light guide 203 or between the light guide 203 and the reflective polarizing plate 49 .
  • the light is reflected by the reflection sheet 205 and passed through the ⁇ /4 plate twice to convert the reflected light flux from S-polarized light to P-polarized light, thereby improving the utilization efficiency of the light source light as image light.
  • the image light flux (arrow 214 in FIG. 12) whose light intensity is modulated by the image signal on the liquid crystal display panel 11 is incident on the retroreflective optical member 2100 as shown in FIG.
  • a space-floating image which is a real image, is obtained in the space inside the vehicle, which is the inside of the windshield 6, or in the space outside the vehicle.
  • the reflective polarizing plate In the light source device 13 shown in FIGS. 11 and 12, in addition to the action of the polarizing plate provided on the light incident surface of the corresponding liquid crystal display panel 11, the reflective polarizing plate reflects the polarized component on one side.
  • the obtained contrast ratio is obtained by multiplying the reciprocal of the cross transmittance of the reflective polarizing plate by the reciprocal of the cross transmittance obtained by the two polarizing plates attached to the liquid crystal display panel.
  • This provides high contrast performance.
  • the inventor confirmed through experiments that the contrast performance of the displayed image is improved by 10 times or more. As a result, a high-quality image comparable to that of a self-luminous organic EL was obtained.
  • the light source device of the display device 1 converts a divergent luminous flux of natural light (P-polarized wave and S-polarized wave are mixed) from the LED 14 into a substantially parallel luminous flux (vertical direction in the drawing) by the LED collimator 18, and is a reflective type
  • the light is reflected toward the liquid crystal display panel 11 (left and right directions in the drawing) by the light guide 304 .
  • the light reflected by the reflective light guide 304 is incident on the wavelength plate 206 and the reflective polarizing plate 49 arranged between the liquid crystal display panel 11 and the reflective light guide 304 .
  • a specific polarized wave (for example, S-polarized wave) is reflected by the reflective polarizing plate 49, converted in phase by the wave plate 206, returned to the reflecting surface of the reflective light guide 304, reflected, and passed through the wave plate 206 again. Then, the light is converted into polarized waves (for example, P-polarized waves) that pass through the reflective polarizing plate 49 .
  • the natural light from the LEDs 14 is aligned with a specific polarized wave (for example, P-polarized wave), enters the liquid crystal display panel 11, is luminance-modulated in accordance with the video signal, and displays an image on the panel surface.
  • 13 shows a plurality of LEDs 14 constituting the light source (only one is shown in FIG. 13 because it is a vertical cross section), and these LEDs 14 are arranged with respect to the LED collimator 18. installed in position.
  • Each of the LED collimators 18 is made of translucent resin such as acrylic or glass.
  • the LED collimator 18 has a conical convex outer peripheral surface obtained by rotating the parabolic cross section, and at the top of the outer peripheral surface, a convex portion ( That is, it has a concave portion formed with a convex lens surface.
  • the central portion of the planar portion of the LED collimator 18 has a convex lens surface projecting outward (or a concave lens surface recessed inward).
  • the paraboloid that forms the conical outer peripheral surface of the LED collimator 18 is set within an angle range that allows the light emitted in the peripheral direction from the LED 14 to be totally reflected inside the outer peripheral surface, or , a reflective surface is formed.
  • the configuration described above is the same as that of the light source device of the display device 1 shown in FIG. Furthermore, the light converted into substantially parallel light by the LED collimator 18 shown in FIG.
  • the reflected light of the other polarized wave passes through the reflective light guide 304 again and is reflected by the reflector 271 provided on the other surface of the reflective light guide 304 that is not in contact with the liquid crystal display panel 11 .
  • the light passes twice through the ⁇ /4 plate 270, which is a retardation plate placed between the reflector 271 and the liquid crystal display panel 11, and undergoes polarization conversion.
  • the light is transmitted through the reflective polarizing plate 49 provided on the opposite surface, and enters the liquid crystal display panel 11 with the polarization direction aligned.
  • all the light from the light source can be used, and the light utilization efficiency is doubled.
  • Light emitted from the liquid crystal display panel is emitted from the liquid crystal display panel in the horizontal direction of the screen (represented by the X-axis in FIG. 17A) and the vertical direction of the screen (represented by the Y-axis in FIG. 17A). Both have similar diffusion properties.
  • the diffusion characteristic of the emitted light flux from the liquid crystal display panel of this embodiment is, for example, as shown in Example 1 of FIGS. 18A and 18B. By setting the angle to 13 degrees, it becomes 1/5 of the conventional angle of 62 degrees.
  • the viewing angle in the vertical direction is not uniform in the vertical direction, and the angle of reflection of the reflective light guide 304, the area of the reflecting surface, etc.
  • FIGS. 18A and 18B are adjusted so that the viewing angle of the upper side is suppressed to about 1/3 of the viewing angle of the lower side. to optimize.
  • the amount of image light directed toward the viewing direction is greatly improved, and the luminance is 50 times or more.
  • the X and Y directions in FIGS. 18A and 18B are the same as in FIG. 17A.
  • the viewing angle at which the brightness is 50% of the front view is 5 degrees. 1/12.
  • the angle of view in the vertical direction is uniform in the vertical direction, and the angle of reflection and the area of the reflective surface of the reflective light guide 304 are optimized so that the angle of view is suppressed to about 1/12 of the conventional angle.
  • the amount of image light directed toward the viewing direction is greatly improved, and the luminance is 100 times or more.
  • the display device can be directed to the outdoors.
  • the basic configuration of the embodiment is that a light beam having a narrow-angle directional characteristic is made incident on the liquid crystal display panel 4 by a light source device 10, and luminance is modulated in accordance with a video signal.
  • a spatially floating image 220 obtained by reflecting the image information displayed on the screen of the display panel 4 by the retroreflective optical member 2100 is displayed indoors or outdoors.
  • each of the LED collimators 15 is made of translucent resin such as acrylic.
  • the LED collimator 15 has a conical outer peripheral surface 156 obtained by rotating the parabolic cross section, and at the top of the outer peripheral surface 156, at the center of the top. It has a concave portion 153 in which a convex portion (that is, convex lens surface) 157 is formed.
  • a convex lens surface or a concave lens surface recessed inward
  • the paraboloid 156 forming the conical outer peripheral surface of the LED collimator 15 can totally reflect the light emitted from the LEDs 14 (14a, 14b) in the peripheral direction inside the paraboloid 156 on the outer peripheral surface. It is set within the range of possible angles, or a reflective surface is formed.
  • the LEDs 14 are arranged at predetermined positions on the surface of the LED board 102, which is the circuit board.
  • the LED board 102 is arranged and fixed to the LED collimator 15 so that the LEDs 14 on its surface are positioned in the center of the concave portions 153 of the LED collimator 15 .
  • the above-described LED collimator 15 reduces the light emitted from the LED 14 (14a or 14b), particularly the light emitted upward (to the right in the drawing) from the central portion of the LED 14. are condensed by two convex lens surfaces 157 and 154 that form the outer shape of the LED collimator 15 and become parallel light. Also, the light emitted in the peripheral direction from other portions is reflected by the parabolic surface 156 that forms the conical outer peripheral surface of the LED collimator 15, and is similarly condensed into parallel light.
  • the LED collimator 15 having a convex lens in its central part and a parabolic surface in its peripheral part, almost all of the light generated by the LED 14 (14a or 14b) is taken out as parallel light. It becomes possible to improve the utilization efficiency of the generated light.
  • the polarization conversion element 21 includes a columnar translucent member having a parallelogram cross section (hereinafter referred to as a parallelogram prism) and a columnar light transmitting member having a triangular cross section (hereinafter referred to as a triangular prism). ), and arranged in an array parallel to a plane perpendicular to the optical axis of the parallel light from the LED collimator 15 .
  • a polarizing beam splitter (referred to as a PBS film) 2111 and a reflective film 2121 are alternately provided at the interface between the adjacent translucent members arranged in an array.
  • a ⁇ /2 phase plate 213 is provided on the exit surface from which the light that has entered the polarization conversion element 21 and passed through the PBS film 2111 is emitted.
  • a rectangular synthetic diffusion block 16 also shown in FIG. 15A is further provided on the output surface of this polarization conversion element 21 . That is, the light emitted from the LED 14 (14a or 14b) becomes parallel light by the function of the LED collimator 15 and enters the composite diffusion block 16. After being diffused by the texture 161 on the output side of the composite diffusion block 16, It reaches the light guide 17 .
  • the light guide 17 is a rod-shaped member with a substantially triangular cross section (see FIG. 15B) made of translucent resin such as acrylic.
  • the light guide 17 has a light guide light entrance portion (a light guide light entrance surface) facing the output surface of the combined diffusion block 16 via the first diffuser plate 18a. ) 171, a light guide light reflecting portion (including a light guide light reflecting surface) 172 forming an inclined surface, and a second diffusion plate 18b, facing the liquid crystal display panel 11, which is a liquid crystal display element. and a light guide light emitting portion (including a light guide light emitting surface) 173 .
  • the light guide body light reflecting portion (surface) 172 of the light guide body 17 has a large number of reflecting surfaces 172a and connecting surfaces 172b alternately arranged in a sawtooth shape. formed.
  • Reflecting surface 172a (a line segment rising to the right in the drawing) forms an angle ⁇ n (n: a natural number) with respect to a horizontal plane (horizontal direction in the drawing) indicated by a dashed line in the drawing. ⁇ 130).
  • the angle ⁇ n is set to 43 degrees or less (0 degrees or more).
  • the light guide entrance portion (surface) 171 is formed in a curved convex shape that is inclined toward the light source. According to this, the parallel light from the output surface of the synthetic diffusion block 16 is diffused via the first diffusion plate 18a and enters the light guide entrance portion (surface) 171, as is clear from the drawing. , reaches a light guide light reflection portion (surface) 172 while being slightly bent (in other words, deflected) upward by a light guide entrance portion (surface) 171 . The light is reflected by the light guide light reflecting portion (surface) 172 and reaches the liquid crystal display panel 11 provided above the upper light guide light emitting portion 173 in the drawing.
  • the display device 1 it is possible to further improve the light utilization efficiency and its uniform illumination characteristics, and at the same time, to manufacture it in a small size and at a low cost, including a modularized light source device for S-polarized waves. becomes.
  • the polarization conversion element 21 is attached after the LED collimator 15, but the present invention is not limited to this. Similar actions and effects can also be obtained.
  • the light guide body light reflecting portion (surface) 172 has a large number of reflecting surfaces 172a and connecting surfaces 172b alternately formed in a sawtooth shape. upwards. Furthermore, a narrow-angle diffusion plate is provided on the light guide light emitting portion (surface) 173, and the illumination light beam is incident on the light direction conversion panel 54 for controlling the directivity characteristics as a substantially parallel diffused light beam, thereby controlling the directivity characteristics. 14, and enters the liquid crystal display panel 11 from an oblique direction as shown in FIG. In this embodiment, the light direction conversion panel 54 is provided between the light guide exit surface 173 and the liquid crystal display panel 11 , but the present invention is not limited to this, and the light direction conversion panel 54 is provided on the exit surface of the liquid crystal display panel 11 . A similar effect can be obtained. ⁇ Example 2 of light source device>
  • FIGS. 16A and 16B Another example of the configuration of the optical system such as the light source device 13 is shown in FIGS. 16A and 16B. Similar to the example shown in FIG. 14, FIGS. 16A and 16B show a plurality of (two in this example) LEDs 14 (14a, 14b) forming a light source. These LEDs 14 are mounted at predetermined positions with respect to the LED collimator 15 .
  • Each of the LED collimators 15 is made of translucent resin such as acrylic. 14, this LED collimator 15 has a conical convex outer peripheral surface 156 obtained by rotating the parabolic cross section, and the top of the outer peripheral surface 156 has a center of the top.
  • the LED collimator 15 has a concave portion 153 in which a convex portion (that is, a convex lens surface) 157 is formed.
  • the LED collimator 15 has a convex lens surface (or an inward concave lens surface) 154 projecting outward at the central portion of the planar portion.
  • the paraboloid 156 forming the conical outer peripheral surface of the LED collimator 15 is set within an angle range in which the light emitted from the LED 14 in the peripheral direction can be totally reflected inside the paraboloid 156.
  • a reflective surface is formed.
  • the LEDs 14 are arranged at predetermined positions on the surface of the LED board 102, which is the circuit board.
  • the LED board 102 is arranged and fixed to the LED collimator 15 so that the LEDs 14 (14a or 14b) on its surface are positioned in the center of the recess 153 respectively.
  • the light emitted from the LED 14 (14a or 14b) by the above-described LED collimator 15 are condensed by two convex lens surfaces 157 and 154 that form the outer shape of the LED collimator 15 and become parallel light.
  • the light emitted in the peripheral direction from other portions is reflected by the parabolic surface 156 that forms the conical outer peripheral surface of the LED collimator 15, and is similarly condensed into parallel light.
  • the LED collimator 15 having a convex lens in its central part and a parabolic surface in its peripheral part, almost all of the light generated by the LED 14 (14a or 14b) is taken out as parallel light. It becomes possible to improve the utilization efficiency of the generated light.
  • a light guide 170 is provided on the light emitting side of the LED collimator 15 via the first diffusion plate 18a.
  • the light guide 170 is a rod-shaped member with a substantially triangular cross section made of translucent resin such as acryl.
  • the light guide 170 has a light guide entrance portion (surface) 171 of the light guide 170 that faces the exit surface of the diffusion block 16 via the first diffuser plate 18a. , a light guide light reflecting portion (surface) 172 forming an inclined surface, and a light guide light emitting portion (surface) 173 facing the liquid crystal display panel 11, which is a liquid crystal display element, with the reflective polarizing plate 200 interposed therebetween. ing.
  • this reflective polarizing plate 200 for example, a material having characteristics of reflecting P-polarized light and transmitting S-polarized light is selected. Then, this reflective polarizing plate 200 reflects the P-polarized light out of the natural light emitted from the LED, which is the light source, and the ⁇ /4 plate 5002 provided in the light guide light reflecting section 172 shown in FIG. After passing through the reflecting surface 5001, the light is reflected by the ⁇ /4 plate 5002 and converted into S-polarized light. As a result, all the light beams incident on the liquid crystal display panel 11 are unified into S-polarized light.
  • the reflective polarizing plate 200 a plate having characteristics of reflecting S-polarized light and transmitting P-polarized light may be selected. By doing so, this reflective polarizing plate 200 reflects the S-polarized light out of the natural light emitted from the LED, which is the light source, and the ⁇ /4 plate 5002 provided in the light guide light reflecting section 172 shown in FIG. After passing through the reflection surface 5001, the light is reflected by the ⁇ /4 plate 5002 and converted into P-polarized light. As a result, all the light beams incident on the liquid crystal display panel 52 are unified into P-polarized light. Polarization conversion can also be achieved with the configuration described above. ⁇ Example 3 of light source device>
  • FIG. 13 Another example of the configuration of the optical system such as the light source device will be described with reference to FIG.
  • a diverging luminous flux of natural light (P-polarized and S-polarized mixed) from the LED 14 is converted into a substantially parallel luminous flux by the collimator lens 18, and the reflective light guide 304 is used to convert the divergent luminous flux to the liquid crystal display panel 11. reflect towards.
  • the reflected light enters the reflective polarizing plate 206 arranged between the liquid crystal display panel 11 and the reflective light guide 304 .
  • a specific polarized wave (for example, S-polarized wave) is reflected by the reflective polarizing plate 206 , and the reflected light is transmitted through the surface connecting the reflecting surfaces of the reflective light guide 304 to the opposite surface of the reflective light guide 304 .
  • the light is reflected by the reflecting plate 271 arranged as a light beam, and is polarized by being transmitted through the ⁇ /4 wavelength plate 270, which is a phase plate, twice.
  • the polarization-converted light (for example, P-polarized light) passes through the reflective light guide 304 and the reflective polarizing plate 206, enters the liquid crystal display panel 11, and is modulated into image light.
  • the light utilization efficiency is doubled, and the degree of polarization (in other words, extinction ratio) of the reflective polarizer 206 is also equal to the extinction ratio of the entire system. can ride Therefore, by using the light source device of this embodiment, the contrast ratio of the spatially floating image display device is greatly improved.
  • the natural light from the LED 14 is aligned with a specific polarized wave (for example, P polarized wave).
  • a specific polarized wave for example, P polarized wave.
  • a plurality of LEDs 14 constituting the light source are provided (only one is shown in FIG. mounted in place.
  • Each of the LED collimators 18 is made of translucent resin such as acrylic or glass.
  • this LED collimator 18 has an outer peripheral surface of conical convex shape obtained by rotating the parabolic cross section in the same manner as described above. It has a recess that forms a
  • the central portion of the planar portion of the LED collimator 18 has a convex lens surface projecting outward (or a concave lens surface recessed inward).
  • the paraboloid that forms the conical outer peripheral surface of the LED collimator 18 is set within an angle range that allows the light emitted in the peripheral direction from the LED 14 to be totally reflected inside the paraboloid, Alternatively, a reflective surface is formed.
  • the LEDs 14 are arranged at predetermined positions on the surface of the LED board 102, which is the circuit board.
  • the LED substrate 102 is arranged and fixed to the LED collimator 18 so that the LEDs 14 on its surface are positioned in the central portion of the concave portion of the LED collimator 18 .
  • the light emitted from the LED 14 by the LED collimator 18, particularly the light emitted from the central portion thereof, is condensed by the two convex lens surfaces forming the outer shape of the LED collimator 18 and collimated. become light.
  • the light emitted in the peripheral direction from other portions is reflected by the parabolic surface that forms the conical outer peripheral surface of the LED collimator 18, and is similarly condensed into parallel light.
  • the LED collimator 18 having a convex lens in the center and a paraboloid in the periphery almost all of the light generated by the LED 14 can be extracted as parallel light. It is possible to improve the utilization efficiency of the generated light.
  • two optical sheets in other words, a diffusion sheet, a diffusion film
  • the optical sheet 207 converts diffusion characteristics in the vertical direction (vertical direction, vertical direction within the screen) and horizontal direction (front-rear direction, horizontal direction within the screen) in the drawing constituting the surface.
  • the optical sheet 207 is composed of one sheet, the diffusion characteristics in the vertical and horizontal directions are controlled by the fine shapes of the front and back surfaces of the sheet.
  • a plurality of optical sheets may be used to share the action. Due to the surface shape and the back surface shape of the optical sheet 207, the diffusion angle of the light from the LED collimator 18 in the vertical direction of the screen is matched to the width of the vertical surface of the reflection surface of the optical sheet (diffusion sheet) 207, and the horizontal direction is the same as that of the liquid crystal display panel.
  • the number of LEDs 14 and the angle of divergence from the optical element (optical sheet 207) should be optimally designed as design parameters so that the surface density of the luminous flux emitted from 11 is uniform. That is, in this embodiment, the diffusion characteristics are controlled by the surface shape of one or more optical sheets (diffusion sheets) 207 instead of the light guide 304 described above.
  • the polarization conversion is performed in the same manner as in Example 3 of the light source device described above.
  • the polarization conversion element 21 may be provided between the LED collimator 18 and the optical sheet 207 so that the light from the light source is incident on the optical sheet 207 after the polarization conversion.
  • the reflective polarizing plate 206 described above for example, one having characteristics of reflecting S-polarized light and transmitting P-polarized light is selected. Then, of the natural light emitted from the LED 14, which is the light source, S-polarized light is reflected by the reflective polarizing plate 206, passes through the retardation plate 270, is reflected by the reflecting surface 271, and passes through the retardation plate 270 again. As a result, the light is converted into P-polarized light and enters the liquid crystal display panel 11 .
  • the thickness of the retardation plate 270 must be optimized depending on the angle of incidence of light rays on the retardation plate 270, and the optimum value exists in the range from ⁇ /16 to ⁇ /4.
  • the light source device 13 includes a polarization conversion element 501 on the light exit side of the LED collimator 18.
  • the polarization conversion element 501 identifies the natural light from the LED element (LED 14). , and enters the optical element 81 that controls the diffusion characteristics.
  • the optical element 81 controls the diffusion characteristics of the incident light in the vertical direction (vertical direction) and horizontal direction (front-rear direction) in FIG. To optimize light distribution characteristics.
  • On the surface of the reflective light guide 200 as shown in FIG. (not shown) to obtain the desired diffusion properties.
  • the placement accuracy of the LED element (LED 14) of the light source and the LED collimator 18 greatly affects the efficiency of the light source. Therefore, an optical axis accuracy of about 50 ⁇ m is normally required. Therefore, the inventor has made the following configuration as a countermeasure against the problem that the mounting accuracy is lowered due to the expansion of the LED collimator 18 due to the heat generated by the LED 14 . That is, in this embodiment, as shown in FIGS. 20A and 20B, the structure of a light source unit 503 integrating several LED elements (LEDs 14) and an LED collimator 18 includes a single or multiple (three in this example) By using the light source unit 503 in the light source device, the decrease in mounting accuracy is reduced.
  • light source units integrating light LED elements and LED collimators 18 are provided at both ends of the reflective light guide 200 in the long side direction (horizontal direction in the drawing). 503 are incorporated (six in total). In this embodiment, three light source units 503 are incorporated in each of the left and right sides of the reflective light guide 200 in the vertical direction within the screen (vertical direction in FIG. 20B). As a result, uniform luminance of the light source device 13 is achieved.
  • a plurality of concavo-convex patterns 502 substantially parallel to the light source unit 503 are formed on the reflecting surface of the reflective light guide 200 (the surface on which the concavo-convex pattern 502 is formed in FIG. 20B).
  • the cross section on which the unevenness of the uneven pattern 502 is formed is the plane in FIG. 20C, the direction of repeating the unevenness of the uneven pattern 502 is the horizontal direction in FIG. is the vertical direction of Even in one uneven pattern 502, a polyhedron is formed on its surface.
  • the shape of the reflective surface of the reflective light guide 200 is described as the uneven pattern 502.
  • the present invention is not limited to this, and a pattern in which shapes such as triangular surfaces and corrugated surfaces are regularly or irregularly arranged.
  • the light distribution pattern directed from the reflective light guide 200 to the image display device may be controlled by the shape of the pattern surface.
  • FIG. 20C The cross section on which the unevenness of the uneven pattern 502 is formed is the plane in FIG. 20C, the direction of repeating the unevenness of the uneven pattern 502 is the horizontal direction in FIG. is the vertical direction of Even in one uneven pattern 502, a polyhedron is formed on its surface.
  • the shape of the reflective surface of the reflective light guide 200 is described as the uneven pattern 502.
  • a side surface of the reflective light guide 200 (the side surface on which the light source unit 503 is not provided) is provided with a light source to prevent the light controlled by the LED collimator 18 from leaking from the light source device 13 to the outside.
  • a light shielding wall 504 is provided on the outside, and a metallic substrate 505 provided on the outside of the LED element (LED 14) is designed to enhance heat dissipation.
  • the action of the lenticular lens that controls the diffusion characteristics of the light emitted from the display device 1 will be described below.
  • the lens shape of the lenticular lens By optimizing the lens shape of the lenticular lens, the light emitted from the display device 1 described above can be transmitted through or reflected by the window glass (FIG. 1) to efficiently obtain a spatially floating image. That is, in the present embodiment, for image light from the display device 1, a sheet for controlling diffusion characteristics is provided by combining two lenticular lenses or arranging microlens arrays in a matrix. Then, in the X-axis and Y-axis directions (FIGS.
  • the luminance (in other words, relative luminance) of the image light can be controlled according to the angle of reflection (0 degrees in the vertical direction).
  • the luminance (relative luminance) of light due to reflection and diffusion is increased.
  • the diffusion angle is narrow (in other words, the straightness is high), and the image light has only a specific polarized wave component, and the conventional technology is used. It is possible to suppress the ghost image generated by the retroreflective optical member in the case of the retroreflective optical member, and to efficiently control the space floating image to reach the eye of the viewer due to the retroreflection.
  • the diffusion characteristics of emitted light from the general liquid crystal display panel shown in FIGS. By adopting a directivity characteristic with a narrow angle, it is possible to realize a display device that emits light of a specific polarized wave that emits an image light beam that is nearly parallel to a specific direction.
  • 17A and 17B show an example of the characteristics of the lenticular lens employed in this embodiment. This example particularly shows the characteristics in the X direction (vertical direction) in FIG. 17A.
  • the characteristic O has a peak in the light emission direction at an angle of about 30 degrees upward from the vertical direction (0 degrees), and shows vertically symmetric luminance characteristics.
  • characteristic A and characteristic B show examples of characteristics in which the luminance (relative luminance) is increased by condensing the image light above the peak luminance near 30 degrees. Therefore, in these characteristics A and B, the luminance (relative luminance) of the light sharply decreases compared to the characteristic O at angles exceeding 30 degrees.
  • the optical system including the lenticular lens described above when the image light flux from the display device 1 is made incident on the retroreflective optical member 2, the emission angle and field of view of the image light aligned at a narrow angle by the light source device 13 are adjusted.
  • the angle can be controlled, and the degree of freedom in installing the retroreflective optical member 2 can be greatly improved.
  • it is possible to greatly improve the degree of freedom in relation to the image forming position of the spatially floating image that is reflected or transmitted through the window glass and imaged at a desired position.
  • the diffusion angle is narrow (high rectilinearity), and it is possible to efficiently reach the eyes of a viewer indoors or outdoors as light of only a specific polarized wave component.
  • the viewer can accurately recognize the image light and obtain information.
  • the display device 1 by reducing the output of the display device 1, it is possible to realize a display device with low power consumption.
  • the imaging point of the retroreflected image is shifted in the depth direction with respect to the display plane by the surface shape of the reflecting mirror that constitutes the spatially floating image display device, thereby creating a pseudo-stereoscopic image. Furthermore, the effect of stereoscopic display is emphasized by forming shadows and signal components corresponding to the shadows in the display image and superimposing them on the original signal. Thereby, a suitable spatial floating image display device can be realized.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiment describes the entire apparatus in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • the technology according to this embodiment by displaying high-resolution and high-brightness video information in a floating state, for example, users can operate without feeling uneasy about contact infection of infectious diseases. If the technology according to this embodiment is applied to a system used by an unspecified number of users, it will be possible to reduce the risk of contact infection of infectious diseases and provide a non-contact user interface that can be used without anxiety. . In this way, we will contribute to "3 good health and well-being for all" in the Sustainable Development Goals (SDGs) advocated by the United Nations.
  • SDGs Sustainable Development Goals
  • the technology according to the present embodiment makes it possible to form a spatially floating image by image light with high directivity (straightness).
  • the technology according to the present embodiment even when displaying images that require high security such as bank ATMs or ticket vending machines at stations, or highly confidential images that should be kept secret from the person facing the user, the directivity is high.
  • image light it is possible to provide a non-contact user interface that reduces the risk of someone other than the user looking into the floating image. In this way, we will contribute to the 11 Sustainable Development Goals (SDGs) advocated by the United Nations.
  • SDGs Sustainable Development Goals

Abstract

The purpose of the present invention is to obtain a spatial floating image display device that displays a pseudo-stereoscopic spatial floating image. According to the technology in the present disclosure, the imaging point of a retroreflective image (3a) is offset in the depth direction with respect to a display plane by, for example, the surface shape of a reflective mirror (300a) constituting the spatial floating image device, thus forming a pseudo-stereoscopic image. Furthermore, signal components corresponding to shades or shadows are formed in a display image and superimposed on an original signal to accentuate the effect of the stereoscopic display.

Description

空間浮遊映像表示装置Spatial floating image display device
 本発明は、自動車や電車や航空機等(「乗り物」とも言う)の運転者に空間浮遊映像を表示する空間浮遊映像表示装置の技術に関し、その空間浮遊映像の画像を運転者に実像として観察できるようにした光学系を用いた空間浮遊映像表示装置の技術に関する。 The present invention relates to the technology of a spatially floating image display device that displays a spatially floating image to the driver of an automobile, train, aircraft, etc. (also referred to as a "vehicle"), and allows the driver to observe the image of the spatially floating image as a real image. The present invention relates to a technology of a spatially floating image display device using such an optical system.
 乗り物のフロントガラスやコンバイナに映像光を投写して虚像を形成し、例えば自動車のルート情報や渋滞情報などの交通情報や、燃料残量や冷却水温度等の自動車情報を表示する映像表示装置として、所謂、ヘッドアップディスプレイ(HUD:Head-Up-Display)装置が知られている。特開2015-194707号公報(特許文献1)には、HUD装置の例が開示されている。 As a video display device that projects video light onto the windshield or combiner of a vehicle to form a virtual image, and displays traffic information such as vehicle route information and traffic congestion information, and vehicle information such as fuel level and cooling water temperature. , a so-called head-up display (HUD: Head-Up-Display) device is known. Japanese Patent Laying-Open No. 2015-194707 (Patent Document 1) discloses an example of a HUD device.
特開2015-194707号公報JP 2015-194707 A 特許第4788882号公報Japanese Patent No. 4788882
 この種の映像表示装置においては、運転者が虚像を観視できる領域を拡大することが望まれる一方、虚像が高解像度で視認性が高いことも重要な性能要因である。また、HUDは、運転者の視点移動を少なくするために虚像の成立する位置を運転者視点からより遠方とし、運転者が視認している実景に虚像を重ねる拡張現実(AR)表示ができるものがある。このようなHUDは、虚像の発生位置を遠方にし、かつ高倍率化の実現のためには、装置やシステムのセットが大型化する課題がある。 In this type of image display device, while it is desirable to expand the area where the driver can view the virtual image, it is also an important performance factor that the virtual image has high resolution and high visibility. In addition, the HUD makes the position where the virtual image is established farther from the driver's viewpoint in order to reduce the movement of the driver's viewpoint, and can display augmented reality (AR) in which the virtual image is superimposed on the real scene that the driver is visually recognizing. There is Such a HUD has the problem that the set of devices and systems becomes large in order to make the virtual image generation position farther and to achieve high magnification.
 さらに、上述したHUD装置は、液晶ディスプレイ等の映像表示装置に表示された映像を、凹面ミラー(凸レンズの作用を持つ)を含む光学系を用いて、運転者に拡大像として虚像を提供する。図2Aおよび図2Bに示すように、自動車のフロントガラス6は、本体垂直方向の曲率半径Rvと水平方向の曲率半径Rhとが異なり、一般には、Rh>Rvの関係にある。このため、図23に示す従来のHUDにおいては、反射面としてフロントガラス6を捉えると、その反射面は凹面ミラー401のトロイダル面となる。このため、従来のHUDでは、凹面ミラー401の形状は、フロントガラス6の形状による虚像倍率を補正するように設計される。すなわち、凹面ミラー401の形状は、フロントガラス6の垂直方向の曲率半径Rhと水平方向の曲率半径Rvとの違いを補正するように、水平方向と垂直方向で異なる平均曲率半径とされる。 Furthermore, the above-mentioned HUD device uses an optical system including a concave mirror (having the action of a convex lens) to provide a virtual image of the image displayed on the image display device such as a liquid crystal display as an enlarged image to the driver. As shown in FIGS. 2A and 2B, the windshield 6 of an automobile has a radius of curvature Rv in the vertical direction and a radius of curvature Rh in the horizontal direction different from each other, and generally has a relationship of Rh>Rv. For this reason, in the conventional HUD shown in FIG. 23, if the windshield 6 is regarded as the reflecting surface, the reflecting surface is the toroidal surface of the concave mirror 401 . Therefore, in the conventional HUD, the shape of the concave mirror 401 is designed to correct the virtual image magnification due to the shape of the windshield 6 . That is, the shape of the concave mirror 401 has different average curvature radii in the horizontal and vertical directions so as to correct the difference between the vertical curvature radius Rh and the horizontal curvature radius Rv of the windshield 6 .
 以上述べたように、最終反射面としてフロントガラスを用いるために、デザイン性を重視する自動車などの乗り物では、以下の課題がある。すなわち、(1)量産直前までデザイン変更が発生し、設計仕様が決まりにくい。(2)それぞれの自動車のデザインが異なるため、同一仕様のHUD装置を他の車種に展開することが難しい。この展開の難しさから、HUDの市場拡大の足かせになっていた。また、フロントガラスを通じて、HUD装置内に対し、特定の角度で入射した太陽光などの外光が、凹面ミラー401で集光し、液晶表示パネル404に入射する場合がある。その場合、液晶表示パネル404の出射側偏光板にダメージが生じないように、凹面ミラー401の反射特性の最適化や、特定偏波を反射する光学素子403を設ける等の対策が必要となる。
 本発明の目的は、上記課題を考慮して、好適な空間浮遊映像表示装置を提供することである。
As described above, since the windshield is used as the final reflecting surface, vehicles such as automobiles that emphasize design have the following problems. (1) Design changes occur until just before mass production, making it difficult to determine design specifications. (2) Since each car has a different design, it is difficult to apply the HUD device of the same specification to other car models. Due to the difficulty of this development, it has been a hindrance to the expansion of the HUD market. In addition, external light such as sunlight entering the inside of the HUD device at a specific angle through the windshield may be condensed by the concave mirror 401 and enter the liquid crystal display panel 404 . In that case, it is necessary to optimize the reflection characteristics of the concave mirror 401 and provide an optical element 403 that reflects a specific polarized wave so as not to damage the output-side polarizing plate of the liquid crystal display panel 404 .
SUMMARY OF THE INVENTION An object of the present invention is to provide a suitable spatial floating image display device in consideration of the above problems.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、空間浮遊映像表示装置は、映像源(映像表示装置)としての液晶表示パネルと、映像源に特定の偏光方向の光を供給する光源装置とを備える。光源装置は、点状または面状の光源と、光源からの光の発散角を低減する光学手段と、映像源に伝搬する反射面を有する導光体と、を備える。導光体は、映像源と対向して配置され、内部または表面には光源からの光を映像源に向けて反射させる反射面を有し、映像源に光を伝搬する。映像源は、映像信号に合わせて光強度を変調する。光源装置は、光源から映像源に入射する光束の発散角の一部または全部を、光源装置に設けられた反射面の形状と面粗さによって調整する。空間浮遊映像表示装置は、映像源からの挟角な発散角を有する映像光束を再帰反射光学部材で反射させ、空中に空間浮遊映像を形成する。空間浮遊映像表示装置は、空間浮遊映像のコントラスト性能を改善するために光源からの光を特定方向の偏光に揃える偏光変換手段を設けてもよい。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above problems. To give an example, a floating image display device in space includes a liquid crystal display panel as an image source (image display device) and a polarization direction specific to the image source. and a light source device for supplying light of A light source device includes a point-like or planar light source, optical means for reducing the divergence angle of light from the light source, and a light guide having a reflective surface that propagates to an image source. The light guide is arranged to face the image source, has a reflecting surface inside or on the surface for reflecting the light from the light source toward the image source, and propagates the light to the image source. The video source modulates the light intensity in accordance with the video signal. The light source device adjusts part or all of the divergence angle of the light flux incident on the image source from the light source by the shape and surface roughness of the reflecting surface provided on the light source device. A spatially floating image display device forms a spatially floating image in the air by reflecting an image light flux having a narrow divergence angle from an image source with a retroreflective optical member. The spatially floating image display device may be provided with polarization conversion means for aligning the light from the light source into a specific direction of polarization in order to improve the contrast performance of the spatially floating image.
 更に、空間浮遊映像のゴースト像発生を低減するために、上述したように、映像源からの映像光は、挟角な発散特性を持つとともに、映像源と再帰反射光学部材との間に不要な光を遮光する遮光部材を備え、外光が再帰反射光学部材に入射しないように光学系の配置を考慮することで、ゴーストの発生を軽減する。空間浮遊映像のボケ量を軽減するために、再帰反射光学部材の反射面の表面粗さを単位長さ当たり所定の数値以下に低減することで、空間浮遊映像のボケ量を軽減して視認性を向上する。また、空間浮遊映像表示装置は、映像源と再帰反射光学部材との距離を変更できる機構を設けることで、空間浮遊映像の表示の位置を変更できるようにする。 Furthermore, in order to reduce the generation of ghost images in spatially floating images, as described above, the image light from the image source has narrow-angle divergence characteristics, and an unnecessary light beam is formed between the image source and the retroreflective optical member. By providing a light shielding member that shields light and considering the layout of the optical system so that external light does not enter the retroreflective optical member, the generation of ghosts is reduced. In order to reduce the amount of blurring in the image floating in space, the surface roughness of the reflective surface of the retroreflective optical member is reduced to a predetermined value or less per unit length. improve. Further, the spatially floating image display device is provided with a mechanism capable of changing the distance between the image source and the retroreflective optical member, thereby enabling the display position of the spatially floating image to be changed.
 また空間浮遊像を疑似的に立体映像として再生するためには再帰反射光学部材と再帰反射像の間に光路折り返し手段を兼ねて反射光学部材を配置しこの反射光学部材を光学的な屈折力を有する形状として空間浮遊映像の結像点の集合体が観視者に向かって凸面なるよう奥行き方向の情報を付加する構成とする。この時、光学的な屈折力を有する光学部材を傾斜配置することで疑似的に立体映像として再生された空間浮遊映像に対して外光の影響が軽減され映像処理で例えば陰影感を強調することでより一層立体感が強調される。 In addition, in order to reproduce the spatially floating image as a pseudo-stereoscopic image, a reflecting optical member is arranged between the retroreflecting optical member and the retroreflecting image and serves also as an optical path folding means, and this reflecting optical member has an optical refractive power. Information in the depth direction is added so that the aggregate of image forming points of the spatially floating image has a convex shape facing the viewer. At this time, by slanting the optical members having optical refractive power, the effect of external light on the space-floating image reproduced as a pseudo-stereoscopic image is reduced, and for example, shadows can be emphasized by image processing. The three-dimensional effect is further emphasized.
 本発明によれば、好適な空間浮遊映像表示装置を提供することができる。 
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to provide a suitable spatial floating image display device.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の一実施例に係る空間浮遊映像表示装置の使用形態の一例を示す図である。1 is a diagram showing an example of a usage pattern of a spatially floating image display device according to an embodiment of the present invention; FIG. 空間浮遊映像装置を搭載した自動車の上面図、およびフロントガラスの曲率半径の違いを説明する説明図である。FIG. 10 is a top view of a vehicle equipped with a spatially floating imaging device, and an explanatory diagram for explaining the difference in radius of curvature of the windshield; 空間浮遊映像装置を搭載した自動車の上面図、およびフロントガラスの曲率半径の違いを説明する説明図である。FIG. 10 is a top view of a vehicle equipped with a spatially floating imaging device, and an explanatory diagram for explaining the difference in radius of curvature of the windshield; 空間浮遊映像表示装置を自動車に設置した場合の主要部構成の第1の実施例を示す図である。1 is a diagram showing a first embodiment of a configuration of a main part when a spatially floating image display device is installed in an automobile; FIG. 空間浮遊映像表示装置を自動車に設置した場合の主要部構成の第2の実施例を示す図である。FIG. 10 is a diagram showing a second embodiment of the configuration of the main parts when the spatially floating image display device is installed in an automobile; 本発明の一実施例に係る空間浮遊映像表示装置の原理を説明するための主要部構成と再帰反射光学部構成の一例を示す図である。1A and 1B are diagrams showing an example of a configuration of a main part and a configuration of a retroreflective optical part for explaining the principle of a floating image display device according to an embodiment of the present invention; FIG. 本発明の一実施例に係る空間浮遊映像表示装置の原理を説明するための主要部構成と再帰反射光学部構成の一例を示す図である。1A and 1B are diagrams showing an example of a configuration of a main part and a configuration of a retroreflective optical part for explaining the principle of a floating image display device according to an embodiment of the present invention; FIG. 空間浮遊映像表示装置の課題を示す図である。It is a figure which shows the problem of a spatial floating image display apparatus. 再帰反射光学部材の表面粗さと再帰反射像のボケ量の関係を表す特性図である。FIG. 5 is a characteristic diagram showing the relationship between the surface roughness of a retroreflective optical member and the blur amount of a retroreflected image; 本発明の一実施例に係る空間浮遊映像表示装置の主要部構成の他の実施例を示す図である。FIG. 4 is a diagram showing another embodiment of the configuration of the main parts of the spatial floating image display device according to one embodiment of the present invention; 本発明の一実施例に係る空間浮遊映像表示装置の空間浮遊像形成の原理を説明する図である。FIG. 4 is a diagram for explaining the principle of forming a spatially floating image in the spatially floating image display device according to an embodiment of the present invention; 本発明の一実施例に係る空間浮遊映像表示装置の空間浮遊像形成の説明図である。FIG. 4 is an explanatory diagram of forming a spatially floating image in the spatially floating image display device according to an embodiment of the present invention; 一実施例に係る空間浮遊映像表示装置の構成を示す図である。1 is a diagram showing the configuration of a spatially floating image display device according to an example; FIG. 一実施例に係る空間浮遊映像表示装置の他の構成を示す図である。FIG. 10 is a diagram showing another configuration of the spatial floating image display device according to one embodiment; 光源装置の具体的な構成の一例を示す断面図である。It is a sectional view showing an example of concrete composition of a light source device. 光源装置の具体的な構成の一例を示す断面図である。It is a sectional view showing an example of concrete composition of a light source device. 光源装置の具体的な構成の一例を示す断面図である。It is a sectional view showing an example of concrete composition of a light source device. 光源装置の具体的な構成の一例を示す断面図である。It is a sectional view showing an example of concrete composition of a light source device. 光源装置の具体的な構成の一例を示す断面図である。It is a sectional view showing an example of concrete composition of a light source device. 光源装置の具体的な構成の一例を示す断面図である。It is a sectional view showing an example of concrete composition of a light source device. 光源装置の具体的な構成の一例を示す断面図である。It is a sectional view showing an example of concrete composition of a light source device. 光源装置の具体的な構成の一例を示す断面図である。It is a sectional view showing an example of concrete composition of a light source device. 光源装置の具体的な構成の一例を示す断面図である。It is a sectional view showing an example of concrete composition of a light source device. 表示装置の拡散特性を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining diffusion characteristics of a display device; 表示装置の拡散特性を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining diffusion characteristics of a display device; 表示装置の拡散特性を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining diffusion characteristics of a display device; 表示装置の拡散特性を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining diffusion characteristics of a display device; 光源装置の具体的な構成の一例を示す断面図である。It is a sectional view showing an example of concrete composition of a light source device. 光源装置の具体的な構成の一例を示す図である。It is a figure which shows an example of a concrete structure of a light source device. 光源装置の具体的な構成の一例を示す図である。It is a figure which shows an example of a concrete structure of a light source device. 光源装置の具体的な構成の一例を示す図である。It is a figure which shows an example of a concrete structure of a light source device. 偏光成分の違いによる光線入射角度に対するガラスの反射特性を示す特性図である。FIG. 4 is a characteristic diagram showing reflection characteristics of glass with respect to light incident angles due to differences in polarization components; 太陽光の分光放射照度を示す特性図である。FIG. 3 is a characteristic diagram showing spectral irradiance of sunlight; 従来(比較例)のHUDを自動車に設置した場合の主要部構成を示す図である。It is a figure which shows the principal part structure at the time of installing HUD of the former (comparative example) in a motor vehicle.
 <従来の空間浮遊映像表示装置> <Conventional spatial floating image display device>
 従来の空間浮遊映像表示装置では、高解像度なカラー表示映像源としての有機ELパネルや液晶表示パネルを、再帰反射光学部材と組み合わせる。この空間浮遊映像表示装置では、図6に示すように映像光源である液晶パネルから出射される映像光の拡散特性が広角で再帰反射光学部材が6面体であるために、正規な映像光6001によって生じる反射光6002の他に、再帰反射光学部材2aに斜めから入射する映像光6003によって発生する反射光6004が原因でゴースト像が発生し、空間浮遊映像の画質を損ねていた。従来技術例として示した再帰反射光学部材は6面体であるために、正規な空間浮遊映像R1の他に、第1ゴースト像G1から第6ゴースト像G6(図示せず)まで複数のゴースト像が発生する。このため、観視者以外にも同一の空間浮遊映像であるゴースト像が観視され、空間浮遊映像の見かけ上の解像度が大幅に低下するなどの大きな課題があった。なおここでは、図6に示す6面体による反射によって再帰反射を実現する構造の例を示した。これに限らず、再帰反射を起こす少なくとも2回以上の反射により再帰反射像を得る光学部材において、同様の理由でゴースト像が発生する課題がある。以上反射面が突起形状の6面体について説明したが周囲に対して凹面形状の反射面による6面体としても同様の効果が得られることは言うまでもない。 In conventional spatial floating image display devices, organic EL panels and liquid crystal display panels as high-resolution color display image sources are combined with retroreflective optical members. In this spatially floating image display device, as shown in FIG. 6, the image light emitted from the liquid crystal panel, which is the image light source, has a wide-angle diffusion characteristic and the retroreflective optical member is a hexahedron. In addition to the reflected light 6002, reflected light 6004 generated by the image light 6003 obliquely incident on the retroreflective optical member 2a causes a ghost image, which impairs the image quality of the floating image. Since the retroreflective optical member shown as an example of the prior art is a hexahedron, a plurality of ghost images from the first ghost image G1 to the sixth ghost image G6 (not shown) are generated in addition to the regular spatial floating image R1. Occur. As a result, the ghost image, which is the same space-floating image, is viewed by people other than the viewer, and there is a serious problem that the apparent resolution of the space-floating image is greatly reduced. Here, an example of a structure that achieves retroreflection by reflection from the hexahedron shown in FIG. 6 is shown. For the same reason, there is a problem that a ghost image is generated in an optical member that obtains a retroreflection image by at least two retroreflections. Although the hexahedron having the projection-shaped reflecting surfaces has been described above, it goes without saying that the same effect can be obtained with a hexahedron having reflecting surfaces that are concave with respect to the surroundings.
 また、後述する狭角な指向特性を有する表示装置からの映像光を再帰反射光学部材によって反射させ、それにより空間浮遊映像を得る構成がある。発明者の実験によれば、それにより得られた空間浮遊映像は、上述したゴースト像の他に、図7に示したように、液晶表示パネルの画素ごとにボケが視認された。
 <空間浮遊映像表示装置の概要>
In addition, there is a configuration in which image light from a display device having a narrow-angle directional characteristic, which will be described later, is reflected by a retroreflective optical member, thereby obtaining a spatially floating image. According to experiments by the inventors, in the spatially floating image thus obtained, in addition to the ghost image described above, as shown in FIG. 7, blurring was visually recognized for each pixel of the liquid crystal display panel.
<Summary of Spatial Floating Image Display Device>
 図1は、本実施例にかかる空間浮遊映像表示装置を車載用途に用いる場合の優位性を説明するための概略構成図である。ここでは、その一例として、特に、自動車のフロントガラス6を使用しないで空間浮遊映像を得る空間浮遊映像表示装置1000について説明する。空間浮遊映像表示装置1000は、運転者の視線に対応するアイポイント8(後に詳述する)において自車両の内部空間に空間浮遊映像220を得る。これにより、自車両の前方に疑似的に虚像V1を形成したことと同様の視覚効果が得られる。発明者は実験によりそのことを確認した。以下詳細に説明する。 FIG. 1 is a schematic configuration diagram for explaining the superiority of the space-floating image display device according to the present embodiment when used for in-vehicle use. Here, as an example, a spatially floating image display device 1000 that obtains a spatially floating image without using the windshield 6 of an automobile will be described. The spatially floating image display device 1000 obtains a spatially floating image 220 in the interior space of the own vehicle at an eye point 8 (described in detail later) corresponding to the line of sight of the driver. As a result, a visual effect similar to that of forming a pseudo virtual image V1 in front of the vehicle can be obtained. The inventor confirmed this through experiments. A detailed description will be given below.
 図1に示すように、アイポイント8から空間浮遊映像220を観視した場合には、従来のHUDで被投影部材6(本実施例ではフロントガラスの内面、すなわち車両内の運転者に向いた面)にて反射された虚像V1を見ている場合と同様に、運転者が視認している実景に空間浮遊映像220(対応する虚像V1)を重ねることができる。空間浮遊映像220として表示する情報としては、例えば、車両情報や、監視カメラやアラウンドビュアーなどのカメラ(図示せず)で撮影した前景情報や、始動前の車両周辺の景観や、速度計、エンジンの回転計、エネルギー残量表示などの情報が挙げられる。 As shown in FIG. 1, when a spatially floating image 220 is viewed from an eye point 8, a conventional HUD is used to project a projected member 6 (in this embodiment, the inner surface of the windshield, i.e., the surface facing the driver inside the vehicle). The spatially floating image 220 (corresponding virtual image V1) can be superimposed on the real scene visually recognized by the driver, in the same manner as in the case of viewing the virtual image V1 reflected by the surface). The information displayed as the space floating image 220 includes, for example, vehicle information, foreground information captured by a camera (not shown) such as a surveillance camera or an around viewer, scenery around the vehicle before starting, a speedometer, and an engine. information such as a tachometer and remaining energy display.
 また、本実施例では、空間浮遊映像表示装置1000は、情報に対応する映像を表示して対応する映像光を投射する映像表示装置4と、映像表示装置4に表示された映像を反射させ空間浮遊映像220を形成する再帰反射光学部材2100(言い換えると再帰反射光学素子)とを備える。再帰反射光学部材2100は、空間的に移動可能な構造として(図中では上下移動可能として表示)、上下に移動させることで、空間浮遊映像220が形成される位置を斜め上下に移動(図中では上下移動)させることができる。この結果、運転者がアイボックス(アイポイント8が含まれる所定の空間をいう)から観視する空間浮遊映像220が形成される位置を、上下に移動することで、伏角θeが変化する。これにより、従来のHUDにおいて虚像の表示位置を変化させることと同等の効果が得られる。また、運転者の視線(アイポイント8)の移動を例えば車両内のモニターカメラ(図示せず)で検出することで、この視線の動きに合わせて、この空間浮遊映像220の表示位置を上下左右に移動させることもできる。 In this embodiment, the floating image display device 1000 includes the image display device 4 that displays the image corresponding to the information and projects the corresponding image light, and the image displayed on the image display device 4 that reflects the image displayed in the space. and a retroreflective optical member 2100 (in other words, a retroreflective optical element) that forms a floating image 220 . The retroreflective optical member 2100 has a spatially movable structure (shown as vertically movable in the drawing), and by moving it up and down, the position where the spatially floating image 220 is formed can be moved diagonally up and down ( can be moved up and down). As a result, the inclination angle θe changes by moving up and down the position where the spatially floating image 220 viewed by the driver from the eyebox (a predetermined space including the eyepoint 8) is formed. Thereby, an effect equivalent to changing the display position of the virtual image in the conventional HUD can be obtained. In addition, by detecting the movement of the driver's line of sight (eye point 8), for example, with a monitor camera (not shown) in the vehicle, the display position of the spatially floating image 220 can be adjusted vertically and horizontally according to the movement of the line of sight. can also be moved to
 本実施例では、映像表示装置4と再帰反射光学部材2100との光路上に設けた反射ミラー(言い換えると折り返しミラー)2110によって、映像表示装置4からの映像光を一旦折り返している。そして、再帰反射光学部材2100を移動させ、反射ミラー2110と再帰反射光学部材2100との距離を変更することで、映像表示装置4から再帰反射光学部材2100までの光学距離を変更することができる。 In this embodiment, the image light from the image display device 4 is once returned by a reflecting mirror (in other words, folding mirror) 2110 provided on the optical path between the image display device 4 and the retroreflective optical member 2100 . By moving the retroreflective optical member 2100 and changing the distance between the reflecting mirror 2110 and the retroreflective optical member 2100, the optical distance from the image display device 4 to the retroreflective optical member 2100 can be changed.
 例えば、再帰反射光学部材2100を図示で下方向に移動させることで、反射ミラー2110と再帰反射光学部材2100との距離を長くすることができる。そうすると、再帰反射光学部材2100で反射後に得られる空間浮遊映像220の位置を、運転者からみて遠方の位置の虚像に対応付けられた、図中では上下方向でより高い位置にすることができる。これにより、空間浮遊映像220が形成される位置を、例えば、車両のダッシュボードの上面(図示せず)よりも高くすることができる。一方、再帰反射光学部材2100を図示で上方向に移動させることで、反射ミラー2110と再帰反射光学部材2100との距離を短くすることができる。これにより、空間浮遊映像220が形成される位置を、低くすることができる。
 <空間浮遊映像表示装置の具体例1>
For example, by moving the retroreflective optical member 2100 downward in the drawing, the distance between the reflecting mirror 2110 and the retroreflective optical member 2100 can be lengthened. Then, the position of the space-floating image 220 obtained after being reflected by the retroreflective optical member 2100 can be set to a higher position in the vertical direction in the drawing, which is associated with the virtual image far away from the driver. Thereby, the position where the spatially floating image 220 is formed can be made higher than, for example, the upper surface (not shown) of the dashboard of the vehicle. On the other hand, by moving the retroreflective optical member 2100 upward in the drawing, the distance between the reflecting mirror 2110 and the retroreflective optical member 2100 can be shortened. As a result, the position where the floating image 220 is formed can be lowered.
<Specific Example 1 of Spatial Floating Image Display Device>
 以下、図3を用いて、本願発明の車載用途の空間浮遊映像表示装置の第一の例について説明する。なお、この実施例では空間浮遊映像表示装置1000がダッシュボード48に内蔵されている。空間浮遊映像表示装置1000は、映像表示装置4、再帰反射光学部材2100等を備える。映像表示装置4に表示する映像は奥行き方向を強調するために表示映像の陰影を強調して表示すると良い。光源装置10から供給された光を映像信号に合わせて変調し特定の偏波の光として出射する液晶表示パネルを用いる。この液晶表示パネルで変調された特定の偏波(ここではS偏波)の映像は、S偏波の光を透過しP偏光の光を反射させるビームスプリッタまたは反射型偏光板2140を透過して、反射ミラー2110に入射し、空間浮遊映像表示装置1000の底面に配置された再帰反射光学部材2100により反射されて、空間浮遊映像220を形成する。再帰反射光学部材2100の映像光入射面には、λ/4板215が設けられている。S偏波の映像光は、再帰反射光学部材2100に入射して反射することで、λ/4板215を2度通過し、これによりP偏光に変換される。そのP偏光の映像光は、反射ミラー2110で光路を折り返し、ビームスプリッタまたは反射型偏光板2140で反射され、空間浮遊映像表示装置1000の上部に設けられた反射光学素子2120で反射される。反射光学素子2120の反射面の形状は例えば運転者側に凸形状とすれば、空間浮遊映像も画面中央に対して周辺部では奥行き方向に結像点が湾曲するため運転者から見た場合に奥行き方向の情報が疑似的に付与された空間浮遊映像(立体的な空間浮遊映像)が得られる。この時、前述したように映像表示装置4に奥行き方向を強調するため陰影を強調して表示すると良い。更に、表示映像が人物などでは影の部分を追加することで立体的な空間浮遊映像が強調される。以上述べた空間浮遊映像を形成する映像光は、ダッシュボード48に設けられた開口部41から出射し、図示する位置(車両内でフロントガラス6よりも前の位置)に空間浮遊映像220を得ることができる。この時得られる空間浮遊映像の結像位置は、反射光学素子2120と視点を結ぶ線分上に形成され、反射光学素子2120の上端部より上部に結像することで従来技術のAR-HUDと同様に運転者が運転中に観視する実景に実像として立体的な空間浮遊映像を重ねることができる。この時、従来のHUDとは異なりウィンドガラスを光学系として使用しないため自動車のデザインによりウィンドガラスの曲率半径や傾きが変化しても影響を受けることがなく異なる車種への展開性が優れた空間浮遊映像表示装置となる。 A first example of the spatially floating image display device for in-vehicle use according to the present invention will be described below with reference to FIG. In this embodiment, the space floating image display device 1000 is incorporated in the dashboard 48. FIG. A spatially floating image display device 1000 includes an image display device 4, a retroreflective optical member 2100, and the like. The image displayed on the image display device 4 is preferably displayed by emphasizing the shadow of the display image in order to emphasize the depth direction. A liquid crystal display panel is used which modulates the light supplied from the light source device 10 in accordance with a video signal and emits light of a specific polarized wave. An image of a specific polarized wave (here, S polarized wave) modulated by this liquid crystal display panel is transmitted through a beam splitter or a reflective polarizing plate 2140 that transmits S polarized light and reflects P polarized light. , enters the reflection mirror 2110 and is reflected by the retroreflective optical member 2100 disposed on the bottom surface of the floating image display device 1000 to form the floating image 220 . A λ/4 plate 215 is provided on the image light incident surface of the retroreflective optical member 2100 . The S-polarized image light is incident on and reflected by the retroreflective optical member 2100, passes through the λ/4 plate 215 twice, and is thereby converted into P-polarized light. The P-polarized image light is reflected by a reflecting mirror 2110 , reflected by a beam splitter or a reflective polarizing plate 2140 , and reflected by a reflecting optical element 2120 provided above the floating image display device 1000 . If the shape of the reflecting surface of the reflecting optical element 2120 is, for example, convex toward the driver side, the spatially floating image is also curved in the depth direction at the periphery of the screen center, so that when viewed from the driver A spatially floating image (stereoscopic spatially floating image) to which information in the depth direction is artificially added can be obtained. At this time, as described above, it is preferable to emphasize shadows and display on the image display device 4 in order to emphasize the depth direction. Furthermore, if the displayed image is a person or the like, adding a shadow portion emphasizes the three-dimensional spatial floating image. The image light forming the spatially floating image described above is emitted from the opening 41 provided in the dashboard 48, and the spatially floating image 220 is obtained at the position shown in the drawing (the position in front of the windshield 6 in the vehicle). be able to. The imaging position of the spatial floating image obtained at this time is formed on the line segment connecting the reflective optical element 2120 and the viewpoint, and the image is formed above the upper end of the reflective optical element 2120, which is different from the conventional AR-HUD. Similarly, it is possible to superimpose a three-dimensional spatial floating image as a real image on the real scene viewed by the driver while driving. At this time, unlike conventional HUDs, the windshield is not used as an optical system, so even if the radius of curvature or inclination of the windshield changes depending on the design of the car, it will not be affected, and the space is highly adaptable to different vehicle types. It becomes a floating image display device.
 反射光学素子2120は、金属反射膜をコートまたはステッパで成膜した反射膜や、特定の偏波を選択的に反射するビームスプリッタ、または反射型偏光板を用いることができる。これにより以下の作用を有する。フロントガラス6から入射する太陽光等の外光の成分は、入射角度が大きい場合には、図21に示すように、S偏波の光の反射率が高い。そのため、車内にはP偏光成分が入射する。反射光学素子2120は、このP偏光成分を選択的に反射する。そのため、反射光学素子2120の後段(図中での下側)の光学部品(空間浮遊映像表示装置1000の筐体内にある各部品、映像表示装置4(液晶表示パネル),ビームスプリッタまたは反射型偏光板2140,再帰反射光学部材2100等)に外光が入射することが無い。これにより、その光学部品や映像表示装置4(液晶表示パネル)および液晶表示パネルの映像光出射側に配置された偏光板(図示せず)等の信頼性を損なうことが無い。 The reflective optical element 2120 can use a reflective film obtained by coating or depositing a metal reflective film with a stepper, a beam splitter that selectively reflects a specific polarized wave, or a reflective polarizing plate. This has the following effects. When the angle of incidence of the outside light component such as sunlight incident from the windshield 6 is large, as shown in FIG. 21, the reflectance of S-polarized light is high. Therefore, the P-polarized light component enters the interior of the vehicle. Reflective optical element 2120 selectively reflects this P-polarized component. Therefore, optical components behind the reflective optical element 2120 (lower side in the figure) (components in the housing of the floating image display device 1000, image display device 4 (liquid crystal display panel), beam splitter or reflective polarization External light does not enter the plate 2140, the retroreflective optical member 2100, etc.). As a result, the reliability of the optical parts, the image display device 4 (liquid crystal display panel), the polarizing plate (not shown) arranged on the image light emitting side of the liquid crystal display panel, and the like is not impaired.
 さらに、反射光学素子2120は、図22に示す太陽光の分光放射エネルギーのうち、温度上昇に寄与する800nm以上の波長の光と紫外線を反射する特性であれば、さらに良い。また、この実施例でも、図1で示した例と同様に、再帰反射光学部材2100を図面中の上下方向に移動可能な構造とすることで、空間浮遊映像220が形成される位置を上下に移動することができる。この結果、運転者のアイポイント8から見える空間浮遊映像220の俯角が変化し、運転者が視認している実景に対して疑似的にその空間浮遊映像220の映像表示距離と大きさを変化させることができる。更に、この実施例でも、運転者の視線を感知するためのカメラ(図示せず)を設け、運転者の視線を追尾することで、視線位置に合わせて空間浮遊映像220の表示位置を連動させてもよい。また、この時に空間浮遊映像220として表示する映像は、運転者が見ている実景にマッチしたアラート情報などとすることで、運転中の注意喚起を実現すると良い。また、図3に示す例において、装置の光路上の最終の位置に配置された反射ミラー2120を除いた構成とした場合、映像光の一部または全部がフロントガラス6を通過して、フロントガラス6内面に、または、車外のフロントガラス6上方の位置に、空間浮遊映像60を表示することが可能となる。
 <空間浮遊映像表示装置の具体例2>
Furthermore, the reflective optical element 2120 is even better if it has a characteristic of reflecting light with a wavelength of 800 nm or more and ultraviolet rays, which contribute to temperature rise, among the spectral radiant energies of the sunlight shown in FIG. 22 . Also in this embodiment, as in the example shown in FIG. 1, the retroreflective optical member 2100 is configured to be movable in the vertical direction in the drawing, so that the position where the floating image 220 is formed can be moved vertically. can move. As a result, the depression angle of the spatially floating image 220 seen from the driver's eye point 8 changes, and the image display distance and size of the spatially floating image 220 are changed in a pseudo manner with respect to the actual scene visually recognized by the driver. be able to. Furthermore, in this embodiment as well, a camera (not shown) is provided to detect the line of sight of the driver, and by tracking the line of sight of the driver, the display position of the spatially floating image 220 is interlocked with the position of the line of sight. may Also, the image displayed as the space floating image 220 at this time should preferably be alert information that matches the actual scenery that the driver is seeing, thereby realizing attention while driving. In the example shown in FIG. 3, if the reflecting mirror 2120 arranged at the final position on the optical path of the device is removed, part or all of the image light passes through the windshield 6 and A floating image 60 can be displayed on the inner surface of the vehicle 6 or at a position above the windshield 6 outside the vehicle.
<Specific Example 2 of Spatial Floating Image Display Device>
 以下、図4を用いて、本願発明の車載用途の空間浮遊映像表示装置の第二の例について説明する。第一の例と同様に、第二の例での映像表示装置4としては、光源装置10から供給された光を映像信号に合わせて変調し特定の偏波の光として出射する液晶表示パネルを用いる。液晶表示パネルで変調された特定の偏波(ここではS偏波)の映像は、S偏波の光を透過しP偏光の光を反射させるビームスプリッタまたは反射型偏光板2140を透過して、再帰反射光学部材2100により反射され、空間浮遊映像220を形成する。再帰反射光学部材2100の映像光入射面には、λ/4板215が設けられている。S偏波の映像光は、再帰反射光学部材2100に入射して反射されることで、λ/4板215を2度通過し、P偏光に変換される。P偏光の映像光は、ビームスプリッタまたは反射型偏光板2140で反射され、上部に設けられた反射ミラー2120で反射され、空間浮遊映像表示装置1000の上部に設けられた反射光学素子2120で反射される。反射光学素子2120の反射面の形状は例えば運転者側に凸形状とすれば、空間浮遊映像も画面中央に対して周辺部では奥行き方向に結像点が湾曲するため運転者から見た場合に奥行き方向の情報が疑似的に付与された立体的な空間浮遊映像が得られる。この時、前述したように映像表示装置4に奥行き方向を強調するため陰影を強調して表示すると良い。更に、表示映像が人物などでは影の部分を追加することで立体的な空間浮遊映像が強調される。以上述べた空間浮遊映像を形成する映像光は、ダッシュボード48に設けられた開口部41から出射する。これにより、所定の位置に空間浮遊映像220を得ることができる。この時得られる空間浮遊映像の結像位置は、反射光学素子2120と視点を結ぶ線分上に形成され、反射光学素子の上端部より上部に結像することで従来技術のHUDと同様に運転者が運転中に観視する実景の一部に実像として映像を重ねることができる。この時、従来のHUDとは異なりウィンドガラスを光学系として使用しないため自動車のデザインによりウィンドガラスの曲率半径や傾きが変化しても影響を受けることがなく異なる車種への展開性が優れた空間浮遊映像表示装置となる。 A second example of the spatially floating image display device for in-vehicle use according to the present invention will be described below with reference to FIG. As in the first example, the video display device 4 in the second example is a liquid crystal display panel that modulates the light supplied from the light source device 10 in accordance with the video signal and emits it as light of a specific polarized wave. use. An image of a specific polarized wave (here, S-polarized wave) modulated by the liquid crystal display panel is transmitted through a beam splitter or a reflective polarizing plate 2140 that transmits S-polarized light and reflects P-polarized light. It is reflected by the retroreflective optical member 2100 to form a spatially floating image 220 . A λ/4 plate 215 is provided on the image light incident surface of the retroreflective optical member 2100 . The S-polarized image light enters the retroreflective optical member 2100 and is reflected, so that it passes through the λ/4 plate 215 twice and is converted into P-polarized light. The P-polarized image light is reflected by the beam splitter or reflective polarizing plate 2140, reflected by the reflecting mirror 2120 provided above, and reflected by the reflecting optical element 2120 provided above the spatial floating image display device 1000. be. If the shape of the reflecting surface of the reflecting optical element 2120 is, for example, convex toward the driver side, the spatially floating image is also curved in the depth direction at the periphery of the screen center, so that when viewed from the driver A three-dimensional spatial floating image to which information in the depth direction is artificially added can be obtained. At this time, as described above, it is preferable to emphasize shadows and display on the image display device 4 in order to emphasize the depth direction. Furthermore, if the displayed image is a person or the like, adding a shadow portion emphasizes the three-dimensional spatial floating image. The image light that forms the spatially floating image described above is emitted from the opening 41 provided in the dashboard 48 . As a result, a spatially floating image 220 can be obtained at a predetermined position. The imaging position of the spatially floating image obtained at this time is formed on the line segment connecting the reflective optical element 2120 and the viewpoint. An image can be superimposed as a real image on a part of the real scene viewed by a person while driving. At this time, unlike conventional HUDs, the windshield is not used as an optical system, so even if the radius of curvature or inclination of the windshield changes depending on the design of the car, it will not be affected, and the space is highly adaptable to different vehicle types. It becomes a floating image display device.
 反射光学素子2120は、第一の例と同様のものを用いることができる。これにより、反射光学素子2120は、前述(図21)のように車内に入射するP偏光成分を選択的に反射する。そのため、反射ミラー2120の後段の光学部品には外光が入射せず、光学部品や液晶表示パネル4等の信頼性を損なうことが無い。さらに、反射光学素子2120の特性は、第一の例と同様(図22)の特性であればさらに良い。また、図1で示した例と同様に、再帰反射光学部材2100を図面中の左右方向に移動可能な構造とする。これにより、本実施例においては立体的な空間浮遊映像220が形成される位置を、斜め方向上下に移動することができる。この結果、運転者のアイポイント8から見える空間浮遊映像220の俯角が変化し、運転者が視認している実景に対して疑似的に立体的な空間浮遊映像220の映像表示距離と大きさを変化させることができる。 The same reflective optical element 2120 as in the first example can be used. As a result, the reflective optical element 2120 selectively reflects the P-polarized component entering the interior of the vehicle as described above (FIG. 21). Therefore, external light does not enter the optical parts behind the reflecting mirror 2120, and the reliability of the optical parts, the liquid crystal display panel 4 and the like is not impaired. Furthermore, the characteristics of the reflective optical element 2120 are even better if they are the same characteristics as in the first example (FIG. 22). Also, as in the example shown in FIG. 1, the retroreflective optical member 2100 is configured to be movable in the horizontal direction in the drawing. As a result, in this embodiment, the position where the three-dimensional spatial floating image 220 is formed can be moved diagonally up and down. As a result, the depression angle of the space floating image 220 visible from the driver's eye point 8 changes, and the image display distance and size of the space floating image 220 which is pseudo-stereoscopic with respect to the actual scene visually recognized by the driver changes. can be changed.
 以上述べた実施例によれば、例えば、ダッシュボード48上の開口部41の延長線(例えば反射光学素子2120で反射された光の光路)上に、高解像度な映像を、空間浮遊した状態で見える立体的な空間浮遊映像220として表示可能となる。このとき、本実施例では、空間浮遊映像表示装置1000の開口部41から出射する映像光の発散角を小さく、即ち鋭角とし、さらに特定の偏波に揃える構成とする。これにより、再帰反射光学部材2100に対して正規の反射光だけを効率良く反射させる。このため、実施例によれば、光の利用効率が高く、従来の再帰反射方式で課題となっていた前述の主空間浮遊映像の他に発生するゴースト像を抑えることができ、鮮明な空間浮遊映像を得ることができる。また本実施例の光源(光源装置10)を含む構成により、消費電力を大幅に低減可能な、新規で利用性に優れた空間浮遊映像表示装置を提供することができる。また、上述したように、車両のフロントガラス6を介して、車両内部または外部において視認可能である、いわゆる、一方向性の空間浮遊映像の表示が可能な車両用空間浮遊映像表示装置を提供できる。 According to the embodiment described above, for example, a high-resolution image is displayed in a floating state on the extension line of the opening 41 on the dashboard 48 (for example, the optical path of the light reflected by the reflecting optical element 2120). It can be displayed as a visible stereoscopic spatial floating image 220 . At this time, in this embodiment, the divergence angle of the image light emitted from the opening 41 of the spatially floating image display device 1000 is made small, ie, an acute angle, and is arranged to have a specific polarization. As a result, only regular reflected light is efficiently reflected to the retroreflective optical member 2100 . For this reason, according to the embodiment, the light utilization efficiency is high, and the ghost image that occurs in addition to the above-mentioned main space floating image, which has been a problem in the conventional retroreflection method, can be suppressed, and clear space floating can be obtained. You can get pictures. Also, with the configuration including the light source (light source device 10) of the present embodiment, it is possible to provide a novel and highly usable spatial floating image display device capable of significantly reducing power consumption. Further, as described above, it is possible to provide a spatially floating image display device for a vehicle capable of displaying a so-called unidirectional spatially floating image that can be viewed inside or outside the vehicle through the windshield 6 of the vehicle. .
 図5Aおよび図5Bを用いて、本実施例に係る空間浮遊映像表示装置の構成をより具体的に説明する。図5Aに示すように、ガラス等の透明な部材100の斜め方向(図示のように透明な部材100の平面の方向およびそれに垂直な方向に対し斜めになるように角度を持つ所定の方向。光軸5001の方向。)には、特定偏波の映像光を挟角に発散させる表示装置1を備える。表示装置1は、映像源であり映像光を出射する液晶表示パネル11と、挟角な拡散特性を有する特定偏波の光を生成する光源装置13(言い換えるとバックライト)とを備えている。 The configuration of the spatially floating image display device according to this embodiment will be described more specifically with reference to FIGS. 5A and 5B. As shown in FIG. 5A, the oblique direction of the transparent member 100 such as glass (the direction of the plane of the transparent member 100 as shown in the figure and the predetermined direction with an angle to the direction perpendicular to it. The direction of the axis 5001) is provided with the display device 1 that diverges image light of a specific polarized wave to a narrow angle. The display device 1 includes a liquid crystal display panel 11 which is a video source and emits video light, and a light source device 13 (in other words, a backlight) which generates specific polarized light having narrow-angle diffusion characteristics.
 表示装置1からの特定偏波の映像光は、透明な部材100に設けた特定偏波の映像光を選択的に反射する膜を有する偏光分離部材101によって反射され、反射光が光軸5002の方向で再帰反射光学部材2に入射する。図中では、偏光分離部材101はシート状に形成され、透明な部材100の面に粘着されている。再帰反射光学部材2の映像光入射面には、λ/4板2bが設けられている。映像光は、再帰反射光学部材2への入射のときと出射のときとで2回、λ/4板2bを通過させられることで、特定偏波から他方の偏波へ偏光変換される。ここで、特定偏波の映像光を選択的に反射する偏光分離部材101は、偏光変換された他方の偏波の偏光を透過する性質を有する。よって、光軸5002の方向で、偏光変換後の特定偏波の映像光は、偏光分離部材101を透過する。偏光分離部材101を透過した映像光は、光軸5003の方向で、透明部材100の外側の所定の位置に、実像である空間浮遊映像220を形成する。 The specific polarized image light from the display device 1 is reflected by the polarization separation member 101 having a film that selectively reflects the specific polarized image light provided on the transparent member 100 , and the reflected light is reflected on the optical axis 5002 . incident on the retroreflective optical member 2 in a direction. In the drawing, the polarized light separation member 101 is formed in a sheet shape and adhered to the surface of the transparent member 100 . A λ/4 plate 2 b is provided on the image light incident surface of the retroreflective optical member 2 . The image light is passed through the λ/4 plate 2b twice, once upon entering the retroreflective optical member 2 and once upon exiting, thereby undergoing polarization conversion from the specific polarized wave to the other polarized wave. Here, the polarization separating member 101 that selectively reflects the image light of the specific polarized wave has the property of transmitting the polarized light of the other polarized wave that has undergone polarization conversion. Therefore, in the direction of the optical axis 5002 , the image light of the specific polarized wave after the polarization conversion is transmitted through the polarization separation member 101 . The image light transmitted through the polarization separation member 101 forms a space floating image 220 which is a real image at a predetermined position outside the transparent member 100 in the direction of the optical axis 5003 .
 なお、空間浮遊映像220を形成する光は、再帰反射光学部材2から空間浮遊映像220の光学像へ収束する光線の集合であり、これらの光線は、空間浮遊映像220の光学像を通過後も直進する。よって、空間浮遊映像220は、一般的なプロジェクタなどでスクリーン上に形成される拡散映像光とは異なり、高い指向性を有する映像である。よって、図5Aおよび図5Bの構成では、矢印Aの方向からユーザ(対応するアイポイント)が空間浮遊映像220を視認する場合には、空間浮遊映像220は好適な明るい映像として視認されるが、矢印Aとは異なる矢印Bの方向から他の人物が視認する場合には、空間浮遊映像220は映像として一切視認することはできない。この高い指向性の特性は、運転者(方向Aに対応したアイポイントの位置を持つユーザ)のみが必要な映像情報を表示するシステムや、その運転者に正対する車外の他の人物(方向Bに対応するアイポイントを持つ人)や車内の他の位置にいる人物には秘匿したい秘匿性の高い映像を表示するシステム等に採用する場合に、非常に好適である。 The light that forms the spatially floating image 220 is a set of light rays that converge from the retroreflective optical member 2 to the optical image of the spatially floating image 220, and these rays continue to pass through the optical image of the spatially floating image 220. Go straight. Therefore, the spatially floating image 220 is an image having high directivity, unlike diffuse image light formed on a screen by a general projector or the like. Therefore, in the configuration of FIGS. 5A and 5B, when the user (corresponding eye point) views the spatial floating image 220 from the direction of the arrow A, the spatial floating image 220 is viewed as a suitable bright image. When another person views from the direction of arrow B different from arrow A, the spatial floating image 220 cannot be viewed as an image at all. This highly directional characteristic is useful for systems that display video information that only the driver (user with an eyepoint position corresponding to direction A) needs, and systems that display video information required by other people outside the vehicle (direction B) facing the driver. It is very suitable for use in a system for displaying highly confidential images that should be kept confidential from other people in the vehicle, such as a person who has an eye point corresponding to the vehicle.
 なお、再帰反射光学部材2の性能によっては、反射後の映像光の偏光軸が不揃いになる場合がある。この場合、偏光軸が不揃いになった一部の映像光は、上述した偏光分離部材101で反射されて表示装置1に戻る。この光が、表示装置1を構成する液晶表示パネル11の映像表示面で再反射し、前述のようなゴースト像を発生させて、空間浮遊映像220の画質を低下させる可能性がある。そこで、本実施例では、表示装置1の映像表示面に吸収型偏光板12が設けられている。表示装置1から出射する映像光は、吸収型偏光板12を透過させ、偏光分離部材101から戻ってくる反射光は、吸収型偏光板12で吸収させる。これにより、上記再反射等を抑制でき、空間浮遊映像220のゴースト像による画質低下を防止することができる。 Depending on the performance of the retroreflective optical member 2, the polarization axes of the reflected image light may become uneven. In this case, part of the image light whose polarization axes are not aligned is reflected by the polarization separation member 101 described above and returns to the display device 1 . This light may be re-reflected on the image display surface of the liquid crystal display panel 11 constituting the display device 1 to generate a ghost image as described above and degrade the image quality of the spatially floating image 220 . Therefore, in this embodiment, the image display surface of the display device 1 is provided with the absorptive polarizing plate 12 . Image light emitted from the display device 1 is transmitted through the absorptive polarizing plate 12 , and reflected light returning from the polarization separation member 101 is absorbed by the absorptive polarizing plate 12 . As a result, the re-reflection and the like can be suppressed, and deterioration in image quality due to a ghost image of the spatially floating image 220 can be prevented.
 上述した偏光分離部材101は、例えば反射型偏光板や特定偏波を反射させる金属多層膜などで形成されたものを適用できる。 For the polarization separation member 101 described above, for example, a reflective polarizing plate, a metal multilayer film that reflects a specific polarized wave, or the like can be used.
 次に、図5Bに、代表的な再帰反射光学部材2として、今回の検討に用いた日本カ-バイト工業株式会社製の再帰反射光学部材の表面形状を示す。この再帰反射光学部材は、面内において規則的に配列された6角柱を有する。規則的に配列された6角柱の内部に入射した光線は、6角柱の壁面と底面で反射されて再帰反射光として、入射光に対応した方向に出射して、図5Aに示す空間浮遊映像220の正規像R1(所定の位置に形成される像)を形成する。再帰反射光学部材は、図中の6角柱を空気に接する面となるように底面に反射面を設け、反射面の上部に6角コーナー面を形成し、6面体と6角柱を中空とし、残りの部分に樹脂を充填した構成としても、同様の効果が得られる。 Next, FIG. 5B shows the surface shape of the retroreflective optical member manufactured by Nippon Carbide Industry Co., Ltd. used in this study as a typical retroreflective optical member 2 . This retroreflective optical member has hexagonal prisms regularly arranged in the plane. Light rays incident on the inside of the regularly arranged hexagonal prisms are reflected by the walls and bottom surfaces of the hexagonal prisms and emitted as retroreflected light in a direction corresponding to the incident light, thereby forming a spatial floating image 220 shown in FIG. 5A. to form a normal image R1 (an image formed at a predetermined position). In the retroreflective optical member, a reflective surface is provided on the bottom surface so that the hexagonal prism in the figure becomes a surface in contact with the air, a hexagonal corner surface is formed on the upper part of the reflective surface, the hexahedron and the hexagonal prism are hollow, and the remaining The same effect can be obtained even if the portion is filled with resin.
 一方、図6に示したように、表示装置1からの映像光のうちで、再帰反射光学部材に斜めに入射した映像光によっては、正規像R1とは別にゴースト像が形成される。本発明の空間浮遊映像表示装置は、表示装置1に表示した映像に基づいて実像である空間浮遊映像を表示する。この空間浮遊映像の解像度は、液晶表示パネル11の解像度の他に、図5Bで示す再帰反射光学部材2(6角柱)の外形DとピッチPに大きく依存する。例えば、7インチのWUXGA(1920×1200画素)液晶表示パネルを用いる場合には、1画素(1トリプレット)が約80μmであっても、例えば再帰反射光学部材2(6角柱)の直径Dが240μmでピッチPが300μmであれば、空間浮遊映像の1画素は300μm相当となる。このため、空間浮遊映像の実効的な解像度は、1/3程度に低下する。 On the other hand, as shown in FIG. 6, of the image light from the display device 1, depending on the image light obliquely incident on the retroreflective optical member, a ghost image is formed separately from the normal image R1. The spatially floating image display device of the present invention displays a spatially floating image, which is a real image, based on the image displayed on the display device 1 . The resolution of this spatially floating image largely depends on the resolution of the liquid crystal display panel 11 as well as the external shape D and the pitch P of the retroreflective optical member 2 (hexagonal prism) shown in FIG. 5B. For example, when using a 7-inch WUXGA (1920×1200 pixels) liquid crystal display panel, even if one pixel (one triplet) is about 80 μm, for example, the diameter D of the retroreflective optical member 2 (hexagonal prism) is 240 μm. If the pitch P is 300 μm, one pixel of the spatial floating image corresponds to 300 μm. Therefore, the effective resolution of the spatially floating image is reduced to about ⅓.
 そこで、空間浮遊映像の解像度を表示装置1の解像度と同等にするためには、再帰反射光学部材2(6角柱)の直径DとピッチPを液晶表示パネル11の1画素に近づけることが望まれる。他方、再帰反射光学部材2と液晶表示パネル11の画素とによるモアレの発生を抑えるために、それぞれのピッチ比を1画素の整数倍から外して設計すると良い。また、形状は、再帰反射光学部材2のいずれの一辺も液晶表示パネル11の1画素のいずれの一辺とも重ならないように配置すると良い。 Therefore, in order to make the resolution of the spatially floating image equal to that of the display device 1, it is desired that the diameter D and the pitch P of the retroreflective optical member 2 (hexagonal prism) be close to one pixel of the liquid crystal display panel 11. . On the other hand, in order to suppress the occurrence of moiré caused by the retroreflective optical member 2 and the pixels of the liquid crystal display panel 11, it is preferable to set the pitch ratios of the respective elements out of integral multiples of one pixel. Moreover, it is preferable that the retroreflective optical member 2 is arranged so that no one side of the retroreflective optical member 2 overlaps any one side of one pixel of the liquid crystal display panel 11 .
 さらに、図6に示すように、再帰反射光学部材2に斜め方向から外光6000が入ると、再帰反射光学部材2の表面(6角柱2a,2b,2c等)で反射し、様々な方向にゴースト像を発生させ、空間浮遊映像の画質を大幅に低下させる。発明者は、空間浮遊映像の画質と視認性を向上するために許容できる空間浮遊映像の像のボケ量lと画素サイズLとの関係を実験により求めた。その際、発明者は、画素ピッチ40μmの液晶表示パネルと、本実施例の狭発散角(例えば発散角が15°)の特性を持つ光源装置とを組み合わせた表示装置1を作成して、その関係を求めた。 Furthermore, as shown in FIG. 6, when external light 6000 enters the retroreflective optical member 2 from an oblique direction, it is reflected by the surfaces ( hexagonal prisms 2a, 2b, 2c, etc.) of the retroreflective optical member 2, and is reflected in various directions. A ghost image is generated, and the image quality of the space floating image is greatly reduced. The inventor obtained by experiments the relationship between the blur amount l of the image of the spatially floating image and the pixel size L that is permissible for improving the image quality and visibility of the spatially floating image. At that time, the inventor created a display device 1 by combining a liquid crystal display panel with a pixel pitch of 40 μm and a light source device having a characteristic of a narrow divergence angle (for example, a divergence angle of 15°) of the present embodiment. asked for a relationship.
 視認性が悪化するボケ量lは、画素サイズの40%以下が望ましく、15%以下であれば、ほとんど目立たないことが分かった。このときのボケ量lが許容量となる反射面の面粗さ(図6での再帰面の表面粗さ6010)は、測定距離40μmの範囲において平均粗さが160nm以下であり、より目立たないボケ量lとなるには、その反射面の面粗さは120nm以下が望ましいことが分かった。このため、前述した再帰反射光学部材の表面粗さを軽減するとともに、反射面を形成する反射膜とその保護膜とを含めた面粗さを、上述した値以下とすることが望まれる。 It has been found that the amount of blur l that deteriorates visibility is preferably 40% or less of the pixel size, and is almost inconspicuous if it is 15% or less. The surface roughness of the reflective surface (surface roughness 6010 of the retroreflecting surface in FIG. 6) for which the amount of blur l at this time is an allowable amount has an average roughness of 160 nm or less in the range of the measurement distance of 40 μm, and is less conspicuous. It has been found that the surface roughness of the reflecting surface is desirably 120 nm or less in order to obtain the blur amount l. Therefore, it is desirable to reduce the surface roughness of the retroreflective optical member described above, and to reduce the surface roughness including the reflecting film forming the reflecting surface and its protective film to the above-described value or less.
 一方、再帰反射光学部材を低価格で製造するためには、ロールプレス法を用いて成形すると良い。具体的には、再帰部(図6での6角柱)を整列させてフィルム上に賦形する方法である。この方法では、賦形する形状の逆形状をロール表面に形成し、固定用のベース材の上に紫外線硬化樹脂を塗布し、ロール間を通過させることで、必要な形状を賦形し、紫外線を照射して硬化させることで、所望形状の再帰反射光学部材2を得る。 On the other hand, in order to manufacture retroreflective optical members at low cost, it is preferable to use a roll press method for molding. Specifically, it is a method of aligning the retroreflecting portions (hexagonal prisms in FIG. 6) and shaping them on the film. In this method, the reverse shape of the shape to be shaped is formed on the surface of the roll, UV curable resin is applied on the base material for fixing, and it is passed between the rolls to shape the required shape, and the UV to obtain a retroreflective optical member 2 having a desired shape.
 図5Aおよび図5Bに示した本実施例の表示装置1は、液晶表示パネル11と、後に詳細に説明する挟角な拡散特性を有する特定偏波の光を生成する光源装置13とにより、上述した再帰反射光学部材2に対して斜め(図6)から映像光が入射する可能性を小さくすることができる。これにより、ゴースト像が発生したとしても輝度が低いという構造的に優れた装置となる。
 <空間浮遊映像表示装置の例3>
The display device 1 of the present embodiment shown in FIGS. 5A and 5B includes a liquid crystal display panel 11 and a light source device 13 that generates specific polarized light having narrow-angle diffusion characteristics, which will be described later in detail. It is possible to reduce the possibility that the image light is incident obliquely (FIG. 6) on the retroreflective optical member 2 thus formed. As a result, even if a ghost image occurs, the luminance is low, resulting in a structurally excellent device.
<Example 3 of spatial floating image display device>
 次に、図8A、図8B、図8C、図9A、及び図9Bを用いて、本願発明の車載用途の空間浮遊映像表示装置の他の例について説明する。 Next, another example of the spatial floating image display device for in-vehicle use of the present invention will be described with reference to FIGS. 8A, 8B, 8C, 9A, and 9B.
 図8Aは、本発明の一実施例に係る空間浮遊映像表示装置の主要部構成の他の例を示す図である。図8Bは、本発明の一実施例に係る空間浮遊映像表示装置の空間浮遊像形成の原理を説明する図である。図8Cは、本発明の一実施例に係る空間浮遊映像表示装置の空間浮遊像形成の説明図である。図9Aは、一実施例に係る空間浮遊映像表示装置の構成を示す図である。図9Bは、一実施例に係る空間浮遊映像表示装置の他の構成を示す図である。 FIG. 8A is a diagram showing another example of the main configuration of the spatial floating image display device according to one embodiment of the present invention. FIG. 8B is a diagram for explaining the principle of spatial floating image formation of the spatial floating image display device according to one embodiment of the present invention. FIG. 8C is an explanatory diagram of forming a spatially floating image in the spatially floating image display device according to one embodiment of the present invention. FIG. 9A is a diagram showing the configuration of a spatially floating image display device according to an example. FIG. 9B is a diagram showing another configuration of the spatially floating image display device according to one embodiment.
 図9A、図9Bに示すように、表示装置1は、映像表示素子としての液晶表示パネル11と、挟角な拡散特性を有する特定偏波の光を生成する光源装置13とを有して構成される。液晶表示パネル11は、画面サイズが3インチ程度の小型のものから80インチを超える大型なものまでの範囲内で選択された液晶表示パネルで構成される。液晶表示パネル11からの映像光は、例えばP偏光とした場合、P偏光を透過する偏光分離部材101を透過し、再帰反射光学部材2に向かう。再帰反射光学部材2の光入射面にはλ/4板21が設けられ、映像光を2度通過させることで偏光変換し、特定偏波(P偏波)を他方の偏波(S偏波)に変換する。その他方の偏波(S偏波)は、偏光分離部材101で反射され、透明な部材100の外側に、反射ミラー300b(図8A中、平面ミラーとして図示)を設けた場合には、破線で示すように実像の平面像3(空間浮遊映像)を表示する。反射ミラー300a(図8A中、凸面ミラーとして図示)を設けた場合には、映像を観視側に凸面(本実施例では凸面として説明する)形状を有するミラーとすることで空間浮遊映像の結像面を観視者に対して凸面形状とすることができる。図8BはそれぞれXZ平面及びXY平面内における空間浮遊映像(立体映像)の結像点(凸面)の結像状況を示した図である。 As shown in FIGS. 9A and 9B, the display device 1 includes a liquid crystal display panel 11 as an image display element, and a light source device 13 for generating specific polarized light having narrow-angle diffusion characteristics. be done. The liquid crystal display panel 11 is composed of a liquid crystal display panel selected within a range from a small screen size of about 3 inches to a large screen size exceeding 80 inches. For example, if the image light from the liquid crystal display panel 11 is P-polarized light, it passes through the polarization separating member 101 that transmits P-polarized light and travels toward the retroreflective optical member 2 . A λ/4 plate 21 is provided on the light incident surface of the retroreflective optical member 2, and the polarization conversion is performed by passing the image light twice, and the specific polarized wave (P polarized wave) is converted to the other polarized wave (S polarized wave). ). The other polarized wave (S polarized wave) is reflected by the polarization separation member 101, and when a reflecting mirror 300b (illustrated as a plane mirror in FIG. 8A) is provided outside the transparent member 100, As shown, a real plane image 3 (space floating image) is displayed. When a reflecting mirror 300a (illustrated as a convex mirror in FIG. 8A) is provided, a spatially floating image can be obtained by using a mirror having a convex surface (described as a convex surface in this embodiment) on the viewing side of the image. The image plane can be convex with respect to the viewer. FIG. 8B is a diagram showing image forming conditions of image forming points (convex surfaces) of spatially floating images (stereoscopic images) in the XZ plane and the XY plane, respectively.
 更に、図8Cで示したように観視者の観視方向をカメラで認識してこの方向から光が入射した場合に生じる影(図8C中グレーで表記)を原画像の映像信号に重畳して空間浮遊映像に影を付けることで立体感を強調する。同様に前述した平面と異なる形状の反射ミラー300aで光束を折り返すことで空間浮遊映像の結像点を折り返しミラーの形状に合わせて奥行き方向に移動させることができ、さらに空間浮遊映像に陰影を強調した映像処理を施して、表示映像に影の部分を追加することで、立体感を強調した疑似立体的な空間浮遊映像が表示可能となる。図8A、図9A、および図9Bにおいては、P偏波を実線、S偏波を破線で示す。なお、液晶表示パネル11からの映像光は、S偏波でも構わない。 Furthermore, as shown in FIG. 8C, the viewing direction of the viewer is recognized by the camera, and the shadow (shown in gray in FIG. 8C) produced when light is incident from this direction is superimposed on the video signal of the original image. The three-dimensional effect is emphasized by adding shadows to the images floating in space. Similarly, by folding back the luminous flux by the reflecting mirror 300a having a shape different from the flat surface described above, the imaging point of the spatially floating image can be moved in the depth direction according to the shape of the folding mirror, and shadows in the spatially floating image can be emphasized. By applying this image processing and adding a shadow portion to the displayed image, it is possible to display a pseudo-stereoscopic spatial floating image that emphasizes the three-dimensional effect. In FIGS. 8A, 9A, and 9B, P-polarized waves are indicated by solid lines and S-polarized waves by dashed lines. The image light from the liquid crystal display panel 11 may be S-polarized.
 更に、図9A及び図9Bに示したように、反射ミラー300と同様に偏光分離部材101を回転させることができる構成として、反射ミラー300及び偏光分離部材101を回転させることにより、この空間浮遊映像3の向きと位置を調整することができる。図9Bに示した偏光分離部材101は紙面に対して傾斜した方向に傾いた状態で特定偏波を反射させるため図中の回転方向に回転させることで、破線で示した空間浮遊映像3を紙面の前後方向に移動させることができる。図9A及び図9Bに示した反射ミラー300を凸面ミラーとすることで図8に示したように疑似的に立体像化した空間浮遊映像を得るとともにその空間浮遊映像(図中破線で表示)の向きと位置を調整できることは言うまでもない。 Furthermore, as shown in FIGS. 9A and 9B, as a configuration capable of rotating the polarization separation member 101 in the same manner as the reflection mirror 300, by rotating the reflection mirror 300 and the polarization separation member 101, the spatial floating image can be obtained. The orientation and position of 3 can be adjusted. The polarization splitting member 101 shown in FIG. 9B is rotated in the direction of rotation in the figure in order to reflect the specific polarized wave in a state inclined in a direction inclined with respect to the plane of the paper. can be moved forward and backward. By using a convex mirror as the reflecting mirror 300 shown in FIGS. 9A and 9B, a pseudo-stereoscopic spatial floating image is obtained as shown in FIG. It goes without saying that the orientation and position can be adjusted.
 この反射ミラー300をYZ平面内(図8B参照)で傾けることで、反射ミラー300を介して再帰反射光学素子に外光が入射する量を軽減できる。その結果、ゴースト像の光強度も低下する。このため得られた立体的な空間浮遊映像の画質が大幅に改善される。外光の光量を低減するため反射ミラー300の反射膜として金属多層膜を成膜し特定の偏波(本実施例ではS偏波)の反射率85%以上とした特性とし、他方P偏光の反射率は20%以下(透過率が70%以上)とすれば外光が再帰反射光学素子2に入射し映像の画質を低下させるゴースト像が発生することはない。 By tilting the reflecting mirror 300 within the YZ plane (see FIG. 8B), the amount of external light entering the retroreflective optical element via the reflecting mirror 300 can be reduced. As a result, the light intensity of the ghost image is also reduced. As a result, the image quality of the obtained stereoscopic spatial floating image is greatly improved. In order to reduce the amount of external light, a metal multilayer film is formed as the reflecting film of the reflecting mirror 300, and the characteristic is such that the reflectance of a specific polarized wave (S polarized wave in this embodiment) is 85% or more, and on the other hand, the P polarized wave has a reflectance of 85% or more. If the reflectance is set to 20% or less (the transmittance is 70% or more), external light will not enter the retroreflective optical element 2 and generate a ghost image that deteriorates the image quality of the image.
 一方、反射ミラー300を除いた形態とした場合では、図面に垂直な方向(透明な部材100の平面の方向)に、実像の平面像3bを表示する。この結果、同一光学系を共用して、反射ミラーの有無により空間浮遊映像を発生させる位置及び観視者に対する向きが異なる空間浮遊映像表示装置を実現できる。 On the other hand, when the reflecting mirror 300 is removed, the plane image 3b of the real image is displayed in the direction perpendicular to the drawing (the direction of the plane of the transparent member 100). As a result, by sharing the same optical system, it is possible to realize a spatially floating image display device in which the position at which the spatially floating image is generated and the orientation with respect to the viewer are different depending on the presence or absence of the reflecting mirror.
 また、偏光分離部材101を回転させることができる構成とする。偏光分離部材101を回転させることで、空間浮遊映像3(3a及び3b)の向きと位置を調整することができる。 Also, the configuration is such that the polarization separation member 101 can be rotated. By rotating the polarization separation member 101, the orientation and position of the spatially floating images 3 (3a and 3b) can be adjusted.
 透明な部材100の外光入射窓には、吸収型偏光板12が設けられている。この吸収型偏光板12により、P波の外光成分や照明光を吸収する。再帰反射光学部材2で映像光が再帰反射する際に一部の映像光は偏光軸が不揃いになる場合がある。その場合の映像光は、偏光分離部材101を透過して表示装置1に戻る。この光が再度、表示装置1を構成する液晶表示パネル11の映像表示面で反射し、ゴースト像を発生させ、空間浮遊映像の画質を著しく低下させる。そこで、本実施例では、図9Aおよび図9Bに示すように、表示装置1の映像表示面にも吸収型偏光板12が設けられている。表示装置1に戻ってきた映像光を吸収型偏光板12で吸収させることで、空間浮遊映像のゴースト像による画質低下が防止される。 An absorptive polarizing plate 12 is provided on the external light entrance window of the transparent member 100 . The absorptive polarizing plate 12 absorbs the P-wave external light component and illumination light. When the image light is retroreflected by the retroreflective optical member 2, the polarization axes of part of the image light may become uneven. In that case, the image light passes through the polarization separation member 101 and returns to the display device 1 . This light is reflected again by the image display surface of the liquid crystal display panel 11 constituting the display device 1, generates a ghost image, and significantly degrades the image quality of the image floating in space. Therefore, in this embodiment, as shown in FIGS. 9A and 9B, the absorptive polarizing plate 12 is also provided on the image display surface of the display device 1 . By absorbing the image light that has returned to the display device 1 with the absorptive polarizing plate 12, deterioration of the image quality due to the ghost image of the image floating in space is prevented.
 さらに、再帰反射光学部材2に外光が入射した場合には、強力なゴースト像を発生させるおそれがある。そのため、この実施例では、透明な部材100の内面で外光入射窓の吸収型偏光板12以外の箇所に設けられた遮光部材25によって、外光の入射を妨げる構成とする。偏光分離部材101は、反射型偏光板や特定偏波を反射させる金属多層膜を成膜した透明部材などで形成される。 Furthermore, when external light is incident on the retroreflective optical member 2, a strong ghost image may be generated. Therefore, in this embodiment, the light blocking member 25 provided on the inner surface of the transparent member 100 at a portion other than the absorptive polarizing plate 12 of the external light entrance window prevents the external light from entering. The polarization separating member 101 is formed of a reflective polarizing plate, a transparent member formed of a metal multilayer film that reflects a specific polarized wave, or the like.
 また、偏光分離部材101と液晶表示パネル11との間に、空間浮遊映像を形成する正規映像光以外の斜め映像光を遮光する遮光部材(図示せず)を併設してもよい。また、再帰反射光学部材2と偏光分離部材101との間にも、正規映像光以外の斜め映像光を遮光する遮光部材(図示せず)を併設してもよい。更に、上述したように外光が再帰反射光学部材2に直接入射しないように遮光部材(図示せず)も併設し、ゴースト像を発生させる斜め光を遮光する。発明者は、この結果、ゴースト像の発生が抑えられることを実験により確認した。
 <反射型偏光板>
A light shielding member (not shown) for shielding oblique image light other than the regular image light forming the spatially floating image may be provided between the polarization separation member 101 and the liquid crystal display panel 11 . Also, between the retroreflective optical member 2 and the polarization separating member 101, a light shielding member (not shown) for shielding oblique image light other than normal image light may be provided. Furthermore, as described above, a light shielding member (not shown) is also provided so that external light does not directly enter the retroreflective optical member 2, and shields oblique light that causes a ghost image. The inventor confirmed through experiments that as a result, the occurrence of ghost images is suppressed.
<Reflective polarizing plate>
 本実施例のグリッド構造の反射型偏光板は、偏光軸に対して垂直方向からの光についての特性は低下する。このため、偏光軸に沿った仕様が望ましく、液晶表示パネル11からの出射映像光を挟角で出射可能な本実施例の光源(光源装置13)が理想的な光源となる。また、水平方向の特性も同様に斜めからの光については特性低下がある。以上の特性を考慮して、以下、液晶表示パネルからの出射映像光をより挟角に出射可能な光源を液晶表示パネルのバックライトとして使用する、本実施例の構成例について説明する。これにより、高コントラストな空間浮遊映像が提供可能となる。
 <表示装置>
The reflective polarizing plate with the grid structure of this embodiment has deteriorated characteristics with respect to light from a direction perpendicular to the polarization axis. For this reason, specifications along the polarization axis are desirable, and the light source (light source device 13) of this embodiment, which can emit image light emitted from the liquid crystal display panel 11 at a narrow angle, is an ideal light source. In addition, the characteristics in the horizontal direction are similarly degraded with respect to oblique light. Considering the above characteristics, a configuration example of this embodiment will be described below, in which a light source capable of emitting image light from the liquid crystal display panel at a narrower angle is used as the backlight of the liquid crystal display panel. This makes it possible to provide high-contrast spatial floating images.
<Display device>
 次に、本実施例の表示装置1について図面を用いて説明する。本実施例の表示装置1は、映像表示素子(液晶表示パネル)11と共に、その光源を構成する光源装置13を備えており、図10では、光源装置13を映像表示素子(液晶表示パネル)11と共に展開斜視図として示している。 Next, the display device 1 of this embodiment will be described with reference to the drawings. The display device 1 of the present embodiment includes an image display element (liquid crystal display panel) 11 and a light source device 13 constituting a light source thereof. is shown as an exploded perspective view.
 この映像表示素子(液晶表示パネル)11は、図10に矢印(出射光束)30で示すように、バックライト装置である光源装置13からの光により、挟角な拡散特性を有する、即ち、指向性(言い換えると直進性)が強く、かつ、偏光面を一方向に揃えたレーザ光に似た特性の照明光束を得て、入力される映像信号に応じて変調をかけた映像光を出射する。そして、その映像光を、再帰反射光学部材2により反射させ、ウィンドガラスを透過させて、実像である空間浮遊映像を形成する(図1参照)。また、本実施例の表示装置1は、図10では、表示装置1を構成する液晶表示パネル11と、更に、光源装置13からの出射光束の指向特性を制御する光方向変換パネル54、および、必要に応じて挟角拡散板(図示せず)を備えて構成されている。即ち、液晶表示パネル11の両面には偏光板が設けられ、特定の偏波の映像光が映像信号により光の強度を変調して出射する(図10の矢印(出射光束)30を参照)構成となっている。これにより、本実施例の表示装置1は、所望の映像を指向性(直進性)の高い特定偏波の光として、光方向変換パネル54を介して、再帰反射光学部材2に向けて投写し、再帰反射光学部材2で反射後、車両(空間)の内部/外部の観視者の眼に向けて透過して空間浮遊映像を形成する。なお、上述した光方向変換パネル54の表面には保護カバーを設けてもよい。 This image display element (liquid crystal display panel) 11 has a narrow angle diffusion characteristic by light from a light source device 13, which is a backlight device, as indicated by arrows (outgoing light beams) 30 in FIG. It obtains an illumination light beam with characteristics similar to laser light whose polarization plane is aligned in one direction, and emits image light modulated according to the input image signal. . Then, the image light is reflected by the retroreflective optical member 2 and transmitted through the window glass to form a spatially floating image, which is a real image (see FIG. 1). 10, the display device 1 of this embodiment includes a liquid crystal display panel 11 that constitutes the display device 1, a light direction conversion panel 54 that controls the directivity of the light flux emitted from the light source device 13, and It is configured with a narrow angle diffuser (not shown) as required. That is, polarizing plates are provided on both sides of the liquid crystal display panel 11, and image light of a specific polarized wave is emitted after modulating the intensity of the light according to the image signal (see the arrow (outgoing light beam) 30 in FIG. 10). It has become. As a result, the display device 1 of the present embodiment projects a desired image as light of a specific polarized wave with high directivity (straightness) toward the retroreflective optical member 2 via the light direction conversion panel 54. , after being reflected by the retroreflective optical member 2, the light is transmitted toward the viewer's eyes inside/outside the vehicle (space) to form a spatially floating image. A protective cover may be provided on the surface of the light direction conversion panel 54 described above.
 本実施例では、光源装置13からの出射光束30の利用効率を向上させ、消費電力を大幅に低減するために、光源装置13と液晶表示パネル11を含んで構成される表示装置1において、以下の構成とすることができる。すなわち、表示装置1は、光源装置13からの光(図10の矢印(出射光束)30を参照)を、再帰反射光学部材2に向けて投写し、再帰反射光学部材2で反射後、ウィンドガラスの表面に設けた透明シート(図示せず)により、空間浮遊映像を所望の位置に形成するよう指向性を制御することもできる。具体的には、この透明シートは、フレネルレンズやリニアフレネルレンズ等の光学部品によって高い指向性を付与したまま空間浮遊映像の結像位置を制御する。このことによれば、表示装置1からの映像光は、レーザ光のようにウィンドガラスの外側(例えば歩道)にいる観察者に対して高い指向性(直進性)で効率良く届くこととなる。その結果、高品位な空間浮遊映像を高解像度で表示すると共に、光源装置13のLED(Light Emitting Diode)素子201を含む表示装置1による消費電力を著しく低減することが可能となる。
 <表示装置の例1>
In this embodiment, in order to improve the utilization efficiency of the light flux 30 emitted from the light source device 13 and to significantly reduce the power consumption, the display device 1 including the light source device 13 and the liquid crystal display panel 11 has the following: can be configured. That is, the display device 1 projects light from the light source device 13 (see the arrow (emitted light flux) 30 in FIG. 10) toward the retroreflective optical member 2, reflects the light from the retroreflective optical member 2, and then projects it onto the window glass. A transparent sheet (not shown) provided on the surface of the projector can also control the directivity so as to form a spatially floating image at a desired position. Specifically, this transparent sheet controls the imaging position of the spatially floating image while imparting high directivity by an optical component such as a Fresnel lens or a linear Fresnel lens. According to this, the image light from the display device 1 efficiently reaches the observer outside the window glass (for example, sidewalk) with high directivity (straightness) like laser light. As a result, it is possible to display a high-definition spatial floating image with high resolution and significantly reduce the power consumption of the display device 1 including the LED (Light Emitting Diode) element 201 of the light source device 13 .
<Example 1 of display device>
 図10には、表示装置1の具体的な構成の一例が示されている。図11では、図10の光源装置13の上に液晶表示パネル11と光方向変換パネル54を配置している。この光源装置13は、例えば、プラスチックなどにより形成され、その内部にLED素子201、導光体203を収納して構成されている。導光体203の端面には、図11等にも示したように、それぞれのLED素子201からの発散光を略平行光束に変換するために、受光部に対して対面に向かって徐々に断面積が大きくなる形状を有し、内部を伝搬する際に複数回全反射することで発散角が徐々に小さくなるような作用を有するレンズ形状を設けている。その導光体203の上面には、表示装置1を構成する液晶表示パネル11が取り付けられている。また、光源装置13のケースのひとつの側面(本例では左側の端面)には、半導体光源であるLED素子201や、そのLED素子201の制御回路を実装したLED基板202が取り付けられている。それと共に、LED基板202の外側面には、LED素子201および制御回路で発生する熱を冷却するための部材であるヒートシンクが取り付けられてもよい。 An example of a specific configuration of the display device 1 is shown in FIG. 11, the liquid crystal display panel 11 and the light direction changing panel 54 are arranged on the light source device 13 of FIG. The light source device 13 is made of, for example, plastic, and includes an LED element 201 and a light guide 203 inside. As shown in FIG. 11 and the like, the end face of the light guide 203 is gradually cut off toward the light receiving part in order to convert the diverging light from each LED element 201 into a substantially parallel light flux. A lens shape is provided that has a shape that increases the area and that has the effect of gradually decreasing the divergence angle by performing total reflection multiple times while propagating inside. A liquid crystal display panel 11 constituting the display device 1 is attached to the upper surface of the light guide 203 . An LED element 201 as a semiconductor light source and an LED substrate 202 on which a control circuit for the LED element 201 is mounted are attached to one side surface (the left end surface in this example) of the case of the light source device 13 . In addition, a heat sink, which is a member for cooling the heat generated by the LED elements 201 and the control circuit, may be attached to the outer surface of the LED substrate 202 .
 また、光源装置13のケースの上面に取り付けられる液晶表示パネル11のフレーム(図示せず)には、当該フレームに取り付けられた液晶表示パネル11と、更に、当該液晶表示パネル11に電気的に接続されたFPC(Flexible Printed Circuits:フレキシブル配線基板)(図示せず)などが取り付けられて構成される。即ち、液晶表示素子である液晶表示パネル11は、固体光源であるLED素子201と共に、電子装置を構成する制御回路(図示せず)からの制御信号に基づいて、透過光の強度を変調することによって表示映像を生成する。この時、生成される映像光は、拡散角度が狭く特定の偏波成分のみとなるため、映像信号により駆動された面発光レーザ映像源に近い、従来に無い新しい表示装置が得られることとなる。なお、現状では、レーザ装置により、上述した表示装置1で得られる画像と同等のサイズのレーザ光束を得ることは、技術的にも安全上からも不可能である。そこで、本実施例では、例えば、LED素子を備えた一般的な光源からの光束から、上述した面発光レーザ映像光に近い光を得る。 In addition, the frame (not shown) of the liquid crystal display panel 11 attached to the upper surface of the case of the light source device 13 is electrically connected to the liquid crystal display panel 11 attached to the frame and further to the liquid crystal display panel 11 . FPC (Flexible Printed Circuits: flexible printed circuit board) (not shown) and the like are attached. That is, the liquid crystal display panel 11, which is a liquid crystal display element, along with the LED element 201, which is a solid-state light source, modulates the intensity of transmitted light based on a control signal from a control circuit (not shown) that constitutes the electronic device. to generate the display image. At this time, the generated image light has a narrow diffusion angle and only a specific polarized wave component. Therefore, a new display device that has not existed in the past, which is similar to a surface emitting laser image source driven by a video signal, can be obtained. . At present, it is technically and safely impossible to obtain a laser beam having the same size as the image obtained by the display device 1 using a laser device. Therefore, in this embodiment, for example, light close to the above-described surface emitting laser image light is obtained from a luminous flux from a general light source provided with an LED element.
 続いて、光源装置13のケース内に収納されている光学系の構成について、図11と共に、図12を参照しながら詳細に説明する。図11および図12は断面図であるため、光源を構成する複数のLED素子201が1つだけ示されている。これらの複数のLED素子201からの光は、導光体203の受光端面203aの形状により、略コリメート光に変換される。このため、導光体203端面の受光部とLED素子201は、所定の位置関係を保って取り付けられている。なお、この導光体203は、各々、例えば、アクリル等の透光性の樹脂により形成されている。そして、この導光体203端部のLED受光面は、例えば、放物断面を回転して得られる円錐凸形状の外周面を有し、その外周面の頂部では、その頂部の中央部に凸部(即ち、凸レンズ面)を形成した凹部を有し、その導光体203の受光端面203aの平面部の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でもよい)を有する(図示せず、後述の図13等と同様)。なお、LED素子201を取り付ける導光体の受光部の外形形状は、円錐形状の外周面を形成する放物面形状を成す。また、導光体の受光部の外形形状は、角度がLED素子201から周辺方向に出射する光をその外周面の内部で全反射することが可能な範囲内に設定される。あるいは、導光体の受光部の外形形状には、反射面が形成されている。 Next, the configuration of the optical system housed in the case of the light source device 13 will be described in detail with reference to FIG. 12 together with FIG. Since FIGS. 11 and 12 are sectional views, only one LED element 201 constituting the light source is shown. The light from the plurality of LED elements 201 is converted into substantially collimated light by the shape of the light receiving end face 203a of the light guide 203. As shown in FIG. For this reason, the light-receiving portion of the end surface of the light guide 203 and the LED element 201 are attached while maintaining a predetermined positional relationship. Each of the light guides 203 is made of translucent resin such as acryl. The LED light-receiving surface at the end of the light guide 203 has, for example, a conical convex outer peripheral surface obtained by rotating the parabolic cross section, and the top of the outer peripheral surface is convex to the central part of the top. (that is, a convex lens surface), and a convex lens surface projecting outward (or a concave lens surface recessed inward) may be provided at the center of the planar portion of the light receiving end surface 203a of the light guide 203. ) (not shown, similar to FIG. 13 and the like to be described later). The outer shape of the light receiving portion of the light guide body to which the LED element 201 is attached is a paraboloid that forms a conical outer peripheral surface. Further, the external shape of the light receiving portion of the light guide is set within a range in which the light emitted from the LED element 201 in the peripheral direction can be totally reflected inside the outer peripheral surface. Alternatively, a reflective surface is formed on the outer shape of the light receiving portion of the light guide.
 他方、LED素子201は、その回路基板であるLED基板202の表面上の所定の位置にそれぞれ配置されている。このLED基板202は、LEDコリメータである受光端面203aに対して、その表面上のLED素子201が、それぞれ、前述した凹部の中央部に位置するように配置されて固定されている。 On the other hand, the LED elements 201 are arranged at predetermined positions on the surface of the LED board 202, which is the circuit board. The LED substrate 202 is fixed to a light-receiving end surface 203a, which is an LED collimator, so that the LED elements 201 on the surface thereof are located in the central portions of the recesses described above.
 かかる構成によれば、導光体203の受光端面203aの形状によって、LED素子201から放射される光を略平行光として取り出すことが可能となり、発生した光の利用効率を向上することが可能となる。 According to such a configuration, the shape of the light receiving end face 203a of the light guide 203 makes it possible to extract the light emitted from the LED element 201 as substantially parallel light, thereby improving the utilization efficiency of the generated light. Become.
 以上述べたように、図10等の光源装置13は、導光体203の端面に設けた受光部である受光端面203aに、光源であるLED素子201を複数並べた光源ユニットを取り付けて構成されている。これにより、LED素子201からの発散光束を導光体203端面の受光端面203aのレンズ形状によって略平行光として、矢印で示すように(図面に平行な方向)、導光体203内部を導光し、光束方向変換手段204によって、導光体203に対して略平行に配置された液晶表示パネル11に向かって(図面から手前に垂直な方向)出射する。導光体203内部または表面の形状によって、この光束方向変換手段204の分布(言い換えると密度)を最適化することで、液晶表示パネル11に入射する光束の均一性を制御することができる。上述した光束方向変換手段204は、導光体203表面の形状や、導光体203内部に例えば屈折率の異なる部分を設けることで、導光体203内を伝搬した光束を、導光体203に対して略平行に配置された液晶表示パネル11に向かって(図面から手前に垂直な方向)出射する。このとき、液晶表示パネル11を画面中央に正対し画面対角寸法と同じ位置に視点を置いた状態で画面中央と画面周辺部の輝度を比較した場合の相対輝度比が20%以上あれば、実用上問題無く、30%を超えていれば、更に優れた特性となる。 As described above, the light source device 13 shown in FIG. 10 and the like is configured by attaching a light source unit in which a plurality of LED elements 201 as a light source are arranged on a light receiving end face 203a which is a light receiving portion provided on the end face of the light guide 203. ing. As a result, the divergent luminous flux from the LED element 201 is converted into substantially parallel light by the lens shape of the light receiving end face 203a of the end face of the light guide body 203, and the light is guided inside the light guide body 203 as indicated by the arrow (in the direction parallel to the drawing). Then, the light is emitted by the luminous flux direction converting means 204 toward the liquid crystal display panel 11 arranged substantially parallel to the light guide 203 (in the direction perpendicular to the front of the drawing). By optimizing the distribution (in other words, density) of the light beam direction changing means 204 according to the shape of the interior or surface of the light guide 203, the uniformity of the light beam incident on the liquid crystal display panel 11 can be controlled. The luminous flux direction changing means 204 described above converts the luminous flux propagating in the light guide 203 into a , toward the liquid crystal display panel 11 arranged substantially parallel to it (direction perpendicular to the front of the drawing). At this time, when the liquid crystal display panel 11 faces the center of the screen and the viewpoint is placed at the same position as the screen diagonal dimension, if the relative luminance ratio is 20% or more when comparing the luminance of the screen center and the screen peripheral part, There is no practical problem, and if it exceeds 30%, the characteristics will be even better.
 なお、図12は、図11と同様に、上述した導光体203とLED素子201を含む光源装置13において、偏光変換する本実施例の光源(光源装置13)の構成とその作用を説明するための断面配置図である。図12において、光源装置13は、例えば、プラスチックなどにより形成される表面または内部に光束方向変換手段204を設けた導光体203、光源としてのLED素子201、反射シート205、位相差板206、レンチキュラーレンズなどから構成されている。その光源装置13の上面には、映像表示素子として、光源光入射面と映像光出射面に偏光板を備える液晶表示パネル11が取り付けられている。 12, similarly to FIG. 11, in the light source device 13 including the light guide 203 and the LED element 201 described above, the configuration and operation of the light source (light source device 13) of the present embodiment that converts the polarized light will be described. It is a cross-sectional layout diagram for. In FIG. 12, the light source device 13 includes, for example, a light guide 203 formed of plastic or the like and provided with a light beam direction changing means 204 on its surface or inside, an LED element 201 as a light source, a reflection sheet 205, a retardation plate 206, It is composed of a lenticular lens and the like. On the upper surface of the light source device 13, a liquid crystal display panel 11 is attached as an image display element, which has polarizing plates on the light source light entrance surface and the image light exit surface.
 また、表示装置1は、以下の構成としてもよい。図11で、光源装置13に対応した液晶表示パネル11の光源光入射面(図面での下面)には、フィルムまたはシート状の反射型偏光板49を設ける。光源装置13は、LED素子201から出射した自然光束210のうち、片側の偏波(例えばP波)212を選択的に反射させ、導光体203の一方(図面での下方)の面に設けた反射シート205で反射して、再度、液晶表示パネル11に向かうようにする。そこで、反射シート205と導光体203の間、もしくは導光体203と反射型偏光板49の間に、位相差板であるλ/4板を設ける。この構成で、光を反射シート205で反射させ、λ/4板を2回通過させることで、反射光束をP偏光からS偏光に変換し、映像光としての光源光の利用効率を向上する。液晶表示パネル11で映像信号により光強度を変調された映像光束(図11の矢印213)は、図1に示したように、再帰反射光学部材2100に入射して、反射後に、反射ミラー2110、および反射ミラー2120を経由して、フロントガラス6の内部である車内の空間、または車外の空間に、実像である空間浮遊映像を得る。 Also, the display device 1 may have the following configuration. In FIG. 11, a film or sheet-like reflective polarizing plate 49 is provided on the light source light incidence surface (lower surface in the drawing) of the liquid crystal display panel 11 corresponding to the light source device 13 . The light source device 13 selectively reflects a polarized wave (for example, P wave) 212 on one side of the natural light flux 210 emitted from the LED element 201, and is provided on one side (lower side in the drawing) of the light guide 203. The light is reflected by the reflection sheet 205 and directed toward the liquid crystal display panel 11 again. Therefore, a λ/4 plate, which is a retardation plate, is provided between the reflection sheet 205 and the light guide 203 or between the light guide 203 and the reflective polarizing plate 49 . With this configuration, the light is reflected by the reflection sheet 205 and passed through the λ/4 plate twice to convert the reflected light flux from P-polarized light to S-polarized light, thereby improving the utilization efficiency of the light source light as image light. The image light flux (arrow 213 in FIG. 11) whose light intensity is modulated by the image signal in the liquid crystal display panel 11 is incident on the retroreflective optical member 2100 as shown in FIG. And via the reflecting mirror 2120, a space floating image, which is a real image, is obtained in the space inside the vehicle, which is inside the windshield 6, or in the space outside the vehicle.
 また、表示装置1は、以下の構成としてもよい。図12で、光源装置13に対応した液晶表示パネル11の光源光入射面(図面での下面)には、フィルムまたはシート状の反射型偏光板49を設ける。光源装置13は、LED素子201から出射した自然光束210のうち、片側の偏波(例えばS波)211を選択的に反射させ、導光体203の一方(図面での下方)の面に設けた反射シート205で反射して、再度、液晶表示パネル11に向かうようにする。反射シート205と導光体203の間、もしくは導光体203と反射型偏光板49の間に、位相差板であるλ/4板を設ける。この構成で、光を反射シート205で反射させ、λ/4板を2回通過させることで、反射光束をS偏光からP偏光に変換し、映像光として光源光の利用効率を向上する。液晶表示パネル11で映像信号により光強度変調された映像光束(図12の矢印214)は、図1に示したように、再帰反射光学部材2100に入射して、反射後に、反射ミラー2110、および反射ミラー2120を経由して、フロントガラス6の内部である車内の空間、または車外の空間に、実像である空間浮遊映像を得る。 Also, the display device 1 may have the following configuration. In FIG. 12, a film or sheet-like reflective polarizing plate 49 is provided on the light source light incident surface (lower surface in the drawing) of the liquid crystal display panel 11 corresponding to the light source device 13 . The light source device 13 selectively reflects a polarized wave (for example, an S wave) 211 on one side of the natural light flux 210 emitted from the LED element 201, and is provided on one side (lower side in the drawing) of the light guide 203. The light is reflected by the reflection sheet 205 and directed toward the liquid crystal display panel 11 again. A λ/4 plate, which is a retardation plate, is provided between the reflection sheet 205 and the light guide 203 or between the light guide 203 and the reflective polarizing plate 49 . With this configuration, the light is reflected by the reflection sheet 205 and passed through the λ/4 plate twice to convert the reflected light flux from S-polarized light to P-polarized light, thereby improving the utilization efficiency of the light source light as image light. The image light flux (arrow 214 in FIG. 12) whose light intensity is modulated by the image signal on the liquid crystal display panel 11 is incident on the retroreflective optical member 2100 as shown in FIG. Via the reflecting mirror 2120, a space-floating image, which is a real image, is obtained in the space inside the vehicle, which is the inside of the windshield 6, or in the space outside the vehicle.
 図11および図12に示す光源装置13においては、対応する液晶表示パネル11の光入射面に設けた偏光板の作用の他に、反射型偏光板で片側の偏光成分を反射するため、理論上得られるコントラスト比は、反射型偏光板のクロス透過率の逆数と液晶表示パネルに付帯した2枚の偏光板により得られるクロス透過率の逆数とを乗じたものとなる。これにより、高いコントラスト性能が得られる。実際には、表示画像のコントラスト性能が10倍以上向上することを、発明者は実験により確認した。この結果、自発光型の有機ELに比較しても遜色ない高品位な映像が得られた。
 <表示装置の例2>
In the light source device 13 shown in FIGS. 11 and 12, in addition to the action of the polarizing plate provided on the light incident surface of the corresponding liquid crystal display panel 11, the reflective polarizing plate reflects the polarized component on one side. The obtained contrast ratio is obtained by multiplying the reciprocal of the cross transmittance of the reflective polarizing plate by the reciprocal of the cross transmittance obtained by the two polarizing plates attached to the liquid crystal display panel. This provides high contrast performance. In fact, the inventor confirmed through experiments that the contrast performance of the displayed image is improved by 10 times or more. As a result, a high-quality image comparable to that of a self-luminous organic EL was obtained.
<Example 2 of display device>
 続いて、図13を用いて、表示装置1の具体的な構成の他の例を説明する。この表示装置1の光源装置は、LED14からの自然光(P偏波とS偏波が混在)の発散光束を、LEDコリメータ18により略平行光束(図面での上下の方向)に変換し、反射型導光体304により、液晶表示パネル11に向けて(図面での左右の方向)反射する。この反射型導光体304での反射光は、液晶表示パネル11と反射型導光体304の間に配置された波長板206と反射型偏光板49に入射する。反射型偏光板49で特定の偏波(例えばS偏波)が反射され、波長板206で位相が変換され、反射型導光体304の反射面に戻り、反射され、再び波長板206を通過して反射型偏光板49を透過する偏波(例えばP偏波)に変換される。 Next, another example of the specific configuration of the display device 1 will be described with reference to FIG. The light source device of the display device 1 converts a divergent luminous flux of natural light (P-polarized wave and S-polarized wave are mixed) from the LED 14 into a substantially parallel luminous flux (vertical direction in the drawing) by the LED collimator 18, and is a reflective type The light is reflected toward the liquid crystal display panel 11 (left and right directions in the drawing) by the light guide 304 . The light reflected by the reflective light guide 304 is incident on the wavelength plate 206 and the reflective polarizing plate 49 arranged between the liquid crystal display panel 11 and the reflective light guide 304 . A specific polarized wave (for example, S-polarized wave) is reflected by the reflective polarizing plate 49, converted in phase by the wave plate 206, returned to the reflecting surface of the reflective light guide 304, reflected, and passed through the wave plate 206 again. Then, the light is converted into polarized waves (for example, P-polarized waves) that pass through the reflective polarizing plate 49 .
 この結果、LED14からの自然光は、特定の偏波(例えばP偏波)に揃えられ、液晶表示パネル11に入射し、映像信号に合わせて輝度変調されパネル面に映像を表示する。図13では、前述の例と同様に、光源を構成する複数のLED14(ただし図13では縦断面のため1個のみ図示)が示されており、これらのLED14はLEDコリメータ18に対して所定の位置に取り付けられている。なお、このLEDコリメータ18は、各々、例えばアクリル等の透光性の樹脂またはガラスにより形成されている。そして、前述の例と同様に、このLEDコリメータ18は、放物断面を回転して得られる円錐凸形状の外周面を有すると共に、その外周面の頂部では、その頂部の中央部に凸部(即ち、凸レンズ面)を形成した凹部を有する。また、そのLEDコリメータ18の平面部の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でもよい)を有している。なお、LEDコリメータ18の円錐形状の外周面を形成する放物面は、LED14から周辺方向に出射する光をその外周面の内部で全反射することが可能な角度の範囲内において設定され、あるいは、反射面が形成されている。 As a result, the natural light from the LEDs 14 is aligned with a specific polarized wave (for example, P-polarized wave), enters the liquid crystal display panel 11, is luminance-modulated in accordance with the video signal, and displays an image on the panel surface. 13 shows a plurality of LEDs 14 constituting the light source (only one is shown in FIG. 13 because it is a vertical cross section), and these LEDs 14 are arranged with respect to the LED collimator 18. installed in position. Each of the LED collimators 18 is made of translucent resin such as acrylic or glass. As in the above example, the LED collimator 18 has a conical convex outer peripheral surface obtained by rotating the parabolic cross section, and at the top of the outer peripheral surface, a convex portion ( That is, it has a concave portion formed with a convex lens surface. In addition, the central portion of the planar portion of the LED collimator 18 has a convex lens surface projecting outward (or a concave lens surface recessed inward). In addition, the paraboloid that forms the conical outer peripheral surface of the LED collimator 18 is set within an angle range that allows the light emitted in the peripheral direction from the LED 14 to be totally reflected inside the outer peripheral surface, or , a reflective surface is formed.
 以上の構成は、図19に示した表示装置1の光源装置と同様の構成である。更に、図19に示したLEDコリメータ18により略平行光に変換された光は、反射型導光体304で反射し、反射型偏光板49の作用により特定の偏波の光が透過させられ、反射した他方の偏波の光は、再度、反射型導光体304を透過して、液晶表示パネル11と接しない反射型導光体304の他方の面に設けた反射板271で反射する。このとき、その光は、反射板271と液晶表示パネル11の間に配置した位相差板であるλ/4板270を2度通過することで偏光変換され、再び反射型導光体304を透過して、反対面に設けた反射型偏光板49を透過して、偏光方向を揃えて液晶表示パネル11に入射される。この結果、この構成では、光源の光を全て利用できるので、光の利用効率が2倍になる。 The configuration described above is the same as that of the light source device of the display device 1 shown in FIG. Furthermore, the light converted into substantially parallel light by the LED collimator 18 shown in FIG. The reflected light of the other polarized wave passes through the reflective light guide 304 again and is reflected by the reflector 271 provided on the other surface of the reflective light guide 304 that is not in contact with the liquid crystal display panel 11 . At this time, the light passes twice through the λ/4 plate 270, which is a retardation plate placed between the reflector 271 and the liquid crystal display panel 11, and undergoes polarization conversion. Then, the light is transmitted through the reflective polarizing plate 49 provided on the opposite surface, and enters the liquid crystal display panel 11 with the polarization direction aligned. As a result, in this configuration, all the light from the light source can be used, and the light utilization efficiency is doubled.
 液晶表示パネルからの出射光は、従来のTVセットでは、図17Aおよび図17Bに示すように、画面水平方向(図17AではX軸で表示)と画面垂直方向(図17AではY軸で表示)ともに同様な拡散特性を持っている。これに対して、本実施例の液晶表示パネルからの出射光束の拡散特性は、例えば図18Aおよび図18Bの例1に示すように、輝度が正面視(角度0度)の50%になる視野角が13度とすることで、従来の62度に対して1/5となる。同様に垂直方向の視野角は、上下不均等として上側の視野角を下側の視野角に対して1/3程度に抑えるように、反射型導光体304の反射角度と反射面の面積等を最適化する。この結果、本実施例では、従来の液晶TVに比べ、観視方向に向かう映像光量が大幅に向上し、輝度は50倍以上となる。なお図18Aおよび図18BでのX,Y方向は図17Aと同様である。 Light emitted from the liquid crystal display panel, as shown in FIGS. 17A and 17B, is emitted from the liquid crystal display panel in the horizontal direction of the screen (represented by the X-axis in FIG. 17A) and the vertical direction of the screen (represented by the Y-axis in FIG. 17A). Both have similar diffusion properties. On the other hand, the diffusion characteristic of the emitted light flux from the liquid crystal display panel of this embodiment is, for example, as shown in Example 1 of FIGS. 18A and 18B. By setting the angle to 13 degrees, it becomes 1/5 of the conventional angle of 62 degrees. Similarly, the viewing angle in the vertical direction is not uniform in the vertical direction, and the angle of reflection of the reflective light guide 304, the area of the reflecting surface, etc. are adjusted so that the viewing angle of the upper side is suppressed to about 1/3 of the viewing angle of the lower side. to optimize. As a result, in this embodiment, compared with the conventional liquid crystal TV, the amount of image light directed toward the viewing direction is greatly improved, and the luminance is 50 times or more. Note that the X and Y directions in FIGS. 18A and 18B are the same as in FIG. 17A.
 更に、図18Aおよび図18Bの例2に示す視野角特性とすれば、輝度が正面視(角度0度)の50%になる視野角が5度とすることで、従来の62度に対して1/12となる。同様に垂直方向の視野角は、上下均等として視野角を従来に対して1/12程度に抑えるように、反射型導光体304の反射角度と反射面の面積等を最適化する。この結果、本実施例では、従来の液晶TVに比べ、観視方向に向かう映像光量が大幅に向上し、輝度は100倍以上となる。 Furthermore, if the viewing angle characteristics shown in Example 2 of FIGS. 18A and 18B are used, the viewing angle at which the brightness is 50% of the front view (angle of 0 degrees) is 5 degrees. 1/12. Similarly, the angle of view in the vertical direction is uniform in the vertical direction, and the angle of reflection and the area of the reflective surface of the reflective light guide 304 are optimized so that the angle of view is suppressed to about 1/12 of the conventional angle. As a result, in this embodiment, compared with the conventional liquid crystal TV, the amount of image light directed toward the viewing direction is greatly improved, and the luminance is 100 times or more.
 以上述べたように、視野角を挟角とすることで、観視方向に向かう光束量を集中できるので、光の利用効率が大幅に向上する。この結果、実施例によれば、従来のTV用の液晶表示パネルを使用しても、光源装置の光拡散特性を制御することで、同様な消費電力で大幅な輝度向上が実現可能であり、屋外に向けての表示装置とすることができる。 As described above, by narrowing the viewing angle, the amount of luminous flux in the viewing direction can be concentrated, which greatly improves the efficiency of light utilization. As a result, according to the embodiment, even if a conventional liquid crystal display panel for TV is used, by controlling the light diffusion characteristics of the light source device, it is possible to achieve a significant improvement in luminance with the same power consumption. The display device can be directed to the outdoors.
 実施例の基本構成としては、図3及び図4に示すように、光源装置10により挟角な指向特性の光束を液晶表示パネル4に入射させ、映像信号に合わせて輝度変調することで、液晶表示パネル4の画面上に表示した映像情報を、再帰反射光学部材2100で反射させて得られた空間浮遊映像220を、室内または室外に表示する。
 <光源装置の例1>
As shown in FIGS. 3 and 4, the basic configuration of the embodiment is that a light beam having a narrow-angle directional characteristic is made incident on the liquid crystal display panel 4 by a light source device 10, and luminance is modulated in accordance with a video signal. A spatially floating image 220 obtained by reflecting the image information displayed on the screen of the display panel 4 by the retroreflective optical member 2100 is displayed indoors or outdoors.
<Example 1 of light source device>
 続いて、ケース内に収納されている光源装置等の光学系の構成例について、図14と共に、図15Aおよび図15Bを参照しながら、詳細に説明する。 Next, a configuration example of the optical system such as the light source device housed in the case will be described in detail with reference to FIG. 14 as well as FIGS. 15A and 15B.
 図14、図15A、および図5Bには、光源を構成するLED14(14a,14b)が示されており、これらのLED14はLEDコリメータ15に対して所定の位置に取り付けられている。なお、このLEDコリメータ15は、各々、例えばアクリル等の透光性の樹脂により形成されている。そして、このLEDコリメータ15は、図15Bにも示すように、放物断面を回転して得られる円錐凸形状の外周面156を有すると共に、その外周面156の頂部では、その頂部の中央部に凸部(即ち、凸レンズ面)157を形成した凹部153を有する。また、そのLEDコリメータ15の平面部の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でも良い)154を有している。なお、LEDコリメータ15の円錐形状の外周面を形成する放物面156は、LED14(14a,14b)から周辺方向に出射する光をその外周面の放物面156の内部で全反射することが可能な角度の範囲内において設定され、あるいは、反射面が形成されている。 14, 15A, and 5B show the LEDs 14 (14a, 14b) that constitute the light source, and these LEDs 14 are attached to the LED collimator 15 at predetermined positions. Each of the LED collimators 15 is made of translucent resin such as acrylic. 15B, the LED collimator 15 has a conical outer peripheral surface 156 obtained by rotating the parabolic cross section, and at the top of the outer peripheral surface 156, at the center of the top. It has a concave portion 153 in which a convex portion (that is, convex lens surface) 157 is formed. In addition, in the central portion of the planar portion of the LED collimator 15, there is provided a convex lens surface (or a concave lens surface recessed inward) 154 projecting outward. The paraboloid 156 forming the conical outer peripheral surface of the LED collimator 15 can totally reflect the light emitted from the LEDs 14 (14a, 14b) in the peripheral direction inside the paraboloid 156 on the outer peripheral surface. It is set within the range of possible angles, or a reflective surface is formed.
 また、LED14(14a,14b)は、その回路基板であるLED基板102の表面上の所定の位置にそれぞれ配置されている。このLED基板102は、LEDコリメータ15に対して、その表面上のLED14が、それぞれ、LEDコリメータ15の凹部153の中央部に位置するように配置されて固定されている。 Also, the LEDs 14 (14a, 14b) are arranged at predetermined positions on the surface of the LED board 102, which is the circuit board. The LED board 102 is arranged and fixed to the LED collimator 15 so that the LEDs 14 on its surface are positioned in the center of the concave portions 153 of the LED collimator 15 .
 かかる構成によれば、上述したLEDコリメータ15によって、LED14(14aまたは14b)から放射される光のうち、特に、そのLED14の中央部分から上方(図面での右方向)に向かって放射される光は、LEDコリメータ15の外形を形成する2つの凸レンズ面157,154により集光されて平行光となる。また、その他の部分から周辺方向に向かって出射される光は、LEDコリメータ15の円錐形状の外周面を形成する放物面156によって反射され、同様に、集光されて平行光となる。換言すれば、その中央部に凸レンズを構成すると共に、その周辺部に放物面を形成したLEDコリメータ15によれば、LED14(14aまたは14b)により発生された光のほぼ全てを平行光として取り出すことが可能となり、発生した光の利用効率を向上することが可能となる。 According to such a configuration, the above-described LED collimator 15 reduces the light emitted from the LED 14 (14a or 14b), particularly the light emitted upward (to the right in the drawing) from the central portion of the LED 14. are condensed by two convex lens surfaces 157 and 154 that form the outer shape of the LED collimator 15 and become parallel light. Also, the light emitted in the peripheral direction from other portions is reflected by the parabolic surface 156 that forms the conical outer peripheral surface of the LED collimator 15, and is similarly condensed into parallel light. In other words, according to the LED collimator 15 having a convex lens in its central part and a parabolic surface in its peripheral part, almost all of the light generated by the LED 14 (14a or 14b) is taken out as parallel light. It becomes possible to improve the utilization efficiency of the generated light.
 なお、図14でLEDコリメータ15の光の出射側には偏光変換素子21が設けられている。この偏光変換素子21は、図15Aからも明らかなように、断面が平行四辺形である柱状(以下、平行四辺形柱)の透光性部材と、断面が三角形である柱状(以下、三角形柱)の透光性部材とを組み合わせ、LEDコリメータ15からの平行光の光軸に対して直交する面に平行に、複数、アレイ状に配列して構成されている。更に、これらアレイ状に配列された隣接する透光性部材間の界面には、交互に、偏光ビームスプリッタ(PBS膜と記載する)2111と反射膜2121とが設けられている。また、偏光変換素子21へ入射してPBS膜2111を透過した光が出射する出射面には、λ/2位相板213が備えられている。 Note that a polarization conversion element 21 is provided on the light exit side of the LED collimator 15 in FIG. As is clear from FIG. 15A, the polarization conversion element 21 includes a columnar translucent member having a parallelogram cross section (hereinafter referred to as a parallelogram prism) and a columnar light transmitting member having a triangular cross section (hereinafter referred to as a triangular prism). ), and arranged in an array parallel to a plane perpendicular to the optical axis of the parallel light from the LED collimator 15 . Further, a polarizing beam splitter (referred to as a PBS film) 2111 and a reflective film 2121 are alternately provided at the interface between the adjacent translucent members arranged in an array. A λ/2 phase plate 213 is provided on the exit surface from which the light that has entered the polarization conversion element 21 and passed through the PBS film 2111 is emitted.
 この偏光変換素子21の出射面には、更に、図15Aにも示す矩形状の合成拡散ブロック16が設けられている。即ち、LED14(14aまたは14b)から出射された光は、LEDコリメータ15の働きにより平行光となって合成拡散ブロック16へ入射し、合成拡散ブロック16の出射側のテクスチャー161により拡散された後、導光体17に到る。 A rectangular synthetic diffusion block 16 also shown in FIG. 15A is further provided on the output surface of this polarization conversion element 21 . That is, the light emitted from the LED 14 (14a or 14b) becomes parallel light by the function of the LED collimator 15 and enters the composite diffusion block 16. After being diffused by the texture 161 on the output side of the composite diffusion block 16, It reaches the light guide 17 .
 導光体17は、例えばアクリル等の透光性の樹脂により断面が略三角形(図15B参照)の棒状に形成された部材である。そして、導光体17は、図14からも明らかなように、合成拡散ブロック16の出射面に第1の拡散板18aを介して対向する導光体光入射部(導光体光入射面を含む)171と、斜面を形成する導光体光反射部(導光体光反射面を含む)172と、第2の拡散板18bを介して、液晶表示素子である液晶表示パネル11と対向する導光体光出射部(導光体光出射面を含む)173とを備えている。 The light guide 17 is a rod-shaped member with a substantially triangular cross section (see FIG. 15B) made of translucent resin such as acrylic. As is clear from FIG. 14, the light guide 17 has a light guide light entrance portion (a light guide light entrance surface) facing the output surface of the combined diffusion block 16 via the first diffuser plate 18a. ) 171, a light guide light reflecting portion (including a light guide light reflecting surface) 172 forming an inclined surface, and a second diffusion plate 18b, facing the liquid crystal display panel 11, which is a liquid crystal display element. and a light guide light emitting portion (including a light guide light emitting surface) 173 .
 この導光体17の導光体光反射部(面)172には、その一部拡大図である図14にも示すように、多数の反射面172aと連接面172bとが交互に鋸歯状に形成されている。そして、反射面172a(図面では右上がりの線分)は、図面中において一点鎖線で示す水平面(図面での左右方向)に対して角度αn(n:自然数であり、本例では、例えば、1~130である)を形成している。その一例として、ここでは、角度αnを43度以下(ただし、0度以上)に設定している。 As shown in FIG. 14, which is a partially enlarged view, the light guide body light reflecting portion (surface) 172 of the light guide body 17 has a large number of reflecting surfaces 172a and connecting surfaces 172b alternately arranged in a sawtooth shape. formed. Reflecting surface 172a (a line segment rising to the right in the drawing) forms an angle αn (n: a natural number) with respect to a horizontal plane (horizontal direction in the drawing) indicated by a dashed line in the drawing. ~130). As an example, here, the angle αn is set to 43 degrees or less (0 degrees or more).
 導光体入射部(面)171は、光源側に傾斜した湾曲の凸形状に形成されている。これによれば、合成拡散ブロック16の出射面からの平行光は、第1の拡散板18aを介して拡散されて導光体入射部(面)171に入射し、図面からも明らかなように、導光体入射部(面)171により上方に僅かに屈曲(言い換えると偏向)しながら、導光体光反射部(面)172に達する。その光は、導光体光反射部(面)172で反射して、図面での上方の導光体光出射部173の上方に設けた液晶表示パネル11に到る。 The light guide entrance portion (surface) 171 is formed in a curved convex shape that is inclined toward the light source. According to this, the parallel light from the output surface of the synthetic diffusion block 16 is diffused via the first diffusion plate 18a and enters the light guide entrance portion (surface) 171, as is clear from the drawing. , reaches a light guide light reflection portion (surface) 172 while being slightly bent (in other words, deflected) upward by a light guide entrance portion (surface) 171 . The light is reflected by the light guide light reflecting portion (surface) 172 and reaches the liquid crystal display panel 11 provided above the upper light guide light emitting portion 173 in the drawing.
 以上に詳述した表示装置1によれば、光利用効率やその均一な照明特性をより向上すると同時に、モジュール化されたS偏光波の光源装置を含め、小型かつ低コストで製造することが可能となる。なお、上記の説明では、偏光変換素子21をLEDコリメータ15の後に取り付けるものとして説明したが、本発明はそれに限定されず、偏光変換素子21を液晶表示パネル11に到る光路中に設けることによっても、同様の作用・効果が得られる。 According to the display device 1 described in detail above, it is possible to further improve the light utilization efficiency and its uniform illumination characteristics, and at the same time, to manufacture it in a small size and at a low cost, including a modularized light source device for S-polarized waves. becomes. In the above description, the polarization conversion element 21 is attached after the LED collimator 15, but the present invention is not limited to this. Similar actions and effects can also be obtained.
 なお、導光体光反射部(面)172には、多数の反射面172aと連接面172bとが交互に鋸歯状に形成されており、照明光束は、各々の反射面172a上で全反射されて上方に向かう。更には、導光体光出射部(面)173に挟角拡散板を設け、照明光束は、略平行な拡散光束として、指向特性を制御する光方向変換パネル54に入射し、指向特性が制御されて、図14のように斜め方向から液晶表示パネル11へ入射する。本実施例では、光方向変換パネル54を導光体出射面173と液晶表示パネル11の間に設けたが、これに限定されず、光方向変換パネル54を液晶表示パネル11の出射面に設けても、同様の効果が得られる。
 <光源装置の例2>
The light guide body light reflecting portion (surface) 172 has a large number of reflecting surfaces 172a and connecting surfaces 172b alternately formed in a sawtooth shape. upwards. Furthermore, a narrow-angle diffusion plate is provided on the light guide light emitting portion (surface) 173, and the illumination light beam is incident on the light direction conversion panel 54 for controlling the directivity characteristics as a substantially parallel diffused light beam, thereby controlling the directivity characteristics. 14, and enters the liquid crystal display panel 11 from an oblique direction as shown in FIG. In this embodiment, the light direction conversion panel 54 is provided between the light guide exit surface 173 and the liquid crystal display panel 11 , but the present invention is not limited to this, and the light direction conversion panel 54 is provided on the exit surface of the liquid crystal display panel 11 . A similar effect can be obtained.
<Example 2 of light source device>
 光源装置13等の光学系の構成についての他の例を図16Aおよび図16Bに示す。図16Aおよび図16Bは、図14に示した例と同様に、光源を構成する複数(本例では2個)のLED14(14a,14b)が示されている。これらのLED14は、LEDコリメータ15に対して所定の位置に取り付けられている。なお、このLEDコリメータ15は、各々、例えばアクリル等の透光性の樹脂により形成されている。そして、図14に示した例と同様に、このLEDコリメータ15は、放物断面を回転して得られる円錐凸形状の外周面156を有すると共に、その外周面156の頂部では、その頂部の中央部に凸部(即ち、凸レンズ面)157を形成した凹部153を有する。また、そのLEDコリメータ15の平面部の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でもよい)154を有している。なお、LEDコリメータ15の円錐形状の外周面を形成する放物面156は、LED14から周辺方向に出射する光をその放物面156の内部で全反射することが可能な角度の範囲内において設定され、あるいは、反射面が形成されている。 Another example of the configuration of the optical system such as the light source device 13 is shown in FIGS. 16A and 16B. Similar to the example shown in FIG. 14, FIGS. 16A and 16B show a plurality of (two in this example) LEDs 14 (14a, 14b) forming a light source. These LEDs 14 are mounted at predetermined positions with respect to the LED collimator 15 . Each of the LED collimators 15 is made of translucent resin such as acrylic. 14, this LED collimator 15 has a conical convex outer peripheral surface 156 obtained by rotating the parabolic cross section, and the top of the outer peripheral surface 156 has a center of the top. It has a concave portion 153 in which a convex portion (that is, a convex lens surface) 157 is formed. In addition, the LED collimator 15 has a convex lens surface (or an inward concave lens surface) 154 projecting outward at the central portion of the planar portion. In addition, the paraboloid 156 forming the conical outer peripheral surface of the LED collimator 15 is set within an angle range in which the light emitted from the LED 14 in the peripheral direction can be totally reflected inside the paraboloid 156. Alternatively, a reflective surface is formed.
 また、LED14(14a,14b)は、その回路基板であるLED基板102の表面上の所定の位置にそれぞれ配置されている。このLED基板102は、LEDコリメータ15に対して、その表面上のLED14(14aまたは14b)が、それぞれ、凹部153の中央部に位置するように配置されて固定されている。 Also, the LEDs 14 (14a, 14b) are arranged at predetermined positions on the surface of the LED board 102, which is the circuit board. The LED board 102 is arranged and fixed to the LED collimator 15 so that the LEDs 14 (14a or 14b) on its surface are positioned in the center of the recess 153 respectively.
 かかる構成によれば、上述したLEDコリメータ15によって、LED14(14aまたは14b)から放射される光のうち、特に、LEDの中央部分から上方(図面での右方向)に向かって放射される光は、LEDコリメータ15の外形を形成する2つの凸レンズ面157,154により集光されて平行光となる。また、その他の部分から周辺方向に向かって出射される光は、LEDコリメータ15の円錐形状の外周面を形成する放物面156によって反射され、同様に、集光されて平行光となる。換言すれば、その中央部に凸レンズを構成すると共に、その周辺部に放物面を形成したLEDコリメータ15によれば、LED14(14aまたは14b)により発生された光のほぼ全てを平行光として取り出すことが可能となり、発生した光の利用効率を向上することが可能となる。 According to such a configuration, among the light emitted from the LED 14 (14a or 14b) by the above-described LED collimator 15, the light emitted from the central portion of the LED upward (to the right in the drawing) is , are condensed by two convex lens surfaces 157 and 154 that form the outer shape of the LED collimator 15 and become parallel light. Also, the light emitted in the peripheral direction from other portions is reflected by the parabolic surface 156 that forms the conical outer peripheral surface of the LED collimator 15, and is similarly condensed into parallel light. In other words, according to the LED collimator 15 having a convex lens in its central part and a parabolic surface in its peripheral part, almost all of the light generated by the LED 14 (14a or 14b) is taken out as parallel light. It becomes possible to improve the utilization efficiency of the generated light.
 なお、図16Aで、LEDコリメータ15の光の出射側には、第一の拡散板18aを介して、導光体170が設けられている。導光体170は、例えばアクリル等の透光性の樹脂により断面が略三角形の棒状に形成された部材である。そして、導光体170は、図16Aからも明らかなように、拡散ブロック16の出射面に第1の拡散板18aを介して対向する導光体170の導光体入射部(面)171と、斜面を形成する導光体光反射部(面)172と、反射式偏光板200を介して液晶表示素子である液晶表示パネル11と対向する導光体光出射部(面)173とを備えている。 In FIG. 16A, a light guide 170 is provided on the light emitting side of the LED collimator 15 via the first diffusion plate 18a. The light guide 170 is a rod-shaped member with a substantially triangular cross section made of translucent resin such as acryl. As is clear from FIG. 16A, the light guide 170 has a light guide entrance portion (surface) 171 of the light guide 170 that faces the exit surface of the diffusion block 16 via the first diffuser plate 18a. , a light guide light reflecting portion (surface) 172 forming an inclined surface, and a light guide light emitting portion (surface) 173 facing the liquid crystal display panel 11, which is a liquid crystal display element, with the reflective polarizing plate 200 interposed therebetween. ing.
 この反射型偏光板200は、例えばP偏光を反射、S偏光を透過させる特性を有する物が選択される。そうすれば、この反射型偏光板200は、光源であるLEDから発した自然光のうち、P偏光を反射し、図16Bに示した導光体光反射部172に設けたλ/4板5002を通過して反射面5001で反射し、再びλ/4板5002を通過することでS偏光に変換される。これにより、液晶表示パネル11に入射する光束は、全てS偏光に統一される。 For this reflective polarizing plate 200, for example, a material having characteristics of reflecting P-polarized light and transmitting S-polarized light is selected. Then, this reflective polarizing plate 200 reflects the P-polarized light out of the natural light emitted from the LED, which is the light source, and the λ/4 plate 5002 provided in the light guide light reflecting section 172 shown in FIG. After passing through the reflecting surface 5001, the light is reflected by the λ/4 plate 5002 and converted into S-polarized light. As a result, all the light beams incident on the liquid crystal display panel 11 are unified into S-polarized light.
 同様に、反射型偏光板200として、S偏光を反射、P偏光を透過させる特性を有する物が選択されてもよい。そうすれば、この反射型偏光板200は、光源であるLEDから発した自然光のうち、S偏光を反射し、図16Bに示した導光体光反射部172に設けたλ/4板5002を通過して反射面5001で反射し、再びλ/4板5002を通過することでP偏光に変換される。これにより、液晶表示パネル52に入射する光束は、全てP偏光に統一される。以上述べた構成でも、偏光変換が実現できる。
 <光源装置の例3>
Similarly, as the reflective polarizing plate 200, a plate having characteristics of reflecting S-polarized light and transmitting P-polarized light may be selected. By doing so, this reflective polarizing plate 200 reflects the S-polarized light out of the natural light emitted from the LED, which is the light source, and the λ/4 plate 5002 provided in the light guide light reflecting section 172 shown in FIG. After passing through the reflection surface 5001, the light is reflected by the λ/4 plate 5002 and converted into P-polarized light. As a result, all the light beams incident on the liquid crystal display panel 52 are unified into P-polarized light. Polarization conversion can also be achieved with the configuration described above.
<Example 3 of light source device>
 光源装置等の光学系の構成についての他の例を、図13を用いて説明する。この例では、図13に示すように、LED14からの自然光(P偏光とS偏光が混在)の発散光束をコリメータレンズ18により略平行光束に変換し、反射型導光体304により液晶表示パネル11に向けて反射する。反射光は、液晶表示パネル11と反射型導光体304の間に配置された反射型偏光板206に入射する。反射型偏光板206では特定の偏波(例えばS偏波)が反射され、反射光は反射型導光体304の反射面を繋ぐ面を透過し、反射型導光体304の反対面に面して配置された反射板271で反射され、位相板であるλ/4波長板270を2度透過することで、偏光変換される。その偏光変換された光(例えばP偏波)は、反射型導光体304と反射型偏光板206を透過して、液晶表示パネル11に入射し、映像光に変調される。このとき、特定偏波と偏光変換された偏波面を合わせることで、光の利用効率が通常の2倍となり、反射型偏光板206の偏光度(言い換えると消光比)もシステム全体の消光比に乗せられる。よって、本実施例の光源装置を用いることで、空間浮遊映像表示装置のコントラスト比が大幅に向上する。 Another example of the configuration of the optical system such as the light source device will be described with reference to FIG. In this example, as shown in FIG. 13, a diverging luminous flux of natural light (P-polarized and S-polarized mixed) from the LED 14 is converted into a substantially parallel luminous flux by the collimator lens 18, and the reflective light guide 304 is used to convert the divergent luminous flux to the liquid crystal display panel 11. reflect towards. The reflected light enters the reflective polarizing plate 206 arranged between the liquid crystal display panel 11 and the reflective light guide 304 . A specific polarized wave (for example, S-polarized wave) is reflected by the reflective polarizing plate 206 , and the reflected light is transmitted through the surface connecting the reflecting surfaces of the reflective light guide 304 to the opposite surface of the reflective light guide 304 . The light is reflected by the reflecting plate 271 arranged as a light beam, and is polarized by being transmitted through the λ/4 wavelength plate 270, which is a phase plate, twice. The polarization-converted light (for example, P-polarized light) passes through the reflective light guide 304 and the reflective polarizing plate 206, enters the liquid crystal display panel 11, and is modulated into image light. At this time, by combining the specific polarized wave and the polarized plane after polarization conversion, the light utilization efficiency is doubled, and the degree of polarization (in other words, extinction ratio) of the reflective polarizer 206 is also equal to the extinction ratio of the entire system. can ride Therefore, by using the light source device of this embodiment, the contrast ratio of the spatially floating image display device is greatly improved.
 この結果、本実施例では、LED14からの自然光は、特定の偏波(例えばP偏波)に揃えられる。前述の例と同様に、本実施例では、光源を構成する複数のLED14が設けられており(ただし図13では縦断面のため1個のみ図示)、これらのLED14は、LEDコリメータ18に対して所定の位置に取り付けられている。なお、このLEDコリメータ18は、各々、例えばアクリル等の透光性の樹脂またはガラスにより形成されている。そして、このLEDコリメータ18は、前述と同様に、放物断面を回転して得られる円錐凸形状の外周面を有すると共に、その外周面の頂部では、中央部に凸部(即ち、凸レンズ面)を形成した凹部を有する。また、LEDコリメータ18の平面部の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でもよい)を有している。なお、LEDコリメータ18の円錐形状の外周面を形成する放物面は、LED14から周辺方向に出射する光をその放物面の内部で全反射することが可能な角度の範囲内において設定され、あるいは、反射面が形成されている。 As a result, in this embodiment, the natural light from the LED 14 is aligned with a specific polarized wave (for example, P polarized wave). As in the previous example, in this embodiment, a plurality of LEDs 14 constituting the light source are provided (only one is shown in FIG. mounted in place. Each of the LED collimators 18 is made of translucent resin such as acrylic or glass. And this LED collimator 18 has an outer peripheral surface of conical convex shape obtained by rotating the parabolic cross section in the same manner as described above. It has a recess that forms a In addition, the central portion of the planar portion of the LED collimator 18 has a convex lens surface projecting outward (or a concave lens surface recessed inward). In addition, the paraboloid that forms the conical outer peripheral surface of the LED collimator 18 is set within an angle range that allows the light emitted in the peripheral direction from the LED 14 to be totally reflected inside the paraboloid, Alternatively, a reflective surface is formed.
 また、LED14は、その回路基板であるLED基板102の表面上の所定の位置にそれぞれ配置されている。このLED基板102は、LEDコリメータ18に対して、その表面上のLED14が、それぞれ、LEDコリメータ18の凹部の中央部に位置するように配置されて固定される。 Also, the LEDs 14 are arranged at predetermined positions on the surface of the LED board 102, which is the circuit board. The LED substrate 102 is arranged and fixed to the LED collimator 18 so that the LEDs 14 on its surface are positioned in the central portion of the concave portion of the LED collimator 18 .
 かかる構成によれば、LEDコリメータ18によって、LED14から放射される光のうち、特に、その中央部分から放射される光は、LEDコリメータ18の外形を形成する2つの凸レンズ面により集光されて平行光となる。また、その他の部分から周辺方向に向かって出射される光は、LEDコリメータ18の円錐形状の外周面を形成する放物面によって反射され、同様に、集光されて平行光となる。換言すれば、その中央部に凸レンズを構成すると共に、その周辺部に放物面を形成したLEDコリメータ18によれば、LED14により発生された光のほぼ全てを平行光として取り出すことが可能となり、発生した光の利用効率を向上することが可能となる。
 <光源装置の例4>
According to such a configuration, the light emitted from the LED 14 by the LED collimator 18, particularly the light emitted from the central portion thereof, is condensed by the two convex lens surfaces forming the outer shape of the LED collimator 18 and collimated. become light. Also, the light emitted in the peripheral direction from other portions is reflected by the parabolic surface that forms the conical outer peripheral surface of the LED collimator 18, and is similarly condensed into parallel light. In other words, according to the LED collimator 18 having a convex lens in the center and a paraboloid in the periphery, almost all of the light generated by the LED 14 can be extracted as parallel light. It is possible to improve the utilization efficiency of the generated light.
<Example 4 of light source device>
 更に、光源装置等の光学系の構成についての他の例を、図19を用いて説明する。図19で、LEDコリメータ18の光の出射側には、拡散特性を変換する光学シート(言い換えると拡散シート、拡散フィルム)207を2枚用いて、LEDコリメータ18からの光をこれらの2枚の光学シート207の間に入射させる。この光学シート207は、面を構成する図面での垂直方向(上下方向。画面内垂直方向)と水平方向(前後方向。画面内水平方向)の拡散特性を変換する。この光学シート207は、1枚で構成する場合には、そのシートの表面と裏面の微細形状によって、垂直方向と水平方向の拡散特性を制御する。また、光学シート(拡散シート)を複数枚使用して作用を分担してもよい。光学シート207の表面形状と裏面形状により、LEDコリメータ18からの光の画面垂直方向の拡散角を光学シート(拡散シート)207の反射面の垂直面の幅に合わせ、水平方向については液晶表示パネル11から出射する光束の面密度が均一になるように、LED14の数量と光学素子(光学シート207)からの発散角を設計パラメータとして最適設計すると良い。つまり、本実施例では、前述の導光体304の代わりに、1枚以上の光学シート(拡散シート)207の表面形状により、拡散特性を制御する。本実施例では、偏光変換は、前述した光源装置の例3と同様の方法で行われる。これに対し、LEDコリメータ18と光学シート207の間に偏光変換素子21を設けて、偏光変換を行った後、光学シート207に光源光を入射させてもよい。 Furthermore, another example of the configuration of the optical system such as the light source device will be described with reference to FIG. In FIG. 19, two optical sheets (in other words, a diffusion sheet, a diffusion film) 207 for converting the diffusion characteristics are used on the light exit side of the LED collimator 18, and the light from the LED collimator 18 is distributed between these two sheets. The light is made incident between the optical sheets 207 . The optical sheet 207 converts diffusion characteristics in the vertical direction (vertical direction, vertical direction within the screen) and horizontal direction (front-rear direction, horizontal direction within the screen) in the drawing constituting the surface. When the optical sheet 207 is composed of one sheet, the diffusion characteristics in the vertical and horizontal directions are controlled by the fine shapes of the front and back surfaces of the sheet. Also, a plurality of optical sheets (diffusion sheets) may be used to share the action. Due to the surface shape and the back surface shape of the optical sheet 207, the diffusion angle of the light from the LED collimator 18 in the vertical direction of the screen is matched to the width of the vertical surface of the reflection surface of the optical sheet (diffusion sheet) 207, and the horizontal direction is the same as that of the liquid crystal display panel. The number of LEDs 14 and the angle of divergence from the optical element (optical sheet 207) should be optimally designed as design parameters so that the surface density of the luminous flux emitted from 11 is uniform. That is, in this embodiment, the diffusion characteristics are controlled by the surface shape of one or more optical sheets (diffusion sheets) 207 instead of the light guide 304 described above. In this embodiment, the polarization conversion is performed in the same manner as in Example 3 of the light source device described above. On the other hand, the polarization conversion element 21 may be provided between the LED collimator 18 and the optical sheet 207 so that the light from the light source is incident on the optical sheet 207 after the polarization conversion.
 前述した反射型偏光板206は、例えばS偏光を反射、P偏光を透過させる特性を有する物を選択する。そうすれば、光源であるLED14から発した自然光のうち、反射型偏光板206でS偏光を反射し、位相差板270を通過して、反射面271で反射し、再び位相差板270を通過することでP偏光に変換され、液晶表示パネル11に入射する。この位相差板270の厚さは、位相差板270への光線の入射角度により最適値を選ぶ必要があり、λ/16からλ/4の範囲に最適値が存在する。
 <光源装置の例5>
For the reflective polarizing plate 206 described above, for example, one having characteristics of reflecting S-polarized light and transmitting P-polarized light is selected. Then, of the natural light emitted from the LED 14, which is the light source, S-polarized light is reflected by the reflective polarizing plate 206, passes through the retardation plate 270, is reflected by the reflecting surface 271, and passes through the retardation plate 270 again. As a result, the light is converted into P-polarized light and enters the liquid crystal display panel 11 . The thickness of the retardation plate 270 must be optimized depending on the angle of incidence of light rays on the retardation plate 270, and the optimum value exists in the range from λ/16 to λ/4.
<Example 5 of light source device>
 光源装置の光学系の構成についての他の例を、図20A~図20Cを用いて説明する。本実施例では、光源装置13は、図20Cに示すように、LEDコリメータ18の光の出射側には偏光変換素子501を備え、偏光変換素子501によって、LED素子(LED14)からの自然光を特定の偏波に揃えて、拡散特性を制御する光学素子81に入射する。そして、光学素子81では、入射光について、図20Cでの垂直方向(上下方向)と水平方向(前後方向)の拡散特性を制御することで、反射型導光体200の反射面に向けての配光特性を最適なものとする。反射型導光体200の表面には、図20Bに示すように、凹凸パターン502を設け、光学素子81からの入射光を、反射型導光体200の対向面に配置される映像表示装置(図示せず)に向けて反射し、所望の拡散特性を得る。光源のLED素子(LED14)とLEDコリメータ18の配置精度は、光源の効率に大きく影響する。そのため、通常、光軸精度は50μm程度の精度が必要となる。そのため、発明者は、LED14の発熱によるLEDコリメータ18の膨張により取り付け精度が低下する課題への対策として、以下の構成とした。すなわち、本実施例では、図20Aおよび図20Bのように、いくつかのLED素子(LED14)とLEDコリメータ18を一体とした光源ユニット503の構造として、単独または複数(本例では3個)の光源ユニット503を光源装置に用いることで、上記取り付け精度の低下を軽減した。 Another example of the configuration of the optical system of the light source device will be explained using FIGS. 20A to 20C. In this embodiment, as shown in FIG. 20C, the light source device 13 includes a polarization conversion element 501 on the light exit side of the LED collimator 18. The polarization conversion element 501 identifies the natural light from the LED element (LED 14). , and enters the optical element 81 that controls the diffusion characteristics. The optical element 81 controls the diffusion characteristics of the incident light in the vertical direction (vertical direction) and horizontal direction (front-rear direction) in FIG. To optimize light distribution characteristics. On the surface of the reflective light guide 200, as shown in FIG. (not shown) to obtain the desired diffusion properties. The placement accuracy of the LED element (LED 14) of the light source and the LED collimator 18 greatly affects the efficiency of the light source. Therefore, an optical axis accuracy of about 50 μm is normally required. Therefore, the inventor has made the following configuration as a countermeasure against the problem that the mounting accuracy is lowered due to the expansion of the LED collimator 18 due to the heat generated by the LED 14 . That is, in this embodiment, as shown in FIGS. 20A and 20B, the structure of a light source unit 503 integrating several LED elements (LEDs 14) and an LED collimator 18 includes a single or multiple (three in this example) By using the light source unit 503 in the light source device, the decrease in mounting accuracy is reduced.
 図20A~図20Cに示した実施例では、反射型導光体200の長辺方向(図面での左右方向)の両端部には、それぞれ、光LED素子とLEDコリメータ18を一体化した光源ユニット503が複数(合計6個)、組み込まれている。本実施例では、反射型導光体200の左右の片側毎に画面内垂直方向(図20Bでの上下方向)で3個ずつの光源ユニット503が組み込まれている。これにより、光源装置13の輝度均一化を実現している。反射型導光体200の反射面(図20Bで凹凸パターン502が形成された面)には、光源ユニット503に略平行の凹凸パターン502が複数形成されている。凹凸パターン502の凹凸が形成される断面は図20Cでの面であり、凹凸パターン502の凹凸の繰り返しの方向は図20Bでの左右方向であり、一つの凹凸の延在の方向は図20Bでの上下方向である。一つの凹凸パターン502においても、その表面には多面体を形成する。これにより、映像表示装置に入射する光量を高精度に制御することができる。本実施例では、反射型導光体200の反射面の形状を凹凸パターン502として説明したが、これに限らず、三角面、波形面などの形状が規則的または不規則的に配列されたパターンとして、そのパターン面形状により反射型導光体200から映像表示装置に向けた配光パターンを制御する構成とすればよい。また、図20Aのように、反射型導光体200の側面(光源ユニット503が設けられていない方の側面)には、LEDコリメータ18で制御された光が光源装置13から外部に漏れないように遮光壁504を設け、LED素子(LED14)は外側に設けた金属製の基盤505により放熱性を高めた設計とするとよい。
 <レンチキュラーレンズ>
In the embodiment shown in FIGS. 20A to 20C, light source units integrating light LED elements and LED collimators 18 are provided at both ends of the reflective light guide 200 in the long side direction (horizontal direction in the drawing). 503 are incorporated (six in total). In this embodiment, three light source units 503 are incorporated in each of the left and right sides of the reflective light guide 200 in the vertical direction within the screen (vertical direction in FIG. 20B). As a result, uniform luminance of the light source device 13 is achieved. A plurality of concavo-convex patterns 502 substantially parallel to the light source unit 503 are formed on the reflecting surface of the reflective light guide 200 (the surface on which the concavo-convex pattern 502 is formed in FIG. 20B). The cross section on which the unevenness of the uneven pattern 502 is formed is the plane in FIG. 20C, the direction of repeating the unevenness of the uneven pattern 502 is the horizontal direction in FIG. is the vertical direction of Even in one uneven pattern 502, a polyhedron is formed on its surface. As a result, the amount of light incident on the image display device can be controlled with high precision. In this embodiment, the shape of the reflective surface of the reflective light guide 200 is described as the uneven pattern 502. However, the present invention is not limited to this, and a pattern in which shapes such as triangular surfaces and corrugated surfaces are regularly or irregularly arranged. As a result, the light distribution pattern directed from the reflective light guide 200 to the image display device may be controlled by the shape of the pattern surface. Moreover, as shown in FIG. 20A , a side surface of the reflective light guide 200 (the side surface on which the light source unit 503 is not provided) is provided with a light source to prevent the light controlled by the LED collimator 18 from leaking from the light source device 13 to the outside. A light shielding wall 504 is provided on the outside, and a metallic substrate 505 provided on the outside of the LED element (LED 14) is designed to enhance heat dissipation.
<Lenticular lens>
 以下、表示装置1からの出射光の拡散特性を制御するレンチキュラーレンズによる作用について説明する。レンチキュラーレンズは、レンズ形状を最適化することで、上述した表示装置1から出射されてウィンドガラス(図1)を透過または反射して効率良く空間浮遊映像を得ることが可能となる。即ち、本実施例では、表示装置1からの映像光に対し、2枚のレンチキュラーレンズを組み合わせ、または、マイクロレンズアレイをマトリックス状に配置して拡散特性を制御するシートを設けた構成とすることで、画面内のX軸およびY軸の方向(図18Aおよび図18B)において、映像光の輝度(言い換えると相対輝度)を、その反射角度(垂直方向を0度)に応じて制御することができる。本実施例では、このようなレンチキュラーレンズにより、従来に比較し、図18Bに示すように、垂直方向(Y軸方向)の輝度特性を急峻にし、更に上下方向(Y軸の正負方向)の指向特性のバランスを変化させることで、反射や拡散による光の輝度(相対輝度)を高める。これにより、本実施例では、面発光レーザ映像源からの映像光のように、拡散角度が狭く(言い換えると直進性が高く)、かつ特定の偏波成分のみの映像光とし、従来技術を用いた場合に再帰反射光学部材で発生していたゴースト像を抑え、効率良く観視者の眼に再帰反射による空間浮遊映像が届くように制御することができる。 The action of the lenticular lens that controls the diffusion characteristics of the light emitted from the display device 1 will be described below. By optimizing the lens shape of the lenticular lens, the light emitted from the display device 1 described above can be transmitted through or reflected by the window glass (FIG. 1) to efficiently obtain a spatially floating image. That is, in the present embodiment, for image light from the display device 1, a sheet for controlling diffusion characteristics is provided by combining two lenticular lenses or arranging microlens arrays in a matrix. Then, in the X-axis and Y-axis directions (FIGS. 18A and 18B) in the screen, the luminance (in other words, relative luminance) of the image light can be controlled according to the angle of reflection (0 degrees in the vertical direction). can. In this embodiment, compared with the conventional lenticular lens, as shown in FIG. By changing the balance of characteristics, the luminance (relative luminance) of light due to reflection and diffusion is increased. As a result, in this embodiment, like the image light from the surface emitting laser image source, the diffusion angle is narrow (in other words, the straightness is high), and the image light has only a specific polarized wave component, and the conventional technology is used. It is possible to suppress the ghost image generated by the retroreflective optical member in the case of the retroreflective optical member, and to efficiently control the space floating image to reach the eye of the viewer due to the retroreflection.
 また上述した光源装置により、図18Aおよび図18Bに示した一般的な液晶表示パネルからの出射光拡散特性(図中では「従来」と表記)に対して、X軸方向およびY軸方向ともに大幅に挟角な指向特性とすることで、特定方向に対して平行に近い映像光束を出射する特定偏波の光を出射する表示装置が実現できる。 In addition, with the light source device described above, the diffusion characteristics of emitted light from the general liquid crystal display panel shown in FIGS. By adopting a directivity characteristic with a narrow angle, it is possible to realize a display device that emits light of a specific polarized wave that emits an image light beam that is nearly parallel to a specific direction.
 図17Aおよび図17Bには、本実施例で採用するレンチキュラーレンズの特性の一例を示している。この例では、特に、図17AのX方向(垂直方向)における特性を示している。図17Bで、特性Oは、光の出射方向のピークが垂直方向(0度)から上方に30度付近の角度であり、上下に対称な輝度特性を示している。また、特性Aや特性Bは、更に、30度付近においてピーク輝度の上方の映像光を集光して輝度(相対輝度)を高めた特性の例を示している。このため、これらの特性Aや特性Bでは、30度を超えた角度において、特性Oに比較して、急激に光の輝度(相対輝度)が低減する。 17A and 17B show an example of the characteristics of the lenticular lens employed in this embodiment. This example particularly shows the characteristics in the X direction (vertical direction) in FIG. 17A. In FIG. 17B, the characteristic O has a peak in the light emission direction at an angle of about 30 degrees upward from the vertical direction (0 degrees), and shows vertically symmetric luminance characteristics. Further, characteristic A and characteristic B show examples of characteristics in which the luminance (relative luminance) is increased by condensing the image light above the peak luminance near 30 degrees. Therefore, in these characteristics A and B, the luminance (relative luminance) of the light sharply decreases compared to the characteristic O at angles exceeding 30 degrees.
 即ち、上述したレンチキュラーレンズを含んだ光学系によれば、表示装置1からの映像光束を再帰反射光学部材2に入射させる際、光源装置13で挟角に揃えられた映像光の出射角度や視野角を制御でき再帰反射光学部材2の設置の自由度を大幅に向上できる。その結果、ウィンドガラスを反射または透過して所望の位置に結像する空間浮遊映像の結像位置の関係の自由度を大幅に向上できる。この結果、拡散角度が狭く(直進性が高く)、かつ特定の偏波成分のみの光として効率良く室外または室内の観視者の眼に届くようにすることが可能となる。このことによれば、表示装置1からの映像光の強度(対応する輝度)が低減しても、観視者は映像光を正確に認識して情報を得ることができる。換言すれば、表示装置1の出力を小さくすることにより、消費電力の低い表示装置を実現することが可能となる。 That is, according to the optical system including the lenticular lens described above, when the image light flux from the display device 1 is made incident on the retroreflective optical member 2, the emission angle and field of view of the image light aligned at a narrow angle by the light source device 13 are adjusted. The angle can be controlled, and the degree of freedom in installing the retroreflective optical member 2 can be greatly improved. As a result, it is possible to greatly improve the degree of freedom in relation to the image forming position of the spatially floating image that is reflected or transmitted through the window glass and imaged at a desired position. As a result, the diffusion angle is narrow (high rectilinearity), and it is possible to efficiently reach the eyes of a viewer indoors or outdoors as light of only a specific polarized wave component. Accordingly, even if the intensity (corresponding luminance) of the image light from the display device 1 is reduced, the viewer can accurately recognize the image light and obtain information. In other words, by reducing the output of the display device 1, it is possible to realize a display device with low power consumption.
 本実施例によれば、従来のHUD装置に代えて、映像をフロントガラスに反射させることなく、車内、特にフロントガラスと運転者に挟まれた空間に、必要な映像を空間浮遊映像として表示することができる空間浮遊映像表示装置を提供できる。これにより、車体のデザインが異なる車種間でも展開可能な空間浮遊映像表示装置を提供できる。 According to this embodiment, in place of the conventional HUD device, necessary images are displayed as spatially floating images in the interior of the vehicle, particularly in the space sandwiched between the windshield and the driver, without reflecting the images on the windshield. It is possible to provide a spatially floating image display device capable of As a result, it is possible to provide a space-floating image display device that can be deployed between vehicle models having different body designs.
 また、本実施例によれば、従来技術のHUDに対して、設置上の障害要因となっていたフロントガラスの形状や傾きが異なる車種間での展開が可能で、視認性の高い空間浮遊映像を表示することができる空間浮遊表示装置を実現できる。 In addition, according to the present embodiment, it is possible to deploy between vehicle models with different windshield shapes and inclinations, which has been an obstacle to installation compared to the HUD of the prior art. can be realized.
 また、本実施例によれば、空間浮遊映像表示装置を構成する反射ミラーの面形状により再帰反射像の結像点を表示平面に対して奥行き方向にずらして疑似的に立体映像化する。更に表示映像に陰影や影に対応した信号成分を形成して原信号に重畳することで立体表示の効果を強調する。これにより、好適な空間浮遊映像表示装置を実現できる。 Further, according to the present embodiment, the imaging point of the retroreflected image is shifted in the depth direction with respect to the display plane by the surface shape of the reflecting mirror that constitutes the spatially floating image display device, thereby creating a pseudo-stereoscopic image. Furthermore, the effect of stereoscopic display is emphasized by forming shadows and signal components corresponding to the shadows in the display image and superimposing them on the original signal. Thereby, a suitable spatial floating image display device can be realized.
 以上、種々の実施例について詳述したが、本発明は、上述した実施例のみに限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために装置全体を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although various embodiments have been described in detail above, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiment describes the entire apparatus in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 本実施例に係る技術では、高解像度かつ高輝度な映像情報を空間浮遊した状態で表示することにより、例えば、ユーザは感染症の接触感染に対する不安を感じることなく操作することを可能にする。不特定多数のユーザが使用するシステムに本実施例に係る技術を用いれば、感染症の接触感染のリスクを低減し、不安を感じることなく使用できる非接触ユーザインタフェースを提供することを可能にする。これにより、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「3すべての人に健康と福祉を」に貢献する。 With the technology according to this embodiment, by displaying high-resolution and high-brightness video information in a floating state, for example, users can operate without feeling uneasy about contact infection of infectious diseases. If the technology according to this embodiment is applied to a system used by an unspecified number of users, it will be possible to reduce the risk of contact infection of infectious diseases and provide a non-contact user interface that can be used without anxiety. . In this way, we will contribute to "3 good health and well-being for all" in the Sustainable Development Goals (SDGs) advocated by the United Nations.
 また、本実施例に係る技術では、出射する映像光の発散角を小さく、さらに特定の偏波に揃えることで、再帰反射部材に対して正規の反射光だけを効率良く反射させるため、光の利用効率が高く、明るく鮮明な空間浮遊映像を得ることを可能にする。本実施例に係る技術によれば、消費電力を大幅に低減することが可能な、利用性に優れた非接触ユーザインタフェースを提供することができる。これにより、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「9産業と技術革新の基盤をつくろう」および「11住み続けられるまちづくりを」に貢献する。 In addition, in the technology according to the present embodiment, by making the angle of divergence of emitted image light small and aligning it to a specific polarized wave, only normal reflected light can be efficiently reflected by the retroreflective member. To obtain a bright and clear spatial floating image with high utilization efficiency. According to the technology according to the present embodiment, it is possible to provide a highly usable non-contact user interface capable of significantly reducing power consumption. In this way, we will contribute to the Sustainable Development Goals (SDGs) advocated by the United Nations, namely, "9: Build a foundation for industry and technological innovation" and "11: Sustainable urban development."
 さらに、本実施例に係る技術では、指向性(直進性)の高い映像光による空間浮遊映像を形成することを可能にする。本実施例に係る技術では、銀行のATMや駅の券売機等における高いセキュリティが求められる映像や、ユーザに正対する人物には秘匿したい秘匿性の高い映像を表示する場合でも、指向性の高い映像光を表示することで、ユーザ以外に空間浮遊映像を覗き込まれる危険性が少ない非接触ユーザインタフェースを提供することを可能にする。これにより、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「11住み続けられるまちづくりを」に貢献する。 Furthermore, the technology according to the present embodiment makes it possible to form a spatially floating image by image light with high directivity (straightness). With the technology according to the present embodiment, even when displaying images that require high security such as bank ATMs or ticket vending machines at stations, or highly confidential images that should be kept secret from the person facing the user, the directivity is high. By displaying image light, it is possible to provide a non-contact user interface that reduces the risk of someone other than the user looking into the floating image. In this way, we will contribute to the 11 Sustainable Development Goals (SDGs) advocated by the United Nations.
 1…表示装置、2…再帰反射光学部材、3…空間浮遊映像、4…映像表示装置、10…光源装置、11…液晶表示パネル、21…偏光変換素子、6…フロントガラス、8…アイポイント、100…透過性プレート、1000…空間浮遊映像表示装置、101…偏光分離部材、12…吸収型偏光板、13…光源装置、41…開口部、110…筐体、203…導光体、2140…反射型偏光板、205,271…反射シート、206,270…位相差板、301…空間浮遊映像のゴースト像、2100…再帰反射光学部材、300,2110…反射ミラー,2120…反射光学素子、60,220…空間浮遊映像(空間浮遊像)、G1,G2,G3,G4,G6…空間浮遊映像のゴースト像、R1…空間浮遊映像、401…凹面ミラー、403…光学素子、404…映像表示装置(液晶表示パネル)。 DESCRIPTION OF SYMBOLS 1... Display apparatus 2... Retroreflection optical member 3... Spatial floating image 4... Image display apparatus 10... Light source device 11... Liquid crystal display panel 21... Polarization conversion element 6... Windshield 8... Eye point 100 Transmissive plate 1000 Spatial floating image display device 101 Polarization separation member 12 Absorptive polarizing plate 13 Light source device 41 Opening 110 Housing 203 Light guide 2140 Reflective polarizing plate 205, 271 Reflective sheet 206, 270 Retardation plate 301 Ghost image of floating image 2100 Retroreflective optical member 300, 2110 Reflective mirror 2120 Reflective optical element 60, 220... Spatial floating image (space floating image), G1, G2, G3, G4, G6... Spatial floating image ghost image, R1... Spatial floating image, 401... Concave mirror, 403... Optical element, 404... Image display Equipment (liquid crystal display panel).

Claims (26)

  1.  空間浮遊映像を形成する空間浮遊映像表示装置であって、
     映像を表示する表示パネルと、
     前記表示パネルに光を供給する光源装置と、
     前記表示パネルからの映像光を反射させ、反射した光により空中に実像である空間浮遊映像を表示せしめる再帰反射板と、
     前記再帰反射板を経た光を反射させる反射ミラーと、を備え、
     前記反射ミラーの形状は、凸面または凹面形状であり、前記反射ミラーの形状に応じた湾曲像面の空間浮遊映像を表示させる、
     空間浮遊映像表示装置。
    A spatially floating image display device for forming a spatially floating image,
    a display panel for displaying images;
    a light source device that supplies light to the display panel;
    a retroreflection plate that reflects image light from the display panel and displays a space floating image, which is a real image, in the air by the reflected light;
    and a reflecting mirror that reflects light that has passed through the retroreflector,
    The reflecting mirror has a convex or concave shape, and displays a spatially floating image with a curved image plane corresponding to the shape of the reflecting mirror.
    Spatial floating image display device.
  2.  請求項1に記載の空間浮遊映像表示装置において、
     前記反射ミラーから前記空間浮遊映像に向けて斜め上方向に前記空間浮遊映像を形成する光が進行する、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 1,
    The light forming the spatially floating image travels obliquely upward from the reflecting mirror toward the spatially floating image.
    Spatial floating image display device.
  3.  請求項1に記載の空間浮遊映像表示装置において、
     前記空間浮遊映像は、影を表現する映像を含む状態で表示される、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 1,
    The spatially floating image is displayed in a state including an image representing a shadow.
    Spatial floating image display device.
  4.  空間浮遊映像を形成する空間浮遊映像表示装置であって、
     前記空間浮遊映像を形成する特定偏波の映像光が通過する開口部と、
     前記開口部に配置され前記映像光が通過する透明部材と、
     狭角な拡散特性を有する光源装置と、
     特定の偏波光を出射する映像源と、
     再帰反射面に位相差板を設けた再帰反射光学部材と、
     1枚以上の反射ミラーと、
     前記映像源と前記再帰反射光学部材とを結んだ空間内に設けられた偏光分離部材と、
     を備え、
     前記映像源からの特定偏波の映像光を前記偏光分離部材で一旦透過させ、
     前記偏光分離部材を透過した映像光を前記再帰反射光学部材で偏光変換することで前記映像光の一方の偏波を他方の偏波に変換し、
     前記偏光変換後の映像光を前記偏光分離部材で反射させ前記複数の反射ミラーにより前記空間浮遊映像を形成する映像光束を折り返し、観視者に向け、
     前記反射ミラーの少なくとも一枚の形状と、前記再帰反射光学部材からの再帰反射像の結像点を、観視側から奥行き方向または左右方向もしくは上下方向またはそれぞれの組み合わせ方向に略一致させることで疑似的に立体表示可能である、
     空間浮遊映像表示装置。
    A spatially floating image display device for forming a spatially floating image,
    an opening through which image light of a specific polarized wave that forms the spatially floating image passes;
    a transparent member arranged in the opening and through which the image light passes;
    a light source device having narrow-angle diffusion characteristics;
    a video source that emits a specific polarized light;
    a retroreflective optical member having a retardation plate on a retroreflective surface;
    one or more reflective mirrors;
    a polarization separating member provided in a space connecting the image source and the retroreflective optical member;
    with
    image light of a specific polarized wave from the image source is once transmitted through the polarization separation member;
    one polarized wave of the image light is converted into the other polarized wave by polarization-converting the image light transmitted through the polarization separation member by the retroreflective optical member;
    the image light after the polarization conversion is reflected by the polarization separation member, and the image light flux forming the spatially floating image is reflected by the plurality of reflecting mirrors and directed toward a viewer;
    By substantially matching the shape of at least one of the reflecting mirrors and the imaging point of the retroreflected image from the retroreflective optical member in the depth direction, the left-right direction, the up-down direction, or a combination of these directions from the viewing side. It is possible to simulate stereoscopic display,
    Spatial floating image display device.
  5.  請求項4に記載の空間浮遊映像表示装置において、
     前記反射ミラーの少なくとも一枚の形状と、前記再帰反射光学部材からの再帰反射像の結像点を、観視側から奥行き方向または左右方向もしくは上下方向またはそれぞれの組み合わせ方向に略一致させ、元映像信号に奥行き方向の映像情報を重畳することで前記空間浮遊映像を疑似的に立体表示させる、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 4,
    The shape of at least one of the reflecting mirrors and the imaging point of the retroreflected image from the retroreflective optical member are substantially aligned in the depth direction, the left-right direction, the up-down direction, or a combination thereof from the viewing side, and By superimposing video information in the depth direction on the video signal, the spatially floating video is displayed in a pseudo-stereoscopic manner.
    Spatial floating image display device.
  6.  請求項4に記載の空間浮遊映像表示装置において、
     前記空間浮遊映像と前記偏光分離部材とを結ぶ光路内に、前記反射ミラーとして少なくとも1枚の反射ミラーを有し、
     前記少なくとも1枚の反射ミラーを前記光路内で回転させることで、前記空間浮遊映像が形成される位置を変更する、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 4,
    At least one reflective mirror is provided as the reflective mirror in an optical path connecting the spatially floating image and the polarization separation member;
    rotating the at least one reflective mirror within the optical path to change the position at which the spatial floating image is formed;
    Spatial floating image display device.
  7.  請求項4に記載の空間浮遊映像表示装置において、
     前記空間浮遊映像と前記偏光分離部材とを結ぶ光路内に、前記反射ミラーとして少なくとも1枚の反射ミラーを有し、
     前記少なくとも1枚の反射ミラーのうち前記空間浮遊映像に最も近接配置された反射ミラーは、前記映像光の特定の偏波を反射し他方の偏波を透過する金属多層膜から形成されている、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 4,
    At least one reflective mirror is provided as the reflective mirror in an optical path connecting the spatially floating image and the polarization separation member;
    Among the at least one reflecting mirror, the reflecting mirror arranged closest to the floating image is formed of a metal multilayer film that reflects a specific polarized wave of the image light and transmits the other polarized wave.
    Spatial floating image display device.
  8.  請求項4に記載の空間浮遊映像表示装置において、
    前記偏光分離部材は、反射型偏光板、あるいは特定偏波を反射させる金属多層膜から形成されている、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 4,
    The polarization separation member is formed of a reflective polarizing plate or a metal multilayer film that reflects a specific polarized wave,
    Spatial floating image display device.
  9.  請求項4に記載の空間浮遊映像表示装置において、
     前記透明部材の少なくとも一面に、吸収型偏光板を有する、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 4,
    Having an absorptive polarizing plate on at least one surface of the transparent member,
    Spatial floating image display device.
  10.  請求項4に記載の空間浮遊映像表示装置において、
     前記透明部材は、前記映像光が通過する部分が透明体で形成され、前記映像光が通過しない部分が遮光部材で形成されている、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 4,
    The transparent member is formed of a transparent material in a portion through which the image light passes, and is formed of a light shielding member in a portion through which the image light does not pass.
    Spatial floating image display device.
  11.  空間浮遊映像を形成する空間浮遊映像表示装置であって、
     前記空間浮遊映像を形成する特定偏波の映像光が通過する開口部と、
     前記開口部に配置され前記映像光が通過する透明部材と、
     狭角な拡散特性を有する光源装置と、
     特定の偏波光を出射する映像源と、
     再帰反射面に位相差板を設けた再帰反射光学部材と、
     1枚以上の反射ミラーと、
     前記映像源と前記再帰反射光学部材とを結んだ空間内に設けられた偏光分離部材と、
     を備え、
     前記映像源からの特定偏波の映像光を前記偏光分離部材で一旦透過させ、
     前記偏光分離部材を透過した映像光を前記再帰反射光学部材で偏光変換することで前記映像光の一方の偏波を他方の偏波に変換し、
     前記偏光変換後の映像光を前記偏光分離部材で反射させ前記複数の反射ミラーにより空間浮遊映像を形成し、
     前記映像光束を折り返し、観視者に向ける最終反射ミラーの反射で外光が再帰反射光学素子に戻らないように前記最終反射ミラーの中心と前記再帰反射光学素子の中心を結んだ光軸に対して前記最終反射ミラーが傾斜配置されている、
     空間浮遊映像表示装置。
    A spatially floating image display device for forming a spatially floating image,
    an opening through which image light of a specific polarized wave that forms the spatially floating image passes;
    a transparent member arranged in the opening and through which the image light passes;
    a light source device having narrow-angle diffusion characteristics;
    a video source that emits a specific polarized light;
    a retroreflective optical member having a retardation plate on a retroreflective surface;
    one or more reflective mirrors;
    a polarization separating member provided in a space connecting the image source and the retroreflective optical member;
    with
    image light of a specific polarized wave from the image source is once transmitted through the polarization separation member;
    one polarized wave of the image light is converted into the other polarized wave by polarization-converting the image light transmitted through the polarization separation member by the retroreflective optical member;
    reflecting the image light after the polarization conversion by the polarization separation member to form a spatially floating image by the plurality of reflecting mirrors;
    With respect to the optical axis connecting the center of the final reflection mirror and the center of the retroreflection optical element so that the external light does not return to the retroreflection optical element due to the reflection of the final reflection mirror that returns the image light beam and is directed to the viewer. wherein the final reflection mirror is tilted at
    Spatial floating image display device.
  12.  請求項11に記載の空間浮遊映像表示装置において、
     前記最終反射ミラーは、特定の偏波に対して85%以上の反射率を有し、他方の偏波に対する反射率は20%以下とする反射膜が設けられている、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 11,
    The final reflecting mirror is provided with a reflecting film having a reflectance of 85% or more for a specific polarized wave and a reflectance of 20% or less for the other polarized wave.
    Spatial floating image display device.
  13.  請求項11に記載の空間浮遊映像表示装置において、
     前記液晶表示パネルの映像表示面に反射防止膜を有し、
     前記液晶表示パネルに設けた吸収型偏光板を有し、
     前記吸収型偏光板により前記反射光を吸収させる、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 11,
    Having an antireflection film on the image display surface of the liquid crystal display panel,
    Having an absorptive polarizing plate provided on the liquid crystal display panel,
    Absorbing the reflected light by the absorptive polarizing plate;
    Spatial floating image display device.
  14.  空間浮遊映像を形成する空間浮遊映像表示装置であって、
     前記空間浮遊映像を形成する特定偏波の映像光が通過する開口部と、
     前記開口部に配置され前記映像光が通過する透明部材と、
     狭角な拡散特性を有する光源装置と、
     特定の偏波光を出射する映像源と、
     再帰反射面に位相差板を設けた再帰反射光学部材と、
     1枚以上の反射ミラーと、
     前記映像源と前記再帰反射光学部材とを結んだ空間内に設けられた偏光分離部材と、
     を備え、
     前記映像源からの特定偏波の映像光を前記偏光分離部材で一旦透過させ、
     前記偏光分離部材を透過した映像光を前記再帰反射光学部材で偏光変換することで前記映像光の一方の偏波を他方の偏波に変換し、
     前記変換後の映像光を前記偏光分離部材で反射させ前記複数の反射ミラーにより空間浮遊映像を形成する映像光束を折り返し、観視者に向け、
     前記映像源からの特定偏波の映像光を前記偏光分離部材で前記再帰反射光学部材に向けて一旦透過させ、
     前記偏光分離部材を透過した映像光を、前記再帰反射光学部材で偏光変換することで一方の偏波を他方の偏波に変換し、
     前記偏光変換後の映像光を前記偏光分離部材で前記開口部へ向けて反射させ、
     前記偏光分離部材で反射した映像光に基づいて、前記開口部の前記透明部材の外側に実像である前記空間浮遊映像を表示し、
     前記再帰反射部材は、前記映像源に対して傾けて配置され、前記再帰反射部材からの再帰反射映像光が通過する前記開口部から離れた位置に配置され、外光の入射を妨げる構成であり、
     前記映像源から前記再帰反射光学部材までの距離を変更する構造によって、前記空間浮遊映像が形成される位置を変更する、
     空間浮遊映像表示装置。
    A spatially floating image display device for forming a spatially floating image,
    an opening through which image light of a specific polarized wave that forms the spatially floating image passes;
    a transparent member arranged in the opening and through which the image light passes;
    a light source device having narrow-angle diffusion characteristics;
    a video source that emits a specific polarized light;
    a retroreflective optical member having a retardation plate on a retroreflective surface;
    one or more reflective mirrors;
    a polarization separating member provided in a space connecting the image source and the retroreflective optical member;
    with
    image light of a specific polarized wave from the image source is once transmitted through the polarization separation member;
    one polarized wave of the image light is converted into the other polarized wave by polarization-converting the image light transmitted through the polarization separation member by the retroreflective optical member;
    the converted image light is reflected by the polarization splitting member, and the image light flux forming a spatially floating image is reflected by the plurality of reflecting mirrors and directed toward a viewer;
    image light of a specific polarized wave from the image source is once transmitted through the polarization separating member toward the retroreflective optical member;
    one polarized wave is converted into the other polarized wave by polarization-converting the image light transmitted through the polarization separation member by the retroreflective optical member;
    reflecting the image light after the polarization conversion toward the opening by the polarization separation member;
    displaying the space floating image, which is a real image, outside the transparent member in the opening based on the image light reflected by the polarization separation member;
    The retroreflective member is arranged at an angle with respect to the image source, is arranged at a position away from the opening through which retroreflected image light from the retroreflective member passes, and is configured to block the incidence of external light. ,
    changing the position at which the spatial floating image is formed by a structure that changes the distance from the image source to the retroreflective optical member;
    Spatial floating image display device.
  15.  請求項14に記載の空間浮遊映像表示装置において、
     前記映像源は、前記再帰反射映像光が通過する前記開口部から離れた位置で、かつ前記映像源から出射する映像光が前記開口部から視認できない位置に配置されている、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 14,
    The image source is arranged at a position away from the opening through which the retroreflected image light passes and at a position where the image light emitted from the image source cannot be visually recognized from the opening.
    Spatial floating image display device.
  16.  請求項14に記載の空間浮遊映像表示装置において、
     前記開口部から出射した前記空間浮遊映像を形成する映像光は、前記反射ミラーのうち1つの反射ミラーで反射され、
     前記開口部の平面に対して前記1つの反射ミラーの角度が所望の角度に設定されることで、前記空間浮遊映像の位置および角度を変更する、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 14,
    image light forming the spatially floating image emitted from the opening is reflected by one of the reflecting mirrors,
    The angle of the one reflective mirror is set at a desired angle with respect to the plane of the aperture to change the position and angle of the spatially floating image.
    Spatial floating image display device.
  17.  請求項14に記載の空間浮遊映像表示装置において、
     前記開口部から出射した前記空間浮遊映像を形成する映像光は、前記反射ミラーのうち、1つの反射ミラーで反射され、
     前記1つの反射ミラーは、特定偏波の反射率が高い特性を有する、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 14,
    image light emitted from the opening and forming the spatially floating image is reflected by one of the reflecting mirrors,
    The one reflecting mirror has a characteristic of high reflectance of a specific polarized wave,
    Spatial floating image display device.
  18.  請求項1~17のいずれか一項に記載の空間浮遊映像表示装置において、
     前記液晶表示パネルに表示される映像は、前記空間浮遊映像を形成する光学系で発生する像の歪を補正する映像である、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to any one of claims 1 to 17,
    The image displayed on the liquid crystal display panel is an image that corrects image distortion generated in the optical system that forms the spatially floating image.
    Spatial floating image display device.
  19.  空間浮遊映像を形成する空間浮遊映像表示装置であって、
     前記空間浮遊映像を形成する特定偏波の映像光が通過する開口部と、
     前記開口部に配置され前記映像光が通過する透明部材と、
     狭角な拡散特性を有する光源装置と、
     特定の偏波光を出射する映像源と、
     再帰反射面に位相差板を設けた再帰反射光学部材と、
     反射ミラーと、
     前記映像源と前記再帰反射光学部材とを結んだ空間内に設けられた偏光分離部材と、
     を備え、
     前記映像源からの特定偏波の映像光を前記偏光分離部材で一旦透過させ、
     前記偏光分離部材を透過した映像光を前記再帰反射光学部材で偏光変換することで前記映像光の一方の偏波を他方の偏波に変換し、
     前記偏光変換後の映像光を前記偏光分離部材で反射させ前記反射ミラーにより空間浮遊映像を形成する映像光束を折り返し、観視者に向け、
     前記変換後の映像光を前記反射ミラーで再度反射させ、
     前記反射ミラーで再度反射した映像光を前記開口部へ向けて反射させ、
     前記開口部の前記透明部材の外側に実像である前記空間浮遊映像を表示し、
     前記映像源から前記再帰反射光学部材までの距離を変更する構造によって、前記空間浮遊映像が形成される位置を変更し、
     前記再帰反射光学部材の反射面の面粗さは、前記空間浮遊映像のボケ量と前記映像源の画素サイズとの比率が40%以下となるように設定され、
     前記光源装置は、点状または面状の光源と、前記光源からの光の発散角を低減する光学手段と、前記光源からの光を特定方向の偏光に揃える偏光変換手段と、前記映像源に伝搬する反射面を有する導光体と、を有し、
     前記映像光を前記光源装置に設けられた反射面の形状と面粗さによって調整し、
     前記映像源からの挟角な発散角を有する映像光束を前記再帰反射光学部材で反射させ、空中に前記空間浮遊映像を形成する、
     空間浮遊映像表示装置。
    A spatially floating image display device for forming a spatially floating image,
    an opening through which image light of a specific polarized wave that forms the spatially floating image passes;
    a transparent member arranged in the opening and through which the image light passes;
    a light source device having narrow-angle diffusion characteristics;
    a video source that emits a specific polarized light;
    a retroreflective optical member having a retardation plate on a retroreflective surface;
    a reflective mirror;
    a polarization separating member provided in a space connecting the image source and the retroreflective optical member;
    with
    image light of a specific polarized wave from the image source is once transmitted through the polarization separation member;
    one polarized wave of the image light is converted into the other polarized wave by polarization-converting the image light transmitted through the polarization separation member by the retroreflective optical member;
    The image light after the polarization conversion is reflected by the polarization separation member, and the image light flux forming the spatially floating image is reflected by the reflection mirror and directed to a viewer,
    reflecting the image light after the conversion by the reflecting mirror again;
    reflecting the image light reflected again by the reflecting mirror toward the opening;
    displaying the space floating image, which is a real image, outside the transparent member of the opening;
    changing the position at which the spatial floating image is formed by a structure that changes the distance from the image source to the retroreflective optical member;
    The surface roughness of the reflective surface of the retroreflective optical member is set so that the ratio of the blur amount of the spatial floating image and the pixel size of the image source is 40% or less,
    The light source device includes a point-like or planar light source, optical means for reducing the angle of divergence of light from the light source, polarization conversion means for aligning the light from the light source into polarized light in a specific direction, and the image source. a light guide having a propagating reflective surface,
    adjusting the image light by the shape and surface roughness of the reflecting surface provided on the light source device;
    An image light flux having a narrow divergence angle from the image source is reflected by the retroreflective optical member to form the spatially floating image in the air.
    Spatial floating image display device.
  20.  請求項19に記載の空間浮遊映像表示装置において、
     前記再帰反射光学部材の反射面の面粗さは、160nm以下となるように設定されており、
     前記光源装置は、点状または面状の光源と、前記光源からの光の発散角を低減する光学手段と、前記光源からの光を特定方向の偏光に揃える偏光変換手段と、前記映像源に伝搬する反射面を有する導光体と、を有し、
     前記導光体は、前記映像源と対向して配置され、内部または表面には前記光源装置からの光を前記映像源に向けて反射させる反射面が設けられ、前記反射面によって前記映像源に光を伝搬し、
     前記映像源は、映像信号に合わせて光強度を変調し、
     前記映像源からの挟角な発散角を有する映像光束を前記再帰反射部材で反射させ、空中に前記空間浮遊映像を形成する、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 19,
    The surface roughness of the reflective surface of the retroreflective optical member is set to be 160 nm or less,
    The light source device includes a point-like or planar light source, optical means for reducing the angle of divergence of light from the light source, polarization conversion means for aligning the light from the light source into polarized light in a specific direction, and the image source. a light guide having a propagating reflective surface,
    The light guide is arranged to face the image source, and is provided with a reflecting surface inside or on the surface for reflecting the light from the light source device toward the image source. propagating light,
    The image source modulates the light intensity according to the image signal,
    An image light flux having a narrow divergence angle from the image source is reflected by the retroreflective member to form the spatially floating image in the air.
    Spatial floating image display device.
  21.  請求項19に記載の空間浮遊映像表示装置において、
     前記光源装置は、前記液晶表示パネルの光線発散角が±30度以内となるように、光束の発散角の一部または全部を、前記光源装置の前記反射面の形状と面粗さによって調整する、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 19,
    The light source device adjusts part or all of the divergence angle of the luminous flux according to the shape and surface roughness of the reflecting surface of the light source device so that the light divergence angle of the liquid crystal display panel is within ±30 degrees. ,
    Spatial floating image display device.
  22.  請求項19に記載の空間浮遊映像表示装置において、
     前記光源装置は、前記液晶表示パネルの光線発散角が±15度以内となるように、光束の発散角の一部または全部を、前記光源装置の前記反射面の形状と面粗さによって調整する、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 19,
    The light source device adjusts part or all of the divergence angle of the luminous flux according to the shape and surface roughness of the reflecting surface of the light source device so that the light divergence angle of the liquid crystal display panel is within ±15 degrees. ,
    Spatial floating image display device.
  23.  請求項19に記載の空間浮遊映像表示装置において、
     前記光源装置は、前記液晶表示パネルの光線発散角が、水平発散角と垂直発散角とで異なるように、光束の発散角の一部または全部を、前記光源装置の前記反射面の形状と面粗さによって調整する、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 19,
    In the light source device, part or all of the divergence angle of the luminous flux is adjusted to the shape and surface of the reflecting surface of the light source device so that the divergence angle of light rays of the liquid crystal display panel differs between the horizontal divergence angle and the vertical divergence angle. Adjust according to roughness,
    Spatial floating image display device.
  24.  請求項19に記載の空間浮遊映像表示装置において、
     前記光源装置は、前記映像源の光入射面と光出射面とに設けられた偏光板の特性により得られるコントラストに、前記偏光変換手段における偏光変換の効率の逆数を乗じたコントラスト性能を有する、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 19,
    The light source device has a contrast performance obtained by multiplying the contrast obtained by the characteristics of the polarizing plates provided on the light incident surface and the light emitting surface of the image source by the reciprocal of the polarization conversion efficiency of the polarization conversion means.
    Spatial floating image display device.
  25.  請求項19に記載の空間浮遊映像表示装置において、
     反射型偏光板と、
     前記再帰反射光学部材の映像光入射面に設けられた前記位相差板と、を備え、
     前記反射型偏光板は、前記映像源からの映像光が一旦前記反射型偏光板で反射されて前記再帰反射部材に入射するように配置されており、
     前記映像光が前記位相差板を2度通過することで前記映像光の偏波が他方の偏波に変換され、変換後の映像光が前記反射型偏光板を通過する、
     空間浮遊映像表示装置。
    In the spatial floating image display device according to claim 19,
    a reflective polarizing plate;
    and the retardation plate provided on the image light incident surface of the retroreflective optical member,
    The reflective polarizing plate is arranged so that image light from the image source is once reflected by the reflective polarizing plate and enters the retroreflective member,
    The polarized wave of the image light is converted to the other polarized wave by the image light passing through the retardation plate twice, and the converted image light passes through the reflective polarizing plate.
    Spatial floating image display device.
  26.  請求項25に記載の空間浮遊映像表示装置において、
     前記光源装置は、前記映像源の光入射面と光出射面とに設けられた2枚の偏光板の特性により得られるコントラストに、前記偏光変換手段における偏光変換の効率の逆数と前記反射型偏光板のクロス透過率の逆数とを乗じたコントラスト性能を有する、
     空間浮遊映像表示装置。
    The spatial floating image display device according to claim 25,
    In the light source device, the contrast obtained by the characteristics of the two polarizing plates provided on the light incident surface and the light emitting surface of the image source is combined with the reciprocal of the polarization conversion efficiency in the polarization conversion means and the reflective polarized light. Contrast performance multiplied by the reciprocal of the cross transmittance of the plate,
    Spatial floating image display device.
PCT/JP2022/006269 2021-03-05 2022-02-16 Spatial floating image display device WO2022185927A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021034937A JP2022135253A (en) 2021-03-05 2021-03-05 Space floating video display device
JP2021-034937 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022185927A1 true WO2022185927A1 (en) 2022-09-09

Family

ID=83154058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006269 WO2022185927A1 (en) 2021-03-05 2022-02-16 Spatial floating image display device

Country Status (2)

Country Link
JP (1) JP2022135253A (en)
WO (1) WO2022185927A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070074A (en) * 2009-09-28 2011-04-07 Stanley Electric Co Ltd Head-up display
JP2016030503A (en) * 2014-07-29 2016-03-07 日本精機株式会社 Head-up display device
JP2016142802A (en) * 2015-01-30 2016-08-08 コニカミノルタ株式会社 Aerial image display device
US20180024373A1 (en) * 2016-07-25 2018-01-25 Disney Enterprises, Inc. Retroreflector display system for generating floating image effects
JP2018031925A (en) * 2016-08-25 2018-03-01 パナソニックIpマネジメント株式会社 Aerial display device
WO2018139035A1 (en) * 2017-01-27 2018-08-02 株式会社アスカネット Retroflector and retroflector production method
JP2019012237A (en) * 2017-06-30 2019-01-24 パナソニックIpマネジメント株式会社 Display system, information presentation system, method for controlling display system, program, and mobile body
JP2020501203A (en) * 2016-12-08 2020-01-16 フューチュラス テクノロジー カンパニー リミテッド A system for imaging in the air
JP2020134843A (en) * 2019-02-22 2020-08-31 日立オムロンターミナルソリューションズ株式会社 Aerial image display device, transaction device, and method for controlling formation of aerial image in aerial image display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070074A (en) * 2009-09-28 2011-04-07 Stanley Electric Co Ltd Head-up display
JP2016030503A (en) * 2014-07-29 2016-03-07 日本精機株式会社 Head-up display device
JP2016142802A (en) * 2015-01-30 2016-08-08 コニカミノルタ株式会社 Aerial image display device
US20180024373A1 (en) * 2016-07-25 2018-01-25 Disney Enterprises, Inc. Retroreflector display system for generating floating image effects
JP2018031925A (en) * 2016-08-25 2018-03-01 パナソニックIpマネジメント株式会社 Aerial display device
JP2020501203A (en) * 2016-12-08 2020-01-16 フューチュラス テクノロジー カンパニー リミテッド A system for imaging in the air
WO2018139035A1 (en) * 2017-01-27 2018-08-02 株式会社アスカネット Retroflector and retroflector production method
JP2019012237A (en) * 2017-06-30 2019-01-24 パナソニックIpマネジメント株式会社 Display system, information presentation system, method for controlling display system, program, and mobile body
JP2020134843A (en) * 2019-02-22 2020-08-31 日立オムロンターミナルソリューションズ株式会社 Aerial image display device, transaction device, and method for controlling formation of aerial image in aerial image display device

Also Published As

Publication number Publication date
JP2022135253A (en) 2022-09-15

Similar Documents

Publication Publication Date Title
US9753361B2 (en) Transparent display including a screen with patterned light deflective elements
JP3151347B2 (en) Automatic stereo directional display device
JP7348750B2 (en) Information display system and vehicle information display system using it
WO2022030538A1 (en) Spatial floating image information display system and light source device used therefor
CA2528358A1 (en) Split image optical display
JP7195454B2 (en) Light source device, information display system and head-up display device using the same
US20070139767A1 (en) Stereoscopic image display apparatus
JP7282174B2 (en) Information display system
WO2022118752A1 (en) Floating-in-space-image display device and light source device
WO2022080117A1 (en) Space-floating video image display apparatus and light source device
WO2022185927A1 (en) Spatial floating image display device
JP2005018070A (en) Screen for video display having vertical and horizontal optical viewing angles and projection tv provided with the same
JP7177946B2 (en) Light source device and information display system using it
WO2021153358A1 (en) Vehicular information display system and information display system
WO2022138036A1 (en) Floating video display device and light source device
WO2022249800A1 (en) Spatial floating image display device and light source device
US6873470B2 (en) Arrangement for the visualization of information in a motor vehicle
JP7165792B1 (en) Spatial floating image information display system and light source device used therefor
JP7167282B1 (en) Spatial floating image information display system and light source device used therefor
CN117377901A (en) Space suspension image display device and light source device
JP7459221B2 (en) Multi-view angle aerial projection device
WO2021182097A1 (en) Virtual image display device
JP2022089750A (en) Space floating video display device and light source device
JP2022029901A (en) Space floating video information display system and light source device used for the same
CN116710817A (en) Space suspension image display device and light source device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762983

Country of ref document: EP

Kind code of ref document: A1