WO2022185662A1 - 細胞融合方法 - Google Patents

細胞融合方法 Download PDF

Info

Publication number
WO2022185662A1
WO2022185662A1 PCT/JP2021/046498 JP2021046498W WO2022185662A1 WO 2022185662 A1 WO2022185662 A1 WO 2022185662A1 JP 2021046498 W JP2021046498 W JP 2021046498W WO 2022185662 A1 WO2022185662 A1 WO 2022185662A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
syringe
cell fusion
types
Prior art date
Application number
PCT/JP2021/046498
Other languages
English (en)
French (fr)
Inventor
裕子 坂口
今陽 張
弥生 松原
Original Assignee
株式会社ダイセル
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル, 国立大学法人大阪大学 filed Critical 株式会社ダイセル
Priority to JP2023503391A priority Critical patent/JPWO2022185662A1/ja
Priority to US18/279,557 priority patent/US20240301390A1/en
Priority to EP21929220.8A priority patent/EP4303298A1/en
Priority to CN202180095017.8A priority patent/CN116917460A/zh
Publication of WO2022185662A1 publication Critical patent/WO2022185662A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/02Preparation of hybrid cells by fusion of two or more cells, e.g. protoplast fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/04Mechanical means, e.g. sonic waves, stretching forces, pressure or shear stimuli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/08Chemical, biochemical or biological means, e.g. plasma jet, co-culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/50Soluble polymers, e.g. polyethyleneglycol [PEG]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2521/00Culture process characterised by the use of hydrostatic pressure, flow or shear forces

Definitions

  • the present disclosure relates to cell fusion methods.
  • a fused cell in which multiple cells of one or more types are fused is useful as a cell that has the characteristics and functions of each cell before fusion.
  • hybridomas that produce monoclonal antibodies such as fusion cells of B cells and myeloma cancer cells (myeloma)
  • fusion cell vaccines such as cells that fuse cancer patient dendritic cells and cancer cells
  • regenerative medicine diabetes treatment by fusing pancreatic islet cells and bone marrow cells
  • the electric cell fusion method Patent Document 1
  • the Sendai virus method Non-Patent Documents 1 and 2)
  • the polyethylene glycol (PEG) method Non-Patent Documents 3 and 4
  • Electro-cell fusion involves applying voltage to cells to perforate cell membranes and induce cell fusion. This method requires adjusting the optimal voltage for perforation according to the cell diameter.
  • the Sendai virus method is a method limited to animal cells.
  • the polyethylene glycol (PEG) method is widely used because the use of high-molecular PEG makes it easy to suppress the destruction of cell membranes, has a higher cell fusion rate than other methods, and is low in cost.
  • the conventional method results in very long treatment times and low cell viability after treatment.
  • the operation is complicated, and there are many steps that depend on the technique of the operator, resulting in large variations in the results depending on the technique.
  • Non-Patent Document 5 As described above, the method using PEG is widely used, but in addition to PEG, chemical reagents with cell fusion activity (chemical cell fusion agents) are known (Non-Patent Document 5).
  • An object of the present disclosure is to provide at least a cell fusion method with a high cell fusion rate.
  • the present inventors found that the above problems can be solved by pressurizing a solution containing one or more cells and one or more chemical cell fusion agents.
  • the present disclosure includes a step of pressurizing a solution containing one or more types of cells and one or more chemical cell fusion agents contained in a containing section with a pressure section.
  • a step of pressurizing the pressurization by the pressurizing unit has a time of 2.0 milliseconds or less from the start of pressurization until the pressure in the storage unit reaches a maximum pressure, and The maximum pressure is preferably 1.75 MPa or more and 30.74 MPa or less.
  • Said method also preferably wherein said one or more chemical fusion agents is polyethylene glycol.
  • the present disclosure also provides a storage unit that stores a solution containing one or more cells and one or more chemical cell fusion agents, and pressurizes the solution stored in the storage unit during operation.
  • a cell fusion device can be provided, comprising: In the device, the time from the start of pressurization to the time when the pressure in the storage unit reaches the maximum pressure is 2.0 milliseconds or less, and the maximum pressure is 1.75 MPa or more. It is preferably 0.74 MPa or less.
  • the present disclosure can produce at least the effect of providing a cell fusion method with a high cell fusion rate.
  • a pressurizing unit pressurizes a solution containing one or more cells and one or more chemical cell fusion agents, which is stored in the storage unit.
  • cell fusion method comprising:
  • the container in the above step contains a solution containing one or more cells and one or more chemical cell fusion agents.
  • the structure and material of the storage part do not alter the quality of the solution contained in the storage part, and can withstand the pressure when the solution contained in the storage part is pressurized by the pressurization part. It is not particularly limited as long as it is a substance.
  • the plurality of cells of one or more types may be a plurality of cells of one type or a plurality of cells of two or more types. A plurality of cells, or a plurality of three types of cells.
  • the plurality of cells of one or more types is a plurality of cells of one type
  • the plurality of cells of one type is not particularly limited as long as the cells are fused by the method according to this embodiment, and may be prokaryotic cells. It may be a nuclear cell. Moreover, it may be an adherent cell or a suspension cell. Moreover, it may be a cell line or a primary cultured cell. Also, any cell may be a genetically modified cell.
  • Prokaryotic cells include bacterial cells, archaeal cells.
  • bacteria include Escherichia coli, Streptococcus pneumoniae, Lactobacillus, Rhizobium, Nitrite, and Nitrate.
  • archaebacteria include extreme halophiles, methanogens, thermophiles, and the like.
  • Eukaryotic cells include animal cells, plant cells (including protoplasts), fungal cells, and protist cells.
  • the animals may be vertebrates (classified as mammals, reptiles, birds, amphibians, or fishes) or invertebrates. Examples include humans, mice, rats, guinea pigs, hamsters (such as Chinese hamsters), rabbits, donkeys, sheep, goats, alpacas, llamas, chickens, fruit flies, and monkeys (such as African green monkeys).
  • the plant may be a seed plant or a spore plant (classified as fern, bryophyte, or algae).
  • a seed plant may be an angiosperm or a gymnosperm, and an angiosperm may be a monocotyledonous plant or a dicotyledonous plant.
  • the fungi include mushrooms, molds, unicellular yeasts, zoospores (spores that have flagella and move), and the like.
  • the protists include eukaryotic algae (e.g., brown algae, red algae, etc.), flagellated fungal organisms (e.g., oomycetes, etc.), slime molds (e.g., slime molds, cellular slime molds, etc.), protists Examples include animals (eg, amoeba, paramecium, etc.).
  • the plurality of cells of one or more types is a plurality of cells of two or more types
  • the plurality of cells of one or more types is one type Embodiments similar to those in the case of a plurality of cells of are mentioned.
  • the combination of the two or more types of cells is not particularly limited as long as the cells are fused by the method according to this embodiment.
  • two or more types of prokaryotic cells may be used, two or more types of eukaryotic cells may be used, or one or more types of prokaryotic cells and one eukaryotic cell may be used. The above cells may be used.
  • it may be a plurality of cells of two or more types that are adhesion cells, a plurality of cells of two or more types that are suspension cells, or one or more types of cells that are adhesion cells and suspension cells.
  • One or more types of cells may be used.
  • it may be a plurality of cells of two or more types that are established cell lines, a plurality of cells of two or more types that are primary cultured cells, or one or more types of cells that are established cell lines and primary cultured cells.
  • One or more types of cells may be used.
  • the combination of animals from which the animal cells are derived is not particularly limited as long as the cells are fused by the method according to this embodiment.
  • two or more types of human-derived cells may be used, two or more types of mouse-derived cells may be used, or one or more types of human-derived cells and mouse-derived cells may be used.
  • One or more types of cells may be used. Specific examples include a combination of mouse spleen B cells and mouse myeloma cells (which is used, for example, for the production of monoclonal antibodies), a combination of cancer cells and dendritic cells (which, for example, (Both cells may be derived from humans, mice, or rats.), pancreatic islet cells and mesenchymal stem cells are used for cancer immunotherapy.
  • a combination (which is used, for example, for the treatment of diabetes by insulin secretion. Both cells may be derived from humans or rats), and the like.
  • a chemical cell fusion agent refers to a chemical reagent having cell fusion activity.
  • One or more chemical fusion agents may be used in the methods of this embodiment.
  • the one or more chemical cell fusion agents are those used in conventional cell fusion methods, and are not particularly limited as long as cells are fused by the method according to this embodiment.
  • the content of the one or more chemical cell fusion agents in the solution is not particularly limited as long as the cells are fused by the method according to this embodiment, but is, for example, 10% (v/v) or more. and, for example, 100% (v/v) or less, or 50% (v/v) or less.
  • a non-contradictory combination thereof may be used.
  • the one or more cells and the one or more chemical cell fusion agents can be mixed according to conventional mixing methods.
  • the chemical cell fusion agent examples include oil-soluble low-molecular-weight chemical cell-fusion agents and water-soluble polymer chemical cell-fusion agents.
  • the chemical cell fusion agent may contain a known auxiliary agent for exerting its activity.
  • Chemical cell fusion agents that are oil-soluble small molecules include, for example, as described in Non-Patent Document 5, Higher fatty acids (e.g., decanoic acid, undecanoic acid, undecylenic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, linoleic acid, erucic acid, etc.), Higher fatty acid esters (e.g., methyl undecanoate, methyl dodecanoate, sucrose monolaurate, methyl tridecanoate, methyl tetradecanoate, methyl hexadecanoate, methyl palmitoleate, methyl stearate, methyl oleate, glyceryl monooleate, glyceryl dioleate , ethylene glycol monooleate, propylene glycol monooleate, etc.), Other higher ali
  • polyethylene glycol for example, the number average molecular weight is 600 or more, 1500 or more, PEG having a molecular weight of 8000 or less and 4000 or less, or a consistent combination thereof, specific examples include PEG 1500, PEG 4000, PEG 8000, etc.), polyvinyl alcohol, gelatin, dextran (e.g., molecular weight of 4 ⁇ 10 4 or more and 2 ⁇ 10 6 or less), dextran sulfate, poly-L-lysine, and the like.
  • PEG polyethylene glycol
  • dextran e.g., molecular weight of 4 ⁇ 10 4 or more and 2 ⁇ 10 6 or less
  • dextran sulfate e.g., molecular weight of 4 ⁇ 10 4 or more and 2 ⁇ 10 6 or less
  • the solution is pressurized by a pressurizing unit.
  • the pressurizing part can pressurize the solution, and is not particularly limited as long as it does not destroy the system, such as destroying the containing part.
  • the pressure applied by the pressure unit is not particularly limited as long as the cells are fused by the method according to this embodiment.
  • the time from the start of pressurization until the pressure inside the housing reaches the maximum pressure is 0.31 milliseconds, 0.40 milliseconds, 0.48 milliseconds, 0.54 milliseconds, 0.54 milliseconds, and 0.31 milliseconds. Any of 64 milliseconds, 0.80 milliseconds, 1.70 milliseconds, and 2.0 milliseconds may be used, and any consistent combination thereof may be the upper or lower bound. For example, considering the results of Example 2 and the results of Examples 6 to 8, which will be described later, the shorter the time, the higher the cell fusion rate.
  • the upper limit of the time is, for example, 2.0 milliseconds or less, 1.70 milliseconds or less, 0.80 milliseconds or less, 0.64 milliseconds or less, or 0.54 milliseconds or less.
  • the lower limit is not particularly limited, but examples thereof include 0.31 milliseconds or longer, 0.40 milliseconds or longer, and 0.48 milliseconds or longer.
  • the pressure applied by the pressure unit is not particularly limited as long as the cells are fused by the method according to this embodiment.
  • the maximum pressure any one of 1.75 MPa, 2.51 MPa, 5.35 MPa, 6.12 MPa, 6.26 MPa, 11.50 MPa, and 30.74 MPa is adopted, and a non-contradictory combination thereof It can be set as the lower limit.
  • the maximum pressure is, for example, 1.75 MPa or more, 2.51 MPa or more. 35 MPa or more, 6.26 MPa or more, 11.50 MPa or more, and the like.
  • the pressurization by the pressurizing unit is not particularly limited as long as the cells are fused by the method according to this embodiment. , 30.74 MPa or less, more preferably 11.50 MPa or less, while, for example, 2.51 MPa or more, preferably 6.26 MPa or more. Also, a non-contradictory combination thereof may be used.
  • the pressure means the pressure inside the housing.
  • the measuring method is not particularly limited, but for example, when measuring using the injector described in Examples below, the method described in Japanese Patent Laid-Open No. 2005-21640 can be used. More specifically, it can be measured by the method described in the section "Method for measuring the internal pressure of the container" below. Moreover, when measuring using the falling weight tester described in the later-described Examples, the measurement can be performed in the same manner.
  • a fused cell produced by the method according to this embodiment is not limited to a cell formed by fusing one cell with another cell according to the definition of a fused cell in the art. , including those in which three or more cells fuse to form a single cell. Under microscopic observation, fused cells may be observed like cell clusters. Therefore, the cell fusion rate in the present disclosure shall be calculated by a normal calculation method in the technical field as follows.
  • the plurality of cells of one or more types is a plurality of cells of one type
  • the number of all cell clusters that can be observed under a microscope When the total number of cells existing as cells is X and "the number of cell clusters formed by fusion of a plurality of cells of one type" is Y, the ratio of Y to X (i.e., Y /X).
  • the number of cell clusters formed by fusion of a plurality of cells of one type refers to the number of cell clusters in which two or more cell nuclei have been confirmed. At this time, the number of cell nuclei can be confirmed, for example, by staining the cell mass with a dye that can stain the nuclei and by microscopic observation or the like.
  • the plurality of cells of one or more types is a plurality of cells of two types
  • the number of all cell clusters that can be observed under a microscope and the number of single cell clusters as in normal culture When the total number of cells existing as cells is X and "the number of cell clusters formed by fusion of a plurality of cells of the two types" is Y, the ratio of Y to X (i.e., Y /X).
  • the number of cell clusters formed by fusion of a plurality of cells of the two types is, for example, when the two types of cells are cells of cell type A and cells of cell type B, respectively, 1 It refers to the number of cell clusters formed by fusion of one or more cells of cell type A and one or more cells of cell type B.
  • cells of cell type A are stained with dye A
  • cells of cell type B are stained with dye B
  • the number of cell clusters in which both dye A and dye B are detected can be the number.
  • the number of the two types of cells contained in the resulting cell mass does not have to be one, and may include two or more, and need not be the same number.
  • the resulting cell mass may be a cell mass generated by fusion of one cell type A cell and one cell type B cell, or one cell type A cell and It may be a cell mass formed by fusing two cells of cell type B, or the like.
  • the plurality of cells of one or more types is a plurality of cells of three types
  • the number of all cell clusters that can be observed under a microscope When the total number of cells existing as cells is X and "the number of cell clusters formed by fusion of a plurality of cells of the three types" is Y, the ratio of Y to X (i.e., Y /X).
  • the number of cell clusters formed by fusion of a plurality of cells of the three types means, for example, that the three types of cells are cells of cell type A, cells of cell type B, and cells of cell type C, respectively.
  • cells it refers to the number of cell clusters formed by fusion of one or more cells of cell type A, one or more cells of cell type B, and one or more cells of cell type C.
  • cells of cell type A are stained with dye A
  • cells of cell type B are stained with dye B
  • cells of cell type C are stained with dye C
  • dye A and The number of cell clusters in which both dye B and dye C are detected can be defined as the number.
  • each of the three types of cells contained in the resulting cell mass need not be one, may contain two or more, and need not be the same number.
  • the resulting cell mass may be a cell mass generated by fusion of one cell type A cell, one cell type B cell, and one cell type C cell, It may be a cell cluster formed by fusion of one cell type A cell, one cell type B cell, and two cell type C cells.
  • the one or more types of cells are four or more types of cells. That is, the sum of the number of all cell clusters that can be observed with a microscope and the number of cells that are not cell clusters but exist as single cells as in normal culture is X, and "the four types Assuming that the number of cell clusters formed by fusion of a plurality of cells described above is Y, the ratio of Y to X (that is, Y/X) is expressed.
  • the cell type In addition to cells of cell type A, cells of cell type B, and cells of cell type C, cells of cell type D and later can be assumed and calculated in the same manner.
  • the aforementioned four types of plural cells contained in the resulting cell mass can also be considered in the same manner as above.
  • the viability of the fused cells produced by the method according to this embodiment is high.
  • the survival rate is calculated by a normal calculation method in the technical field. For example, when the plurality of cells of one or more types is a plurality of cells of one type, the resulting cell mass is cultured for 24 hours under conditions normally used for culturing the plurality of cells of one type, and then The ratio of the number of viable cells to the total number of cells may be calculated by using a viability determination reagent for cells and, if necessary, using a device for determining viability.
  • the plurality of cells of one or more types is a plurality of cells of two or more types, and the conditions suitable for culturing the cells differ depending on the type, as practiced in the art
  • the cells may be cultured under conditions suitable for culturing the type of cells most vulnerable to environmental changes among the plurality of cells of two or more types. In culture, necessary components may be added as appropriate. After that, the ratio of the number of viable cells to the total number of cells can be calculated by using a cell viability determination reagent and, if necessary, using a device for viability determination.
  • the viability is preferably 32.75% or more, more preferably 41.25% or more, and still more preferably 48.25% or more when the total cell count is 4 ⁇ 10 6 or more; Although the upper limit is preferably larger, it is, for example, 100% or less, or 54.88% or less. Also, a non-contradictory combination thereof may be used.
  • Another embodiment of the present disclosure is a storage unit that stores a solution containing one or more cells and one or more chemical cell fusion agents, and the solution stored in the storage unit during operation. and a pressurizing part that applies pressure to the cell fusion device.
  • the structure and material of the storage section do not alter the quality of the solution contained in the storage section. There is no particular limitation as long as it can withstand pressure.
  • the apparatus may include a drive section for applying pressure to the solution contained in the storage section.
  • the structure and material of the drive section are not particularly limited. Pressurization may be, for example, by the pressure generated when the pressure of the compressed gas is released, or by the pressure generated by the combustion of the explosive ignited by the igniter. Moreover, the pressure using electrical energy such as a piezoelectric element or the mechanical energy such as a spring as pressurizing energy may be used, or the pressure using pressurizing energy generated by appropriately combining these forms of energy may be used. .
  • the explosives include, for example, explosives containing zirconium and potassium perchlorate (ZPP), titanium hydride and perchloric acid.
  • ZPP zirconium and potassium perchlorate
  • TiPP titanium hydride and perchloric acid
  • APP aluminum and potassium perchlorate
  • ABO aluminum and molybdenum oxide
  • AMO aluminum and copper oxide
  • ACO explosive containing aluminum and copper oxide
  • AFO aluminum and iron oxide
  • a feature of these explosives is that even if their combustion products are gaseous at high temperatures, they do not contain gaseous components at room temperature, so the combustion products immediately condense after ignition. Thereby, in the pressurization process of the solution, the temperature and pressure of the combustion products generated by the combustion of the ignition charge at the time of pressurization are changed in a short time after the pressure applied to the liquid reaches the first peak injection force. It can be made to change to the vicinity of normal temperature and normal pressure.
  • an example of a device according to this embodiment is an injector.
  • the container does not initially contain the one or more cells and the one or more chemical cell fusion agents.
  • the upper open end side of the syringe portion (the open end located on the side opposite to the injection port in the axial direction) to inject the one or more cells and the one or more chemical cell fusion agents into the syringe part.
  • the end of the syringe portion located axially opposite to the injection port is formed as an open end, and the open end is open to the outside when the plunger is not inserted into the syringe portion.
  • the posture of the syringe part is changed so that the upper open end faces downward, the one or more cells accommodated in the accommodation part of the syringe part and the one or more chemical cell fusion agents does not leak out of the container.
  • the posture of the syringe part is changed so that the injection port faces upward, and the plunger is slid along the inner wall surface extending in the axial direction of the syringe part, and the gas in the storage part is discharged from the injection port through the nozzle. is expelled from the containment unit.
  • the syringe portion is configured to be detachable.
  • the injection port at the tip of the nozzle is sealed so that the plurality of cells of one or more types and the chemical cell fusion agent of one or more types are not injected.
  • the sealing member and sealing method are not particularly limited as long as the one or more cells and the one or more chemical cell fusion agents are prevented from being injected.
  • a syringe 1 (needle-free syringe processed so that the tip side can be sealed) will be described below as an example of a syringe with reference to the drawings.
  • each configuration and combination thereof in each embodiment is an example, and addition, omission, replacement, and other changes of configuration are possible as appropriate without departing from the gist of the present disclosure.
  • This disclosure is not limited by the embodiments, but only by the scope of the claims. This also applies to the examples described later.
  • the terms for expressing the relative positional relationship in the longitudinal direction of the syringe 1 the terms "distal side" and "basal side" are used.
  • the "distal side” refers to a position closer to the distal end of the syringe 1 described later, that is, closer to the injection port 31a, and the “basal side” refers to the direction opposite to the "distal side” in the longitudinal direction of the syringe 1. That is, it represents the direction of the drive unit 7 side.
  • this example is an example of pressurizing the container containing the one or more cells and the one or more chemical cell fusion agents using the combustion energy of gunpowder ignited by an ignition device.
  • this embodiment is not limited to this.
  • FIG. 1 is a diagram showing a schematic configuration of the syringe 1, and is also a cross-sectional view of the syringe 1 along its longitudinal direction.
  • the syringe 1 comprises a syringe assembly 10 in which a sub-assembly comprising a syringe portion 3 and a plunger 4 and a sub-assembly comprising a syringe main body 6, a piston 5 and a driving portion 7 are assembled together. , and is attached to a housing (syringe housing) 2 .
  • the syringe assembly 10 is configured to be detachable from the housing 2.
  • the accommodating portion 32 formed between the syringe portion 3 and the plunger 4 included in the syringe assembly 10 is filled with the one or more types of cells and the one or more chemical cell fusion agents, and
  • the syringe assembly 10 is a disposable unit each time cell fusion is performed. In addition, if cell fusion is performed in an aseptic environment, sterile fused cells can be easily generated.
  • the housing 2 side includes a battery 9 that supplies power to an igniter 71 included in the driving portion 7 of the syringe assembly 10 .
  • Electric power is supplied from the battery 9 by the user's operation of pressing the button 8 provided on the housing 2, so that the electrode on the housing 2 side and the electrode on the drive section 7 side of the syringe assembly 10 are connected via wiring.
  • the electrode on the housing 2 side and the electrode on the drive unit 7 side of the syringe assembly 10 are designed in shape and position so that they automatically come into contact with each other when the syringe assembly 10 is attached to the housing 2.
  • the housing 2 is a unit that can be used repeatedly as long as the battery 9 has enough power to supply the drive unit 7 .
  • the housing 2 when the power of the battery 9 is exhausted, only the battery 9 may be replaced and the housing 2 may continue to be used.
  • the injection port 31a at the tip of the nozzle 31 is sealed by a sealing portion 43 so that the plurality of cells of one or more types and the chemical cell fusion agent of one or more types are not injected.
  • the sealing portion 43 is fixed to the cap 41 .
  • the cap 41 is fixed to the syringe portion 3 via the fixing portion 42 .
  • a receptacle 32 is formed. More specifically, as shown in FIG. 1 , the plunger 4 is slidably arranged along the inner wall surface of the syringe portion 3 extending in the axial direction, and the inner wall surface of the syringe portion 3 and the plunger 4 form a housing portion 32 . defined. Moreover, the syringe part 3 has a nozzle part 31 having an injection port 31a formed on the tip side thereof. In the example shown in FIG. 1 , the contour of the tip side of the plunger 4 has a shape that substantially matches the contour of the inner wall surface of the nozzle portion 31 .
  • the syringe part 3 has a fixing part 42 for fixing the cap 41 , and the cap 41 is fixed to the fixing part 42 .
  • the cap 41 has a sealing portion 43 for sealing the injection port 31a. With the cap 41 fixed to the fixing portion 42 of the syringe portion 3, the injection port 31a of the nozzle portion 31 is sealed. It is sealed by part 43 . In this state, the accommodating portion 32 inside the syringe portion 3 is sealed.
  • the cap 41 can be detachably fixed to the fixing portion 42 of the syringe portion 3 .
  • the nozzle portion 31 in the syringe portion 3 has a flow path communicating with the injection port 31a and the housing portion 32 as shown in FIG. The flow channel cross-sectional area gradually decreases toward
  • the piston 5 is made of metal, for example, and is pressurized by combustion products (combustion gas) generated by the igniter 71 of the drive unit 7 to slide through a through hole formed inside the syringe body 6.
  • combustion products combustion gas
  • the syringe main body 6 is a substantially cylindrical member, and the piston 5 is slidably accommodated along the inner wall surface extending in the axial direction.
  • the piston 5 may be made of resin, and in that case, a metal may be used in combination with a portion that requires heat resistance and pressure resistance.
  • the piston 5 is integrally connected with the plunger 4 .
  • the plunger 4 and the piston 5 constitute a "pressurizing section.”
  • the drive unit 7 As shown in FIG. 1, the driving part 7 is fixed on the proximal end side with the through hole in the syringe body 6 as a reference.
  • the drive unit 7 has an igniter 71 that is an electric igniter.
  • the igniter 71 is arranged so as to face the inside of the through hole in the injector body 6, and an ignition charge is accommodated therein.
  • the ignition charge various explosives can be used as described above.
  • the igniter charge can be contained in, for example, a powder cup made of suitable thin-walled metal.
  • the syringe part 3 is configured to be detachable. With the syringe part 3 detached from the injector 1 and with the cap 41 removed from the fixing part 42 of the syringe part 3, for example, on the upper open end side of the syringe part 3 (on the side opposite to the injection port in the axial direction) The one or more cells and the one or more chemical cell fusion agents are injected into the syringe part 3 from the open end located at the top of the syringe part 3 so that they do not leak from the upper open end and the nozzle of the syringe part 3 , the plunger 4 is slightly inserted into the syringe portion 3 from the upper open end side, the posture of the syringe portion 3 is changed so that the injection port 31a faces upward, and the plunger is pushed along the inner wall surface of the syringe portion 3 extending in the
  • the desired one or more types of cells and the desired one or more types of chemical cell fusion agents can be accommodated in the accommodating section 32 .
  • the one or more cells and the one or more chemical cell fusion agents are preferably mixed in advance and stored in the storage unit 32 in the same manner as in the prior art.
  • the plurality of cells of one or more types and the chemical cell fusion agent of one or more types can be finally accommodated in the accommodation section 32 in a mixed state in the same manner as in the prior art, that aspect is particularly Not restricted.
  • the storage section 32 when pressurizing a solution containing one or more types of cells and one or more chemical cell fusion agents by the pressurizing section, the storage section 32 should not contain gas (such as air).
  • gas such as air
  • the cap 41 is attached to the fixed portion 42 of the syringe portion 3 .
  • the injection port 31 a of the nozzle portion 31 is sealed by the sealing portion 43 , thereby sealing the housing portion 32 .
  • the plunger 4 since the plunger 4 is integrally connected with the piston 5 , the plunger 4 also slides along the inner wall surface of the syringe portion 3 in conjunction with the piston 5 . That is, when the plunger 4 is pushed toward the nozzle part 31 located on the tip side of the syringe part 3, the one or more cells and the one or more chemical cell fusion agents are stored. The volume of the portion 32 is reduced and pressurized rapidly.
  • the syringe 1 is configured so that the driving portion 7 (igniter 71) operates and the pressurizing portion pressurizes the solution contained in the containing portion. , and other arbitrary parameters have been adjusted. As a result, cell fusion is preferably performed. After the fused cells are generated in this manner, for example, after removing the syringe assembly 10 from the housing 2 , the cap 41 is removed from the syringe portion 3 .
  • the syringe part 3 into which the plunger 4 is inserted is removed, the plunger 4 is removed therefrom, and the contents containing the fused cells contained in the containing part 32 are taken out with, for example, a pipette, It can be collected in a container.
  • the syringe 1 as an example of the device according to the present embodiment, cell fusion can be easily performed without requiring a large-scale device or high-level skills of technicians handling it. .
  • the syringe assembly 10 can be detachably attached to the housing 2, and the syringe assembly 10 can be configured as a disposable unit. Therefore, after the generation of fused cells, the used syringe assembly 10 can be discarded, which eliminates the need to wash the used syringe assembly 10 each time cell fusion is performed, and the user can It is possible to provide a cell fusion device that is easy to use by suppressing the need for a large amount of labor and time.
  • a falling weight tester is also an example of the cell fusion device according to this embodiment.
  • the falling weight tester will be described below with reference to the drawings.
  • FIG. 2 is a diagram showing a schematic configuration of the falling weight tester 100.
  • the falling weight tester 100 is set on a bed 110, a support plate 120, a support 130 supporting the support plate 120, a frame 140 standing upward from the support plate 120, a guide rod 150, a weight 160, and the support plate 120. It includes a syringe assembly 10A and the like.
  • the bed 110 is a base placed on an appropriate placement surface such as a floor or a table, and has a plurality of legs 111 for placing the bed 110 on the placement surface.
  • the bed 110 may be a flat rectangular steel plate with legs 111 at its four corners.
  • the support plate 120 is fixed to the bed 110 via a column 130 erected from the upper surface 110A of the bed 110, and is a plate member arranged to face the bed 110 in parallel with a space therebetween.
  • the support plate 120 is a flat rectangular steel plate.
  • a holding hole 121 for detachably holding the syringe assembly 10A is provided through the support plate 120 in the thickness direction.
  • the holding hole 121 includes a holding recess 121A that opens toward the upper surface 120A of the support plate 120, and a small-diameter hole 121B that opens toward the lower surface 120B of the support plate 120 and has a smaller diameter than the holding recess 121A.
  • the small-diameter hole portion 121B continues below the holding recessed portion 121A.
  • a pair of bar-shaped guide rods 150 are erected on the upper surface 120A of the support plate 120 .
  • the guide rod 150 is a rod member for guiding the falling direction of the weight 160 when the weight 160 is dropped from a predetermined height.
  • a pair of insertion holes (not shown) for inserting the pair of guide rods 150 are formed through the weight 160 from the upper surface 160A to the lower surface 160B.
  • the weight 160 can be dropped along the guide rod 150 by inserting the guide rod 150 into each insertion hole.
  • the guide rod 150 is erected in a vertical direction with respect to the upper surface 120A of the support plate 120 .
  • dropping the weight 160 from a predetermined height means dropping the weight 160 vertically downward from a predetermined height in the atmosphere without imparting an initial velocity.
  • a frame 140 is erected on the upper surface 120A of the support plate 120, as shown in FIG.
  • the frame 140 is a frame member having a rear frame 141 and a pair of side frames 142 connected to both side edges of the rear frame 141 and having a substantially C-shaped cross section.
  • the guide rod 150 is arranged in the inner space surrounded by the frame 140.
  • the rear frame 141 is provided with a plurality of insertion holes 143 for detachably inserting pins (not shown) for positioning the weight 160 at a predetermined height.
  • the insertion holes 143 are formed at regular intervals (for example, intervals of 10 mm) in the height direction of the rear frame 141 .
  • the pin can be selectively inserted into any insertion hole 143 . While inserting a pin into a desired insertion hole 143 from the rear side of the rear frame 141, the pin is inserted into a fixing hole formed in the rear surface of the weight 160, thereby positioning and fixing the weight 160 at a desired height. can do. Further, by pulling out the pin from this state, the fixation of the weight 160 is released, so that the weight 160 can be dropped downward along the guide rod 150 .
  • a plurality of types of weights 160 having different weights (for example, 30 g, 40 g, 50 g, 300 g, etc.) can be prepared.
  • FIG. 3 is a diagram showing a schematic configuration of a syringe assembly 10A applied to the falling weight tester 100.
  • the syringe assembly 10A has a syringe portion 3, a plunger 4, a piston 5, a syringe main body 6, a holder 11 and the like.
  • the syringe main body 6 has, for example, a substantially cylindrical shape, and a through hole is formed in the axial direction.
  • a piston 5 and a plunger 4 are arranged in the through hole of the syringe main body 6 so as to be movable along the through hole.
  • the holder 11 is attached to the tip side of the syringe main body 6 and is a member that holds the syringe part 3 inside.
  • the plunger 4 is slidably disposed along the inner wall surface of the syringe portion 3 extending in the axial direction, and the inner wall surface of the syringe portion 3 and the plunger 4 define a housing portion 32 .
  • the syringe part 3 has a nozzle part 31 having an injection port 31a formed on the tip side thereof.
  • the contour of the tip side of the plunger 4 has a shape that substantially matches the contour of the inner wall surface of the nozzle portion 31 .
  • container 32 can contain one or more cells and one or more chemical cell fusion agents.
  • the holder 11 and the syringe part 3 are detachable from the syringe body 6 .
  • a cap 41 can be detachably attached to the tip side of the holder 11 .
  • the injection port 31a of the nozzle portion 31 is sealed by the sealing portion 43 of the cap 41, so that the accommodating portion 32 in the syringe portion 3 is sealed.
  • the nozzle portion 31 of the syringe portion 3 has a channel communicating with the injection port 31a and the housing portion 32, and the flow channel extends from the housing portion 32 side to the injection port 31a side.
  • the flow channel cross-sectional area gradually decreases toward
  • the piston 5 is made of metal, for example, and is configured to be slidable through a through-hole formed inside the syringe main body 6 .
  • a tip portion of the piston 5 is connected to a rear end portion of the plunger 4 .
  • a weight receiving portion 51 is formed at the rear end portion of the piston 5 .
  • the weight receiving portion 51 of the piston 5 is exposed to the outside so as to protrude from the rear end of the syringe body 6 through the through hole of the syringe body 6 .
  • a circular collar-shaped flange 62 is formed on the outer peripheral surface 61 of the syringe main body 6 .
  • the outer diameter of the outer peripheral surface 61 of the syringe main body 6 is smaller than the small diameter hole portion 121B of the support plate 120 .
  • the flange 62 of the syringe main body 6 has a slightly smaller diameter than the holding recess 121A of the support plate 120 and a larger diameter than the small diameter hole 121B.
  • a holding recess 121A in the support plate 120 is formed as a recess for supporting the flange 62 of the syringe body 6.
  • the syringe assembly 10A included in the falling weight tester 100 configured as described above is different from the syringe assembly 10 described in FIG. .
  • the details of the operation of the falling weight tester 100 including the syringe assembly 10A will be described.
  • one or more desired cells and one or more desired chemical cell fusion agents are stored in the storage portion 32 of the syringe assembly 10A.
  • These solutions to be accommodated may be accommodated in the accommodating section 32 by the same procedure as in the case of using the syringe 1 described above.
  • the upper open end side of the syringe part 3 (an opening located on the side opposite to the injection port in the axial direction) end) to inject the above-mentioned solution to be accommodated (one or more cells and one or more chemical cell fusion agents) into the syringe part 3, and prevent them from leaking from the upper open end and nozzle of the syringe part 3
  • the plunger 4 is slightly inserted into the syringe portion 3 from the upper open end side.
  • the posture of the syringe portion 3 is changed so that the injection port 31a faces upward, and the plunger 4 is slid along the inner wall surface of the syringe portion 3 extending in the axial direction, and the injection port 31a is injected through the nozzle portion 31. , the gas inside the accommodation portion 32 is driven out of the accommodation portion 32 .
  • the desired one or more types of cells and the desired one or more types of chemical cell fusion agents can be accommodated in the accommodating section 32 .
  • the cap 41 is attached to the holder 11 of the syringe assembly 10A, and the injection port 31a of the nozzle portion 31 is sealed to seal the accommodating portion 32.
  • the syringe assembly 10A with the container 32 sealed in this manner is placed on the support plate 120 as shown in FIG. That is, with the cap 41 of the syringe assembly 10 facing downward, the syringe assembly 10A is inserted into the holding hole 121 of the support plate 120, and the flange 62 of the syringe main body 6 is fitted into the holding recess 121A. Installation of the syringe assembly 10A to the is completed. At that time, a slight gap is formed between the cap 41 and the upper surface 110A of the bed 110, as shown in FIG. That is, the syringe assembly 10A is supported and fixed to the support plate 120 while being separated from the bed 110. As shown in FIG.
  • the falling weight tester 100 uses the energy generated when the weight 160 falling from a predetermined height collides with the weight receiving portion 51 of the piston 5 in the syringe assembly 10A, and the object stored in the storage portion 32 is dropped. Pressurize the containing solution. Weight 160 is set at a predetermined height using desired insertion holes 143 and pins provided in frame 140 . When pressurizing the solution contained in the container 32 of the syringe assembly 10A, the pin fixing the weight 160 is pulled out from the insertion hole 143 . As a result, weight 160 drops downward along guide rod 150 . Here, by adjusting the bed 110 so that it is in a horizontal position, the guide rod 150 is extended in the vertical direction, and as a result, the weight 160 falls vertically downward.
  • the plunger 4 connected to the piston 5 also slides along the inner wall surface of the syringe portion 3 , and the plunger 4 is pushed toward the nozzle portion 31 .
  • the volume of the storage portion 32 is reduced, and the solution stored in the storage portion 32 is rapidly pressurized, resulting in favorable cell fusion.
  • a "pressurizing section" is configured including the plunger 4 and the piston 5 of the syringe assembly 10A.
  • the weight 160 is removed and the syringe assembly 10A is removed from the support plate 120. Then, the cap 41 of the syringe assembly 10A is removed, and the syringe portion 3 into which the plunger 4 is inserted is removed from the syringe main body 6. As shown in FIG. Furthermore, the content containing the fused cells contained in the containing portion 32 of the syringe portion 3 with the plunger 4 pulled out may be taken out with, for example, a pipette and collected in an appropriate container.
  • the time from the start of pressurization until the pressure in the housing reaches the maximum pressure can be lengthened by increasing the weight of the weight, and the height at which the weight is dropped has no effect. Therefore, the time can be appropriately set by, for example, preparing weights of various weights as a preliminary test, dropping them, and clarifying the relationship between the weight of the weight and the time.
  • the time can also be lengthened by placing a cushioning material (for example, sponge rubber or the like) on the piston. Therefore, it can be appropriately set after conducting a preliminary test in the same manner as described above. Further, the maximum pressure can be increased by increasing the load (the weight of the weight ⁇ height when the weight is dropped).
  • weights of various weights are prepared and dropped from various heights, and the relationship between the weight of the weight, the height at which it is dropped, and the maximum pressure is determined. It can be clarified and set appropriately. As described above, the time from the start of pressurization until the pressure in the accommodating portion reaches the maximum pressure and the maximum pressure can be appropriately set independently.
  • the injector shown in FIG. 1 was used as the cell fusion device, and mouse spleen cells and NS-1 cells were fused in the reservoir of the injector.
  • the time from the start of pressurization until the pressure reached the maximum pressure and the maximum pressure were measured as follows.
  • the injection force is distributed to the diaphragm of the load cell arranged downstream of the nozzle, and the output from the load cell is collected as data via a detection amplifier. It was measured by a method of sampling with an apparatus and storing it as injection force (N) for each time.
  • the injection pressure was calculated by dividing the injection force thus measured by the area of the injection port 31a of the injector.
  • the volume of the container was 100 ⁇ L, and the inside of the container was filled with Milli-Q water (Millipore) and the air was removed before the measurement. It was confirmed that the injection pressure measured as described above was substantially the same as the internal pressure of the container obtained by the measurement method described in WO2020/116353. Further, even when the milli-Q water in the container is replaced with the solution used in the examples described later, the time from the start of pressurization until the pressure reaches the maximum pressure and the maximum pressure are not affected.
  • Example 5 to 8 the falling weight tester shown in Fig. 2 was used as the cell fusion device. The time from the start of pressurization until the pressure reached the maximum pressure and the measurement of the maximum pressure were carried out in the same manner as described above using a load cell.
  • mice Female, 6-8 weeks old, etc.
  • PBS Nacalai Tesque
  • NS-1 cells (purchased from JCRB cell bank, cell registration number JCRB9107) were obtained by thawing a cell stock that had been cryopreserved by passaging in advance. Adjust to 1 ⁇ 10 6 cells/mL with PBS, add 5 ⁇ L/mL of DIR (5 mg/mL in DMSO, Invitrogen), and place in a CO 2 incubator (37°C, 95% CO 2 ) for 10 minutes. , fluorescent staining was performed. After washing the cells three times with 5 times the volume of the staining solution in PBS, the cells were adjusted to 1 ⁇ 10 7 cells/mL with PBS.
  • DIR 5 mg/mL in DMSO, Invitrogen
  • mice spleen cells and NS-1 cells were mixed at a ratio of 3:1. That is, 100 ⁇ L each of mouse spleen cells and NS-1 cells were transferred to the same 1.5 mL tube with a micropipette and centrifuged (700 ⁇ g, 5 minutes). The supernatant was removed as much as possible to obtain a pellet containing 4 ⁇ 10 6 cells in total, and the 1.5 mL tube was lightly tapped to loosen the pellet, and the cells were mixed to obtain a cell mixture.
  • Y which is the number of fused cells
  • X which is the total number of all cell clusters and the number of cells that are not cell clusters but exist as single cells as in normal culture, is set to 5000
  • Y is the number of fused cells. and represented by the ratio of Y to 5000 (that is, Y/5000).
  • ⁇ Method for measuring cell viability The fused cell solution was seeded in a 6-well plate (Biolamo) and cultured in a CO2 incubator (37°C, 95% CO2 ) for 24 hours. A portion of the cells was stained with trypan blue (Nacalai Tesque), the number of stained cells and unstained cells was measured with a TC20 fully automatic cell counter (Bio-Rad), and the cell viability was calculated. . Cell viability was defined as the ratio of viable cell count to total cell count.
  • Example 1 The following operations were performed on the pellets obtained according to the above-mentioned "Method for Mixing Cells". Place the tip of the pipette on the pellet and gently spit out 100 ⁇ L of PEG1500 (Polyethylene glycol with a number average molecular weight of 1500, Roche) and slowly draw a circle with the tip of the pipette at the same time. By doing so, the pellet and PEG1500 were mixed and then gently pipetted 6-7 times.
  • PEG1500 Polyethylene glycol with a number average molecular weight of 1500, Roche
  • This cell mixture is filled from the upper open end side of the syringe part, and the plunger is slightly inserted into the syringe part from the upper open end side so that the cell mixture does not leak from the upper open end of the syringe part and the nozzle, and the injection port faces upward. Then, the plunger was slid along the inner wall surface extending in the axial direction of the syringe, and the air in the housing was expelled from the housing through the injection port through the nozzle.
  • the injector was used as a cell fusion device and is the injector described in FIG.
  • the injector was set at a ZPP of 15 mg, and the cap was firmly attached on the nozzle side of the container, so that the inside of the container was sealed and the ignition operation was performed. .
  • This fuses mouse spleen cells with NS-1 cells.
  • the time from the start of pressurization to reaching the maximum pressure was 0.31 milliseconds, and the maximum pressure was 2.51 MPa.
  • the syringe assembly was removed from the housing, the cap was removed from the syringe portion, the syringe portion into which the plunger was inserted was removed, the plunger was removed therefrom, and the contents were drawn up with a Pipetman.
  • the mixture was gently pipetted in a 1.5 mL tube to mix and centrifuged (500 ⁇ g, 10 minutes) to wash the cells. After removing the supernatant, the cells were suspended in PBS to obtain a fused cell solution. After that, cell fusion rate and cell viability were measured respectively.
  • Examples 2 to 4 The procedure was the same as in Example 1, except that the amount of ZPP, which is an explosive, was changed.
  • Example 5 The following operations were performed on the pellets obtained according to the above-mentioned "Method for Mixing Cells". Place the tip of the pipette on the pellet and gently spit out 100 ⁇ L of PEG1500 (Polyethylene glycol with a number average molecular weight of 1500, Roche) and slowly draw a circle with the tip of the pipette at the same time. By doing so, the pellet and PEG1500 were mixed and then gently pipetted 6-7 times.
  • PEG1500 Polyethylene glycol with a number average molecular weight of 1500, Roche
  • This cell mixture is filled from the upper open end side of the syringe part, and the plunger is slightly inserted into the syringe part from the upper open end side so that the cell mixture does not leak from the upper open end of the syringe part and the nozzle, and the injection port faces upward. Then, the plunger was slid along the inner wall surface extending in the axial direction of the syringe, and the air in the housing was expelled from the housing through the injection port through the nozzle. Next, the inside of the container was pressurized using the falling weight tester shown in FIG. In this example, the conditions were set such that a weight of 50 g was dropped from a height of 30 mm. dropped the weight.
  • Example 6 The procedure was the same as in Example 5, except that a 300 g weight was dropped from a height of 20 mm and an EPDM sponge rubber (Wake Sangyo EPT-01S) was placed on the piston.
  • EPDM sponge rubber (Wake Sangyo EPT-01S) is placed on the piston is to increase the time from the start of pressurization until the pressure inside the housing reaches the maximum pressure.
  • Example 7 The procedure was the same as in Example 5, except that a 300 g weight was dropped from a height of 10 mm.
  • Example 8 The procedure was the same as in Example 5, except that a 50 g weight was dropped from a height of 70 mm.
  • Comparative Example 1 was the PEG method, which is a conventional method. The following operations were performed on the pellets obtained according to the above-mentioned "Method for Mixing Cells". Place the tip of the pipette on the pellet and gently spit out 100 ⁇ L of PEG1500 (Polyethylene glycol with a number average molecular weight of 1500, Roche) and slowly draw a circle with the tip of the pipette at the same time. After mixing the pellet with PEG1500, it was immersed in a 37° C. water bath and gently shaken for 90 seconds. 100 ⁇ L of RPMI1640 prewarmed to 37° C. was slowly added, and the tube was gently shaken to mix the solution.
  • PEG1500 Polyethylene glycol with a number average molecular weight of 1500, Roche
  • RPMI1640 was added by increasing the amount stepwise to 300 ⁇ L and 1000 ⁇ L (both were added slowly), and the tube was gently shaken to mix the solution. After reacting for 10 minutes in a CO 2 incubator (37°C, 95% CO 2 ), centrifuge (500 xg, 10 minutes) to remove the supernatant, suspend the cells in PBS, and extract the fused cell solution. Obtained. After that, cell fusion rate and cell viability were measured respectively.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本開示の課題は、少なくとも、細胞融合率の高い細胞融合方法の提供であり、該課題を、収容部に収容されている、1種以上の複数の細胞と1種以上の化学細胞融合剤とを含む溶液に対して加圧部により加圧をする工程、を含む、細胞融合方法で解決する。

Description

細胞融合方法
 本開示は、細胞融合方法に関する。
 1種以上の複数の細胞が融合した融合細胞は、融合前の各細胞の特徴や機能を有する細胞として有用である。例えば、モノクローナル抗体を産生するハイブリドーマ(B細胞と骨髄腫がん細胞(ミエローマ)の融合細胞など)や、融合細胞ワクチン(がん患者の樹状細胞とがん細胞とを融合させた細胞など)、再生医療(膵島細胞と骨髄細胞の融合による糖尿病治療)などに利用されている。
 融合細胞の作製法としては、例えば、電気細胞融合法(特許文献1)や、センダイウイルス法(非特許文献1、2)、ポリエチレングリコール(PEG)法(非特許文献3、4)などが開発されている。
 電気細胞融合法は、細胞に電圧をかけて細胞膜を穿孔し、細胞融合を引き起こすものである。本法は、細胞の直径によって穿孔のための最適な電圧を調整する必要がある。
 センダイウイルス法は、対象が動物細胞に限定される方法である。
 ポリエチレングリコール(PEG)法は、高分子のPEGを使用すると細胞膜の破壊を抑制しやすく、また、他法に比べて細胞融合率も高く、低コストであることからも汎用されている。その一方で、PEGは細胞毒性が高いために、従来法では処理時間が非常に長く、処理後の細胞の生存率が低下する。また、操作が煩雑で、実施者の手技に依存する工程が多くあり、手技によって結果に大きなばらつきが生じる。
 上記のようにPEGを用いる方法が汎用されているが、PEGの他にも細胞融合活性を有する化学試薬(化学細胞融合剤)が知られている(非特許文献5)。
特開2012-157312号公報
Nature, 256, 495-497 (1975) J. Immunol., 1;173(7):4297-307 (2004) Somatic Cell Genet., 1(4):397-400 (1975) Somatic Cell Genet., 5(2):263-9 (1979) 膜(MEMBRANE), 6(5), 310-320 (1981)
 本開示の課題は、少なくとも、細胞融合率の高い細胞融合方法の提供である。
 本発明者らは、1種以上の複数の細胞と1種以上の化学細胞融合剤とを含む溶液を加圧することにより、上記課題を解決できることを見出した。
 本開示は、収容部に収容されている、1種以上の複数の細胞と1種以上の化学細胞融合剤とを含む溶液に対して加圧部により加圧をする工程、を含む、細胞融合方法を提供することができる。
 前記方法は、前記加圧をする工程において、前記加圧部による加圧は、加圧開始から前記収容部内の圧力が最大圧力に到達するまでの時間が2.0ミリ秒以下であり、前記最大圧力が1.75MPa以上30.74MPa以下であることが好ましい。
 前記方法はまた、前記1種以上の化学細胞融合剤がポリエチレングリコールであることが好ましい。
 本開示はまた、1種以上の複数の細胞と1種以上の化学細胞融合剤とを含む溶液を収容する収容部と、作動時に前記収容部に収容されている前記溶液に対して加圧をする加圧部と、を備える、細胞融合装置を提供することができる。
 前記装置は、前記加圧部による加圧は、加圧開始から前記収容部内の圧力が最大圧力に到達するまでの時間が2.0ミリ秒以下であり、前記最大圧力が1.75MPa以上30.74MPa以下であることが好ましい。
 本開示は、少なくとも、細胞融合率の高い細胞融合方法を提供できるという効果を奏しうる。また、本開示によれば、細胞融合の際に、実施者の手技によって結果に大きなばらつきが生じることを抑制することができ、安定した割合で融合細胞を得ることができる。
一実施態様に係る注入器の概略構成を示す図である。 一実施態様に係る落錘試験器の概略構成を示す図である。 一実施態様に係る落錘試験器に適用される注射器組立体の概略構成を示す図である。
 各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。
 本開示の一実施態様は、収容部に収容されている、1種以上の複数の細胞と1種以上の化学細胞融合剤とを含む溶液に対して加圧部により加圧をする工程、を含む、細胞融合方法である。
 前記工程における収容部は、1種以上の複数の細胞と1種以上の化学細胞融合剤とを含む溶液を含む。前記収容部の構造や材料は、前記収容部が含む溶液を変質させるものでなく、また、前記収容部が含む溶液に対して加圧部により加圧をされた場合にその加圧に耐えられるものであれば特に制限されない。
 前記1種以上の複数の細胞は、1種の複数の細胞であってもよいし、2種以上の複数の細胞であってもよいが、好ましくは、1種の複数の細胞、2種の複数の細胞、又は3種の複数の細胞である。
 前記1種以上の複数の細胞が1種の複数の細胞である場合、前記1種の複数の細胞は、本実施態様に係る方法により細胞が融合する限り特に制限されず、原核細胞でもよく真核細胞でもよい。また、接着系細胞でもよく浮遊系細胞でもよい。また、株化細胞でもよく初代培養細胞でもよい。また、いずれの細胞も遺伝子が改変された細胞であってよい。
 原核細胞としては、細菌の細胞、古細菌の細胞が挙げられる。
 前記細菌としては、大腸菌、肺炎双球菌、乳酸菌、根粒菌、亜硝酸菌、硝酸菌等が挙げられる。
 前記古細菌としては、高度好塩菌、メタン菌、好熱菌等が挙げられる。
 真核細胞としては、動物の細胞、植物の細胞(プロトプラストを含む。)、真菌の細胞、原生生物の細胞が挙げられる。
 前記動物としては、脊椎動物(哺乳類、爬虫類、鳥類、両生類、魚類のいずれかに分類される。)でもよいし無脊椎動物でもよい。例えば、ヒト、マウス、ラット、モルモット、ハムスター(例えば、チャイニーズハムスターなど)、ウサギ、ロバ、ヒツジ、ヤギ、アルパカ、ラマ、ニワトリ、ショウジョウバエ、サル(例えば、アフリカミドリザルなど)などが挙げられる。
 前記植物としては、種子植物でもよいし胞子植物(シダ植物、コケ植物、藻類のいずれかに分類される。)でもよい。種子植物は被子植物でも裸子植物でもよく、被子植物は単子葉植物でも双子葉植物でもよい。
 前記真菌としては、キノコ、カビ、単細胞性の酵母、遊走子(鞭毛を有し運動する胞子)等が挙げられる。
 前記原生生物としては、真核藻類(例えば、褐藻類、紅藻類等)、鞭毛をもつ菌類的生物(例えば、卵菌類等)、粘菌類(例えば、変形菌、細胞性粘菌等)、原生動物(例えば、アメーバ、ゾウリムシ等)が挙げられる。
 前記1種以上の複数の細胞が2種以上の複数の細胞である場合、前記2種以上の複数の細胞に含まれる各種の細胞の態様としては、前記1種以上の複数の細胞が1種の複数の細胞である場合の態様と同様の態様が挙げられる。
 また、前記2種以上の複数の細胞の組合せは、本実施態様に係る方法により細胞が融合する限り特に制限されない。
 例えば、原核細胞である2種以上の複数の細胞でもよいし、真核細胞である2種以上の複数の細胞でもよいし、原核細胞である1種以上の細胞と真核細胞である1種以上の細胞でもよい。
 また、接着系細胞である2種以上の複数の細胞でもよいし、浮遊系細胞である2種以上の複数の細胞でもよいし、接着系細胞である1種以上の細胞と浮遊系細胞である1種以上の細胞でもよい。
 また、株化細胞である2種以上の複数の細胞でもよいし、初代培養細胞である2種以上の複数の細胞でもよいし、株化細胞である1種以上の細胞と初代培養細胞である1種以上の細胞でもよい。
 また、前記動物の細胞が由来する動物の組合せも、本実施態様に係る方法により細胞が融合する限り特に制限されない。例えば、ヒト由来細胞である2種以上の複数の細胞でもよいし、マウス由来細胞である2種以上の複数の細胞でもよいし、ヒト由来細胞である1種以上の細胞とマウス由来細胞である1種以上の細胞でもよい。
 具体例としては、マウス脾臓B細胞とマウス骨髄腫細胞(ミエローマ)の組合せ(これは、例えば、モノクローナル抗体の作製に用いられる。)、がん細胞と樹状細胞の組合せ(これは、例えば、がん免疫療法に用いられる。尚、両細胞は、ヒト由来であってもよいし、マウス由来であってもよいし、ラット由来であってもよい。)、膵島細胞と間葉系幹細胞の組合せ(これは、例えば、インスリン分泌による糖尿病の治療に用いられる。尚、両細胞は、ヒト由来であってもよいし、ラット由来であってもよい。)などが挙げられる。
 本開示において、化学細胞融合剤とは細胞融合活性を有する化学試薬のことをいう。本実施態様に係る方法では、1種以上の化学細胞融合剤を用いてよい。前記1種以上の化学細胞融合剤は、従来の細胞融合法に用いられるものであって、本実施態様に係る方法により細胞が融合する限り特に制限されない。また、前記溶液中の前記1種以上の化学細胞融合剤の含量は、本実施態様に係る方法により細胞が融合する限り特に制限されないが、例えば、10%(v/v)以上であり、一方で、例えば、100%(v/v)以下、50%(v/v)以下である。また、それらの矛盾しない組み合わせであってもよい。また、1種以上の複数の細胞と前記1種以上の化学細胞融合剤とは、従来の混合方法に従って混合することができる。
 前記化学細胞融合剤としては、例えば、油溶性低分子である化学細胞融合剤、水溶性高分子である化学細胞融合剤等が挙げられる。尚、前記化学細胞融合剤は、その活性を発揮するための公知の助剤を含んでよい。
 油溶性低分子である化学細胞融合剤としては、例えば、非特許文献5に記載されるように、
 高級脂肪酸(例えば、デカン酸、ウンデカン酸、ウンデシレン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、リノール酸、エルカ酸等)、
 高級脂肪酸エステル(例えば、ウンデカン酸メチル、ドデカン酸メチル、モノラウリン酸スクロース、トリデカン酸メチル、テトラデカン酸メチル、ヘキサデカン酸メチル、パルミトレイン酸メチル、ステアリン酸メチル、オレイン酸メチル、モノオレイン酸グリセリル、ジオレイン酸グリセリル、モノオレイン酸エチレングリコール、モノオレイン酸プロピレングリコール等)、
 その他高級脂肪族誘導体(オレイルアミン、セラキルアルコール、オレイルアルコール、レチノール等)、
 イオノフォア(例えば、A23187、X537A、バリノマイシン等)が挙げられ、
 これらの他にも、ジメチルスルホキシド(DMSO)、α-トコフェロール、2-(2-メトキシ)-エトキシエチル9,10-メトレンオクタデカノエート、コルヒチン、アンホテリシンB、ホスホリパーゼ等が挙げられる。
 水溶性高分子である化学細胞融合剤としては、例えば、非特許文献5に記載されるように、ポリエチレングリコール(PEG)(例えば、数平均分子量が、600以上、1500以上であり、一方で、8000以下、4000以下のPEGが挙げられる。また、それらの矛盾しない組み合わせであってもよい。具体例としては、PEG1500、PEG4000、PEG8000等が挙げられる。)、ポリビニルアルコール、ゼラチン、デキストラン(例えば、分子量が4×10以上、2×10以下)、デキストラン硫酸、ポリ-L-リジン等が挙げられる。
 前記工程では、前記溶液に対して加圧部により加圧をする。前記加圧部は、前記溶液に対して加圧をすることができ、また、例えば、前記収容部を破壊するなど、系を破壊することがない限り特に制限されない。
 前記加圧部による加圧は、本実施態様に係る方法により細胞が融合する限り特に制限されない。例えば、加圧開始から前記収容部内の圧力が最大圧力に到達するまでの時間として、例えば、0.31ミリ秒、0.40ミリ秒、0.48ミリ秒、0.54ミリ秒、0.64ミリ秒、0.80ミリ秒、1.70ミリ秒、及び2.0ミリ秒のいずれかを採用し、それらの矛盾しない組み合わせで上限又は下限としてよい。
 例えば、後述する実施例2の結果と実施例6~8の結果とに鑑みると、当該時間の短い方が細胞融合率は高い。これは、近接している細胞同士が一気にひきつけられることで効率良く細胞融合が起こるためであると推測される。したがって、当該時間の上限としては、例えば、2.0ミリ秒以下、1.70ミリ秒以下、0.80ミリ秒以下、0.64ミリ秒以下、0.54ミリ秒以下等が挙げられる。一方で、下限としては、特に制限されないが、例えば、0.31ミリ秒以上、0.40ミリ秒以上、0.48ミリ秒以上等が挙げられる。
 また、前記加圧部による加圧は、本実施態様に係る方法により細胞が融合する限り特に制限されない。例えば、前記最大圧力として、1.75MPa、2.51MPa、5.35MPa、6.12MPa、6.26MPa、11.50MPa、及び30.74MPaのいずれかを採用し、それらの矛盾しない組み合わせで上限又は下限としてよい。
 このうち、細胞を融合する際に接着している細胞同士の細胞膜の融合が促進されると推測されることから、前記最大圧力としては、例えば、1.75MPa以上、2.51MPa以上、5.35MPa以上、6.26MPa以上、11.50MPa以上等が挙げられる。このことは、例えば、後述する実施例1~5の結果に鑑みると、当該最大圧力の大きい方が細胞融合率は高いこととよく合致する。一方で、非常に多数の細胞が結合した巨大な細胞塊が形成される割合が増加することが推測され、その後、適切な細胞培養をするのに支障が生じることや操作が煩雑となることが推測されることから、30.74MPa以下であることが好ましい。
 また、前記加圧部による加圧は、本実施態様に係る方法により細胞が融合する限り特に制限されないが、細胞が受けるダメージを抑えて細胞融合後の細胞生存率を高くする観点から、好ましくは、30.74MPa以下、より好ましくは11.50MPa以下であり、一方で、例えば、2.51MPa以上、好ましくは6.26MPa以上である。また、それらの矛盾しない組み合わせであってもよい。
 ここで、前記圧力とは収容部内の圧力のことである。その測定方法は特に制限されないが、例えば、後述の実施例に記載した注入器を用いて測定する場合には、例えば、特開2005-21640号公報に記載の方法で測定することができる。より具体的には、後述の「収容部の内圧の計測方法」欄に記載した方法で測定することができる。また、後述の実施例に記載した落錘試験器を用いて測定する場合も同様にして測定することができる。
 本実施態様に係る方法により生じた融合細胞は、当該技術分野における融合細胞の定義に従い、1個の細胞と他の1個の細胞とが融合して1個の細胞になったものに限られず、3個以上の細胞が融合して1個の細胞になったものも含まれる。尚、顕微観察下では、融合細胞は細胞塊のように観察されることがある。そのため、本開示における細胞融合率は、次のように、当該技術分野における通常の算出方法で算出されるものとする。
 前記1種以上の複数の細胞が1種の複数の細胞である場合には、顕微鏡で観察できた、すべての細胞塊の個数と、細胞塊ではないが通常の培養時のように単一の細胞として存在する細胞の個数との合計をX個とし、「前記1種の複数の細胞が融合して生じた細胞塊の個数」をY個としたとき、Xに対するYの割合(すなわち、Y/X)で表される。
 ただし、「前記1種の複数の細胞が融合して生じた細胞塊の個数」とは、2個以上の細胞核が確認できた細胞塊の個数をいう。このとき、細胞核の個数は、例えば、核を染色できる色素を用いて細胞塊を染色して顕微観察等で確認することができる。
 前記1種以上の複数の細胞が2種の複数の細胞である場合には、顕微鏡で観察できた、すべての細胞塊の個数と、細胞塊ではないが通常の培養時のように単一の細胞として存在する細胞の個数との合計をX個とし、「前記2種の複数の細胞が融合して生じた細胞塊の個数」をY個としたとき、Xに対するYの割合(すなわち、Y/X)で表される。
 ただし、「前記2種の複数の細胞が融合して生じた細胞塊の個数」とは、例えば、前記2種の細胞を、それぞれ細胞種Aの細胞、細胞種Bの細胞としたとき、1個以上の細胞種Aの細胞と1個以上の細胞種Bの細胞とが融合して生じた細胞塊の個数をいう。
 このとき、例えば、細胞種Aの細胞を色素Aで染色し、細胞種Bの細胞を色素Bで染色しておき、細胞融合後に、色素Aと色素Bの両者が検出される細胞塊の個数を当該個数とすることができる。
 また、生じた細胞塊に含まれる前記2種の複数の細胞は、それぞれ1個である必要はなく、2個以上を含んでよく、同数である必要もない。例えば、生じた細胞塊は、1個の細胞種Aの細胞と1個の細胞種Bの細胞とが融合して生じた細胞塊であってもよいし、1個の細胞種Aの細胞と2個の細胞種Bの細胞とが融合して生じた細胞塊などであってよい。
 前記1種以上の複数の細胞が3種の複数の細胞である場合には、顕微鏡で観察できた、すべての細胞塊の個数と、細胞塊ではないが通常の培養時のように単一の細胞として存在する細胞の個数との合計をX個とし、「前記3種の複数の細胞が融合して生じた細胞塊の個数」をY個としたとき、Xに対するYの割合(すなわち、Y/X)で表される。
 ただし、「前記3種の複数の細胞が融合して生じた細胞塊の個数」とは、例えば、前記3種の細胞を、それぞれ細胞種Aの細胞、細胞種Bの細胞、細胞種Cの細胞としたとき、1個以上の細胞種Aの細胞と1個以上の細胞種Bの細胞と1個以上の細胞種Cの細胞とが融合して生じた細胞塊の個数をいう。
 このとき、例えば、細胞種Aの細胞を色素Aで染色し、細胞種Bの細胞を色素Bで染色し、細胞種Cの細胞を色素Cで染色しておき、細胞融合後に、色素Aと色素Bと色素Cのすべてが検出される細胞塊の個数を当該個数とすることができる。
 また、生じた細胞塊に含まれる前記3種の複数の細胞は、それぞれ1個である必要はなく、2個以上を含んでよく、同数である必要もない。例えば、生じた細胞塊は、1個の細胞種Aの細胞と1個の細胞種Bの細胞と1個の細胞種Cの細胞とが融合して生じた細胞塊であってもよいし、1個の細胞種Aの細胞と1個の細胞種Bの細胞と2個の細胞種Cの細胞とが融合して生じた細胞塊などであってよい。
 前記1種以上の複数の細胞が4種以上の複数の細胞である場合にも上記と同様である。すなわち、顕微鏡で観察できた、すべての細胞塊の個数と、細胞塊ではないが通常の培養時のように単一の細胞として存在する細胞の個数との合計をX個とし、「前記4種以上の複数の細胞が融合して生じた細胞塊の個数」をY個としたとき、Xに対するYの割合(すなわち、Y/X)で表される。
 「前記4種の複数の細胞が融合して生じた細胞塊の個数」についても上記と同様に、例えば、前記1種以上の複数の細胞が3種の複数の細胞である場合における、細胞種Aの細胞、細胞種Bの細胞、細胞種Cの細胞に加え、細胞種D以降の細胞を想定し、同様に算出することができる。
 また、生じた細胞塊に含まれる前記4種の複数の細胞についても上記と同様に考えることができる。
 本実施態様に係る方法により生じた融合細胞は、その生存率が高いことが好ましい。本開示において、生存率とは、当該技術分野で通常の算出方法で算出されるものである。
 例えば、前記1種以上の複数の細胞が1種の複数の細胞である場合、生じた細胞塊を、当該1種の複数の細胞の通常の培養で用いられる条件で24時間培養をし、その後、細胞の生死判定試薬を用い、必要に応じて生死判定をする装置を用いて判定をするなどして、全細胞数に対する生細胞数の割合を算出すればよい。
 また、前記1種以上の複数の細胞が2種以上の複数の細胞であって、当該種類によって細胞の培養に適した条件が異なる場合には、当該技術分野で行われているように、前記2種以上の複数の細胞のうち環境の変化に最も脆弱な種類の細胞の培養に適した条件で培養すればよい。培養においては、必要なコンポーネントを適宜追加してもよい。そして、その後、細胞の生死判定試薬を用い、必要に応じて生死判定をする装置を用いて判定をするなどして、全細胞数に対する生細胞数の割合を算出すればよい。
 前記生存率は、全細胞数が4×10以上である場合に、好ましくは32.75%以上、より好ましくは41.25%以上、さらに好ましくは48.25%以上であり、一方で、上限は大きい方が好ましいが、例えば100%以下、54.88%以下である。また、それらの矛盾しない組み合わせであってもよい。
 本開示の他の一実施態様は、1種以上の複数の細胞と1種以上の化学細胞融合剤とを含む溶液を収容する収容部と、作動時に前記収容部に収容されている前記溶液に対して加圧をする加圧部と、を備える、細胞融合装置である。
 既出の通り、前記収容部の構造や材料は、前記収容部が含む溶液を変質させるものでなく、また、前記収容部が含む溶液に対して加圧部により加圧をされた場合にその加圧に耐えられるものであれば特に制限されない。
 本実施態様に係る装置は、前記収容部が含む溶液に対して加圧部が加圧をするための駆動部を備えてよい。前記駆動部の構造や材料は特に制限されない。加圧は、例えば、圧縮ガスの圧力が解放される際に生じる圧力によってもよいし、点火装置によって点火される火薬の燃焼により生じる圧力によってもよい。また、圧電素子等の電気的エネルギーやばね等の機械的エネルギーを加圧エネルギーとして利用した圧力によってもよく、これらの形態のエネルギーを適宜組み合わせることで生成した加圧エネルギーを利用した圧力によってもよい。
 加圧として、点火装置によって点火される火薬の燃焼により生じる圧力を用いる態様を採用する場合、火薬としては、例えば、ジルコニウムと過塩素酸カリウムを含む火薬(ZPP)、水素化チタンと過塩素酸カリウムを含む火薬(THPP)、チタンと過塩素酸カリウムを含む火薬(TiPP)、アルミニウムと過塩素酸カリウムを含む火薬(APP)、アルミニウムと酸化ビスマスを含む火薬(ABO)、アルミニウムと酸化モリブデンを含む火薬(AMO)、アルミニウムと酸化銅を含む火薬(ACO)、アルミニウムと酸化鉄を含む火薬(AFO)のうち何れか一つの火薬、又はこれらのうち複数の組み合わせからなる火薬であってもよい。これらの火薬の特徴としては、その燃焼生成物が高温状態では気体であっても常温では気体成分を含まないため、点火後燃焼生成物が直ちに凝縮を行う。それにより、前記溶液の加圧過程において、点火薬の燃焼により生じた該加圧時の燃焼生成物の温度及び圧力を、前記液体に掛かる圧力が最初のピーク射出力を迎えてから短時間に常温常圧近傍まで推移させることができる。
 本実施態様に係る装置の例としては注入器が挙げられる。以下、その詳細を説明する。
 本実施態様に係る装置の例としての注入器では、収容部には当初から、前記1種以上の複数の細胞と前記1種以上の化学細胞融合剤とが収容されているのではない。例えば、シリンジ部が注入器から外れた状態で、かつ、シリンジ部から後述する封止部材が外れた状態で、シリンジ部の上部開放端側(射出口と軸方向反対側に位置する開放端)から前記1種以上の複数の細胞と前記1種以上の化学細胞融合剤とをシリンジ部内に注入する。シリンジ部において射出口と軸方向反対側に位置する方の端部は開放端として形成されており、プランジャがシリンジ部に挿入されていない状態では上記開放端が外部に対して開放されている。前記1種以上の複数の細胞と前記1種以上の化学細胞融合剤とをシリンジ部内に注入した後、これらがシリンジ部の上部開放端かつノズルから漏出しないように、シリンジ部内に前記上部開放端側からプランジャを少し差し込むことで、シリンジ部内に収容部が形成される。これにより、上部開放端を下向きとなるようにシリンジ部の姿勢を変更しても、シリンジ部の収容部内に収容された前記1種以上の複数の細胞と前記1種以上の化学細胞融合剤とが収容部から漏れ出すことがない。その後、例えば、射出口が上向きとなるようにシリンジ部の姿勢を変更し、シリンジ部の軸方向に延びる内壁面に沿ってプランジャを摺動させて、ノズルを介して射出口から収容部内の気体を収容部外に追い出す。このように、収容部への充填操作を必要とする構成を採用することで、所望の1種以上の複数の細胞と所望の前記1種以上の化学細胞融合剤とを収容することが可能となる。そのため、該注入器では、シリンジ部は着脱可能に構成されている。
 また、注入器の稼働時には、ノズル先端の射出口は、前記1種以上の複数の細胞と前記1種以上の化学細胞融合剤とが射出されないように封止される。封止部材や封止方法は、前記1種以上の複数の細胞と前記1種以上の化学細胞融合剤とが射出されないようにされれば、特に制限されない。
 以下に、図面を参照して注入器の例として、注射器1(先端側を封止可能に加工した無針注射器)について説明する。なお、各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。このことは、後述する実施例についても同様である。なお、注射器1の長手方向における相対的な位置関係を表す用語として、「先端側」及び「基端側」を用いる。当該「先端側」は、後述する注射器1の先端寄り、すなわち射出口31a寄りの位置を表し、当該「基端側」は、注射器1の長手方向において「先端側」とは反対側の方向、すなわち駆動部7側の方向を表している。また、本例示は、点火装置によって点火される火薬の燃焼エネルギーを用いて、前記1種以上の複数の細胞と前記1種以上の化学細胞融合剤とを収容する収容部を加圧する例示であるが、本実施態様はこれに限定されるものではない。
(注射器1の構成)
 図1は、注射器1の概略構成を示す図であり、注射器1のその長手方向に沿った断面図でもある。注射器1は、シリンジ部3とプランジャ4とで構成されるサブ組立体と、注射器本体6とピストン5と駆動部7とで構成されるサブ組立体とが一体に組み立てられた注射器組立体10が、ハウジング(注射器ハウジング)2に取り付けられることで構成される。
 上記の通り、注射器組立体10は、ハウジング2に対して脱着自在となるように構成されている。注射器組立体10に含まれるシリンジ部3とプランジャ4との間に形成される収容部32には前記1種以上の複数の細胞と前記1種以上の化学細胞融合剤とが充填され、そして、当該注射器組立体10は、細胞融合を行う度に使い捨てられるユニットである。また、無菌環境下で細胞融合を行えば、無菌状態の融合細胞を生成することも容易である。一方で、ハウジング2側には、注射器組立体10の駆動部7に含まれる点火器71に電力供給するバッテリ9が含まれている。バッテリ9からの電力供給は、ユーザがハウジング2に設けられたボタン8を押下する操作を行うことで、配線を介してハウジング2側の電極と、注射器組立体10の駆動部7側の電極との間で行われることになる。なお、ハウジング2側の電極と注射器組立体10の駆動部7側の電極とは、注射器組立体10がハウジング2に取り付けられると、自動的に接触するように両電極の形状および位置が設計されている。またハウジング2は、バッテリ9に駆動部7に供給し得る電力が残っている限りにおいて、繰り返し使用することができるユニットである。なお、ハウジング2においては、バッテリ9の電力が無くなった場合には、バッテリ9のみを交換しハウジング2は引き続き使用してもよい。また、ノズル31の先端の射出口31aは、前記1種以上の複数の細胞と前記1種以上の化学細胞融合剤とが射出されないように封止部43により封止される。封止部43は、キャップ41に固定されたものである。また、キャップ41は、固定部42を介してシリンジ部3に固定されたものである。
 次に、注射器組立体10の詳細について説明する。まず、シリンジ部3及びプランジャ4を含むサブ組立体について説明すると、シリンジ部3は、その内部に前記1種以上の複数の細胞と前記1種以上の化学細胞融合剤とを収容可能な空間である収容部32が形成されている。より詳しくは、図1に示すように、シリンジ部3の軸方向に延びる内壁面に沿ってプランジャ4が摺動自在に配置されており、シリンジ部3の内壁面とプランジャ4によって収容部32が画定されている。また、シリンジ部3は、先端側に射出口31aが形成されたノズル部31を有している。図1に示す例では、プランジャ4の先端側の輪郭は、ノズル部31の内壁面の輪郭に概ね一致する形状となっている。
 更に、シリンジ部3は、キャップ41を固定するための固定部42を有しており、固定部42にキャップ41が固定されている。キャップ41は、射出口31aを封止するための封止部43を有しており、キャップ41がシリンジ部3の固定部42に固定された状態で、ノズル部31の射出口31aが封止部43によって封止される。この状態では、シリンジ部3内における収容部32が密封された状態となる。なお、シリンジ部3の固定部42に対してキャップ41は着脱自在に固定することができる。また、シリンジ部3におけるノズル部31は、図1に示すように射出口31a及び収容部32に対して連通する流路を有しており、当該流路は収容部32側から射出口31a側に向かって流路断面積が徐々に減少している。
 次に、注射器本体6、ピストン5、及び駆動部7を含むサブ組立体について説明する。ピストン5は、例えば金属製であり、駆動部7の点火器71で生成される燃焼生成物(燃焼ガス)により加圧されて、注射器本体6の内部に形成されている貫通孔を摺動するように構成されている。注射器本体6は、概略円筒状の部材であり、その軸方向に延在する内壁面に沿ってピストン5が摺動自在に収容されている。なお、ピストン5は樹脂製でもよく、その場合、耐熱性や耐圧性が要求される部分には金属を併用してもよい。また、図1に示すように、ピストン5は、プランジャ4と一体に連結されている。本実施形態においては、プランジャ4およびピストン5を含んで「加圧部」が構成される。
 次に、駆動部7について説明する。図1に示すように、駆動部7は、注射器本体6における貫通孔を基準として基端側に固定されている。駆動部7は、電気式点火器である点火器71を有している。点火器71は、注射器本体6における貫通孔の内部を臨むように配置されており、その内部には点火薬が収容されている。点火薬としては、上掲の通り種々の火薬を採用することができる。また、点火薬は、例えば、適宜の薄肉金属によって形成された火薬カップに収容することができる。
 次に、上記構成の注射器1の動作内容について説明する。上記の通り、シリンジ部3は着脱可能に構成されている。シリンジ部3が注入器1から外れた状態で、かつ、シリンジ部3の固定部42からキャップ41を取り外した状態で、例えば、シリンジ部3の上部開放端側(射出口と軸方向反対側に位置する開放端)から前記1種以上の複数の細胞と前記1種以上の化学細胞融合剤とをシリンジ部3内に注入し、これらがシリンジ部3の上部開放端かつノズルから漏出しないように、シリンジ部3内に前記上部開放端側からプランジャ4を少し差し込み、射出口31aが上向きとなるようにシリンジ部3の姿勢を変更し、シリンジ部3の軸方向に延びる内壁面に沿ってプランジャ4を摺動させて、ノズル部31を介して射出口31aから収容部32内の気体を収容部32外に追い出す。
 これにより、所望の前記1種以上の複数の細胞と所望の前記1種以上の化学細胞融合剤とを収容部32内に収容することができる。このとき、前記1種以上の複数の細胞と前記1種以上の化学細胞融合剤とは、従来技術と同様に予め混合された状態で収容部32内に収容されることが好ましい。ただし、最終的に、前記1種以上の複数の細胞と前記1種以上の化学細胞融合剤とが、従来技術と同様に混合された状態で前記収容部32内に収容できれば、その態様は特に制限されない。
 また、1種以上の複数の細胞と1種以上の化学細胞融合剤とを含む溶液に対して加圧部により加圧をする際には収容部32内に気体(空気など)を含まないことが好ましく、このためには、例えば、上述のように、前記1種以上の複数の細胞と前記1種以上の化学細胞融合剤を収容部32に収容した後に、射出口31aを通じて収容部32から空気を抜くことが挙げられる。
 次に、シリンジ部3の固定部42にキャップ41を取り付ける。その結果、ノズル部31の射出口31aが封止部43によって封止されることで、収容部32が密封される。
 この状態から、例えば、ユーザがハウジング2に設けられたボタン8を押下する操作を行うと、これをトリガとして、バッテリ9から駆動部7の点火器71に作動電力が供給され、点火器71が作動する。点火器71が作動すると、点火薬が点火されることで燃焼し、燃焼生成物(火炎や燃焼ガスなど)が生成される。その結果、例えば点火器71の火薬カップが開裂し、点火薬の燃焼ガスが注射器本体6における貫通孔内に放出される。これにより、注射器本体6の貫通孔内の圧力が急激に高まり、注射器本体6の先端側に向けてピストン5が押圧される結果、注射器本体6における貫通孔の内壁面に沿って先端側に向かってピストン5が摺動する。上記の通り、ピストン5と一体にプランジャ4が連結されているため、ピストン5に連動してプランジャ4もシリンジ部3の内壁面に沿って摺動することとなる。すなわち、プランジャ4がシリンジ部3の先端側に位置するノズル部31に向かって押し込まれることで、前記1種以上の複数の細胞と前記1種以上の化学細胞融合剤とが収容されている収容部32の容積が減少し、急激に加圧されることとなる。
 以上のようにして、駆動部7における点火器71が作動すると、点火薬の燃焼エネルギーによってピストン5を介してプランジャ4が押し込まれることで、密封された状態の収容部32に収容されている液体が急激に加圧される。ここで、注射器1は、駆動部7(点火器71)が作動して、加圧部が、前記収容部に収容されている前記溶液に対して加圧をするように点火薬の種類や用量、その他の任意のパラメータが調整されている。その結果、好適に細胞融合が行われる。このようにして、融合細胞が生成した後は、例えば、注射器組立体10をハウジング2から取り外した後、シリンジ部3からキャップ41を取り外す。そして、プランジャ4が差し込まれているシリンジ部3を取り外し、さらにそこからプランジャ4を取り外して、収容部32に収容されている、融合細胞を含む内容物を、例えばピペットなどで取り出して、適宜の容器に回収してもよい。
 以上のように、本実施態様に係る装置の一例としての注射器1によれば、大掛かりな装置やそれを扱う技術者の高度なスキルを必要とすることなく、細胞融合を簡単に行うことができる。更に、注射器1によれば、ハウジング2に対して注射器組立体10が着脱自在であり、注射器組立体10を使い捨てユニットとして構成することもできる。そのため、融合細胞の生成後においては使用済みの注射器組立体10を廃棄すればよく、これによれば細胞融合を行う度に使用済みの注射器組立体10を洗浄することが不要であり、ユーザに大きな労力や手間を掛けることを抑制し、使い勝手の優れた細胞融合装置を提供することができる。
 本実施態様に係る細胞融合装置の例としては落錘試験器も挙げられる。以下、図面を参照して、落錘試験器を説明する。
 図2は、落錘試験器100の概略構成を示す図である。落錘試験器100は、ベッド110、支持プレート120、支持プレート120を支持する支柱130、支持プレート120から上方に向けて立設するフレーム140、ガイドロッド150、錘160、支持プレート120にセットされる注射器組立体10A等を備える。
 ベッド110は、床やテーブルなどの適宜の載置面に載置される土台であり、ベッド110を載置面に載置するための複数の脚部111を有している。例えば、ベッド110は平面矩形状の鋼製プレートであり、その四隅に脚部111が設けられていてもよい。
 支持プレート120は、図2に示すように、ベッド110の上面110Aから立設する支柱130を介してベッド110に固定されており、ベッド110と間隔をおいて平行に対向配置されたプレート部材である。例えば、支持プレート120は平面矩形状の鋼製プレートである。例えば、支持プレート120の平面中央部には、注射器組立体10Aを着脱自在に保持するための保持孔121が、支持プレート120を厚さ方向に貫通して設けられている。保持孔121は、支持プレート120の上面120A側に開口する保持凹部121Aと、支持プレート120の下面120B側に開口すると共に保持凹部121Aよりも小径の小径孔部121Bを含む。小径孔部121Bは、保持凹部121Aの下方に連なっている。
 図2に示すように、支持プレート120の上面120Aには、一対の棒状のガイドロッド150が立設している。ガイドロッド150は、錘160を所定高さから落下させる際に、錘160の落下方向をガイドするためのロッド部材である。錘160には、一対のガイドロッド150を挿通させるための一対の挿通孔(図示せず)が上面160Aから下面160Bに亘って貫通形成されている。錘160は、各挿通孔にガイドロッド150を挿通させることによって、ガイドロッド150に沿った落下が可能となる。なお、本実施形態において、ガイドロッド150は、支持プレート120の上面120Aに対して垂直方向に立設している。
 尚、本明細書において、錘160を所定高さから落下させるとは、錘160を、大気中で、所定高さから初速度を付与せずに鉛直下方に落下させることをいう。
 また、支持プレート120の上面120Aには、図2に示すように、フレーム140が立設している。フレーム140は、背面フレーム141と、背面フレーム141の両側縁に連結される一対の側面フレーム142とを有し、横断面が概略C字形状を有するフレーム部材である。図2に示す例では、フレーム140で囲まれた内側の空間に、ガイドロッド150が配置されている。背面フレーム141には、錘160を所定の高さに位置決めするためのピン(図示せず)を着脱自在に差し込むための差し込み孔143が複数設けられている。例えば、差し込み孔143は、背面フレーム141の高さ方向に一定間隔(例えば、10mm間隔)で形成されている。ピンは、任意の差し込み孔143対して選択的に差し込むことができる。背面フレーム141の背面側からピンを所望の差し込み孔143に差し込みつつ、当該ピンを錘160の背面に形成された固定用孔に差し込むことで、錘160を所望の高さに位置決めした状態で固定することができる。また、この状態から、ピンを引き抜くことで、錘160の固定が解除される結果、錘160をガイドロッド150に沿って下方に落下させることができる。なお、本実施形態では、重量の異なる複数種類(例えば、30g、40g、50g、300gなど)の錘160を用意しておくことができる。
 次に、支持プレート120の保持孔121に保持可能な注射器組立体10Aについて説明する。図3は、落錘試験器100に適用される注射器組立体10Aの概略構成を示す図である。注射器組立体10Aは、シリンジ部3、プランジャ4、ピストン5、注射器本体6、ホルダ11等を有している。注射器本体6は、例えば概略円筒形状を有し、軸方向に貫通孔が形成されている。注射器本体6の貫通孔には、ピストン5およびプランジャ4が当該貫通孔に沿って移動可能に配置されている。
 ホルダ11は、注射器本体6の先端側に取り付けられており、その内側にシリンジ部3を保持する部材である。シリンジ部3は、その軸方向に延びる内壁面に沿ってプランジャ4が摺動自在に配置されており、シリンジ部3の内壁面とプランジャ4によって収容部32が画定されている。また、シリンジ部3は、先端側に射出口31aが形成されたノズル部31を有している。図3に示す例では、プランジャ4の先端側の輪郭は、ノズル部31の内壁面の輪郭に概ね一致する形状となっている。図1で説明した注射器組立体10と同様、収容部32には、1種以上の複数の細胞と1種以上の化学細胞融合剤とを収容することが可能である。なお、ホルダ11およびシリンジ部3は、注射器本体6に対して着脱自在である。
 ホルダ11の先端側には、キャップ41を着脱自在に取り付けることが可能である。ホルダ11にキャップ41を取り付けた状態では、キャップ41の封止部43によってノズル部31の射出口31aが封止される結果、シリンジ部3内における収容部32が密封された状態となる。なお、シリンジ部3におけるノズル部31は、図3に示すように射出口31a及び収容部32に対して連通する流路を有しており、当該流路は収容部32側から射出口31a側に向かって流路断面積が徐々に減少している。
 ピストン5は、例えば金属製であり、注射器本体6の内部に形成されている貫通孔を摺動可能に構成されている。ピストン5の先端部は、プランジャ4の後端部に連結されている。また、ピストン5の後端部には錘受け部51が形成されている。ピストン5の錘受け部51は、注射器本体6の貫通孔を通じて注射器本体6の後端から突出するように外部に露出している。注射器本体6の外周面61には、円形鍔状のフランジ62が形成されている。注射器本体6の外周面61の外周面61における外径は、支持プレート120の小径孔部121Bより小さい。また、注射器本体6におけるフランジ62は、支持プレート120における保持凹部121Aよりも僅かに小径であり、小径孔部121Bよりも大径である。支持プレート120における保持凹部121Aは、注射器本体6のフランジ62を支持するための凹部として形成されている。以上のように構成される落錘試験器100に含まれる注射器組立体10Aは、点火器71を含む駆動部7を備えていない点で、図1で説明した注射器組立体10と相違している。
 次に、注射器組立体10Aを含む落錘試験器100の動作内容について説明する。注射器組立体10Aを支持プレート120にセットする前に、注射器組立体10Aの収容部32に所望の1種以上の複数の細胞と所望の1種以上の化学細胞融合剤を収容する。これら被収容溶液の収容部32への収容は、上述の注射器1を用いる場合と同様な手順で行ってもよい。すなわち、シリンジ部3を注射器本体6から取り外した状態で、かつ、ホルダ11からキャップ41を取り外した状態で、例えば、シリンジ部3の上部開放端側(射出口と軸方向反対側に位置する開放端)から上述した被収容溶液(1種以上の複数の細胞と1種以上の化学細胞融合剤)をシリンジ部3内に注入し、これらがシリンジ部3の上部開放端かつノズルから漏出しないように、シリンジ部3内に上記上部開放端側からプランジャ4を少し差し込む。そして、射出口31aが上向きとなるようにシリンジ部3の姿勢を変更し、シリンジ部3の軸方向に延びる内壁面に沿ってプランジャ4を摺動させて、ノズル部31を介して射出口31aから収容部32内の気体を収容部32外に追い出す。これにより、所望の前記1種以上の複数の細胞と所望の前記1種以上の化学細胞融合剤とを収容部32内に収容することができる。
 次に、注射器組立体10Aにおけるホルダ11にキャップ41を取り付け、ノズル部31の射出口31aを封止することによって収容部32を密封する。このように、収容部32を密封した注射器組立体10Aを、図2に示すように、支持プレート120に設置する。すなわち、注射器組立体10のキャップ41を下方にした状態で、支持プレート120の保持孔121に注射器組立体10Aを差し込み、注射器本体6のフランジ62を保持凹部121Aに嵌め入れることで、支持プレート120への注射器組立体10Aの設置が完了する。その際、図2に示すように、キャップ41とベッド110の上面110Aとの間には僅かな隙間が形成される。すなわち、注射器組立体10Aは、ベッド110から離間した状態で支持プレート120に支持固定される。
 落錘試験器100は、所定の高さから落下する錘160を、注射器組立体10Aにおけるピストン5の錘受け部51に衝突させたときのエネルギーを利用して、収容部32に収容された被収容溶液を加圧する。錘160は、フレーム140に設けられた所望の差し込み孔143およびピンを用いて所定の高さにセットされる。注射器組立体10Aの収容部32に収容された被収容溶液を加圧するに際しては、錘160を固定しているピンを差し込み孔143から引き抜く。その結果、錘160が、ガイドロッド150に沿って下方に落下する。ここで、ベッド110が水平な姿勢となるように調整しておくことで、ガイドロッド150は鉛直方向に沿って延伸した状態となる結果、錘160は鉛直下方に落下する。錘160の下方には、ピストン5の錘受け部51が位置付けられているため、所定高さから落下した錘160がピストン5の錘受け部51に衝突する。このようにして、ピストン5に錘160の衝突エネルギーが付与される結果、注射器本体6における貫通孔の内壁面に沿って先端側に向かってピストン5が摺動する。これにより、ピストン5に連結されプランジャ4もシリンジ部3の内壁面に沿って摺動することとなり、当該プランジャ4がノズル部31に向かって押し込まれる。これにより、収容部32の容積が減少し、収容部32に収容された溶液が急激に加圧される結果、好適に細胞融合が行われる。落錘試験器100においては、注射器組立体10Aのプランジャ4およびピストン5を含んで「加圧部」が構成される。
 このようにして、上記のようにして融合細胞を生成した後は、例えば、錘160を取り除くと共に、注射器組立体10Aを支持プレート120から取り外す。そして、注射器組立体10Aのキャップ41を取り外し、プランジャ4が差し込まれているシリンジ部3を注射器本体6から取り外す。更に、プランジャ4を引き抜いたシリンジ部3の収容部32に収容されている、融合細胞を含む内容物を、例えばピペットなどで取り出して、適宜の容器に回収してもよい。
 加圧開始から前記収容部内の圧力が最大圧力に到達するまでの時間は、錘の重量を大きくすることで長くすることができ、錘を落下させる際の高さは影響しない。そのため、当該時間は、例えば、予備的な試験として、様々な重量の錘を準備し、それらを落下させて、錘の重量と当該時間との関係を明らかにして適宜設定することができる。また、当該時間は、ピストンの上に緩衝材(例えば、スポンジゴム等)を置くことでも長くすることができる。そのため、上記と同様に予備的な試験をした上で適宜設定することができる。
 また、前記最大圧力は、荷重(錘の重量×錘を落下させる際の高さ)を大きくすることで大きくすることができる。そのため、当該最大圧力は、例えば、予備的な試験として、様々な重量の錘を準備し、様々な高さから落下させて、錘の重量と落下させる際の高さと当該最大圧力との関係を明らかにして適宜設定することができる。
 上記のようにして、加圧開始から前記収容部内の圧力が最大圧力に到達するまでの時間と当該最大圧力とは独立して適宜設定することができる。
 以下に実施例を記載するが、いずれの実施例も、限定的な意味として解釈される実施例ではない。
<収容部の内圧の計測方法>
 実施例1~4では、細胞融合装置として図1に記載された注入器を用い、該注入器の収容部内でマウス脾臓細胞とNS-1細胞の融合を行った。
 加圧開始から圧力が最大圧力に到達するまでの時間と該最大圧力の測定は次のようにして行った。特開2005-21640号公報に記載の測定方法に従い、射出の力を、ノズルの下流に配置されたロードセルのダイアフラムに分散して与えるようにし、ロードセルからの出力を、検出増幅器を介してデータ採取装置にて採取し、時間ごとの射出力(N)として記憶するという方法によって測定した。このように測定された射出力を、注入器の射出口31aの面積によって除することで、射出圧を算出した。尚、収容部の容積は100μLであり、収容部内をミリQ水(ミリポア社)で充填し、空気を抜いて測定を行った。
 上記のようにして測定された射出圧は、国際公開2020/116353号に記載の測定方法により得られた、収容部の内圧とほぼ同等であることを確認した。また、収容部内のミリQ水を、後述する実施例で用いた溶液に置き換えた場合であっても、加圧開始から圧力が最大圧力に到達するまでの時間と該最大圧力に影響はない。
 実施例5~8では、細胞融合装置として図2に示した落錘試験器を用いた。加圧開始から圧力が最大圧力に到達するまでの時間と該最大圧力の測定は、ロードセルを用いて上記と同様にした。
<細胞の混合方法>
(マウス脾臓細胞の調製)
 マウス脾臓細胞はBALB/cマウス(メス、6~8週齢等)から回収した。すなわち、マウスを安楽死させた後、脾臓を採取し、PBS(ナカライテスク)で洗浄した。ホモジナイズした脾臓細胞を70 μmセルストレイナー(ファルコン)でフィルタリングした後、15 mL遠沈管(ビオラモ)に回収し、赤血球を溶解するために、臓器重量の1.5倍量のACK Lysing Buffer (GIBCO)を入れ、常温で5分間静置した。洗浄のためにPBSを45 mL入れて、遠心分離(700×g、5分間)して、上清を取り除いた。PBSにて1×108 cell/mLに調整して得られた細胞懸濁液1 mLあたり、Brilliant Violet 421 anti-mouse CD45 Antibody (30-F11、BIO LEGEND)を20 μL添加して、4℃で15分間、抗体による蛍光染色を行った。染色溶液の10倍量のPBSで2回細胞を洗浄した後、PBSで3×107 cell/mLに調整した。
(NS-1細胞の調製)
 NS-1細胞(JCRB細胞バンクより購入、細胞登録番号JCRB9107)は、あらかじめ継代によって凍結保存しておいた細胞ストックを融解することによって得た。PBSにて1×106 cell/mLに調整し、DIR (5 mg/mL in DMSO、invitrogen社)を5 μL/mL添加してCO2インキュベーター(37℃、95% CO2)内で10分間、蛍光染色を行った。染色溶液の5倍量のPBSで3回細胞を洗浄した後、PBSで1×107 cell/mLに調整した。
(細胞の混合)
 染色したマウス脾臓細胞とNS-1細胞を3:1の割合で混合した。すなわち、マウス脾臓細胞とNS-1細胞を100 μLずつマイクロピペットで同じ1.5 mLチューブに移し取り、遠心分離(700×g、5分間)した。上清をできるだけ取り除いて、細胞総数として4×106個を含むペレットを得て、1.5 mLチューブを軽くタッピングしてペレットをほぐし、細胞を混合し、細胞混合液を得た。
<細胞融合率の測定方法>
 「融合細胞の個数」であるY個は、細胞融合で得られた融合細胞液をフローサイトメーター(ベックマン社)でPB450とAPCA750のフィルターを用いて5000個の細胞をフローし、両方の蛍光を感知したものを融合細胞とした。
 すなわち、すべての細胞塊の個数と、細胞塊ではないが通常の培養時のように単一の細胞として存在する細胞の個数との合計であるX個を5000個とし、融合細胞の個数をY個とし、5000個に対するYの割合(すなわち、Y/5000)で表した。
<細胞生存率の測定方法>
 融合細胞液を6穴プレート(ビオラモ)に播種してCO2インキュベーター(37℃、95% CO2)で24時間培養した。細胞の一部をトリパンブルー(ナカライテスク)で染色し、TC20全自動セルカウンター(Bio-Rad)にて、染色された細胞及び染色されなかった細胞の数を測定し、細胞生存率を算出した。細胞生存率は、測定した全細胞数に対する生細胞数の割合とした。
〔実施例1〕
 前記「細胞の混合方法」に従って得たペレットに対し次の操作を行った。ペレットの際にピペットの先端を置き、100 μLのPEG1500(数平均分子量が1500であるポリエチレングリコール、Roche)をやさしく置くように吐き出す操作と、ピペットの先端で円を描くような操作とをゆっくり同時に行うことで、ペレットとPEG1500とを混合した後、ゆっくりと6-7回ピペッティングした。シリンジ部の上部開放端側からこの細胞混合液を充填し、これらがシリンジ部の上部開放端かつノズルから漏出しないようにシリンジ部内に前記上部開放端側からプランジャを少し差し込み、射出口が上向きとなるようにシリンジ部の姿勢を変更し、シリンジ部の軸方向に延びる内壁面に沿ってプランジャを摺動させて、ノズル部を介して射出口から収容部内の空気を収容部外に追い出した。ここで、該注入器は、細胞融合装置として用いたものであり、図1に記載された注入器である。本実施例では、該注入器はZPPが15 mgの条件にセットされたものであり、収容部のノズル側でキャップがしっかりと装着されることで収容部内を密封状態にして点火操作を行った。これにより、マウス脾臓細胞とNS-1細胞が融合する。この条件では、加圧開始から最大圧力に到達するまでの時間が0.31ミリ秒であり、該最大圧力が2.51 MPaであった。その後、注射器組立体をハウジングから取り外し、シリンジ部からキャップを取り外し、プランジャが差し込まれているシリンジ部を取り外し、さらにそこからプランジャを取り外して、その内容物をピペットマンで吸い上げた。あらかじめ37℃に温めたRPMI1640(ナカライテスク)1 mLとともに1.5 mLチューブ内でゆっくりピペッティングして混合し、遠心分離(500×g、10分間)して、細胞を洗浄した。上清を除去後、PBSで細胞を懸濁し、融合細胞液を得た。
 その後、細胞融合率および細胞生存率をそれぞれ測定した。
〔実施例2~4〕
 火薬であるZPPの量を変更すること以外は、実施例1と同様にした。
〔実施例5〕
 前記「細胞の混合方法」に従って得たペレットに対し次の操作を行った。ペレットの際にピペットの先端を置き、100 μLのPEG1500(数平均分子量が1500であるポリエチレングリコール、Roche)をやさしく置くように吐き出す操作と、ピペットの先端で円を描くような操作とをゆっくり同時に行うことで、ペレットとPEG1500とを混合した後、ゆっくりと6-7回ピペッティングした。シリンジ部の上部開放端側からこの細胞混合液を充填し、これらがシリンジ部の上部開放端かつノズルから漏出しないようにシリンジ部内に前記上部開放端側からプランジャを少し差し込み、射出口が上向きとなるようにシリンジ部の姿勢を変更し、シリンジ部の軸方向に延びる内壁面に沿ってプランジャを摺動させて、ノズル部を介して射出口から収容部内の空気を収容部外に追い出した。次に、図2に示した落錘試験器を用いて収容部内を加圧した。本実施例では、50 gの錘を高さ30 mmの位置から落下させるという条件にセットされたものであり、収容部のノズル側でキャップがしっかりと装着されることで収容部内を密封状態にして錘を落下させた。これにより、マウス脾臓細胞とNS-1細胞が融合する。この条件では、加圧開始から最大圧力に到達するまでの時間が0.64ミリ秒であり、該最大圧力が1.75 MPaであった。その後、注射器組立体を落錘試験器から取り外し、シリンジ部からキャップを取り外し、プランジャが差し込まれているシリンジ部を取り外し、さらにそこからプランジャを取り外して、その内容物をピペットマンで吸い上げた。あらかじめ37℃に温めたRPMI1640(ナカライテスク)1 mLとともに1.5 mLチューブ内でゆっくりピペッティングして混合し、遠心分離(500×g、10分間)して、細胞を洗浄した。上清を除去後、PBSで細胞を懸濁し、融合細胞液を得た。
 その後、細胞融合率を測定した。
〔実施例6〕
 300 gの錘を高さ20 mmの位置から落下させ、ピストンの上にEPDMスポンジゴム(和気産業EPT-01S)を置くこと以外は、実施例5と同様にした。尚、ピストンの上にEPDMスポンジゴム(和気産業EPT-01S)を置いたのは、加圧開始から収容部内の圧力が最大圧力に到達するまでの時間を大きくするためである。
〔実施例7〕
 300 gの錘を高さ10 mmの位置から落下させたこと以外は、実施例5と同様にした。
〔実施例8〕
 50 gの錘を高さ70 mmの位置から落下させたこと以外は、実施例5と同様にした。
〔比較例1〕
 従来法であるPEG法を比較例1とした。前記「細胞の混合方法」に従って得たペレットに対し次の操作を行った。ペレットの際にピペットの先端を置き、100 μLのPEG1500(数平均分子量が1500であるポリエチレングリコール、Roche)をやさしく置くように吐き出す操作と、ピペットの先端で円を描くような操作とをゆっくり同時に行うことで、ペレットとPEG1500とを混合した後、37℃の水浴槽に浸し、90秒間、ゆっくりと振盪させた。あらかじめ37℃に温めた100 μLのRPMI1640をゆっくりと添加し、チューブを軽く振って液を混合した。さらに300 μL、1000 μLと段階的に量を増やしてRPMI1640を加え(いずれもゆっくりと添加)、チューブを軽く振って液を混合した。CO2インキュベーター(37℃、95% CO2)で10分間反応させた後、遠心分離(500×g、10分間)をして上清を除去し、PBSで細胞を懸濁し、融合細胞液を得た。
 その後、細胞融合率および細胞生存率をそれぞれ測定した。
 表1、表2に結果を示す。当該細胞融合方法及び細胞融合装置により、細胞融合が起こることが確認できた。また、細胞融合率は、従来法であるPEG法の場合よりも高いことが確認できた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
1・・・・注射器、2・・・・ハウジング、3・・・・シリンジ部、4・・・・プランジャ、5・・・・ピストン、6・・・・注射器本体、7・・・・駆動部、8・・・・ボタン、 9・・・・バッテリ、10・・・・注射器組立体、31・・・・ノズル部、31a・・・射出口、32・・・・収容部、41・・・・キャップ、42・・・・固定部、43・・・・封止部、71・・・・点火器、10A・・・・注射器組立体、11・・・・ホルダ、51・・・・錘受け部、61・・・・注射器本体の外周面、62・・・・フランジ、100・・・・落錘試験器、110・・・・ベッド、110A・・・・ベッドの上面、111・・・・脚部、120・・・・支持プレート、120A・・・・支持プレートの上面、120B・・・・支持プレートの下面、121・・・・保持孔、121A・・・・保持凹部、121B・・・・小径孔部、130・・・・支柱、140・・・・フレーム、141・・・・背面フレーム、142・・・・側面フレーム、143・・・・差し込み孔、150・・・・ガイドロッド、160・・・・錘、160A・・・・錘の上面、160B・・・・錘の下面

Claims (5)

  1.  収容部に収容されている、1種以上の複数の細胞と1種以上の化学細胞融合剤とを含む溶液に対して加圧部により加圧をする工程、
     を含む、細胞融合方法。
  2.  前記加圧をする工程において、前記加圧部による加圧は、加圧開始から前記収容部内の圧力が最大圧力に到達するまでの時間が2.0ミリ秒以下であり、前記最大圧力が1.75MPa以上30.74MPa以下である、
     請求項1に記載の方法。
  3.  前記1種以上の化学細胞融合剤がポリエチレングリコールである、請求項1又は2に記載の方法。
  4.  1種以上の複数の細胞と1種以上の化学細胞融合剤とを含む溶液を収容する収容部と、
     作動時に前記収容部に収容されている前記溶液に対して加圧をする加圧部と、
     を備える、細胞融合装置。
  5.  前記加圧部による加圧は、加圧開始から前記収容部内の圧力が最大圧力に到達するまでの時間が2.0ミリ秒以下であり、前記最大圧力が1.75MPa以上30.74MPa以下である、
     請求項4に記載の装置。
PCT/JP2021/046498 2021-03-01 2021-12-16 細胞融合方法 WO2022185662A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023503391A JPWO2022185662A1 (ja) 2021-03-01 2021-12-16
US18/279,557 US20240301390A1 (en) 2021-03-01 2021-12-16 Cell fusion method
EP21929220.8A EP4303298A1 (en) 2021-03-01 2021-12-16 Cell fusion method
CN202180095017.8A CN116917460A (zh) 2021-03-01 2021-12-16 细胞融合方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-031896 2021-03-01
JP2021031896 2021-03-01

Publications (1)

Publication Number Publication Date
WO2022185662A1 true WO2022185662A1 (ja) 2022-09-09

Family

ID=83155286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046498 WO2022185662A1 (ja) 2021-03-01 2021-12-16 細胞融合方法

Country Status (5)

Country Link
US (1) US20240301390A1 (ja)
EP (1) EP4303298A1 (ja)
JP (1) JPWO2022185662A1 (ja)
CN (1) CN116917460A (ja)
WO (1) WO2022185662A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135893A (ja) * 1983-01-26 1984-08-04 Ajinomoto Co Inc 微生物の細胞融合方法
JPS63258572A (ja) * 1987-04-17 1988-10-26 Norin Suisan Gijutsu Joho Kyokai 細胞融合装置
US5350693A (en) * 1993-04-08 1994-09-27 Long Island Jewish Medical Center Multichamber syringe device for fusing cells
JP2005021640A (ja) 2003-07-01 2005-01-27 Eisuke Fujimoto 無針注射器のジェツト流の力測定器
JP2012157312A (ja) 2011-02-02 2012-08-23 National Institute Of Advanced Industrial Science & Technology 高効率細胞融合法
WO2020116353A1 (ja) 2018-12-07 2020-06-11 株式会社ダイセル 細胞に物質を導入する装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135893A (ja) * 1983-01-26 1984-08-04 Ajinomoto Co Inc 微生物の細胞融合方法
JPS63258572A (ja) * 1987-04-17 1988-10-26 Norin Suisan Gijutsu Joho Kyokai 細胞融合装置
US5350693A (en) * 1993-04-08 1994-09-27 Long Island Jewish Medical Center Multichamber syringe device for fusing cells
JP2005021640A (ja) 2003-07-01 2005-01-27 Eisuke Fujimoto 無針注射器のジェツト流の力測定器
JP2012157312A (ja) 2011-02-02 2012-08-23 National Institute Of Advanced Industrial Science & Technology 高効率細胞融合法
WO2020116353A1 (ja) 2018-12-07 2020-06-11 株式会社ダイセル 細胞に物質を導入する装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
J. IMMUNOL., vol. 173, no. 7, 2004, pages 4297 - 307
MAKU (MEMBRANE, vol. 6, no. 5, 1981, pages 310 - 320
NATURE, vol. 256, 1975, pages 495 - 497
SOMATIC CELL GENET., vol. 1, no. 4, 1975, pages 397 - 400
SOMATIC CELL GENET., vol. 5, no. 2, 1979, pages 263 - 9

Also Published As

Publication number Publication date
JPWO2022185662A1 (ja) 2022-09-09
EP4303298A1 (en) 2024-01-10
US20240301390A1 (en) 2024-09-12
CN116917460A (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
US20200277566A1 (en) Intracellular delivery
EP2670851B1 (en) Systems, tip assemblies and kits for introducing material into cells
JP2021176904A (ja) 寛容性を誘導するための生体分子の細胞内送達
Jayasinghe et al. Stable electric-field driven cone-jetting of concentrated biosuspensions
US20190275520A1 (en) Flow-through microfluidic methods and devices featuring membrane-perturbing surface interactions for intracellular delivery
US20190212332A1 (en) MlCRO-SCREENING AND SORTING APPARATUS, PROCESS, AND PRODUCTS
CN111867837A (zh) 用于制造3d细胞结构的生物打印机
KR20160145623A (ko) 다공성 기질 상 세포 내로의 거대 카고의 효율적 전달
JP7313363B2 (ja) 細胞内送達及びそのための方法
US9567597B2 (en) Ultrasound mediated delivery of substances to algae
WO2022185662A1 (ja) 細胞融合方法
JPWO2018155607A1 (ja) 細胞処理装置、浮遊培養器、及び幹細胞の誘導方法
JP7551501B2 (ja) 細胞に物質を導入する装置
Kim et al. Expanding CAR-T cell immunotherapy horizons through microfluidics
CN108823067B (zh) 一种细胞去核显微操作针及一种细胞去核的方法
US20220251492A1 (en) Cell culture vessel and cell culture device
EP4056673A1 (en) Cell culture device
Twite et al. Intracellular delivery of mRNA to human primary T cells with microfluidic vortex shedding
US20230130686A1 (en) Devices and systems for delivery of materials to cells
Hajduk et al. The influence of microinjection parameters on cell survival and procedure efficiency
US20220297119A1 (en) Compound introduction apparatus and compound introduction method
KR101599496B1 (ko) 유전물질의 단일세포 내 정량적 전달방법
CN115516101A (zh) 将一种或多种外源物质引入免疫细胞的方法和系统
JP2023086111A (ja) 細胞加工方法および細胞加工装置
Wang et al. A simple and efficient intracellular delivery method induced by a magnetic rod

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503391

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18279557

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180095017.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021929220

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021929220

Country of ref document: EP

Effective date: 20231002