WO2022185561A1 - Temperature regulation device - Google Patents

Temperature regulation device Download PDF

Info

Publication number
WO2022185561A1
WO2022185561A1 PCT/JP2021/025626 JP2021025626W WO2022185561A1 WO 2022185561 A1 WO2022185561 A1 WO 2022185561A1 JP 2021025626 W JP2021025626 W JP 2021025626W WO 2022185561 A1 WO2022185561 A1 WO 2022185561A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop
pipeline
heat medium
motor
chiller
Prior art date
Application number
PCT/JP2021/025626
Other languages
French (fr)
Japanese (ja)
Inventor
弘明 別處
慶介 福永
太郎 雨貝
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202180078950.4A priority Critical patent/CN116547855A/en
Publication of WO2022185561A1 publication Critical patent/WO2022185561A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold

Definitions

  • the present invention relates to a temperature control device. This application claims priority from 63/155,829 filed March 3, 2021 in the United States, the contents of which are hereby incorporated by reference.
  • Patent Literature 1 discloses an in-vehicle heat exchange system that utilizes waste heat recovered from a motor and a battery for an in-vehicle temperature control device.
  • the conventional cooling circuit has a chiller for the battery and a chiller for the motor.
  • One of the objectives of one aspect of the present invention is to provide a temperature control device that can be manufactured at low cost by suppressing the number of chillers.
  • One aspect of the temperature control device of the present invention includes a heat medium circuit through which a heat medium flows, a motor that drives a vehicle, a battery that supplies power to the motor, and a chiller that removes heat from the heat medium.
  • the heat medium circuit includes a first loop that passes through the motor and the chiller to circulate the heat medium, a second loop that passes through the battery to circulate the heat medium, the motor, the battery, and a third loop that passes through the chiller to circulate the heat medium; a first switching unit that is arranged between the first loop and the second loop; and a detour that can bypass the chiller. have.
  • the first switching unit selects between a first mode in which the first loop and the second loop are separated, and a second mode in which the first loop and the second loop are connected to form the third loop.
  • the detour is provided with a valve capable of adjusting the ratio between the flow rate of the heat medium passing through the chiller and the flow rate of the heat medium passing through the detour.
  • a temperature control device that can be manufactured at low cost by suppressing the number of chillers.
  • FIG. 1 is a schematic diagram of a temperature control device of one embodiment.
  • FIG. 2 is a schematic diagram of the first mode of the heat transfer medium circuit of one embodiment.
  • FIG. 3 is a schematic diagram of the second mode of the heat transfer medium circuit of one embodiment.
  • FIG. 4 is a schematic diagram of a third mode of the thermal medium circuit of one embodiment.
  • a temperature control device according to an embodiment of the present invention will be described below with reference to the drawings. Note that, in the drawings below, in order to make each configuration easier to understand, the actual structure and the scale and number of each structure may be different.
  • FIG. 1 is a schematic diagram of a temperature control device 1 of one embodiment.
  • the temperature control device 1 is mounted in a vehicle 90 such as an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or the like, which uses a motor as a power source.
  • a vehicle 90 such as an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or the like, which uses a motor as a power source.
  • EV electric vehicle
  • HEV hybrid vehicle
  • PGV plug-in hybrid vehicle
  • the temperature control device 1 includes a motor 2, a power control device 4, an inverter 3, a radiator 5, a battery 6, a chiller 7, a heat medium circuit 10, an air conditioner 50, and a controller 60. .
  • a heat medium flows through the heat medium circuit 10 .
  • the motor 2 is a motor-generator that has both a function as an electric motor and a function as a generator.
  • the motor 2 is connected to wheels of the vehicle 90 via a speed reduction mechanism (not shown).
  • the motor 2 is driven by alternating current supplied from the inverter 3 to rotate the wheels. Thereby, the motor 2 drives the vehicle 90 . Also, the motor 2 regenerates the rotation of the wheels to generate alternating current.
  • the generated electric power is stored in the battery 6 through the inverter 3 . Oil is stored in the housing of the motor 2 for cooling and lubricating each part of the motor.
  • the inverter 3 converts the direct current of the battery 6 into alternating current. Inverter 3 is electrically connected to motor 2 . The AC current converted by the inverter 3 is supplied to the motor 2 . That is, the inverter 3 converts the DC current supplied from the battery 6 into AC current and supplies the AC current to the motor 2 .
  • the power control device 4 is also called an IPS (Integrated Power System).
  • the power control device 4 has an AC/DC conversion circuit and a DC/DC conversion circuit.
  • the AC/DC conversion circuit converts an alternating current supplied from an external power source into a direct current and supplies the direct current to the battery 6 . That is, the power control device 4 converts alternating current supplied from the external power supply into direct current in the AC/DC conversion circuit and supplies the direct current to the battery 6 .
  • the DC/DC conversion circuit converts the DC current supplied from the battery 6 into DC currents of different voltages, and supplies the DC currents to the control unit 60 that switches the switching unit 30 .
  • the battery 6 supplies power to the motor 2 via the inverter 3 . Also, the battery 6 is charged with electric power generated by the motor 2 . Battery 6 may be charged by an external power source. Battery 6 is, for example, a lithium ion battery. The battery 6 may be of other forms as long as it is a secondary battery that can be repeatedly charged and discharged.
  • the chiller 7 takes heat from the heat medium flowing through the heat medium circuit 10 .
  • the chiller 7 is connected to an air conditioning heat medium circuit 51 that passes through the air conditioner 50 .
  • the chiller 7 is a heat exchanger that exchanges heat between the heat medium in the heat medium circuit 10 and the heat medium in the heat medium circuit 51 for air conditioning.
  • the air conditioner 50 adjusts the temperature of the living space of the vehicle 90.
  • the air conditioner 50 receives heat from the heat medium in the heat medium circuit 10 via the heat medium circuit 51 for air conditioning and the chiller 7 and uses the heat to adjust the temperature of the living space of the vehicle 90 .
  • the heat medium circuit 51 for air conditioning is a circuit independent of the heat medium circuit 10, and a heat medium different from that in the heat medium circuit 10 flows.
  • the radiator 5 has a fan and releases the heat of the heat medium to the outside air to cool the heat medium. That is, the radiator 5 is an exchanger that exchanges heat with the outside air.
  • the control unit 60 uses power supplied from the battery 6 to control each unit of the temperature control device 1 .
  • the controller 60 is connected to thermometers for measuring temperatures of the motor 2, the inverter 3, the power control device 4, and the battery 6, respectively.
  • the control unit 60 controls the radiator 5, the switching unit 30 of the heat medium circuit 10, the first pump 41, and the second pump 42 based on the measurement result of the thermometer.
  • the heat medium circuit 10 has multiple pipe lines 29 , multiple switching units 30 , a first pump 41 , a second pump 42 , and an adjustment valve (valve) 39 .
  • a plurality of pipelines 29 are connected to each other to form a loop (circulation path) through which the heat medium flows.
  • these are referred to as the first pipeline 11, the second pipeline 12, the third pipeline 13, the fourth pipeline 14, the fifth pipeline 15, and the eighth pipeline. They are referred to as conduit 18, ninth conduit 19, tenth conduit 20, and eleventh conduit 21, respectively.
  • the first pump 41 and the second pump 42 are arranged in different conduits 29, respectively.
  • the first pump 41 and the second pump 42 unidirectionally pressure-feed the heat medium in the arranged pipe line 29 .
  • a first pump 41 is arranged in the first line 11 and a second pump 42 is arranged in the second line 12 .
  • the switching unit 30 is connected to the control unit 60 and switches between opening and closing to switch the pipeline 29 through which the heat medium passes.
  • the switching unit 30 is arranged at a portion where three or more conduits 29 join, and allows any two of the plurality of connected conduits 29 to communicate with each other.
  • the switching unit 30 can selectively switch which channel 29 to close.
  • the plurality of switching units 30 when the plurality of switching units 30 are distinguished from each other, they are called a first switching unit (four-way valve) 31, a second switching unit 32, a third switching unit 33, and a fourth switching unit 34.
  • the first switching section 31 is a four-way valve.
  • the first switching unit 31 has four connection ports A, B, C, and D.
  • the first switching unit 31 allows two sets of two connection ports among the four connection ports A, B, C, and D to communicate with each other.
  • the connection port A is connected to the ninth pipeline 19 .
  • the connection port C is connected to the eighth pipeline 18 .
  • Both ends of the second pipeline 12 are connected to the connection ports B and D, respectively.
  • the first switching unit 31 can switch between two connection states (first connection state and second connection state).
  • the first switching unit 31 causes the connection ports A and C and the connection ports B and D to communicate with each other in the first connection state (for example, FIG. 2).
  • the first switching unit 31 in the first connection state allows both ends of the second pipeline 12 to communicate with each other while allowing the eighth pipeline 18 and the ninth pipeline 19 to communicate with each other.
  • the first switching unit 31 causes the connection ports A and B and the connection ports C and D to communicate with each other in the first connection state (for example, FIG. 3).
  • the first switching portion 31 in the second connection state allows the eighth conduit 18 and one end of the second conduit 12 to communicate with each other and allows the ninth conduit 19 and the other end of the second conduit 12 to communicate with each other.
  • a four-way valve is employed as the first switching unit 31.
  • the pipe configuration of the heat medium circuit 10 can be simplified, and the space of the heat medium circuit 10 can be saved.
  • the number of the switching sections 30 can be reduced.
  • the number of objects controlled by the control unit 60 can be reduced, and the number of components such as wiring between the switching unit 30 and the control unit 60 can be reduced.
  • Such an effect can be obtained when at least one of the plurality of switching units 30 is a four-way valve.
  • the second switching unit 32 is composed of a plurality of valves 32a, 32b and a plurality of pipelines 32c, 32d. More specifically, the second switching unit 32 has a first valve (three-way valve) 32a, a second valve (two-way valve) 32b, a first connecting pipe line 32c, and a second connecting pipe line 32d.
  • the second switching section 32 functions as the switching section 30 that switches the pipe line to be connected by operating a plurality of valves 32a and 32b.
  • a four-way valve may be employed instead of the second switching section 32 . Since a four-way valve is generally expensive, by adopting the configuration of the present embodiment as the second switching unit 32, the heat medium circuit can be configured at low cost.
  • the first connecting pipeline 32c includes a connecting portion of the first pipeline 11 and the sixth pipeline (first section) 16, a connecting portion of the ninth pipeline 19 and the seventh pipeline (second section) 17, extends across the In addition, the second connecting pipeline 32 d extends across between the connecting portion of the fifth pipeline 15 and the sixth pipeline 16 and the connecting portion of the eighth pipeline 18 and the seventh pipeline 17 .
  • the first connecting pipeline 32c and the second connecting pipeline 32d connect a fourth loop L4 and a fifth loop L5, which will be described later (see FIG. 4).
  • the first valve 32a is a three-way valve.
  • the first valve 32 a is arranged at the connecting portion of the first connecting line 32 c , the ninth line 19 and the seventh line 17 .
  • the first valve 32 a allows one of the first connecting pipeline 32 c and the seventh pipeline 17 to communicate with the ninth pipeline 19 . Thereby, the first valve 32 a causes the heat medium flowing through the ninth pipeline 19 to flow to either the first connecting pipeline 32 c or the seventh pipeline 17 .
  • the second valve 32b is a two-way valve.
  • a second valve 32 b is arranged in the path of the sixth conduit 16 .
  • the second valve 32b can switch between an open state in which the heat medium flows through the sixth conduit 16 and a closed state in which the flow of the heat medium is stopped.
  • the second valve 32b of this embodiment is a solenoid valve controlled by the controller 60 .
  • the third switching section 33 is a three-way valve.
  • the third switching portion 33 is arranged at the connecting portion of the first pipeline 11 , the third pipeline 13 , and the fourth pipeline 14 .
  • the third switching unit 33 allows one of the third pipeline 13 and the fourth pipeline 14 to communicate with the first pipeline 11 . Thereby, the third switching unit 33 causes the heat medium flowing through the first pipeline 11 to flow to either the third pipeline 13 or the fourth pipeline 14 .
  • the fourth switching section 34 is a three-way valve.
  • the fourth switching section 34 is arranged in the path of the first pipeline 11 .
  • An end portion of the eleventh pipeline 21 is connected to the fourth switching portion 34 . That is, the fourth switching portion 34 is arranged at the connecting portion between the first pipeline 11 and the eleventh pipeline 21 .
  • the fourth switching unit 34 closes the eleventh pipe line 21 to allow the heat medium to pass through the first pipe line 11, or closes the upstream side of the first pipe line 11 to switch the heat medium from the eleventh pipe line 21 to the first pipe.
  • the downstream side of the pipe 11 is connected and the heat medium is passed through the 11th pipe 21 .
  • the adjustment valve 39 is a mixing valve that adjusts the flow rate of the heat medium flowing out in two directions on the downstream side.
  • a regulating valve 39 is arranged in the path of the ninth conduit 19 .
  • the end of the tenth pipeline 20 is connected to the adjustment valve 39 . That is, the adjustment valve 39 is arranged at the connecting portion between the ninth pipeline 19 and the tenth pipeline 20 .
  • the adjustment valve 39 is connected to the control unit 60, and adjusts the ratio of the flow rate of the heat medium flowing downstream of the ninth pipeline 19 and the flow rate of the heat medium flowing through the tenth pipeline 20 according to a signal from the control unit 60. Adjustable.
  • each conduit 29 will be specifically described below. In the description of each pipeline 29, "one end” and “the other end” of the pipeline 29 simply indicate either end of the pipeline 29. Therefore, it does not necessarily indicate the flow direction of the heat transfer medium.
  • first pipeline 11 One end of the first pipeline 11 is connected to the sixth pipeline 16 and the first connecting pipeline 32c.
  • the other end of first pipeline 11 is connected to third pipeline 13 and fourth pipeline 14 .
  • the first line 11 passes through the first pump 41 , the power controller 4 , the inverter 3 and the motor 2 .
  • the first pump 41 pressure-feeds the heat medium from one end side toward the other end side in the first pipeline 11 .
  • One end of the second conduit 12 is connected to the connection port D of the first switching section 31 .
  • the other end of the second conduit 12 is connected to the connection port B of the first switching section 31 .
  • the second line 12 passes through the second pump 42 and the battery 6 .
  • the second pump 42 pumps the heat medium from one end side toward the other end side in the second pipeline 12 .
  • One end of the third pipeline 13 is connected to the first pipeline 11 and the fourth pipeline 14 via the third switching section 33 .
  • the other end of the third pipeline 13 is connected to the fourth pipeline 14 and the fifth pipeline 15 .
  • a third conduit 13 passes through the radiator 5 .
  • the heat medium passing through the third pipeline 13 is cooled by the radiator 5 .
  • One end of the fourth pipeline 14 is connected to the first pipeline 11 and the third pipeline 13 via the third switching section 33 .
  • the other end of fourth pipeline 14 is connected to third pipeline 13 and fifth pipeline 15 . That is, the fourth conduit 14 is connected to both ends of the third conduit 13 .
  • One of the third pipeline 13 and the fourth pipeline 14 bypasses the other.
  • One end of the fifth pipeline 15 is connected to the third pipeline 13 and the fourth pipeline 14 .
  • the other end of the fifth pipeline 15 is connected to the sixth pipeline 16 and the second connecting pipeline 32d.
  • One end of the sixth pipeline 16 is connected to the fifth pipeline 15 and the second connecting pipeline 32d.
  • the other end of the sixth pipeline 16 is connected to the first pipeline 11 and the first connecting pipeline 32c.
  • One end of the seventh pipeline 17 is connected to the ninth pipeline 19 and the first connecting pipeline 32c.
  • the other end of the seventh pipeline 17 is connected to the eighth pipeline 18 and the second connecting pipeline 32d.
  • One end of the eighth pipeline 18 is connected to the seventh pipeline 17 and the second connecting pipeline 32d.
  • the other end of the eighth conduit 18 is connected to the connection port C of the first switching section 31 .
  • One end of the ninth conduit 19 is connected to the connection port A of the first switching section 31 .
  • the other end of the ninth pipeline 19 is connected to the seventh pipeline 17 and the first connecting pipeline 32c via the first valve 32a.
  • a ninth line 19 passes through the chiller 7 .
  • the heat medium passing through the ninth pipeline 19 is cooled by the chiller 7 .
  • the tenth pipeline (detour) 20 is connected to the ninth pipeline 19 .
  • the tenth pipeline 20 can bypass the chiller 7 .
  • the upstream end of the tenth pipeline 20 branches off from the ninth pipeline 19 via a regulating valve 39 on the upstream side of the chiller 7 (that is, between the first switching unit 31 and the chiller 7).
  • the downstream end of the tenth pipeline 20 joins the ninth pipeline 19 downstream of the chiller 7 (that is, between the chiller 7 and the first valve 32a).
  • the eleventh pipeline 21 is connected to the first pipeline 11 .
  • the eleventh pipeline 21 can bypass the motor 2 .
  • the upstream end of the eleventh pipeline 21 branches off from the first pipeline 11 on the upstream side of the motor 2 (that is, between the inverter 3 and the motor 2). Further, the downstream end of the eleventh pipeline 21 is connected to the first pipeline 11 via the fourth switching section 34 on the downstream side of the motor 2 (that is, between the motor 2 and the third switching section 33). merge.
  • the heat medium circuit 10 of the present embodiment has a first mode, a second mode, and a third mode that are transitioned by switching of the switching section 30 .
  • FIG. 2 is a schematic diagram of the heat medium circuit 10 in the first mode.
  • FIG. 3 is a schematic diagram of the heat carrier circuit 10 in the second mode.
  • FIG. 4 is a schematic diagram of the heat carrier circuit 10 in the third mode.
  • the heat medium circuit 10 in each mode includes loops (first loop L1, first sub-loop L1a, second loop L2, third loop L3, third sub-loop L3a, fourth loop L4) in which the heat medium flows and circulates in one direction. , a fourth sub-loop L4a, and a fifth loop L5). Therefore, the heat medium circuit 10 has a first loop L1, a first sub-loop L1a, a second loop L2, a third loop L3, a third sub-loop L3a, a fourth loop L4, a fourth sub-loop L4a, and a fifth loop L5. .
  • the heat medium circuit 10 in the first mode has a first loop L1 and a second loop L2.
  • the first loop L1 includes a first pipeline 11, a fourth pipeline 14, a fifth pipeline 15, a second connecting pipeline 32d, an eighth pipeline 18, a ninth pipeline 19, and a first connecting pipeline 32c. are connected in a loop to circulate the heat medium.
  • the second loop L2 connects both ends of the second pipeline 12 in a loop shape and circulates the heat medium.
  • the heat medium circuit 10 is set to the first mode by switching the switching unit 30 as follows. That is, the first switching unit 31 allows the eighth conduit 18 and the ninth conduit 19 to communicate with each other, and allows both ends of the second conduit 12 to communicate with each other.
  • the second switching unit 32 connects the ninth pipeline 19, the first connecting pipeline 32c, and the first pipeline 11, and connects the fifth pipeline 15, the second connecting pipeline 32d, and the eighth pipeline 18. communicate.
  • the third switching unit 33 connects the first pipeline 11 and the fourth pipeline 14 and closes the third pipeline 13 .
  • the fourth switching unit 34 closes the eleventh pipeline 21 and opens the first pipeline 11 .
  • the first loop L1 passes through the first pump 41, power controller 4, inverter 3, motor 2, and chiller 7 to circulate the heat medium.
  • the heat medium is pumped by the first pump 41 counterclockwise in the figure.
  • the heat medium pressure-fed by the first pump 41 passes through each part of the first loop L1 in the order of the power control device 4, the inverter 3, the motor 2, and the chiller 7.
  • heat from the motor 2, the inverter 3, and the power control device 4 moves to the heat medium. Furthermore, this heat is recovered by the chiller 7 and utilized in the air conditioner 50 . Thereby, the heat generated from the motor 2, the inverter 3, and the power control device 4 can be recovered by the chiller 7 in the first loop L1. That is, motor 2 , inverter 3 , and power control device 4 are cooled by chiller 7 .
  • the first sub-loop L1a can be configured by switching the path passed through the first loop L1 from the fourth pipeline 14 to the third pipeline 13. That is, the first mode has a first loop L1 and a first sub-loop L1a that are switchable to each other.
  • the first sub-loop L1a passes through the radiator 5 bypassing part of the first loop L1. Switching between the third pipeline 13 and the fourth pipeline 14 is performed by the third switching unit 33 .
  • the first sub-loop L1a is configured by connecting the first pipeline 11 and the third pipeline 13 and closing the fourth pipeline 14 in the third switching section 33 .
  • the first loop L1 is selected when the amount of heat generated by the motor 2, the inverter 3, and the power control device 4 is relatively small.
  • the heat medium can be cooled only by the chiller 7 without passing through the radiator 5, and waste heat can be efficiently used.
  • the first sub-loop L1a is selected when the amounts of heat generated by the motor 2, the inverter 3, and the power control device 4 are relatively large.
  • the heat medium passes through not only the chiller 7 but also the radiator 5, thereby increasing the cooling efficiency of the heat medium. Therefore, even when the amount of heat generated by the motor 2, the inverter 3, and the electric power control device 4 is large, the temperature of the heat medium can be maintained appropriately.
  • the heat medium may bypass the motor 2 in the first loop L1 or the first sub-loop L1a.
  • circulating the heat medium in the first loop L1 (or the first sub-loop L1a) causes the inverter 3 and Heat from the power controller 4 is transferred to the motor 2 .
  • the heat of the inverter 3 and the power control device 4 becomes difficult to move to the chiller 7, and the heat exchange efficiency in the chiller 7 decreases.
  • the first loop L1 and the first sub-loop L1a are provided with the eleventh pipeline 21 that can bypass the motor 2 .
  • the heat medium is allowed to pass through a route bypassing the motor 2 , and the heat of the inverter 3 and the power control device 4 can be efficiently transferred to the chiller 7 . Furthermore, when the temperature of the motor 2 is low, by passing the heat medium through a path bypassing the motor 2, the heat generated from the motor 2 does not move to the heat medium, and the motor 2 can be quickly warmed up. can. As a result, the viscosity of the oil filled in the housing of the motor 2 can be quickly lowered, and the motor 2 can be driven in an optimum state.
  • the second loop L2 passes through the second pump 42 and the battery 6 to circulate the heat medium.
  • the heat medium is pumped by the second pump 42 counterclockwise in the figure.
  • the battery 6 may experience local degradation of its characteristics when there is variation in the temperature distribution of the plurality of cells that constitute it.
  • the temperature of the plurality of cells of the battery 6 can be kept uniform by circulating the heat medium in the second loop L2.
  • the heat medium circuit 10 in the first mode has a first loop L1 (or first sub-loop L1a) passing through the motor 2 and a second loop L2 passing through the battery 6.
  • the first loop L1 (or the first sub-loop L1a) and the second loop L2 are independent of each other. Therefore, the motor 2 and the battery 6 can be adjusted to different optimum temperatures.
  • the loops are independent of each other as used herein means that the heat mediums circulating in the loops are not constantly mixed with each other.
  • the second mode heat medium circuit 10 has a third loop L3.
  • the third loop L3 includes a first pipeline 11, a fourth pipeline 14, a fifth pipeline 15, a second connecting pipeline 32d, an eighth pipeline 18, a second pipeline 12, a ninth pipeline 19, and a 1 connection pipeline 32c is connected in a loop to circulate the heat medium.
  • the heat medium circuit 10 is set to the second mode by switching the switching unit 30 as follows. That is, the first switching section 31 allows the eighth conduit 18 and one end of the second conduit 12 to communicate with each other, and allows the other end of the second conduit 12 to communicate with the ninth conduit 19 .
  • the second switching unit 32 connects the ninth pipeline 19, the first connecting pipeline 32c, and the first pipeline 11, and connects the fifth pipeline 15, the second connecting pipeline 32d, and the eighth pipeline 18. communicate.
  • the third switching unit 33 connects the first pipeline 11 and the fourth pipeline 14 and closes the third pipeline 13 .
  • the fourth switching unit 34 closes the eleventh pipeline 21 and opens the first pipeline 11 .
  • the third loop L3 passes through the first pump 41, power control device 4, inverter 3, motor 2, second pump 42, battery 6, and chiller 7 to circulate the heat medium.
  • the heat medium is pumped by the first pump 41 and the second pump 42 in the third loop L3.
  • the heat medium pressure-fed by the first pump 41 and the second pump 42 passes through each part of the third loop L3 in the order of the power control device 4, the inverter 3, the motor 2, the battery 6, and the chiller 7.
  • the heat of the motor 2, the inverter 3, the power control device 4, and the battery 6 is transferred to the heat medium. Furthermore, this heat is recovered by the chiller 7 and utilized in the air conditioner 50 . In the third loop L3, the heat generated by the motor 2, the inverter 3, the power controller 4, and the battery 6 can be recovered by the chiller 7. Motor 2 , inverter 3 , power controller 4 and battery 6 are cooled by chiller 7 .
  • the temperature of the battery 6 is lower than that of the heat medium, the heat transferred from the motor 2 , the inverter 3 , and the power control device 4 to the heat medium is transferred to the battery 6 .
  • the temperature of the battery 6 can be increased, and deterioration of the characteristics of the battery 6 can be suppressed.
  • the chiller 7 of this embodiment transfers heat from the heat medium circuit 10 to the heat medium circuit 51 for air conditioning.
  • the heat received by the heat medium circuit 51 for air conditioning from the heat medium circuit 10 via the chiller 7 is used in the air conditioner 50 for heating the vehicle interior.
  • a tenth pipeline 20 bypassing the chiller 7 is provided in the third loop L3 and the third sub-loop L3a of the present embodiment. Further, the tenth pipeline 20 is provided with an adjustment valve 39 capable of adjusting the ratio between the flow rate of the heat medium passing through the chiller 7 and the flow rate of the heat medium passing through the tenth pipeline 20 . Therefore, the amount of heat transferred from the heat medium circuit 10 to the heat medium circuit 51 for air conditioning can be adjusted by operating the adjustment valve 39 .
  • the adjustment valve 39 increases the flow rate of the heat medium passing through the chiller 7 and decreases the flow rate of the heat medium passing through the tenth pipeline 20 when the demand for heating in the vehicle is relatively high.
  • the regulating valve 39 reduces the flow rate of the heat medium passing through the chiller 7 and increases the flow rate of the heat medium passing through the tenth pipeline 20 when the heating demand in the vehicle is relatively low.
  • the heat medium circuit 10 in the second mode of the present embodiment can adjust the amount of heat absorbed by the heat medium in the chiller 7 by operating the adjustment valve 39 .
  • the temperature of the heat medium circulating in the heat medium circuit 10 can be adjusted, and the battery 6 can be appropriately cooled or heated by the heat medium.
  • the regulating valve 39 can also provide 100:0 regulation where all heat transfer medium reaching the regulating valve 39 from the upstream side flows to either the chiller 7 or the tenth line 20 .
  • the regulating valve 39 causes all of the heat medium to flow through the tenth pipeline 20 , the heat transferred to the heat medium from the motor 2 , the inverter 3 , and the power controller 4 is not radiated in the chiller 7 .
  • the heat medium circuit 10 preferably cools the heat medium in the radiator 5 by circulating the heat medium in the third sub-loop L3a.
  • the adjustment valve 39 may be a three-way valve instead of the mixing valve.
  • the third sub-loop L3a can be configured by switching the path passed through the third loop L3 from the fourth pipeline 14 to the third pipeline 13. That is, the second mode has a third loop L3 and a third sub-loop L3a that are switchable with each other.
  • the third sub-loop L3a is configured by connecting the first pipeline 11 and the third pipeline 13 and closing the fourth pipeline 14 in the third switching section 33 .
  • the heat medium circuit 10 in the second mode switches the route through which the heat medium passes from the third loop L3 to the third sub-loop L3a when the temperature of the heat medium exceeds a preset threshold.
  • the heat medium is cooled by the radiator 5, so that the temperature of the heat medium can be kept at an appropriate level even when the amount of heat generated by the motor 2, the inverter 3, and the power control device 4 is large. .
  • it is possible to reduce the load on the chiller 7 while suppressing the temperature of the motor 2, the inverter 3, and the power control device 4 from becoming too high.
  • the third loop L3 and the third sub-loop L3a are provided with the eleventh pipeline 21 that can bypass the motor 2 . Therefore, in the third loop L3 or the third sub-loop L3a, the heat medium may bypass the motor 2 as in the case of the first loop L1. In this case, the heat of the inverter 3 and the power control device 4 can be efficiently transferred to the chiller 7 without being transferred to the motor 2 .
  • the third mode heat medium circuit 10 has a fourth loop L4 and a fifth loop L5.
  • the fourth loop L4 connects the first pipeline 11, the fourth pipeline 14, the fifth pipeline 15, and the sixth pipeline 16 in a loop and circulates the heat medium. That is, the fourth loop L4 is formed by connecting both ends of the first pipeline 11 via the fourth pipeline 14, the fifth pipeline 15, and the sixth pipeline 16 in a loop shape.
  • the fifth loop L5 connects the second pipeline 12, the ninth pipeline 19, the seventh pipeline 17, and the eighth pipeline 18 in a loop and circulates the heat medium.
  • the heat medium circuit 10 is set to the third mode by switching the switching unit 30 as follows. That is, the first switching section 31 allows the eighth conduit 18 and one end of the second conduit 12 to communicate with each other, and allows the other end of the second conduit 12 to communicate with the ninth conduit 19 .
  • the second switching unit 32 communicates the ninth pipeline 19 , the seventh pipeline 17 and the eighth pipeline 18 and communicates the fifth pipeline 15 , the sixth pipeline 16 and the first pipeline 11 .
  • the third switching unit 33 connects the first pipeline 11 and the fourth pipeline 14 and closes the third pipeline 13 .
  • the fourth switching unit 34 closes the eleventh pipeline 21 and opens the first pipeline 11 .
  • the fourth loop L4 passes through the first pump 41, power control device 4, inverter 3, and motor 2 to circulate the heat medium.
  • the heat medium is pumped by the first pump 41 counterclockwise in the figure.
  • the heat medium pressure-fed by the first pump 41 passes through each part of the fourth loop L4 in the order of the power control device 4, the inverter 3, and the motor 2.
  • the heat from the motor 2, the inverter 3, and the power control device 4 moves to the heat medium. That is, the heat medium is warmed by motor 2 , inverter 3 , and power control device 4 .
  • the heat stored in the heat medium in the fourth loop L4 of the third mode is transferred to the chiller 7 and efficiently used in the air conditioner 50 when the mode is switched to the first mode or the second mode. can.
  • the fourth sub-loop L4a can be configured by switching the path passed through the fourth loop L4 from the fourth pipeline 14 to the third pipeline 13. That is, the third mode has a fourth loop L4 and a fourth sub-loop L4a switchable to each other.
  • the fourth sub-loop L4a is configured by allowing the first pipeline 11 and the third pipeline 13 to communicate with each other and closing the fourth pipeline 14 in the third switching section 33 .
  • the fourth loop L4 and the fourth sub-loop L4a are provided with the eleventh pipeline 21 that can bypass the motor 2 . Therefore, in the fourth loop L4 or the fourth sub-loop L4a, the heat medium may bypass the motor 2 as in the case of the first loop L1 and the third loop L3.
  • the heat medium circuit 10 in the third mode switches the route through which the heat medium passes from the fourth loop L4 to the fourth sub-loop L4a when the temperature of the heat medium exceeds a preset threshold.
  • the heat from motor 2, inverter 3, and power control device 4 is transferred to the heat medium. Furthermore, this heat is radiated to the outside air by the radiator 5 . That is, motor 2 , inverter 3 , and power control device 4 are cooled by radiator 5 .
  • the fifth loop L5 passes through the second pump 42, the battery 6, and the chiller 7 to circulate the heat medium.
  • the heat medium is pumped by the second pump 42 in the fifth loop L5.
  • the heat medium pressure-fed by the second pump 42 passes through each part of the fifth loop L5 in the order of the battery 6 and the chiller 7 .
  • the heat of the battery 6 is transferred to the heat medium. Furthermore, this heat is recovered by the chiller 7 and utilized in the air conditioner 50 . Heat generated from the battery 6 can be recovered by the chiller 7 in the fifth loop L5. Battery 6 is cooled by chiller 7 .
  • a tenth pipeline 20 bypassing the chiller 7 and an adjustment valve 39 are provided in the fifth loop L5 of the present embodiment. Therefore, the heat medium circuit 10 in the third mode of the present embodiment can adjust the amount of heat absorbed by the heat medium in the chiller 7 by operating the adjustment valve 39 .
  • the battery 6 may degrade in performance if the temperature is too low.
  • the adjustment valve 39 can adjust the flow rate of the heat medium passing through the chiller 7, and can prevent the temperature of the heat medium circulating through the fifth loop L5 from becoming too low. As a result, excessive cooling of the battery 6 can be suppressed, and the reliability of the battery 6 can be improved.
  • the heat medium circuit 10 in the third mode has a fourth loop L4 (or fourth sub-loop L4a) passing through the motor 2 and a fifth loop L5 passing through the battery 6. Also, the fourth loop L4 (or the fourth sub-loop L4a) and the fifth loop L5 are independent of each other. Therefore, while the battery 6 is cooled by the chiller 7, the heat medium can be circulated to the motor 2 in an independent loop. Thereby, the motor 2 and the battery 6 can be adjusted to different optimum temperatures.
  • the heat medium circuit 10 may have other modes that can be switched by the switching unit 30 .
  • the first switching section 31 is arranged between the first loop L1 and the second loop L2. Further, as shown in FIGS. 2 and 3, the first switching unit 31 connects the first loop L1 and the second loop L2 in a first mode that separates the first loop L1 and the second loop L2. It is possible to switch between the second mode and the third loop L3.
  • the first loop L1 passes through the motor 2 and the chiller 7, and the third loop L3 passes through the motor 2, the battery 6 and the chiller 7.
  • the waste heat of the motor 2 and the waste heat of the battery 6 can be transferred to the heat medium circuit 51 for air conditioning and used for the air conditioner 50 by one chiller.
  • the heat medium circuit 10 can be simplified as a whole, and the temperature control device 1 that can be manufactured at low cost can be provided.
  • the second switching section 32 is arranged between the fourth loop L4 and the fifth loop L5. Further, as shown in FIGS. 3 and 4, the second switching unit 32 connects the third mode in which the fourth loop L4 and the fifth loop L5 are separated, and the fourth loop L4 and the fifth loop L5. It is possible to switch between the second mode and the third loop L3.
  • the fifth loop L5 passes through the battery 6 and chiller 7 and does not pass through the motor 2. That is, the second switching unit 32 can independently form a loop passing through the battery 6 and the chiller 7 and a loop passing through the motor 2 . Thereby, heat can be transferred from the battery 6 to the chiller 7 regardless of the temperature of the motor 2 , and the waste heat of the battery 6 can be efficiently recovered by the chiller 7 .
  • the first connecting pipe line 32c and the second connecting pipe line 32d of the second switching section 32 connect the fourth loop L4 and the fifth loop L5.
  • a sixth pipe line (first section) 16 which is one section of the fourth loop L4, is arranged between one end of the first connecting pipe line 32c and one end of the second connecting pipe line 32d.
  • a seventh pipeline (second section) 17, which is one section of the fifth loop L5 is arranged between the other end of the first connecting pipeline 32c and the other end of the second connecting pipeline 32d.
  • the fourth loop L4 has the sixth pipeline 16 located between the connecting portions of the first connecting pipeline 32c and the second connecting pipeline 32d.
  • the fifth loop L5 also has a seventh pipeline 17 located between the connecting portions of the first connecting pipeline 32c and the second connecting pipeline 32d.
  • a second valve 32b which is a two-way valve, is arranged in the sixth pipeline 16, and a three-way valve is installed in the connection part of the seventh pipeline 17 with the first connecting pipeline 32c.
  • a certain first valve 32a is arranged.
  • two sets of two out of the four pipelines (the first pipeline 11, the fifth pipeline 15, the eighth pipeline 18, and the ninth pipeline 19) without using a four-way valve
  • the conduits can be communicated with each other.
  • Four-way valves are generally expensive and difficult to maintain depending on the application.
  • the second switching unit 32 of the present embodiment since it is not necessary to use a four-way valve, it is possible to construct a switching unit that is inexpensive and excellent in maintainability.
  • the second valve 32b may be provided in the seventh pipeline 17, and the first valve 32a may be arranged at the end of the sixth pipeline 16. Further, in the second switching section 32, the first valve 32a may be arranged at either end of the sixth pipeline 16 or the seventh pipeline 17. As shown in FIG. That is, the second valve 32b is arranged in either one of the sixth pipeline 16 and the seventh pipeline 17, and the connection with the other first connecting pipeline 32c or the second connecting pipeline 32d is If the 1st valve
  • the second pump 42 and the battery 6 are arranged in the second pipe line 12, but a heater may also be arranged.
  • the heat medium flowing through the heat medium circuit 10 can be heated by the heater, and it is easy to keep the battery 6 at an appropriate temperature.

Abstract

A temperature regulation device according to one embodiment of the present invention comprises: a heat medium circuit through which a heat medium flows; a motor which drives a vehicle; a battery which supplies electric power to the motor; and a chiller which draws heat from the heat medium. The heat medium circuit has: a first loop which allows circulation of the heat medium by passing through the motor and the chiller; a second loop which allows circulation of the heat medium by passing through the battery; a third loop which allows circulation of the heat medium by passing through the motor, the battery, and the chiller; a first switching part which is disposed between the first loop and the second loop; and a bypass passage that enables detour around the chiller. The first switching part enables switching between a first mode for separating the first loop and the second loop, and a second mode for connecting the first loop and the second loop to form the third loop. The bypass passage is provided with a valve that is capable of regulating the proportion of the flow rate of the heat medium passing through the chiller and the flow rate of the heat medium passing through the bypass passage.

Description

温調装置Temperature controller
 本発明は、温調装置に関する。
 本願は、2021年3月3日に、アメリカ合衆国に出願された63/155,829に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a temperature control device.
This application claims priority from 63/155,829 filed March 3, 2021 in the United States, the contents of which are hereby incorporated by reference.
 電気自動車又はハイブリッド自動車では、モータ、バッテリ等を冷却する冷却回路が搭載される。特許文献1には、モータおよびバッテリから回収された廃熱を車載温調装置に利用する車載用の熱交換システムが開示されている。 An electric vehicle or hybrid vehicle is equipped with a cooling circuit that cools the motor, battery, etc. Patent Literature 1 discloses an in-vehicle heat exchange system that utilizes waste heat recovered from a motor and a battery for an in-vehicle temperature control device.
米国特許第10183544号明細書U.S. Patent No. 10183544
 先行文献の熱交換システムでは、バッテリから廃熱を回収するチラーと、モータから廃熱を回収するチラーと、がそれぞれ設けられている。すなわち、従来の冷却回路は、バッテリ用およびモータ用のチラーをそれぞれ有するため、構成要素の点数が増加してコスト増の要因となっていた。 In the heat exchange system of the prior art, a chiller that recovers waste heat from the battery and a chiller that recovers waste heat from the motor are provided. That is, the conventional cooling circuit has a chiller for the battery and a chiller for the motor.
 本発明の一つの態様は、チラーの数を抑制することで安価に製造できる温調装置の提供を目的の一つとする。 One of the objectives of one aspect of the present invention is to provide a temperature control device that can be manufactured at low cost by suppressing the number of chillers.
 本発明の温調装置の一つの態様は、熱媒体が流れる熱媒体回路と、車両を駆動するモータと、前記モータに電力を供給するバッテリと、前記熱媒体から熱を奪うチラーと、を備える。前記熱媒体回路は、前記モータおよび前記チラーを通過して前記熱媒体を循環させる第1ループと、前記バッテリを通過して前記熱媒体を循環させる第2ループと、前記モータ、前記バッテリ、および前記チラーを通過して前記熱媒体を循環させる第3ループと、前記第1ループと前記第2ループとの間に配置される第1切替部と、前記チラーを迂回可能な迂回路と、を有する。前記第1切替部は、前記第1ループと前記第2ループと分離する第1モードと、前記第1ループと前記第2ループとを接続して前記第3ループとする第2モードと、を切り替え可能である。前記迂回路には、前記チラーを通過する前記熱媒体の流量と前記迂回路を通過する前記熱媒体の流量との比率を調整できるバルブが設けられる。 One aspect of the temperature control device of the present invention includes a heat medium circuit through which a heat medium flows, a motor that drives a vehicle, a battery that supplies power to the motor, and a chiller that removes heat from the heat medium. . The heat medium circuit includes a first loop that passes through the motor and the chiller to circulate the heat medium, a second loop that passes through the battery to circulate the heat medium, the motor, the battery, and a third loop that passes through the chiller to circulate the heat medium; a first switching unit that is arranged between the first loop and the second loop; and a detour that can bypass the chiller. have. The first switching unit selects between a first mode in which the first loop and the second loop are separated, and a second mode in which the first loop and the second loop are connected to form the third loop. Switchable. The detour is provided with a valve capable of adjusting the ratio between the flow rate of the heat medium passing through the chiller and the flow rate of the heat medium passing through the detour.
 本発明の一つの態様によれば、チラーの数を抑制することで安価に製造できる温調装置が提供される。 According to one aspect of the present invention, there is provided a temperature control device that can be manufactured at low cost by suppressing the number of chillers.
図1は、一実施形態の温調装置の概略図である。FIG. 1 is a schematic diagram of a temperature control device of one embodiment. 図2は、一実施形態の熱媒体回路の第1モードの概略図である。FIG. 2 is a schematic diagram of the first mode of the heat transfer medium circuit of one embodiment. 図3は、一実施形態の熱媒体回路の第2モードの概略図である。FIG. 3 is a schematic diagram of the second mode of the heat transfer medium circuit of one embodiment. 図4は、一実施形態の熱媒体回路の第3モードの概略図である。FIG. 4 is a schematic diagram of a third mode of the thermal medium circuit of one embodiment.
 以下、図面を参照しながら、本発明の実施形態に係る温調装置について説明する。なお、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数などを異ならせる場合がある。 A temperature control device according to an embodiment of the present invention will be described below with reference to the drawings. Note that, in the drawings below, in order to make each configuration easier to understand, the actual structure and the scale and number of each structure may be different.
 図1は、一実施形態の温調装置1の概略図である。
 温調装置1は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、等、モータを動力源とする車両90に搭載される。
FIG. 1 is a schematic diagram of a temperature control device 1 of one embodiment.
The temperature control device 1 is mounted in a vehicle 90 such as an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or the like, which uses a motor as a power source.
 温調装置1は、モータ2と、電力制御装置4と、インバータ3と、ラジエータ5と、バッテリ6と、チラー7と、熱媒体回路10と、空調機器50と、制御部60と、を備える。熱媒体回路10には、熱媒体が流れる。 The temperature control device 1 includes a motor 2, a power control device 4, an inverter 3, a radiator 5, a battery 6, a chiller 7, a heat medium circuit 10, an air conditioner 50, and a controller 60. . A heat medium flows through the heat medium circuit 10 .
 モータ2は、電動機としての機能と発電機としての機能とを兼ね備えた電動発電機である。モータ2は、図示略の減速機構を介して、車両90の車輪に接続される。モータ2は、インバータ3から供給される交流電流により駆動し、車輪を回転させる。これにより、モータ2は、車両90を駆動する。また、モータ2は、車輪の回転を回生し交流電流を発電する。発電された電力は、インバータ3を通じてバッテリ6に蓄えられる。モータ2のハウジング内には、モータの各部を冷却および潤滑させるオイルが貯留される。 The motor 2 is a motor-generator that has both a function as an electric motor and a function as a generator. The motor 2 is connected to wheels of the vehicle 90 via a speed reduction mechanism (not shown). The motor 2 is driven by alternating current supplied from the inverter 3 to rotate the wheels. Thereby, the motor 2 drives the vehicle 90 . Also, the motor 2 regenerates the rotation of the wheels to generate alternating current. The generated electric power is stored in the battery 6 through the inverter 3 . Oil is stored in the housing of the motor 2 for cooling and lubricating each part of the motor.
 インバータ3は、バッテリ6の直流電流を交流電流に変換する。インバータ3は、モータ2と電気的に接続される。インバータ3によって変換された交流電流は、モータ2に供給される。すなわち、インバータ3は、バッテリ6から供給される直流電流を交流電流に変換してモータ2に供給する。 The inverter 3 converts the direct current of the battery 6 into alternating current. Inverter 3 is electrically connected to motor 2 . The AC current converted by the inverter 3 is supplied to the motor 2 . That is, the inverter 3 converts the DC current supplied from the battery 6 into AC current and supplies the AC current to the motor 2 .
 電力制御装置4は、IPS(Integrated Power System)とも呼ばれる。電力制御装置4は、AC/DC変換回路およびDC/DC変換回路を有する。AC/DC変換回路は、外部電源から供給される交流電流を直流電流に変換しバッテリ6に供給する。すなわち、電力制御装置4は、AC/DC変換回路において、外部電源から供給される交流電流を直流電流に変換しバッテリ6に供給する。DC/DC変換回路は、バッテリ6から供給される直流電流を電圧の異なる直流電流に変換し、切替部30の切り替えを行う制御部60に供給する。 The power control device 4 is also called an IPS (Integrated Power System). The power control device 4 has an AC/DC conversion circuit and a DC/DC conversion circuit. The AC/DC conversion circuit converts an alternating current supplied from an external power source into a direct current and supplies the direct current to the battery 6 . That is, the power control device 4 converts alternating current supplied from the external power supply into direct current in the AC/DC conversion circuit and supplies the direct current to the battery 6 . The DC/DC conversion circuit converts the DC current supplied from the battery 6 into DC currents of different voltages, and supplies the DC currents to the control unit 60 that switches the switching unit 30 .
 バッテリ6は、インバータ3を介してモータ2に電力を供給する。また、バッテリ6は、モータ2によって発電された電力を充電する。バッテリ6は、外部電源によって充填されていてもよい。バッテリ6は、例えば、リチウムイオン電池である。バッテリ6は、繰り返し充電および放電が可能な二次電池であれば、他の形態であってもよい。 The battery 6 supplies power to the motor 2 via the inverter 3 . Also, the battery 6 is charged with electric power generated by the motor 2 . Battery 6 may be charged by an external power source. Battery 6 is, for example, a lithium ion battery. The battery 6 may be of other forms as long as it is a secondary battery that can be repeatedly charged and discharged.
 チラー7は、熱媒体回路10を流れる熱媒体から熱を奪う。チラー7は、空調機器50を通過する空調用熱媒体回路51に接続される。チラー7は、熱媒体回路10の熱媒体と空調用熱媒体回路51の熱媒体との間で、熱交換を行う熱交換器である。 The chiller 7 takes heat from the heat medium flowing through the heat medium circuit 10 . The chiller 7 is connected to an air conditioning heat medium circuit 51 that passes through the air conditioner 50 . The chiller 7 is a heat exchanger that exchanges heat between the heat medium in the heat medium circuit 10 and the heat medium in the heat medium circuit 51 for air conditioning.
 空調機器50は、車両90の居住空間の気温を調整する。空調機器50は、空調用熱媒体回路51およびチラー7を介して、熱媒体回路10の熱媒体から熱を受け取り車両90の居住空間の気温の調整に利用する。なお、空調用熱媒体回路51は、熱媒体回路10とは独立した回路であり、熱媒体回路10とは異なる熱媒体が流れる。 The air conditioner 50 adjusts the temperature of the living space of the vehicle 90. The air conditioner 50 receives heat from the heat medium in the heat medium circuit 10 via the heat medium circuit 51 for air conditioning and the chiller 7 and uses the heat to adjust the temperature of the living space of the vehicle 90 . The heat medium circuit 51 for air conditioning is a circuit independent of the heat medium circuit 10, and a heat medium different from that in the heat medium circuit 10 flows.
 ラジエータ5は、ファンを有し熱媒体の熱を外気に放出することで熱媒体を冷却する。すなわち、ラジエータ5は、外気との間の熱交換を行う交換器である。 The radiator 5 has a fan and releases the heat of the heat medium to the outside air to cool the heat medium. That is, the radiator 5 is an exchanger that exchanges heat with the outside air.
 制御部60は、バッテリ6から供給される電力を用いて、温調装置1の各部を制御する。制御部60には、モータ2、インバータ3、電力制御装置4およびバッテリ6の温度をそれぞれ測定する温度計に接続される。制御部60は、温度計による測定結果を基に、ラジエータ5、並びに熱媒体回路10の切替部30および第1ポンプ41、第2ポンプ42を制御する。 The control unit 60 uses power supplied from the battery 6 to control each unit of the temperature control device 1 . The controller 60 is connected to thermometers for measuring temperatures of the motor 2, the inverter 3, the power control device 4, and the battery 6, respectively. The control unit 60 controls the radiator 5, the switching unit 30 of the heat medium circuit 10, the first pump 41, and the second pump 42 based on the measurement result of the thermometer.
 熱媒体回路10は、複数の管路29と、複数の切替部30と、第1ポンプ41と、第2ポンプ42と、調整バルブ(バルブ)39と、を有する。 The heat medium circuit 10 has multiple pipe lines 29 , multiple switching units 30 , a first pump 41 , a second pump 42 , and an adjustment valve (valve) 39 .
 複数の管路29は、互いに連結されて熱媒体を流すループ(循環路)を構成する。
 以下の説明において、複数の管路29を互いに区別する場合、これらを第1管路11、第2管路12、第3管路13、第4管路14、第5管路15、第8管路18、第9管路19、第10管路20、および第11管路21と呼ぶ。
A plurality of pipelines 29 are connected to each other to form a loop (circulation path) through which the heat medium flows.
In the following description, when distinguishing the plurality of pipelines 29 from each other, these are referred to as the first pipeline 11, the second pipeline 12, the third pipeline 13, the fourth pipeline 14, the fifth pipeline 15, and the eighth pipeline. They are referred to as conduit 18, ninth conduit 19, tenth conduit 20, and eleventh conduit 21, respectively.
 第1ポンプ41および第2ポンプ42は、それぞれ異なる管路29に配置される。第1ポンプ41および第2ポンプ42は、配置される管路29の熱媒体を一方向に圧送する。本実施形態において、第1ポンプ41は、第1管路11に配置され、第2ポンプ42は、第2管路12に配置される。 The first pump 41 and the second pump 42 are arranged in different conduits 29, respectively. The first pump 41 and the second pump 42 unidirectionally pressure-feed the heat medium in the arranged pipe line 29 . In this embodiment, a first pump 41 is arranged in the first line 11 and a second pump 42 is arranged in the second line 12 .
 切替部30は、制御部60に接続され、開放又は閉塞を切り替えることで、熱媒体が通過する管路29を切り替える。切替部30は、3つ以上の管路29が合流する部分に配置され、接続された複数の管路29のうち何れか2つの管路29を連通させる。切替部30は、何れの管路29を閉塞させるか択一的に切り替え可能である。 The switching unit 30 is connected to the control unit 60 and switches between opening and closing to switch the pipeline 29 through which the heat medium passes. The switching unit 30 is arranged at a portion where three or more conduits 29 join, and allows any two of the plurality of connected conduits 29 to communicate with each other. The switching unit 30 can selectively switch which channel 29 to close.
 以下の説明において、複数の切替部30を互いに区別する場合、これらを第1切替部(四方弁)31、第2切替部32、第3切替部33、および第4切替部34と呼ぶ。 In the following description, when the plurality of switching units 30 are distinguished from each other, they are called a first switching unit (four-way valve) 31, a second switching unit 32, a third switching unit 33, and a fourth switching unit 34.
 第1切替部31は、四方弁である。第1切替部31は、4つの接続口A、B、C、Dを有する。第1切替部31は、4つの接続口A、B、C、Dのうち2つずつ二組の接続口同士を互いに連通させる。接続口Aには、第9管路19が接続される。接続口Cには、第8管路18が接続される。接続口B、Dには、第2管路12の両端部がそれぞれ接続される。 The first switching section 31 is a four-way valve. The first switching unit 31 has four connection ports A, B, C, and D. The first switching unit 31 allows two sets of two connection ports among the four connection ports A, B, C, and D to communicate with each other. The connection port A is connected to the ninth pipeline 19 . The connection port C is connected to the eighth pipeline 18 . Both ends of the second pipeline 12 are connected to the connection ports B and D, respectively.
 第1切替部31は、2つの接続状態(第1接続状態および第2接続状態)の何れかに切り替え可能である。第1切替部31は、第1接続状態(例えば図2)において、接続口A、C、および接続口B、Dをそれぞれ連通させる。第1接続状態の第1切替部31は、第8管路18と第9管路19とを連通させつつ第2管路12の両端部を連通させる。第1切替部31は、第1接続状態(例えば図3)において、接続口A、B、および接続口C、Dをそれぞれ連通させる。第2接続状態の第1切替部31は、第8管路18と第2管路12の一端とを連通させつつ第9管路19と第2管路12の他端とを連通させる。 The first switching unit 31 can switch between two connection states (first connection state and second connection state). The first switching unit 31 causes the connection ports A and C and the connection ports B and D to communicate with each other in the first connection state (for example, FIG. 2). The first switching unit 31 in the first connection state allows both ends of the second pipeline 12 to communicate with each other while allowing the eighth pipeline 18 and the ninth pipeline 19 to communicate with each other. The first switching unit 31 causes the connection ports A and B and the connection ports C and D to communicate with each other in the first connection state (for example, FIG. 3). The first switching portion 31 in the second connection state allows the eighth conduit 18 and one end of the second conduit 12 to communicate with each other and allows the ninth conduit 19 and the other end of the second conduit 12 to communicate with each other.
 本実施形態によれば、第1切替部31として四方弁が採用される。これにより、熱媒体回路10の管路構成を単純化して熱媒体回路10の省スペース化に寄与できる。また、複数の切替部30のうち一部の切替部30を四方弁とすることで、切替部30の数を少なくすることができる。これにより、制御部60の制御対象の数を削減し、切替部30と制御部60との間の配線などの部品点数を削減できる。なお、このような効果は複数の切替部30のうち、少なくとも1つは、四方弁である場合に得ることができる効果である。 According to this embodiment, a four-way valve is employed as the first switching unit 31. As a result, the pipe configuration of the heat medium circuit 10 can be simplified, and the space of the heat medium circuit 10 can be saved. Further, by using a four-way valve for a part of the switching sections 30 among the plurality of switching sections 30, the number of the switching sections 30 can be reduced. As a result, the number of objects controlled by the control unit 60 can be reduced, and the number of components such as wiring between the switching unit 30 and the control unit 60 can be reduced. Such an effect can be obtained when at least one of the plurality of switching units 30 is a four-way valve.
 第2切替部32は、複数のバルブ32a、32b、および複数の管路32c、32dから構成される。より具体的には、第2切替部32は、第1バルブ(三方弁)32a、第2バルブ(二方弁)32b、第1連結管路32c、および第2連結管路32dを有する。 The second switching unit 32 is composed of a plurality of valves 32a, 32b and a plurality of pipelines 32c, 32d. More specifically, the second switching unit 32 has a first valve (three-way valve) 32a, a second valve (two-way valve) 32b, a first connecting pipe line 32c, and a second connecting pipe line 32d.
 第2切替部32は、複数のバルブ32a、32bを操作することで、接続する管路を切り替える切替部30として機能する。なお、第2切替部32に代えて四方弁を採用することもできる。四方弁は、一般的に高価であるため、第2切替部32として本実施形態の構成を採用することで熱媒体回路を安価に構成できる。 The second switching section 32 functions as the switching section 30 that switches the pipe line to be connected by operating a plurality of valves 32a and 32b. A four-way valve may be employed instead of the second switching section 32 . Since a four-way valve is generally expensive, by adopting the configuration of the present embodiment as the second switching unit 32, the heat medium circuit can be configured at low cost.
 第1連結管路32cは、第1管路11および第6管路(第1区間)16の接続部と、第9管路19および第7管路(第2区間)17の接続部と、の間に跨って延びる。また、第2連結管路32dは、第5管路15および第6管路16の接続部と、第8管路18および第7管路17の接続部と、の間に跨って延びる。第1連結管路32cよび第2連結管路32dは、後述する第4ループL4と第5ループL5とを繋ぐ(図4参照)。 The first connecting pipeline 32c includes a connecting portion of the first pipeline 11 and the sixth pipeline (first section) 16, a connecting portion of the ninth pipeline 19 and the seventh pipeline (second section) 17, extends across the In addition, the second connecting pipeline 32 d extends across between the connecting portion of the fifth pipeline 15 and the sixth pipeline 16 and the connecting portion of the eighth pipeline 18 and the seventh pipeline 17 . The first connecting pipeline 32c and the second connecting pipeline 32d connect a fourth loop L4 and a fifth loop L5, which will be described later (see FIG. 4).
 第1バルブ32aは、三方弁である。第1バルブ32aは、第1連結管路32c、第9管路19、および第7管路17の接続部に配置される。第1バルブ32aは、第1連結管路32c、および第7管路17の何れか一方を第9管路19と連通させる。これにより、第1バルブ32aは、第9管路19を流れる熱媒体を第1連結管路32c又は第7管路17の何れか一方に流す。 The first valve 32a is a three-way valve. The first valve 32 a is arranged at the connecting portion of the first connecting line 32 c , the ninth line 19 and the seventh line 17 . The first valve 32 a allows one of the first connecting pipeline 32 c and the seventh pipeline 17 to communicate with the ninth pipeline 19 . Thereby, the first valve 32 a causes the heat medium flowing through the ninth pipeline 19 to flow to either the first connecting pipeline 32 c or the seventh pipeline 17 .
 第2バルブ32bは、二方弁である。第2バルブ32bは、第6管路16の経路中に配置される。第2バルブ32bは、第6管路16に熱媒体が流れる開放状態と、熱媒体の流れを停止させる閉塞状態とを切り替え可能である。本実施形態の第2バルブ32bは、制御部60によって制御されるソレノイドバルブである。 The second valve 32b is a two-way valve. A second valve 32 b is arranged in the path of the sixth conduit 16 . The second valve 32b can switch between an open state in which the heat medium flows through the sixth conduit 16 and a closed state in which the flow of the heat medium is stopped. The second valve 32b of this embodiment is a solenoid valve controlled by the controller 60 .
 第3切替部33は、三方弁である。第3切替部33は、第1管路11、第3管路13、および第4管路14の接続部に配置される。第3切替部33は、第3管路13又は第4管路14の何れか一方を第1管路11と連通させる。これにより、第3切替部33は、第1管路11を流れる熱媒体を第3管路13又は第4管路14の何れか一方に流す。 The third switching section 33 is a three-way valve. The third switching portion 33 is arranged at the connecting portion of the first pipeline 11 , the third pipeline 13 , and the fourth pipeline 14 . The third switching unit 33 allows one of the third pipeline 13 and the fourth pipeline 14 to communicate with the first pipeline 11 . Thereby, the third switching unit 33 causes the heat medium flowing through the first pipeline 11 to flow to either the third pipeline 13 or the fourth pipeline 14 .
 第4切替部34は、三方弁である。第4切替部34は、第1管路11の経路中に配置される。また、第4切替部34には、第11管路21の端部が接続される。すなわち、第4切替部34は、第1管路11と第11管路21との接続部に配置される。第4切替部34は、第11管路21を閉塞し第1管路11に熱媒体を通過させるか、又は第1管路11の上流側を閉塞して第11管路21から第1管路11の下流側を接続し第11管路21に熱媒体を通過させる。 The fourth switching section 34 is a three-way valve. The fourth switching section 34 is arranged in the path of the first pipeline 11 . An end portion of the eleventh pipeline 21 is connected to the fourth switching portion 34 . That is, the fourth switching portion 34 is arranged at the connecting portion between the first pipeline 11 and the eleventh pipeline 21 . The fourth switching unit 34 closes the eleventh pipe line 21 to allow the heat medium to pass through the first pipe line 11, or closes the upstream side of the first pipe line 11 to switch the heat medium from the eleventh pipe line 21 to the first pipe. The downstream side of the pipe 11 is connected and the heat medium is passed through the 11th pipe 21 .
 調整バルブ39は、下流側の二方向に流出させる熱媒体の流量を調整するミキシングバルブである。調整バルブ39は、第9管路19の経路中に配置される。また、調整バルブ39には、第10管路20の端部が接続される。すなわち、調整バルブ39は、第9管路19と第10管路20との接続部に配置される。調整バルブ39は、制御部60に接続され、制御部60からの信号に従って、第9管路19の下流側に流れる熱媒体の流量と第10管路20に流れる熱媒体の流量との比率を調整できる。 The adjustment valve 39 is a mixing valve that adjusts the flow rate of the heat medium flowing out in two directions on the downstream side. A regulating valve 39 is arranged in the path of the ninth conduit 19 . Also, the end of the tenth pipeline 20 is connected to the adjustment valve 39 . That is, the adjustment valve 39 is arranged at the connecting portion between the ninth pipeline 19 and the tenth pipeline 20 . The adjustment valve 39 is connected to the control unit 60, and adjusts the ratio of the flow rate of the heat medium flowing downstream of the ninth pipeline 19 and the flow rate of the heat medium flowing through the tenth pipeline 20 according to a signal from the control unit 60. Adjustable.
 以下に、それぞれの管路29の構成について具体的に説明する。なお、それぞれの管路29の説明において、管路29の「一方の端部」および「他方の端部」とは、単に管路29の両端部のうち何れかであることを表すものであって、必ずしも熱媒体の流動方向を示すものではない。 The configuration of each conduit 29 will be specifically described below. In the description of each pipeline 29, "one end" and "the other end" of the pipeline 29 simply indicate either end of the pipeline 29. Therefore, it does not necessarily indicate the flow direction of the heat transfer medium.
 第1管路11の一方の端部は、第6管路16および第1連結管路32cに接続される。第1管路11の他方の端部は、第3管路13および第4管路14に接続される。第1管路11は、第1ポンプ41と電力制御装置4とインバータ3とモータ2とを通過する。第1ポンプ41は、第1管路11において一方の端部側から他方の端部側に向かって熱媒体を圧送する。 One end of the first pipeline 11 is connected to the sixth pipeline 16 and the first connecting pipeline 32c. The other end of first pipeline 11 is connected to third pipeline 13 and fourth pipeline 14 . The first line 11 passes through the first pump 41 , the power controller 4 , the inverter 3 and the motor 2 . The first pump 41 pressure-feeds the heat medium from one end side toward the other end side in the first pipeline 11 .
 第2管路12の一方の端部は、第1切替部31の接続口Dに接続される。第2管路12の他方の端部は、第1切替部31の接続口Bに接続される。第2管路12は、第2ポンプ42とバッテリ6とを通過する。第2ポンプ42は、第2管路12において一方の端部側から他方の端部側に向かって熱媒体を圧送する。 One end of the second conduit 12 is connected to the connection port D of the first switching section 31 . The other end of the second conduit 12 is connected to the connection port B of the first switching section 31 . The second line 12 passes through the second pump 42 and the battery 6 . The second pump 42 pumps the heat medium from one end side toward the other end side in the second pipeline 12 .
 第3管路13の一方の端部は、第3切替部33を介して、第1管路11および第4管路14に接続される。第3管路13の他方の端部は、第4管路14および第5管路15に接続される。第3管路13は、ラジエータ5を通過する。第3管路13を通過する熱媒体は、ラジエータ5によって冷却される。 One end of the third pipeline 13 is connected to the first pipeline 11 and the fourth pipeline 14 via the third switching section 33 . The other end of the third pipeline 13 is connected to the fourth pipeline 14 and the fifth pipeline 15 . A third conduit 13 passes through the radiator 5 . The heat medium passing through the third pipeline 13 is cooled by the radiator 5 .
 第4管路14の一方の端部は、第3切替部33を介して、第1管路11および第3管路13に接続される。第4管路14の他方の端部は、第3管路13および第5管路15に接続される。すなわち、第4管路14は、第3管路13の両端部に繋がる。第3管路13および第4管路14のうち一方は他方を迂回する。 One end of the fourth pipeline 14 is connected to the first pipeline 11 and the third pipeline 13 via the third switching section 33 . The other end of fourth pipeline 14 is connected to third pipeline 13 and fifth pipeline 15 . That is, the fourth conduit 14 is connected to both ends of the third conduit 13 . One of the third pipeline 13 and the fourth pipeline 14 bypasses the other.
 第5管路15の一方の端部は、第3管路13および第4管路14に接続される。第5管路15の他方の端部は、第6管路16および第2連結管路32dに接続される。 One end of the fifth pipeline 15 is connected to the third pipeline 13 and the fourth pipeline 14 . The other end of the fifth pipeline 15 is connected to the sixth pipeline 16 and the second connecting pipeline 32d.
 第6管路16の一方の端部は、第5管路15および第2連結管路32dに接続される。第6管路16の他方の端部は、第1管路11および第1連結管路32cに接続される。 One end of the sixth pipeline 16 is connected to the fifth pipeline 15 and the second connecting pipeline 32d. The other end of the sixth pipeline 16 is connected to the first pipeline 11 and the first connecting pipeline 32c.
 第7管路17の一方の端部は、第9管路19および第1連結管路32cに接続される。第7管路17の他方の端部は、第8管路18および第2連結管路32dに接続される。 One end of the seventh pipeline 17 is connected to the ninth pipeline 19 and the first connecting pipeline 32c. The other end of the seventh pipeline 17 is connected to the eighth pipeline 18 and the second connecting pipeline 32d.
 第8管路18の一方の端部は、第7管路17および第2連結管路32dに接続される。第8管路18の他方の端部は、第1切替部31の接続口Cに接続される。 One end of the eighth pipeline 18 is connected to the seventh pipeline 17 and the second connecting pipeline 32d. The other end of the eighth conduit 18 is connected to the connection port C of the first switching section 31 .
 第9管路19の一方の端部は、第1切替部31の接続口Aに接続される。第9管路19の他方の端部は、第1バルブ32aを介して第7管路17および第1連結管路32cに接続される。第9管路19は、チラー7を通過する。第9管路19を通過する熱媒体は、チラー7によって冷却される。 One end of the ninth conduit 19 is connected to the connection port A of the first switching section 31 . The other end of the ninth pipeline 19 is connected to the seventh pipeline 17 and the first connecting pipeline 32c via the first valve 32a. A ninth line 19 passes through the chiller 7 . The heat medium passing through the ninth pipeline 19 is cooled by the chiller 7 .
 第10管路(迂回路)20は、第9管路19に接続される。第10管路20は、チラー7を迂回可能である。第10管路20の上流側の端部は、チラー7の上流側(すなわち、第1切替部31とチラー7との間)で調整バルブ39を介して第9管路19から分岐する。また、第10管路20の下流側の端部は、チラー7の下流側(すなわち、チラー7と第1バルブ32aとの間)で第9管路19に合流する。 The tenth pipeline (detour) 20 is connected to the ninth pipeline 19 . The tenth pipeline 20 can bypass the chiller 7 . The upstream end of the tenth pipeline 20 branches off from the ninth pipeline 19 via a regulating valve 39 on the upstream side of the chiller 7 (that is, between the first switching unit 31 and the chiller 7). The downstream end of the tenth pipeline 20 joins the ninth pipeline 19 downstream of the chiller 7 (that is, between the chiller 7 and the first valve 32a).
 第11管路21は、第1管路11に接続される。第11管路21は、モータ2を迂回可能である。第11管路21の上流側の端部は、モータ2の上流側(すなわち、インバータ3とモータ2との間)で第1管路11から分岐する。また、第11管路21の下流側の端部は、モータ2の下流側(すなわち、モータ2と第3切替部33との間)で第4切替部34を介して第1管路11に合流する。 The eleventh pipeline 21 is connected to the first pipeline 11 . The eleventh pipeline 21 can bypass the motor 2 . The upstream end of the eleventh pipeline 21 branches off from the first pipeline 11 on the upstream side of the motor 2 (that is, between the inverter 3 and the motor 2). Further, the downstream end of the eleventh pipeline 21 is connected to the first pipeline 11 via the fourth switching section 34 on the downstream side of the motor 2 (that is, between the motor 2 and the third switching section 33). merge.
 (熱媒体回路の各モードについて)
 本実施形態の熱媒体回路10は、切替部30の切り替えによって遷移する第1モードと第2モードと第3モードとを有する。
(For each mode of the heat medium circuit)
The heat medium circuit 10 of the present embodiment has a first mode, a second mode, and a third mode that are transitioned by switching of the switching section 30 .
 図2は、第1モードの熱媒体回路10の概略図である。図3は、第2モードの熱媒体回路10の概略図である。図4は、第3モードの熱媒体回路10の概略図である。 FIG. 2 is a schematic diagram of the heat medium circuit 10 in the first mode. FIG. 3 is a schematic diagram of the heat carrier circuit 10 in the second mode. FIG. 4 is a schematic diagram of the heat carrier circuit 10 in the third mode.
 各モードの熱媒体回路10は、熱媒体が一方向に流れて循環するループ(第1ループL1、第1サブループL1a、第2ループL2、第3ループL3、第3サブループL3a、第4ループL4、第4サブループL4a、および第5ループL5)を構成する。したがって、熱媒体回路10は、第1ループL1、第1サブループL1a、第2ループL2、第3ループL3、第3サブループL3a、第4ループL4、第4サブループL4a、および第5ループL5を有する。 The heat medium circuit 10 in each mode includes loops (first loop L1, first sub-loop L1a, second loop L2, third loop L3, third sub-loop L3a, fourth loop L4) in which the heat medium flows and circulates in one direction. , a fourth sub-loop L4a, and a fifth loop L5). Therefore, the heat medium circuit 10 has a first loop L1, a first sub-loop L1a, a second loop L2, a third loop L3, a third sub-loop L3a, a fourth loop L4, a fourth sub-loop L4a, and a fifth loop L5. .
 (第1モード)
 図2に示すように、第1モードの熱媒体回路10は、第1ループL1と第2ループL2とを有する。
 第1ループL1は、第1管路11と第4管路14と第5管路15と第2連結管路32dと第8管路18と第9管路19と第1連結管路32cとがループ状に繋がり熱媒体を循環させる。第2ループL2は、第2管路12の両端部がループ状に繋がり熱媒体を循環させる。
(first mode)
As shown in FIG. 2, the heat medium circuit 10 in the first mode has a first loop L1 and a second loop L2.
The first loop L1 includes a first pipeline 11, a fourth pipeline 14, a fifth pipeline 15, a second connecting pipeline 32d, an eighth pipeline 18, a ninth pipeline 19, and a first connecting pipeline 32c. are connected in a loop to circulate the heat medium. The second loop L2 connects both ends of the second pipeline 12 in a loop shape and circulates the heat medium.
 熱媒体回路10は、切替部30を以下のように切り替えることで第1モードとされる。すなわち、第1切替部31は、第8管路18と第9管路19とを連通させ、第2管路12の両端部を連通させる。第2切替部32は、第9管路19と第1連結管路32cと第1管路11とを連通させ、第5管路15と第2連結管路32dと第8管路18とを連通させる。第3切替部33は、第1管路11と第4管路14とを連通させ、第3管路13を閉塞させる。第4切替部34は、第11管路21を閉塞させ第1管路11を開放させる。 The heat medium circuit 10 is set to the first mode by switching the switching unit 30 as follows. That is, the first switching unit 31 allows the eighth conduit 18 and the ninth conduit 19 to communicate with each other, and allows both ends of the second conduit 12 to communicate with each other. The second switching unit 32 connects the ninth pipeline 19, the first connecting pipeline 32c, and the first pipeline 11, and connects the fifth pipeline 15, the second connecting pipeline 32d, and the eighth pipeline 18. communicate. The third switching unit 33 connects the first pipeline 11 and the fourth pipeline 14 and closes the third pipeline 13 . The fourth switching unit 34 closes the eleventh pipeline 21 and opens the first pipeline 11 .
 第1ループL1は、第1ポンプ41、電力制御装置4、インバータ3、モータ2、およびチラー7を通過して熱媒体を循環させる。第1ループL1において、熱媒体は、第1ポンプ41によって図中の反時計回りに圧送される。第1ポンプ41によって圧送される熱媒体は、電力制御装置4、インバータ3、モータ2、チラー7の順で第1ループL1の各部を通過する。 The first loop L1 passes through the first pump 41, power controller 4, inverter 3, motor 2, and chiller 7 to circulate the heat medium. In the first loop L1, the heat medium is pumped by the first pump 41 counterclockwise in the figure. The heat medium pressure-fed by the first pump 41 passes through each part of the first loop L1 in the order of the power control device 4, the inverter 3, the motor 2, and the chiller 7.
 第1ループL1において、モータ2、インバータ3、および電力制御装置4の熱は、熱媒体に移動する。さらにこの熱は、チラー7に回収され空調機器50において利用される。これにより、第1ループL1において、モータ2、インバータ3、および電力制御装置4から発生する熱をチラー7によって回収可能である。すなわち、モータ2、インバータ3、および電力制御装置4は、チラー7によって冷却される。 In the first loop L1, heat from the motor 2, the inverter 3, and the power control device 4 moves to the heat medium. Furthermore, this heat is recovered by the chiller 7 and utilized in the air conditioner 50 . Thereby, the heat generated from the motor 2, the inverter 3, and the power control device 4 can be recovered by the chiller 7 in the first loop L1. That is, motor 2 , inverter 3 , and power control device 4 are cooled by chiller 7 .
 第1モードにおいて、第1ループL1で通過する経路を、第4管路14から第3管路13に切り替えることで、第1サブループL1aを構成することができる。すなわち、第1モードは、互いに切り替え可能な第1ループL1と第1サブループL1aとを有する。第1サブループL1aは、第1ループL1の一部を迂回してラジエータ5を通過する。第3管路13と第4管路14との切り替えは、第3切替部33によって行われる。第1サブループL1aは、第3切替部33において、第1管路11と第3管路13とを連通させ、第4管路14を閉塞することで、構成される。 In the first mode, the first sub-loop L1a can be configured by switching the path passed through the first loop L1 from the fourth pipeline 14 to the third pipeline 13. That is, the first mode has a first loop L1 and a first sub-loop L1a that are switchable to each other. The first sub-loop L1a passes through the radiator 5 bypassing part of the first loop L1. Switching between the third pipeline 13 and the fourth pipeline 14 is performed by the third switching unit 33 . The first sub-loop L1a is configured by connecting the first pipeline 11 and the third pipeline 13 and closing the fourth pipeline 14 in the third switching section 33 .
 第1ループL1は、モータ2、インバータ3、および電力制御装置4の発熱量が比較的小さい場合に選択される。第1ループL1では、ラジエータ5を通過させることなくチラー7のみによって熱媒体を冷却することができ、廃熱を効率的に利用できる。一方で、第1サブループL1aは、モータ2、インバータ3、および電力制御装置4の発熱量が比較的大きい場合に選択される。第1サブループL1aでは、熱媒体がチラー7のみならずラジエータ5をも通過するため熱媒体の冷却効率が高まる。このため、モータ2、インバータ3、および電力制御装置4の発熱量が大きい場合であっても、熱媒体の温度を適正に保つことができる。第1サブループL1aでは、モータ2、インバータ3、および電力制御装置4の温度が高まりすぎることを抑制しつつ、チラー7の負担を軽減できる。 The first loop L1 is selected when the amount of heat generated by the motor 2, the inverter 3, and the power control device 4 is relatively small. In the first loop L1, the heat medium can be cooled only by the chiller 7 without passing through the radiator 5, and waste heat can be efficiently used. On the other hand, the first sub-loop L1a is selected when the amounts of heat generated by the motor 2, the inverter 3, and the power control device 4 are relatively large. In the first sub-loop L1a, the heat medium passes through not only the chiller 7 but also the radiator 5, thereby increasing the cooling efficiency of the heat medium. Therefore, even when the amount of heat generated by the motor 2, the inverter 3, and the electric power control device 4 is large, the temperature of the heat medium can be maintained appropriately. In the first sub-loop L1a, it is possible to reduce the load on the chiller 7 while suppressing the temperature of the motor 2, the inverter 3, and the power control device 4 from becoming too high.
 第1ループL1又は第1サブループL1aにおいて、熱媒体を、モータ2を迂回させて通過させてもよい。一般的に、インバータ3および電力制御装置4の温度と比較してモータ2の温度が十分に低い場合に、第1ループL1(又は第1サブループL1a)に熱媒体を循環させると、インバータ3および電力制御装置4の熱は、モータ2に移動する。このため、インバータ3および電力制御装置4の熱が、チラー7に移動し難くなり、チラー7における熱交換効率が低下する。本実施形態によれば、第1ループL1および第1サブループL1aには、モータ2を迂回できる第11管路21が設けられる。このため、モータ2の温度に応じて、モータ2を迂回させた経路に熱媒体を通過させ、インバータ3および電力制御装置4の熱を、チラー7に効率的に移動させることができる。さらに、モータ2の温度が低い場合には、モータ2を迂回させた経路に熱媒体を通過させることによって、モータ2から発生する熱が熱媒体へ移動せず、モータ2を早急に温めることができる。これにより、モータ2のハウジング内に充填されるオイルの粘度を早急に低下させることができ、モータ2を最適な状態で駆動させることができる。 The heat medium may bypass the motor 2 in the first loop L1 or the first sub-loop L1a. Generally, when the temperature of the motor 2 is sufficiently low compared to the temperatures of the inverter 3 and the power control device 4, circulating the heat medium in the first loop L1 (or the first sub-loop L1a) causes the inverter 3 and Heat from the power controller 4 is transferred to the motor 2 . For this reason, the heat of the inverter 3 and the power control device 4 becomes difficult to move to the chiller 7, and the heat exchange efficiency in the chiller 7 decreases. According to this embodiment, the first loop L1 and the first sub-loop L1a are provided with the eleventh pipeline 21 that can bypass the motor 2 . Therefore, according to the temperature of the motor 2 , the heat medium is allowed to pass through a route bypassing the motor 2 , and the heat of the inverter 3 and the power control device 4 can be efficiently transferred to the chiller 7 . Furthermore, when the temperature of the motor 2 is low, by passing the heat medium through a path bypassing the motor 2, the heat generated from the motor 2 does not move to the heat medium, and the motor 2 can be quickly warmed up. can. As a result, the viscosity of the oil filled in the housing of the motor 2 can be quickly lowered, and the motor 2 can be driven in an optimum state.
 第2ループL2は、第2ポンプ42、およびバッテリ6を通過して熱媒体を循環させる。第2ループL2において、熱媒体は、第2ポンプ42によって図中の反時計回りに圧送される。 The second loop L2 passes through the second pump 42 and the battery 6 to circulate the heat medium. In the second loop L2, the heat medium is pumped by the second pump 42 counterclockwise in the figure.
 バッテリ6は、構成される複数のセルの温度分布にばらつきが生じると、局所的な特性の低下を生じる場合がある。第1モードにおいて、第2ループL2の熱媒体を循環させることで、バッテリ6の複数のセルの温度を均一に保つことができる。 The battery 6 may experience local degradation of its characteristics when there is variation in the temperature distribution of the plurality of cells that constitute it. In the first mode, the temperature of the plurality of cells of the battery 6 can be kept uniform by circulating the heat medium in the second loop L2.
 本実施形態によれば、第1モードの熱媒体回路10は、モータ2を通過する第1ループL1(又は第1サブループL1a)とバッテリ6を通過する第2ループL2とを有する。また、第1ループL1(又は第1サブループL1a)と第2ループL2とは、互いに独立している。このため、モータ2とバッテリ6とをそれぞれ異なる最適な温度に調整することができる。なお、ここで言う「ループ同士が互いに独立する」とは、各ループを循環する熱媒体同士が定常的に混ざり合うことがないことを意味する。 According to this embodiment, the heat medium circuit 10 in the first mode has a first loop L1 (or first sub-loop L1a) passing through the motor 2 and a second loop L2 passing through the battery 6. Also, the first loop L1 (or the first sub-loop L1a) and the second loop L2 are independent of each other. Therefore, the motor 2 and the battery 6 can be adjusted to different optimum temperatures. In addition, "the loops are independent of each other" as used herein means that the heat mediums circulating in the loops are not constantly mixed with each other.
 (第2モード)
 図3に示すように、第2モードの熱媒体回路10は、第3ループL3を有する。
 第3ループL3は、第1管路11と第4管路14と第5管路15と第2連結管路32dと第8管路18と第2管路12と第9管路19と第1連結管路32cとがループ状に繋がり熱媒体を循環させる。
(second mode)
As shown in FIG. 3, the second mode heat medium circuit 10 has a third loop L3.
The third loop L3 includes a first pipeline 11, a fourth pipeline 14, a fifth pipeline 15, a second connecting pipeline 32d, an eighth pipeline 18, a second pipeline 12, a ninth pipeline 19, and a 1 connection pipeline 32c is connected in a loop to circulate the heat medium.
 熱媒体回路10は、切替部30を以下のように切り替えることで第2モードとされる。すなわち、第1切替部31は、第8管路18と第2管路12の一端とを連通させ、第2管路12の他端と第9管路19とを連通させる。第2切替部32は、第9管路19と第1連結管路32cと第1管路11とを連通させ、第5管路15と第2連結管路32dと第8管路18とを連通させる。第3切替部33は、第1管路11と第4管路14とを連通させ、第3管路13を閉塞させる。第4切替部34は、第11管路21を閉塞させ第1管路11を開放させる。 The heat medium circuit 10 is set to the second mode by switching the switching unit 30 as follows. That is, the first switching section 31 allows the eighth conduit 18 and one end of the second conduit 12 to communicate with each other, and allows the other end of the second conduit 12 to communicate with the ninth conduit 19 . The second switching unit 32 connects the ninth pipeline 19, the first connecting pipeline 32c, and the first pipeline 11, and connects the fifth pipeline 15, the second connecting pipeline 32d, and the eighth pipeline 18. communicate. The third switching unit 33 connects the first pipeline 11 and the fourth pipeline 14 and closes the third pipeline 13 . The fourth switching unit 34 closes the eleventh pipeline 21 and opens the first pipeline 11 .
 第3ループL3は、第1ポンプ41、電力制御装置4、インバータ3、モータ2、第2ポンプ42、バッテリ6、およびチラー7を通過して熱媒体を循環させる。第3ループL3において、熱媒体は、第1ポンプ41および第2ポンプ42によって圧送される。第1ポンプ41および第2ポンプ42によって圧送される熱媒体は、電力制御装置4、インバータ3、モータ2、バッテリ6、チラー7の順で第3ループL3の各部を通過する。 The third loop L3 passes through the first pump 41, power control device 4, inverter 3, motor 2, second pump 42, battery 6, and chiller 7 to circulate the heat medium. The heat medium is pumped by the first pump 41 and the second pump 42 in the third loop L3. The heat medium pressure-fed by the first pump 41 and the second pump 42 passes through each part of the third loop L3 in the order of the power control device 4, the inverter 3, the motor 2, the battery 6, and the chiller 7.
 第3ループL3において、モータ2、インバータ3、電力制御装置4、およびバッテリ6の熱は、熱媒体に移動する。さらにこの熱は、チラー7に回収され空調機器50において利用される。第3ループL3において、モータ2、インバータ3、電力制御装置4、およびバッテリ6から発生する熱をチラー7によって回収可能である。モータ2、インバータ3、電力制御装置4、およびバッテリ6は、チラー7によって冷却される。 In the third loop L3, the heat of the motor 2, the inverter 3, the power control device 4, and the battery 6 is transferred to the heat medium. Furthermore, this heat is recovered by the chiller 7 and utilized in the air conditioner 50 . In the third loop L3, the heat generated by the motor 2, the inverter 3, the power controller 4, and the battery 6 can be recovered by the chiller 7. Motor 2 , inverter 3 , power controller 4 and battery 6 are cooled by chiller 7 .
 また、バッテリ6の温度が熱媒体より低い場合、モータ2、インバータ3、および電力制御装置4から熱媒体に移動した熱は、バッテリ6に移動する。これにより、バッテリ6の温度を高めてバッテリ6の特性の低下を抑制できる。 Also, when the temperature of the battery 6 is lower than that of the heat medium, the heat transferred from the motor 2 , the inverter 3 , and the power control device 4 to the heat medium is transferred to the battery 6 . As a result, the temperature of the battery 6 can be increased, and deterioration of the characteristics of the battery 6 can be suppressed.
 本実施形態のチラー7は、熱媒体回路10の熱を空調用熱媒体回路51に移動させる。空調用熱媒体回路51が、チラー7を介して熱媒体回路10から受け取った熱は空調機器50において車内の暖房に利用される。 The chiller 7 of this embodiment transfers heat from the heat medium circuit 10 to the heat medium circuit 51 for air conditioning. The heat received by the heat medium circuit 51 for air conditioning from the heat medium circuit 10 via the chiller 7 is used in the air conditioner 50 for heating the vehicle interior.
 本実施形態の第3ループL3および第3サブループL3aには、チラー7を迂回する第10管路20が設けられる。また、第10管路20には、チラー7を通過する熱媒体の流量と第10管路20を通過する熱媒体の流量との比率を調整できる調整バルブ39が設けられる。このため、調整バルブ39の操作によって、熱媒体回路10から空調用熱媒体回路51に移動させる熱量を調整できる。 A tenth pipeline 20 bypassing the chiller 7 is provided in the third loop L3 and the third sub-loop L3a of the present embodiment. Further, the tenth pipeline 20 is provided with an adjustment valve 39 capable of adjusting the ratio between the flow rate of the heat medium passing through the chiller 7 and the flow rate of the heat medium passing through the tenth pipeline 20 . Therefore, the amount of heat transferred from the heat medium circuit 10 to the heat medium circuit 51 for air conditioning can be adjusted by operating the adjustment valve 39 .
 より具体的には、調整バルブ39は、車内の暖房要求が比較的高い場合、チラー7を通過する熱媒体の流量比率を高め、第10管路20を通過する熱媒体の流量比率を低める。一方で、調整バルブ39は、車内の暖房要求が比較的低い場合、チラー7を通過する熱媒体の流量比率を低め、第10管路20を通過する熱媒体の流量比率を高める。 More specifically, the adjustment valve 39 increases the flow rate of the heat medium passing through the chiller 7 and decreases the flow rate of the heat medium passing through the tenth pipeline 20 when the demand for heating in the vehicle is relatively high. On the other hand, the regulating valve 39 reduces the flow rate of the heat medium passing through the chiller 7 and increases the flow rate of the heat medium passing through the tenth pipeline 20 when the heating demand in the vehicle is relatively low.
本実施形態の第2モードの熱媒体回路10は、調整バルブ39の操作によって、チラー7における熱媒体の吸熱量を調整できる。これにより、熱媒体回路10を循環する熱媒体の温度を調整することが可能となり、熱媒体によってバッテリ6を適切に冷却又は加熱できる。 The heat medium circuit 10 in the second mode of the present embodiment can adjust the amount of heat absorbed by the heat medium in the chiller 7 by operating the adjustment valve 39 . As a result, the temperature of the heat medium circulating in the heat medium circuit 10 can be adjusted, and the battery 6 can be appropriately cooled or heated by the heat medium.
 調整バルブ39は、上流側から調整バルブ39に達する全ての熱媒体をチラー7又は第10管路20の何れか一方に流す100:0の調整をも行うことができる。調整バルブ39が、全ての熱媒体を第10管路20に流す場合、モータ2、インバータ3、および電力制御装置4から熱媒体に移動した熱は、チラー7において放熱されることがない。この場合、熱媒体回路10は、第3サブループL3aで熱媒体を循環させるなどして、ラジエータ5において熱媒体を冷却することが好ましい。
 なお、100:0の調整のみを行う場合には、調整バルブ39は、ミキシングバルブではなく三方弁であっても良い。
The regulating valve 39 can also provide 100:0 regulation where all heat transfer medium reaching the regulating valve 39 from the upstream side flows to either the chiller 7 or the tenth line 20 . When the regulating valve 39 causes all of the heat medium to flow through the tenth pipeline 20 , the heat transferred to the heat medium from the motor 2 , the inverter 3 , and the power controller 4 is not radiated in the chiller 7 . In this case, the heat medium circuit 10 preferably cools the heat medium in the radiator 5 by circulating the heat medium in the third sub-loop L3a.
In addition, when performing only 100:0 adjustment, the adjustment valve 39 may be a three-way valve instead of the mixing valve.
 第2モードにおいて、第3ループL3で通過する経路を、第4管路14から第3管路13に切り替えることで、第3サブループL3aを構成することができる。すなわち、第2モードは、互いに切り替え可能な第3ループL3と第3サブループL3aとを有する。第3サブループL3aは、第3切替部33において、第1管路11と第3管路13とを連通させ、第4管路14を閉塞することで、構成される。 In the second mode, the third sub-loop L3a can be configured by switching the path passed through the third loop L3 from the fourth pipeline 14 to the third pipeline 13. That is, the second mode has a third loop L3 and a third sub-loop L3a that are switchable with each other. The third sub-loop L3a is configured by connecting the first pipeline 11 and the third pipeline 13 and closing the fourth pipeline 14 in the third switching section 33 .
 第2モードの熱媒体回路10は、熱媒体の温度が予め設定される閾値を超える場合に、熱媒体が通過する経路を第3ループL3から第3サブループL3aに切り替える。第3サブループL3aでは、熱媒体をラジエータ5で冷却することで、モータ2、インバータ3、および電力制御装置4の発熱量が大きい場合であっても、熱媒体の温度を適正に保つことができる。結果的に、モータ2、インバータ3、および電力制御装置4の温度が高まりすぎることを抑制しつつ、チラー7の負担を軽減できる。 The heat medium circuit 10 in the second mode switches the route through which the heat medium passes from the third loop L3 to the third sub-loop L3a when the temperature of the heat medium exceeds a preset threshold. In the third sub-loop L3a, the heat medium is cooled by the radiator 5, so that the temperature of the heat medium can be kept at an appropriate level even when the amount of heat generated by the motor 2, the inverter 3, and the power control device 4 is large. . As a result, it is possible to reduce the load on the chiller 7 while suppressing the temperature of the motor 2, the inverter 3, and the power control device 4 from becoming too high.
 本実施形態によれば、第3ループL3および第3サブループL3aには、モータ2を迂回できる第11管路21が設けられる。このため、第1ループL1の場合と同様に、第3ループL3又は第3サブループL3aにおいても、熱媒体を、モータ2を迂回させて通過させてもよい。この場合、インバータ3および電力制御装置4の熱をモータ2に移動させることなく、チラー7に効率的に移動させることができる。 According to this embodiment, the third loop L3 and the third sub-loop L3a are provided with the eleventh pipeline 21 that can bypass the motor 2 . Therefore, in the third loop L3 or the third sub-loop L3a, the heat medium may bypass the motor 2 as in the case of the first loop L1. In this case, the heat of the inverter 3 and the power control device 4 can be efficiently transferred to the chiller 7 without being transferred to the motor 2 .
 (第3モード)
 図4に示すように、第3モードの熱媒体回路10は、第4ループL4と第5ループL5とを有する。
 第4ループL4は、第1管路11と第4管路14と第5管路15と第6管路16とがループ状に繋がり熱媒体を循環させる。すなわち、第4ループL4は、第1管路11の両端部が、第4管路14、第5管路15、および第6管路16を介してループ状に繋がって構成される。第5ループL5は、第2管路12と第9管路19と第7管路17と第8管路18とがループ状に繋がり熱媒体を循環させる。
(Third mode)
As shown in FIG. 4, the third mode heat medium circuit 10 has a fourth loop L4 and a fifth loop L5.
The fourth loop L4 connects the first pipeline 11, the fourth pipeline 14, the fifth pipeline 15, and the sixth pipeline 16 in a loop and circulates the heat medium. That is, the fourth loop L4 is formed by connecting both ends of the first pipeline 11 via the fourth pipeline 14, the fifth pipeline 15, and the sixth pipeline 16 in a loop shape. The fifth loop L5 connects the second pipeline 12, the ninth pipeline 19, the seventh pipeline 17, and the eighth pipeline 18 in a loop and circulates the heat medium.
 熱媒体回路10は、切替部30を以下のように切り替えることで第3モードとされる。すなわち、第1切替部31は、第8管路18と第2管路12の一端とを連通させ、第2管路12の他端と第9管路19とを連通させる。第2切替部32は、第9管路19と第7管路17と第8管路18を連通させ、第5管路15と第6管路16と第1管路11とを連通させる。第3切替部33は、第1管路11と第4管路14とを連通させ、第3管路13を閉塞させる。第4切替部34は、第11管路21を閉塞させ第1管路11を開放させる。 The heat medium circuit 10 is set to the third mode by switching the switching unit 30 as follows. That is, the first switching section 31 allows the eighth conduit 18 and one end of the second conduit 12 to communicate with each other, and allows the other end of the second conduit 12 to communicate with the ninth conduit 19 . The second switching unit 32 communicates the ninth pipeline 19 , the seventh pipeline 17 and the eighth pipeline 18 and communicates the fifth pipeline 15 , the sixth pipeline 16 and the first pipeline 11 . The third switching unit 33 connects the first pipeline 11 and the fourth pipeline 14 and closes the third pipeline 13 . The fourth switching unit 34 closes the eleventh pipeline 21 and opens the first pipeline 11 .
 第4ループL4は、第1ポンプ41、電力制御装置4、インバータ3、およびモータ2を通過して熱媒体を循環させる。第4ループL4において、熱媒体は、第1ポンプ41によって図中の反時計回りに圧送される。第1ポンプ41によって圧送される熱媒体は、電力制御装置4、インバータ3、モータ2の順で第4ループL4の各部を通過する。 The fourth loop L4 passes through the first pump 41, power control device 4, inverter 3, and motor 2 to circulate the heat medium. In the fourth loop L4, the heat medium is pumped by the first pump 41 counterclockwise in the figure. The heat medium pressure-fed by the first pump 41 passes through each part of the fourth loop L4 in the order of the power control device 4, the inverter 3, and the motor 2.
 第4ループL4において、モータ2、インバータ3、および電力制御装置4の熱は、熱媒体に移動する。すなわち、熱媒体は、モータ2、インバータ3、および電力制御装置4によって温められる。熱媒体回路10は、第3モードの第4ループL4で熱媒体に蓄えた熱を、第1モードまたは第2モードに切り替えた場合に、チラー7に移動させて空調機器50において効率的に利用できる。 In the fourth loop L4, the heat from the motor 2, the inverter 3, and the power control device 4 moves to the heat medium. That is, the heat medium is warmed by motor 2 , inverter 3 , and power control device 4 . In the heat medium circuit 10, the heat stored in the heat medium in the fourth loop L4 of the third mode is transferred to the chiller 7 and efficiently used in the air conditioner 50 when the mode is switched to the first mode or the second mode. can.
 第3モードにおいて、第4ループL4で通過する経路を、第4管路14から第3管路13に切り替えることで、第4サブループL4aを構成することができる。すなわち、第3モードは、互いに切り替え可能な第4ループL4と第4サブループL4aとを有する。第4サブループL4aは、第3切替部33において、第1管路11と第3管路13とを連通させ、第4管路14を閉塞することで、構成される。 In the third mode, the fourth sub-loop L4a can be configured by switching the path passed through the fourth loop L4 from the fourth pipeline 14 to the third pipeline 13. That is, the third mode has a fourth loop L4 and a fourth sub-loop L4a switchable to each other. The fourth sub-loop L4a is configured by allowing the first pipeline 11 and the third pipeline 13 to communicate with each other and closing the fourth pipeline 14 in the third switching section 33 .
 本実施形態によれば、第4ループL4および第4サブループL4aには、モータ2を迂回できる第11管路21が設けられる。このため、第1ループL1および第3ループL3の場合と同様に、第4ループL4又は第4サブループL4aにおいても、熱媒体を、モータ2を迂回させて通過させてもよい。 According to this embodiment, the fourth loop L4 and the fourth sub-loop L4a are provided with the eleventh pipeline 21 that can bypass the motor 2 . Therefore, in the fourth loop L4 or the fourth sub-loop L4a, the heat medium may bypass the motor 2 as in the case of the first loop L1 and the third loop L3.
 第3モードの熱媒体回路10は、熱媒体の温度が予め設定される閾値を超える場合に、熱媒体が通過する経路を第4ループL4から第4サブループL4aに切り替える。第4サブループL4aにおいて、モータ2、インバータ3、および電力制御装置4の熱は、熱媒体に移動する。さらにこの熱は、ラジエータ5によって外気に放出される。すなわち、モータ2、インバータ3、および電力制御装置4は、ラジエータ5によって冷却される。 The heat medium circuit 10 in the third mode switches the route through which the heat medium passes from the fourth loop L4 to the fourth sub-loop L4a when the temperature of the heat medium exceeds a preset threshold. In the fourth sub-loop L4a, the heat from motor 2, inverter 3, and power control device 4 is transferred to the heat medium. Furthermore, this heat is radiated to the outside air by the radiator 5 . That is, motor 2 , inverter 3 , and power control device 4 are cooled by radiator 5 .
 第5ループL5は、第2ポンプ42、バッテリ6、およびチラー7を通過して熱媒体を循環させる。第5ループL5において、熱媒体は、第2ポンプ42によって圧送される。第2ポンプ42によって圧送される熱媒体は、バッテリ6、チラー7の順で第5ループL5の各部を通過する。 The fifth loop L5 passes through the second pump 42, the battery 6, and the chiller 7 to circulate the heat medium. The heat medium is pumped by the second pump 42 in the fifth loop L5. The heat medium pressure-fed by the second pump 42 passes through each part of the fifth loop L5 in the order of the battery 6 and the chiller 7 .
 第5ループL5において、バッテリ6の熱は、熱媒体に移動する。さらにこの熱は、チラー7に回収され空調機器50において利用される。第5ループL5において、バッテリ6から発生する熱をチラー7によって回収可能である。バッテリ6は、チラー7によって冷却される。 In the fifth loop L5, the heat of the battery 6 is transferred to the heat medium. Furthermore, this heat is recovered by the chiller 7 and utilized in the air conditioner 50 . Heat generated from the battery 6 can be recovered by the chiller 7 in the fifth loop L5. Battery 6 is cooled by chiller 7 .
 本実施形態の第5ループL5には、チラー7を迂回する第10管路20と調整バルブ39が設けられる。このため、本実施形態の第3モードの熱媒体回路10は、調整バルブ39の操作によって、チラー7における熱媒体の吸熱量を調整できる。バッテリ6は、温度が低すぎる場合に性能が低下する場合がある。本実施形態によれば、調整バルブ39によって、チラー7を通過する熱媒体の流量を調整することができ、第5ループL5を循環する熱媒体の温度が低くなりすぎることを抑制できる。これにより、バッテリ6が過剰に冷却されることを抑制して、バッテリ6の信頼性を高めることができる。 A tenth pipeline 20 bypassing the chiller 7 and an adjustment valve 39 are provided in the fifth loop L5 of the present embodiment. Therefore, the heat medium circuit 10 in the third mode of the present embodiment can adjust the amount of heat absorbed by the heat medium in the chiller 7 by operating the adjustment valve 39 . The battery 6 may degrade in performance if the temperature is too low. According to this embodiment, the adjustment valve 39 can adjust the flow rate of the heat medium passing through the chiller 7, and can prevent the temperature of the heat medium circulating through the fifth loop L5 from becoming too low. As a result, excessive cooling of the battery 6 can be suppressed, and the reliability of the battery 6 can be improved.
 本実施形態によれば、第3モードの熱媒体回路10は、モータ2を通過する第4ループL4(又は第4サブループL4a)とバッテリ6を通過する第5ループL5とを有する。また、第4ループL4(又は第4サブループL4a)と第5ループL5とは、互いに独立している。このため、バッテリ6をチラー7で冷却しながら、別途独立したループでモータ2に熱媒体を循環させることができる。これにより、モータ2とバッテリ6とをそれぞれ異なる最適な温度に調整することができる。 According to this embodiment, the heat medium circuit 10 in the third mode has a fourth loop L4 (or fourth sub-loop L4a) passing through the motor 2 and a fifth loop L5 passing through the battery 6. Also, the fourth loop L4 (or the fourth sub-loop L4a) and the fifth loop L5 are independent of each other. Therefore, while the battery 6 is cooled by the chiller 7, the heat medium can be circulated to the motor 2 in an independent loop. Thereby, the motor 2 and the battery 6 can be adjusted to different optimum temperatures.
 以上、本実施形態の熱媒体回路10の各モードについて説明したが、熱媒体回路10は、切替部30によって切り替え可能な、その他のモードを有していてもよい。一例として、第2ループL2と第4ループL4(又は第4サブループL4a)とを同時に有する第4モードを有していてもよい。 Although each mode of the heat medium circuit 10 of the present embodiment has been described above, the heat medium circuit 10 may have other modes that can be switched by the switching unit 30 . As an example, there may be a fourth mode having the second loop L2 and the fourth loop L4 (or the fourth sub-loop L4a) at the same time.
 (切替部の作用効果)
 次に、各切替部30の作用効果について説明する。
 図2に示すように、第1切替部31は、第1ループL1と第2ループL2との間に配置される。また、図2および図3に示すように、第1切替部31は、第1ループL1と第2ループL2と分離する第1モードと、第1ループL1と第2ループL2とを接続して第3ループL3とする第2モードと、を切り替え可能である。
(Action and effect of the switching part)
Next, the effects of each switching unit 30 will be described.
As shown in FIG. 2, the first switching section 31 is arranged between the first loop L1 and the second loop L2. Further, as shown in FIGS. 2 and 3, the first switching unit 31 connects the first loop L1 and the second loop L2 in a first mode that separates the first loop L1 and the second loop L2. It is possible to switch between the second mode and the third loop L3.
 上述したように、第1ループL1はモータ2およびチラー7を通過し、第3ループL3はモータ2、バッテリ6およびチラー7を通過する。本実施形態によれば、モードを切り替えることで、1つのチラーによって、モータ2の廃熱およびバッテリ6の廃熱を、それぞれ空調用熱媒体回路51に移動させ、空調機器50に利用できる。本実施形態によれば、チラーを複数設ける必要がなく、全体として熱媒体回路10を簡素化し、安価に製造できる温調装置1を提供できる。 As described above, the first loop L1 passes through the motor 2 and the chiller 7, and the third loop L3 passes through the motor 2, the battery 6 and the chiller 7. According to this embodiment, by switching the mode, the waste heat of the motor 2 and the waste heat of the battery 6 can be transferred to the heat medium circuit 51 for air conditioning and used for the air conditioner 50 by one chiller. According to this embodiment, there is no need to provide a plurality of chillers, the heat medium circuit 10 can be simplified as a whole, and the temperature control device 1 that can be manufactured at low cost can be provided.
 図4に示すように、第2切替部32は、第4ループL4と第5ループL5との間に配置される。また、図3および図4に示すように、第2切替部32は、第4ループL4と第5ループL5と分離する第3モードと、第4ループL4と第5ループL5とを接続して第3ループL3とする第2モードと、を切り替え可能である。 As shown in FIG. 4, the second switching section 32 is arranged between the fourth loop L4 and the fifth loop L5. Further, as shown in FIGS. 3 and 4, the second switching unit 32 connects the third mode in which the fourth loop L4 and the fifth loop L5 are separated, and the fourth loop L4 and the fifth loop L5. It is possible to switch between the second mode and the third loop L3.
 上述したように、第5ループL5は、バッテリ6およびチラー7を通過し、モータ2を通過しない。すなわち、第2切替部32は、バッテリ6およびチラー7を通過するループと、モータ2を通過するループとをそれぞれ独立に形成できる。これにより、モータ2の温度によらず、バッテリ6からチラー7に熱を移動させることができ、バッテリ6の廃熱をチラー7によって効率的に回収できる。 As described above, the fifth loop L5 passes through the battery 6 and chiller 7 and does not pass through the motor 2. That is, the second switching unit 32 can independently form a loop passing through the battery 6 and the chiller 7 and a loop passing through the motor 2 . Thereby, heat can be transferred from the battery 6 to the chiller 7 regardless of the temperature of the motor 2 , and the waste heat of the battery 6 can be efficiently recovered by the chiller 7 .
 第2切替部32の第1連結管路32cおよび第2連結管路32dは、第4ループL4と第5ループL5とを繋ぐ。第1連結管路32cの一端と第2連結管路32dの一端の間には、第4ループL4の一区間である第6管路(第1区間)16が配置される。同様に、第1連結管路32cの他端と第2連結管路32dの他端の間には、第5ループL5の一区間である第7管路(第2区間)17が配置される。すなわち、第4ループL4は、第1連結管路32cおよび第2連結管路32dのそれぞれの接続部の間に位置する第6管路16を有する。また、第5ループL5は、第1連結管路32cおよび第2連結管路32dのそれぞれの接続部の間に位置する第7管路17を有する。 The first connecting pipe line 32c and the second connecting pipe line 32d of the second switching section 32 connect the fourth loop L4 and the fifth loop L5. A sixth pipe line (first section) 16, which is one section of the fourth loop L4, is arranged between one end of the first connecting pipe line 32c and one end of the second connecting pipe line 32d. Similarly, a seventh pipeline (second section) 17, which is one section of the fifth loop L5, is arranged between the other end of the first connecting pipeline 32c and the other end of the second connecting pipeline 32d. . That is, the fourth loop L4 has the sixth pipeline 16 located between the connecting portions of the first connecting pipeline 32c and the second connecting pipeline 32d. The fifth loop L5 also has a seventh pipeline 17 located between the connecting portions of the first connecting pipeline 32c and the second connecting pipeline 32d.
 本実施形態の第2切替部32において、第6管路16に二方弁である第2バルブ32bが配置され、第7管路17の第1連結管路32cとの接続部に三方弁である第1バルブ32aが配置される。本実施形態によれば、四方弁を用いることなく4つの管路(第1管路11、第5管路15、第8管路18、および第9管路19)うち2つずつ二組の管路同士を互いに連通させることができる。一般的に四方弁は、高価であり、用途によってはメンテナンスが難しい。本実施形態の第2切替部32によれば、四方弁を用いる必要がないため、安価かつメンテナンス性に優れる切替部を構成できる。 In the second switching unit 32 of the present embodiment, a second valve 32b, which is a two-way valve, is arranged in the sixth pipeline 16, and a three-way valve is installed in the connection part of the seventh pipeline 17 with the first connecting pipeline 32c. A certain first valve 32a is arranged. According to this embodiment, two sets of two out of the four pipelines (the first pipeline 11, the fifth pipeline 15, the eighth pipeline 18, and the ninth pipeline 19) without using a four-way valve The conduits can be communicated with each other. Four-way valves are generally expensive and difficult to maintain depending on the application. According to the second switching unit 32 of the present embodiment, since it is not necessary to use a four-way valve, it is possible to construct a switching unit that is inexpensive and excellent in maintainability.
 なお、第2切替部32において、第2バルブ32bを第7管路17に設け、第1バルブ32aを第6管路16の端部に配置してもよい。また、第2切替部32において、第1バルブ32aを、第6管路16又は第7管路17の両端部のうち何れに配置してもよい。すなわち、第6管路16および第7管路17の何れか一方には、第2バルブ32bが配置され、他方の第1連結管路32c又は第2連結管路32dとの接続部には、第1バルブ32aが配置されていれば、四方弁に代わる第2切替部32を構成できる。 In addition, in the second switching section 32, the second valve 32b may be provided in the seventh pipeline 17, and the first valve 32a may be arranged at the end of the sixth pipeline 16. Further, in the second switching section 32, the first valve 32a may be arranged at either end of the sixth pipeline 16 or the seventh pipeline 17. As shown in FIG. That is, the second valve 32b is arranged in either one of the sixth pipeline 16 and the seventh pipeline 17, and the connection with the other first connecting pipeline 32c or the second connecting pipeline 32d is If the 1st valve|bulb 32a is arrange|positioned, the 2nd switching part 32 instead of a four-way valve can be comprised.
 以上に、本発明の実施形態を説明したが、実施形態おける各構成およびそれらの組み合わせなどは一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 The embodiments of the present invention have been described above, but each configuration and combination thereof in the embodiments are examples, and additions, omissions, replacements, and other modifications of the configuration can be made without departing from the scope of the present invention. is possible. Moreover, the present invention is not limited by the embodiments.
 例えば、上述の実施形態では、第2管路12には、第2ポンプ42およびバッテリ6のみが配置される場合について説明したが、その他にヒータが配置されていてもよい。この場合、ヒータによって熱媒体回路10を流れる熱媒体を加熱することができ、バッテリ6を適温に保ちやすい。 For example, in the above-described embodiment, only the second pump 42 and the battery 6 are arranged in the second pipe line 12, but a heater may also be arranged. In this case, the heat medium flowing through the heat medium circuit 10 can be heated by the heater, and it is easy to keep the battery 6 at an appropriate temperature.
1…温調装置、2…モータ、5…ラジエータ、6…バッテリ、7…チラー、10…熱媒体回路、16…第6管路(第1区間)、17…第7管路(第2区間)、20…第10管路(迂回路)、29…管路、30…切替部、31…第1切替部(四方弁)、32…第2切替部、32a…第1バルブ(三方弁)、32b…第2バルブ(二方弁)、32c…第1連結管路、32d…第2連結管路、39…調整バルブ(バルブ)、90…車両、L1…第1ループ、L1a…第1サブループ、L2…第2ループ、L3…第3ループ、L3a…第3サブループ、L4…第4ループ、L4a…第4サブループ、L5…第5ループ Reference Signs List 1 temperature control device 2 motor 5 radiator 6 battery 7 chiller 10 heat medium circuit 16 sixth pipe (first section) 17 seventh pipe (second section ), 20... Tenth pipe line (detour), 29... Pipe line, 30... Switching part, 31... First switching part (four-way valve), 32... Second switching part, 32a... First valve (three-way valve) , 32b... second valve (two-way valve), 32c... first connecting line, 32d... second connecting line, 39... adjusting valve (valve), 90... vehicle, L1... first loop, L1a... first Sub-loops, L2... second loop, L3... third loop, L3a... third sub-loop, L4... fourth loop, L4a... fourth sub-loop, L5... fifth loop

Claims (5)

  1.  熱媒体が流れる熱媒体回路と、
     車両を駆動するモータと、
     前記モータに電力を供給するバッテリと、
     前記熱媒体から熱を奪うチラーと、を備え、
     前記熱媒体回路は、
      前記モータおよび前記チラーを通過して前記熱媒体を循環させる第1ループと、
      前記バッテリを通過して前記熱媒体を循環させる第2ループと、
      前記モータ、前記バッテリ、および前記チラーを通過して前記熱媒体を循環させる第3ループと、
      前記第1ループと前記第2ループとの間に配置される第1切替部と、
      前記チラーを迂回可能な迂回路と、を有し、
     前記第1切替部は、
      前記第1ループと前記第2ループと分離する第1モードと、
      前記第1ループと前記第2ループとを接続して前記第3ループとする第2モードと、を切り替え可能であり、
     前記迂回路には、前記チラーを通過する前記熱媒体の流量と前記迂回路を通過する前記熱媒体の流量との比率を調整できるバルブが設けられる、
    温調装置。
    a heat medium circuit through which the heat medium flows;
    a motor that drives the vehicle;
    a battery that powers the motor;
    and a chiller that takes heat from the heat medium,
    The heat medium circuit is
    a first loop that circulates the heat medium through the motor and the chiller;
    a second loop that circulates the heat medium through the battery;
    a third loop that circulates the heat medium through the motor, the battery, and the chiller;
    a first switching unit arranged between the first loop and the second loop;
    and a detour that can bypass the chiller,
    The first switching unit is
    a first mode that separates the first loop and the second loop;
    It is possible to switch between a second mode in which the first loop and the second loop are connected to form the third loop,
    The detour is provided with a valve that can adjust the ratio between the flow rate of the heat medium passing through the chiller and the flow rate of the heat medium passing through the detour.
    temperature control device.
  2.  前記熱媒体を冷却するラジエータを備え、
     前記熱媒体回路は、前記第1ループの一部を迂回して前記ラジエータを通過する第1サブループを有する、
    請求項1に記載の温調装置。
    A radiator that cools the heat medium is provided,
    The heat medium circuit has a first sub-loop that bypasses part of the first loop and passes through the radiator.
    The temperature control device according to claim 1.
  3.  前記熱媒体回路は、
      前記モータを通過して前記熱媒体を循環させる第4ループと、
      前記バッテリおよび前記チラーを通過して前記熱媒体を循環させる第5ループと、
      前記第4ループと前記第5ループとの間に配置される第2切替部と、を有し、
     前記第2切替部は、
      前記第4ループと前記第5ループと分離する第3モードと、
      前記第4ループと前記第5ループとを接続して前記第3ループとする前記第2モードと、を切り替え可能である、
    請求項1又は2に記載の温調装置。
    The heat medium circuit is
    a fourth loop that circulates the heat medium through the motor;
    a fifth loop that circulates the heat medium through the battery and the chiller;
    a second switching unit arranged between the fourth loop and the fifth loop;
    The second switching unit is
    a third mode separating the fourth loop and the fifth loop;
    It is possible to switch between the second mode by connecting the fourth loop and the fifth loop to form the third loop,
    The temperature control device according to claim 1 or 2.
  4.  前記第2切替部は、
      前記第4ループと前記第5ループとを繋ぐ第1連結管路よび第2連結管路と、
      二方弁と、
      三方弁と、を有し、
     前記第4ループは、前記第1連結管路および前記第2連結管路のそれぞれの接続部の間に位置する第1区間を有し、
     前記第5ループは、前記第1連結管路および前記第2連結管路のそれぞれの接続部の間に位置する第2区間を有し、
     前記第1区間および前記第2区間の何れか一方には、前記二方弁が配置され、他方の前記第1連結管路又は前記第2連結管路との接続部には、前記三方弁が配置される、
    請求項3に記載の温調装置。
    The second switching unit is
    a first connecting pipeline and a second connecting pipeline that connect the fourth loop and the fifth loop;
    a two-way valve;
    a three-way valve;
    the fourth loop has a first section located between respective connecting portions of the first connecting conduit and the second connecting conduit;
    the fifth loop has a second section located between respective connections of the first connecting conduit and the second connecting conduit;
    The two-way valve is arranged in one of the first section and the second section, and the three-way valve is arranged in the connection portion with the other first connecting pipeline or the second connecting pipeline. to be placed,
    The temperature control device according to claim 3.
  5.  前記第1切替部は、四方弁である、
    請求項1~4の何れか一項に記載の温調装置。
    The first switching unit is a four-way valve,
    The temperature control device according to any one of claims 1 to 4.
PCT/JP2021/025626 2021-03-03 2021-07-07 Temperature regulation device WO2022185561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180078950.4A CN116547855A (en) 2021-03-03 2021-07-07 Temperature adjusting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163155829P 2021-03-03 2021-03-03
US63/155,829 2021-03-03

Publications (1)

Publication Number Publication Date
WO2022185561A1 true WO2022185561A1 (en) 2022-09-09

Family

ID=83155274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025626 WO2022185561A1 (en) 2021-03-03 2021-07-07 Temperature regulation device

Country Status (2)

Country Link
CN (1) CN116547855A (en)
WO (1) WO2022185561A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255879A (en) * 2010-06-04 2011-12-22 Tesla Motors Inc Thermal management system with dual mode coolant loops
US20140216709A1 (en) * 2013-02-01 2014-08-07 Ford Global Technologies, Llc Electric vehicle thermal management system
US20180043747A1 (en) * 2015-03-16 2018-02-15 Thunder Power New Energy Vehicle Development Company Limited Electric vehicle thermal management system with series and parallel structure
US20190070951A1 (en) * 2017-09-07 2019-03-07 Volkswagen Aktiengesellschaft Motor vehicle with a cooling system
JP2021027704A (en) * 2019-08-06 2021-02-22 サンデン・オートモーティブクライメイトシステム株式会社 Temperature adjustment device for vehicle-mounted heat generating apparatus and vehicle air conditioning device with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255879A (en) * 2010-06-04 2011-12-22 Tesla Motors Inc Thermal management system with dual mode coolant loops
US20140216709A1 (en) * 2013-02-01 2014-08-07 Ford Global Technologies, Llc Electric vehicle thermal management system
US20180043747A1 (en) * 2015-03-16 2018-02-15 Thunder Power New Energy Vehicle Development Company Limited Electric vehicle thermal management system with series and parallel structure
US20190070951A1 (en) * 2017-09-07 2019-03-07 Volkswagen Aktiengesellschaft Motor vehicle with a cooling system
JP2021027704A (en) * 2019-08-06 2021-02-22 サンデン・オートモーティブクライメイトシステム株式会社 Temperature adjustment device for vehicle-mounted heat generating apparatus and vehicle air conditioning device with the same

Also Published As

Publication number Publication date
CN116547855A (en) 2023-08-04

Similar Documents

Publication Publication Date Title
CN110770070B (en) Cooling water circuit
US11207947B2 (en) Cooling system for a motor vehicle and motor vehicle having such a cooling system
CN111231618B (en) Vehicle thermal management system, control method thereof and vehicle
US11919360B2 (en) Vehicle heat management system
US20160023532A1 (en) EV Integrated Temperature Control System
US11731483B2 (en) Temperature adjustment circuit
CN111902303B (en) Cooling device
JP2013086717A (en) Cooling system for hybrid vehicle
CN105015320A (en) Multiple zoned radiator
JP6997884B2 (en) vehicle
WO2022163056A1 (en) Temperature regulator
CN112290112B (en) Thermal conditioning system provided with Peltier units for electrically driven vehicles
CN111231617B (en) Vehicle thermal management system, control method thereof and vehicle
WO2019022023A1 (en) Cooling water circuit
CN114206639B (en) Integrated thermal management circuit for a vehicle
WO2022185561A1 (en) Temperature regulation device
US11888139B2 (en) Temperature adjustment circuit
WO2022107429A1 (en) Temperature regulator
KR20200104645A (en) Cooling system for electric vehicle
WO2022107383A1 (en) Temperature regulating device
WO2022107382A1 (en) Temperature regulating device
WO2022107381A1 (en) Temperature regulating device
JP2022546954A (en) An integrated control system for the temperature of the battery in the vehicle and the temperature of the indoor air conditioner
WO2022107428A1 (en) Temperature regulator
WO2022107384A1 (en) Temperature regulating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180078950.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929131

Country of ref document: EP

Kind code of ref document: A1