WO2022185498A1 - 端末、基地局、無線通信システム及び無線通信方法 - Google Patents

端末、基地局、無線通信システム及び無線通信方法 Download PDF

Info

Publication number
WO2022185498A1
WO2022185498A1 PCT/JP2021/008571 JP2021008571W WO2022185498A1 WO 2022185498 A1 WO2022185498 A1 WO 2022185498A1 JP 2021008571 W JP2021008571 W JP 2021008571W WO 2022185498 A1 WO2022185498 A1 WO 2022185498A1
Authority
WO
WIPO (PCT)
Prior art keywords
scs
target
specific
subcarrier spacing
initial access
Prior art date
Application number
PCT/JP2021/008571
Other languages
English (en)
French (fr)
Inventor
浩樹 原田
慎也 熊谷
尚哉 芝池
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/008571 priority Critical patent/WO2022185498A1/ja
Priority to EP21929070.7A priority patent/EP4304263A1/en
Priority to US18/280,131 priority patent/US20240154774A1/en
Priority to CN202180094924.0A priority patent/CN116918423A/zh
Priority to JP2023503299A priority patent/JPWO2022185498A1/ja
Publication of WO2022185498A1 publication Critical patent/WO2022185498A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking

Definitions

  • the present disclosure relates to terminals, base stations, wireless communication systems, and wireless communication methods that perform wireless communication, and particularly to terminals, base stations, wireless communication systems, and wireless communication methods that apply SCS (Subcarrier Spacing).
  • SCS Subcarrier Spacing
  • the 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G
  • FR Frequency Range
  • 60kHz and 120kHz SCS are assumed in FR2 (for example, Non-Patent Document 1).
  • the present invention has been made in view of such circumstances, and aims to provide a terminal, a base station, a wireless communication system, and a wireless communication method that can improve frequency utilization efficiency.
  • the present disclosure is a terminal, in a target frequency band including at least a part of a specific frequency range in which a specific subcarrier spacing is defined as a minimum subcarrier spacing or a frequency band lower than the specific frequency range, the specific subcarrier A control unit that applies a target subcarrier spacing that is lower than the spacing, wherein the control unit applies a method different from the initial access method regarding the specific subcarrier spacing as at least part of the initial access method regarding the target subcarrier spacing.
  • the gist is to do.
  • the present disclosure is a base station, in a target frequency band including at least part of a specific frequency range in which a specific subcarrier spacing is defined as a minimum subcarrier spacing or a frequency band lower than the specific frequency range, the specific sub A control unit that applies a target subcarrier spacing that is lower than a carrier spacing, wherein the control unit uses a different initial access method for the specific subcarrier spacing as at least part of the initial access method for the target subcarrier spacing.
  • the present disclosure is a wireless communication system, comprising a terminal and a base station, wherein the terminal and the base station are at least part of a specific frequency range in which a specific subcarrier spacing is defined as a minimum subcarrier spacing, or the A control unit that applies a target subcarrier spacing that is lower than the specific subcarrier spacing in a target frequency band that includes a frequency band that is lower than a specific frequency range, and the control unit determines an initial access method for the target subcarrier spacing.
  • the gist is that, at least in part, a method different from the initial access method for the specific subcarrier spacing is applied.
  • the present disclosure is a wireless communication method, in a target frequency band including at least part of a specific frequency range in which a specific subcarrier spacing is defined as a minimum subcarrier spacing or a frequency band lower than the specific frequency range, the specific applying a target subcarrier spacing that is lower than the subcarrier spacing; and applying, as at least part of an initial access method for the target subcarrier spacing, a method different from the initial access method for the specific subcarrier spacing.
  • the gist of it is to prepare.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
  • FIG. 2 is a diagram illustrating frequency ranges used in wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • FIG. 4 is a functional block configuration diagram of UE200.
  • FIG. 5 is a functional block configuration diagram of gNB100.
  • FIG. 6 is a diagram for explaining the background.
  • FIG. 7 is a diagram for explaining symbol boundaries.
  • FIG. 8 is a diagram for explaining symbol boundaries.
  • FIG. 9 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to an embodiment.
  • the radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter NG-RAN 20 and a terminal 200 (hereinafter UE 200).
  • NR 5G New Radio
  • NG-RAN 20 Next Generation-Radio Access Network
  • UE 200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a system called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN 20 includes a radio base station 100A (hereinafter gNB100A) and a radio base station 100B (hereinafter gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the radio communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN 20 and 5GC may simply be referred to as a "network”.
  • gNBs or ng-eNBs
  • 5GC 5G-compliant core network
  • gNB100A and gNB100B are 5G-compliant radio base stations and perform 5G-compliant radio communication with UE200.
  • gNB100A, gNB100B and UE200 generate BM beams with higher directivity by controlling radio signals transmitted from multiple antenna elements Massive MIMO (Multiple-Input Multiple-Output), multiple component carriers (CC ), and dual connectivity (DC) that simultaneously communicates with two or more transport blocks between the UE and each of the two NG-RAN Nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC multiple component carriers
  • DC dual connectivity
  • the wireless communication system 10 supports multiple frequency ranges (FR).
  • FIG. 2 shows the frequency ranges used in wireless communication system 10. As shown in FIG.
  • the wireless communication system 10 supports FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410MHz to 7.125GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 is higher frequency than FR1 and may use an SCS of 60 or 120 kHz (240 kHz may be included) and a bandwidth (BW) of 50-400 MHz.
  • SCS may be interpreted as numerology.
  • numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 also supports frequency bands higher than the FR2 frequency band. Specifically, the wireless communication system 10 supports frequency bands above 52.6 GHz and up to 71 GHz or 114.25 GHz. Such high frequency bands may be conveniently referred to as "FR2x".
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform - with larger Sub-Carrier Spacing (SCS) when using a band above 52.6 GHz because phase noise becomes more influential in high frequency bands Spread (DFT-S-OFDM) may be applied.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • SCS Sub-Carrier Spacing
  • DFT-S-OFDM Discrete Fourier Transform - with larger Sub-Carrier Spacing
  • FIG. 3 shows a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the intervals (frequencies) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
  • the number of symbols forming one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Furthermore, the number of slots per subframe may vary between SCSs.
  • time direction (t) shown in FIG. 3 may be called the time domain, symbol period, symbol time, or the like.
  • the frequency direction may be called a frequency domain, resource block, subcarrier, bandwidth part (BWP), or the like.
  • DMRS is a type of reference signal and is prepared for various channels.
  • it may mean a downlink data channel, specifically DMRS for PDSCH (Physical Downlink Shared Channel).
  • DMRS for PDSCH Physical Downlink Shared Channel
  • an uplink data channel specifically, a DMRS for PUSCH (Physical Uplink Shared Channel) may be interpreted in the same way as a DMRS for PDSCH.
  • DMRS can be used for channel estimation in devices, eg, UE 200, as part of coherent demodulation.
  • DMRS may reside only in resource blocks (RBs) used for PDSCH transmission.
  • a DMRS may have multiple mapping types. Specifically, the DMRS has mapping type A and mapping type B. For mapping type A, the first DMRS is placed in the 2nd or 3rd symbol of the slot. In mapping type A, the DMRS may be mapped relative to slot boundaries, regardless of where in the slot the actual data transmission begins. The reason the first DMRS is placed in the second or third symbol of the slot may be interpreted as to place the first DMRS after the control resource sets (CORESET).
  • CORESET control resource sets
  • mapping type B the first DMRS may be placed in the first symbol of data allocation. That is, the position of the DMRS may be given relative to where the data is located rather than relative to slot boundaries.
  • DMRS may have multiple types (Type). Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in mapping in the frequency domain and the maximum number of orthogonal reference signals. Type 1 can output up to 4 orthogonal signals with single-symbol DMRS, and Type 2 can output up to 8 orthogonal signals with double-symbol DMRS.
  • FIG. 4 is a functional block diagram of the UE200.
  • the UE 200 includes a radio signal transmission/reception unit 210, an amplifier unit 220, a modem unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmission/reception unit 260, and a control unit 270. .
  • the radio signal transmitting/receiving unit 210 transmits/receives radio signals according to NR.
  • the radio signal transmitting/receiving unit 210 supports Massive MIMO, CA that bundles multiple CCs, and DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
  • the amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) and the like. Amplifier section 220 amplifies the signal output from modem section 230 to a predetermined power level. In addition, amplifier section 220 amplifies the RF signal output from radio signal transmission/reception section 210 .
  • PA Power Amplifier
  • LNA Low Noise Amplifier
  • the modulation/demodulation unit 230 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Also, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
  • the control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200.
  • control signal/reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, radio resource control layer (RRC) control signals. Also, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • RRC radio resource control layer
  • the control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signals
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • a DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for estimating phase noise, which is a problem in high frequency bands.
  • reference signals may include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS) for position information.
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • PRS Positioning Reference Signal
  • control channels include Physical Downlink Control Channel (PDCCH), Physical Uplink Control Channel (PUCCH), Random Access Channel (RACH), Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI), and Physical Broadcast Channel (PBCH) etc. are included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • DCI Downlink Control Information
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • PBCH Physical Broadcast Channel
  • data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data means data transmitted over a data channel.
  • a data channel may be read as a shared channel.
  • control signal/reference signal processing unit 240 may receive downlink control information (DCI).
  • DCI has existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Allocation), TDRA (Time Domain Resource Allocation), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number) , NDI (New Data Indicator), RV (Redundancy Version), etc.
  • the value stored in the DCI Format field is an information element that specifies the DCI format.
  • the value stored in the CI field is an information element that specifies the CC to which DCI is applied.
  • the value stored in the BWP indicator field is an information element that specifies the BWP to which DCI applies.
  • the BWP that can be specified by the BWP indicator is configured by an information element (BandwidthPart-Config) included in the RRC message.
  • the value stored in the FDRA field is an information element that specifies the frequency domain resource to which DCI is applied.
  • a frequency domain resource is identified by a value stored in the FDRA field and an information element (RA Type) included in the RRC message.
  • the value stored in the TDRA field is an information element that specifies the time domain resource to which DCI applies.
  • the time domain resource is specified by the value stored in the TDRA field and information elements (pdsch-TimeDomainAllocationList, pusch-TimeDomainAllocationList) included in the RRC message.
  • a time-domain resource may be identified by a value stored in the TDRA field and a default table.
  • the value stored in the MCS field is an information element that specifies the MCS to which DCI applies.
  • the MCS is specified by the values stored in the MCS and the MCS table.
  • the MCS table may be specified by RRC messages or identified by RNTI scrambling.
  • the value stored in the HPN field is an information element that specifies the HARQ Process to which DCI is applied.
  • the value stored in NDI is an information element for specifying whether data to which DCI is applied is initial transmission data.
  • the value stored in the RV field is an information element that specifies the data redundancy
  • the encoding/decoding unit 250 performs data segmentation/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data. Also, encoding/decoding section 250 decodes the data output from modem section 230 and concatenates the decoded data.
  • the data transmission/reception unit 260 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitting/receiving unit 260 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc. The data transmission/reception unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
  • MAC medium access control layer
  • RLC radio link control layer
  • PDCP packet data convergence protocol layer
  • HARQ Hybrid Automatic Repeat Request
  • the control unit 270 controls each functional block that configures the UE200.
  • the control unit 270 controls at least part of a specific frequency range in which a specific subcarrier spacing (hereinafter, specific SCS) is defined as the minimum subcarrier spacing (hereinafter, minimum SCS), or a frequency band lower than the specific frequency range.
  • specific SCS a specific subcarrier spacing
  • minimum SCS minimum subcarrier spacing
  • the control unit 270 applies a method different from the initial access method for the specific SCS as at least part of the initial access method for the target SCS.
  • the frequency utilization efficiency of the target SCS may be higher than the frequency utilization efficiency of the specific SCS.
  • the specific frequency range may be FR1 as described above.
  • the specific SCS may be 15 kHz.
  • the frequency band of interest may include at least part of FR1.
  • the frequency band of interest may include frequency bands lower than FR1.
  • the target SCS may be an SCS (e.g., 7.5 kHz, 3.75 kHz, 1.875 kHz, etc.) that satisfies the condition of 1/2 n (n is a positive integer) of a specific SCS (e.g., 15 kHz).
  • An SCS that does not satisfy the 1/2 n condition may also be used.
  • FIG. 5 is a functional block configuration diagram of gNB100. As shown in FIG. 5, the gNB 100 has a receiver 110, a transmitter 120 and a controller .
  • the receiving unit 110 receives various signals from the UE200.
  • the receiver 110 may receive the UL signal via PUCCH or PUSCH.
  • the transmission unit 120 transmits various signals to the UE200.
  • Transmitting section 120 may transmit the DL signal via PDCCH or PDSCH.
  • the control unit 130 controls the gNB100.
  • the control unit 130 applies a target SCS that is lower than the specific SCS in at least a part of the specific frequency range in which the specific SCS is defined as the minimum SCS or in a target frequency band that includes a frequency band lower than the specific frequency range.
  • the frequency utilization efficiency of the target SCS may be higher than the frequency utilization efficiency of the specific SCS.
  • a GB Guard Band
  • the band within the CBW excluding the GB is a band that can be used for transmission.
  • Such a band is set by the number of RBs (Resource Blocks) (Transmission Bandwidth Configuration N RB in FIG. 6).
  • Active RBs Transmission Bandwidths
  • Transmission Bandwidth may be called BWP (Bandwidth Part).
  • CP Ratio the cyclic prefix (CP: Cyclic Prefix) length ratio (hereinafter referred to as CP Ratio) is the same regardless of the SCS.
  • CP Ratio of Normal CP hereafter, NCP
  • NCP normal CP
  • Extended CP has a CP Ratio of 512/2048 (20%).
  • the upper limit of CBW is set for each SCS. For example, for a 15kHz SCS, the upper limit of CBW is 50MHz.
  • the inventors found that the target frequency band including at least a part of a specific frequency range (e.g., FR1) or a frequency band lower than the specific frequency range, We have found that the frequency utilization efficiency can be improved by introducing an SCS lower than a specific SCS (eg, 15 kHz).
  • a specific frequency range e.g., FR1
  • SCS lower than a specific SCS
  • the target SCS may be an SCS (eg, 7.5 kHz, 3.75 kHz, 1.875 kHz, etc.) that satisfies the condition of 1/ 2n (n is a positive integer) of the specified SCS (eg, 15 kHz).
  • SCS eg, 7.5 kHz, 3.75 kHz, 1.875 kHz, etc.
  • An SCS that does not satisfy the condition of 1/ 2n of the SCS may also be used.
  • CP Ratio The cyclic prefix length ratio (CP Ratio) used in the target SCS (7.5 kHz) may be lower than the cyclic prefix length ratio (NCP CP Ratio) used in the specific SCS (15 kHz).
  • the delay spread resolved by CP is determined by the frequency band and station placement scenario, not depending on the SCS. Therefore, even if the CP Ratio applied to the target SCS is lower than the CP Ratio of the existing NCP, the delay spread can be appropriately resolved and the frequency utilization efficiency can be improved.
  • the number of FFT (Fast Fourier Transform) points used in the target SCS may be larger than the number of FFT points used in the specific SCS.
  • the specific SCS may use 4096 FFT points, while the target SCS may use 8192 FFT points.
  • a value larger than the maximum number of RBs (eg, 273) in a specific SCS may be supported as the number of RBs per BW.
  • a new FDRA field may be defined that contains a larger number of bits than the existing number of bits.
  • the bits included in the FDRA field may be interpreted such that the granularity of the frequency resource represented by the bits is smaller than the existing granularity.
  • the radio communication system 10 may predefine a table and/or a frequency resource allocation method for determining frequency resource allocation applied to the target SCS.
  • the gNB100 does not have to support FFT points greater than the number of FFT points used in the specific SCS, and UE200 does not support the number of FFT points greater than the number of FFT points used in the specific SCS. In such a case, the UE 200 does not have to assume that the BWP of the target SCS is allocated over the entire CBW supported by the gNB 100. Also, if the UE 200 supports a larger number of FFT points than the number of FFT points used in a specific SCS, that information may be reported to the gNB 100.
  • the application conditions may include conditions such as a band, frequency range, duplex mode, and serving cell type to which the target subcarrier spacing is applied.
  • the application condition may include a condition that the target subcarrier spacing is applied to the BWP of SCell (Secondary Cell).
  • UE Capabilities may be defined that implicitly or explicitly indicates whether the UE 200 supports the target subcarrier spacing. For example, depending on the terminal type, such as IoT terminal (reduced capability), IAB (IAB-MT)-MT (Mobile Termination), FWA (Fixed Wireless Access) terminal, it is implicit whether the UE 200 supports the target subcarrier spacing. may be explicitly indicated. Other information elements included in the UE Capability may implicitly indicate whether the UE 200 supports the target subcarrier spacing.
  • the symbol boundary of a particular SCS may coincide with the symbol boundary of the target SCS at a particular time interval.
  • the specific time interval may be 0.5ms or 1.0ms.
  • 8 symbols are included as symbols of the target SCS in a time interval corresponding to 1 slot (14-symbols) of a specific SCS.
  • a symbol of 8 is achieved by having a lower CP Ratio than the NPC's CP Ratio.
  • the CP Ratio is the same as the CP Ratio of the NPC
  • 7 symbols are included as symbols of the target SCS in a time interval corresponding to 1 Slot (14-Symbol) of the specific SCS.
  • symbol boundaries may be defined as follows.
  • the symbol boundaries of the specific SCS (15 kHz) and the target SCS (7.5 kHz) may coincide every 0.5 ms (ie, 4 symbols of the target SCS). That is, even if the start position of symbol #0 of the specific SCS and the start position of symbol #0 of the target SCS are aligned, and the start position of symbol #7 of the specific SCS and the start position of symbol #4 of the target SCS are aligned good.
  • the number of symbols of the target SCS included in the time interval corresponding to 1 slot (14-Symbol) of the specific SCS must be even, so the CP Ratio is set lower than the CP Ratio of the NPC. There is a need.
  • the symbol boundaries of the specific SCS (15 kHz) and the target SCS (7.5 kHz) may coincide every 1.0 ms (ie, 8 symbols of the target SCS). That is, the start position of symbol #0 of the specific SCS and the start position of symbol #0 of the target SCS are aligned, but the start position of symbol #7 of the specific SCS and the start position of symbol #4 of the target SCS are not aligned.
  • the number of symbols of the target SCS included in the time interval corresponding to 1 slot (14-Symbol) of the specific SCS does not need to be even, so the CP Ratio is set lower than the CP Ratio of the NPC. It doesn't have to be.
  • the symbol boundary of the specific SCS and the symbol boundary of the target SCS match in a time interval of 1 slot or less of the specific SCS was exemplified, but the embodiment is not limited to this.
  • the symbol boundary of the specific SCS and the symbol boundary of the target SCS may coincide in a time interval longer than 1 slot of the specific SCS.
  • UE Processing timeline A new time may be defined as the UE Processing timeline when the target SCS is applied. Alternatively, when the target SCS is applied, the UE Processing timeline used in the specific SCS may be used as the UE Processing timeline.
  • UE Processing timeline is PDSCH processing timeline (N1), PUSCH processing timeline (N2), HARQ-ACK multiplexing timeline (N3), CSI processing time (Z1, Z2, Z3), BWP switching delay, Beam switching delay, minimum gap for It may include one or more Processing timelines selected from scheduling and minimum gap for triggering.
  • the lower the SCS the longer the absolute time is defined as the Processing timeline.
  • the target SCS when the target SCS is applied, attention is paid to the possibility that it is not necessary to define the processing timeline with a long absolute time. Such a possibility is a possibility considering the evolution of device performance and the like.
  • New resource locations, densities and configuration parameters may be defined as the resource location, density and configuration parameters of the RS when the target SCS is applied.
  • the frequency direction RS insertion density for the target SCS may be lower than the frequency direction RS insertion density for the specific SCS.
  • the time direction RS insertion density for the target SCS may be higher than the time direction RS insertion density for the specific SCS.
  • a new type with a lower DMRS insertion density in the frequency direction than the existing technology may be defined.
  • a PTRS having a lower insertion density in the frequency direction than existing technology may be defined as a PTRS set when the target SCS is applied.
  • the number of symbols included in one slot of the target SCS may differ from the number of symbols included in one slot of the specific SCS (eg, 14). This is because, by lowering the CP Ratio applied to the target SCS, it is necessary to newly define the definition of one slot of the target SCS and the number of symbols included in one slot of the target SCS.
  • 1 Slot For example, if 1 Slot is defined to be 2ms, 16 or 15 symbols may be included in 2ms. If 1 Slot is defined to be 1ms, 8 symbols may be included in 1ms. If 1 Slot is defined to be 0.5ms, 4 symbols may be included in 0.5ms.
  • a new TDRA field containing a larger number of bits than the existing number of bits may be defined.
  • the bits included in the TDRA field may be interpreted as if the granularity of the frequency resource represented by the bits is smaller than the existing granularity.
  • the radio communication system 10 may predefine a table and/or a time resource allocation method that defines the time resource allocation applied to the target SCS.
  • DL, FL, and UL may be settable for symbols included in the target SCS.
  • DL means a symbol used for DL
  • UL means a symbol used for UL
  • FL means a symbol used for either DL or UL.
  • DL, FL and UL may be set by RRC parameters, and part of them (eg, symbols designated as FL by RRC) may be updated by DCI or MAC CE.
  • a new slot format may be defined as the slot format used in the target SCS.
  • the slot format used in the target SCS may be specified by changing the interpretation of the existing slot format.
  • the existing slot format the slot format defined in Table 11.1.1-1 of 3GPP TS38.213 V16.4.0 may be used. For example, when the number of symbols included in one slot of the target SCS is less than 14, part of the existing slot format may be extracted. When the number of symbols included in one slot of the target SCS is more than 14, additional symbols may be inserted into the existing slot format.
  • the additional symbol types (DL, FL, UL) may be specified by parameters notified separately from the existing slot format, or may be specified by the symbol types included in the existing slot format.
  • the initial access method for the target SCS will be described below. As described above, at least part of the initial access method for the target SCS is different from the initial access method for the target SCS.
  • SSB Synchronization Signal/PBCH Block
  • MIB Master Information Block
  • the target SCS is not supported as the SCS of CORESET#0.
  • CORESET#0 is an example of a control resource set and is used for scheduling SIB (System Information Block) 1.
  • UE 200 performs initial access using SSB/CORESET#0 of an existing SCS (eg, a specific SCS).
  • the UE 200 may use SSB/CORESET#0 of the existing SCS to perform Measurement, ANR (Automatic Neighbor Relation), and the like.
  • the UE 200 is not expected to perform operations such as initial access using the target SCS.
  • the target SCS is supported as the SCS of CORESET#0.
  • the UE 200 detects the SSB of an existing SCS (for example, a specific SCS), it recognizes that the target SCS is supported as the SCS of CORESET#0 based on the information elements included in the MIB. You may In such cases, the specific information elements included in the MIB may be replaced. Rereading may be performed in a specific frequency band or a specific band.
  • the specific information element may be one or more information elements selected from systemFrameNumber, subCarrierSpacingCommon, pdcch-ConfigSIB1, cellBarred, and spare, or other information elements.
  • the UE 200 assumes that part of the SFN of the radio frame is not used, and CORESET# It may be recognized that the target SCS is supported as an SCS of 0. In other words, part of systemFrameNumber is read as an information element indicating whether or not the target SCS is supported as the SCS of CORESET#0.
  • the UE 200 assumes that cellBarred does not indicate whether or not the use of the cell is prohibited. You may recognize that In other words, cellBarred is read as an information element indicating whether or not the target SCS is supported as the SCS of CORESET#0. In such a case, UE200 may determine whether the use of the cell is prohibited based on information elements included in SIB1.
  • the target SCS is not supported as the SCS of CORESET#0, but SIB1 may contain an information element indicating whether the target SCS is supported as the SCS of initial DL/UL BWP.
  • SIB1 may contain an information element indicating whether the target SCS is supported as the SCS of initial DL/UL BWP.
  • an information element indicating that the initial DL/UL BWP SCS is an existing SCS e.g., a specific SCS
  • An information element indicating that the SCS of the initial DL/UL BWP is an existing SCS may be considered an information element used by UE 200 that does not support the target SCS.
  • the UE 200 that does not support the target SCS may select another cell or another frequency when notified of an information element indicating that the SCS of the initial DL/UL BWP is the target SCS.
  • the UE 200 that does not support the target SCS may select another cell or another frequency when the information element indicating that the SCS of the initial DL/UL BWP is the existing SCS is not notified. .
  • SSB Synchronization Signal/PBCH Block
  • MIB MIB
  • SSB mapping pattern used in the target SCS a mapping pattern obtained by scaling the SSB mapping pattern used in the existing SCS (for example, a specific SCS) so as to be used in the target SCS is used.
  • the existing SCS Case A or Case B defined in ⁇ 4.1 of 3GPP TS38.213 V16.4.0 may be used.
  • a new mapping pattern may be defined as the SSB mapping pattern used in the target SCS.
  • the SSB used by the target SCS does not have to be multiplexed with CORESET#0 of the existing SCS (for example, a specific SCS).
  • the SSB used by the target SCS may be multiplexed with CORESET#0 of the target SCS.
  • at least part of the SSB used in the target SCS may be multiplexed with at least part of CORESET#0 of the existing SCS. If multiplexing of the SSB used by the target SCS and CORESET#0 of the existing SCS is allowed, only multiplexing of CORESET#0 of the existing SCS closest to the target SCS may be allowed.
  • the SSB used by the target SCS is not assumed to be used in the initial access for the target SCS.
  • the UE 200 may perform monitoring of SSBs used in the target SCS when explicitly instructed to search for SSBs used in the target SCS.
  • the information element that instructs the search for the SSB used in the target SCS may be MeasObjectNR.
  • the UE 200 may perform monitoring of SSBs used by the target SCS in a specific frequency band or specific band.
  • the interval of frequency rasters (synchronization raster) for searching SSBs used in the target SCS may be wider than the interval of frequency rasters for searching SSBs used in existing SCSs (for example, specific SCSs).
  • the UE 200 and the gNB 100 have a specific SCS (minimum SCS) defined at least part of FR1 or a target frequency band including a frequency band lower than FR1, the target lower than the specific SCS Apply SCS.
  • the UE 200 and gNB 100 apply a method different from the initial access method for the specific SCS as at least part of the initial access method for the target SCS. According to such a configuration, when a target SCS is newly introduced in order to improve frequency utilization efficiency, initial access to the target SCS can be properly performed.
  • the specific frequency range is FR1
  • the specific SCS is 15 kHz
  • the target frequency band includes at least part of FR1 or a frequency band lower than FR1.
  • Modification 1 describes a case where the specific frequency range is FR2, the specific SCS is 60 kHz, and the target frequency band includes at least part of FR2 or a frequency band lower than FR2.
  • the target SCS may be an SCS (e.g., 30 kHz, 15 kHz, etc.) that satisfies the condition of 1/ 2n (n is a positive integer) of the specific SCS (e.g., 60 kHz).
  • An SCS that does not satisfy the 1/2 n condition may also be used. Even in such a case, at least one of the above-described first method and second method may be applied.
  • the existing SSB mapping pattern for example, 3GPP TS38.213 V16.4.0 ⁇ 4.1
  • the specified Case A to Case C may be used as is, and the existing SSB mapping pattern (for example, Case D to Case E specified in ⁇ 4.1 of 3GPP TS38.213 V16.4.0) in the target SCS
  • a mapping pattern obtained by scaling to use may be used.
  • a new mapping pattern may be defined as the SSB mapping pattern used in the target SCS.
  • the maximum number of SSBs of the target SCS may be less than the maximum number of SSBs of the existing SCS (eg, 64). In such cases, all SSB candidate positions for SSBs of the target SCS may be defined to fall within the SSB transmission period (eg, 5 ms). Alternatively, the maximum number of SSBs of the target SCS may be the same as the maximum number of SSBs of the existing SCS (eg, 64). In such cases, all SSB candidate positions for SSBs of the target SCS may be defined to fall within a period longer than the existing SSB transmission period (eg, 5 ms). That is, the SSB transmission cycle of 5 ms is not supported, and a longer time than the existing SSB transmission cycle (eg, 5 ms) may be supported as the SMTC window duration.
  • the same configuration as the SCS applicable to FR1 may be applied.
  • a configuration different from the SCS applicable to FR1 ((4.1) to (4.8) described above) at least one of them) may be applied.
  • a new CORESET#0 configuration may be defined.
  • the first CORESET#0 configuration may be newly defined when the target SCS is supported as both SSB and PDSCH SCS.
  • a second CORESET#0 configuration may be newly defined when the target SCS is supported as one of SSB and PDSCH. Both the first CORESET#0 configuration and the second CORESET#0 configuration may be defined.
  • the first CORESET#0 configuration or the second CORESET#0 configuration may differ in the following parameters compared to the existing SCS CORESET#0 configuration used in the same frequency band as the target SCS.
  • the parameter may be one or more parameters selected from multiplexing pattern, CORESET#0 RB count, and RB Offset.
  • the multiplexing pattern of the first CORESET#0 configuration or the second CORESET#0 configuration may contain a larger value than the existing value (eg, 2/3).
  • the number of CORESET#0 RBs in the first CORESET#0 configuration or the second CORESET#0 configuration may include a larger value than the existing value (eg, 96).
  • a new Search Space Zero configuration may be defined.
  • a first Search Space Zero configuration may be newly defined when the target SCS is supported as the SCS of both SSB and PDSCH.
  • a second Search Space Zero configuration may be newly defined when the target SCS is supported as one of SSB and PDSCH. Both a first Search Space Zero configuration and a second Search Space Zero configuration may be defined.
  • the first Search Space Zero configuration or the second Search Space Zero configuration may differ in the following parameters from the existing SCS Search Space Zero configuration used in the same frequency band as the target SCS.
  • the parameters may be one or more parameters selected from Number of search space sets per slot, M, O.
  • the Number of search space sets per slot and M of the first Search Space Zero configuration or the second Search Space Zero configuration may be limited to one.
  • O in the first Search Space Zero configuration or the second Search Space Zero configuration may contain new values (values other than 0, 2, 5, 7).
  • the initial access method for the target SCS differs from the initial access method for the specific SCS in at least one of SSB support and CORESET#0 support.
  • the aspect in which the initial access method for the target SCS is different from the initial access method for the specific SCS may include an aspect in which the configuration of the SSB is different, or an aspect in which the configuration of CORESET#0 is different.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • FIG. 9 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computing device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
  • Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
  • a processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the above-described various processes may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or a combination thereof
  • RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • a specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to).
  • MME or S-GW network nodes
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)
  • Head: RRH can also provide communication services.
  • cell refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions that the mobile station has.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe.
  • a subframe may further consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • number of symbols per TTI radio frame structure
  • transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum scheduling time unit.
  • the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than a normal TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, shortened TTI, etc.
  • a TTI having a TTI length greater than or equal to this value may be read as a replacement.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
  • PRB physical resource blocks
  • SCG sub-carrier groups
  • REG resource element groups
  • PRB pairs RB pairs, etc.
  • a resource block may be composed of one or more resource elements (Resource Element: RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first”, “second”, etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • Radio communication system 20 NG-RAN 100 gNB 110 receiver 120 transmitter 130 controller 200 UE 210 radio signal transmission/reception unit 220 amplifier unit 230 modulation/demodulation unit 240 control signal/reference signal processing unit 250 encoding/decoding unit 260 data transmission/reception unit 270 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、最小サブキャリア間隔として特定サブキャリア間隔が定義された特定周波数レンジの少なくとも一部又は前記特定周波数レンジよりも低い周波数帯を含む対象周波数帯において、前記特定サブキャリア間隔よりも低い対象サブキャリア間隔を適用する制御部を備え、前記制御部は、前記対象サブキャリア間隔に関する初期アクセス方法の少なくとも一部として、前記特定サブキャリア間隔に関する初期アクセス方法と異なる方法を適用する。

Description

端末、基地局、無線通信システム及び無線通信方法
 本開示は、無線通信を実行する端末、基地局、無線通信システム及び無線通信方法、特に、SCS(Subcarrier Spacing)を適用する端末、基地局、無線通信システム及び無線通信方法に関する。
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)又はNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。
 上述した5Gでは、FR(Frequency Range)1において、15kHz、30kHz、60kHzのSCS(Subcarrier Spacing)の使用が想定されており、FR2において、60kHz、120kHzのSCSの使用が想定されている(例えば、非特許文献1)。
3GPP TS38.101-1 V17.0.0 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone (Release 17), 3GPP, 2020年12月
 このような背景下において、発明者等は、鋭意検討の結果、既存のSCSよりも低いSCSを利用することによって、周波数利用効率を向上することができる可能性を見出した。
 そこで、本発明は、このような状況に鑑みてなされたものであり、周波数利用効率を向上し得る端末、基地局、無線通信システム及び無線通信方法の提供を目的とする。
 本開示は、端末であって、最小サブキャリア間隔として特定サブキャリア間隔が定義された特定周波数レンジの少なくとも一部又は前記特定周波数レンジよりも低い周波数帯を含む対象周波数帯において、前記特定サブキャリア間隔よりも低い対象サブキャリア間隔を適用する制御部を備え、前記制御部は、前記対象サブキャリア間隔に関する初期アクセス方法の少なくとも一部として、前記特定サブキャリア間隔に関する初期アクセス方法と異なる方法を適用する、ことを要旨とする。
 本開示は、基地局であって、最小サブキャリア間隔として特定サブキャリア間隔が定義された特定周波数レンジの少なくとも一部又は前記特定周波数レンジよりも低い周波数帯を含む対象周波数帯において、前記特定サブキャリア間隔よりも低い対象サブキャリア間隔を適用する制御部を備え、前記制御部は、前記対象サブキャリア間隔に関する初期アクセス方法の少なくとも一部として、前記特定サブキャリア間隔に関する初期アクセス方法と異なる方法を適用する、ことを要旨とする。
 本開示は、無線通信システムであって、端末と、基地局と、を備え、前記端末及び基地局は、最小サブキャリア間隔として特定サブキャリア間隔が定義された特定周波数レンジの少なくとも一部又は前記特定周波数レンジよりも低い周波数帯を含む対象周波数帯において、前記特定サブキャリア間隔よりも低い対象サブキャリア間隔を適用する制御部を備え、前記制御部は、前記対象サブキャリア間隔に関する初期アクセス方法の少なくとも一部として、前記特定サブキャリア間隔に関する初期アクセス方法と異なる方法を適用する、ことを要旨とする。
 本開示は、無線通信方法であって、最小サブキャリア間隔として特定サブキャリア間隔が定義された特定周波数レンジの少なくとも一部又は前記特定周波数レンジよりも低い周波数帯を含む対象周波数帯において、前記特定サブキャリア間隔よりも低い対象サブキャリア間隔を適用するステップと、前記対象サブキャリア間隔に関する初期アクセス方法の少なくとも一部として、前記特定サブキャリア間隔に関する初期アクセス方法と異なる方法を適用するステップと、を備える、ことを要旨とする。
図1は、無線通信システム10の全体概略構成図である。 図2は、無線通信システム10において用いられる周波数レンジを示す図である。 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。 図4は、UE200の機能ブロック構成図である。 図5は、gNB100の機能ブロック構成図である。 図6は、背景を説明するための図である。 図7は、シンボル境界を説明するための図である。 図8は、シンボル境界を説明するための図である。 図9は、gNB100及びUE200のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(又はng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。
 gNB100A及びgNB100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時2以上のトランスポートブロックに通信を行うデュアルコネクティビティ(DC)などに対応することができる。
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30又は60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,又は120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、71GHzまたは114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。
 高周波数帯では位相雑音の影響が大きくなるため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間又はシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP: Bandwidth part)などと呼ばれてもよい。
 DMRSは、参照信号の一種であり、各種チャネル用に準備される。ここでは、特に断りがない限り、下りデータチャネル、具体的には、PDSCH(Physical Downlink Shared Channel)用のDMRSを意味してよい。但し、上りデータチャネル、具体的には、PUSCH(Physical Uplink Shared Channel)用のDMRSは、PDSCH用のDMRSと同様と解釈されてもよい。
 DMRSは、デバイス、例えば、コヒーレント復調の一部分として、UE200におけるチャネル推定に用い得る。DMRSは、PDSCH送信に使用されるリソースブロック(RB)のみに存在してよい。
 DMRSは、複数のマッピングタイプを有してよい。具体的には、DMRSは、マッピングタイプA及びマッピングタイプBを有する。マッピングタイプAでは、最初のDMRSは、スロットの2又は3番目のシンボルに配置される。マッピングタイプAでは、DMRSは、実際のデータ送信がスロットのどこで開始されるかに関係なく、スロット境界を基準にしてマッピングされてよい。最初のDMRSがスロットの2又は3番目のシンボルに配置される理由は、制御リソースセット(CORESET:control resource sets)の後に最初のDMRSを配置するためと解釈されてもよい。
 マッピングタイプBでは、最初のDMRSがデータ割り当ての最初のシンボルに配置されてよい。すなわち、DMRSの位置は、スロット境界に対してではなく、データが配置されている場所に対して相対的に与えられてよい。
 また、DMRSは、複数の種類(Type)を有してよい。具体的には、DMRSは、Type 1及びType 2を有する。Type 1とType 2とは、周波数領域におけるマッピング及び直交参照信号(orthogonal reference signals)の最大数が異なる。Type 1は、単一シンボル(single-symbol)DMRSで最大4本の直交信号を出力でき、Type 2は、二重シンボル(double-symbol)DMRSで最大8本の直交信号を出力できる。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。
 第1に、UE200の機能ブロック構成について説明する。
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。
 変復調部230は、所定の通信先(gNB100又は他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。
 ここで、制御信号・参照信号処理部240は、下りリンク制御情報(DCI)を受信してもよい。DCIは、既存のフィールドとして、DCI Formats、Carrier indicator(CI)、BWP indicator、FDRA(Frequency Domain Resource Allocation)、TDRA(Time Domain Resource Allocation)、MCS(Modulation and Coding Scheme)、HPN(HARQ Process Number)、NDI(New Data Indicator)、RV(Redundancy Version)などを格納するフィールドを含む。
 DCI Formatフィールドに格納される値は、DCIのフォーマットを指定する情報要素である。CIフィールドに格納される値は、DCIが適用されるCCを指定する情報要素である。BWP indicatorフィールドに格納される値は、DCIが適用されるBWPを指定する情報要素である。BWP indicatorによって指定され得るBWPは、RRCメッセージに含まれる情報要素(BandwidthPart-Config)によって設定される。FDRAフィールドに格納される値は、DCIが適用される周波数ドメインリソースを指定する情報要素である。周波数ドメインリソースは、FDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(RA Type)によって特定される。TDRAフィールドに格納される値は、DCIが適用される時間ドメインリソースを指定する情報要素である。時間ドメインリソースは、TDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(pdsch-TimeDomainAllocationList、pusch-TimeDomainAllocationList)によって特定される。時間ドメインリソースは、TDRAフィールドに格納される値及びデフォルトテーブルによって特定されてもよい。MCSフィールドに格納される値は、DCIが適用されるMCSを指定する情報要素である。MCSは、MCSに格納される値及びMCSテーブルによって特定される。MCSテーブルは、RRCメッセージによって指定されてもよく、RNTIスクランブリングによって特定されてもよい。HPNフィールドに格納される値は、DCIが適用されるHARQ Processを指定する情報要素である。NDIに格納される値は、DCIが適用されるデータが初送データであるか否かを特定するための情報要素である。RVフィールドに格納される値は、DCIが適用されるデータの冗長性を指定する情報要素である。
 符号化/復号部250は、所定の通信先(gNB100又は他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、HARQ(Hybrid Automatic Repeat Request)に基づいて、データの誤り訂正及び再送制御を実行する。
 制御部270は、UE200を構成する各機能ブロックを制御する。実施形態では、制御部270は、最小サブキャリア間隔(以下、最小SCS)として特定サブキャリア間隔(以下、特定SCS)が定義された特定周波数レンジの少なくとも一部又は特定周波数レンジよりも低い周波数帯を含む対象周波数帯において、特定SCSよりも低い対象サブキャリア間隔(以下、対象SCS)を適用する制御部を構成する。制御部270は、対象SCSに関する初期アクセス方法の少なくとも一部として、特定SCSに関する初期アクセス方法と異なる方法を適用する。対象SCSの周波数利用効率は、特定SCSの周波数利用効率よりも高くてもよい。
 例えば、特定周波数レンジは、上述したFR1であってもよい。このようなケースにおいて、特定SCSは、15kHzであってもよい。対象周波数帯は、FR1の少なくとも一部を含んでもよい。対象周波数帯は、FR1よりも低い周波数帯を含んでもよい。対象SCSは、特定SCS(例えば、15kHz)の1/2n(nは正の整数)の条件を満たすSCS(例えば、7.5kHz、3.75kHz、1.875kHzなど)であってもよく、特定SCSの1/2nの条件も満たさないSCSであってもよい。
 第2に、gNB100の機能ブロック構成について説明する。
 図5は、gNB100の機能ブロック構成図である。図5に示すように、gNB100は、受信部110、送信部120及び制御部130を有する。
 受信部110は、UE200から各種信号を受信する。受信部110は、PUCCH又はPUSCHを介してUL信号を受信してもよい。
 送信部120は、UE200に各種信号を送信する。送信部120は、PDCCH又はPDSCHを介してDL信号を送信してもよい。
 制御部130は、gNB100を制御する。実施形態では、制御部130は、最小SCSとして特定SCSが定義された特定周波数レンジの少なくとも一部又は特定周波数レンジよりも低い周波数帯を含む対象周波数帯において、特定SCSよりも低い対象SCSを適用する制御部を構成する。制御部130は、対象SCSに関する初期アクセス方法の少なくとも一部として、特定SCSに関する初期アクセス方法と異なる方法を適用する。上述したように、対象SCSの周波数利用効率は、特定SCSの周波数利用効率よりも高くてもよい。
 (3)背景
 以下において、実施形態の背景について説明する。ここでは、CBW(Channel Bandwidth)について説明する。
 具体的には、図6に示すように、CBWの両端にはGB(Guard Band)が設けられており、CBW内においてGBを除いた帯域が送信に用いることが可能な帯域である。このような帯域は、RB(Resource Block)の数によって設定される(図6のTransmission Bandwidth Configuration NRB)。実際の送信に用いるアクティブなRB(Transmission Bandwidth)は、Transmission Bandwidth Configuration NRBの中から設定される。Transmission Bandwidthは、BWP(Bandwidth Part)と呼称されてもよい。
 第1に、既存の仕組みでは、サイクリックプレフィックス(CP:Cyclic Prefix)長の比率(以下、CP Ratio)は、SCSによらずに同一である。例えば、Normal CP(以下、NCP)のCP Ratioは、144(160)/2048(約6.6%)である。Extended CPのCP Ratioは、512/2048(20%)である。
 第2に、既存の仕組みでは、SCSが高くなるほど、GBが大きくなり、CBW内で使用できない帯域が大きくなる。例えば、CBWが50MHzである場合において、CBW内で使用可能な帯域は以下に示す通りである。15kHzのSCSでは、使用可能な帯域が48.6MHz(=270RB*12SC(Subcarrier)*15kHz)であり、使用可能な帯域の割合が97.2%(48.6MHz/50MHz)である。30kHzのSCSでは、使用可能な帯域が47.88MHz(=133RB*12SC*30kHz)であり、使用可能な帯域の割合が95.76%(47.88MHz/50MHz)である。60kHzのSCSでは、使用可能な帯域が46.8(47.52)MHz(=65RB*12SC*60kHz)であり、使用可能な帯域の割合が93.6(95.04)%(46.8(47.52)MHz/50MHz)である。120kHzのSCSでは、使用可能な帯域が46.08MHz(=32RB*12SC*30kHz)であり、使用可能な帯域の割合が92.16%(46.08MHz/50MHz)である。
 第3に、既存の仕組みでは、SCS毎にCBWの上限が定められている。例えば、15kHzのSCSでは、CBWの上限は50MHzである。
 このような背景下において、発明者等は、鋭意検討の結果、特定周波数レンジ(例えば、FR1)の少なくとも一部又は特定周波数レンジよりも低い周波数帯を含む対象周波数帯において、FR1で定められた特定SCS(例えば、15kHz)よりも低いSCSを導入することによって、周波数利用効率を向上し得ることを見出した。
 (4)想定ケース
 以下において、実施形態の想定ケースについて説明する。以下においては、特定周波数レンジがFR1であり、特定SCSが15kHzであり、対象SCSが7.5kHzであるケースについて例示する。想定ケースでは、FR1の少なくとも一部又はFR1よりも低い周波数帯を含む対象周波数帯において7.5kHzのSCSが導入されるケースについて例示する。
 但し、対象SCSは、特定SCS(例えば、15kHz)の1/2n(nは正の整数)の条件を満たすSCS(例えば、7.5kHz、3.75kHz、1.875kHzなど)であってもよく、特定SCSの1/2nの条件も満たさないSCSであってもよい。
 (4.1)CP Ratio
 対象SCS(7.5kHz)で用いるサイクリックプレフィックス長の比率(CP Ratio)は、特定SCS(15kHz)で用いるサイクリックプレフィックス長の比率(NCPのCP Ratio)よりも低くてもよい。
 ここで、CPによって解決される遅延広がりは、SCSに依存するものではなく、周波数帯及び置局シナリオによって定まる。従って、対象SCSに適用するCP Ratioを既存のNCPのCP Ratioよりも低くしても、遅延広がりを適切に解決することができ、周波数利用効率を高めることができる。
 (4.2)FFTポイント数
 対象SCSで用いるFFT(Fast Fourier Transform)ポイント数は、特定SCSで用いるFFTポイント数よりも多くてもよい。例えば、特定SCSで用いるFFTポイント数が4096であるのに対して、対象SCSで用いるFFTポイント数は8192であってもよい。
 このような構成によれば、FR1で定められた特定SCS(例えば、15kHz)よりも低いSCSを導入した場合であっても、CBWとして広帯域のCBWを使用することが可能であり、周波数利用効率を高めることができる。さらに、CBWとして広帯域のCBWを使用することができるため、CAにおけるCC数の増大を抑制することができる可能性もある。
 BWあたりのRB数として、特定SCSにおける最大RB数(例えば、273)よりも大きな値がサポートされてもよい。このようなケースにおいて、既存ビット数よりも多いビット数を含むFDRAフィールドが新たに定義されてもよい。或いは、FDRAフィールドのビット数を既存ビット数から変えずに、FDRAフィールドに含まれるビットが表す周波数リソースの粒度が既存粒度よりも小さいものとしてビットが解釈されてもよい。或いは、対象SCSに適用される周波数リソースの割当を定めるテーブル及び/または周波数リソース割当方法が無線通信システム10で予め定義されてもよい。
 特定SCSで用いるFFTポイント数よりも多いFFTポイント数をgNB100がサポートし、特定SCSで用いるFFTポイント数よりも多いFFTポイント数をUE200がサポートしなくてもよい。このようなケースにおいて、UE200は、対象SCSのBWPがgNB100がサポートするCBWの全体に亘って割り当てられることを想定しなくてもよい。また、UE200が特定SCSで用いるFFTポイント数よりも多いFFTポイント数をサポートする場合、その情報をgNB100に報告してもよい。
 (4.3)適用条件
 対象サブキャリア間隔を適用する条件が定められてもよい。適用条件は、対象サブキャリア間隔を適用するバンド、周波数範囲、Duplex mode、Serving Cellタイプなどの条件を含んでもよい。例えば、適用条件は、SCell(Secondary Cell)のBWPに対象サブキャリア間隔が適用されるという条件を含んでもよい。
 (4.4)UE Capability
 UE200が対象サブキャリア間隔に対応しているか否かを暗黙的に又は明示的に示すUE Capabilityが定義されてもよい。例えば、IoT端末(reduced capability)、IAB(IAB-MT)-MT(Mobile Termination)、FWA(Fixed Wireless Access)端末などの端末タイプによって、UE200が対象サブキャリア間隔に対応しているか否かが暗黙的に示されてもよい。UE Capabilityに含まれる他の情報要素によって、UE200が対象サブキャリア間隔に対応しているか否かが暗黙的に示されてもよい。
 (4.5)シンボル境界
 特定SCSのシンボル境界は、対象SCSのシンボル境界と特定時間間隔で合致してもよい。特定時間間隔は、0.5msであってもよく、1.0msであってもよい。例えば、特定SCSの1Slot(14-Symbol)に相当する時間区間において、対象SCSのシンボルとして8のシンボルが含まれるケースについて例示する。8のシンボルは、CP RatioがNPCのCP Ratioよりも低いことによって実現される。CP RatioがNPCのCP Ratioと同じである場合には、特定SCSの1Slot(14-Symbol)に相当する時間区間において、対象SCSのシンボルとして7のシンボルが含まれることに留意すべきである。このような前提下において、シンボル境界は以下のように定義されてもよい。
 第1に、図7に示すように、特定SCS(15kHz)のシンボル境界及び対象SCS(7.5kHz)のシンボル境界は、0.5ms(すなわち、対象SCSの4シンボル)毎に合致してもよい。すなわち、特定SCSのシンボル#0の先頭位置と対象SCSのシンボル#0の先頭位置が揃っており、特定SCSのシンボル#7の先頭位置と対象SCSのシンボル#4の先頭位置が揃っていてもよい。図7に示すケースでは、特定SCSの1Slot(14-Symbol)に相当する時間区間に含まれる対象SCSのシンボルの数を偶数にする必要があるため、CP RatioをNPCのCP Ratioよりも低くする必要がある。
 第2に、図8に示すように、特定SCS(15kHz)のシンボル境界及び対象SCS(7.5kHz)のシンボル境界は、1.0ms(すなわち、対象SCSの8シンボル)毎に合致してもよい。すなわち、特定SCSのシンボル#0の先頭位置と対象SCSのシンボル#0の先頭位置が揃っているが、特定SCSのシンボル#7の先頭位置と対象SCSのシンボル#4の先頭位置が揃っていなくてもよい。図8に示すケースでは、特定SCSの1Slot(14-Symbol)に相当する時間区間に含まれる対象SCSのシンボルの数を偶数にする必要がないため、CP RatioをNPCのCP Ratioよりも低くしなくてもよい。
 ここでは、特定SCSのシンボル境界及び対象SCSのシンボル境界が特定SCSの1Slot以下の時間区間において合致するケースについて例示したが、実施形態はこれに限定されるものではない。特定SCSのシンボル境界及び対象SCSのシンボル境界は特定SCSの1Slotよりも長い時間区間において合致してもよい。
 (4.6)UE Processing timeline
 対象SCSが適用される場合に、UE Processing timelineとして新たな時間が定義されてもよい。或いは、対象SCSが適用される場合に、UE Processing timelineとして特定SCSで用いるUE Processing timelineが用いられてもよい。
 UE Processing timelineは、PDSCH processing timeline (N1)、PUSCH processing timeline (N2)、HARQ-ACK multiplexing timeline (N3)、CSI processing time (Z1, Z2, Z3)、BWP switching delay、Beam switching delay、minimum gap for scheduling、minimum gap for triggeringの中から選択された1以上のProcessing timelineを含んでもよい。
 ここで、従来技術では、SCSが低いほど絶対時間として長い時間がProcessing timelineとして定義されることに留意すべきである。実施形態では、対象SCSが適用される場合に、絶対時間として長い時間がProcessing timelineを定義する必要がない可能性について着目するものである。このような可能性は、デバイス性能の進化等を考慮した可能性である。
 (4.7)RS(Reference Signal)
 対象SCSが適用される場合に、RSのリソース位置、密度及び設定パラメータとして、新たなリソース位置、密度及び設定パラメータが定義されてもよい。
 具体的には、対象SCSが特定SCSよりも低いため、対象SCSに関する周波数方向のRSの挿入密度は、特定SCSに関する周波数方向のRSの挿入密度よりも低くてもよい。対象SCSのシンボル長が特定SCSのシンボル長よりも長いため、対象SCSに関する時間方向のRSの挿入密度は、特定SCSに関する時間方向のRSの挿入密度よりも高くてもよい。
 例えば、対象SCSが適用される場合に設定されるDMRSのConfiguration typeとして、既存技術よりも周波数方向のDMRSの挿入密度が低い新たなtypeが定義されてもよい。或いは、対象SCSが適用される場合に設定されるPTRSとして、既存技術よりも周波数方向の挿入密度が低いPTRSが定義されてもよい。
 (4.8)シンボル数
 対象SCSの1Slotに含まれるシンボル数は、特定SCSの1Slotに含まれるシンボル数(例えば、14)と異なってもよい。対象SCSに適用するCP Ratioを低くすることによって、対象SCSの1Slotの定義及び対象SCSの1Slotに含まれるシンボル数を新たに定義する必要があるためである。
 例えば、1Slotが2msであると定義される場合に、16又は15のシンボルが2msに含まれてもよい。1Slotが1msであると定義される場合に、8のシンボルが1msに含まれてもよい。1Slotが0.5msであると定義される場合に、4のシンボルが0.5msに含まれてもよい。
 このようなケースにおいて、既存ビット数よりも多いビット数を含むTDRAフィールドが新たに定義されてもよい。或いは、TDRAフィールドのビット数を既存ビット数から変えずに、TDRAフィールドに含まれるビットが表す周波数リソースの粒度が既存粒度よりも小さいものとしてビットが解釈されてもよい。或いは、対象SCSに適用される時間リソースの割当を定めるテーブル及び/または時間リソース割当方法が無線通信システム10で予め定義されてもよい。
 対象SCSに含まれるシンボルについて、DL、FL及びULが設定可能であってもよい。DLは、DLに用いるシンボルを意味し、ULは、ULに用いるシンボルを意味し、FLは、DL及びULのいずれかに用いるシンボルを意味する。DL、FL及びULは、RRCパラメータによって設定されてもよく、DCIまたはMAC CEによってその一部(例えばRRCによってFLと指定されたシンボル)が更新されてもよい。
 対象SCSで用いるSlotのフォーマットとして、新たなSlot formatが定義されてもよい。或いは、対象SCSで用いるSlotのフォーマットは、既存のSlot formatの解釈の変更によって特定されてもよい。既存のSlot formatとしては、3GPP TS38.213 V16.4.0のTable 11.1.1-1に規定されるSlot formatが用いられてもよい。例えば、対象SCSの1Slotに含まれるシンボル数が14未満である場合に、既存のSlot formatの一部が抽出されてもよい。対象SCSの1Slotに含まれるシンボル数が14よりも多い場合に、既存のSlot formatに追加シンボルが挿入されてもよい。追加シンボルのタイプ(DL、FL、UL)は、既存のSlot formatとは別に通知されるパラメータによって特定されてもよく、既存のSlot formatに含まれるシンボルのタイプによって特定されてもよい。
 (5)初期アクセス方法
 以下において、対象SCSに関する初期アクセス方法について説明する。上述したように、対象SCSに関する初期アクセス方法の少なくとも一部は、対象SCSに関する初期アクセス方法と異なる。
 (5.1)第1方法
 第1方法では、SSB(Synchronization Signal/PBCH Block)のSCSとして対象SCSがサポートされないケースについて説明する。SSBは、同期信号の一例であり、MIB(Master Information Block)を含む。すなわち、対象SCSの初期アクセス方法では、既存のSSBが用いられる。従って、UE200は、対象SCSのBWPがactiveなBWPとして設定されている場合に、measurement gapを用いて、activeなBWP以外の帯域に存在するSSBのモニタリングを実行する。
 このようなケースにおいて、以下に示すオプションが考えられる。
 オプション1では、CORESET#0のSCSとして対象SCSがサポートされない。CORESET#0は、制御リソースセットの一例であり、SIB(System Information Block)1のスケジューリングに用いられる。オプション1では、UE200は、既存のSCS(例えば、特定SCS)のSSB/CORESET#0を用いて初期アクセスを実行する。UE200は、既存のSCSのSSB/CORESET#0を用いて、Measurement、ANR(Automatic Neighbor Relation)などを実行してもよい。言い換えると、UE200は、対象SCSを用いて初期アクセスなどの動作を実行することを想定しない。
 オプション2では、CORESET#0のSCSとして対象SCSがサポートされる。オプション2では、UE200は、既存のSCS(例えば、特定SCS)のSSBを検出した場合に、MIBに含まれる情報要素に基づいて、CORESET#0のSCSとして対象SCSがサポートされていることを認識してもよい。このようなケースにおいて、MIBに含まれる特定情報要素の読み替えが実行されてもよい。読み替えは、特定周波数帯又は特定バンドで実行されてもよい。特定情報要素は、systemFrameNumber、subCarrierSpacingCommon、pdcch-ConfigSIB1、cellBarred及びspareの中から選択された1以上の情報要素であってもよく、他の情報要素であってもよい。
 例えば、特定情報要素がsystemFrameNumberである場合に、UE200は、無線フレームのSFNの一部が使用されないと想定して、使用されないSFNの一部を表す情報要素(systemFrameNumberの一部)によって、CORESET#0のSCSとして対象SCSがサポートされていることを認識してもよい。言い換えると、systemFrameNumberの一部は、CORESET#0のSCSとして対象SCSがサポートされているか否かを示す情報要素として読み替えられる。
 或いは、特定情報要素がcellBarredである場合に、UE200は、cellBarredがセルの使用が禁止されているか否かを表すものではないと想定して、cellBarredによって、CORESET#0のSCSとして対象SCSがサポートされていることを認識してもよい。言い換えると、cellBarredは、CORESET#0のSCSとして対象SCSがサポートされているか否かを示す情報要素として読み替えられる。このようなケースにおいて、UE200は、SIB1に含まれる情報要素に基づいて、セルの使用が禁止されているか否かを判断してもよい。
 オプション3では、CORESET#0のSCSとして対象SCSがサポートされないが、initial DL/UL BWPのSCSとして対象SCSがサポートされているか否かを示す情報要素をSIB1が含んでもよい。このようなケースにおいて、initial DL/UL BWPのSCSが対象SCSであることを示す情報要素とは別に、initial DL/UL BWPのSCSが既存SCS(例えば、特定SCS)であることを示す情報要素が通知されてもよい。initial DL/UL BWPのSCSが既存SCSであることを示す情報要素は、対象SCSに対応していないUE200が用いる情報要素と考えてもよい。対象SCSに対応していないUE200は、initial DL/UL BWPのSCSが対象SCSであることを示す情報要素が通知された場合に、他のセル又は他の周波数の選択を実行してもよい。対象SCSに対応していないUE200は、initial DL/UL BWPのSCSが既存SCSであることを示す情報要素が通知されていない場合に、他のセル又は他の周波数の選択を実行してもよい。
 (5.2)第2方法
 第2方法では、SSB(Synchronization Signal/PBCH Block)のSCSとして対象SCSがサポートされるケースについて説明する。SSBは、同期信号の一例であり、MIBを含む。すなわち、対象SCSの初期アクセス方法では、対象SCSで用いるSSBが用いられる。
 このようなケースにおいて、対象SCSで用いるSSBのマッピングパターンとしては、既存のSCS(例えば、特定SCS)で用いるSSBのマッピングパターンを対象SCSで用いるようにスケーリングすることによって得られるマッピングパターンが用いられてもよい。既存のSCSで用いるSSBのマッピングパターンとしては、3GPP TS38.213 V16.4.0の§4.1に規定されるCase A又はCase Bが用いられてもよい。或いは、対象SCSで用いるSSBのマッピングパターンとしては、新たなマッピングパターンが定義されてもよい。
 対象SCSで用いるSSBは、既存のSCS(例えば、特定SCS)のCORESET#0と多重されなくてもよい。言い換えると、対象SCSで用いるSSBは、対象SCSのCORESET#0と多重されてもよい。或いは、対象SCSで用いるSSBの少なくとも一部は、既存SCSのCORESET#0の少なくとも一部と多重されてもよい。対象SCSで用いるSSBと既存SCSのCORESET#0との多重が許容される場合には、対象SCSと最も近い既存のSCSのCORESET#0の多重のみが許容されてもよい。
 このようなケースにおいて、以下に示すオプションが考えられる。
 オプション1では、対象SCSに関する初期アクセスにおいて、対象SCSで用いるSSBの利用が想定されない。オプション1では、UE200は、対象SCSで用いるSSBの探索を明示的に指示された場合に、対象SCSで用いるSSBのモニタリングを実行してもよい。対象SCSで用いるSSBの探索を指示する情報要素は、MeasObjectNRであってもよい。
 オプション2では、対象SCSに関する初期アクセスにおいて、対象SCSで用いるSSBの利用が想定される。オプション2では、UE200は、特定周波数帯又は特定バンドにおいて、対象SCSで用いるSSBのモニタリングを実行してもよい。対象SCSで用いるSSBを探索する周波数ラスタ(Synchronization raster)の間隔は、既存のSCS(例えば、特定SCS)で用いるSSBを探索する周波数ラスタの間隔よりも広くてもよい。
 (6)作用及び効果
 実施形態では、UE200及びgNB100は、特定SCS(最小SCS)が定義されたFR1の少なくとも一部又はFR1よりも低い周波数帯を含む対象周波数帯において、特定SCSよりも低い対象SCSを適用する。UE200及びgNB100は、対象SCSに関する初期アクセス方法の少なくとも一部として、特定SCSに関する初期アクセス方法と異なる方法を適用する。このような構成によれば、周波数利用効率を高めるために対象SCSを新たに導入するにあたって、対象SCSに関する初期アクセスを適切に実行することができる。
 (7)変更例1
 以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について主として説明する。
 実施形態では、特定周波数レンジがFR1であり、特定SCSが15kHzであり、対象周波数帯がFR1の少なくとも一部又はFR1よりも低い周波数帯を含むケースについて説明した。これに対して、変更例1では、特定周波数レンジがFR2であり、特定SCSが60kHzであり、対象周波数帯がFR2の少なくとも一部又はFR2よりも低い周波数帯を含むケースについて説明する。
 変更例1では、対象SCSは、特定SCS(例えば、60kHz)の1/2n(nは正の整数)の条件を満たすSCS(例えば、30kHz、15kHzなど)であってもよく、特定SCSの1/2nの条件も満たさないSCSであってもよい。このようなケースであっても、上述した第1方法及び第2方法の少なくともいずれか1つが適用されてもよい。
 実施形態と同様に、SSBのSCSとして対象SCSがサポートされる場合に、対象SCSで用いるSSBのマッピングパターンとしては、既存のSSBのマッピングパターン(例えば、3GPP TS38.213 V16.4.0の§4.1に規定されるCase A~Case C)がそのまま用いられてもよく、既存のSSBのマッピングパターン(例えば、3GPP TS38.213 V16.4.0の§4.1に規定されるCase D~Case E)を対象SCSで用いるようにスケーリングすることによって得られるマッピングパターンが用いられてもよい。或いは、対象SCSで用いるSSBのマッピングパターンとしては、新たなマッピングパターンが定義されてもよい。
 対象SCSのSSBの最大数は、既存のSCSのSSBの最大数(例えば、64)よりも少なくてもよい。このようなケースにおいて、対象SCSのSSBに関する全てのSSB候補位置は、SSB送信周期(例えば、5ms)内に納まるように定義されてもよい。
或いは、対象SCSのSSBの最大数は、既存のSCSのSSBの最大数(例えば、64)と同じであってもよい。このようなケースにおいて、対象SCSのSSBに関する全てのSSB候補位置は、既存のSSB送信周期(例えば、5ms)よりも長い周期内に納まるように定義されてもよい。すなわち、5msのSSB送信周期がサポートされず、SMTC window durationとして既存のSSB送信周期(例えば、5ms)よりも長い時間がサポートされてもよい。
 上述した(4.1)CP Ratio、(4.2)FFTポイント数、(4.3)適用条件、(4.4)UE capability、(4.5)シンボル境界、(4.6)UE Processing timeline、(4.7)RS及び(4.8)シンボル数の中から選択された1以上の構成が適用されてもよい。
 このような前提下において、対象SCSとしてFR1で適用可能なSCS(15kHz、30kHz)が用いられる場合には、FR1で適用可能なSCSと同様の構成が適用されてもよい。或いは、対象SCSとしてFR1で適用可能なSCS(15kHz、30kHz)が用いられる場合であっても、FR1で適用可能なSCSとは異なる構成(上述した(4.1)~(4.8)の少なくともいずれか1つ)が適用されてもよい。
 (8)変更例2
 以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する相違点について主として説明する。
 変更例2では、SSB又はCORESET#0のSCSとして対象SCSがサポートされるケースについてさらに説明する。
 このようなケースにおいて、CORESET#0 configurationが新たに定義されてもよい。SSB及びPDSCHの双方のSCSとして対象SCSがサポートされる場合に、第1CORESET#0 configurationが新たに定義されてもよい。SSB及びPDSCHのいずれか1つのSCSとして対象SCSがサポートされる場合に、第2CORESET#0 configurationが新たに定義されてもよい。第1CORESET#0 configuration及び第2CORESET#0 configurationの双方が定義されてもよい。
 第1CORESET#0 configuration又は第2CORESET#0 configurationは、対象SCSと同じ周波数帯で用いる既存のSCSのCORESET#0 configurationと比べて、以下に示すパラメータが異なっていてもよい。パラメータは、multiplexing pattern、CORESET#0 RB数、RB Offsetの中から選択された1以上のパラメータであってもよい。例えば、FR1において、第1CORESET#0 configuration又は第2CORESET#0 configurationのmultiplexing patternは、既存の値(例えば、2/3)よりも大きな値を含んでもよい。FR1において、第1CORESET#0 configuration又は第2CORESET#0 configurationのCORESET#0 RB数は、既存の値(例えば、96)よりも大きな値を含んでもよい。
 また、Search Space Zero configurationが新たに定義されてもよい。SSB及びPDSCHの双方のSCSとして対象SCSがサポートされる場合に、第1Search Space Zero configurationが新たに定義されてもよい。SSB及びPDSCHのいずれか1つのSCSとして対象SCSがサポートされる場合に、第2Search Space Zero configurationが新たに定義されてもよい。第1Search Space Zero configuration及び第2Search Space Zero configurationの双方が定義されてもよい。
 第1Search Space Zero configuration又は第2Search Space Zero configurationは、対象SCSと同じ周波数帯で用いる既存のSCSのSearch Space Zero configurationと比べて、以下に示すパラメータが異なっていてもよい。パラメータは、Number of search space sets per slot、M、Oの中から選択された1以上のパラメータであってもよい。例えば、第1Search Space Zero configuration又は第2Search Space Zero configurationのNumber of search space sets per slot及びMは1に限定されてもよい。第1Search Space Zero configuration又は第2Search Space Zero configurationのOは、新たな値(0, 2, 5, 7以外の値)を含んでもよい。
 (9)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 実施形態では、特定SCS、特定周波数レンジ、対象周波数帯、対象SCSなどの用語を用いて説明した。しかしながら、実施形態はこれに限定されるものではない。「特定」は「第1」と読み替えられ、「対象」は「第2」と読み替えられてもよい。或いは、「特定」は「既存」と読み替えられ、「対象」は「新規」と読み替えられてもよい。或いは、「対象」は「低」と読み替えられてもよい。
 実施形態では、対象SCSに関する初期アクセス方法は、SSBのサポート及びCORESET#0のサポートの少なくともいずれか1つの点で、特定SCSに関する初期アクセス方法と異なる。ここで、対象SCSに関する初期アクセス方法が特定SCSに関する初期アクセス方法と異なる態様は、SSBの構成が異なる態様を含んでもよく、CORESET#0の構成が異なる態様を含んでもよい。
 上述した実施形態の説明に用いたブロック構成図(図4及び図5)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図9は、当該装置のハードウェア構成の一例を示す図である。図9に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 10 無線通信システム
 20 NG-RAN
 100 gNB
 110 受信部
 120 送信部
 130 制御部
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス

Claims (5)

  1.  最小サブキャリア間隔として特定サブキャリア間隔が定義された特定周波数レンジの少なくとも一部又は前記特定周波数レンジよりも低い周波数帯を含む対象周波数帯において、前記特定サブキャリア間隔よりも低い対象サブキャリア間隔を適用する制御部を備え、
     前記制御部は、前記対象サブキャリア間隔に関する初期アクセス方法の少なくとも一部として、前記特定サブキャリア間隔に関する初期アクセス方法と異なる方法を適用する、端末。
  2.  前記対象サブキャリア間隔に関する初期アクセス方法は、同期信号のサポート及び制御リソースセットのサポートの少なくともいずれか1つの点で、前記特定サブキャリア間隔に関する初期アクセス方法と異なる、請求項1に記載の端末。
  3.  最小サブキャリア間隔として特定サブキャリア間隔が定義された特定周波数レンジの少なくとも一部又は前記特定周波数レンジよりも低い周波数帯を含む対象周波数帯において、前記特定サブキャリア間隔よりも低い対象サブキャリア間隔を適用する制御部を備え、
     前記制御部は、前記対象サブキャリア間隔に関する初期アクセス方法の少なくとも一部として、前記特定サブキャリア間隔に関する初期アクセス方法と異なる方法を適用する、基地局。
  4.  端末と、基地局と、を備え、
     前記端末及び基地局は、最小サブキャリア間隔として特定サブキャリア間隔が定義された特定周波数レンジの少なくとも一部又は前記特定周波数レンジよりも低い周波数帯を含む対象周波数帯において、前記特定サブキャリア間隔よりも低い対象サブキャリア間隔を適用する制御部を備え、
     前記制御部は、前記対象サブキャリア間隔に関する初期アクセス方法の少なくとも一部として、前記特定サブキャリア間隔に関する初期アクセス方法と異なる方法を適用する、無線通信システム。
  5.  最小サブキャリア間隔として特定サブキャリア間隔が定義された特定周波数レンジの少なくとも一部又は前記特定周波数レンジよりも低い周波数帯を含む対象周波数帯において、前記特定サブキャリア間隔よりも低い対象サブキャリア間隔を適用するステップと、
     前記対象サブキャリア間隔に関する初期アクセス方法の少なくとも一部として、前記特定サブキャリア間隔に関する初期アクセス方法と異なる方法を適用するステップと、を備える、無線通信方法。
PCT/JP2021/008571 2021-03-04 2021-03-04 端末、基地局、無線通信システム及び無線通信方法 WO2022185498A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2021/008571 WO2022185498A1 (ja) 2021-03-04 2021-03-04 端末、基地局、無線通信システム及び無線通信方法
EP21929070.7A EP4304263A1 (en) 2021-03-04 2021-03-04 Terminal, base station, wireless communication system, and wireless communication method
US18/280,131 US20240154774A1 (en) 2021-03-04 2021-03-04 Terminal, base station, radio communication system and radio communication method
CN202180094924.0A CN116918423A (zh) 2021-03-04 2021-03-04 终端、基站、无线通信系统以及无线通信方法
JP2023503299A JPWO2022185498A1 (ja) 2021-03-04 2021-03-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/008571 WO2022185498A1 (ja) 2021-03-04 2021-03-04 端末、基地局、無線通信システム及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2022185498A1 true WO2022185498A1 (ja) 2022-09-09

Family

ID=83154125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008571 WO2022185498A1 (ja) 2021-03-04 2021-03-04 端末、基地局、無線通信システム及び無線通信方法

Country Status (5)

Country Link
US (1) US20240154774A1 (ja)
EP (1) EP4304263A1 (ja)
JP (1) JPWO2022185498A1 (ja)
CN (1) CN116918423A (ja)
WO (1) WO2022185498A1 (ja)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
3GPP TS38.101-1
3GPP TS38.213
3GPP TS38.300
INTEL CORPORATION: "NR spectrum utilization", 3GPP DRAFT; R4-1713688 - INTEL - NR SPECTRUM UTILIZATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Reno, Nevada, USA; 20171127 - 20171201, 17 November 2017 (2017-11-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051375288 *
NOKIA, NOKIA SHANGHAI BELL: "Initial Access Signals and Channels for NR-U", 3GPP DRAFT; R1-1900347_INITIAL ACCESS SIGNALS AND CHANNELS_NOK, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Taipei, Taiwan; 20190121 - 20190125, 20 January 2019 (2019-01-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051593261 *
ZTE, SANECHIPS: "Discussion on the initial access aspects for 52.6 to 71 GHz", 3GPP DRAFT; R1-2100073, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970777 *

Also Published As

Publication number Publication date
JPWO2022185498A1 (ja) 2022-09-09
CN116918423A (zh) 2023-10-20
EP4304263A1 (en) 2024-01-10
US20240154774A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
JP2023116728A (ja) 端末
WO2022163840A1 (ja) 端末及び無線通信システム
WO2021033328A1 (ja) 端末
WO2021019698A1 (ja) 端末
WO2022185498A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2022185497A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2022244504A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022185499A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2022208878A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022190289A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022195787A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022190287A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022162743A1 (ja) 端末、基地局及び無線通信方法
WO2022162745A1 (ja) 端末、基地局及び無線通信方法
WO2022249721A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022190377A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022244496A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022162742A1 (ja) 端末、基地局及び無線通信方法
WO2022162744A1 (ja) 端末、基地局及び無線通信方法
WO2022162746A1 (ja) 端末、基地局及び無線通信方法
WO2022162747A1 (ja) 端末、基地局及び無線通信方法
WO2022215271A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022244097A1 (ja) 端末及び無線通信方法
WO2022239081A1 (ja) 端末及び無線通信方法
WO2022239080A1 (ja) 端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929070

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023503299

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180094924.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18280131

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021929070

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021929070

Country of ref document: EP

Effective date: 20231004