WO2022162745A1 - 端末、基地局及び無線通信方法 - Google Patents

端末、基地局及び無線通信方法 Download PDF

Info

Publication number
WO2022162745A1
WO2022162745A1 PCT/JP2021/002690 JP2021002690W WO2022162745A1 WO 2022162745 A1 WO2022162745 A1 WO 2022162745A1 JP 2021002690 W JP2021002690 W JP 2021002690W WO 2022162745 A1 WO2022162745 A1 WO 2022162745A1
Authority
WO
WIPO (PCT)
Prior art keywords
specific
measurement
transmission
dci
periodic
Prior art date
Application number
PCT/JP2021/002690
Other languages
English (en)
French (fr)
Inventor
浩樹 原田
大輔 栗田
真由子 岡野
聡 永田
真哉 岡村
知也 小原
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP21922769.1A priority Critical patent/EP4287694A1/en
Priority to PCT/JP2021/002690 priority patent/WO2022162745A1/ja
Priority to JP2022577842A priority patent/JPWO2022162745A1/ja
Priority to CN202180091615.8A priority patent/CN116746202A/zh
Publication of WO2022162745A1 publication Critical patent/WO2022162745A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present disclosure relates to a terminal, base station, and wireless communication method that perform wireless communication, particularly to a terminal, base station, and wireless communication method that perform communication related to reference signals.
  • the 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G
  • the gNB (cell) transmits reference signals that cover the coverage area of the gNB.
  • Reference signals include SSB (Synchronization Signal/PBCH Block), CSI-RS (Channel State Information-Reference Signal), PRS (Positioning Reference Signal), and the like (for example, Non-Patent Document 1).
  • the gNB transmits various reference signals in a time division manner using two or more beams in order to cover the coverage area of the gNB.
  • the overhead of gNB 100 increases as the number of beams transmitted by the gNB increases.
  • the possibility of transmitting a beam (reference signal) in a direction where UE (User Equipment) does not exist also increases.
  • the following disclosure is made in view of such circumstances, and provides a terminal, a base station, and a wireless communication method that can reduce the overhead associated with transmitting reference signals while covering the coverage area. aim.
  • the present disclosure is a terminal, a receiving unit that receives a reference signal used for a purpose different from obtaining channel state information, and a control unit that performs measurements related to obtaining the channel state information using the reference signal.
  • the gist is that it comprises:
  • the present disclosure is a base station, a transmitter that transmits a reference signal used for a purpose different from acquisition of channel state information, and a measurement related to acquisition of the channel state information using the reference signal. and an assumed control unit.
  • the present disclosure is a wireless communication method comprising: receiving a reference signal used for a purpose different from obtaining channel state information; and performing measurements related to obtaining the channel state information using the reference signal.
  • the gist is that it comprises:
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
  • FIG. 2 is a diagram illustrating frequency ranges used in wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • FIG. 4 is a functional block configuration diagram of UE200.
  • FIG. 5 is a functional block configuration diagram of gNB100.
  • FIG. 6 is a diagram for explaining the background.
  • FIG. 7 is a diagram for explaining Operation Example 1.
  • FIG. FIG. 8 is a diagram for explaining Operation Example 2.
  • FIG. FIG. 9 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to an embodiment.
  • the radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter NG-RAN 20 and a terminal 200 (hereinafter UE 200).
  • NR 5G New Radio
  • NG-RAN 20 Next Generation-Radio Access Network
  • UE 200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a system called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN 20 includes a radio base station 100A (hereinafter gNB100A) and a radio base station 100B (hereinafter gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the radio communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a core network (5GC, not shown) according to 5G or 6G.
  • NG-RAN 20 and 5GC may simply be referred to as a "network”.
  • gNB100A and gNB100B are radio base stations conforming to 5G or 6G, and perform radio communication conforming to 5G or 6G with UE200.
  • gNB100A, gNB100B and UE200 generate BM beams with higher directivity by controlling radio signals transmitted from multiple antenna elements Massive MIMO (Multiple-Input Multiple-Output), multiple component carriers (CC ), and dual connectivity (DC) that simultaneously communicates with two or more transport blocks between the UE and each of the two NG-RAN Nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC multiple component carriers
  • DC dual connectivity
  • the wireless communication system 10 supports multiple frequency ranges (FR).
  • FIG. 2 shows the frequency ranges used in wireless communication system 10. As shown in FIG.
  • the wireless communication system 10 supports FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410MHz to 7.125GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 is a higher frequency than FR1 and may use an SCS of 60 or 120 kHz (may include 240 kHz) and a bandwidth (BW) of 50-400 MHz.
  • SCS may be interpreted as numerology.
  • numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 also supports frequency bands higher than the FR2 frequency band. Specifically, the wireless communication system 10 supports frequency bands exceeding 52.6 GHz and up to 114.25 GHz. Such high frequency bands may be conveniently referred to as "FR2x".
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT- S-OFDM) may be applied.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT- S-OFDM Discrete Fourier Transform-Spread
  • FIG. 3 shows a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the intervals (frequencies) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
  • the number of symbols forming one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Furthermore, the number of slots per subframe may vary between SCSs.
  • time direction (t) shown in FIG. 3 may be called the time domain, symbol period, symbol time, or the like.
  • the frequency direction may be called a frequency domain, resource block, subcarrier, bandwidth part (BWP), or the like.
  • FIG. 4 is a functional block diagram of the UE200.
  • the UE 200 includes a radio signal transmission/reception unit 210, an amplifier unit 220, a modem unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmission/reception unit 260, and a control unit 270. .
  • the radio signal transmitting/receiving unit 210 transmits/receives radio signals according to NR or 6G.
  • the radio signal transmitting/receiving unit 210 supports Massive MIMO, CA that bundles multiple CCs, and DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
  • the amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) and the like. Amplifier section 220 amplifies the signal output from modem section 230 to a predetermined power level. In addition, amplifier section 220 amplifies the RF signal output from radio signal transmission/reception section 210 .
  • PA Power Amplifier
  • LNA Low Noise Amplifier
  • the modulation/demodulation unit 230 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Also, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
  • the control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200 .
  • the control signal/reference signal processing unit 240 receives various control signals transmitted from the gNB 100 .
  • the various control signals may include RRC control signals, DCI (Downlink Control Information), and MAC CE control signals.
  • the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via the control channel.
  • the various control signals may include RRC control signals, UCI (Uplink Control Information), and MAC CE control signals.
  • DCI has existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Allocation), TDRA (Time Domain Resource Allocation), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number) , NDI (New Data Indicator), RV (Redundancy Version), and the like.
  • CI Carrier indicator
  • BWP indicator BWP indicator
  • FDRA Frequency Domain Resource Allocation
  • TDRA Time Domain Resource Allocation
  • MCS Modulation and Coding Scheme
  • HPN HARQ Process Number
  • NDI New Data Indicator
  • RV Redundancy Version
  • the value stored in the DCI Format field is an information element that specifies the DCI format.
  • the value stored in the CI field is an information element that specifies the CC to which DCI is applied.
  • the value stored in the BWP indicator field is an information element that specifies the BWP to which DCI applies.
  • the BWP that can be specified by the BWP indicator is configured by an information element (BandwidthPart-Config) included in the RRC message.
  • the value stored in the FDRA field is an information element that specifies the frequency domain resource to which DCI is applied.
  • a frequency domain resource is identified by a value stored in the FDRA field and an information element (RA Type) included in the RRC message.
  • the value stored in the TDRA field is an information element that specifies the time domain resource to which DCI applies.
  • the time domain resource is specified by the value stored in the TDRA field and information elements (pdsch-TimeDomainAllocationList, pusch-TimeDomainAllocationList) included in the RRC message.
  • a time-domain resource may be identified by a value stored in the TDRA field and a default table.
  • the value stored in the MCS field is an information element that specifies the MCS to which DCI applies.
  • the MCS is specified by the values stored in the MCS and the MCS table.
  • the MCS table may be specified by RRC messages or identified by RNTI scrambling.
  • the value stored in the HPN field is an information element that specifies the HARQ Process to which DCI is applied.
  • the value stored in NDI is an information element for specifying whether data to which DCI is applied is initial transmission data.
  • the value stored in the RV field is an information element that specifies the data redundancy
  • the control signal/reference signal processing unit 240 receives various reference signals transmitted from the gNB 100 .
  • various reference signals may include DMRS (Demodulation Reference Signal) for DL, CSI-RS (Channel State Information-Reference Signal), PRS (Positioning Reference Signal), and PTRS (Phase Tracking Reference Signal) for DL. good.
  • SSB Synchronization Signal/PBCH Block
  • the control signal/reference signal processing unit 240 transmits various reference signals to the gNB 100 .
  • various reference signals may include DMRS for UL, PTRS for UL, SRS (Sounding Reference Signal), and the like.
  • the DMRS for DL is a known sequence for each UE 200 used for data demodulation.
  • DMRS for DL is used for decoding PDSCH (Physical Downlink Shared Channel).
  • CSI-RS is a known sequence specific to UE 200 used for channel state estimation.
  • CSI-RS may include Periodic CSI-RS transmitted periodically, Semi-persistent CSI-RS transmitted semi-persistently, and Aperiodic CSI-RS transmitted dynamically. It's okay.
  • the PRS is a known sequence specific to the UE 200 used for terminal position measurement.
  • RSRP Reference Signal Reception Power
  • RSTD Reference Signal Time Difference
  • Rx-Tx Time Difference etc.
  • PRS is a reference signal that is periodically transmitted.
  • the PTRS for DL is a known sequence specific to UE200 that is used for estimating phase noise, which is an issue in high frequency bands.
  • the PTRS for DL is used for PDSCH phase noise estimation.
  • the DMRS for UL is a known sequence for each UE 200 used for data demodulation.
  • DMRS for UL is used for decoding of PUSCH (Physical Uplink Shared Channel).
  • the PTRS for UL is a known sequence specific to UE200 that is used for estimating phase noise, which is an issue in high frequency bands.
  • the PTRS for UL is used for PUSCH phase noise estimation.
  • the SRS is a known sequence specific to the UE 200 and used for channel state estimation. SRS is used for scheduling, massive MIMO, beam management, and so on. The SRS may be used for locating the terminal.
  • Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Physical Broadcast Channel (PBCH), and the like.
  • Data channels include PDSCH and PUSCH. Data means data transmitted over a data channel. A data channel may be read as a shared channel.
  • control signal/reference signal processing unit 240 may constitute a receiving unit that receives a reference signal (second RS) used for a purpose (second purpose) different from the first purpose.
  • second RS reference signal
  • control signal/reference signal processing unit 240 receives a notification instructing measurement using a dynamic reference signal (dynamic RS) that is dynamically transmitted as a reference signal used for a specific purpose, and A receiving unit that receives the target RS may be configured.
  • dynamic RS dynamic reference signal
  • the encoding/decoding unit 250 performs data segmentation/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data. Also, encoding/decoding section 250 decodes the data output from modem section 230 and concatenates the decoded data.
  • the data transmission/reception unit 260 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitting/receiving unit 260 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc. The data transmission/reception unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
  • MAC medium access control layer
  • RLC radio link control layer
  • PDCP packet data convergence protocol layer
  • HARQ Hybrid Automatic Repeat Request
  • the control unit 270 controls each functional block that configures the UE200.
  • the controller 270 may configure the controller to perform measurements for the first purpose using the second RS.
  • control unit 270 may configure a control unit that performs measurement for a specific purpose using the dynamic RS based on a notification instructing measurement using the dynamic RS.
  • FIG. 5 is a functional block configuration diagram of gNB100. As shown in FIG. 5, the gNB 100 has a receiver 110, a transmitter 120 and a controller .
  • the receiving unit 110 receives various signals from the UE200.
  • the receiver 110 may receive UL signals via UL channels such as PUCCH or PUSCH.
  • the transmission unit 120 transmits various signals to the UE200.
  • Transmitter 120 may transmit a DL signal via a DL channel such as PDCCH or PDSCH.
  • the transmitter 120 may transmit a reference signal (second RS) used for a second purpose different from the first purpose.
  • second RS reference signal
  • the transmitting unit 120 transmits a notification instructing measurement using a dynamic reference signal (dynamic RS) that is dynamically transmitted as a reference signal used for a specific purpose, and also transmits the dynamic RS.
  • a transmitter may be configured.
  • the control unit 130 controls the gNB100.
  • the controller 130 may constitute a controller that assumes that the second RS is used to perform measurements for the first purpose.
  • the control unit 130 may configure a control unit that assumes that a measurement for a specific purpose is performed using a dynamic RS based on a notification instructing measurement using a dynamic RS. .
  • periodic RS reference signal
  • the specific purpose may be radio resource management (hereinafter, RRM) measurement (hereinafter, RRM Measurement), beam failure detection (hereinafter, BFD), channel state information acquisition (hereinafter, CSI Acquisition ), may be a measurement on the reception quality in the physical layer (L1-RSRP_SINR Measurement), may be a measurement on the position of the UE 200 (hereinafter, Positioning Measurement), a measurement on radio link management (hereinafter , RLM Measurement).
  • RRM radio resource management
  • RRM Measurement beam failure detection
  • BFD channel state information acquisition
  • L1-RSRP_SINR Measurement may be a measurement on the reception quality in the physical layer
  • Positioning Measurement may be a measurement on the position of the UE 200 (hereinafter, Positioning Measurement)
  • RLM Measurement radio link management
  • a periodic RS may be an SSB, a Periodic CSI-RS, or a PRS.
  • the periodic RS may be configured to be transmitted with a period of, for example, 20 msec.
  • periodic RSs are transmitted in a time division manner using each beam (BM#1-BM#8) to cover the coverage area of gNB100 (cell).
  • the gNB 100 uses BM#1 to BM#8 in SFN#0, SFN#2, SFN#4, . . . to transmit periodic RSs in a time division manner.
  • UE 200#1 receives the periodic RS transmitted using BM#2 and transmits the measurement result of the periodic RS to gNB 100.
  • the UE 200#2 receives the periodic RS transmitted using BM#4 and transmits the measurement result of the periodic RS to the gNB 100.
  • the UE 200#3 receives the periodic RS transmitted using BM#6 and transmits the measurement result of the periodic RS to the gNB 100.
  • the UE 200#4 receives the periodic RS transmitted using BM#7 and transmits the measurement result of the periodic RS to the gNB 100.
  • the mechanism shown below is newly introduced in order to reduce the overhead of the gNB 100.
  • Operation example 1 of the embodiment will be described below.
  • the UE 200 performs measurement for the first purpose based on a reference signal (hereinafter referred to as second RS) used for a second purpose different from the first purpose.
  • second RS reference signal
  • the gNB 100 assumes that the measurements for the first purpose are performed based on the second RS.
  • the UE 200 may perform measurement for the first purpose based on the reference signal (hereinafter referred to as first RS) used for the first purpose.
  • first RS reference signal
  • the gNB 100 may omit at least part of the transmission of the first RS when it is assumed that measurements for the first purpose are performed based on the second RS.
  • the second RS is transmitted to UE200#1 to UE200#4, and in SFN#2 and SFN#3, UE200#1 and UE200#3 A case in which the second RS is transmitted to is described.
  • the UE 200 located in the direction of arrival of BM#2, BM#4, BM#6 and BM#7 transmits to UE 200#1 to UE 200#4.
  • a measurement for the first purpose is performed based on the second RS obtained.
  • the gNB 100 omits transmission of the first RS using BM#2, BM#4, BM#6 and BM#7 in SFN#2.
  • the UE 200 located in the direction of arrival of BM#2, BM#4, BM#6, and BM#7 may include UE 200 other than UE 200#1 to UE 200#4 in addition to UE 200#1 to UE 200#4.
  • the UE 200 located in the direction of arrival of BM#2 and BM#6 is related to the first purpose based on the second RS transmitted to UE 200#1 and UE 200#3. Make a measurement.
  • the gNB 100 omits transmission of the first RS using BM#2 and BM#6 in SFN#4.
  • UE200 located in the direction of arrival of BM#2 and BM#6 may include UE200 other than UE200#1 and UE200#3 in addition to UE200#1 and UE200#3.
  • the first RS may be an SSB or a Periodic CSI-RS.
  • the first RS may be a CRS (Cell-specific Reference Signal) used in LTE.
  • Measurements for RRM Measurement may be performed using a periodically transmitted first RS (eg, SSB, Periodic CSI-RS, CRS).
  • a periodically transmitted first RS eg, SSB, Periodic CSI-RS, CRS.
  • a DMRS may be used as the second RS.
  • the DMRS may be composed of a cell-specific sequence or a beam-specific sequence instead of a sequence specific to the UE 200 that receives the DMRS.
  • a sequence specific to a beam may be read as a sequence specific to a group of UEs 200 .
  • An instruction to use DMRS for RRM measurement may be set by an RRC message, or may be notified by DCI or MAC CE.
  • Such an indication may be signaled by DCI indicating PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement (L1-RSRP Measurement or L1-SINR Measurement). It may be signaled by a DCI or MAC CE that is separate from the DCI that is used.
  • either Semi-persistent CSI-RS or Aperiodic CSI-RS may be used.
  • An instruction to use Semi-persistent CSI-RS or Aperiodic CSI-RS for RRM Measurement may be set by an RRC message, or may be notified by DCI or MAC CE.
  • Such an indication may be signaled by a DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement, or by a DCI or MAC CE that is separate from the DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement. may be notified.
  • a PRS may be used as the second RS.
  • An instruction to use PRS for RRM measurement may be set by an RRC message, or may be notified by DCI or MAC CE.
  • Such an indication may be signaled by DCI indicating PDSCH Scheduling, CSI Acquisition, L1-RSRP_SINR Measurement or Positioning measurement, and is separate from DCI indicating PDSCH Scheduling, CSI Acquisition, L1-RSRP_SINR Measurement or Positioning measurement. may be signaled by DCI or MAC CE.
  • Two or more reference signals selected from DMRS, Semi-persistent CSI-RS, Aperiodic CSI-RS and PRS may be used as the second RS.
  • the resource allocation and sequence of the second RS may be set by an RRC message.
  • the resource allocation and sequence used in RRM measurement may be dynamically notified by DCI or MAC CE from among the resource allocation and sequence configured by the RRC message.
  • DCI (Scheduling DCI) including an instruction to use the second RS for RRM measurement may be configured to be decodable by UE 200 (Non-scheduled UE 200) located in the arrival direction of the beam in which the second RS is transmitted.
  • the gNB 100 may transmit DCI (Scheduling DCI) including an instruction to use the second RS for RRM measurement so that it can be decoded by UE 200 (Non-scheduled UE 200) located in the arrival direction of the beam in which the second RS is transmitted. .
  • separate coding may be applied to the instruction to use the second RS for RRM measurement and the scheduling information (Separate coding). That is, coding that non-scheduled UE 200 can decode may be applied to the instruction to use the second RS for RRM measurement, and coding that non-scheduled UE 200 cannot decode may be applied to the scheduling information.
  • DCI including an instruction to use the second RS for RRM Measurement does not use C-RNTI (Cell-Radio Network Temporary Identifier) for CRC scrambling so that Non-scheduled UE 200 can decode DCI. may be explicitly included.
  • the gNB 100 may omit at least part of the periodically transmitted first RS transmission when a specific condition is satisfied. In other words, the UE 200 may not assume reception of at least part of the periodically transmitted first RS when a specific condition is satisfied. Conversely, the gNB 100 may perform transmission of the periodically transmitted first RS if certain conditions are not met. In other words, the UE 200 may assume reception of the periodically transmitted first RS if certain conditions are not met.
  • the specific conditions may include conditions under which RRM Measurement using the second RS is performed within a specific cycle.
  • the specific period may be the transmission period of the first RS, the period set by the RRC message or the MAC CE message, or the period predefined in the wireless communication system 10 .
  • the specific condition may include a condition under which the gNB 100 notifies the UE 200 that the first RS is not transmitted.
  • the UE200 may dynamically request the gNB100 to transmit the first RS. For example, the UE 200 may dynamically request transmission of the first RS if RRM measurement using the second RS could not be performed within a specific period.
  • the specific period may be the transmission period of the first RS, the period set by the RRC message or the MAC CE message, or the period predefined in the wireless communication system 10 .
  • the UE 200 may perform specific UL transmission that dynamically requests transmission of the first RS a predetermined time before the timing of transmitting the first RS.
  • the specific UL transmission may be transmission of a specific UCI via PUCCH or transmission of a specific UCI via PUSCH.
  • the specific UL transmission may be transmission of a specific RA preamble via PRACH or transmission of an RA preamble using specific resources.
  • the specific UL transmission may be SRS transmission using a specific sequence or SRS transmission using specific resources.
  • the first RS may be a Periodic CSI-RS.
  • Measurements for BFD may be performed using a periodically transmitted first RS (Periodic CSI-RS).
  • a DMRS may be used as the second RS.
  • the DMRS may be composed of a cell-specific sequence or a beam-specific sequence instead of a sequence specific to the UE 200 that receives the DMRS.
  • a sequence specific to a beam may be read as a sequence specific to a group of UEs 200 .
  • An indication to use DMRS for BFD may be set by an RRC message, or may be notified by DCI or MAC CE.
  • Such an indication may be signaled by a DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement, or by a DCI or MAC CE that is separate from the DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement. may be notified.
  • either Semi-persistent CSI-RS or Aperiodic CSI-RS may be used.
  • An indication to use Semi-persistent CSI-RS or Aperiodic CSI-RS for BFD may be set by an RRC message, or may be notified by DCI or MAC CE.
  • Such an indication may be signaled by a DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement, or by a DCI or MAC CE that is separate from the DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement. may be notified.
  • a PRS may be used as the second RS.
  • the instruction to use PRS for BFD may be set by an RRC message, or may be notified by DCI or MAC CE.
  • Such an indication may be signaled by DCI indicating PDSCH Scheduling, CSI Acquisition, L1-RSRP_SINR Measurement or Positioning measurement, and is separate from DCI indicating PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement or Positioning measurement. may be signaled by DCI or MAC CE.
  • Two or more reference signals selected from DMRS, Semi-persistent CSI-RS, Aperiodic CSI-RS and PRS may be used as the second RS.
  • the resource allocation and sequence of the second RS may be set by an RRC message.
  • the resource allocation and sequence used in BFD may be dynamically notified by DCI or MAC CE from among the resource allocation and sequence configured by the RRC message.
  • DCI (Scheduling DCI) including an instruction to use the second RS for BFD may be configured to be decodable by UE 200 (Non-scheduled UE 200) located in the arrival direction of the beam from which the second RS is transmitted.
  • the gNB 100 may transmit DCI (Scheduling DCI) including an instruction to use the second RS for BFD so that it can be decoded by UE 200 (Non-scheduled UE 200) located in the direction of arrival of the beam in which the second RS is transmitted.
  • separate coding may be applied to the instruction to use the second RS for BFD and the scheduling information (Separate coding). That is, coding that non-scheduled UE 200 can decode may be applied to the instruction to use the second RS for BFD, and coding that non-scheduled UE 200 cannot decode may be applied to the scheduling information.
  • DCI including an instruction to use the second RS for BFD may explicitly include C-RNTI instead of using C-RNTI for CRC scrambling so that non-scheduled UE 200 can decode DCI.
  • the gNB 100 may omit at least part of the periodically transmitted first RS transmission when a specific condition is satisfied. In other words, the UE 200 may not assume reception of at least part of the periodically transmitted first RS when a specific condition is satisfied. Conversely, the gNB 100 may perform transmission of the periodically transmitted first RS if certain conditions are not met. In other words, the UE 200 may assume reception of the periodically transmitted first RS if certain conditions are not met.
  • the specific conditions may include conditions under which the measurement of BFD using the second RS is performed within a specific cycle.
  • the specific period may be the transmission period of the first RS, the period set by the RRC message or the MAC CE message, or the period predefined in the wireless communication system 10 .
  • the specific condition may include a condition under which the gNB 100 notifies the UE 200 that the first RS is not transmitted.
  • the UE200 may dynamically request the gNB100 to transmit the first RS. For example, the UE 200 may dynamically request transmission of the first RS if BFD using the second RS cannot be performed within a specific period.
  • the specific period may be the transmission period of the first RS, the period set by the RRC message or the MAC CE message, or the period predefined in the wireless communication system 10 .
  • the UE 200 may perform specific UL transmission that dynamically requests transmission of the first RS a predetermined time before the timing of transmitting the first RS.
  • the specific UL transmission may be transmission of a specific UCI via PUCCH or transmission of a specific UCI via PUSCH.
  • the specific UL transmission may be transmission of a specific RA preamble via PRACH or transmission of an RA preamble using specific resources.
  • the specific UL transmission may be SRS transmission using a specific sequence or SRS transmission using specific resources.
  • the first RS may be a Periodic CSI-RS, a Semi-persistent CSI-RS, or an Aperiodic CSI-RS.
  • Measurements for CSI Acquisition may be performed using a periodically transmitted first RS (eg, Periodic CSI-RS).
  • Measurements for CSI Acquisition may be performed using the aperiodically transmitted first RS (eg, Semi-persistent CSI-RS, Aperiodic CSI-RS).
  • a DMRS may be used as the second RS.
  • the DMRS may be composed of a cell-specific sequence or a beam-specific sequence instead of a sequence specific to the UE 200 that receives the DMRS.
  • a sequence specific to a beam may be read as a sequence specific to a group of UEs 200 .
  • An instruction to use DMRS for CSI Acquisition may be set by an RRC message, or may be notified by DCI or MAC CE.
  • Such an indication may be signaled by a DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement, or by a DCI or MAC CE that is separate from the DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement. may be notified.
  • a PRS may be used as the second RS.
  • the instruction to use PRS for CSI Acquisition may be set by an RRC message, or may be notified by DCI or MAC CE. Such an indication may be indicated by a DCI indicating PDSCH Scheduling, CSI Acquisition or Positioning measurement, or indicated by a DCI or MAC CE separate from the DCI indicating PDSCH Scheduling, CSI Acquisition or Positioning measurement. good.
  • Both DMRS and PRS may be used as the second RS.
  • the resource allocation and sequence of the second RS may be set by an RRC message.
  • the resource allocation and sequence used in CSI Acquisition may be dynamically notified by DCI or MAC CE from among the resource allocation and sequence set by the RRC message.
  • DCI (Scheduling DCI) including an instruction to use the second RS for CSI Acquisition may be configured so that it can be decoded by UE 200 (Non-scheduled UE 200) located in the direction of arrival of the beam in which the second RS is transmitted.
  • the gNB 100 may transmit DCI (Scheduling DCI) including an instruction to use the second RS for CSI Acquisition so that it can be decoded by UE 200 (Non-scheduled UE 200) located in the arrival direction of the beam in which the second RS is transmitted. .
  • separate coding may be applied to the instruction to use the second RS for CSI Acquisition and the scheduling information (Separate coding). That is, coding that non-scheduled UE 200 can decode may be applied to the instruction to use the second RS for CSI Acquisition, and coding that non-scheduled UE 200 cannot decode may be applied to the scheduling information.
  • DCI including an instruction to use the second RS for CSI Acquisition may explicitly include C-RNTI instead of using C-RNTI for CRC scrambling so that non-scheduled UE 200 can decode DCI.
  • the gNB 100 may omit at least part of the periodically transmitted first RS transmission when a specific condition is satisfied. In other words, the UE 200 may not assume reception of at least part of the periodically transmitted first RS when a specific condition is satisfied. Conversely, the gNB 100 may perform transmission of the periodically transmitted first RS if certain conditions are not met. In other words, the UE 200 may assume reception of the periodically transmitted first RS if certain conditions are not met.
  • the specific conditions may include conditions under which the measurement related to CSI Acquisition using the second RS is performed within a specific cycle.
  • the specific period may be the transmission period of the first RS, the period set by the RRC message or the MAC CE message, or the period predefined in the wireless communication system 10 .
  • the specific condition may include a condition under which the gNB 100 notifies the UE 200 that the first RS is not transmitted.
  • the UE200 may dynamically request the gNB100 to transmit the first RS. For example, the UE 200 may dynamically request transmission of the first RS if CSI Acquisition using the second RS cannot be performed within a specific period.
  • the specific period may be the transmission period of the first RS, the period set by the RRC message or the MAC CE message, or the period predefined in the wireless communication system 10 .
  • the UE 200 may perform specific UL transmission that dynamically requests transmission of the first RS a predetermined time before the timing of transmitting the first RS.
  • the specific UL transmission may be transmission of a specific UCI via PUCCH or transmission of a specific UCI via PUSCH.
  • the specific UL transmission may be transmission of a specific RA preamble via PRACH or transmission of an RA preamble using specific resources.
  • the specific UL transmission may be SRS transmission using a specific sequence or SRS transmission using specific resources.
  • L1-RSRP_SINR Measurement may be a measurement used in beam management.
  • the first RS may be the SSB.
  • the first RS may be a Periodic CSI-RS, a Semi-persistent CSI-RS, or an Aperiodic CSI-RS.
  • Measurements for L1-RSRP_SINR Measurement may be performed using the periodically transmitted first RS (eg, SSB, Periodic CSI-RS).
  • Measurements for L1-RSRP_SINR Measurement may be performed using the aperiodically transmitted first RS (eg, Semi-persistent CSI-RS, Aperiodic CSI-RS).
  • a DMRS may be used as the second RS.
  • the DMRS may be composed of a cell-specific sequence or a beam-specific sequence instead of a sequence specific to the UE 200 that receives the DMRS.
  • a sequence specific to a beam may be read as a sequence specific to a group of UEs 200 .
  • An instruction to use DMRS for L1-RSRP_SINR Measurement may be set by an RRC message, or may be notified by DCI or MAC CE.
  • Such an indication may be indicated by a DCI that indicates PDSCH Scheduling or L1-RSRP_SINR Measurement, or may be indicated by a DCI or MAC CE that is different from the DCI that indicates PDSCH Scheduling or L1-RSRP_SINR Measurement.
  • a PRS may be used as the second RS.
  • An instruction to use PRS for L1-RSRP_SINR Measurement may be set by an RRC message, or may be notified by DCI or MAC CE. Such an indication may be indicated by a DCI indicating PDSCH Scheduling, L1-RSRP_SINR Measurement or Positioning measurement, or by a DCI or MAC CE separate from the DCI indicating PDSCH Scheduling, L1-RSRP_SINR Measurement or Positioning measurement. may be notified.
  • Two or more reference signals selected from DMRS and PRS may be used as the second RS.
  • the resource allocation and sequence of the second RS may be set by an RRC message.
  • the resource allocation and sequence used in L1-RSRP_SINR Measurement may be dynamically notified by DCI or MAC CE from among the resource allocation and sequence set by the RRC message.
  • DCI (Scheduling DCI) including an instruction to use the second RS for L1-RSRP_SINR Measurement may be configured to be decodable by UE 200 (Non-scheduled UE 200) located in the direction of arrival of the beam on which the second RS is transmitted.
  • the gNB 100 transmits DCI (Scheduling DCI) including an instruction to use the second RS for L1-RSRP_SINR Measurement so that it can be decoded by UE 200 (Non-scheduled UE 200) located in the arrival direction of the beam in which the second RS is transmitted. good too.
  • separate coding may be applied to the instruction to use the second RS for L1-RSRP_SINR Measurement and the scheduling information (Separate coding). That is, coding that non-scheduled UE 200 can decode may be applied to the instruction to use the second RS for L1-RSRP_SINR measurement, and coding that non-scheduled UE 200 cannot decode may be applied to the scheduling information.
  • DCI that includes an instruction to use the second RS for L1-RSRP_SINR Measurement may explicitly include C-RNTI instead of using C-RNTI for CRC scrambling so that non-scheduled UE 200 can decode DCI. good.
  • the gNB 100 may omit at least part of the periodically transmitted first RS transmission when a specific condition is satisfied. In other words, the UE 200 may not assume reception of at least part of the periodically transmitted first RS when a specific condition is satisfied. Conversely, the gNB 100 may perform transmission of the periodically transmitted first RS if certain conditions are not met. In other words, the UE 200 may assume reception of the periodically transmitted first RS if certain conditions are not met.
  • the specific conditions may include conditions under which the measurement of L1-RSRP_SINR Measurement using the second RS is performed within a specific cycle.
  • the specific period may be the transmission period of the first RS, the period set by the RRC message or the MAC CE message, or the period predefined in the wireless communication system 10 .
  • the specific condition may include a condition under which the gNB 100 notifies the UE 200 that the first RS is not transmitted.
  • the UE200 may dynamically request the gNB100 to transmit the first RS. For example, the UE 200 may dynamically request transmission of the first RS if L1-RSRP_SINR Measurement using the second RS could not be performed within a specific period.
  • the specific period may be the transmission period of the first RS, the period set by the RRC message or the MAC CE message, or the period predefined in the wireless communication system 10 .
  • the UE 200 may perform specific UL transmission that dynamically requests transmission of the first RS a predetermined time before the timing of transmitting the first RS.
  • the specific UL transmission may be transmission of a specific UCI via PUCCH or transmission of a specific UCI via PUSCH.
  • the specific UL transmission may be transmission of a specific RA preamble via PRACH or transmission of an RA preamble using specific resources.
  • the specific UL transmission may be SRS transmission using a specific sequence or SRS transmission using specific resources.
  • the first RS may be a PRS.
  • Measurements for Positioning Measurement may be performed using the periodically transmitted first RS (eg, PRS).
  • a DMRS may be used as the second RS.
  • the DMRS may be composed of a cell-specific sequence or a beam-specific sequence instead of a sequence specific to the UE 200 that receives the DMRS.
  • a sequence specific to a beam may be read as a sequence specific to a group of UEs 200 .
  • An instruction to use DMRS for Positioning Measurement may be set by an RRC message, or may be notified by DCI or MAC CE.
  • Such an indication may be signaled by a DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement, or by a DCI or MAC CE that is separate from the DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement. may be notified.
  • Periodic CSI, Semi-persistent CSI-RS, or Aperiodic CSI-RS may be used as the second RS.
  • An instruction to use Periodic CSI, Semi-persistent CSI-RS, or Aperiodic CSI-RS for Positioning Measurement may be set by an RRC message, or may be notified by DCI or MAC CE.
  • Such an indication may be signaled by a DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement, or by a DCI or MAC CE that is separate from the DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement. may be notified.
  • the second RS two or more reference signals selected from DMRS, Periodic CSI, Semi-persistent CSI-RS, Aperiodic CSI-RS and PRS may be used.
  • the resource allocation and sequence of the second RS may be set by an RRC message.
  • the resource allocation and sequence used in Positioning Measurement may be dynamically notified by DCI or MAC CE from among the resource allocation and sequence configured by the RRC message.
  • DCI (Scheduling DCI) including an instruction to use the second RS for Positioning Measurement may be configured so that it can be decoded by UE 200 (Non-scheduled UE 200) located in the direction of arrival of the beam in which the second RS is transmitted.
  • the gNB 100 may transmit DCI (Scheduling DCI) including an instruction to use the second RS for Positioning Measurement so that it can be decoded by UE 200 (Non-scheduled UE 200) located in the arrival direction of the beam in which the second RS is transmitted. .
  • separate coding may be applied to the instruction to use the second RS for Positioning Measurement and the scheduling information (Separate coding). That is, coding that non-scheduled UE 200 can decode may be applied to the instruction to use the second RS for Positioning Measurement, and coding that non-scheduled UE 200 cannot decode may be applied to the scheduling information.
  • DCI including an instruction to use the second RS for Positioning Measurement may explicitly include C-RNTI instead of using C-RNTI for CRC scrambling so that non-scheduled UE 200 can decode DCI.
  • the gNB 100 may omit at least part of the periodically transmitted first RS transmission when a specific condition is satisfied. In other words, the UE 200 may not assume reception of at least part of the periodically transmitted first RS when a specific condition is satisfied. Conversely, the gNB 100 may perform transmission of the periodically transmitted first RS if certain conditions are not met. In other words, the UE 200 may assume reception of the periodically transmitted first RS if certain conditions are not met.
  • the specific conditions may include conditions under which the measurement for Positioning Measurement using the second RS is performed within a specific cycle.
  • the specific period may be the transmission period of the first RS, the period set by the RRC message or the MAC CE message, or the period predefined in the wireless communication system 10 .
  • the specific condition may include a condition under which the gNB 100 notifies the UE 200 that the first RS is not transmitted.
  • the UE200 may dynamically request the gNB100 to transmit the first RS.
  • the UE 200 may dynamically request transmission of the first RS when Positioning Measurement using the second RS cannot be performed within a specific period.
  • the specific period may be the transmission period of the first RS, the period set by the RRC message or the MAC CE message, or the period predefined in the wireless communication system 10 .
  • the UE 200 may perform specific UL transmission that dynamically requests transmission of the first RS a predetermined time before the timing of transmitting the first RS.
  • the specific UL transmission may be transmission of a specific UCI via PUCCH or transmission of a specific UCI via PUSCH.
  • the specific UL transmission may be transmission of a specific RA preamble via PRACH or transmission of an RA preamble using specific resources.
  • the specific UL transmission may be SRS transmission using a specific sequence or SRS transmission using specific resources.
  • the first RS may be an SSB or a Periodic CSI-RS.
  • the first RS may be a CRS used in LTE.
  • Measurements for RLM Measurement may be performed using a periodically transmitted first RS (eg, SSB, Periodic CSI-RS, CRS).
  • a periodically transmitted first RS eg, SSB, Periodic CSI-RS, CRS.
  • a DMRS may be used as the second RS.
  • the DMRS may be composed of a cell-specific sequence or a beam-specific sequence instead of a sequence specific to the UE 200 that receives the DMRS.
  • a sequence specific to a beam may be read as a sequence specific to a group of UEs 200 .
  • An instruction to use DMRS for RLM Measurement may be set by an RRC message, or may be notified by DCI or MAC CE.
  • Such an indication may be signaled by a DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement, or by a DCI or MAC CE that is separate from the DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement. may be notified.
  • either Semi-persistent CSI-RS or Aperiodic CSI-RS may be used.
  • An instruction to use Semi-persistent CSI-RS or Aperiodic CSI-RS for RLM Measurement may be set by an RRC message, or may be notified by DCI or MAC CE.
  • Such an indication may be signaled by a DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement, or by a DCI or MAC CE that is separate from the DCI that indicates PDSCH Scheduling, CSI Acquisition or L1-RSRP_SINR Measurement. may be notified.
  • a PRS may be used as the second RS.
  • the instruction to use PRS for RLM Measurement may be set by an RRC message, or may be notified by DCI or MAC CE.
  • Such an indication may be signaled by DCI indicating PDSCH Scheduling, CSI Acquisition, L1-RSRP_SINR Measurement or Positioning measurement, and is separate from DCI indicating PDSCH Scheduling, CSI Acquisition, L1-RSRP_SINR Measurement or Positioning measurement. may be signaled by DCI or MAC CE.
  • Two or more reference signals selected from DMRS, Semi-persistent CSI-RS, Aperiodic CSI-RS and PRS may be used as the second RS.
  • the resource allocation and sequence of the second RS may be set by an RRC message.
  • the resource allocation and sequence used in RLM Measurement may be dynamically notified by DCI or MAC CE from among the resource allocation and sequence configured by the RRC message.
  • DCI (Scheduling DCI) including an instruction to use the second RS for RLM measurement may be configured to be decodable by UE 200 (Non-scheduled UE 200) located in the arrival direction of the beam from which the second RS is transmitted.
  • the gNB 100 may transmit DCI (Scheduling DCI) including an instruction to use the second RS for RLM measurement so that it can be decoded by UE 200 (Non-scheduled UE 200) located in the direction of arrival of the beam in which the second RS is transmitted. .
  • separate coding may be applied to the instruction to use the second RS for RLM Measurement and the scheduling information (Separate coding). That is, coding that non-scheduled UE 200 can decode may be applied to the instruction to use the second RS for RLM measurement, and coding that non-scheduled UE 200 cannot decode may be applied to the scheduling information.
  • DCI including an instruction to use the second RS for RLM measurement may explicitly include C-RNTI instead of using C-RNTI for CRC scrambling so that non-scheduled UE 200 can decode DCI.
  • the gNB 100 may omit at least part of the periodically transmitted first RS transmission when a specific condition is satisfied. In other words, the UE 200 may not assume reception of at least part of the periodically transmitted first RS when a specific condition is satisfied. Conversely, the gNB 100 may perform transmission of the periodically transmitted first RS if certain conditions are not met. In other words, the UE 200 may assume reception of the periodically transmitted first RS if certain conditions are not met.
  • the specific condition may include a condition under which RLM Measurement using the second RS is performed within a specific cycle.
  • the specific period may be the transmission period of the first RS, the period set by the RRC message or the MAC CE message, or the period predefined in the wireless communication system 10 .
  • the specific condition may include a condition under which the gNB 100 notifies the UE 200 that the first RS is not transmitted.
  • the UE200 may dynamically request the gNB100 to transmit the first RS. For example, the UE 200 may dynamically request transmission of the first RS if RLM measurement using the second RS cannot be performed within a specific period.
  • the specific period may be the transmission period of the first RS, the period set by the RRC message or the MAC CE message, or the period predefined in the wireless communication system 10 .
  • the UE 200 may perform specific UL transmission that dynamically requests transmission of the first RS a predetermined time before the timing of transmitting the first RS.
  • the specific UL transmission may be transmission of a specific UCI via PUCCH or transmission of a specific UCI via PUSCH.
  • the specific UL transmission may be transmission of a specific RA preamble via PRACH or transmission of an RA preamble using specific resources.
  • the specific UL transmission may be SRS transmission using a specific sequence or SRS transmission using specific resources.
  • Operation example 2 Operation example 2 of the embodiment will be described below.
  • the UE 200 performs measurement for a specific purpose based on a reference signal (dynamic RS) dynamically transmitted for the specific purpose.
  • a reference signal dynamic RS
  • the gNB 100 assumes that purpose-specific measurements are performed based on the dynamic RS.
  • the UE 200 may perform specific-purpose measurements based on periodic RSs that are periodically transmitted for the specific purpose, as described in FIG.
  • the gNB 100 may assume that purpose-specific measurements are performed based on the periodic RS.
  • the gNB 100 may omit at least some of the periodic RS transmissions if it is assumed that purpose-specific measurements are performed based on the dynamic RS.
  • step S11 the NG-RAN 20 (gNB 100) transmits to the UE 200 DCI (Dynamic) that instructs measurement for a specific purpose using dynamic RSs.
  • DCI Dynamic
  • step S12 the NG-RAN 20 (gNB 100) transmits a dynamic RS for a specific purpose.
  • step S13 the UE 200 performs measurement (Dynamic) for a specific purpose based on the dynamic RS.
  • step S14 the UE 200 transmits a report (Dynamic) including measurement results based on the dynamic RS to the NG-RAN 20.
  • a report (Dynamic) including measurement results based on the dynamic RS to the NG-RAN 20.
  • DCI DCI
  • the DCI (Dynamic) may be the UE 200 individual Scheduling DCI.
  • DCI (Dynamic) may be UE 200 individual Non-scheduling DCI.
  • DCI (Dynamic) may be Group-common DCI common to two or more UEs 200 .
  • DCI (Dynamic) may be cell-specific DCI or beam-specific DCI. Two or more options selected from options 1-4 may be applied. Which option to apply may be set in the UE 200 by the gNB 100. Which option to apply may be set by the RRC message or may be set by the MAC CE.
  • the DCI (Dynamic) mentioned above may be read as a MAC CE message.
  • the MAC CE message may include an information element (Activation) requesting activation of measurement using dynamic RS.
  • the MAC CE message may include an information element (Deactivation) requesting deactivation of measurement using dynamic RS.
  • RRM Measurement In the following, we describe the case where the specific purpose is RRM Measurement.
  • the UE 200 performs RRM Measurement based on the dynamic RS used in RRM Measurement.
  • a dynamic RS may be used as an alternative to SSB, and may have the same configuration as SSB.
  • a dynamic RS may be used as an alternative to Periodic CSI-RS, and may have the same configuration as Periodic CSI-RS.
  • a dynamic RS may be used as an alternative to the CRS used in LTE, and may have the same configuration as the CRS.
  • the minimum difference (e.g., Minimum delay) between the timing of receiving a notification (DCI or MAC CE message) indicating measurement using dynamic RS and the timing of performing measurement for RRM Measurement.
  • the timing for performing RRM Measurement may be the Symbol that starts the RRM Measurement, or the beginning of the Slot that starts the RRM Measurement.
  • Minimum delay may be expressed by a Symbol number or by an absolute time.
  • the Minimum delay may be reported to NG RAN20 as UE200 capability information.
  • the Minimum delay may be predefined in wireless communication system 10 .
  • the Minimum delay may be defined according to a specific purpose type (here, RRM Measurement), may be defined for each frequency range (FR), or may be defined for each frequency band (Band). Well, it may be defined by each SCS.
  • Minimum delay may be defined for each number of periodic RSs to be measured.
  • the Minimum delay may be defined by two or more parameters selected from among the specific purpose type, frequency range (FR), frequency band (Band), SCS and number of periodic RSs.
  • a notification (DCI or MAC CE message) indicating measurement using dynamic RS may include the following optional information elements.
  • the notification may contain an information element indicating time resource information (eg Slot offset, symbol position) of the dynamic RS.
  • the notification may include an information element indicating frequency resource information (eg, RB offset, number of RBs, RB position) of the dynamic RS.
  • the notification may include an information element indicating the sequence of the dynamic RS (eg sequence index, scrambling ID).
  • the notification may include an information element indicating the dynamic RS transmit power information.
  • the notification may include two or more optional information elements selected from options 1-4.
  • a dynamic RS used in measurements related to RRM Measurement may be used in the serving cell without being used in the non-serving cell.
  • a dynamic RS used in measurements related to RRM Measurement may be used in both serving and non-serving cells.
  • Periodic RS may be used in combination with dynamic RS.
  • the gNB 100 may omit at least part of the periodic RS transmission if a specific condition is met. In other words, the UE 200 may not assume reception of at least part of the periodic RS when a specific condition is met. Conversely, the gNB 100 may perform periodic RS transmissions if certain conditions are not met. In other words, the UE 200 may assume periodic RS reception when certain conditions are not met.
  • the specific conditions may include conditions under which RRM Measurement using dynamic RS is performed within a specific cycle.
  • the specific period may be a periodic RS transmission period, a period set by an RRC message or a MAC CE message, or a period predefined in the wireless communication system 10 .
  • the specific condition may include a condition under which gNB 100 notifies UE 200 that periodic RSs are not transmitted.
  • a dynamic RS may have a different configuration than a periodic RS (SSB, Periodic CSI-RS). In such cases, measurements using dynamic RS may be combined with measurements using periodic RS to derive a single reported value.
  • SSB periodic RS
  • the UE 200 may dynamically request the gNB 100 to transmit periodic RSs. For example, the UE 200 may dynamically request transmission of periodic RSs when RRM measurement using dynamic RSs cannot be performed within a specific period.
  • the specific period may be a periodic RS transmission period, a period set by an RRC message or a MAC CE message, or a period predefined in the wireless communication system 10 .
  • the UE 200 may perform specific UL transmission that dynamically requests transmission of the periodic RS a predetermined time before the timing of transmitting the periodic RS.
  • the specific UL transmission may be transmission of a specific UCI via PUCCH or transmission of a specific UCI via PUSCH.
  • the specific UL transmission may be transmission of a specific RA preamble via PRACH or transmission of an RA preamble using specific resources.
  • the specific UL transmission may be SRS transmission using a specific sequence or SRS transmission using specific resources.
  • the UE 200 performs BFD-related measurements based on the dynamic RS used in BFD.
  • a dynamic RS may be used as an alternative to Periodic CSI-RS, and may have the same configuration as Periodic CSI-RS.
  • the minimum difference (e.g. Minimum delay) between the timing of receiving the indication (DCI or MAC CE message) indicating the measurement with dynamic RS and the timing of performing the measurement on BFD is specified.
  • the timing for executing BFD-related measurement may be the Symbol that starts the BFD-related measurement, or the beginning of the Slot that starts the BFD-related measurement.
  • Minimum delay may be expressed by a Symbol number or by an absolute time.
  • the Minimum delay may be reported to NG RAN20 as UE200 capability information.
  • the Minimum delay may be predefined in wireless communication system 10 .
  • the Minimum delay may be defined according to a specific purpose type (here, BFD), may be defined for each frequency range (FR), or may be defined for each frequency band (Band). , may be defined by each SCS.
  • Minimum delay may be defined for each number of periodic RSs to be measured.
  • the Minimum delay may be defined by two or more parameters selected from among the specific purpose type, frequency range (FR), frequency band (Band), SCS and number of periodic RSs.
  • a notification (DCI or MAC CE message) indicating measurement using dynamic RS may include the following optional information elements.
  • the notification may contain an information element indicating time resource information (eg Slot offset, symbol position) of the dynamic RS.
  • the notification may include an information element indicating frequency resource information (eg, RB offset, number of RBs, RB position) of the dynamic RS.
  • the notification may include an information element indicating the sequence of the dynamic RS (eg sequence index, scrambling ID).
  • the notification may include an information element indicating the dynamic RS transmit power information.
  • the notification may include two or more optional information elements selected from options 1-4.
  • the dynamic RS used in BFD-related measurements may be used in the serving cell instead of in the non-serving cell.
  • Dynamic RS used in measurements for BFD may be used in both serving and non-serving cells.
  • Periodic RS may be used in combination with dynamic RS.
  • the gNB 100 may omit at least part of the periodic RS transmission if a specific condition is met. In other words, the UE 200 may not assume reception of at least part of the periodic RS when a specific condition is met. Conversely, the gNB 100 may perform periodic RS transmissions if certain conditions are not met. In other words, the UE 200 may assume periodic RS reception when certain conditions are not met.
  • the specific conditions may include conditions under which BFD-related measurements using dynamic RS are performed within a specific cycle.
  • the specific period may be a periodic RS transmission period, a period set by an RRC message or a MAC CE message, or a period predefined in the wireless communication system 10 .
  • the specific condition may include a condition under which gNB 100 notifies UE 200 that periodic RSs are not transmitted.
  • a dynamic RS may have a different configuration from a periodic RS (Periodic CSI-RS). In such cases, measurements using dynamic RS may be used to determine BFD together with measurements using periodic RS.
  • the UE 200 may dynamically request the gNB 100 to transmit periodic RSs. For example, the UE 200 may dynamically request transmission of periodic RSs when BFD using dynamic RSs cannot be performed within a specific period.
  • the specific period may be a periodic RS transmission period, a period set by an RRC message or a MAC CE message, or a period predefined in the wireless communication system 10 .
  • the UE 200 may perform specific UL transmission that dynamically requests transmission of the periodic RS a predetermined time before the timing of transmitting the periodic RS.
  • the specific UL transmission may be transmission of a specific UCI via PUCCH or transmission of a specific UCI via PUSCH.
  • the specific UL transmission may be transmission of a specific RA preamble via PRACH or transmission of an RA preamble using specific resources.
  • the specific UL transmission may be SRS transmission using a specific sequence or SRS transmission using specific resources.
  • Positioning measurement In the following, the case where the specific purpose is Positioning Measurement will be described.
  • the UE 200 performs measurement regarding Positioning Measurement based on the dynamic RS used in Positioning Measurement.
  • a dynamic RS may be used as an alternative to a PRS, and may have a configuration similar to that of a PRS.
  • the minimum difference (e.g., Minimum delay) between the timing of receiving a notification (DCI or MAC CE message) indicating measurement using dynamic RS and the timing of performing a measurement on Positioning Measurement.
  • the timing for executing the measurement related to Positioning Measurement may be the Symbol that starts the measurement related to Positioning Measurement, or the head of the Slot that starts the measurement related to Positioning Measurement.
  • Minimum delay may be expressed by a Symbol number or by an absolute time.
  • the Minimum delay may be reported to NG RAN20 as UE200 capability information.
  • the Minimum delay may be predefined in wireless communication system 10 .
  • the Minimum delay may be defined according to a specific purpose type (here, Positioning Measurement), may be defined for each frequency range (FR), or may be defined for each frequency band (Band). Well, it may be defined by each SCS.
  • Minimum delay may be defined for each number of periodic RSs to be measured.
  • the Minimum delay may be defined by two or more parameters selected from among the specific purpose type, frequency range (FR), frequency band (Band), SCS and number of periodic RSs.
  • a notification (DCI or MAC CE message) indicating measurement using dynamic RS may include the following optional information elements.
  • the notification may contain an information element indicating time resource information (eg Slot offset, symbol position) of the dynamic RS.
  • the notification may include an information element indicating frequency resource information (eg, RB offset, number of RBs, RB position) of the dynamic RS.
  • the notification may include an information element indicating the sequence of the dynamic RS (eg sequence index, scrambling ID).
  • the notification may include an information element indicating the dynamic RS transmit power information.
  • the notification may include two or more optional information elements selected from options 1-4.
  • a dynamic RS used in measurements related to Positioning Measurement may be used in the serving cell instead of in the non-serving cell.
  • Dynamic RSs used in measurements for Positioning Measurement may be used in both serving and non-serving cells.
  • Periodic RS may be used in combination with dynamic RS.
  • the gNB 100 may omit at least part of the periodic RS transmission if a specific condition is met. In other words, the UE 200 may not assume reception of at least part of the periodic RS when a specific condition is met. Conversely, the gNB 100 may perform periodic RS transmissions if certain conditions are not met. In other words, the UE 200 may assume periodic RS reception when certain conditions are not met.
  • the specific conditions may include conditions under which measurements related to Positioning Measurement using dynamic RS are performed within a specific cycle.
  • the specific period may be a periodic RS transmission period, a period set by an RRC message or a MAC CE message, or a period predefined in the wireless communication system 10 .
  • the specific condition may include a condition under which gNB 100 notifies UE 200 that periodic RSs are not transmitted.
  • a dynamic RS may have a different configuration than a periodic RS (PRS).
  • PRS periodic RS
  • measurements using dynamic RS may be combined with measurements using periodic RS to derive a single reported value.
  • the UE 200 may dynamically request the gNB 100 to transmit periodic RSs. For example, the UE 200 may dynamically request periodic RS transmission when Positioning Measurement using a dynamic RS cannot be performed within a specific period.
  • the specific period may be a periodic RS transmission period, a period set by an RRC message or a MAC CE message, or a period predefined in the wireless communication system 10 .
  • the UE 200 may perform specific UL transmission that dynamically requests transmission of the periodic RS a predetermined time before the timing of transmitting the periodic RS.
  • the specific UL transmission may be transmission of a specific UCI via PUCCH or transmission of a specific UCI via PUSCH.
  • the specific UL transmission may be transmission of a specific RA preamble via PRACH or transmission of an RA preamble using specific resources.
  • the specific UL transmission may be SRS transmission using a specific sequence or SRS transmission using specific resources.
  • RLM Measurement The UE 200 performs RLM Measurement based on the dynamic RS used in RLM Measurement.
  • a dynamic RS may be used as an alternative to SSB, and may have the same configuration as SSB.
  • a dynamic RS may be used as an alternative to Periodic CSI-RS, and may have the same configuration as Periodic CSI-RS.
  • a dynamic RS may be used as an alternative to the CRS used in LTE, and may have the same configuration as the CRS.
  • the minimum difference (e.g., Minimum delay) between the timing of receiving a notification (DCI or MAC CE message) indicating measurement using dynamic RS and the timing of performing measurement for RLM Measurement.
  • the timing for executing RLM Measurement may be the Symbol that starts the RLM Measurement, or the beginning of the Slot that starts the RLM Measurement.
  • Minimum delay may be expressed by a Symbol number or by an absolute time.
  • the Minimum delay may be reported to NG RAN20 as UE200 capability information.
  • the Minimum delay may be predefined in wireless communication system 10 .
  • the Minimum delay may be defined according to a specific purpose type (here, RLM Measurement), may be defined for each frequency range (FR), or may be defined for each frequency band (Band). Well, it may be defined by each SCS.
  • Minimum delay may be defined for each number of periodic RSs to be measured.
  • the Minimum delay may be defined by two or more parameters selected from among the specific purpose type, frequency range (FR), frequency band (Band), SCS and number of periodic RSs.
  • a notification (DCI or MAC CE message) indicating measurement using dynamic RS may include the following optional information elements.
  • the notification may contain an information element indicating time resource information (eg Slot offset, symbol position) of the dynamic RS.
  • the notification may include an information element indicating frequency resource information (eg, RB offset, number of RBs, RB position) of the dynamic RS.
  • the notification may include an information element indicating the sequence of the dynamic RS (eg sequence index, scrambling ID).
  • the notification may include an information element indicating the dynamic RS transmit power information.
  • the notification may include two or more optional information elements selected from options 1-4.
  • a dynamic RS used in measurements related to RLM Measurement may be used in the serving cell without being used in the non-serving cell.
  • Dynamic RS used in measurements for RLM Measurement may be used in both serving and non-serving cells.
  • Periodic RS may be used in combination with dynamic RS.
  • the gNB 100 may omit at least part of the periodic RS transmission if a specific condition is met. In other words, the UE 200 may not assume reception of at least part of the periodic RS when a specific condition is met. Conversely, the gNB 100 may perform periodic RS transmissions if certain conditions are not met. In other words, the UE 200 may assume periodic RS reception when certain conditions are not met.
  • the specific conditions may include conditions under which RLM Measurement using dynamic RS is performed within a specific cycle.
  • the specific period may be a periodic RS transmission period, a period set by an RRC message or a MAC CE message, or a period predefined in the wireless communication system 10 .
  • the specific condition may include a condition under which gNB 100 notifies UE 200 that periodic RSs are not transmitted.
  • a dynamic RS may have a different configuration than a periodic RS (SSB, Periodic CSI-RS).
  • SSB periodic RS
  • the measurement result using the dynamic RS may be used together with the measurement result using the periodic RS to determine RLF (Radio link failure).
  • the UE 200 may dynamically request the gNB 100 to transmit periodic RSs.
  • the UE 200 may dynamically request periodic RS transmission when RLM measurement using dynamic RSs cannot be performed within a specific period.
  • the specific period may be a periodic RS transmission period, a period set by an RRC message or a MAC CE message, or a period predefined in the wireless communication system 10 .
  • the UE 200 may perform specific UL transmission that dynamically requests transmission of the periodic RS a predetermined time before the timing of transmitting the periodic RS.
  • the specific UL transmission may be transmission of a specific UCI via PUCCH or transmission of a specific UCI via PUSCH.
  • the specific UL transmission may be transmission of a specific RA preamble via PRACH or transmission of an RA preamble using specific resources.
  • the specific UL transmission may be SRS transmission using a specific sequence or SRS transmission using specific resources.
  • the UE 200 may perform measurement for the first purpose using the second RS transmitted for the second purpose different from the first purpose (operation example 1). According to such a configuration, for example, it may be possible to reduce the transmission frequency of the first RS used for the first purpose. Therefore, it is possible to cover the coverage area of the gNB 100 and reduce the overhead of the gNB 100 accompanying the transmission of the first RS.
  • Operation Example 1 may be applied to one or more first purposes selected from RRM Measurement, BFD, CSI acquisition, L1-RSRP_SINR Measurement, Positioning Measurement and RLM Measurement.
  • the first purpose is RRM Measurement
  • the second RS DMRS, Semi-persistent CSI-RS, Aperiodic CSI-RS, PRS, etc.
  • the periodic first RS SSB, Periodic CSI-RS, CRS, etc.
  • the first purpose is BFD, by diverting the second RS (DMRS, Semi-persistent CSI-RS, Aperiodic CSI-RS, PRS, etc.) to BFD, the periodic first RS (Periodic CSI-RS, etc.) ), it is possible to perform appropriate BFD for the UE 200 whose communication quality has deteriorated, and to reduce delays such as BFR (Beam Failure Recover) processing.
  • DMRS Semi-persistent CSI-RS, Aperiodic CSI-RS, PRS, etc.
  • the periodic first RS Periodic CSI-RS, etc.
  • the first RS (Periodic CSI-RS, Semi-persistent CSI-RS, Aperiodic CSI-RS, etc.) is obtained by diverting the second RS (DMRS, PRS, etc.) CSI measurement report can be executed at an appropriate timing while reducing the transmission frequency of , and a decrease in throughput can be suppressed.
  • the first RS (SSB, Periodic CSI-RS, Semi-persistent CSI-RS, Aperiodic CSI-RS, etc.) can be transmitted appropriately, while beam management can be appropriately performed, and a decrease in throughput can be suppressed.
  • the first purpose is Positioning Measurement
  • the second RS DMRS, Periodic CSI-RS, Semi-persistent CSI-RS, Aperiodic CSI-RS, etc.
  • PRS Positioning Measurement
  • the position of UE 200 can be updated appropriately even if UE 200 moves, and update delay of the position of UE 200 can be suppressed.
  • the first purpose is RLM Measurement
  • the second RS DMRS, Semi-persistent CSI-RS, Aperiodic CSI-RS, PRS, etc.
  • the periodic first RS SSB, Periodic CSI-RS, CRS, etc.
  • the UE 200 may perform measurement for a specific purpose using dynamic RSs that are dynamically transmitted for the specific purpose (operation example 2). According to such a configuration, it is possible to cover the coverage area of the gNB 100 and reduce the overhead of the gNB 100 accompanying the transmission of the reference signal by the on-demand dynamic RS.
  • Operation Example 2 may be applied to one or more specific purposes selected from RRM Measurement, BFD, Positioning Measurement and RLM Measurement.
  • the introduction of dynamic RS can make the reference signal used in RRM measurement on-demand, and the transmission frequency of periodic RS (SSB, Periodic CSI-RS, CRS, etc.) UE 200 located at the edge of the cell and UE 200 approaching the cell can also perform appropriate RRC measurement, suppressing delays caused by disconnection due to handover failure and addition/deletion of SCells. be able to.
  • periodic RS SSB, Periodic CSI-RS, CRS, etc.
  • the introduction of dynamic RS can make the reference signal used in BFD on-demand, and while reducing the transmission frequency of periodic RS (Periodic CSI-RS, etc.), Appropriate BFD can be performed for UE 200 with degraded communication quality, and delay in BFR processing and the like can be reduced.
  • the introduction of dynamic RS can make the reference signal used in BFD on-demand, and while reducing the transmission frequency of periodic RS (such as PRS), UE 200 Even if the UE 200 moves, the position of the UE 200 can be updated appropriately, and the update delay of the position of the UE 200 can be suppressed.
  • periodic RS such as PRS
  • the introduction of dynamic RS can make the reference signal used in RLM measurement on-demand, and the transmission frequency of periodic RS (SSB, Periodic CSI-RS, CRS, etc.) is reduced, appropriate RLM can be executed for UE 200 whose communication quality has deteriorated, and delays such as RLF and reconnection processing can be suppressed.
  • periodic RS SSB, Periodic CSI-RS, CRS, etc.
  • the UE 200 transmits capability information including an information element indicating whether or not the measurement for the first purpose using the second RS used for the second purpose different from the first purpose is supported by NG RAN20 (gNB100 ) may be sent to The UE 200 may transmit capability information for each specific purpose type, frequency range (FR), frequency band (Band) and SCS.
  • capability information including an information element indicating whether or not the measurement for the first purpose using the second RS used for the second purpose different from the first purpose is supported by NG RAN20 (gNB100 ) may be sent to The UE 200 may transmit capability information for each specific purpose type, frequency range (FR), frequency band (Band) and SCS.
  • FR frequency range
  • Band frequency band
  • the gNB 100 may control the connection of the UE 200 that does not support measurement for the first purpose using the second RS used for the second purpose different from the first purpose.
  • the gNB 100 may transmit broadcast information indicating that the connection of the UE 200 supporting the measurement for the first purpose using the second RS used for the second purpose different from the first purpose is permitted.
  • the broadcast information may include MIB (Master Information Block) and may include SIB (System Information Block).
  • the UE 200 may transmit capability information including an information element indicating whether it supports measurement using dynamic RSs to the NG RAN 20 (gNB 100).
  • the UE 200 may transmit capability information for each specific purpose type, frequency range (FR), frequency band (Band) and SCS.
  • gNB 100 may control connection of UE 200 that does not support measurement using dynamic RS.
  • the gNB 100 may transmit broadcast information indicating that the UE 200 that supports measurement using dynamic RSs is permitted to connect.
  • the broadcast information may include the MIB and may include the SIB.
  • the first RS used for the first purpose may be the RS defined as used for the first purpose in the current 3GPP.
  • the first RS used for the first purpose may be a reference signal that the existing UE 200 (Legacy UE) uses for measurements related to the first purpose.
  • the second RS used for the second purpose may be an RS that is not defined as being used for the first purpose in the current 3GPP.
  • the second RS used for the second purpose may be an RS that the existing UE 200 (Legacy UE) does not use for measurements related to the first purpose.
  • operation example 1 and operation example 2 may be combined.
  • the transmission cycle of the periodic RS may be lengthened compared to the case where Operation Example 1 and Operation Example 2 are not applied.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • FIG. 9 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computing device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
  • Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
  • a processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the above-described various processes may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • the notification of information can be performed through physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or a combination thereof
  • RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • a specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to).
  • MME or S-GW network nodes
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)
  • Head: RRH can also provide communication services.
  • cell refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions that the mobile station has.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe.
  • a subframe may further consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • number of symbols per TTI radio frame structure
  • transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum scheduling time unit.
  • the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than a normal TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, shortened TTI, etc.
  • a TTI having a TTI length greater than or equal to this value may be read as a replacement.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
  • PRB physical resource blocks
  • SCG sub-carrier groups
  • REG resource element groups
  • PRB pairs RB pairs, etc.
  • a resource block may be composed of one or more resource elements (Resource Element: RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are in the radio frequency domain using at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-exhaustive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first”, “second”, etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein, or that the first target element must precede the second element in any way.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • Radio communication system 20 NG-RAN 100 gNB 110 receiver 120 transmitter 130 controller 200 UE 210 radio signal transmission/reception unit 220 amplifier unit 230 modulation/demodulation unit 240 control signal/reference signal processing unit 250 encoding/decoding unit 260 data transmission/reception unit 270 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、チャネル状態情報の取得とは異なる目的で送信される参照信号を受信する受信部と、前記参照信号を用いて、前記チャネル状態情報の取得に関する測定を実行する制御部と、を備える。

Description

端末、基地局及び無線通信方法
 本開示は、無線通信を実行する端末、基地局及び無線通信方法、特に、参照信号に関する通信を実行する端末、基地局及び無線通信方法に関する。
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。
 ここで、gNB(セル)は、gNBのカバレッジエリアを網羅する参照信号を送信する。参照信号としては、SSB(Synchronization Signal/PBCH Block)、CSI-RS(Channel State Information-Reference Signal)、PRS(Positioning Reference Signal)などが考えられる(例えば、非特許文献1)。
3GPP TS38.211 V16.4.0 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical channels and modulation (Release 16), 2020年12月
 ところで、gNBは、gNBのカバレッジエリアを網羅するために、2以上のビームを用いて時分割で各種の参照信号を送信する。このようなケースにおいて、gNBが送信するビームの数が増大すると、gNB100のオーバヘッドが増大する。UE(User Equipment)が存在しない方向にビーム(参照信号)を送信してしまう可能性も増大する。
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、カバレッジエリアを網羅しつつも、参照信号の送信に伴うオーバヘッドを削減し得る端末、基地局及び無線通信方法の提供を目的とする。
 本開示は、端末であって、チャネル状態情報の取得とは異なる目的で用いる参照信号を受信する受信部と、前記参照信号を用いて、前記チャネル状態情報の取得に関する測定を実行する制御部と、を備える、ことを要旨とする。
 本開示は、基地局であって、チャネル状態情報の取得とは異なる目的で用いる参照信号を送信する送信部と、前記参照信号を用いて、前記チャネル状態情報の取得に関する測定が実行されると想定する制御部と、を備える、ことを要旨とする。
 本開示は、無線通信方法であって、チャネル状態情報の取得とは異なる目的で用いる参照信号を受信するステップと、前記参照信号を用いて、前記チャネル状態情報の取得に関する測定を実行するステップと、を備える、ことを要旨とする。
図1は、無線通信システム10の全体概略構成図である。 図2は、無線通信システム10において用いられる周波数レンジを示す図である。 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。 図4は、UE200の機能ブロック構成図である。 図5は、gNB100の機能ブロック構成図である。 図6は、背景を説明するための図である。 図7は、動作例1を説明するための図である。 図8は、動作例2を説明するための図である。 図9は、gNB100及びUE200のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5G又は6Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。
 gNB100A及びgNB100Bは、5G又は6Gに従った無線基地局であり、UE200と5G又は6Gに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時2以上のトランスポートブロックに通信を行うデュアルコネクティビティ(DC)などに対応することができる。
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。
 このような問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP: Bandwidth part)などと呼ばれてもよい。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。
 第1に、UE200の機能ブロック構成について説明する。
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。
 無線信号送受信部210は、NR又は6Gに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。
 変復調部230は、所定の通信先(gNB100または他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理及びUE200が送受信する各種の参照信号に関する処理を実行する。
 第1に、制御信号・参照信号処理部240は、gNB100から送信される各種の制御信号を受信する。例えば、各種の制御信号は、RRCの制御信号を含んでもよく、DCI(Downlink Control Information)を含んでもよく、MAC CEの制御信号を含んでもよい。制御信号・参照信号処理部240は、gNB100に向けて、制御チャネルを介して各種の制御信号を送信する。例えば、各種の制御信号は、RRCの制御信号を含んでもよく、UCI(Uplink Control Information)を含んでもよく、MAC CEの制御信号を含んでもよい。
DCIは、既存のフィールドとして、DCI Formats、Carrier indicator(CI)、BWP indicator、FDRA(Frequency Domain Resource Allocation)、TDRA(Time Domain Resource Allocation)、MCS(Modulation and Coding Scheme)、HPN(HARQ Process Number)、NDI(New Data Indicator)、RV(Redundancy Version)などを格納するフィールドを含んでもよい。
 DCI Formatフィールドに格納される値は、DCIのフォーマットを指定する情報要素である。CIフィールドに格納される値は、DCIが適用されるCCを指定する情報要素である。BWP indicatorフィールドに格納される値は、DCIが適用されるBWPを指定する情報要素である。BWP indicatorによって指定され得るBWPは、RRCメッセージに含まれる情報要素(BandwidthPart-Config)によって設定される。FDRAフィールドに格納される値は、DCIが適用される周波数ドメインリソースを指定する情報要素である。周波数ドメインリソースは、FDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(RA Type)によって特定される。TDRAフィールドに格納される値は、DCIが適用される時間ドメインリソースを指定する情報要素である。時間ドメインリソースは、TDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(pdsch-TimeDomainAllocationList、pusch-TimeDomainAllocationList)によって特定される。時間ドメインリソースは、TDRAフィールドに格納される値及びデフォルトテーブルによって特定されてもよい。MCSフィールドに格納される値は、DCIが適用されるMCSを指定する情報要素である。MCSは、MCSに格納される値及びMCSテーブルによって特定される。MCSテーブルは、RRCメッセージによって指定されてもよく、RNTIスクランブリングによって特定されてもよい。HPNフィールドに格納される値は、DCIが適用されるHARQ Processを指定する情報要素である。NDIに格納される値は、DCIが適用されるデータが初送データであるか否かを特定するための情報要素である。RVフィールドに格納される値は、DCIが適用されるデータの冗長性を指定する情報要素である。
 第2に、制御信号・参照信号処理部240は、gNB100から送信される各種の参照信号を受信する。例えば、各種の参照信号は、DL用のDMRS(Demodulation Reference Signal)、CSI-RS(Channel State Information-Reference Signal)、PRS(Positioning Reference Signal)、DL用のPTRS(Phase Tracking Reference Signal)を含んでもよい。SSB(Synchronization Signal/PBCH Block)は参照信号の一種であると考えてもよい。制御信号・参照信号処理部240は、gNB100に向けて各種の参照信号を送信する。例えば、各種の参照信号は、UL用のDMRS、UL用のPTRS、SRS(Sounding Reference Signal)などを含んでもよい。
 DL用のDMRSは、データの復調に用いられるUE200個別の既知の系列である。例えば、DL用のDMRSは、PDSCH(Physical Downlink Shared Channel)の復号に用いられる。
 CSI-RSは、チャネル状態の推定に用いられるUE200個別の既知の系列である。CSI-RSは、周期的に送信されるPeriodic CSI-RSを含んでもよく、準持続的に送信されるSemi-persistent CSI-RSを含んでもよく、動的に送信されるAperiodic CSI-RSを含んでもよい。
 PRSは、端末の位置測定に用いられるUE200個別の既知の系列である。端末の位置測定では、RSRP(Reference Signal Reception Power)、RSTD(Reference Signal Time Difference)、Rx-Tx Time Differenceなどが規定されている。PRSは、周期的に送信される参照信号である。
 DL用のPTRSは、高い周波数帯で課題となる位相雑音の推定に用いられるUE200個別の既知の系列である。例えば、DL用のPTRSは、PDSCHの位相雑音の推定に用いられる。
 UL用のDMRSは、データの復調に用いられるUE200個別の既知の系列である。例えば、UL用のDMRSは、PUSCH(Physical Uplink Shared Channel)の復号に用いられる。
 UL用のPTRSは、高い周波数帯で課題となる位相雑音の推定に用いられるUE200個別の既知の系列である。例えば、UL用のPTRSは、PUSCHの位相雑音の推定に用いられる。
 SRSは、チャネル状態の推定に用いられるUE200個別の既知の系列である。SRSは、スケジューリング、massive MIMO、ビーム管理などに用いられる。SRSは、端末の位置測定に用いられてもよい。
 チャネルは、制御チャネルとデータチャネルとを含む。制御チャネルは、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)及びPhysical Broadcast Channel(PBCH)などを含む。データチャネルは、PDSCH及びPUSCHなどを含む。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。
 実施形態では、制御信号・参照信号処理部240は、第1目的とは異なる目的(第2目的)で用いる参照信号(第2RS)を受信する受信部を構成してもよい。
 実施形態では、制御信号・参照信号処理部240は、特定目的で用いる参照信号として動的に送信される動的参照信号(動的RS)を用いた測定を指示する通知を受信するとともに、動的RSを受信する受信部を構成してもよい。
 符号化/復号部250は、所定の通信先(gNB100または他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、HARQ(Hybrid Automatic Repeat Request)に基づいて、データの誤り訂正及び再送制御を実行する。
 制御部270は、UE200を構成する各機能ブロックを制御する。実施形態では、制御部270は、第2RSを用いて、第1目的に関する測定を実行する制御部を構成してもよい。
 実施形態では、制御部270は、動的RSを用いた測定を指示する通知に基づいて、動的RSを用いて、特定目的に関する測定を実行する制御部を構成してもよい。
 第2に、gNB100の機能ブロック構成について説明する。
 図5は、gNB100の機能ブロック構成図である。図5に示すように、gNB100は、受信部110、送信部120及び制御部130を有する。
 受信部110は、UE200から各種信号を受信する。受信部110は、PUCCH又はPUSCHなどのULチャネルを介してUL信号を受信してもよい。
 送信部120は、UE200に各種信号を送信する。送信部120は、PDCCH又はPDSCHなどのDLチャネルを介してDL信号を送信してもよい。
 実施形態では、送信部120は、第1目的とは異なる第2目的で用いる参照信号(第2RS)を送信してもよい。
 実施形態では、送信部120は、特定目的で用いる参照信号として動的に送信される動的参照信号(動的RS)を用いた測定を指示する通知を送信するとともに、動的RSを送信する送信部を構成してもよい。
 制御部130は、gNB100を制御する。実施形態では、制御部130は、第2RSを用いて、第1目的に関する測定が実行されると想定する制御部を構成してもよい。実施形態では、制御部130は、動的RSを用いた測定を指示する通知に基づいて、動的RSを用いて、特定目的に関する測定が実行されると想定する制御部を構成してもよい。
 (3)背景
 以下において、実施形態の背景について説明する。ここでは、特定目的のために周期的に送信される参照信号(以下、周期的RS)を例に挙げて説明する。
 特定目的は、無線リソース管理(以下、RRM)に関する測定(以下、RRM Measurement)であってもよく、ビーム失敗検出(以下、BFD)であってもよく、チャネル状態情報の取得(以下、CSI Acquisition)であってもよく、物理レイヤにおける受信品質に関する測定(L1-RSRP_SINR Measurement)であってもよく、UE200の位置に関する測定(以下、Positioning Measurement)であってもよく、無線リンク管理に関する測定(以下、RLM Measurement)であってもよい。
 周期的RSは、SSBであってもよく、Periodic CSI-RSであってもよく、PRSであってもよい。
 図6に示すように、周期的RSは、例えば、20msecの周期で送信されるように構成されてもよい。このようなケースにおいて、周期的RSは、gNB100(セル)のカバレッジエリアを網羅するために、各ビーム(BM#1~BM#8)を用いて時分割で送信される。例えば、gNB100は、SFN#0、SFN#2、SFN#4…において、BM#1~BM#8を用いて周期的RSを時分割で送信する。
 例えば、UE200#1は、BM#2を用いて送信される周期的RSを受信し、周期的RSの測定結果をgNB100に送信する。UE200#2は、BM#4を用いて送信される周期的RSを受信し、周期的RSの測定結果をgNB100に送信する。UE200#3は、BM#6を用いて送信される周期的RSを受信し、周期的RSの測定結果をgNB100に送信する。UE200#4は、BM#7を用いて送信される周期的RSを受信し、周期的RSの測定結果をgNB100に送信する。
 このような背景下において、gNB100(セル)が送信するビームの数が増大すると、gNB100のオーバヘッドが増大する。さらに、UE200が存在しない方向にビームを送信してしまう可能性も増大する。
 そこで、実施形態では、gNB100のオーバヘッドを軽減するために、以下に示す仕組みを新たに導入する。
 (4)動作例1
 以下において、実施形態の動作例1について説明する。動作例1では、UE200は、第1目的とは異なる第2目的で用いる参照信号(以下、第2RS)に基づいて、第1目的に関する測定を実行する。言い換えると、gNB100は、第2RSに基づいて第1目的に関する測定が実行されると想定する。
 動作例1において、UE200は、第1目的で用いる参照信号(以下、第1RS)に基づいて第1目的に関する測定を実行してもよい。言い換えると、第1RSに基づいて第1目的に関する測定が実行されると想定してもよい。
 このようなケースにおいて、gNB100は、第2RSに基づいて第1目的に関する測定が実行されると想定される場合に、第1RSの送信の少なくとも一部を省略してもよい。
 例えば、図7に示すように、SFN#0及びSFN#1において、UE200#1~UE200#4に対して第2RSが送信され、SFN#2及びSFN#3において、UE200#1及びUE200#3に対して第2RSが送信されるケースについて説明する。
 このようなケースにおいて、SFN#0及びSFN#1において、BM#2、BM#4、BM#6及BM#7の到来方向に位置するUE200は、UE200#1~UE200#4に対して送信される第2RSに基づいて第1目的に関する測定を実行する。gNB100は、SFN#2において、BM#2、BM#4、BM#6及びBM#7を用いた第1RSの送信を省略する。BM#2、BM#4、BM#6及BM#7の到来方向に位置するUE200は、UE200#1~UE200#4に加えて、UE200#1~UE200#4以外のUE200を含んでもよい。
 同様に、SFN#2及びSFN#3において、BM#2及びBM#6の到来方向に位置するUE200は、UE200#1及びUE200#3に対して送信される第2RSに基づいて第1目的に関する測定を実行する。gNB100は、SFN#4において、BM#2及びBM#6を用いた第1RSの送信を省略する。BM#2及びBM#6の到来方向に位置するUE200は、UE200#1及びUE200#3に加えて、UE200#1及びUE200#3以外のUE200を含んでもよい。
 以下においては、特定目的(第1目的)の種類毎に、上述した動作の詳細について説明する。
 (4.1)RRM Measurement
 以下において、第1目的がRRM Measurementであるケースについて説明する。第1RSは、SSBであってもよく、Periodic CSI-RSであってもよい。第1RSは、LTEで用いられるCRS(Cell-specific Reference Signal)であってもよい。
 ここでは、第2RSを用いてRRM Measurementに関する測定が実行されるケースについて主として説明する。RRM Measurementに関する測定は、周期的に送信される第1RS(例えば、SSB、Periodic CSI-RS、CRS)を用いて実行されてもよい。
 第2RSとしては、DMRSを用いてもよい。このようなケースにおいて、DMRSは、DMRSを受信するUE200個別の系列ではなく、セルに固有の系列によって構成されてもよく、ビームに固有の系列によって構成されてもよい。ビームに固有の系列は、UE200のグループに固有の系列と読み替えてもよい。DMRSをRRM Measurementに用いる指示は、RRCメッセージによって設定されてもよく、DCI又はMAC CEによって通知されてもよい。このような指示は、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurement(L1-RSRP Measurement又はL1-SINR Measurement)を指示するDCIによって通知されてもよく、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIとは別のDCI又はMAC CEによって通知されてもよい。
 第2RSとしては、Semi-persistent CSI-RSを用いてもよく、Aperiodic CSI-RSを用いてもよい。Semi-persistent CSI-RS又はAperiodic CSI-RSをRRM Measurementに用いる指示は、RRCメッセージによって設定されてもよく、DCI又はMAC CEによって通知されてもよい。このような指示は、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIによって通知されてもよく、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIとは別のDCI又はMAC CEによって通知されてもよい。
 第2RSとしては、PRSを用いてもよい。PRSをRRM Measurementに用いる指示は、RRCメッセージによって設定されてもよく、DCI又はMAC CEによって通知されてもよい。このような指示は、PDSCH Scheduling、CSI Acquisition、L1-RSRP_SINR Measurement又はPositioning measurementを指示するDCIによって通知されてもよく、PDSCH Scheduling、CSI Acquisition、L1-RSRP_SINR Measurement又はPositioning measurementを指示するDCIとは別のDCI又はMAC CEによって通知されてもよい。
 第2RSとしては、DMRS、Semi-persistent CSI-RS、Aperiodic CSI-RS及びPRSの中から選択された2以上の参照信号が用いられてもよい。
 第2RSのリソース配置及び系列は、RRCメッセージによって設定されてもよい。RRCメッセージによって設定されたリソース配置及び系列の中から、RRM Measurementで用いるリソース配置及び系列がDCI又はMAC CEによって動的に通知されてもよい。
 第2RSをRRM Measurementに用いる指示を含むDCI(Scheduling DCI)は、第2RSが送信されるビームの到来方向に位置するUE200(Non-scheduled UE200)によって復号可能に構成されてもよい。gNB100は、第2RSが送信されるビームの到来方向に位置するUE200(Non-scheduled UE200)によって復号できるように、第2RSをRRM Measurementに用いる指示を含むDCI(Scheduling DCI)を送信してもよい。
 例えば、第2RSをRRM Measurementに用いる指示とスケジューリング情報とに別々のコーディングが適用されてもよい(Separate coding)。すなわち、第2RSをRRM Measurementに用いる指示については、Non-scheduled UE200が復号可能なコーディングが適用され、スケジューリング情報については、Non-scheduled UE200が復号不能なコーディングが適用されてもよい。第2RSをRRM Measurementに用いる指示を含むDCIは、Non-scheduled UE200がDCIを復号できるように、CRCのスクランブリングにC-RNTI(Cell-Radio Network Temporary Identifier)を用いず、代わりにC-RNTIを明示的に含んでもよい。
 ここで、gNB100は、特定条件が満たされた場合に、周期的に送信される第1RSの送信の少なくとも一部を省略してもよい。言い換えると、UE200は、特定条件が満たされた場合に、周期的に送信される第1RSの少なくとも一部の受信を想定しなくてもよい。逆に言うと、gNB100は、特定条件が満たされない場合に、周期的に送信される第1RSの送信を実行してもよい。言い換えると、UE200は、特定条件が満たされない場合に、周期的に送信される第1RSの受信を想定してもよい。
 特定条件は、特定周期内において、第2RSを用いたRRM Measurementに関する測定が実行される条件を含んでもよい。特定周期は、第1RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。特定条件は、第1RSが送信されないことがgNB100からUE200に通知される条件を含んでもよい。
 UE200は、gNB100に対して、第1RSの送信を動的に要求してもよい。例えば、UE200は、特定周期内において、第2RSを用いたRRM Measurementを実行できなかった場合に、第1RSの送信を動的に要求してもよい。特定周期は、第1RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。UE200は、第1RSを送信するタイミングよりも所定時間前において、第1RSの送信を動的に要求する特定UL送信を実行してもよい。特定UL送信は、PUCCHを介した特定UCIの送信であってもよく、PUSCHを介した特定UCIの送信であってもよい。特定UL送信は、PRACHを介した特定RA Preambleの送信であってもよく、特定リソースを用いたRA Preambleの送信であってもよい。特定UL送信は、特定系列を用いたSRSの送信であってもよく、特定リソースを用いたSRSの送信であってもよい。
 (4.2)BFD
 以下において、第1目的がBFDであるケースについて説明する。第1RSは、Periodic CSI-RSであってもよい。
 ここでは、第2RSを用いてBFDに関する測定が実行されるケースについて主として説明する。BFDに関する測定は、周期的に送信される第1RS(Periodic CSI-RS)を用いて実行されてもよい。
 第2RSとしては、DMRSを用いてもよい。このようなケースにおいて、DMRSは、DMRSを受信するUE200個別の系列ではなく、セルに固有の系列によって構成されてもよく、ビームに固有の系列によって構成されてもよい。ビームに固有の系列は、UE200のグループに固有の系列と読み替えてもよい。DMRSをBFDに用いる指示は、RRCメッセージによって設定されてもよく、DCI又はMAC CEによって通知されてもよい。このような指示は、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIによって通知されてもよく、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIとは別のDCI又はMAC CEによって通知されてもよい。
 第2RSとしては、Semi-persistent CSI-RSを用いてもよく、Aperiodic CSI-RSを用いてもよい。Semi-persistent CSI-RS又はAperiodic CSI-RSをBFDに用いる指示は、RRCメッセージによって設定されてもよく、DCI又はMAC CEによって通知されてもよい。このような指示は、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIによって通知されてもよく、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIとは別のDCI又はMAC CEによって通知されてもよい。
 第2RSとしては、PRSを用いてもよい。PRSをBFDに用いる指示は、RRCメッセージによって設定されてもよく、DCI又はMAC CEによって通知されてもよい。このような指示は、PDSCH Scheduling、CSI Acquisition、L1-RSRP_SINR Measurement又はPositioning measurementを指示するDCIによって通知されてもよく、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurement又はPositioning measurementを指示するDCIとは別のDCI又はMAC CEによって通知されてもよい。
 第2RSとしては、DMRS、Semi-persistent CSI-RS、Aperiodic CSI-RS及びPRSの中から選択された2以上の参照信号が用いられてもよい。
 第2RSのリソース配置及び系列は、RRCメッセージによって設定されてもよい。RRCメッセージによって設定されたリソース配置及び系列の中から、BFDで用いるリソース配置及び系列がDCI又はMAC CEによって動的に通知されてもよい。
 第2RSをBFDに用いる指示を含むDCI(Scheduling DCI)は、第2RSが送信されるビームの到来方向に位置するUE200(Non-scheduled UE200)によって復号可能に構成されてもよい。gNB100は、第2RSが送信されるビームの到来方向に位置するUE200(Non-scheduled UE200)によって復号できるように、第2RSをBFDに用いる指示を含むDCI(Scheduling DCI)を送信してもよい。
 例えば、第2RSをBFDに用いる指示とスケジューリング情報とに別々のコーディングが適用されてもよい(Separate coding)。すなわち、第2RSをBFDに用いる指示については、Non-scheduled UE200が復号可能なコーディングが適用され、スケジューリング情報については、Non-scheduled UE200が復号不能なコーディングが適用されてもよい。第2RSをBFDに用いる指示を含むDCIは、Non-scheduled UE200がDCIを復号できるように、CRCのスクランブリングにC-RNTIを用いず、代わりにC-RNTIを明示的に含んでもよい。
 ここで、gNB100は、特定条件が満たされた場合に、周期的に送信される第1RSの送信の少なくとも一部を省略してもよい。言い換えると、UE200は、特定条件が満たされた場合に、周期的に送信される第1RSの少なくとも一部の受信を想定しなくてもよい。逆に言うと、gNB100は、特定条件が満たされない場合に、周期的に送信される第1RSの送信を実行してもよい。言い換えると、UE200は、特定条件が満たされない場合に、周期的に送信される第1RSの受信を想定してもよい。
 特定条件は、特定周期内において、第2RSを用いたBFDに関する測定が実行される条件を含んでもよい。特定周期は、第1RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。特定条件は、第1RSが送信されないことがgNB100からUE200に通知される条件を含んでもよい。
 UE200は、gNB100に対して、第1RSの送信を動的に要求してもよい。例えば、UE200は、特定周期内において、第2RSを用いたBFDを実行できなかった場合に、第1RSの送信を動的に要求してもよい。特定周期は、第1RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。UE200は、第1RSを送信するタイミングよりも所定時間前において、第1RSの送信を動的に要求する特定UL送信を実行してもよい。特定UL送信は、PUCCHを介した特定UCIの送信であってもよく、PUSCHを介した特定UCIの送信であってもよい。特定UL送信は、PRACHを介した特定RA Preambleの送信であってもよく、特定リソースを用いたRA Preambleの送信であってもよい。特定UL送信は、特定系列を用いたSRSの送信であってもよく、特定リソースを用いたSRSの送信であってもよい。
 (4.3)CSI Acquisition
 以下において、第1目的がCSI Acquisitionであるケースについて説明する。第1RSは、Periodic CSI-RSであってもよく、Semi-persistent CSI-RSであってもよく、Aperiodic CSI-RSであってもよい。
 ここでは、第2RSを用いてCSI Acquisitionに関する測定が実行されるケースについて主として説明する。CSI Acquisitionに関する測定は、周期的に送信される第1RS(例えば、Periodic CSI-RS)を用いて実行されてもよい。CSI Acquisitionに関する測定は、非周期的に送信される第1RS(例えば、Semi-persistent CSI-RS、Aperiodic CSI-RS)を用いて実行されてもよい。
 第2RSとしては、DMRSを用いてもよい。このようなケースにおいて、DMRSは、DMRSを受信するUE200個別の系列ではなく、セルに固有の系列によって構成されてもよく、ビームに固有の系列によって構成されてもよい。ビームに固有の系列は、UE200のグループに固有の系列と読み替えてもよい。DMRSをCSI Acquisitionに用いる指示は、RRCメッセージによって設定されてもよく、DCI又はMAC CEによって通知されてもよい。このような指示は、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIによって通知されてもよく、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIとは別のDCI又はMAC CEによって通知されてもよい。
 第2RSとしては、PRSを用いてもよい。PRSをCSI Acquisitionに用いる指示は、RRCメッセージによって設定されてもよく、DCI又はMAC CEによって通知されてもよい。このような指示は、PDSCH Scheduling、CSI Acquisition又はPositioning measurementを指示するDCIによって通知されてもよく、PDSCH Scheduling、CSI Acquisition又はPositioning measurementを指示するDCIとは別のDCI又はMAC CEによって通知されてもよい。
 第2RSとしては、DMRS及びPRSの双方が用いられてもよい。
 第2RSのリソース配置及び系列は、RRCメッセージによって設定されてもよい。RRCメッセージによって設定されたリソース配置及び系列の中から、CSI Acquisitionで用いるリソース配置及び系列がDCI又はMAC CEによって動的に通知されてもよい。
 第2RSをCSI Acquisitionに用いる指示を含むDCI(Scheduling DCI)は、第2RSが送信されるビームの到来方向に位置するUE200(Non-scheduled UE200)によって復号可能に構成されてもよい。gNB100は、第2RSが送信されるビームの到来方向に位置するUE200(Non-scheduled UE200)によって復号できるように、第2RSをCSI Acquisitionに用いる指示を含むDCI(Scheduling DCI)を送信してもよい。
 例えば、第2RSをCSI Acquisitionに用いる指示とスケジューリング情報とに別々のコーディングが適用されてもよい(Separate coding)。すなわち、第2RSをCSI Acquisitionに用いる指示については、Non-scheduled UE200が復号可能なコーディングが適用され、スケジューリング情報については、Non-scheduled UE200が復号不能なコーディングが適用されてもよい。第2RSをCSI Acquisitionに用いる指示を含むDCIは、Non-scheduled UE200がDCIを復号できるように、CRCのスクランブリングにC-RNTIを用いず、代わりにC-RNTIを明示的に含んでもよい。
 ここで、gNB100は、特定条件が満たされた場合に、周期的に送信される第1RSの送信の少なくとも一部を省略してもよい。言い換えると、UE200は、特定条件が満たされた場合に、周期的に送信される第1RSの少なくとも一部の受信を想定しなくてもよい。逆に言うと、gNB100は、特定条件が満たされない場合に、周期的に送信される第1RSの送信を実行してもよい。言い換えると、UE200は、特定条件が満たされない場合に、周期的に送信される第1RSの受信を想定してもよい。
 特定条件は、特定周期内において、第2RSを用いたCSI Acquisitionに関する測定が実行される条件を含んでもよい。特定周期は、第1RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。特定条件は、第1RSが送信されないことがgNB100からUE200に通知される条件を含んでもよい。
 UE200は、gNB100に対して、第1RSの送信を動的に要求してもよい。例えば、UE200は、特定周期内において、第2RSを用いたCSI Acquisitionを実行できなかった場合に、第1RSの送信を動的に要求してもよい。特定周期は、第1RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。UE200は、第1RSを送信するタイミングよりも所定時間前において、第1RSの送信を動的に要求する特定UL送信を実行してもよい。特定UL送信は、PUCCHを介した特定UCIの送信であってもよく、PUSCHを介した特定UCIの送信であってもよい。特定UL送信は、PRACHを介した特定RA Preambleの送信であってもよく、特定リソースを用いたRA Preambleの送信であってもよい。特定UL送信は、特定系列を用いたSRSの送信であってもよく、特定リソースを用いたSRSの送信であってもよい。
 (4.4)L1-RSRP_SINR Measurement
 以下において、第1目的がL1-RSRP Measurement又はL1-SINR Measurement(L1-RSRP_SINR Measurement)であるケースについて説明する。L1-RSRP_SINR Measurementは、ビーム管理で用いる測定であってもよい。第1RSは、SSBであってもよい。第1RSは、Periodic CSI-RSであってもよく、Semi-persistent CSI-RSであってもよく、Aperiodic CSI-RSであってもよい。
 ここでは、第2RSを用いてL1-RSRP_SINR Measurementに関する測定が実行されるケースについて主として説明する。L1-RSRP_SINR Measurementに関する測定は、周期的に送信される第1RS(例えば、SSB、Periodic CSI-RS)を用いて実行されてもよい。L1-RSRP_SINR Measurementに関する測定は、非周期的に送信される第1RS(例えば、Semi-persistent CSI-RS、Aperiodic CSI-RS)を用いて実行されてもよい。
 第2RSとしては、DMRSを用いてもよい。このようなケースにおいて、DMRSは、DMRSを受信するUE200個別の系列ではなく、セルに固有の系列によって構成されてもよく、ビームに固有の系列によって構成されてもよい。ビームに固有の系列は、UE200のグループに固有の系列と読み替えてもよい。DMRSをL1-RSRP_SINR Measurementに用いる指示は、RRCメッセージによって設定されてもよく、DCI又はMAC CEによって通知されてもよい。このような指示は、PDSCH Scheduling又はL1-RSRP_SINR Measurementを指示するDCIによって通知されてもよく、PDSCH Scheduling又はL1-RSRP_SINR Measurementを指示するDCIとは別のDCI又はMAC CEによって通知されてもよい。
 第2RSとしては、PRSを用いてもよい。PRSをL1-RSRP_SINR Measurementに用いる指示は、RRCメッセージによって設定されてもよく、DCI又はMAC CEによって通知されてもよい。このような指示は、PDSCH Scheduling、L1-RSRP_SINR Measurement又はPositioning measurementを指示するDCIによって通知されてもよく、PDSCH Scheduling、L1-RSRP_SINR Measurement又はPositioning measurementを指示するDCIとは別のDCI又はMAC CEによって通知されてもよい。
 第2RSとしては、DMRS及びPRSの中から選択された2以上の参照信号が用いられてもよい。
 第2RSのリソース配置及び系列は、RRCメッセージによって設定されてもよい。RRCメッセージによって設定されたリソース配置及び系列の中から、L1-RSRP_SINR Measurementで用いるリソース配置及び系列がDCI又はMAC CEによって動的に通知されてもよい。
 第2RSをL1-RSRP_SINR Measurementに用いる指示を含むDCI(Scheduling DCI)は、第2RSが送信されるビームの到来方向に位置するUE200(Non-scheduled UE200)によって復号可能に構成されてもよい。gNB100は、第2RSが送信されるビームの到来方向に位置するUE200(Non-scheduled UE200)によって復号できるように、第2RSをL1-RSRP_SINR Measurementに用いる指示を含むDCI(Scheduling DCI)を送信してもよい。
 例えば、第2RSをL1-RSRP_SINR Measurementに用いる指示とスケジューリング情報とに別々のコーディングが適用されてもよい(Separate coding)。すなわち、第2RSをL1-RSRP_SINR Measurementに用いる指示については、Non-scheduled UE200が復号可能なコーディングが適用され、スケジューリング情報については、Non-scheduled UE200が復号不能なコーディングが適用されてもよい。第2RSをL1-RSRP_SINR Measurementに用いる指示を含むDCIは、Non-scheduled UE200がDCIを復号できるように、CRCのスクランブリングにC-RNTIを用いず、代わりにC-RNTIを明示的に含んでもよい。
 ここで、gNB100は、特定条件が満たされた場合に、周期的に送信される第1RSの送信の少なくとも一部を省略してもよい。言い換えると、UE200は、特定条件が満たされた場合に、周期的に送信される第1RSの少なくとも一部の受信を想定しなくてもよい。逆に言うと、gNB100は、特定条件が満たされない場合に、周期的に送信される第1RSの送信を実行してもよい。言い換えると、UE200は、特定条件が満たされない場合に、周期的に送信される第1RSの受信を想定してもよい。
 特定条件は、特定周期内において、第2RSを用いたL1-RSRP_SINR Measurementに関する測定が実行される条件を含んでもよい。特定周期は、第1RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。特定条件は、第1RSが送信されないことがgNB100からUE200に通知される条件を含んでもよい。
 UE200は、gNB100に対して、第1RSの送信を動的に要求してもよい。例えば、UE200は、特定周期内において、第2RSを用いたL1-RSRP_SINR Measurementを実行できなかった場合に、第1RSの送信を動的に要求してもよい。特定周期は、第1RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。UE200は、第1RSを送信するタイミングよりも所定時間前において、第1RSの送信を動的に要求する特定UL送信を実行してもよい。特定UL送信は、PUCCHを介した特定UCIの送信であってもよく、PUSCHを介した特定UCIの送信であってもよい。特定UL送信は、PRACHを介した特定RA Preambleの送信であってもよく、特定リソースを用いたRA Preambleの送信であってもよい。特定UL送信は、特定系列を用いたSRSの送信であってもよく、特定リソースを用いたSRSの送信であってもよい。
 (4.5)Positioning Measurement
 以下において、第1目的がPositioning Measurementであるケースについて説明する。第1RSは、PRSであってもよい。
 ここでは、第2RSを用いてPositioning Measurementに関する測定が実行されるケースについて主として説明する。Positioning Measurementに関する測定は、周期的に送信される第1RS(例えば、PRS)を用いて実行されてもよい。
 第2RSとしては、DMRSを用いてもよい。このようなケースにおいて、DMRSは、DMRSを受信するUE200個別の系列ではなく、セルに固有の系列によって構成されてもよく、ビームに固有の系列によって構成されてもよい。ビームに固有の系列は、UE200のグループに固有の系列と読み替えてもよい。DMRSをPositioning Measurementに用いる指示は、RRCメッセージによって設定されてもよく、DCI又はMAC CEによって通知されてもよい。このような指示は、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIによって通知されてもよく、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIとは別のDCI又はMAC CEによって通知されてもよい。
 第2RSとしては、Periodic CSIを用いてもよく、Semi-persistent CSI-RSを用いてもよく、Aperiodic CSI-RSを用いてもよい。Periodic CSI 、Semi-persistent CSI-RS又はAperiodic CSI-RSをPositioning Measurementに用いる指示は、RRCメッセージによって設定されてもよく、DCI又はMAC CEによって通知されてもよい。このような指示は、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIによって通知されてもよく、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIとは別のDCI又はMAC CEによって通知されてもよい。
 第2RSとしては、DMRS、Periodic CSI、Semi-persistent CSI-RS、Aperiodic CSI-RS及びPRSの中から選択された2以上の参照信号が用いられてもよい。
 第2RSのリソース配置及び系列は、RRCメッセージによって設定されてもよい。RRCメッセージによって設定されたリソース配置及び系列の中から、Positioning Measurementで用いるリソース配置及び系列がDCI又はMAC CEによって動的に通知されてもよい。
 第2RSをPositioning Measurementに用いる指示を含むDCI(Scheduling DCI)は、第2RSが送信されるビームの到来方向に位置するUE200(Non-scheduled UE200)によって復号可能に構成されてもよい。gNB100は、第2RSが送信されるビームの到来方向に位置するUE200(Non-scheduled UE200)によって復号できるように、第2RSをPositioning Measurementに用いる指示を含むDCI(Scheduling DCI)を送信してもよい。
 例えば、第2RSをPositioning Measurementに用いる指示とスケジューリング情報とに別々のコーディングが適用されてもよい(Separate coding)。すなわち、第2RSをPositioning Measurementに用いる指示については、Non-scheduled UE200が復号可能なコーディングが適用され、スケジューリング情報については、Non-scheduled UE200が復号不能なコーディングが適用されてもよい。第2RSをPositioning Measurementに用いる指示を含むDCIは、Non-scheduled UE200がDCIを復号できるように、CRCのスクランブリングにC-RNTIを用いず、代わりにC-RNTIを明示的に含んでもよい。
 ここで、gNB100は、特定条件が満たされた場合に、周期的に送信される第1RSの送信の少なくとも一部を省略してもよい。言い換えると、UE200は、特定条件が満たされた場合に、周期的に送信される第1RSの少なくとも一部の受信を想定しなくてもよい。逆に言うと、gNB100は、特定条件が満たされない場合に、周期的に送信される第1RSの送信を実行してもよい。言い換えると、UE200は、特定条件が満たされない場合に、周期的に送信される第1RSの受信を想定してもよい。
 特定条件は、特定周期内において、第2RSを用いたPositioning Measurementに関する測定が実行される条件を含んでもよい。特定周期は、第1RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。特定条件は、第1RSが送信されないことがgNB100からUE200に通知される条件を含んでもよい。
 UE200は、gNB100に対して、第1RSの送信を動的に要求してもよい。例えば、UE200は、特定周期内において、第2RSを用いたPositioning Measurementを実行できなかった場合に、第1RSの送信を動的に要求してもよい。特定周期は、第1RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。UE200は、第1RSを送信するタイミングよりも所定時間前において、第1RSの送信を動的に要求する特定UL送信を実行してもよい。特定UL送信は、PUCCHを介した特定UCIの送信であってもよく、PUSCHを介した特定UCIの送信であってもよい。特定UL送信は、PRACHを介した特定RA Preambleの送信であってもよく、特定リソースを用いたRA Preambleの送信であってもよい。特定UL送信は、特定系列を用いたSRSの送信であってもよく、特定リソースを用いたSRSの送信であってもよい。
 (4.6)RLM Measurement
 以下において、第1目的がRLM Measurementであるケースについて説明する。第1RSは、SSBであってもよく、Periodic CSI-RSであってもよい。第1RSは、LTEで用いられるCRSであってもよい。
 ここでは、第2RSを用いてRLM Measurementに関する測定が実行されるケースについて主として説明する。RLM Measurementに関する測定は、周期的に送信される第1RS(例えば、SSB、Periodic CSI-RS、CRS)を用いて実行されてもよい。
 第2RSとしては、DMRSを用いてもよい。このようなケースにおいて、DMRSは、DMRSを受信するUE200個別の系列ではなく、セルに固有の系列によって構成されてもよく、ビームに固有の系列によって構成されてもよい。ビームに固有の系列は、UE200のグループに固有の系列と読み替えてもよい。DMRSをRLM Measurementに用いる指示は、RRCメッセージによって設定されてもよく、DCI又はMAC CEによって通知されてもよい。このような指示は、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIによって通知されてもよく、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIとは別のDCI又はMAC CEによって通知されてもよい。
 第2RSとしては、Semi-persistent CSI-RSを用いてもよく、Aperiodic CSI-RSを用いてもよい。Semi-persistent CSI-RS又はAperiodic CSI-RSをRLM Measurementに用いる指示は、RRCメッセージによって設定されてもよく、DCI又はMAC CEによって通知されてもよい。このような指示は、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIによって通知されてもよく、PDSCH Scheduling、CSI Acquisition又はL1-RSRP_SINR Measurementを指示するDCIとは別のDCI又はMAC CEによって通知されてもよい。
 第2RSとしては、PRSを用いてもよい。PRSをRLM Measurementに用いる指示は、RRCメッセージによって設定されてもよく、DCI又はMAC CEによって通知されてもよい。このような指示は、PDSCH Scheduling、CSI Acquisition、L1-RSRP_SINR Measurement又はPositioning measurementを指示するDCIによって通知されてもよく、PDSCH Scheduling、CSI Acquisition、L1-RSRP_SINR Measurement又はPositioning measurementを指示するDCIとは別のDCI又はMAC CEによって通知されてもよい。
 第2RSとしては、DMRS、Semi-persistent CSI-RS、Aperiodic CSI-RS及びPRSの中から選択された2以上の参照信号が用いられてもよい。
 第2RSのリソース配置及び系列は、RRCメッセージによって設定されてもよい。RRCメッセージによって設定されたリソース配置及び系列の中から、RLM Measurementで用いるリソース配置及び系列がDCI又はMAC CEによって動的に通知されてもよい。
 第2RSをRLM Measurementに用いる指示を含むDCI(Scheduling DCI)は、第2RSが送信されるビームの到来方向に位置するUE200(Non-scheduled UE200)によって復号可能に構成されてもよい。gNB100は、第2RSが送信されるビームの到来方向に位置するUE200(Non-scheduled UE200)によって復号できるように、第2RSをRLM Measurementに用いる指示を含むDCI(Scheduling DCI)を送信してもよい。
 例えば、第2RSをRLM Measurementに用いる指示とスケジューリング情報とに別々のコーディングが適用されてもよい(Separate coding)。すなわち、第2RSをRLM Measurementに用いる指示については、Non-scheduled UE200が復号可能なコーディングが適用され、スケジューリング情報については、Non-scheduled UE200が復号不能なコーディングが適用されてもよい。第2RSをRLM Measurementに用いる指示を含むDCIは、Non-scheduled UE200がDCIを復号できるように、CRCのスクランブリングにC-RNTIを用いず、代わりにC-RNTIを明示的に含んでもよい。
 ここで、gNB100は、特定条件が満たされた場合に、周期的に送信される第1RSの送信の少なくとも一部を省略してもよい。言い換えると、UE200は、特定条件が満たされた場合に、周期的に送信される第1RSの少なくとも一部の受信を想定しなくてもよい。逆に言うと、gNB100は、特定条件が満たされない場合に、周期的に送信される第1RSの送信を実行してもよい。言い換えると、UE200は、特定条件が満たされない場合に、周期的に送信される第1RSの受信を想定してもよい。
 特定条件は、特定周期内において、第2RSを用いたRLM Measurementに関する測定が実行される条件を含んでもよい。特定周期は、第1RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。特定条件は、第1RSが送信されないことがgNB100からUE200に通知される条件を含んでもよい。
 UE200は、gNB100に対して、第1RSの送信を動的に要求してもよい。例えば、UE200は、特定周期内において、第2RSを用いたRLM Measurementを実行できなかった場合に、第1RSの送信を動的に要求してもよい。特定周期は、第1RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。UE200は、第1RSを送信するタイミングよりも所定時間前において、第1RSの送信を動的に要求する特定UL送信を実行してもよい。特定UL送信は、PUCCHを介した特定UCIの送信であってもよく、PUSCHを介した特定UCIの送信であってもよい。特定UL送信は、PRACHを介した特定RA Preambleの送信であってもよく、特定リソースを用いたRA Preambleの送信であってもよい。特定UL送信は、特定系列を用いたSRSの送信であってもよく、特定リソースを用いたSRSの送信であってもよい。
 (5)動作例2
 以下において、実施形態の動作例2について説明する。動作例2では、UE200は、特定目的のために動的に送信される参照信号(動的RS)に基づいて特定目的に関する測定を実行する。言い換えると、gNB100は、動的RSに基づいて特定目的に関する測定が実行されると想定する。
 このようなケースにおいて、UE200は、図6で説明したように、特定目的のために周期的に送信される周期的RSに基づいて特定目的に関する測定を実行してもよい。gNB100は、周期的RSに基づいて特定目的に関する測定が実行されると想定してもよい。gNB100は、動的RSに基づいて特定目的に関する測定が実行されると想定される場合に、周期的RSの送信の少なくとも一部を省略してもよい。
 例えば、図8に示すように、ステップS11において、NG-RAN20(gNB100)は、動的RSを用いた特定目的に関する測定を指示するDCI(Dynamic)をUE200に送信する。
 ステップS12において、NG-RAN20(gNB100)は、特定目的のための動的RSを送信する。
 ステップS13において、UE200は、動的RSに基づいて特定目的に関する測定(Dynamic)を実行する。
 ステップS14において、UE200は、動的RSに基づいた測定結果を含む報告(Dynamic)をNG-RAN20に送信する。
 ここで、DCI(Dynamic)として、以下に示すオプションのDCIが用いられてもよい。オプション1では、DCI(Dynamic)は、UE200個別のScheduling DCIであってもよい。オプション2では、DCI(Dynamic)は、UE200個別のNon-scheduling DCIであってもよい。オプション3では、DCI(Dynamic)は、2以上のUE200に共通のGroup-common DCIであってもよい。オプション4では、DCI(Dynamic)は、セルに固有のDCIであってもよく、ビームに固有のDCIであってもよい。オプション1~オプション4の中から選択された2以上のオプションが適用されてもよい。どのオプションを適用すべきかについては、gNB100によってUE200に設定されてもよい。どのオプションを適用すべきかについては、RRCメッセージによって設定されてもよく、MAC CEによって設定されてもよい。
 上述したDCI(Dynamic)は、MAC CEメッセージと読み替えてもよい。MAC CEメッセージは、動的RSを用いた測定の活性化を要求する情報要素(Activation)を含んでもよい。MAC CEメッセージは、動的RSを用いた測定の非活性化を要求する情報要素(Deactivation)を含んでもよい。
 (5.1)RRM Measurement
 以下において、特定目的がRRM Measurementであるケースについて説明する。UE200は、RRM Measurementで用いる動的RSに基づいて、RRM Measurementに関する測定を実行する。動的RSは、SSBの代替として用いられてもよく、SSBと同様の構成を有していてもよい。動的RSは、Periodic CSI-RSの代替として用いられてもよく、Periodic CSI-RSと同様の構成を有していてもよい。動的RSでは、LTEで用いられるCRSの代替として用いられてもよく、CRSと同様の構成を有していてもよい。
 このようなケースにおいて、動的RSを用いた測定を指示する通知(DCI又はMAC CEメッセージ)を受信するタイミングとRRM Measurementに関する測定を実行するタイミングとの最小差異(例えば、Minimum delay)が定められていてもよい。RRM Measurementに関する測定を実行するタイミングは、RRM Measurementに関する測定を開始するSymbolであってよく、RRM Measurementに関する測定を開始するSlotの先頭であってもよい。Minimum delayは、Symbol数によって表現されてもよく、絶対的な時間によって表現されてもよい。
 Minimum delayは、UE200の能力情報としてNG RAN20に報告されてもよい。Minimum delayは、無線通信システム10で予め定義されてもよい。例えば、Minimum delayは、特定目的の種類(ここでは、RRM Measurement)に応じて定義されてもよく、周波数レンジ(FR)毎によって定義されてもよく、周波数帯(Band)毎によって定義されてもよく、SCS毎によって定義されてよい。Minimum delayは、測定対象の周期的RSの数毎に定義されてもよい。Minimum delayは、特定目的の種類、周波数レンジ(FR)、周波数帯(Band)、SCS及び周期的RSの数の中から選択された2以上のパラメータによって定義されてもよい。
 動的RSを用いた測定を指示する通知(DCI又はMAC CEメッセージ)は、以下に示すオプションの情報要素を含んでもよい。オプション1では、通知は、動的RSの時間リソース情報(例えば、Slotオフセット、シンボル位置)を示す情報要素を含んでもよい。オプション2では、通知は、動的RSの周波数リソース情報(例えば、RBオフセット、RB数、RB位置)を示す情報要素を含んでもよい。オプション3では、通知は、動的RSの系列(例えば、系列インデックス、スクランブリングID)を示す情報要素を含んでもよい。オプション4では、通知は、動的RSの送信電力情報を示す情報要素を含んでもよい。通知は、オプション1~オプション4の中から選択された2以上のオプションの情報要素を含んでもよい。
 RRM Measurementに関する測定で用いる動的RSは、非サービングセルで用いられずに、サービングセルで用いられてもよい。RRM Measurementに関する測定で用いる動的RSは、サービングセル及び非サービングセルの双方で用いられてもよい。
 周期的RSは、動的RSと併用されてもよい。このようなケースにおいて、gNB100は、特定条件が満たされた場合に、周期的RSの送信の少なくとも一部を省略してもよい。言い換えると、UE200は、特定条件が満たされた場合に、周期的RSの少なくとも一部の受信を想定しなくてもよい。逆に言うと、gNB100は、特定条件が満たされない場合に、周期的RSの送信を実行してもよい。言い換えると、UE200は、特定条件が満たされない場合に、周期的RSの受信を想定してもよい。
 特定条件は、特定周期内において、動的RSを用いたRRM Measurementに関する測定が実行される条件を含んでもよい。特定周期は、周期的RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。特定条件は、周期的RSが送信されないことがgNB100からUE200に通知される条件を含んでもよい。
 動的RSは、周期的RS(SSB、Periodic CSI-RS)と異なる構成を有していてもよい。このようなケースにおいて、動的RSを用いた測定結果は、周期的RSを用いた測定結果と合わせて単一の報告値の導出に用いられてもよい。
 UE200は、gNB100に対して、周期的RSの送信を動的に要求してもよい。例えば、UE200は、特定周期内において、動的RSを用いたRRM Measurementを実行できなかった場合に、周期的RSの送信を動的に要求してもよい。特定周期は、周期的RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。UE200は、周期的RSを送信するタイミングよりも所定時間前において、周期的RSの送信を動的に要求する特定UL送信を実行してもよい。特定UL送信は、PUCCHを介した特定UCIの送信であってもよく、PUSCHを介した特定UCIの送信であってもよい。特定UL送信は、PRACHを介した特定RA Preambleの送信であってもよく、特定リソースを用いたRA Preambleの送信であってもよい。特定UL送信は、特定系列を用いたSRSの送信であってもよく、特定リソースを用いたSRSの送信であってもよい。
 (5.2)BFD
 以下において、特定目的がBFDであるケースについて説明する。UE200は、BFDで用いる動的RSに基づいて、BFDに関する測定を実行する。動的RSは、Periodic CSI-RSの代替として用いられてもよく、Periodic CSI-RSと同様の構成を有していてもよい。
 このようなケースにおいて、動的RSを用いた測定を指示する通知(DCI又はMAC CEメッセージ)を受信するタイミングとBFDに関する測定を実行するタイミングとの最小差異(例えば、Minimum delay)が定められていてもよい。BFDに関する測定を実行するタイミングは、BFDに関する測定を開始するSymbolであってよく、BFDに関する測定を開始するSlotの先頭であってもよい。Minimum delayは、Symbol数によって表現されてもよく、絶対的な時間によって表現されてもよい。
 Minimum delayは、UE200の能力情報としてNG RAN20に報告されてもよい。Minimum delayは、無線通信システム10で予め定義されてもよい。例えば、Minimum delayは、特定目的の種類(ここでは、BFD)に応じて定義されてもよく、周波数レンジ(FR)毎によって定義されてもよく、周波数帯(Band)毎によって定義されてもよく、SCS毎によって定義されてよい。Minimum delayは、測定対象の周期的RSの数毎に定義されてもよい。Minimum delayは、特定目的の種類、周波数レンジ(FR)、周波数帯(Band)、SCS及び周期的RSの数の中から選択された2以上のパラメータによって定義されてもよい。
 動的RSを用いた測定を指示する通知(DCI又はMAC CEメッセージ)は、以下に示すオプションの情報要素を含んでもよい。オプション1では、通知は、動的RSの時間リソース情報(例えば、Slotオフセット、シンボル位置)を示す情報要素を含んでもよい。オプション2では、通知は、動的RSの周波数リソース情報(例えば、RBオフセット、RB数、RB位置)を示す情報要素を含んでもよい。オプション3では、通知は、動的RSの系列(例えば、系列インデックス、スクランブリングID)を示す情報要素を含んでもよい。オプション4では、通知は、動的RSの送信電力情報を示す情報要素を含んでもよい。通知は、オプション1~オプション4の中から選択された2以上のオプションの情報要素を含んでもよい。
 BFDに関する測定で用いる動的RSは、非サービングセルで用いられずに、サービングセルで用いられてもよい。BFDに関する測定で用いる動的RSは、サービングセル及び非サービングセルの双方で用いられてもよい。
 周期的RSは、動的RSと併用されてもよい。このようなケースにおいて、gNB100は、特定条件が満たされた場合に、周期的RSの送信の少なくとも一部を省略してもよい。言い換えると、UE200は、特定条件が満たされた場合に、周期的RSの少なくとも一部の受信を想定しなくてもよい。逆に言うと、gNB100は、特定条件が満たされない場合に、周期的RSの送信を実行してもよい。言い換えると、UE200は、特定条件が満たされない場合に、周期的RSの受信を想定してもよい。
 特定条件は、特定周期内において、動的RSを用いたBFDに関する測定が実行される条件を含んでもよい。特定周期は、周期的RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。特定条件は、周期的RSが送信されないことがgNB100からUE200に通知される条件を含んでもよい。
 動的RSは、周期的RS(Periodic CSI-RS)と異なる構成を有していてもよい。このようなケースにおいて、動的RSを用いた測定結果は、周期的RSを用いた測定結果と合わせてBFDの判定に用いられてもよい。
 UE200は、gNB100に対して、周期的RSの送信を動的に要求してもよい。例えば、UE200は、特定周期内において、動的RSを用いたBFDを実行できなかった場合に、周期的RSの送信を動的に要求してもよい。特定周期は、周期的RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。UE200は、周期的RSを送信するタイミングよりも所定時間前において、周期的RSの送信を動的に要求する特定UL送信を実行してもよい。特定UL送信は、PUCCHを介した特定UCIの送信であってもよく、PUSCHを介した特定UCIの送信であってもよい。特定UL送信は、PRACHを介した特定RA Preambleの送信であってもよく、特定リソースを用いたRA Preambleの送信であってもよい。特定UL送信は、特定系列を用いたSRSの送信であってもよく、特定リソースを用いたSRSの送信であってもよい。
 (5.3)Positioning Measurement
 以下において、特定目的がPositioning Measurementであるケースについて説明する。UE200は、Positioning Measurementで用いる動的RSに基づいて、Positioning Measurementに関する測定を実行する。動的RSは、PRSの代替として用いられてもよく、PRSと同様の構成を有していてもよい。
 このようなケースにおいて、動的RSを用いた測定を指示する通知(DCI又はMAC CEメッセージ)を受信するタイミングとPositioning Measurementに関する測定を実行するタイミングとの最小差異(例えば、Minimum delay)が定められていてもよい。Positioning Measurementに関する測定を実行するタイミングは、Positioning Measurementに関する測定を開始するSymbolであってよく、Positioning Measurementに関する測定を開始するSlotの先頭であってもよい。Minimum delayは、Symbol数によって表現されてもよく、絶対的な時間によって表現されてもよい。
 Minimum delayは、UE200の能力情報としてNG RAN20に報告されてもよい。Minimum delayは、無線通信システム10で予め定義されてもよい。例えば、Minimum delayは、特定目的の種類(ここでは、Positioning Measurement)に応じて定義されてもよく、周波数レンジ(FR)毎によって定義されてもよく、周波数帯(Band)毎によって定義されてもよく、SCS毎によって定義されてよい。Minimum delayは、測定対象の周期的RSの数毎に定義されてもよい。Minimum delayは、特定目的の種類、周波数レンジ(FR)、周波数帯(Band)、SCS及び周期的RSの数の中から選択された2以上のパラメータによって定義されてもよい。
 動的RSを用いた測定を指示する通知(DCI又はMAC CEメッセージ)は、以下に示すオプションの情報要素を含んでもよい。オプション1では、通知は、動的RSの時間リソース情報(例えば、Slotオフセット、シンボル位置)を示す情報要素を含んでもよい。オプション2では、通知は、動的RSの周波数リソース情報(例えば、RBオフセット、RB数、RB位置)を示す情報要素を含んでもよい。オプション3では、通知は、動的RSの系列(例えば、系列インデックス、スクランブリングID)を示す情報要素を含んでもよい。オプション4では、通知は、動的RSの送信電力情報を示す情報要素を含んでもよい。通知は、オプション1~オプション4の中から選択された2以上のオプションの情報要素を含んでもよい。
 Positioning Measurementに関する測定で用いる動的RSは、非サービングセルで用いられずに、サービングセルで用いられてもよい。Positioning Measurementに関する測定で用いる動的RSは、サービングセル及び非サービングセルの双方で用いられてもよい。
 周期的RSは、動的RSと併用されてもよい。このようなケースにおいて、gNB100は、特定条件が満たされた場合に、周期的RSの送信の少なくとも一部を省略してもよい。言い換えると、UE200は、特定条件が満たされた場合に、周期的RSの少なくとも一部の受信を想定しなくてもよい。逆に言うと、gNB100は、特定条件が満たされない場合に、周期的RSの送信を実行してもよい。言い換えると、UE200は、特定条件が満たされない場合に、周期的RSの受信を想定してもよい。
 特定条件は、特定周期内において、動的RSを用いたPositioning Measurementに関する測定が実行される条件を含んでもよい。特定周期は、周期的RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。特定条件は、周期的RSが送信されないことがgNB100からUE200に通知される条件を含んでもよい。
 動的RSは、周期的RS(PRS)と異なる構成を有していてもよい。このようなケースにおいて、動的RSを用いた測定結果は、周期的RSを用いた測定結果と合わせて単一の報告値の導出に用いられてもよい。
 UE200は、gNB100に対して、周期的RSの送信を動的に要求してもよい。例えば、UE200は、特定周期内において、動的RSを用いたPositioning Measurementを実行できなかった場合に、周期的RSの送信を動的に要求してもよい。特定周期は、周期的RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。UE200は、周期的RSを送信するタイミングよりも所定時間前において、周期的RSの送信を動的に要求する特定UL送信を実行してもよい。特定UL送信は、PUCCHを介した特定UCIの送信であってもよく、PUSCHを介した特定UCIの送信であってもよい。特定UL送信は、PRACHを介した特定RA Preambleの送信であってもよく、特定リソースを用いたRA Preambleの送信であってもよい。特定UL送信は、特定系列を用いたSRSの送信であってもよく、特定リソースを用いたSRSの送信であってもよい。
 (5.4)RLM Measurement
 以下において、特定目的がRLM Measurementであるケースについて説明する。UE200は、RLM Measurementで用いる動的RSに基づいて、RLM Measurementに関する測定を実行する。動的RSは、SSBの代替として用いられてもよく、SSBと同様の構成を有していてもよい。動的RSは、Periodic CSI-RSの代替として用いられてもよく、Periodic CSI-RSと同様の構成を有していてもよい。動的RSでは、LTEで用いられるCRSの代替として用いられてもよく、CRSと同様の構成を有していてもよい。
 このようなケースにおいて、動的RSを用いた測定を指示する通知(DCI又はMAC CEメッセージ)を受信するタイミングとRLM Measurementに関する測定を実行するタイミングとの最小差異(例えば、Minimum delay)が定められていてもよい。RLM Measurementに関する測定を実行するタイミングは、RLM Measurementに関する測定を開始するSymbolであってよく、RLM Measurementに関する測定を開始するSlotの先頭であってもよい。Minimum delayは、Symbol数によって表現されてもよく、絶対的な時間によって表現されてもよい。
 Minimum delayは、UE200の能力情報としてNG RAN20に報告されてもよい。Minimum delayは、無線通信システム10で予め定義されてもよい。例えば、Minimum delayは、特定目的の種類(ここでは、RLM Measurement)に応じて定義されてもよく、周波数レンジ(FR)毎によって定義されてもよく、周波数帯(Band)毎によって定義されてもよく、SCS毎によって定義されてよい。Minimum delayは、測定対象の周期的RSの数毎に定義されてもよい。Minimum delayは、特定目的の種類、周波数レンジ(FR)、周波数帯(Band)、SCS及び周期的RSの数の中から選択された2以上のパラメータによって定義されてもよい。
 動的RSを用いた測定を指示する通知(DCI又はMAC CEメッセージ)は、以下に示すオプションの情報要素を含んでもよい。オプション1では、通知は、動的RSの時間リソース情報(例えば、Slotオフセット、シンボル位置)を示す情報要素を含んでもよい。オプション2では、通知は、動的RSの周波数リソース情報(例えば、RBオフセット、RB数、RB位置)を示す情報要素を含んでもよい。オプション3では、通知は、動的RSの系列(例えば、系列インデックス、スクランブリングID)を示す情報要素を含んでもよい。オプション4では、通知は、動的RSの送信電力情報を示す情報要素を含んでもよい。通知は、オプション1~オプション4の中から選択された2以上のオプションの情報要素を含んでもよい。
 RLM Measurementに関する測定で用いる動的RSは、非サービングセルで用いられずに、サービングセルで用いられてもよい。RLM Measurementに関する測定で用いる動的RSは、サービングセル及び非サービングセルの双方で用いられてもよい。
 周期的RSは、動的RSと併用されてもよい。このようなケースにおいて、gNB100は、特定条件が満たされた場合に、周期的RSの送信の少なくとも一部を省略してもよい。言い換えると、UE200は、特定条件が満たされた場合に、周期的RSの少なくとも一部の受信を想定しなくてもよい。逆に言うと、gNB100は、特定条件が満たされない場合に、周期的RSの送信を実行してもよい。言い換えると、UE200は、特定条件が満たされない場合に、周期的RSの受信を想定してもよい。
 特定条件は、特定周期内において、動的RSを用いたRLM Measurementに関する測定が実行される条件を含んでもよい。特定周期は、周期的RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。特定条件は、周期的RSが送信されないことがgNB100からUE200に通知される条件を含んでもよい。
 動的RSは、周期的RS(SSB、Periodic CSI-RS)と異なる構成を有していてもよい。このようなケースにおいて、動的RSを用いた測定結果は、周期的RSを用いた測定結果と合わせてRLF(Radio link failure)の判定に用いられてもよい。
 UE200は、gNB100に対して、周期的RSの送信を動的に要求してもよい。例えば、UE200は、特定周期内において、動的RSを用いたRLM Measurementを実行できなかった場合に、周期的RSの送信を動的に要求してもよい。特定周期は、周期的RSの送信周期であってもよく、RRCメッセージ又はMAC CEメッセージによって設定される周期であってもよく、無線通信システム10で予め定義された周期であってもよい。UE200は、周期的RSを送信するタイミングよりも所定時間前において、周期的RSの送信を動的に要求する特定UL送信を実行してもよい。特定UL送信は、PUCCHを介した特定UCIの送信であってもよく、PUSCHを介した特定UCIの送信であってもよい。特定UL送信は、PRACHを介した特定RA Preambleの送信であってもよく、特定リソースを用いたRA Preambleの送信であってもよい。特定UL送信は、特定系列を用いたSRSの送信であってもよく、特定リソースを用いたSRSの送信であってもよい。
 (6)作用及び効果
 実施形態では、UE200は、第1目的とは異なる第2目的で送信される第2RSを用いて第1目的に関する測定を実行してもよい(動作例1)。このような構成によれば、例えば、第1目的で用いる第1RSの送信頻度を減少することができる可能性がある。従って、gNB100のカバレッジエリアを網羅しつつ、第1RSの送信に伴うgNB100のオーバヘッドを軽減することができる。
 上述したように、動作例1は、RRM Measurement、BFD、CSI acquisition、L1-RSRP_SINR Measurement、Positioning Measurement及びRLM Measurementの中から選択された1以上の第1目的に適用されてもよい。
 第1目的がRRM Measurementである場合には、第2RS(DMRS、Semi-persistent CSI-RS、Aperiodic CSI-RS、PRSなど)をRRM Measurementに流用することによって、周期的な第1RS(SSB、Periodic CSI-RS、CRSなど)の送信頻度を減少しながらも、セル端に位置するUE200及びセルに近づくUE200に対しても適切なRRC Measurementを実行することができ、ハンドオーバの失敗による接続断及びSCellの追加/削除で生じる遅延を抑制することができる。
 第1目的がBFDである場合には、第2RS(DMRS、Semi-persistent CSI-RS、Aperiodic CSI-RS、PRSなど)をBFDに流用することによって、周期的な第1RS(Periodic CSI-RSなど)の送信頻度を減少しながらも、通信品質が劣化したUE200について適切なBFDを実行することができ、BFR(Beam Failure Recover)処理などの遅延を軽減することができる。
 第1目的がCSI acquisitionである場合には、第2RS(DMRS、PRSなど)をCSI acquisitionに流用することによって、第1RS(Periodic CSI-RS、Semi-persistent CSI-RS、Aperiodic CSI-RSなど)の送信頻度を減少しながらも、適切なタイミングでCSI測定報告を実行することができ、スループットの低下を抑制することができる。
 第1目的がL1-RSRP_SINR Measurementである場合には、第2RS(DMRS、PRSなど)をL1-RSRP_SINR Measurementに流用することによって、第1RS(SSB、Periodic CSI-RS、Semi-persistent CSI-RS、Aperiodic CSI-RSなど)の送信頻度を減少しながらも、ビーム管理を適切に実行することができ、スループットの低下を抑制することができる。
 第1目的がPositioning Measurementである場合には、第2RS(DMRS、Periodic CSI-RS、Semi-persistent CSI-RS、Aperiodic CSI-RSなど)をPositioning Measurementに流用することによって、第1RS(PRSなど)の送信頻度を減少しながらも、UE200が移動するようなケースを想定しても、UE200の位置を適切に更新することができ、UE200の位置の更新遅延を抑制することができる。
 第1目的がRLM Measurementである場合には、第2RS(DMRS、Semi-persistent CSI-RS、Aperiodic CSI-RS、PRSなど)をRLM Measurementに流用することによって、周期的な第1RS(SSB、Periodic CSI-RS、CRSなど)の送信頻度を減少しながらも、通信品質が劣化したUE200について適切なRLMを実行することができ、RLF(Radio Link Failure)及び再接続処理などの遅延を抑制することができる。
 実施形態では、UE200は、特定目的で動的に送信される動的RSを用いて特定目的に関する測定を実行してもよい(動作例2)。このような構成によれば、動的RSのOn-demand化によって、gNB100のカバレッジエリアを網羅しつつ、参照信号の送信に伴うgNB100のオーバヘッドを軽減することができる。
 さらに、動的RSが周期的RSと併用されるケースにおいては、周期的RSの送信頻度を減少することができる可能性がある。従って、gNB100のカバレッジエリアを網羅しつつ、周期的RSの送信に伴うgNB100のオーバヘッドを軽減することができる。
 上述したように、動作例2は、RRM Measurement、BFD、Positioning Measurement及びRLM Measurementの中から選択された1以上の特定目的に適用されてもよい。
 特定目的がRRM Measurementである場合には、動的RSの導入によってRRM Measurementで用いる参照信号をOn-demand化することができ、周期的RS(SSB、Periodic CSI-RS、CRSなど)の送信頻度を減少しながらも、セル端に位置するUE200及びセルに近づくUE200に対しても適切なRRC Measurementを実行することができ、ハンドオーバの失敗による接続断及びSCellの追加/削除で生じる遅延を抑制することができる。
 特定目的がBFDである場合には、動的RSの導入によってBFDで用いる参照信号をOn-demand化することができ、周期的RS(Periodic CSI-RSなど)の送信頻度を減少しながらも、通信品質が劣化したUE200について適切なBFDを実行することができ、BFR処理などの遅延を軽減することができる。
 特定目的がPositioning Measurementである場合には、動的RSの導入によってBFDで用いる参照信号をOn-demand化することができ、周期的RS(PRSなど)の送信頻度を減少しながらも、UE200が移動するようなケースを想定しても、UE200の位置を適切に更新することができ、UE200の位置の更新遅延を抑制することができる。
 特定目的がRLM Measurementである場合には、動的RSの導入によってRLM Measurementで用いる参照信号をOn-demand化することができ、周期的RS(SSB、Periodic CSI-RS、CRSなど)の送信頻度を減少しながらも、通信品質が劣化したUE200について適切なRLMを実行することができ、RLF及び再接続処理などの遅延を抑制することができる。
 (7)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 上述した実施形態において、UE200は、第1目的とは異なる第2目的で用いる第2RSを用いた第1目的に関する測定に対応しているか否かを示す情報要素を含む能力情報をNG RAN20(gNB100)に送信してもよい。UE200は、特定目的の種類、周波数レンジ(FR)、周波数帯(Band)及びSCS毎に能力情報を送信してもよい。
 上述した実施形態において、gNB100は、第1目的とは異なる第2目的で用いる第2RSを用いた第1目的に関する測定に対応していないUE200の接続を制御してもよい。例えば、gNB100は、第1目的とは異なる第2目的で用いる第2RSを用いた第1目的に関する測定に対応しているUE200の接続を許可する旨を示す報知情報を送信してもよい。報知情報は、MIB(Master Information Block)を含んでもよく、SIB(System Information Block)を含んでもよい。
 上述した実施形態において、UE200は、動的RSを用いた測定に対応しているか否かを示す情報要素を含む能力情報をNG RAN20(gNB100)に送信してもよい。UE200は、特定目的の種類、周波数レンジ(FR)、周波数帯(Band)及びSCS毎に能力情報を送信してもよい。
 上述した実施形態において、gNB100は、動的RSを用いた測定に対応していないUE200の接続を制御してもよい。例えば、gNB100は、動的RSを用いた測定に対応しているUE200の接続を許可する旨を示す報知情報を送信してもよい。報知情報は、MIBを含んでもよく、SIBを含んでもよい。
 上述した開示では特に触れていないが、第1目的で用いる第1RSは、現段階の3GPPで第1目的で用いると定義されたRSであってもよい。第1目的で用いる第1RSは、既存のUE200(Legacy UE)が第1目的に関する測定で用いる参照信号であってもよい。第2目的で用いる第2RSは、現段階の3GPPで第1目的で用いると定義されていないRSであってもよい。第2目的で用いる第2RSは、既存のUE200(Legacy UE)が第1目的に関する測定で用いないRSであってもよい。
 上述した開示では特に触れていないが、動作例1及び動作例2は組み合わされてもよい。このようなケースでは、動作例1及び動作例2が適用されないケースと比べて、周期的RSの送信周期が長周期化されてもよい。
 上述した実施形態の説明に用いたブロック構成図(図4及び図5)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図9は、当該装置のハードウェア構成の一例を示す図である。図9に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1目的要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 10 無線通信システム
 20 NG-RAN
 100 gNB
 110 受信部
 120 送信部
 130 制御部
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス

Claims (5)

  1.  チャネル状態情報の取得とは異なる目的で送信される参照信号を受信する受信部と、
     前記参照信号を用いて、前記チャネル状態情報の取得に関する測定を実行する制御部と、を備える、端末。
  2.  前記受信部は、特定条件が満たされた場合に、前記チャネル状態情報の取得で用いる周期的な参照信号の受信を想定しない、請求項1に記載の端末。
  3.  前記特定条件は、特定周期内において、前記参照信号を用いた前記チャネル状態情報の取得に関する測定が実行される条件を含む、請求項2に記載の端末。
  4.  チャネル状態情報の取得とは異なる目的で送信される参照信号を送信する送信部と、
     前記参照信号を用いて、前記チャネル状態情報の取得に関する測定が実行されると想定する制御部と、を備える、基地局。
  5.  チャネル状態情報の取得とは異なる目的で送信される参照信号を受信するステップと、
     前記参照信号を用いて、前記チャネル状態情報の取得に関する測定を実行するステップと、を備える、無線通信方法。
PCT/JP2021/002690 2021-01-26 2021-01-26 端末、基地局及び無線通信方法 WO2022162745A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21922769.1A EP4287694A1 (en) 2021-01-26 2021-01-26 Terminal, base station, and wireless communication method
PCT/JP2021/002690 WO2022162745A1 (ja) 2021-01-26 2021-01-26 端末、基地局及び無線通信方法
JP2022577842A JPWO2022162745A1 (ja) 2021-01-26 2021-01-26
CN202180091615.8A CN116746202A (zh) 2021-01-26 2021-01-26 终端、基站和无线通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002690 WO2022162745A1 (ja) 2021-01-26 2021-01-26 端末、基地局及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2022162745A1 true WO2022162745A1 (ja) 2022-08-04

Family

ID=82653142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002690 WO2022162745A1 (ja) 2021-01-26 2021-01-26 端末、基地局及び無線通信方法

Country Status (4)

Country Link
EP (1) EP4287694A1 (ja)
JP (1) JPWO2022162745A1 (ja)
CN (1) CN116746202A (ja)
WO (1) WO2022162745A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030327A1 (ja) * 2016-08-10 2018-02-15 京セラ株式会社 無線端末
WO2018116817A1 (ja) * 2016-12-20 2018-06-28 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
JP2019532551A (ja) * 2016-10-03 2019-11-07 ノキア テクノロジーズ オーユー ビームフォーミングトレーニングおよびチャネル推定の参照信号

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030327A1 (ja) * 2016-08-10 2018-02-15 京セラ株式会社 無線端末
JP2019532551A (ja) * 2016-10-03 2019-11-07 ノキア テクノロジーズ オーユー ビームフォーミングトレーニングおよびチャネル推定の参照信号
WO2018116817A1 (ja) * 2016-12-20 2018-06-28 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical channels and modulation (Release 16", 3GPP TS 38.211, December 2020 (2020-12-01)

Also Published As

Publication number Publication date
JPWO2022162745A1 (ja) 2022-08-04
CN116746202A (zh) 2023-09-12
EP4287694A1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
WO2022163840A1 (ja) 端末及び無線通信システム
WO2022162745A1 (ja) 端末、基地局及び無線通信方法
WO2022162742A1 (ja) 端末、基地局及び無線通信方法
WO2022162744A1 (ja) 端末、基地局及び無線通信方法
WO2022162747A1 (ja) 端末、基地局及び無線通信方法
WO2022162746A1 (ja) 端末、基地局及び無線通信方法
WO2022162743A1 (ja) 端末、基地局及び無線通信方法
WO2022162748A1 (ja) 端末、基地局及び無線通信方法
WO2022162751A1 (ja) 端末、基地局及び無線通信方法
WO2022162750A1 (ja) 端末、基地局及び無線通信方法
WO2022162749A1 (ja) 端末、基地局及び無線通信方法
WO2022208878A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022190377A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022195787A1 (ja) 端末、無線通信システム及び無線通信方法
WO2023026968A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022185498A1 (ja) 端末、基地局、無線通信システム及び無線通信方法
WO2023012991A1 (ja) 端末及び無線通信方法
WO2023026941A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022244504A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022244496A1 (ja) 端末、無線通信システム及び無線通信方法
WO2023026975A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022190289A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022244097A1 (ja) 端末及び無線通信方法
WO2022244497A1 (ja) 端末、無線通信システム及び無線通信方法
WO2022190287A1 (ja) 端末、無線通信システム及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577842

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180091615.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021922769

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021922769

Country of ref document: EP

Effective date: 20230828