WO2022185452A1 - 信号処理装置、制御回路、記憶媒体および信号処理方法 - Google Patents

信号処理装置、制御回路、記憶媒体および信号処理方法 Download PDF

Info

Publication number
WO2022185452A1
WO2022185452A1 PCT/JP2021/008198 JP2021008198W WO2022185452A1 WO 2022185452 A1 WO2022185452 A1 WO 2022185452A1 JP 2021008198 W JP2021008198 W JP 2021008198W WO 2022185452 A1 WO2022185452 A1 WO 2022185452A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
fourier transform
complex amplitude
processing
signal processing
Prior art date
Application number
PCT/JP2021/008198
Other languages
English (en)
French (fr)
Inventor
祐治 秋山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/008198 priority Critical patent/WO2022185452A1/ja
Priority to JP2021544249A priority patent/JP7038922B1/ja
Priority to CA3212158A priority patent/CA3212158A1/en
Priority to EP21929028.5A priority patent/EP4286809A4/en
Publication of WO2022185452A1 publication Critical patent/WO2022185452A1/ja
Priority to US18/237,127 priority patent/US20230394709A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/88Image or video recognition using optical means, e.g. reference filters, holographic masks, frequency domain filters or spatial domain filters
    • G06V10/89Image or video recognition using optical means, e.g. reference filters, holographic masks, frequency domain filters or spatial domain filters using frequency domain filters, e.g. Fourier masks implemented on spatial light modulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/10Image enhancement or restoration using non-spatial domain filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20056Discrete and fast Fourier transform, [DFT, FFT]

Definitions

  • the present disclosure relates to a signal processing device, a control circuit, a storage medium, and a signal processing method for detecting or identifying signals.
  • Patent Document 1 discloses a method of converting an image signal based on the RGB color space into image information based on the HSV (Hue, Saturation, Value) color space, and detecting and identifying an object by deep learning. .
  • HSV Human, Saturation, Value
  • one pixel of information has two degrees of freedom. A complex value.
  • the number of degrees of freedom in the information per pixel is different from that in Patent Document 1, even if the color space conversion by the conventional method disclosed in Patent Document 1 is applied, the signal can be obtained with high accuracy. Inability to take appropriate action to detect or identify.
  • the conventional technique there is a problem that it is difficult to accurately detect or identify signals from spectrogram data by deep learning.
  • the present disclosure has been made in view of the above, and aims to obtain a signal processing device capable of accurately detecting or identifying signals from spectrogram data by deep learning.
  • the signal processing device includes a window function unit that performs window function processing on Fourier transform frames extracted from time-series signal data, and window function processing.
  • a Fourier transform unit that converts the Fourier transform frame to frequency domain information, and a mapping that converts the phase angle of the complex amplitude in the frequency domain to hue and converts the absolute value of the complex amplitude to correspond to the lightness.
  • a color space conversion unit that generates spectrogram data defined to correspond to a two-dimensional plane of time and frequency, and a deep learning process that detects or identifies a signal by convolution processing and full connection processing on the spectrogram data.
  • the signal processing device has the effect of being able to accurately detect or identify signals from spectrogram data by deep learning.
  • FIG. 1 is a diagram showing the configuration of a system having a signal processing device according to a first embodiment
  • FIG. 2 is a block diagram showing the functional configuration of the signal processing device according to the first embodiment
  • FIG. FIG. 4 is a diagram showing how complex amplitudes are distributed on a two-dimensional complex plane in Embodiment 1; A diagram showing how the distribution points of the complex amplitude shown in FIG. 3 are transferred to a three-dimensional RGB color space by mapping.
  • FIG. 3 is a diagram showing a first configuration example of hardware that implements the signal processing apparatuses according to the first to third embodiments
  • FIG. 4 is a diagram showing a second configuration example of hardware that implements the signal processing apparatuses according to the first to third embodiments;
  • FIG. 1 is a diagram showing the configuration of a system 3 having a signal processing device 1 according to the first embodiment.
  • System 3 detects or identifies signals from waveform data of received signals.
  • the system 3 has a signal processing device 1 and an ADC (Analog to Digital Converter) 2 .
  • the ADC 2 converts the received signal into time-series signal data by sampling the signal received by the system 3 at equal time intervals.
  • the ADC 2 outputs time-series signal data to the signal processing device 1 .
  • the signal processing device 1 receives time-series signal data, it performs processing for signal detection or identification.
  • the received signal is a signal representing image information.
  • the signal processing device 1 detects or identifies a signal representing an image of an object. Detecting or identifying a signal refers to detecting information about the signal, such as the signal type or carrier frequency.
  • the signal type is the type of modulation scheme or the type based on the code sequence of the modulated signal.
  • FIG. 2 is a block diagram showing the functional configuration of the signal processing device 1 according to the first embodiment.
  • the signal processing device 1 has a window function unit 11 , a Fourier transform unit 12 , a color space transform unit 13 and a deep learning processing unit 14 .
  • the window function unit 11 performs a process of extracting continuous time-series signals of a certain length of time as Fourier transform frames from the time-series signal data.
  • the window function unit 11 overlaps the Fourier transform frame with each of the Fourier transform frames before and after the Fourier transform frame by 50% of the frame length on the time axis.
  • the window function unit 11 performs window function processing on the Fourier transform frame by multiplying the Fourier transform frame by a Hann window coefficient sequence.
  • the Fourier transform unit 12 transforms the Fourier transform frame into frequency domain information by applying FFT (Fast Fourier Transform) to the window function processed Fourier transform frame.
  • FFT Fast Fourier Transform
  • the color space conversion unit 13 converts the phase angle of the complex amplitude in the frequency domain to the hue by mapping, and converts the logarithm of the absolute value of the complex amplitude to correspond to the lightness, so that the two-dimensional plane of time and frequency Generate spectrogram data defined to correspond to The color space conversion unit 13 outputs the generated spectrogram data to the deep learning processing unit 14 .
  • a two-dimensional plane of time and frequency is referred to as a time-frequency plane.
  • the deep learning processing unit 14 uses weighting parameters obtained by deep learning processing to perform inference processing for signal detection or identification on spectrogram data. That is, the deep learning processing unit 14 executes a learning phase for signal detection or identification and an inference phase for signal detection or identification. Specifically, the deep learning processing unit 14 detects information about the signal using a learning model whose weighting parameter is adjusted by deep learning. Such a model consists of a convolutional neural network whose input is spectrogram data and whose output is information about the signal.
  • a convolutional neural network is a multi-layered neural network and includes multiple convolutional layers 15 and fully connected layers 16 .
  • the deep learning processing unit 14 performs signal detection or identification by convolution processing and full connection processing on spectrogram data.
  • the convolution layer 15 is a layer that performs processing such as extracting information in a specific region from the image shown in the spectrogram data.
  • the fully connected layer 16 is a layer in which all neurons in the front layer and the rear layer are connected.
  • the deep learning processing unit 14 performs convolution processing in a plurality of convolution layers 15 and full connection processing in the full connection layer 16, and outputs signal type information or carrier frequency values.
  • a conversion formula indicating color space conversion in the color space conversion unit 13 is expressed by the following formula (1).
  • the color space conversion unit 13 converts the phase angle of the complex amplitude Z into hue and converts the logarithm of the absolute value of the complex amplitude Z into correspondence with lightness in the RGB color space.
  • C(r, g, b) represents the value of each component in the RGB color space.
  • abs(Z) represents the absolute value of the complex amplitude Z;
  • arg(Z) represents the argument of the complex amplitude Z, ie the phase angle of the complex amplitude Z;
  • Min log abs(Z) represents the minimum value taken by log abs(Z).
  • Range log abs(Z) represents the range of values taken by log abs(Z).
  • the spectrogram data is two-dimensional array data arranged along each of the time axis and the frequency axis.
  • the color space transforming unit 13 transforms each of the plurality of complex amplitudes Zij included in the spectrogram data according to Equation (1).
  • i represents an array on the time axis.
  • FIG. 3 is a diagram showing how the complex amplitude Z ij is distributed on a two-dimensional complex plane in the first embodiment.
  • FIG. 4 is a diagram showing how the distribution points of the complex amplitude Z ij shown in FIG. 3 are transferred to a three-dimensional RGB color space by mapping.
  • the horizontal axis represents the real number axis and the vertical axis represents the imaginary number axis.
  • the color space conversion unit 13 converts the phase angle of each complex amplitude Zij into a hue by the color space conversion represented by Equation (1), and associates the logarithm of the absolute value of each complex amplitude Zij with lightness. do the conversion.
  • the color space conversion unit 13 converts the value of each complex amplitude Zij by continuous and smooth mapping.
  • the color space converter 13 outputs values that fall within the standard color space domain.
  • the color space domain shall be in the range of 0 ⁇ r, g, b ⁇ 1.
  • the color space conversion unit 13 outputs values that can express negative amplitudes without contradiction.
  • the color space conversion unit 13 can accurately quantize phase and amplitude intensities.
  • the window function is not limited to the Hann window function.
  • the window function can be appropriately selected depending on the desired characteristics such as frequency resolution or dynamic range.
  • the overlap rate of the Fourier transform frames may not be 50%, and the Fourier transform frames may not overlap.
  • the overlap ratio and the presence/absence of overlap can be selected in consideration of the processing load of the signal processing device 1 and signal detection or identification characteristics.
  • Fourier transform is not limited to FFT. A Fourier transform may be applied where the frame length of the Fourier transform frame is not a power of two value.
  • Signal types may be hierarchized, and reliability information may be added for each hierarchy.
  • the hierarchization of signal types means that, for example, if BPSK (Binary Phase Shift Keying), QPSK (Quaternary Phase Shift Keying), and 8PSK (8 Phase Shift Keying) are the lower signal types, PSK (Phase Shift Keying)
  • PSK Phase Shift Keying
  • the deep learning processing unit 14 is based on a learning model whose weighting parameters have been adjusted by deep learning processing using a color image corresponding to general human vision, spectrogram data that has undergone the above color space conversion, and signal type Alternatively, further learning is performed using labels representing positions on the time-frequency plane. Spectrogram data is learning data. Labels are added to training data. Through such learning, the deep learning processing unit 14 can efficiently improve the accuracy of signal detection or identification.
  • a machine learning model such as YOLOv3 or YOLOv4 used for object detection may be used as the above learning model that has been trained using color images.
  • Darknet-53 may be used as the convolutional layer 15 .
  • the learning data and labels may be real data collected in the real world with labels attached, or may be data and labels generated by simulation. Alternatively, the learning data and labels may be obtained by adding labels to data obtained by processing real data.
  • the deep learning processing unit 14 uses signal SN (Signal-Noise) ratio, signal power, carrier Learning may be performed by variously changing combinations of frequency, signal band, carrier phase, modulation method, symbol rate, symbol phase, pulse period, pulse duty, pulse phase, chirp rate, phasing effect, and the like. Thereby, the signal processing device 1 can improve the accuracy of signal detection or identification.
  • signal SN Synignal-Noise
  • signal power may be performed by variously changing combinations of frequency, signal band, carrier phase, modulation method, symbol rate, symbol phase, pulse period, pulse duty, pulse phase, chirp rate, phasing effect, and the like.
  • the value becomes negative. Since it takes the value of , it cannot be processed appropriately.
  • the hue and lightness will change at the same time whenever the phase of the complex number changes. Since humans visually perceive lightness according to lightness, it is not appropriate for lightness to change each time the phase of a signal received asynchronously changes.
  • the signal processing device 1 maps the complex plane onto the conical surface of the RGB space.
  • the signal processing device 1 can convert the value of the complex amplitude by continuous and smooth mapping without changing the brightness even if the phase of the complex number changes.
  • the signal processor 1 can maintain each of the information content and characteristics of the original spectrogram data by symmetrical conversion between complex numbers and trichromatic values. Thereby, the signal processing device 1 can obtain good detection accuracy and good identification accuracy when combined with deep learning based on human vision.
  • the signal processing device 1 converts the phase angle of the complex amplitude in the frequency domain to hue, and converts the absolute value of the complex amplitude to correspond to the lightness, thereby corresponding to the time-frequency plane. Generate spectrogram data defined to As a result, the signal processing device 1 can accurately detect or identify a signal from spectrogram data by deep learning.
  • Embodiment 2 In Embodiment 1, as shown in equation (1), in the RGB color space, the phase angle of the complex amplitude Z is converted to the hue, and the logarithm of the absolute value of the complex amplitude Z is converted to correspond to the lightness. An example of mapping is shown.
  • the color space conversion unit 13 does not apply logarithmic transformation to the absolute value of the complex amplitude Z, but either keeps the absolute value of the complex amplitude Z linear, or changes the slope of the absolute value of the complex amplitude Z to A simple transformation algorithm, such as applying a stepwise decreasing function, may be applied.
  • the color space conversion unit 13 can convert the absolute value of the complex amplitude to correspond to the lightness by any method.
  • the color space conversion unit 13 can improve the efficiency of calculation by applying a simple conversion calculation method.
  • the signal processing device 1 can detect or identify signals more efficiently than in the first embodiment.
  • Embodiment 3 In Embodiments 1 and 2, examples of mapping for converting the phase angle of the complex amplitude Z into hue in the RGB color space as shown in equation (1) have been shown. In Embodiment 3, the conversion formula shown in Formula (1) may be adjusted so that the maximum value of lightness increases while the saturation is lowered. Thereby, the color space conversion unit 13 can quantize the absolute value of the complex amplitude Z with higher accuracy.
  • Embodiment 3 color space conversion is performed that enables the absolute value of the complex amplitude Z to be quantized with higher precision.
  • the signal processing apparatus 1 has the effect of being able to detect or identify a signal with higher accuracy than in the first or second embodiment, depending on the condition of the signal to be detected or identified, such as a large dynamic range.
  • the signal processing device 1 can be realized by hardware having the configuration shown in FIG. 5 or 6 .
  • FIG. 5 is a diagram showing a first configuration example of hardware that implements the signal processing device 1 according to the first to third embodiments.
  • FIG. 5 shows that the main parts of the signal processing apparatus 1, that is, the window function part 11, the Fourier transform part 12, the color space transforming part 13 and the deep learning processing part 14 are realized by a processing circuit 22 which is dedicated hardware. shows the configuration for the case.
  • the processing circuit 22 is, for example, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a circuit combining these.
  • the window function unit 11, the Fourier transform unit 12, the color space transform unit 13, and the deep learning processing unit 14 are implemented by the single processing circuit 22, but the present invention is not limited to this.
  • the hardware may include a plurality of processing circuits 22, and the window function unit 11, the Fourier transform unit 12, the color space transform unit 13, and the deep learning processing unit 14 may be realized by different processing circuits 22, respectively.
  • the input unit 21 is a circuit that receives an input signal to the signal processing device 1, that is, time-series signal data from the outside.
  • the output unit 23 is a circuit that outputs the signal generated by the signal processing device 1, that is, the result of detection or identification of the signal to the outside.
  • FIG. 6 is a diagram showing a second configuration example of hardware that implements the signal processing device 1 according to the first to third embodiments.
  • FIG. 6 shows a configuration in which the functions of the processing circuit 22 shown in FIG.
  • the processor 24 is a CPU (Central Processing Unit).
  • the processor 24 may be an arithmetic unit, microprocessor, microcomputer, or DSP (Digital Signal Processor).
  • the memory 25 is non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), etc. or volatile memory.
  • processor 24 When the main part of the signal processing device 1 is realized by the processor 24 and the memory 25, processing for operating as the window function unit 11, the Fourier transform unit 12, the color space transform unit 13 and the deep learning processing unit 14 is described.
  • a processor 24 executes the program. Such programs are pre-stored in the memory 25 .
  • Processor 24 operates as window function unit 11 , Fourier transform unit 12 , color space transform unit 13 and deep learning processing unit 14 by reading and executing programs stored in memory 25 .
  • a part of the window function unit 11, the Fourier transform unit 12, the color space transform unit 13, and the deep learning processing unit 14 is realized by the processor 24 and the memory 25, and the rest is realized by the processing circuit 22 shown in FIG. It may be realized by similar dedicated hardware.
  • the programs executed by the processor 24 are not limited to those stored in the memory 25 in advance.
  • the program executed by the processor 24 may be a program stored in a storage medium readable by the computer system.
  • a program stored in a storage medium may be stored in the memory 25 .
  • the storage medium may be a portable storage medium such as a flexible disk, or a flash memory such as a semiconductor memory.
  • the program may be installed in the signal processing device 1 from another computer or server device via a communication network.
  • each embodiment is an example of the content of the present disclosure.
  • the configuration of each embodiment can be combined with another known technique. Configurations of respective embodiments may be combined as appropriate. A part of the configuration of each embodiment can be omitted or changed without departing from the gist of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Image Analysis (AREA)
  • Complex Calculations (AREA)

Abstract

信号処理装置(1)は、時系列の信号データから切り出されたフーリエ変換フレームに窓関数処理を施す窓関数部(11)と、窓関数処理が施されたフーリエ変換フレームを周波数領域の情報へ変換するフーリエ変換部(12)と、写像により、周波数領域における複素振幅の位相角を色相へ変換させ、かつ複素振幅の絶対値を明度に対応させる変換を行うことで、時間および周波数の2次元平面に対応するように定義されたスペクトログラムデータを生成する色空間変換部(13)と、スペクトログラムデータに対する畳み込み処理と全結合処理とにより信号の検知または識別を行う深層学習処理部(14)と、を備える。

Description

信号処理装置、制御回路、記憶媒体および信号処理方法
 本開示は、信号の検知または識別を行う信号処理装置、制御回路、記憶媒体および信号処理方法に関する。
 R(Red)、G(Green)およびB(Blue)の3つの成分からなるRGB色空間に基づいた画像情報から、物体の検知および識別を深層学習によって行うシステムが知られている。特許文献1には、RGB色空間に基づいた画像信号を、HSV(Hue,Saturation,Value)色空間に基づいた画像情報へ変換し、深層学習によって物体を検知および識別する方法が開示されている。HSV色空間に基づいた画像情報とRGB色空間に基づいた画像情報とのどちらも、1画素あたりの情報における自由度の数は3である。
米国特許第10185881号明細書
 時系列信号をスペクトログラムへ変換し、深層学習を利用して、時間-周波数平面上での信号の検知または識別を行うシステムの場合、1画素に相当する情報は、自由度の数が2である複素数の値である。この場合、1画素あたりの情報における自由度の数が上記特許文献1の場合とは異なるため、上記特許文献1に開示される従来の方法による色空間変換を適用しても、信号を精度良く検知または識別するための適切な処理を行うことができない。このように、従来の技術によると、深層学習によりスペクトログラムデータから信号を精度良く検知または識別することが困難であるという問題があった。
 本開示は、上記に鑑みてなされたものであって、深層学習によりスペクトログラムデータから信号を精度良く検知または識別することができる信号処理装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示にかかる信号処理装置は、時系列の信号データから切り出されたフーリエ変換フレームに窓関数処理を施す窓関数部と、窓関数処理が施されたフーリエ変換フレームを周波数領域の情報へ変換するフーリエ変換部と、写像により、周波数領域における複素振幅の位相角を色相へ変換させ、かつ複素振幅の絶対値を明度に対応させる変換を行うことで、時間および周波数の2次元平面に対応するように定義されたスペクトログラムデータを生成する色空間変換部と、スペクトログラムデータに対する畳み込み処理と全結合処理とにより信号の検知または識別を行う深層学習処理部と、を備える。
 本開示にかかる信号処理装置は、深層学習によりスペクトログラムデータから精度良く信号を検知または識別することができるという効果を奏する。
実施の形態1にかかる信号処理装置を有するシステムの構成を示す図 実施の形態1にかかる信号処理装置の機能構成を示すブロック図 実施の形態1において複素振幅が2次元の複素平面上に分布する様子を示す図 図3に示す複素振幅の分布点が写像により3次元のRGB色空間に移される様子を示す図 実施の形態1から3にかかる信号処理装置を実現するハードウェアの第1の構成例を示す図 実施の形態1から3にかかる信号処理装置を実現するハードウェアの第2の構成例を示す図
 以下に、実施の形態にかかる信号処理装置、制御回路、記憶媒体および信号処理方法を図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1にかかる信号処理装置1を有するシステム3の構成を示す図である。システム3は、受信信号の波形データからの信号の検知または識別を行う。システム3は、信号処理装置1と、ADC(Analog to Digital Converter)2とを有する。ADC2は、システム3によって受信された信号を等時間間隔でサンプリングすることによって、受信信号を時系列の信号データへ変換する。ADC2は、時系列の信号データを信号処理装置1へ出力する。信号処理装置1は、時系列の信号データを受けると、信号の検知または識別のための処理を行う。受信信号は、画像情報を表す信号である。信号処理装置1は、物体の像を示す信号についての検知または識別を行う。信号の検知または識別とは、信号種別またはキャリア周波数といった、信号に関する情報を検出することを指す。信号種別は、変調方式の種別、または変調信号の符号系列による種別である。
 次に、信号処理装置1の機能構成について説明する。図2は、実施の形態1にかかる信号処理装置1の機能構成を示すブロック図である。信号処理装置1は、窓関数部11と、フーリエ変換部12と、色空間変換部13と、深層学習処理部14とを有する。
 窓関数部11は、時系列の信号データから一定の時間長さの連続した時系列信号をフーリエ変換フレームとして切り出す処理を行う。窓関数部11は、フーリエ変換フレームを切り出す際に、当該フーリエ変換フレームと、当該フーリエ変換フレームの前後のフーリエ変換フレームの各々とを、フレーム長の50%ずつ時間軸においてオーバーラップさせる。窓関数部11は、フーリエ変換フレームにハン窓係数列を乗算することによって、フーリエ変換フレームに窓関数処理を施す。
 フーリエ変換部12は、窓関数処理が施されたフーリエ変換フレームにFFT(Fast Fourier Transform)を施すことによって、フーリエ変換フレームを周波数領域の情報へ変換する。
 色空間変換部13は、写像により、周波数領域における複素振幅の位相角を色相へ変換させ、かつ複素振幅の絶対値の対数を明度に対応させる変換を行うことで、時間および周波数の2次元平面に対応するように定義されたスペクトログラムデータを生成する。色空間変換部13は、生成されたスペクトログラムデータを深層学習処理部14へ出力する。なお、時間および周波数の2次元平面を、時間-周波数平面と称する。
 深層学習処理部14は、深層学習処理によって得られた重みパラメータを用いて、スペクトログラムデータに対して、信号の検知または識別のための推論処理を行う。すなわち、深層学習処理部14は、信号の検知または識別のための学習フェーズと、信号の検知または識別のための推論フェーズとを実行する。具体的には、深層学習処理部14は、深層学習によって重みパラメータが調整された学習モデルを用いて信号に関する情報を検出する。かかるモデルは、スペクトログラムデータを入力とし、信号に関する情報を出力とする畳み込みニューラルネットワークで構成される。畳み込みニューラルネットワークは、多層のニューラルネットワークであり、複数の畳み込み層15と全結合層16とを含む。深層学習処理部14は、スペクトログラムデータに対する畳み込み処理と全結合処理とにより信号の検知または識別を行う。
 畳み込み層15は、スペクトログラムデータに示される画像の中から特定の領域における情報を抽出するなどの処理を行う層である。全結合層16は、前層と後層のニューロンが全て接続されている層である。深層学習処理部14は、推論フェーズにおいて、複数の畳み込み層15における畳み込み処理と全結合層16における全結合処理とを行い、信号種別の情報またはキャリア周波数の値などを出力する。
 色空間変換部13における色空間変換を示す変換式は、次の式(1)により表される。
Figure JPOXMLDOC01-appb-M000001
 このように、色空間変換部13は、RGB色空間において、複素振幅Zの位相角を色相に変換させ、かつ、複素振幅Zの絶対値の対数を明度に対応させる変換を行う。C(r,g,b)は、RGB色空間における各成分の値を表す。abs(Z)は、複素振幅Zの絶対値を表す。arg(Z)は、複素振幅Zの偏角、すなわち複素振幅Zの位相角を表す。Minlog abs(Z)は、log abs(Z)がとる値の最小値を表す。Rangelog abs(Z)は、log abs(Z)がとる値の範囲を表す。スペクトログラムデータは、時間軸と周波数軸との各々に沿って配列された2次元配列データである。色空間変換部13は、スペクトログラムデータに含まれる複数の複素振幅Zijの各々について、式(1)による変換を行う。iは時間軸上の配列を表す。jは周波数軸上の配列を表す。
 図3は、実施の形態1において複素振幅Zijが2次元の複素平面上に分布する様子を示す図である。図4は、図3に示す複素振幅Zijの分布点が写像により3次元のRGB色空間に移される様子を示す図である。図3に示すグラフにおいて、横軸は実数軸、縦軸は虚数軸を表す。色空間変換部13は、式(1)に表される色空間変換により、各複素振幅Zijの位相角を色相に変換し、かつ各複素振幅Zijの絶対値の対数を明度に対応させる変換を行う。これにより、色空間変換部13は、連続かつ滑らかな写像により各複素振幅Zijの値を変換する。色空間変換部13は、標準の色空間定義域に包含される値を出力する。色空間定義域は、0≦r,g,b≦1の範囲とする。色空間変換部13は、負の振幅を矛盾なく表現可能な値を出力する。色空間変換部13は、位相および振幅強度を精度良く量子化できる。
 なお、窓関数はハン窓関数に限られない。窓関数は、周波数分解能またはダイナミックレンジといった、求められる特性により適宜選択することができる。また、フーリエ変換フレームのオーバーラップ率は50%でなくても良く、フーリエ変換フレームをオーバーラップさせないこととしても良い。オーバーラップ率、およびオーバーラップの有無は、信号処理装置1の処理負荷、信号の検知特性または識別特性を考慮して選択することができる。フーリエ変換は、FFTに限られない。フーリエ変換フレームのフレーム長が2のべき乗の値ではないフーリエ変換が適用されても良い。
 出力される信号種別情報には、信頼性情報が付加されても良い。信号種別は階層化されても良く、信頼度情報は階層ごとに付加されても良い。ここで、信号種別の階層化とは、例えば、BPSK(Binary Phase Shift Keying)、QPSK(Quaternary Phase Shift Keying)、8PSK(8 Phase Shift Keying)を下位の信号種別とすると、PSK(Phase Shift Keying)のように下位の信号種別の全てを包含する信号種別を上位の信号種別とするようなことを意味する。通常、下位の信号種別よりも上位の信号種別のほうが信号種別の区分けが粗くなる一方、上位の信号種別は、より高い信頼を得られるという利点がある。
 次に、学習フェーズについて説明する。深層学習処理部14は、一般的な人間の視覚に対応するカラー画像を用いた深層学習処理によって重みパラメータが調整された学習モデルを基に、上記の色空間変換を経たスペクトログラムデータと、信号種別または時間-周波数平面上の位置を表すラベルとによる学習をさらに行う。スペクトログラムデータは、学習用データである。ラベルは、学習用データに付加される。深層学習処理部14は、かかる学習によって、信号の検知または識別の精度を効率良く向上させることができる。
 カラー画像による学習済の上記学習モデルとしては、例えば、物体検出に使用されるYOLOv3またはYOLOv4といった機械学習モデルを利用しても良い。畳み込み層15としては、Darknet-53を利用しても良い。
 学習用データおよびラベルは、実世界にて収集された実データにラベルを付加したものでも良く、シミュレーションによって生成されたデータおよびラベルでも良い。または、学習用データおよびラベルは、実データを加工したデータにラベルを付加したものでも良い。
 シミュレーションによって学習データおよびラベルを生成する場合、または、実データの加工によって得た学習データにラベルを付与する場合、深層学習処理部14は、信号のSN(Signal-Noise)比、信号電力、キャリア周波数、信号帯域、キャリア位相、変調方式、シンボルレート、シンボル位相、パルス周期、パルスデューティ、パルス位相、チャープレート、フェイジング効果等の組み合わせを様々に変化させて学習を行っても良い。これにより、信号処理装置1は、信号の検知または識別の精度を向上させることができる。
 従来、物体の検知または識別のための深層学習に使用されるライブラリまたはパッケージでは、人間の視覚に基づいたRGB等の3色値、またはモノクロ値を用いた学習および推論が行われていた。3色値の自由度の数は3である。モノクロ値の自由度の数は1である。自由度の数が2である複素数の値を3色値へ変換する場合において、信号を精度良く検知または識別するために従来の深層学習ライブラリ等に組み合わせ可能な処理の手法が明らかではなかった。例えば、複素平面における実数軸の値であるI(In-phase)値および虚数軸の値であるQ(Quadrature-phase)値を、単にR,Gの各値に代入したとすると、値が負の値をとるため適切な処理ができない。または、オフセットの適用または対数をとるなどの処理によって、I,Qの各値をR,Gの2次元平面における第1象限の定義域である0≦r,g≦1の範囲に収めた場合、複素数の位相が変わるごとに色相と明度とが同時に変化することになる。人間は視覚によって明度に応じた認識を行うことから、非同期で受信される信号の位相が変わるごとに明度が変わることは適切ではない。
 これに対し、実施の形態1にかかる信号処理装置1は、複素平面をRGB空間の円錐面に写像する。信号処理装置1は、複素数の位相が変わっても明度を変わらせず、連続かつ滑らかな写像により複素振幅の値を変換できる。信号処理装置1は、複素数と3色値との対称的な変換によって、元のスペクトログラムデータの情報量および特性の各々を維持させることができる。これにより、信号処理装置1は、人間の視覚に基づいた深層学習に組み合わせられた際に、良好な検出精度と良好な識別精度とを得ることができる。
 実施の形態1によると、信号処理装置1は、周波数領域における複素振幅の位相角を色相へ変換させ、かつ複素振幅の絶対値を明度に対応させる変換を行うことで、時間-周波数平面に対応するように定義されたスペクトログラムデータを生成する。これにより、信号処理装置1は、深層学習によりスペクトログラムデータから信号を精度良く検知または識別することができるという効果を奏する。
実施の形態2.
 実施の形態1では、式(1)に示すように、RGB色空間おいて、複素振幅Zの位相角を色相に変換させ、かつ複素振幅Zの絶対値の対数を明度に対応させる変換を行う写像の例を示した。実施の形態2において、色空間変換部13は、複素振幅Zの絶対値に対数変換を施さず、複素振幅Zの絶対値を線形のままとするか、あるいは複素振幅Zの絶対値の傾きを段階的に小さくさせる関数を適用するといった、簡易な変換演算法を適用しても良い。色空間変換部13は、任意の方法によって、複素振幅の絶対値を明度に対応させる変換を行うことができる。色空間変換部13は、簡易な変換演算法を適用することによって、演算の効率を向上させることができる。実施の形態2によると、信号処理装置1は、実施の形態1の場合よりも効率的に信号の検知または識別を行うことができるという効果を奏する。
実施の形態3.
 実施の形態1および2では、式(1)に示すように、RGB色空間おいて、複素振幅Zの位相角を色相に変換させる写像の例を示した。実施の形態3において、式(1)に示される変換式は、彩度を下げる一方で明度の最大値が大きくなるように調整されても良い。これにより、色空間変換部13は、複素振幅Zの絶対値をより高精度に量子化することができる。
 実施の形態3によると、複素振幅Zの絶対値をより高精度に量子化可能とする色空間変換が行われる。信号処理装置1は、ダイナミックレンジが大きいといった、検知または識別される信号の条件によっては、実施の形態1または2の場合よりも高精度に信号を検知または識別することができるという効果を奏する。
 次に、実施の形態1から3にかかる信号処理装置1を実現するハードウェアについて説明する。信号処理装置1は、図5または図6に示す構成のハードウェアで実現することが可能である。
 図5は、実施の形態1から3にかかる信号処理装置1を実現するハードウェアの第1の構成例を示す図である。図5は、信号処理装置1の要部、すなわち、窓関数部11、フーリエ変換部12、色空間変換部13および深層学習処理部14の各部を専用のハードウェアである処理回路22で実現する場合の構成を示す。処理回路22は、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせた回路である。なお、図5に示す例では、窓関数部11、フーリエ変換部12、色空間変換部13および深層学習処理部14を単一の処理回路22で実現するものとしたがこれに限定されない。ハードウェアが複数の処理回路22を備え、窓関数部11、フーリエ変換部12、色空間変換部13および深層学習処理部14をそれぞれ異なる処理回路22で実現しても良い。
 入力部21は、信号処理装置1に対する入力信号、すなわち時系列信号データを外部から受信する回路である。出力部23は、信号処理装置1で生成した信号、すなわち信号の検知または識別の結果を外部へ出力する回路である。
 図6は、実施の形態1から3にかかる信号処理装置1を実現するハードウェアの第2の構成例を示す図である。図6は、図5に示す処理回路22の機能を、プロセッサ24とメモリ25とからなる制御回路によって実現する場合の構成を示す。プロセッサ24は、CPU(Central Processing Unit)である。プロセッサ24は、演算装置、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)でも良い。メモリ25は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)等の、不揮発性または揮発性のメモリである。
 信号処理装置1の要部をプロセッサ24とメモリ25とで実現する場合、窓関数部11、フーリエ変換部12、色空間変換部13および深層学習処理部14として動作するための処理が記述されたプログラムをプロセッサ24が実行する。かかるプログラムは、メモリ25にあらかじめ格納されている。プロセッサ24は、メモリ25に格納されているプログラムを読み出して実行することによって、窓関数部11、フーリエ変換部12、色空間変換部13および深層学習処理部14として動作する。
 なお、窓関数部11、フーリエ変換部12、色空間変換部13および深層学習処理部14とのうちの一部をプロセッサ24とメモリ25とで実現し、残りを図5に示す処理回路22と同様の専用のハードウェアで実現しても良い。
 なお、プロセッサ24が実行するプログラムは、メモリ25にあらかじめ格納されているものに限定されない。プロセッサ24が実行するプログラムは、コンピュータシステムによる読み取りが可能とされた記憶媒体に記憶されたプログラムでも良い。記憶媒体に記憶されたプログラムがメモリ25へ格納されても良い。記憶媒体は、フレキシブルディスクである可搬型記憶媒体、あるいは半導体メモリであるフラッシュメモリでも良い。プログラムは、他のコンピュータあるいはサーバ装置から通信ネットワークを介して信号処理装置1へインストールされても良い。
 以上の各実施の形態に示した構成は、本開示の内容の一例を示すものである。各実施の形態の構成は、別の公知の技術と組み合わせることが可能である。各実施の形態の構成同士が適宜組み合わせられても良い。本開示の要旨を逸脱しない範囲で、各実施の形態の構成の一部を省略または変更することが可能である。
 1 信号処理装置、2 ADC、3 システム、11 窓関数部、12 フーリエ変換部、13 色空間変換部、14 深層学習処理部、15 畳み込み層、16 全結合層、21 入力部、22 処理回路、23 出力部、24 プロセッサ、25 メモリ。

Claims (6)

  1.  時系列の信号データから切り出されたフーリエ変換フレームに窓関数処理を施す窓関数部と、
     前記窓関数処理が施された前記フーリエ変換フレームを周波数領域の情報へ変換するフーリエ変換部と、
     写像により、前記周波数領域における複素振幅の位相角を色相へ変換させ、かつ前記複素振幅の絶対値を明度に対応させる変換を行うことで、時間および周波数の2次元平面に対応するように定義されたスペクトログラムデータを生成する色空間変換部と、
     前記スペクトログラムデータに対する畳み込み処理と全結合処理とにより信号の検知または識別を行う深層学習処理部と、
     を備えることを特徴とする信号処理装置。
  2.  前記色空間変換部は、前記複素振幅の絶対値の対数を明度に対応させる変換を行うことを特徴とする請求項1に記載の信号処理装置。
  3.  前記色空間変換部は、前記複素振幅の絶対値を明度に対応させる変換において、前記複素振幅の絶対値の傾きを段階的に小さくさせる関数を適用することを特徴とする請求項1に記載の信号処理装置。
  4.  信号処理装置を制御する制御回路であって、
     時系列の信号データから切り出されたフーリエ変換フレームに窓関数処理を施すステップと、
     前記窓関数処理が施された前記フーリエ変換フレームを周波数領域の情報へ変換するステップと、
     写像により、前記周波数領域における複素振幅の位相角を色相へ変換させ、かつ前記複素振幅の絶対値を明度に対応させる変換を行うことで、時間および周波数の2次元平面に対応するように定義されたスペクトログラムデータを生成するステップと、
     前記スペクトログラムデータに対する畳み込み処理と全結合処理とにより信号の検知または識別のための処理を行うステップと、
     を前記信号処理装置に実行させることを特徴とする制御回路。
  5.  信号処理装置を制御するプログラムを記憶する記憶媒体であって、
     前記プログラムは、
     時系列の信号データから切り出されたフーリエ変換フレームに窓関数処理を施すステップと、
     前記窓関数処理が施された前記フーリエ変換フレームを周波数領域の情報へ変換するステップと、
     写像により、前記周波数領域における複素振幅の位相角を色相へ変換させ、かつ前記複素振幅の絶対値を明度に対応させる変換を行うことで、時間および周波数の2次元平面に対応するように定義されたスペクトログラムデータを生成するステップと、
     前記スペクトログラムデータに対する畳み込み処理と全結合処理とにより信号の検知または識別のための処理を行うステップと、
     を前記信号処理装置に実行させることを特徴とする記憶媒体。
  6.  信号処理装置が実行する信号処理方法であって、
     時系列の信号データから切り出されたフーリエ変換フレームに窓関数処理を施すステップと、
     前記窓関数処理が施された前記フーリエ変換フレームを周波数領域の情報へ変換するステップと、
     写像により、前記周波数領域における複素振幅の位相角を色相へ変換させ、かつ前記複素振幅の絶対値を明度に対応させる変換を行うことで、時間および周波数の2次元平面に対応するように定義されたスペクトログラムデータを生成するステップと、
     前記スペクトログラムデータに対する畳み込み処理と全結合処理とにより信号の検知または識別のための処理を行うステップと、
     を含むことを特徴とする信号処理方法。
PCT/JP2021/008198 2021-03-03 2021-03-03 信号処理装置、制御回路、記憶媒体および信号処理方法 WO2022185452A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2021/008198 WO2022185452A1 (ja) 2021-03-03 2021-03-03 信号処理装置、制御回路、記憶媒体および信号処理方法
JP2021544249A JP7038922B1 (ja) 2021-03-03 2021-03-03 信号処理装置、制御回路、記憶媒体および信号処理方法
CA3212158A CA3212158A1 (en) 2021-03-03 2021-03-03 Signal processing device, control circuit, storage medium, and signal processing method
EP21929028.5A EP4286809A4 (en) 2021-03-03 2021-03-03 SIGNAL PROCESSING DEVICE, CONTROL CIRCUIT, STORAGE MEDIUM AND SIGNAL PROCESSING METHOD
US18/237,127 US20230394709A1 (en) 2021-03-03 2023-08-23 Signal processing device, control circuit, storage medium, and signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/008198 WO2022185452A1 (ja) 2021-03-03 2021-03-03 信号処理装置、制御回路、記憶媒体および信号処理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/237,127 Continuation US20230394709A1 (en) 2021-03-03 2023-08-23 Signal processing device, control circuit, storage medium, and signal processing method

Publications (1)

Publication Number Publication Date
WO2022185452A1 true WO2022185452A1 (ja) 2022-09-09

Family

ID=81213694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008198 WO2022185452A1 (ja) 2021-03-03 2021-03-03 信号処理装置、制御回路、記憶媒体および信号処理方法

Country Status (5)

Country Link
US (1) US20230394709A1 (ja)
EP (1) EP4286809A4 (ja)
JP (1) JP7038922B1 (ja)
CA (1) CA3212158A1 (ja)
WO (1) WO2022185452A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023016243A (ja) * 2021-07-21 2023-02-02 パナソニックIpマネジメント株式会社 学習装置、学習方法、および非破壊検査システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529723A (ja) * 2006-03-10 2009-08-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ スペクトル分析を介したdnaパターンの同定方法及びシステム
US10185881B2 (en) 2016-11-23 2019-01-22 Ford Global Technologies, Llc Traffic-light detection and classification using computer vision and deep learning
US20200146129A1 (en) * 2016-04-22 2020-05-07 Nanogrid Limited Systems and methods for connecting and controlling configurable lighting units
JP2020149560A (ja) * 2019-03-15 2020-09-17 本田技研工業株式会社 Cnn処理装置、cnn処理方法、およびプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6281973B2 (ja) * 2013-12-10 2018-02-21 国立大学法人京都大学 混合物試料の特性を表現する方法、混合物試料の特性を評価する方法、混合物試料の属性を識別する方法、及び混合物試料に由来する電磁波信号を処理する方法
US10341795B2 (en) * 2016-11-29 2019-07-02 The Curators Of The University Of Missouri Log complex color for visual pattern recognition of total sound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529723A (ja) * 2006-03-10 2009-08-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ スペクトル分析を介したdnaパターンの同定方法及びシステム
US20200146129A1 (en) * 2016-04-22 2020-05-07 Nanogrid Limited Systems and methods for connecting and controlling configurable lighting units
US10185881B2 (en) 2016-11-23 2019-01-22 Ford Global Technologies, Llc Traffic-light detection and classification using computer vision and deep learning
JP2020149560A (ja) * 2019-03-15 2020-09-17 本田技研工業株式会社 Cnn処理装置、cnn処理方法、およびプログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AUNSRI, N: "Effect of Window Functions on the Sequential Bayesian Filtering Based Frequency Estimation", THE 21ST INTERNATIONAL SYMPOSIUM ON WIRELESS PERSONAL MULTIMEDIA COMMUNICATIONS(WPMC- 2018, 2018, pages 411 - 415, XP033549174, DOI: 10.1109/WPMC.2018.8713162 *
See also references of EP4286809A4
YATABE KOHEI, MASUYAMA YOSHIKI, KUSANO TSUBASA, OIKAWA YASUHIRO: "Representation of complex spectrogram via phase conversion", ACOUSTICAL SCIENCE AND TECHNOLOGY, ACOUSTICAL SOCIETY OF JAPAN, TOKYO, JP, vol. 40, no. 3, 1 May 2019 (2019-05-01), JP , pages 170 - 177, XP055967174, ISSN: 1346-3969, DOI: 10.1250/ast.40.170 *

Also Published As

Publication number Publication date
EP4286809A4 (en) 2024-01-10
JPWO2022185452A1 (ja) 2022-09-09
US20230394709A1 (en) 2023-12-07
CA3212158A1 (en) 2022-09-09
EP4286809A1 (en) 2023-12-06
JP7038922B1 (ja) 2022-03-18

Similar Documents

Publication Publication Date Title
Parihar et al. A study on Retinex based method for image enhancement
KR101910540B1 (ko) 시간 주파수 분석과 신경망을 이용한 레이더 변조 형태 인식 장치 및 방법
Celik Spatial entropy-based global and local image contrast enhancement
CN104414646A (zh) 成像装置及其成像方法、图像处理装置及其图像处理方法
JP2002083293A (ja) デジタルイメージ処理のためのカラー情報を使用したノイズ低減方法
US20230394709A1 (en) Signal processing device, control circuit, storage medium, and signal processing method
Easton Fundamentals of digital image processing
CN111340732A (zh) 一种低照度视频图像增强方法及装置
Liu et al. Underwater image colour constancy based on DSNMF
CN111784703B (zh) 一种图像分割方法、装置、电子设备和存储介质
CN113963193A (zh) 车身颜色分类模型生成的方法、装置以及存储介质
US10764471B1 (en) Customized grayscale conversion in color form processing for text recognition in OCR
US20110280488A1 (en) Method and system for image extraction and identification
CN114926354A (zh) 运用深度低秩非负矩阵分解水下图像复原方法、系统、介质
EP3826301B1 (en) Image processing apparatus, image processing method, and computer program
Garg et al. An analysis of contrast enhancement using activation functions
CN108986052B (zh) 一种自适应的图像去光照方法和系统
CN113658118A (zh) 图像噪声程度估计方法、装置、电子设备及存储介质
Dhurairajan et al. Low contrast image enhancement using Renyi entropy
CN104182971B (zh) 一种高精度图像矩定位方法
KR20230010286A (ko) 신경망 모델을 이용한 이미지 변환 방법 및 장치
Dubey et al. Image Enhancement Techniques: An Exhaustive Review
Parihar Gaussian Mixture Model Based Adaptive Gamma Correction
Xing et al. Multi-exposure image fusion quality assessment using contrast information
WO2024092060A1 (en) Systems and methods for vision enhancement via virtual diffraction and coherent detection

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021544249

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3212158

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021929028

Country of ref document: EP

Effective date: 20230901

NENP Non-entry into the national phase

Ref country code: DE