WO2022184149A1 - 含全氟萘烷的纳米氧合水凝胶促愈合敷料及其制法和用途 - Google Patents

含全氟萘烷的纳米氧合水凝胶促愈合敷料及其制法和用途 Download PDF

Info

Publication number
WO2022184149A1
WO2022184149A1 PCT/CN2022/079131 CN2022079131W WO2022184149A1 WO 2022184149 A1 WO2022184149 A1 WO 2022184149A1 CN 2022079131 W CN2022079131 W CN 2022079131W WO 2022184149 A1 WO2022184149 A1 WO 2022184149A1
Authority
WO
WIPO (PCT)
Prior art keywords
perfluorodecalin
freeze
parts
dressing
nano
Prior art date
Application number
PCT/CN2022/079131
Other languages
English (en)
French (fr)
Inventor
程宇豪
张忠涛
姚宏伟
杨正阳
杨沛峥
杨开睿
孟帅
Original Assignee
江苏君隽生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏君隽生物科技有限公司 filed Critical 江苏君隽生物科技有限公司
Publication of WO2022184149A1 publication Critical patent/WO2022184149A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/008Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0023Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0028Polypeptides; Proteins; Degradation products thereof
    • A61L26/0047Specific proteins or polypeptides not covered by groups A61L26/0033 - A61L26/0042
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces

Definitions

  • the invention belongs to the technical field of hydrogels, and in particular relates to a perfluorodecalin-containing nano-oxygenated hydrogel healing-promoting dressing and a preparation method and uses thereof.
  • Chronic wounds have become a major global medical challenge as the population ages and the number of people with diabetes increases; diabetes is a widespread disease, with more than 400 million people living with diabetes worldwide and by 2040 the number of people living with diabetes It is expected to exceed 640 million. Complications of diabetes, especially chronic unhealed wounds, have a devastating impact on quality of life and substantially increase social healthcare costs.
  • Most of amputations worldwide are caused by diabetic foot ulcers, and in recent years there has been a lack of consistently effective treatments. Difficult-to-heal wounds in diabetes are mainly caused by low wound tissue oxygenation, microvascular occlusion, bacterial colonization in a high-glucose environment, and peripheral neuropathy.
  • chronic diabetic wounds are severely deficient in oxygen supply due to vascular damage, vascular permeability, and high metabolic demands.
  • tissue oxygen is typically less than 10 mmHg (compared to about 40 mmHg in normal tissue).
  • Existing methods, whether hyperbaric oxygen therapy or topical oxygen therapy (TOT) are difficult to relieve wound hypoxia.
  • TDO topical dissolved oxygen
  • perfluorodecalin is a highly safe compound, a colorless, odorless, non-toxic transparent liquid at room temperature, with high density, low surface tension, chemical It is stable in nature and does not metabolize in the body. It is particularly important that perfluorodecalin has good gas carrying capacity, the solubility of oxygen is about 20 times that of water, 2 to 3 times that of whole blood, and the solubility of carbon dioxide is more than 3 times that of water.
  • Fluorodecalin can dissolve 50 ml of oxygen, which is 1.5 times the oxygen-carrying capacity of red blood cells; the binding speed of perfluorodecalin and oxygen is 14-20 milliseconds, which is much faster than that of red blood cells; it can be seen that perfluorocarbons are ideal Oxygen carrier, and has wound repair, antibacterial, antioxidant, anti-inflammatory and other effects.
  • Perfluorodecalin has good histocompatibility and biological inertness, and has long been used in the field of biomedicine. However, due to its insoluble in water, poor stability, and low bioavailability, it is widely used in The application on wound dressings has great difficulties.
  • hydrogel dressing that can actively supply oxygen and has a simple process to provide an oxygen-rich environment for wounds and solve the problem of slow healing of wound cells due to hypoxia.
  • the purpose of the present invention is to solve the shortcomings in the prior art, and provide a nanometer nanometer which has good mechanical properties, good flexibility and elasticity, can form good adhesion with the skin, and can solve the problems of chronic wound local hypoxia and the like. Oxygenated Hydrogel Healing Dressing.
  • a nano-oxygenated hydrogel healing-promoting dressing containing perfluorodecalin, in parts by weight, comprising the following components: 1-3 parts of sodium hyaluronate, 150 parts of PBS buffer solution -250 parts, 1-10 parts perfluorodecalin, 1-20 parts lyoprotectant and 1-20 parts emulsifier.
  • the following components are included: 2 parts of sodium hyaluronate, 200 parts of PBS buffer solution, 5 parts of perfluorodecalin, 10 parts of lyoprotectant and 10 parts of emulsifier.
  • the emulsifier is any one of casein, poloxamer, Tween, albumin, phospholipids and derivatives thereof, and the lyoprotectant is any one of glucose, mannitol or amino acids kind.
  • the preparation method of the nano-oxygenated hydrogel healing-promoting dressing includes the following steps: a. firstly adding an emulsifier to a part of the PBS buffer solution, and then adding perfluorodecalin for ultrasonic wave to prepare a nanoemulsion;
  • the above-mentioned nanoemulsion is firstly homogenized under medium pressure for 10 to 30 cycles, and then homogenized under high pressure for 25 to 70 cycles, and the homogenization pressure is 110Mpa to obtain nanoparticles;
  • the above-mentioned nanoparticles are divided into vials, and a freeze-drying protective agent is added simultaneously, and then freeze-dried to obtain freeze-dried powder;
  • step d Dissolving sodium hyaluronate in the remaining PBS buffer solution, and then adding the freeze-dried powder obtained in step c, to obtain a perfluorodecalin-containing nano-oxygenated hydrogel healing-promoting dressing.
  • the ultrasonic power is 300-500 W
  • the total ultrasonic time is 10-16 min, 2 min/time, 5-8 times in total
  • the temperature of the ice bath is controlled, and the temperature is lowered by two minutes between each ultrasonic wave.
  • the specific process of freeze-drying in the step c is as follows: pre-freeze the freeze-drying machine at -40°C for 2-4 hours, then vacuumize, restore the vacuum to atmospheric pressure after the sample is freeze-dried, and then quickly take out Yang Ping added a stopper to obtain a freeze-dried powder.
  • the perfluorodecalin in the dressing can improve the oxygen concentration and humidity on the wound surface through oxygen evolution, and can be applied to chronic wounds, trauma, burns, Burns, ulcers or bedsores.
  • the dressing can be applied to chronic wounds of the diabetic foot.
  • the dressing is suitable for wounds on the frequently moving parts of the elbow, wrist, knee or ankle.
  • the perfluorodecalin nano-oxygenated hydrogel dressing of the present invention is white and viscous, is a novel smart hydrogel wound dressing with both accelerated healing and safety, and can be applied to chronic Wounds, trauma, burns, scalds, ulcers, bedsores and other wounds, especially chronic wounds such as diabetic foot type, are better.
  • the perfluorodecalin contained in the hydrogel dressing of the present invention has a strong ability to dissolve oxygen and good moisture and breathability. After smearing on the wound, it can isolate the wound and the external environment, so that the wound does not contact pathogens in the environment, which is conducive to maintaining a continuous oxygen supply environment for the wound, accelerating epithelial regeneration, and high safety; through oxygen evolution, the oxygen concentration on the wound surface can be effectively increased And humidity, the increase of oxygen concentration directly enhances wound healing, the increase of humidity is conducive to the penetration and diffusion of gas on the wound surface, and promotes wound healing through wet healing.
  • the emulsifier selected by the present invention not only has good wetting and dispersibility, but can be emulsified and dispersed with perfluorodecalin in the hydrogel, and can provide a nutritional supply to the human body, increase blood volume and maintain a colloid of plasma osmotic pressure. It can exist stably, overcoming the shortcomings of perfluorodecalin being insoluble in water and poor in stability, so that oxygen can be released slowly when smearing wounds.
  • the freeze-drying protective agent selected in the present invention is porous, can be stably stored for a long time, and can be rehydrated to restore activity.
  • the present invention adopts the emulsification and freeze-drying template method to prepare the perfluorodecalin hydrogel dressing; first emulsify the emulsifier and perfluorodecalin, use the freeze-drying protective agent to freeze-dry it into powder at low temperature, and finally put it in sodium hyaluronate Reconstituted in the gel, it overcomes the problems of inability to disperse perfluorodecalin and local hypoxia in chronic wounds.
  • the raw materials are widely available, cheap and cost-controllable, and industrial production can be realized.
  • the perfluorodecalin nano-oxygenated hydrogel dressing of the present invention has good mechanical properties, good flexibility and elasticity, can form good adhesion with the skin, and the perfluorodecalin dispersed therein can maintain stability and is not easy to break Milk, agglomeration and sedimentation. It is suitable for wounds on different parts of the body, especially the frequently active parts such as elbows, wrists, knees, and ankles.
  • Fig. 1 is the treatment principle diagram of the nano-oxygenated hydrogel dressing of the present invention
  • Fig. 2 is the shape figure of sodium hyaluronate gel
  • Figure 3 is a shape diagram of a gel containing an emulsifier
  • Fig. 4 is the gel shape diagram that contains lyoprotectant
  • Fig. 5 is the shape diagram of perfluorodecalin nano-oxygenated hydrogel of the present invention.
  • Fig. 6 is the electron microscope picture of the hydrogel sample scale of the present invention that is 200 nanometers;
  • Figure 7 is an animal experiment on chronic wounds—a progress chart of wound healing
  • Fig. 8 is a graph of chronic wound animal experiment-wound granulation tissue healing control experiment
  • Fig. 9 is chronic wound animal experiment - wound healing time control experiment diagram
  • Example 1 A nano-oxygenated hydrogel healing-promoting dressing containing perfluorodecalin, in parts by weight, comprising the following components: 2 parts of sodium hyaluronate, 200 parts of PBS buffer solution, perfluorodecalin 2 servings, 5 servings of amino acids, 3 servings of albumin.
  • the preparation method of the hydrogel healing-promoting dressing includes the following steps: a. First, adding an emulsifier to 100 parts of a PBS buffer solution, and then adding perfluorodecalin to ultrasonically prepare a nanoemulsion.
  • the power is 300w
  • the total ultrasonic time is 12min, 2min/time, a total of 6 times
  • the temperature of the ice bath is controlled during the emulsification process, and the temperature is lowered two minutes apart between each emulsification.
  • b. Then homogenize the colostrum for 20 cycles at medium pressure, and then homogenize the colostrum for 50 cycles at a homogenization pressure of 110Mpa; c.
  • Freeze-drying process divide the nanoparticles into 3mL vials, 1mL per bottle, and simultaneously Add a freeze-drying protective agent, place the sample in a freeze-drying machine and pre-freeze it at -40°C for 3 hours, and then vacuumize the sample. After the sample is freeze-dried, restore the vacuum to atmospheric pressure, and then quickly take out the sample and add a stopper to make a Freeze-dried powder.
  • d Dissolving sodium hyaluronate in 100 parts of PBS buffer solution, and then adding the freeze-dried powder obtained in step c, to obtain a perfluorodecalin-containing nano-oxygenated hydrogel healing-promoting dressing.
  • Example 2 A nano-oxygenated hydrogel healing-promoting dressing containing perfluorodecalin, in parts by weight, comprising the following components: 3 parts of sodium hyaluronate, 200 parts of PBS buffer solution, perfluorodecalin 1 part, 6 parts mannitol, 5 parts casein.
  • the preparation method of the hydrogel healing-promoting dressing includes the following steps: a. First, adding an emulsifier to 100 parts of a PBS buffer solution, and then adding perfluorodecalin to ultrasonically prepare a nanoemulsion. The power is 500w, the total ultrasonic time is 12min, 2min/time, a total of 6 times, the temperature of the ice bath is controlled during the emulsification process, and the temperature is lowered two minutes apart between each emulsification. b. Then homogenize the colostrum for 20 cycles at medium pressure, and then homogenize the colostrum for 50 cycles at a homogenization pressure of 110Mpa; c.
  • Freeze-drying process divide the nanoparticles into 3mL vials, 1mL per bottle, and simultaneously Add a freeze-drying protective agent, place the sample in a freeze-drying machine and pre-freeze it at -40°C for 3 hours, and then vacuumize the sample. After the sample is freeze-dried, restore the vacuum to atmospheric pressure, and then quickly take out the sample and add a stopper to make a Freeze-dried powder.
  • d Dissolving sodium hyaluronate in 100 parts of PBS buffer solution, and then adding the freeze-dried powder obtained in step c, to obtain a perfluorodecalin-containing nano-oxygenated hydrogel healing-promoting dressing.
  • Example 3 A nano-oxygenated hydrogel healing-promoting dressing containing perfluorodecalin, in parts by weight, including the following components: 2 parts of sodium hyaluronate, 200 parts of PBS buffer solution, perfluorodecalin 3 parts, 10 parts glucose solution, 4 parts casein.
  • the preparation method of the hydrogel healing-promoting dressing includes the following steps: a. First, adding an emulsifier to 100 parts of a PBS buffer solution, and then adding perfluorodecalin to ultrasonically prepare a nanoemulsion. The power was 400w, the total ultrasonic time was 12min, 2min/time, 6 times in total, and the temperature of the emulsification process was controlled in an ice bath, and between each emulsification, the temperature was separated by two minutes. b. Then homogenize the colostrum for 20 cycles at medium pressure, and then homogenize the colostrum for 50 cycles at a homogenization pressure of 110Mpa; c.
  • Freeze-drying process divide the nanoparticles into 3mL vials, 1mL per bottle, and simultaneously Add a freeze-drying protective agent, place the sample in a freeze-drying machine and pre-freeze it at -40°C for 3 hours, and then vacuumize the sample. After the sample is freeze-dried, restore the vacuum to atmospheric pressure, and then quickly take out the sample and add a stopper to make a Freeze-dried powder.
  • d Dissolving sodium hyaluronate in 100 parts of PBS buffer solution, and then adding the freeze-dried powder obtained in step c, to obtain a perfluorodecalin-containing nano-oxygenated hydrogel healing-promoting dressing.
  • Example 3 as an example to test the properties of the perfluorodecalin nano-oxygenated hydrogel dressing of the present invention
  • the normal group was a non-diabetic group and healed naturally; the diabetic group was a diabetic mouse and healed naturally; the gel group was a diabetic mouse and the wound was coated with a dressing without perfluorodecalin gel; perfluoronano-oxygenated gel The group is diabetic mice and the wound is coated with the dressing containing perfluorodecalin gel of Example 3 of the present invention.
  • the animal experiment method of the control hydrogel healing-promoting dressing includes the following steps: a. First raise the mice to adapt to the environment for 7 days, and the feed is high-fat and high-sugar to create a diabetic mouse model; b. Cut out a diameter of about 1 cm on the back of the mouse The wounds were coated with hydrogel dressings and control group reagents; c. Dressings were changed on time every day, and compared with the blank control and hydrogel group without perfluorodecalin, the length of the wound was measured and recorded on time, and a bar graph of wound healing was obtained. , as shown in Figures 8-9, and the wound healing surface on the back of the rat is shown in Figure 7.
  • wound healing speed of the dressing of the present invention is obviously better than that of the gel product without perfluorodecalin and the natural healing speed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本发明提供了一种纳米氧合水凝胶促愈合敷料的制备方法,包括如下步骤:a、先将乳化剂加入到部分PBS缓冲溶液中,再加入全氟萘烷超声,制备得到纳米乳液;b、将上述纳米乳液先中压均质和高压均质循环,得到纳米粒;c、将上述纳米粒分装至西林瓶中,同时加入冻干保护剂,再将其进行冻干,制得冻干粉末;d、将透明质酸钠溶于剩余PBS缓冲溶液中,再加入步骤c得到的冻干粉末,即得含全氟萘烷的纳米氧合水凝胶促愈合敷料。本发明水凝胶敷料中含有的全氟萘烷具有强溶解氧的能力和良好的保湿透气性。涂抹于创面后,可隔绝创面和外环境,使伤口不接触环境中的病原体,有利于保持创面的持续供氧环境,加快上皮再生,安全性高。

Description

含全氟萘烷的纳米氧合水凝胶促愈合敷料及其制法和用途 技术领域
本发明属于水凝胶技术领域,具体地涉及一种含全氟萘烷的纳米氧合水凝胶促愈合敷料及其制法和用途。
背景技术
随着人口逐渐老年化和糖尿病患者增加,慢性伤口已成为全球医疗领域面临的一个重大挑战;糖尿病是一种广泛的疾病,全世界有4亿多人患有糖尿病,到2040年,糖尿病患者人数预计将超过6.4亿。糖尿病的并发症,特别是慢性未愈合伤口对生活质量产生破坏性影响,并大幅增加社会医疗费用。严重的是,全世界截肢中约70%的截肢是由糖尿病足溃疡引起的,而近年来仍缺乏持续有效的治疗方法。糖尿病难以愈合的创面主要由创面组织氧合较低、微血管闭塞、高糖环境下细菌定植和周围神经病变引起。
其中,局部创面缺氧被认为是造成创面愈合不良的一个重要原因。氧在人体能量生产中起着不可或缺的作用,可通过需氧糖酵解产生三磷酸腺苷。在伤口愈合过程中,足够的氧合更为重要,因为胶原蛋白合成、攻击细菌和细胞增殖等修复过程可能需要充足的能量。然而,糖尿病慢性伤口由于血管损伤、血管通透性和高代谢需求,供氧严重不足。在坏死区,组织氧通常小于10mmHg(而正常组织为约40mmHg)。现有的方法无论是高压氧治疗还是局部氧治疗(TOT)都难以缓解伤口缺氧。受损的血管限制了血液中的氧在循环中的扩散,组织的紧密性限制了气体中的氧渗透到伤口中。在这些病例中,我们提出了局部溶解氧(TDO)治疗方案,旨在将部分高压氧注入湿愈合过程中,以改善氧在组织中的渗透和吸收。但该方法仍依赖于高压氧发生器,使用不便,使创面存 在感染风险。
为了创造一种局部输送溶解氧的方法,研究表明,全氟萘烷是一种安全性很高的化合物,常温下为无色、无味、无毒的透明液体,密度高,表面张力低,化学性质稳定,在体内不发生代谢。尤为重要的是,全氟萘烷具有良好的气体运载能力,对氧的溶解度约为水的20倍,是全血的2~3倍,二氧化碳的溶解度是水的3倍多,100毫升的全氟萘烷能溶氧气50毫升,是红细胞载氧能力的1.5倍;全氟萘烷和氧的结合速度是14-20毫秒,比红细胞快得多;由此可见,全氟化碳是较理想的氧载体,且具有创伤修复、抗菌性、抗氧化性、消炎等作用。全氟萘烷有良好的组织相容性和生物学上的惰性,早已在生物医用领域得到应用,但是由于全氟萘烷难溶于水,稳定性差,生物利用率低等特性,使其在创面敷料上的应用具有较大的困难。
因此,目前急需一种可以主动供氧且工艺简单的水凝胶敷料,为伤口提供富氧环境,解决创面细胞因缺氧而愈合缓慢的问题。
发明内容
本发明的目的是为了解决现有技术中存在的缺点,提供了一种具有良好的力学性能,柔韧性和弹性好,能够与皮肤形成良好粘合,可解决慢性伤口局部缺氧等问题的纳米氧合水凝胶促愈合敷料。
本发明采用的技术方案为:一种含全氟萘烷的纳米氧合水凝胶促愈合敷料,按重量份数计,包括以下组分:透明质酸钠1-3份、PBS缓冲溶液150-250份、全氟萘烷1-10份、冻干保护剂1-20份和乳化剂1-20份。
优选的,按重量份数计,包括以下组分:透明质酸钠2份、PBS缓冲溶液200份、全氟萘烷5份、冻干保护剂10份和乳化剂10份。
优选的,所述乳化剂为酪蛋白、泊洛沙姆、吐温、白蛋白、磷脂及其衍生物中的任意一种,所述冻干保护剂为葡萄糖、甘露醇或氨基酸中的任意一种。
纳米氧合水凝胶促愈合敷料的制备方法,包括如下步骤:a、先将乳化剂加入到部分PBS缓冲溶液中,再加入全氟萘烷超声,制备得到纳米乳液;
b、将上述纳米乳液先中压均质10~30个循环,再高压均质25~70个循环,均质压力110Mpa,得到纳米粒;
c、将上述纳米粒分装至西林瓶中,同时加入冻干保护剂,再将其进行冻干,制得冻干粉末;
d、将透明质酸钠溶于剩余PBS缓冲溶液中,再加入步骤c得到的冻干粉末,即得含全氟萘烷的纳米氧合水凝胶促愈合敷料。
优选的,所述步骤a中超声的功率为300-500W,超声总时间为10~16min,2min/次,共5~8次,冰浴控温,每次超声间相隔两分钟降温。
优选的,所述步骤c中冻干的具体过程为:将冻干机在-40℃条件下预冻2~4小时,再抽真空,样品冻干后将真空度恢复至大气压,然后迅速取出杨平加塞压盖,制得冻干粉末。
含全氟萘烷的纳米氧合水凝胶促愈合敷料的用途,所述敷料中的全氟萘烷可通过析氧提高伤口表面的氧气浓度和湿度,可应用于慢性伤口、外伤、烧伤、烫伤、溃疡或褥疮伤口。
优选的,所述敷料可应用于糖尿病足慢性伤口。
优选的,所述敷料适用于手肘、手腕、膝盖或脚腕的经常性活动部位的伤口。
本发明获得的有益效果为:本发明的全氟萘烷纳米氧合水凝胶敷料,白色 粘稠,是一种兼具加速愈合和安全性的新型智能水凝胶创面敷料,可应用于慢性伤口、外伤、烧伤、烫伤、溃疡、褥疮等伤口,尤其是如糖尿病足式的慢性伤口效果更佳。
(1)本发明水凝胶敷料中含有的全氟萘烷具有强溶解氧的能力和良好的保湿透气性。涂抹于创面后,可隔绝创面和外环境,使伤口不接触环境中的病原体,有利于保持创面的持续供氧环境,加快上皮再生,安全性高;通过析氧可以有效提高伤口表面的氧气浓度和湿度,氧浓度的提高直接增效伤口愈合,湿度的提高有利于气体在伤口表面渗透扩散,以及通过湿性愈合的方式促进创面愈合。
(2)本发明选用的乳化剂不仅具有良好的湿润分散性,能与全氟萘烷乳化分散在水凝胶之中,并且能够给人体提供一个营养供给,增加血容量和维持一个血浆的胶体渗透压。使其能够稳定存在,克服了全氟萘烷不溶于水、稳定性差的缺点,从而在涂抹伤口时能够缓慢地释放氧气。
(3)本发明选用的冻干保护剂呈多孔状、能长时间稳定储存,并且重新复水而恢复活性。
(4)本发明采用乳化和冻干模板法制备全氟萘烷水凝胶敷料;先将乳化剂与全氟萘烷乳化,使用冻干保护剂低温冻干成粉末,最终在透明质酸钠凝胶中复溶,克服了全氟萘烷无法分散、慢性伤口局部缺氧等问题,原料来源广泛、价格便宜,成本可控,可实现工业化生产。
(5)本发明的全氟萘烷纳米氧合水凝胶敷料具有良好的力学性能,柔韧性和弹性好,能够与皮肤形成良好粘合,并且全氟萘烷分散其中可以保持稳定,不易破乳、团聚和沉降。适用于身体不同部位的创面,特别是手肘、手腕、膝 盖、脚腕等经常性活动部位。
附图说明
图1为本发明纳米氧合水凝胶敷料的治疗原理图;
图2为透明质酸钠凝胶形状图;
图3为含有乳化剂的凝胶形状图;
图4为含有冻干保护剂的凝胶形状图;
图5为本发明全氟萘烷纳米氧合水凝胶形状图;
图6为本发明水凝胶样品标尺为200纳米的电镜图;
图7为慢性创面动物实验—伤口愈合进展图;
图8为慢性创面动物实验—伤口肉芽组织愈合对照实验图;
图9为慢性创面动物实验—伤口愈合时间对照实验图;
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例1:一种含有全氟萘烷的纳米氧合水凝胶促愈合敷料,按重量份数计,包括以下组分:透明质酸钠2份、PBS缓冲溶液200份、全氟萘烷2份、氨基酸5份、白蛋白3份。
水凝胶促愈合敷料的制备方法,包括如下步骤:a、先将乳化剂加入100份PBS缓冲溶液中,再加入全氟萘烷超声制备纳米乳液。功率为300w,超声总时间为12min,2min/次,共6次,乳化过程冰浴控温,每次乳化间,相隔两分钟降温。b、然后将初乳先中压均质20个循环,再高压均质50个循环,均质 压力110Mpa;c、冻干过程:将纳米粒分装至3mL西林瓶中,每瓶1mL,同时加入冻干保护剂,将样品置于冻干机中在-40℃条件下预冻3小时,再抽真空,样品冻干后将真空度恢复至大气压,然后迅速取出样品加塞压盖,制得冻干粉末。d、将透明质酸钠溶于100份PBS缓冲溶液中,再加入步骤c得到的冻干粉末,即得含全氟萘烷的纳米氧合水凝胶促愈合敷料。
实施例2:一种含有全氟萘烷的纳米氧合水凝胶促愈合敷料,按重量份数计,包括以下组分:透明质酸钠3份、PBS缓冲溶液200份、全氟萘烷1份、甘露醇6份、酪蛋白5份。
水凝胶促愈合敷料的制备方法,包括如下步骤:a、先将乳化剂加入100份PBS缓冲溶液中,再加入全氟萘烷超声制备纳米乳液。功率为500w,超声总时间为12min,2min/次,共6次,乳化过程冰浴控温,每次乳化间,相隔两分钟降温。b、然后将初乳先中压均质20个循环,再高压均质50个循环,均质压力110Mpa;c、冻干过程:将纳米粒分装至3mL西林瓶中,每瓶1mL,同时加入冻干保护剂,将样品置于冻干机中在-40℃条件下预冻3小时,再抽真空,样品冻干后将真空度恢复至大气压,然后迅速取出样品加塞压盖,制得冻干粉末。d、将透明质酸钠溶于100份PBS缓冲溶液中,再加入步骤c得到的冻干粉末,即得含全氟萘烷的纳米氧合水凝胶促愈合敷料。
实施例3:一种含有全氟萘烷的纳米氧合水凝胶促愈合敷料,按重量份数计,包括以下组分:透明质酸钠2份、PBS缓冲溶液200份、全氟萘烷3份、葡萄糖溶液10份、酪蛋白4份。
水凝胶促愈合敷料的制备方法,包括如下步骤:a、先将乳化剂加入100份PBS缓冲溶液中,再加入全氟萘烷超声制备纳米乳液。功率为400w,超声 总时间为12min,2min/次,共6次,乳化过程冰浴控温,每次乳化间,相隔两分钟降温。b、然后将初乳先中压均质20个循环,再高压均质50个循环,均质压力110Mpa;c、冻干过程:将纳米粒分装至3mL西林瓶中,每瓶1mL,同时加入冻干保护剂,将样品置于冻干机中在-40℃条件下预冻3小时,再抽真空,样品冻干后将真空度恢复至大气压,然后迅速取出样品加塞压盖,制得冻干粉末。d、将透明质酸钠溶于100份PBS缓冲溶液中,再加入步骤c得到的冻干粉末,即得含全氟萘烷的纳米氧合水凝胶促愈合敷料。
以实施例3为例对本发明全氟萘烷纳米氧合水凝胶敷料的性状进行测试
正常组为非糖尿病组且自然愈合;糖尿病组为患糖尿病的小鼠且自然愈合;凝胶组为患糖尿病小鼠且伤口涂覆不含全氟萘烷凝胶的敷料;全氟纳米氧合凝胶组为患糖尿病小鼠且伤口涂覆本发明实施例3含全氟萘烷凝胶的敷料。
对照水凝胶促愈合敷料的动物实验方法,包括如下步骤:a、先养老鼠适应环境7天,饲料为高脂高糖造出糖尿病小鼠模型;b、在老鼠背部剪出直径1cm左右的伤口,涂上水凝胶敷料与对照组试剂;c、每天准时换药,与空白对照、不含全氟萘烷水凝胶组进行对照,准时测量伤口长度并记录,制得伤口愈合柱状图,如图8-9所示,老鼠背部伤口愈合表面情况如图7所示。
实验表明,本发明敷料的伤口愈合速度明显优于无含全氟萘烷凝胶品及自然愈合的速度。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (9)

  1. 一种含全氟萘烷的纳米氧合水凝胶促愈合敷料,其特征在于:按重量份数计,包括以下组分:透明质酸钠1-3份、PBS缓冲溶液150-250份、全氟萘烷1-10份、冻干保护剂1-20份和乳化剂1-20份。
  2. 根据权利要求1所述一种含全氟萘烷的纳米氧合水凝胶促愈合敷料,其特征在于:按重量份数计,包括以下组分:透明质酸钠2份、PBS缓冲溶液200份、全氟萘烷5份、冻干保护剂10份和乳化剂10份。
  3. 根据权利要求1或2所述一种含全氟萘烷的纳米氧合水凝胶促愈合敷料,其特征在于:所述乳化剂为酪蛋白、泊洛沙姆、吐温、白蛋白、磷脂及其衍生物中的任意一种,所述冻干保护剂为葡萄糖、甘露醇或氨基酸中的任意一种。
  4. 纳米氧合水凝胶促愈合敷料的制备方法,其特征在于:包括如下步骤:a、先将乳化剂加入到部分PBS缓冲溶液中,再加入全氟萘烷超声,制备得到纳米乳液;
    b、将上述纳米乳液先中压均质10~30个循环,再高压均质25~70个循环,均质压力110Mpa,得到纳米粒;
    c、将上述纳米粒分装至西林瓶中,同时加入冻干保护剂,再将其进行冻干,制得冻干粉末;
    d、将透明质酸钠溶于剩余PBS缓冲溶液中,再加入步骤c得到的冻干粉末,即得含全氟萘烷的纳米氧合水凝胶促愈合敷料。
  5. 根据权利要求4上述纳米氧合水凝胶促愈合敷料的制备方法,其特征在于:所述步骤a中超声的功率为300-500W,超声总时间为10~16min,2min/次,共5~8次,冰浴控温,每次超声间相隔两分钟降温。
  6. 根据权利要求4上述纳米氧合水凝胶促愈合敷料的制备方法,其特征在 于:所述步骤c中冻干的具体过程为:将冻干机在-40℃条件下预冻2~4小时,再抽真空,样品冻干后将真空度恢复至大气压,然后迅速取出杨平加塞压盖,制得冻干粉末。
  7. 含全氟萘烷的纳米氧合水凝胶促愈合敷料的用途,其特征在于:所述敷料中的全氟萘烷可通过析氧提高伤口表面的氧气浓度和湿度,可应用于慢性伤口、外伤、烧伤、烫伤、溃疡或褥疮伤口。
  8. 根据权利要求7所述含全氟萘烷的纳米氧合水凝胶促愈合敷料的用途,其特征在于:所述敷料可应用于糖尿病足慢性伤口。
  9. 根据权利要求7或8所述含全氟萘烷的纳米氧合水凝胶促愈合敷料的用途,其特征在于:所述敷料适用于手肘、手腕、膝盖或脚腕的经常性活动部位的伤口。
PCT/CN2022/079131 2021-03-05 2022-03-03 含全氟萘烷的纳米氧合水凝胶促愈合敷料及其制法和用途 WO2022184149A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110244268.XA CN112999410B (zh) 2021-03-05 2021-03-05 含全氟萘烷的纳米氧合水凝胶促愈合敷料及其制法和用途
CN202110244268.X 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022184149A1 true WO2022184149A1 (zh) 2022-09-09

Family

ID=76406520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079131 WO2022184149A1 (zh) 2021-03-05 2022-03-03 含全氟萘烷的纳米氧合水凝胶促愈合敷料及其制法和用途

Country Status (2)

Country Link
CN (1) CN112999410B (zh)
WO (1) WO2022184149A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112999410B (zh) * 2021-03-05 2022-11-15 江苏君隽生物科技有限公司 含全氟萘烷的纳米氧合水凝胶促愈合敷料及其制法和用途
TWI805230B (zh) * 2022-02-17 2023-06-11 國立中央大學 凝膠、其製備方法及其用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366169A (en) * 1979-06-25 1982-12-28 Sun Tech, Inc. Use of perfluorocarbons as wound treatment
CN102949709A (zh) * 2011-08-18 2013-03-06 中国科学院大连化学物理研究所 一种治疗糖尿病足的外用凝胶剂及制备和应用
CN111228466A (zh) * 2020-02-27 2020-06-05 温州医科大学 治疗糖尿病足的含氧气微泡的水凝胶及其制备方法和用途
US20200261368A1 (en) * 2015-12-14 2020-08-20 Ac Pharmaceuticals Co., Ltd Targeted hydrophobic anti-tumor drug nanoformulation and preparation method thereof
CN112999410A (zh) * 2021-03-05 2021-06-22 江苏菌均君隽生物科技有限公司 含全氟萘烷的纳米氧合水凝胶促愈合敷料及其制法和用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104010662B (zh) * 2011-08-16 2016-12-21 凯诗薇有限责任公司 使皮肤回春的组合物和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366169A (en) * 1979-06-25 1982-12-28 Sun Tech, Inc. Use of perfluorocarbons as wound treatment
CN102949709A (zh) * 2011-08-18 2013-03-06 中国科学院大连化学物理研究所 一种治疗糖尿病足的外用凝胶剂及制备和应用
US20200261368A1 (en) * 2015-12-14 2020-08-20 Ac Pharmaceuticals Co., Ltd Targeted hydrophobic anti-tumor drug nanoformulation and preparation method thereof
CN111228466A (zh) * 2020-02-27 2020-06-05 温州医科大学 治疗糖尿病足的含氧气微泡的水凝胶及其制备方法和用途
CN112999410A (zh) * 2021-03-05 2021-06-22 江苏菌均君隽生物科技有限公司 含全氟萘烷的纳米氧合水凝胶促愈合敷料及其制法和用途

Also Published As

Publication number Publication date
CN112999410B (zh) 2022-11-15
CN112999410A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
WO2022184149A1 (zh) 含全氟萘烷的纳米氧合水凝胶促愈合敷料及其制法和用途
EP3532110B1 (en) Formulations for oxygen delivery to body tissues
George Broughton et al. Wound healing: an overview
Sayadi et al. Topical oxygen therapy & micro/nanobubbles: a new modality for tissue oxygen delivery
EP2059206B1 (en) Dry wound dressing and drug delivery system
ES2526640T3 (es) Composiciones para romper e inhibir la reconstitución de la biopelícula de heridas
TW201603818A (zh) 組成物及方法
CN111228466A (zh) 治疗糖尿病足的含氧气微泡的水凝胶及其制备方法和用途
WO2015176558A1 (zh) 一种天然维生素c和鱼鳞胶原蛋白肽的组合物及其制备方法
JP2005525153A5 (zh)
WO2008034138A9 (en) Methods and compositions for the topical oxygenation of hypoxic tissue
JP7465011B2 (ja) 金属-有機骨格体を含む傷治癒用組成物
TW200413024A (en) Carbon dioxide external composition and method for producing the same
CN107446018B (zh) 促进伤口愈合的肽及其应用
US20230338296A1 (en) Devices and methods for delivery of oxygen to a wound
CN111317855B (zh) 促进糖尿病溃疡创面愈合的三维复合海绵状结构体及方法
Silvetti An effective method of treating long-enduring wounds and ulcers by topical applications of solutions of nutrients
CN113164643A (zh) 获得冷冻干燥的动物皮肤的方法,冷冻干燥的动物皮肤,其用途和试剂盒
CN101953757B (zh) 一种冻干凝胶化妆品及其制备方法和应用
Raza et al. Glycerol Preserved Amnion: A Viable Source of Biological Dressing for Superficial Partial Thickness Facial Burns.
CN106562953A (zh) 羟基红花黄色素a在制备治疗糖尿病足溃疡的药物中的应用、药物及药物制备方法
RU2369398C2 (ru) Средство с ранозаживляющей активностью на основе супернатанта человеческих фибробластов
CN114887037B (zh) 治疗糖尿病足溃疡的双相喷雾剂
El-Seddawy et al. Dexpanthenol: New Insights on Wound Healing, a Review
TW201632191A (zh) 一種用於促進傷口癒合或預防、減少傷口疤痕生成的醫藥組合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762611

Country of ref document: EP

Kind code of ref document: A1