WO2022184105A1 - 一种波长配置装置、系统和波长配置方法 - Google Patents

一种波长配置装置、系统和波长配置方法 Download PDF

Info

Publication number
WO2022184105A1
WO2022184105A1 PCT/CN2022/078863 CN2022078863W WO2022184105A1 WO 2022184105 A1 WO2022184105 A1 WO 2022184105A1 CN 2022078863 W CN2022078863 W CN 2022078863W WO 2022184105 A1 WO2022184105 A1 WO 2022184105A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
electrical layer
optical
signal processing
optical signal
Prior art date
Application number
PCT/CN2022/078863
Other languages
English (en)
French (fr)
Inventor
崔炳华
刘灿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22762568.8A priority Critical patent/EP4304114A1/en
Publication of WO2022184105A1 publication Critical patent/WO2022184105A1/zh
Priority to US18/460,117 priority patent/US20230412298A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures

Definitions

  • the present application relates to the technical field of optical communication, and in particular, to a wavelength configuration device, system, and wavelength configuration method.
  • Dense wavelength division multiplexing (DWDM) technology can transmit a group of different wavelengths of light through one optical fiber, which can improve the transmission bandwidth of the optical fiber backbone network. Rather, DWDM technology is the multiplexing of tight spectral spacing of individual fiber carriers in a single fiber in order to take advantage of achievable transmission performance (eg, with minimal dispersion or attenuation). For a given information transmission capacity, the total number of fibers required can be reduced.
  • the typical DWDM networking structure includes a wavelength division multiplexing system electrical layer board (such as an optical transport unit (OTU) board), a multiplexing and demultiplexing board, and an optical supervisory channel (OSC) single board. board etc.
  • a wavelength division multiplexing system electrical layer board such as an optical transport unit (OTU) board
  • OTU optical transport unit
  • OSC optical supervisory channel
  • the wavelength of the line port of the electrical layer board of the wavelength division multiplexing system must be strictly consistent with the port wavelength of the wavelength multiplexing and demultiplexing board. Otherwise, the services in the DWDM system cannot be connected. Therefore, during network deployment, it is necessary to manually configure the line port wavelength of the electrical layer board of the WDM system, and manually configure the port wavelength of the multiplexer/demultiplex board connected to the electrical layer board of the WDM system. This ensures that the fiber is connected correctly.
  • the wavelength of the line port of the electrical layer board of the WDM system relies on manual configuration, which takes a long time and has a
  • Embodiments of the present application provide a wavelength configuration device, system, and wavelength configuration method.
  • the wavelength configuration method realizes the automatic wavelength configuration of the electrical layer single board of the wavelength division multiplexing system, which is conducive to completing the wavelength configuration faster and more accurately.
  • an embodiment of the present application provides a wavelength configuration system.
  • the wavelength configuration system includes an electrical layer signal processing device and a wavelength combining and demultiplexing device.
  • the multiplexing and demultiplexing device is used to send an optical signal to the electrical layer signal processing device, and the optical signal is used to indicate the specified wavelength to be configured by the electrical layer signal processing device.
  • the electrical layer signal processing device is used to obtain the specified wavelength indicated by the optical signal.
  • the electrical layer signal processing device is further configured to configure the wavelength of the optical transceiver interface connected to the wave multiplexing and demultiplexing device in the electrical layer signal processing device to the designated wavelength indicated by the optical signal.
  • the electrical layer signal processing device automatically configures the wavelength of the corresponding optical transceiver interface after receiving the optical signal sent by the multiplexing and demultiplexing device.
  • the wavelength configuration system eliminates the need for a complicated and error-prone manual configuration process, and completes wavelength configuration more accurately in a shorter time.
  • the electrical layer signal processing device is used to obtain wavelength information carried by the optical signal.
  • the wavelength information is used to indicate the specified wavelength or the identification of the specified wavelength. It can be seen that the electrical layer signal processing apparatus can obtain the specified wavelength or the identifier of the specified wavelength through the wavelength information.
  • the wavelength information includes a starting position and a designated wavelength; or, the wavelength information includes an identifier of the starting position and the designated wavelength.
  • the wavelength information also includes the check position. It can be seen that the electrical layer signal processing apparatus can verify the demodulated wavelength information according to the verification information carried in the inspection position, thereby improving the accuracy of the demodulated information.
  • the multiplexing and demultiplexing device includes a single wavelength-tunable light source.
  • a wavelength-tunable light source is used to generate an optical signal indicative of a specified wavelength. It can be seen that the multiplexing and demultiplexing device can specify different wavelengths for different optical transceiver interfaces through a wavelength-tunable light source.
  • the multiplexing and demultiplexing device includes multiple light sources.
  • the plurality of light sources are used to generate optical signals indicative of the specified wavelengths, and the optical signals indicative of the specified wavelengths cover wavelength bands that do not completely overlap. It can be seen that the multiplexing and demultiplexing device can also specify different wavelengths for different optical transceiver interfaces through multiple light sources.
  • the device for combining and demultiplexing further includes a combiner.
  • the combiner is used to combine multiple optical signals generated by multiple light sources. It can be seen that a multiplexer can also be added to the wave combining and demultiplexing device to couple the optical signals of multiple light sources into the same optical fiber for transmission.
  • an embodiment of the present application provides an electrical layer signal processing apparatus.
  • the electrical layer signal processing device includes a processor and an optical transceiver interface.
  • the optical transceiver interface is used to receive the optical signal from the multiplexing and demultiplexing device.
  • the optical signal is used to indicate the specified wavelength to be configured by the electrical layer signal processing device.
  • the processor is configured to acquire the specified wavelength indicated by the optical signal.
  • the processor is further configured to configure the wavelength of the optical transceiver interface connected to the wavelength multiplexing and demultiplexing device in the electrical layer signal processing device to the designated wavelength indicated by the optical signal.
  • the electrical layer signal processing device automatically configures the wavelength of the optical transceiver interface after receiving the optical signal sent by the multiplexing and demultiplexing device, and completes the wavelength configuration faster and more accurately.
  • the processor is used to obtain wavelength information carried by the optical signal.
  • the wavelength information includes a starting position and a designated wavelength, or the wavelength information includes an identifier of the starting position and the designated wavelength.
  • the wavelength information may also include check locations. Wherein, for the starting position, the designated wavelength, the identifier of the designated wavelength, and the verification position, please refer to the corresponding description in the first aspect, and details are not repeated here.
  • an embodiment of the present application provides a device for combining and demultiplexing.
  • the multiplexing and demultiplexing device includes a light source and an optical transceiver interface.
  • a light source is used to generate an optical signal.
  • the optical signal is used to indicate the specified wavelength to be configured by the electrical layer signal processing device.
  • the optical transceiver interface is used to send optical signals to the electrical layer signal processing apparatus.
  • the wavelength combining and demultiplexing device indicates the specified wavelength to the electrical layer signal processing device through the optical signal, which is beneficial for the electrical layer signal processing device to automatically configure the wavelength of the optical transceiver interface as the specified wavelength.
  • the multiplexing and demultiplexing device further includes a processor.
  • the processor is configured to generate wavelength information, where the wavelength information includes a starting position and a designated wavelength, or the wavelength information includes an identifier of the starting position and the designated wavelength.
  • the wavelength information may also include check locations.
  • the light source of the wavelength combining and demultiplexing device is a wavelength-tunable light source.
  • a wavelength-tunable light source is used to generate an optical signal indicative of a specified wavelength.
  • the light source of the wave combining and demultiplexing device includes multiple light sources.
  • the plurality of light sources are used to generate optical signals indicative of the specified wavelengths, and the optical signals indicative of the specified wavelengths cover wavelength bands that do not completely overlap.
  • the device for combining and demultiplexing further includes a combiner.
  • the combiner is used to combine multiple optical signals generated by multiple light sources.
  • an embodiment of the present application provides a wavelength configuration method.
  • the wavelength configuration method is applied to the wavelength configuration system shown in the first aspect.
  • the multiplexing and demultiplexing device sends an optical signal to the electrical layer signal processing device.
  • the optical signal is used to indicate the specified wavelength to be configured by the electrical layer signal processing device.
  • the electrical layer signal processing device acquires the specified wavelength indicated by the optical signal.
  • the electrical layer signal processing device configures the wavelength of the optical transceiver interface connected to the wave multiplexing and demultiplexing device in the electrical layer signal processing device to the designated wavelength indicated by the optical signal.
  • the electrical layer signal processing device obtains the wavelength information carried by the optical signal.
  • the wavelength information includes a starting position and a designated wavelength, or the wavelength information includes an identifier of the starting position and the designated wavelength.
  • the wavelength information may also include check locations. Wherein, for the starting position, the designated wavelength, the identifier of the designated wavelength, and the verification position, please refer to the corresponding description in the first aspect, and details are not repeated here.
  • the wavelength combining and demultiplexing device includes a wavelength-tunable light source.
  • the wavelength-tunable light source in the multiplexer/demultiplexer generates an optical signal indicative of a specified wavelength.
  • the multiplexing and demultiplexing device includes multiple light sources.
  • the multiple light sources of the multiplexer and demultiplexer generate optical signals indicative of a specified wavelength. Indicates that the optical signal of the specified wavelength covers a band that does not exactly coincide.
  • the device for combining and demultiplexing further includes a combiner.
  • the multiplexer in the multiplexer/demultiplexer combines multiple optical signals generated by multiple light sources.
  • the embodiments of the present application provide another wavelength configuration method.
  • the wavelength configuration method is applied to the electrical layer signal processing apparatus shown in the second aspect.
  • the electrical layer signal processing device receives the optical signal from the wavelength combining and demultiplexing device.
  • the optical signal is used to indicate the specified wavelength to be configured by the electrical layer signal processing device.
  • the electrical layer signal processing device acquires the specified wavelength indicated by the optical signal.
  • the electrical layer signal processing device configures the wavelength of the optical transceiver interface connected to the wave multiplexing and demultiplexing device in the electrical layer signal processing device to the designated wavelength indicated by the optical signal.
  • the embodiments of the present application provide yet another wavelength configuration method.
  • the wavelength configuration method is applied to the wavelength combining/demultiplexing device shown in the third aspect.
  • the wavelength combining and demultiplexing device generates an optical signal, and the optical signal is used to indicate the specified wavelength to be configured by the electrical layer signal processing device.
  • the multiplexing and demultiplexing device sends an optical signal to the electrical layer signal processing device.
  • an embodiment of the present application provides a wavelength configuration device.
  • the wavelength configuration device may be a device or a chip or circuit provided in the device.
  • the wavelength configuration device includes units and/or modules for executing the wavelength configuration method provided in the fourth, fifth, and sixth aspects or any possible designs of the three aspects, so that the fourth, fifth, and sixth aspects can also be implemented.
  • the fifth and sixth aspects or the wavelength configuration methods provided in the three aspects have beneficial effects.
  • an embodiment of the present application provides a chip or a chip system.
  • the chip or chip system includes at least one processor and an interface, and the interface and the at least one processor are interconnected by wires.
  • At least one processor is used to run a computer program or instructions to perform the method described in any of the fourth, fifth, sixth or any of the possible implementations of the three aspects.
  • FIG. 1 is a schematic diagram of a wavelength configuration system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of wavelength information provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another wavelength configuration system provided by an embodiment of the present application.
  • 4a is a schematic diagram of still another wavelength configuration system provided by an embodiment of the present application.
  • FIG. 4b is a schematic diagram of yet another wavelength configuration system provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a wavelength configuration method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a DWDM wavelength automatic configuration system provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a wavelength configuration apparatus provided by an embodiment of the present application.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • plurality in this application means two or more.
  • a plurality of light sources refers to two or more light sources.
  • the size of the sequence number of each process does not mean the sequence of execution, and the execution sequence of each process should be determined by its function and internal logic, rather than the implementation of the embodiments of the present application
  • the process constitutes any qualification.
  • determining B according to A does not mean that B is only determined according to A, and B may also be determined according to A and/or other information.
  • Dense wavelength division multiplexing (DWDM) technology can transmit a group of different wavelengths of light through a single fiber.
  • the typical DWDM networking structure includes a wavelength division multiplexing system electrical layer board (such as an optical transport unit (OTU) board), a multiplexing and demultiplexing board, and an optical supervisory channel (OSC) single board. board etc.
  • OTU optical transport unit
  • OSC optical supervisory channel
  • the wavelength of the line port of the electrical layer board of the WDM system relies on manual configuration, but the probability of manual planning and manual connection of optical fibers is low.
  • an embodiment of the present application provides a wavelength configuration method.
  • the method is applied in a wavelength configuration system.
  • the wavelength configuration method realizes the automatic configuration of the wavelength of the line port of the electrical layer single board of the wavelength division multiplexing system, which is conducive to completing the wavelength configuration faster and more accurately.
  • FIG. 1 is a schematic diagram of a wavelength configuration system provided by an embodiment of the present application.
  • the wavelength configuration system shown in FIG. 1 includes an electrical layer signal processing device and a wavelength multiplexing and demultiplexing device.
  • the wavelength configuration method provided in the embodiments of the present application is mainly implemented by an electrical layer signal processing device and a wavelength multiplexing and demultiplexing device, so the wavelength configuration system shown in FIG. 1 does not cover other modules.
  • the wavelength configuration system described in FIG. 1 may be a DWDM system, that is, it includes other boards, such as an OSC board, etc., which is not limited in this embodiment.
  • the wavelength multiplexing and demultiplexing device is used to send an optical signal to the electrical layer signal processing device, and the optical signal is used to indicate the specified wavelength to be configured by the electrical layer signal processing device. Because the wavelengths of the optical transceiver interface of the electrical layer signal processing device and the optical transceiver interface of the multiplexer and demultiplexer are the same, the electrical layer signal processing device and the multiplexer and multiplexer can establish an optical path normally to transmit services.
  • the wavelength multiplexing and demultiplexing apparatus in this embodiment carries the designated wavelength through the optical signal, so as to instruct the electrical layer signal processing apparatus to configure the designated wavelength.
  • the electrical layer signal processing device is configured to receive the optical signal from the wavelength multiplexing and demultiplexing device, and to acquire the specified wavelength indicated by the optical signal.
  • the electrical layer signal processing device is used to obtain wavelength information carried by the optical signal. That is to say, the optical signal in this embodiment can be regarded as a modulated optical signal carrying wavelength information.
  • the wavelength information is used to indicate the specified wavelength or the identification of the specified wavelength.
  • the wavelength information in this embodiment includes a starting position and a designated wavelength, or the wavelength information includes an identifier of the starting position and the designated wavelength.
  • FIG. 2 is a schematic diagram of wavelength information provided by an embodiment of the present application.
  • the wavelength information can be a whole string of information bits, such as 00110 in Figure 2.
  • the starting position is set to be a special four consecutive information bits.
  • the starting position in FIG. 2 is a special four-bit continuous information bit (also called starting information bit) 0x55AA. That is, when the electrical layer signal processing apparatus detects the start information bit 0x55AA, the electrical layer signal processing apparatus determines that the information bits after the start information bit 0x55AA are the information bits corresponding to the specified wavelength or the identifier of the specified wavelength.
  • the electrical layer signal processing apparatus decodes and obtains the specified wavelength or the identifier of the specified wavelength according to the multiple information bits after the initial information bit 0x55AA as shown in FIG. 2 .
  • the electrical layer signal processing apparatus decodes and obtains the specified wavelength indicated by a plurality of information bits after the initial information bit as shown in FIG. 2 as ⁇ 1 .
  • the electrical layer signal processing apparatus decodes and obtains the identifier of the specified wavelength indicated by the plurality of information bits after the initial information bit as shown in FIG. 2 as No. 5.
  • the electrical layer signal processing apparatus determines that the designated wavelength is the designated wavelength ⁇ 1 corresponding to the No. 5 identifier.
  • the multiple information bits of the wavelength information further include a special four-bit continuous information bit (also referred to as an end information bit) indicating the end of the specified wavelength or the identification of the specified wavelength.
  • a special four-bit continuous information bit also referred to as an end information bit
  • there are four consecutive information bits 0x0000 in the multiple information bits of the wavelength information in FIG. 2 which are used to indicate the specified wavelength or the end of the identification of the specified wavelength.
  • the wavelength information is sent out by turning on (with light) or turning off (without light) the light source in the wavelength combining and demultiplexing device to generate an optical signal.
  • the electrical layer signal processing apparatus decodes and obtains wavelength information according to the optical signal.
  • the wavelength information may also include a check position.
  • the check position in FIG. 2 is also a plurality of check information bits, and the check information bits are used to instruct the electrical layer signal processing apparatus to check the information obtained by decoding using a specified check method.
  • the wavelength information shown in FIG. 2 is only an example.
  • the wavelength information in this embodiment may also be implemented in other manners.
  • the wavelength combining and demultiplexing device adjusts the optical power of the optical signal, so that the optical signals of different optical powers carry wavelength information.
  • the electrical layer signal processing device receives optical signals of different optical powers, and can also acquire the specified wavelength indicated by the optical signal.
  • the wavelength information may also be an indication frame, which is designed according to a certain frame format, and carries wavelength information and verification information in the indication frame.
  • the electrical layer signal processing device is further configured to configure the wavelength of the optical transceiver interface connected to the wave multiplexing and demultiplexing device in the electrical layer signal processing device to the designated wavelength indicated by the optical signal. For example, the electrical layer signal processing device determines that the specified wavelength is ⁇ 1 , and then configures the wavelength of the optical transceiver interface connected to the wavelength multiplexing and demultiplexing device as ⁇ 1 .
  • the electrical layer signal processing apparatus and the wave multiplexing/demultiplexing apparatus in this embodiment of the present application may be deployed at the same site.
  • the electrical layer signal processing device and the multiplexing and demultiplexing device are deployed on a rack in the same equipment room, or on different racks in the same equipment room, or in different equipment rooms.
  • the electrical layer signal processing apparatus and the wave multiplexing/demultiplexing apparatus may also be deployed at different sites, which are not limited in this embodiment.
  • the electrical layer signal processing device and the multiplexing and demultiplexing device are connected by optical fibers.
  • the electrical layer signal processing apparatus is, for example, a DWDM electrical layer single board in a DWDM system, or, for example, an OTU single board.
  • the electrical layer signal processing apparatus includes a processor and an optical transceiver interface, as shown in FIG. 3 .
  • the processor can be implemented by a logic device (such as a field programmable gate array (FPGA)) or a central processing unit (CPU) system.
  • the electrical layer signal processing device is an OTU board, and the optical transceiver interface may be a line port in the OTU board.
  • the optical transceiver interface is used to receive the optical signal from the wavelength multiplexing and demultiplexing device, and the optical signal is used to indicate the specified wavelength to be configured by the electrical layer signal processing device.
  • the processor is used to obtain the specified wavelength indicated by the optical signal.
  • the processor is further configured to configure the wavelength of the optical transceiver interface connected to the wavelength multiplexing and demultiplexing device in the electrical layer signal processing device to the designated wavelength indicated by the optical signal.
  • the logic device in the processor acquires the wavelength information carried by the optical signal, and processes the wavelength information to acquire the specified wavelength. For the relevant description of the wavelength information, reference may be made to the corresponding description in FIG. 2 , which will not be repeated here.
  • the optical transceiver interface sends light of the specified wavelength to the optical transceiver interface of the corresponding wavelength multiplexing and demultiplexing device.
  • the wavelength configuration of the optical transceiver interface in the electrical layer signal processing device in FIG. 3 is ⁇ 1
  • the optical transceiver interface transmits light with a wavelength of ⁇ 1 to the optical transceiver interface 1 connected in the multiplexing and demultiplexing device, indicating that the electrical The wavelength configuration of the optical transceiver interface of the layer signal processing device is successful.
  • the electrical layer signal processing device is also used to connect various service signals (such as 10 Gigabit/100 Gigabit (10GE/100GE) Ethernet services, synchronous digital hierarchy (SDH) services, etc.)
  • the input package is an optical signal (such as an OTU signal) that meets the requirements of the DWDM system. Since the OTU signal is a color light signal, it can be connected to a multiplexing and demultiplexing device.
  • the electrical layer signal processing apparatus further includes a plurality of ports and service processing modules, as shown by the dotted line modules in FIG. 3 .
  • the electrical layer signal processing apparatus further includes ports 1 to N, where N is a positive integer greater than 1.
  • port 1 is used to access Ethernet services
  • port 2 is used to access SDH services
  • each port is used to access different services or not access services.
  • the service processing module is used to encapsulate the service accessed by each port into an OTU signal.
  • the service processing module transmits the OTU signal to the optical transceiver interface, and the optical transceiver interface sends the OTU signal to the multiplexing and demultiplexing device.
  • the functions performed by the service processing module in FIG. 3 may also be implemented by a processor. That is to say, the processor in FIG. 3 is used not only to process the optical signal from the wavelength combining/demultiplexing device, but also to process the services from multiple ports.
  • the multiplexing/demultiplexing device may be, for example, a multiplexing/demultiplexing single board in a DWDM system.
  • the multiplexing and demultiplexing board in the DWDM system is used to combine color optical signals of different wavelengths into the same optical fiber for transmission.
  • the multiplexing/demultiplexing board can also decompose the multiplexed light in the same optical fiber and send it to the corresponding OTU board from different optical ports.
  • the device for combining and demultiplexing includes a light source, an optical transceiver interface, a multiplexer, and a demultiplexer, as shown in FIG. 3 .
  • the light source is used to generate an optical signal
  • the optical signal is used to indicate a specified wavelength to be configured by the electrical layer signal processing device.
  • the optical transceiver interface is used to send optical signals to the electrical layer signal processing apparatus.
  • the multiplexing and demultiplexing apparatus may include a plurality of optical transceiver interfaces.
  • the wavelength multiplexing and demultiplexing apparatus in FIG. 3 includes optical transceiver interfaces 1 to N.
  • the optical transceiver interfaces 1 to N can be connected to N electrical layer signal processing devices at most, and the optical transceiver interfaces 1 to N are required to access optical signals of designated wavelengths respectively.
  • Multiplexers and demultiplexers are used to combine multiple optical signals into one optical signal, or distribute one optical signal to a designated optical transceiver interface.
  • the light source in Figure 3 generates an optical signal indicative of a specified wavelength.
  • the optical signal is distributed to the optical transceiver interface 1 through the multiplexer and the demultiplexer, and is sent to the electrical layer signal processing module connected to the optical transceiver interface 1 through the optical transceiver interface 1 .
  • the wave combiner and the wave splitter implement the function of the wave splitter.
  • the light source is a wavelength-tunable light source.
  • a wavelength-tunable light source is used to generate an optical signal indicative of a specified wavelength.
  • the multiplexing and demultiplexing device shown in FIG. 4a includes a single wavelength-tunable light source.
  • the wavelength-tunable light source can be a full-band tunable laser.
  • the wavelength-tunable light source can be used to send optical signals of different wavelengths to the optical transceiver interfaces 1-N through the demultiplexer.
  • the multiplexing and demultiplexing apparatus shown in FIG. 4a further includes a processor.
  • the processor is configured to generate different wavelength information for the optical transceiver interfaces 1 to N respectively, and the different wavelength information is used to indicate different designated wavelengths, thereby distinguishing the optical transceiver interfaces 1 to N.
  • the processor in the multiplexing and demultiplexing apparatus can also be implemented by a logic device (eg, FPGA) or a CPU system.
  • the device for combining and demultiplexing includes a plurality of light sources. Multiple light sources are used to generate light signals indicative of specified wavelengths.
  • the wavelength combining and demultiplexing device shown in FIG. 4b includes light sources 1 to 3, and each light source may be a wavelength-tunable light source or a wavelength-fixed light source, which is not limited in this embodiment.
  • the light sources 1 to 3 respectively receive the wavelength information 1 to 3 from the processor.
  • the light source 1 receives the wavelength information 1, and the wavelength information 1 is used to indicate the specified wavelength ⁇ 1 .
  • the light source 1 generates an optical signal 1 indicating a specified wavelength ⁇ 1 according to the wavelength information 1 .
  • the device for combining and demultiplexing further includes a single combiner, and the combiner is used for combining multiple optical signals generated by multiple light sources.
  • the optical signals 1 to 3 respectively generated by the light sources 1 to 3 shown in FIG. 4b can be combined by a wave combiner and then input to the optical fiber (called the main optical path) in the wave combining and demultiplexing device.
  • Optical signals 1 to 3 enter the demultiplexer through optical fibers, and are distributed to the corresponding optical transceiver interfaces by the demultiplexer.
  • the optical signals indicating the specified wavelengths generated by the multiple light sources cover wavelength bands that do not completely overlap.
  • the optical signal indicating the specified wavelength generated by the light source 1 shown in FIG. 4b covers the C-band
  • the optical signal indicating the specified wavelength generated by the light source 2 covers the L-band
  • the optical signal generated by the light source 3 indicating the specified wavelength covers the C-band and the L-band band.
  • the light sources 1 to 3 can cover the wavelength bands commonly used in the DWDM system. It should be noted that since the light signal indicating the specified wavelength generated by the light source 3 covers the C-band and the L-band, when the light source 1 or the light source 2 fails, the light source 3 can also serve as a backup of the light source 1 or the light source 2.
  • An embodiment of the present application provides a wavelength configuration system, where the wavelength configuration system includes an electrical layer signal processing device and a wave demultiplexing device.
  • the electrical layer signal processing device automatically configures the wavelength of the corresponding optical transceiver interface after receiving the optical signal sent by the multiplexing and demultiplexing device.
  • the wavelength configuration system does not need a complicated and error-prone manual configuration process, and completes the wavelength configuration of the electrical layer signal processing device more accurately in a shorter time.
  • FIG. 5 provides a wavelength configuration method according to an embodiment of the present application.
  • the wavelength configuration method is applied to the wavelength configuration system as shown in Figure 1 to Figure 4b, and is realized by the interaction between the electrical layer signal processing device and the wavelength multiplexing and demultiplexing device, and includes the following steps:
  • the wavelength multiplexing and demultiplexing device sends an optical signal to the electrical layer signal processing device, where the optical signal is used to indicate a specified wavelength to be configured by the electrical layer signal processing device.
  • the electrical layer signal processing apparatus acquires the specified wavelength indicated by the optical signal.
  • the electrical layer signal processing apparatus configures the wavelength of the optical transceiver interface connected to the wavelength multiplexing and demultiplexing apparatus in the electrical layer signal processing apparatus to the designated wavelength indicated by the optical signal.
  • the electrical layer signal processing apparatus acquires the specified wavelength indicated by the optical signal
  • the specific execution steps are: the electrical layer signal processing apparatus acquires wavelength information carried by the optical signal.
  • the wavelength information includes a starting position and a designated wavelength, or the wavelength information includes an identifier of the starting position and the designated wavelength.
  • the wavelength information may also include check locations.
  • the wavelength-tunable light source in the wavelength multiplexing and demultiplexing device before the wavelength multiplexing and demultiplexing device sends the optical signal to the electrical layer signal processing device, the wavelength-tunable light source in the wavelength multiplexing and demultiplexing device generates an optical signal indicating a specified wavelength.
  • a plurality of light sources in the wave combining and demultiplexing device before the wave combining and demultiplexing device sends the optical signal to the electrical layer signal processing device, a plurality of light sources in the wave combining and demultiplexing device generate an optical signal indicating a specified wavelength.
  • the multiplexer in the wave multiplexing and demultiplexing device combines multiple optical signals generated by multiple light sources.
  • steps 101 to 103 in the embodiment of FIG. 5 and specific execution processes and detailed descriptions in various implementation manners can refer to the corresponding descriptions in FIG. 1 to FIG. 4 b , and are not repeated here.
  • An embodiment of the present application provides a wavelength configuration method, where the wavelength configuration method is implemented by interaction between an electrical layer signal processing device and a wavelength multiplexing and demultiplexing device.
  • the wavelength combining and demultiplexing device sends an optical signal indicating a specified wavelength to the electrical layer signal processing device, and the electrical layer signal processing device automatically configures the wavelength after receiving the optical signal. It can be seen that the wavelength configuration method does not require manual participation in the configuration, and the wavelength configuration is automatically completed.
  • FIG. 6 is a schematic diagram of a DWDM wavelength automatic configuration system according to an embodiment of the present application.
  • the DWDM wavelength automatic configuration system shown in FIG. 6 includes M DWDM electrical layer single boards and multiplexing and demultiplexing single boards.
  • M ⁇ N the DWDM electrical layer boards 1 to M (M ⁇ N) can be connected to any M optical transceiver interfaces among the optical transceiver interfaces 1 to N of the multiplexing and demultiplexing boards.
  • the specific connection method may be connection through optical fiber, or connection using other optical waveguide materials.
  • the DWDM electrical layer single board shown in FIG. 6 has the functions of the electrical layer signal processing device shown in the embodiments of FIGS. 1 to 5 .
  • the multiplexing/demultiplexing board shown in FIG. 6 has the functions of the multiplexing/demultiplexing device shown in the embodiments of FIG. 1 to FIG. 5 .
  • the multiplexing/demultiplexing single board receives an automatic configuration start instruction, and starts to send an optical signal for indicating a specified wavelength to the optical transceiver interfaces 1-N in a polling manner.
  • the light source in the multiplexing/demultiplexing board generates an optical signal 1 indicating a specified wavelength ⁇ 1 , and distributes the optical signal 1 to the optical transceiver interface 1 through the multiplexer and the wavelength splitter.
  • the optical transceiver interface 1 in the multiplexing/demultiplexing board sends the optical signal 1 .
  • the multiplexing/demultiplexing board After the optical transceiver interface 1 in the multiplexing/demultiplexing board sends the optical signal 1, no optical signal is detected within the specified timing period. Then, the multiplexing/demultiplexing board determines that the optical transceiver interface 1 is not connected to the DWDM electrical layer board, and continues to poll the next optical transceiver interface.
  • the light source in the multiplexing/demultiplexing board generates an optical signal 2 for indicating a specified wavelength ⁇ 2 , and distributes the optical signal 2 to the optical transceiver interface 2 through the multiplexer and the wavelength splitter.
  • the optical transceiver interface 2 in the multiplexing/demultiplexing board sends the optical signal 2 .
  • the DWDM electrical layer single board 1 connected to the optical transceiver interface 2 receives the optical signal 2 , and acquires the specified wavelength ⁇ 2 indicated by the optical signal 2 .
  • the DWDM electrical layer board 1 configures the wavelength of its own optical transceiver interface to the specified wavelength ⁇ 2 .
  • the optical transceiver interface 2 in the multiplexing/demultiplexing board sends the optical signal 2
  • the optical signal is detected within a specified timing period.
  • the wavelength combining/demultiplexing board determines that the wavelength configuration of the DWDM electrical layer board 1 connected to the optical transceiver interface 2 is successful.
  • the multiplexing/demultiplexing board continues to poll the next optical transceiver interface.
  • step 210 does not refer to a single step, but refers to a series of steps similar to steps 201 to 209 .
  • step 210 does not refer to a single step, but refers to a series of steps similar to steps 201 to 209 .
  • steps 201 to 210 reference may be made to the corresponding descriptions in the embodiments of FIG. 1 to FIG. 5 . In order to avoid repetition, detailed description is omitted here.
  • the automatic configuration start instruction received by the multiplexing/demultiplexing board in step 201 may be a deployment instruction sent by the management device, used to instruct the DWDM wavelength automatic configuration system to activate the service and enable wavelength automatic configuration.
  • the multiplexing/demultiplexing single board sends an automatic configuration completion instruction to the management device to notify the management device that the DWDM wavelength automatic configuration system is successfully configured.
  • the DWDM wavelength automatic configuration system can realize related business functions.
  • a timer may be set in the multiplexing/demultiplexing board in step 204 .
  • the multiplexing/demultiplexing board polls the optical transceiver interfaces 1-N
  • the multiplexing/demultiplexing board uses a timer to poll the optical transceiver interfaces 1-N according to the specified timing period.
  • the period of the timer set on the multiplexing/demultiplexing board is T.
  • the optical transceiver interface n (1 ⁇ n ⁇ N) on the multiplexing/demultiplexing board sends the optical signal n, the timer starts to count.
  • the optical transceiver interface n detects an optical signal within the period T, or the optical power detection device in the multiplexing/demultiplexing board detects the optical power of the specified wavelength ⁇ n, it means that the DWDM electrical layer connected to the optical transceiver interface n is single.
  • the wavelength configuration of the board is successful.
  • the optical transceiver interface n can realize the detection of the optical signal through a photodiode (photodiode, PD).
  • the optical transceiver interface n does not detect an optical signal within the period T, or the optical power detection device in the multiplexing/demultiplexing board does not detect the optical power of the specified wavelength ⁇ n, it means that the optical transceiver interface n is not connected to the DWDM power supply. Layer veneer.
  • FIG. 7 is a schematic diagram of a wavelength configuration apparatus provided by an embodiment of the present application.
  • the wavelength configuration apparatus shown in FIG. 7 can implement one or more steps in the method flow of the above-mentioned embodiment of FIG. 5 . In order to avoid repetition, detailed description is omitted here.
  • the wavelength configuration apparatus includes an interface 701 and at least one processor 702 . Wherein, the interface 701 and the processor 702 can be connected to each other through one or more communication buses, and can also be connected through other ways.
  • the interface 701 is used to receive optical signals, or to transmit optical signals.
  • the interface 701 is an optical transceiver interface.
  • the processor 702 is used to process the optical signal.
  • the processor is used to obtain the specified wavelength indicated by the optical signal.
  • the processor 702 may include one or more processors, for example, the processor 702 may be one or more central processing units (central processing units, CPU), network processors (network processors, NP), hardware chips or other random combination.
  • the processor 702 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • An embodiment of the present application provides a chip or a chip system, the chip or chip system includes at least one processor and an interface, the interface and the at least one processor are interconnected by a line, and the at least one processor is used to run a computer program or instruction to perform the present application
  • the wavelength configuration method in the embodiment may be an input/output interface, a pin or a circuit, and the like.
  • the chip system in the above aspects may be a system on chip (system on chip, SOC), or a baseband chip, etc.
  • the baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, an interface module, and the like.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored on or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to transmit to another website site, computer, server or data center.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state disks, SSD)) etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例提供一种波长配置装置、系统和波长配置方法。该波长配置系统包括电层信号处理装置和合分波装置。其中,合分波装置通过光信号指示电层信号处理装置待配置的指定波长。电层信号处理装置接收光信号后自动配置光收发接口的波长。该波长配置系统无需复杂、易出错的人工配置过程,自动完成波长配置。

Description

一种波长配置装置、系统和波长配置方法
本申请要求于2021年3月5日提交中国国家知识产权局、申请号202110245357.6、申请名称为“一种波长配置装置、系统和波长配置方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种波长配置装置、系统和波长配置方法。
背景技术
密集波分复用(dense wavelength division multiplexing,DWDM)技术可以将一组不同波长的光通过一根光纤进行传送,可以提高光纤骨干网的传输带宽。更确切地说,DWDM技术是在一根光纤中,多路复用单个光纤载波的紧密光谱间距,以便利用可以达到的传输性能(例如,达到最小程度的色散或者衰减)。在给定的信息传输容量下,就可以减少所需要的光纤的总数量。
目前,DWDM典型组网结构包括波分复用系统电层单板(如光传输单元(optical transport unit,OTU)单板)、合分波单板、光监控信道(optical supervisory channel,OSC)单板等。其中,波分复用系统电层单板的线路口波长要严格和合分波单板的端口波长一致。否则DWDM系统中的业务不能连通。因此,在开局组网时需要人工配置波分复用系统电层单板的线路口波长,以及人工配置与该波分复用系统电层单板相连接的合分波单板的端口波长,从而确保光纤连接正确。目前,波分复用系统电层单板的线路口波长依赖人工配置,耗时较长且出错概率高。
发明内容
本申请实施例提供一种波长配置装置、系统和波长配置方法。该波长配置方法实现了波分复用系统电层单板的波长自动配置,有利于更快、更准确地完成波长配置。
第一方面,本申请实施例提供一种波长配置系统。该波长配置系统包括电层信号处理装置和合分波装置。合分波装置用于向电层信号处理装置发送光信号,光信号用于指示电层信号处理装置待配置的指定波长。电层信号处理装置用于获取光信号指示的指定波长。电层信号处理装置还用于将电层信号处理装置中与合分波装置相连接的光收发接口的波长配置为光信号指示的指定波长。
电层信号处理装置接收合分波装置发送的光信号后自动配置对应的光收发接口的波长。该波长配置系统无需复杂、易出错的人工配置过程,在更短时间内更准确地完成波长配置。
在一种可能的设计中,电层信号处理装置用于获取光信号承载的波长信息。波长信息用于指示指定波长或指定波长的标识。可见,电层信号处理装置可以通过波长信息获取指定波长或指定波长的标识。
在一种可能的设计中,波长信息包括起始位置和指定波长;或者,波长信息包括起始位置和指定波长的标识。
在一种可能的设计中,波长信息还包括校验位置。可见,电层信号处理装置可以根据检 验位置携带的校验信息对解调出的波长信息进行校验,提高解调的信息的准确性。
在一种可能的设计中,合分波装置包括单个波长可调光源。波长可调光源用于生成指示指定波长的光信号。可见,合分波装置可以通过一个波长可调光源实现针对不同光收发接口指定不同波长。
在一种可能的设计中,合分波装置包括多个光源。多个光源用于生成指示指定波长的光信号,指示指定波长的光信号覆盖不完全重合的波段。可见,合分波装置还可以通过多个光源实现针对不同光收发接口指定不同波长。
在一种可能的设计中,合分波装置还包括合波器。合波器用于将多个光源生成的多个光信号进行合并。可见,合分波装置中还可以增加合波器将多个光源的光信号耦合至同一光纤中传输。
第二方面,本申请实施例提供一种电层信号处理装置。该电层信号处理装置包括处理器和光收发接口。光收发接口用于接收来自合分波装置的光信号。光信号用于指示电层信号处理装置待配置的指定波长。处理器用于获取所述光信号指示的指定波长。处理器还用于将电层信号处理装置中与合分波装置相连接的光收发接口的波长配置为光信号指示的指定波长。
可见,电层信号处理装置接收合分波装置发送的光信号后自动配置光收发接口的波长,更快、更准确地完成波长配置。
在一种可能的设计中,处理器用于获取光信号承载的波长信息。波长信息包括起始位置和指定波长,或者波长信息包括起始位置和指定波长的标识。波长信息还可以包括校验位置。其中,起始位置、指定波长、指定波长的标识和校验位置请参考第一方面中对应的描述,在此不再赘述。
第三方面,本申请实施例提供一种合分波装置。该合分波装置包括光源和光收发接口。光源用于生成光信号。光信号用于指示电层信号处理装置待配置的指定波长。光收发接口用于向电层信号处理装置发送光信号。
可见,合分波装置通过光信号向电层信号处理装置指示指定波长,有利于电层信号处理装置自动配置光收发接口的波长为指定波长。
在一种可能的设计中,合分波装置还包括处理器。处理器用于生成波长信息,波长信息包括起始位置和指定波长,或者波长信息包括起始位置和指定波长的标识。波长信息还可以包括校验位置。其中,起始位置、指定波长、指定波长的标识和校验位置请参考第一方面中对应的描述,在此不再赘述。
在一种可能的设计中,合分波装置的光源为波长可调光源。波长可调光源用于生成指示指定波长的光信号。
在一种可能的设计中,合分波装置的光源包括多个光源。多个光源用于生成指示指定波长的光信号,指示指定波长的光信号覆盖不完全重合的波段。
在一种可能的设计中,合分波装置还包括合波器。合波器用于将多个光源生成的多个光信号进行合并。
第四方面,本申请实施例提供一种波长配置方法。该波长配置方法应用于如第一方面所示的波长配置系统中。其中,合分波装置向电层信号处理装置发送光信号。光信号用于指示电层信号处理装置待配置的指定波长。电层信号处理装置获取光信号指示的指定波长。电层信号处理装置将电层信号处理装置中与合分波装置相连接的光收发接口的波长配置为光信号指示的指定波长。
在一种可能的设计中,电层信号处理装置获取光信号承载的波长信息。波长信息包括起 始位置和指定波长,或者波长信息包括起始位置和指定波长的标识。波长信息还可以包括校验位置。其中,起始位置、指定波长、指定波长的标识和校验位置请参考第一方面中对应的描述,在此不再赘述。
在一种可能的设计中,合分波装置包括波长可调光源。合分波装置中的波长可调光源生成指示指定波长的光信号。
在一种可能的设计中,合分波装置包括多个光源。合分波装置的多个光源生成指示指定波长的光信号。指示指定波长的光信号覆盖不完全重合的波段。
在一种可能的设计中,合分波装置还包括合波器。合分波装置中的合波器将多个光源生成的多个光信号进行合并。
第五方面,本申请实施例提供另一种波长配置方法。该波长配置方法应用于如第二方面所示的电层信号处理装置。其中,电层信号处理装置接收来自合分波装置的光信号。光信号用于指示电层信号处理装置待配置的指定波长。电层信号处理装置获取光信号指示的指定波长。电层信号处理装置将电层信号处理装置中与合分波装置相连接的光收发接口的波长配置为光信号指示的指定波长。
第六方面,本申请实施例提供再一种波长配置方法。该波长配置方法应用于如第三方面所示的合分波装置。其中,合分波装置生成光信号,光信号用于指示电层信号处理装置待配置的指定波长。合分波装置向电层信号处理装置发送光信号。
第七方面,本申请实施例提供一种波长配置装置。该波长配置装置可以为设备或设置于设备中的芯片或电路。该波长配置装置包括用于执行上述第四、第五、第六方面或这三方面中任意一种可能的设计中所提供的波长配置方法的单元和/或模块,因此也能实现第四、第五、第六方面或这三方面中提供的波长配置方法所具备的有益效果。
第八方面,本申请实施例提供一种芯片或者芯片系统。该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联。至少一个处理器用于运行计算机程序或指令,以进行第四、第五、第六方面或这三方面中任一种可能的实现方式中任一项所描述的方法。
附图说明
图1为本申请实施例提供的一种波长配置系统的示意图;
图2为本申请实施例提供的一种波长信息的示意图;
图3为本申请实施例提供的另一种波长配置系统的示意图;
图4a为本申请实施例提供的再一种波长配置系统的示意图;
图4b为本申请实施例提供的又一种波长配置系统的示意图;
图5为本申请实施例提供的一种波长配置方法的流程示意图;
图6为本申请实施例提供的一种DWDM波长自动配置系统的示意图;
图7为本申请实施例提供的一种波长配置装置的示意图。
具体实施方式
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中术语“多个”的含义是指两个或两个以上。例如,多个光源是指两个或两个以上的光源。
应理解,在本文中对各种所述示例的描述中所使用的术语只是为了描述特定示例,而并非旨在进行限制。如在对各种所述示例的描述和所附权利要求书中所使用的那样,单数形式“一个(“a”,“an”)”和“该”旨在也包括复数形式,除非上下文另外明确地指示。
应理解,在本申请的各个实施例中,各个过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,术语“包括”(也称“includes”、“including”、“comprises”和/或“comprising”)当在本说明书中使用时指定存在所陈述的特征、整数、步骤、操作、元素、和/或部件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元素、部件、和/或其分组。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
密集波分复用(dense wavelength division multiplexing,DWDM)技术可以将一组不同波长的光通过一根光纤进行传送。目前,DWDM典型组网结构包括波分复用系统电层单板(如光传输单元(optical transport unit,OTU)单板)、合分波单板、光监控信道(optical supervisory channel,OSC)单板等。其中,波分复用系统电层单板的线路口波长要严格和合分波单板的端口波长一致,否则DWDM系统中的业务不能连通。因此,在开局组网时需要人工配置波分复用系统电层单板的线路口波长,以及人工配置与该波分复用系统电层单板相连接的合分波单板的端口波长,从而确保光纤连接正确。目前,波分复用系统电层单板的线路口波长依赖人工配置,但是人工规划、人工连接光纤不出错的概率较低。
为了解决上述问题,本申请实施例提供一种波长配置方法。该方法应用于一种波长配置系统中。该波长配置方法实现了波分复用系统电层单板的线路口波长自动配置,有利于更快、更准确地完成波长配置。
图1为本申请实施例提供的一种波长配置系统的示意图。图1所示的波长配置系统包括电层信号处理装置和合分波装置。应注意,本申请实施例提供的波长配置方法主要由电层信号处理装置和合分波装置实现,故图1所示的波长配置系统没有涵盖其他模块。但图1所描述的波长配置系统可以是DWDM系统,即包括其他单板,如OSC单板等,本实施例不作限定。
其中,合分波装置用于向电层信号处理装置发送光信号,光信号用于指示电层信号处理装置待配置的指定波长。由于电层信号处理装置的光收发接口和合分波装置的光收发接口的波长一致时,电层信号处理装置和合分波装置才能正常建立光通路,以便传输业务。本实施例中的合分波装置通过光信号承载指定波长,以指示电层信号处理装置配置指定波长。
对应的,电层信号处理装置用于接收来自合分波装置的光信号,并用于获取光信号指示的指定波长。例如,电层信号处理装置用于获取光信号承载的波长信息。也就是说,本实施例中的光信号可以视为携带了波长信息的调制光信号。波长信息用于指示指定波长或指定波长的标识。例如,本实施例中的波长信息包括起始位置和指定波长,或者波长信息包括起始位置和指定波长的标识。
例如,图2为本申请实施例提供的一种波长信息的示意图。波长信息可以是多个信息比特,如图2中的00110等一整个字符串。为了使得电层信号处理装置识别波长信息中的起始 位置,本实施例中令起始位置为特殊的四位连续信息比特。例如,图2中的起始位置为特殊的四位连续信息比特(也可称为起始信息比特)0x55AA。也就是说,当电层信号处理装置检测到起始信息比特0x55AA时,电层信号处理装置确定起始信息比特0x55AA之后的信息比特为指定波长或者指定波长的标识对应的信息比特。
其中,电层信号处理装置根据如图2中的起始信息比特0x55AA之后的多个信息比特,译码获取指定波长或指定波长的标识。例如,电层信号处理装置译码获取如图2中的起始信息比特后的多个信息比特指示的指定波长为λ 1。又例如,电层信号处理装置译码获取如图2中的起始信息比特后的多个信息比特指示的指定波长的标识为5号。根据预设的指定波长的标识与指定波长的对应关系,电层信号处理装置确定指定波长为5号标识对应的指定波长λ 1
可选的,波长信息的多个信息比特中还包括指示指定波长或指定波长的标识结束的特殊的四位连续信息比特(也可称为结束信息比特)。例如,图2中的波长信息的多个信息比特中存在四位连续信息比特0x0000,用于指示指定波长或指定波长的标识结束。应理解,上述信息比特中的“1”代表合分波装置中的光源打开发光,信息比特中的“0”代表合分波装置中的光源关闭不发光。波长信息通过合分波装置中的光源的打开(有光)或者关闭(无光)生成光信号发送出去。对应的,电层信号处理装置根据光信号来解码获取波长信息。
为了提高传输的可靠性,波长信息中还可以包括校验位置。例如,图2中的校验位置也为多个校验信息比特,该校验信息比特用于指示电层信号处理装置采用指定的校验方式对译码获取的信息进行校验。
应注意,图2所示的波长信息仅为一种示例。本实施例中的波长信息还可以通过其他方式来实现。例如,合分波装置调整光信号的光功率,使得不同光功率的光信号携带波长信息。电层信号处理装置接收不同光功率的光信号,也可以获取光信号指示的指定波长。又例如,波长信息还可以是一种指示帧,按照一定的帧格式进行设计,并且在该指示帧中承载波长信息和校验信息。
电层信号处理装置还用于将电层信号处理装置中与合分波装置相连接的光收发接口的波长配置为光信号指示的指定波长。例如,电层信号处理装置确定指定波长为λ 1,则将与合分波装置相连接的光收发接口的波长配置为λ 1
应注意,本申请实施例中的电层信号处理装置和合分波装置可以部署在同一个站点。例如,电层信号处理装置和合分波装置部署在同一个机房的机架上,或者部署在同一个机房的不同机架上,或者部署在不同机房中。电层信号处理装置和合分波装置还可以部署在不同站点,本实施例不作限定。电层信号处理装置和合分波装置之间通过光纤相连接。
在一种示例中,电层信号处理装置例如为DWDM系统中的DWDM电层单板,或者例如为OTU单板。具体的,电层信号处理装置包括处理器和光收发接口,如图3所示。处理器可以通过逻辑器件(如现场可编程逻辑门阵列(field programmable gate array,FPGA))或中央处理器(central processing unit,CPU)系统实现。如电层信号处理装置为OTU单板,光收发接口可以是OTU单板中的线路口。
其中,光收发接口用于接收来自合分波装置的光信号,光信号用于指示电层信号处理装置待配置的指定波长。处理器用于获取光信号指示的指定波长。处理器还用于将电层信号处理装置中与合分波装置相连接的光收发接口的波长配置为光信号指示的指定波长。具体实现方式中,处理器中的逻辑器件获取光信号承载的波长信息,并对波长信息进行处理,获取指定波长。对波长信息的相关描述可以参考图2中对应的描述,在此不再赘述。
可选的,电层信号处理装置光收发接口波长配置成功后,光收发接口向对应的合分波装 置的光收发接口发送指定波长的光。例如,图3中的电层信号处理装置中的光收发接口的波长配置为λ 1,该光收发接口向合分波装置中相连接的光收发接口1发送波长为λ 1的光,表示电层信号处理装置的光收发接口的波长配置成功。
在一种实现方式中,电层信号处理装置还用于把各种业务信号(如万兆/十万兆(10GE/100GE)以太业务、同步数字体系(synchronous digital hierarchy,SDH)业务等)接入封装为满足DWDM系统要求的光信号(如OTU信号)。由于OTU信号为彩色光信号,可以接入合分波装置。当电层信号处理装置用于对各种业务信号进行处理时,电层信号处理装置还包括多个端口和业务处理模块,如图3中的虚线模块所示。例如,电层信号处理装置还包括端口1~N,N为大于1的正整数。其中,端口1用于接入以太业务,端口2用于接入SDH业务,以此类推,各个端口用于接入不同的业务或者不接入业务。业务处理模块用于将各个端口接入的业务封装为OTU信号。业务处理模块将OTU信号传输至光收发接口,由光收发接口将OTU信号发送至合分波装置。应注意,图3中的业务处理模块所执行的功能也可以是处理器来实现的。也就是说,图3中的处理器既用于对来自合分波装置的光信号进行处理,又用于对来自多个端口的业务进行处理。
在一种示例中,合分波装置例如可以是DWDM系统中的合分波单板。DWDM系统中的合分波单板用于把不同波长彩色光信号合并至同一根光纤中传输。反之,合分波单板也可以把同一根光纤中的合波光分解开,分别从不同光口发送至对应的OTU单板。
其中,合分波装置包括光源、光收发接口、合波器和分波器,如图3所示。光源用于生成光信号,光信号用于指示电层信号处理装置待配置的指定波长。光收发接口用于向电层信号处理装置发送光信号。其中,合分波装置可以包括多个光收发接口,如图3中的合分波装置包括光收发接口1~N。光收发接口1~N最多可以与N个电层信号处理装置相连接,并且光收发接口1~N要求分别接入指定波长光信号。合波器和分波器用于将多路光信号合并为一路光信号,或者将一路光信号分配至指定的光收发接口。例如,图3中的光源生成指示指定波长的光信号。光信号通过合波器和分波器分配至光收发接口1,并通过光收发接口1发送至与光收发接口1相连接的电层信号处理模块。应注意,对于图3中的光源发送的光信号来说,合波器和分波器实现的是分波器的功能。
在一种实现方式中,光源为波长可调光源。波长可调光源用于生成指示指定波长的光信号。例如,图4a所示的合分波装置中包括单个波长可调光源。该波长可调光源可以是一个全波段可调的激光器。波长可调光源可以用于通过分波器向光收发接口1~N发送不同波长的光信号。可选的,图4a所示的合分波装置中还包括处理器。处理器用于为光收发接口1~N分别生成不同的波长信息,不同的波长信息用于指示不同的指定波长,从而区分光收发接口1~N。类似的,合分波装置中的处理器也可以通过逻辑器件(如FPGA)或CPU系统实现。
在另一种实现方式中,合分波装置包括多个光源。多个光源用于生成指示指定波长的光信号。例如,图4b所示的合分波装置中包括光源1~3,各个光源可以是波长可调光源,也可以是波长固定光源,本实施例不作限定。其中,光源1~3分别接收来自处理器的波长信息1~3。例如,光源1接收波长信息1,波长信息1用于指示指定波长λ 1。光源1根据波长信息1生成用于指示指定波长λ 1的光信号1。以此类推,光源2根据波长信息2生成用于指示指定波长λ 2的光信号2,光源3根据波长信息3生成用于指示指定波长λ 3的光信号3。可选的,合分波装置还包括单一的合波器,合波器用于将多个光源生成的多个光信号进行合并。例如,图4b所示的光源1~3分别生成的光信号1~3可以通过合波器合波后,在输入至合分波装置中的光纤(称为主光路)。光信号1~3通过光纤进入分波器,由分波器分配至对应的光收发接口。
可选的,多个光源生成的指示指定波长的光信号覆盖不完全重合的波段。例如,图4b所示的光源1生成的指示指定波长的光信号覆盖C波段,光源2生成的指示指定波长的光信号覆盖L波段,光源3生成的指示指定波长的光信号覆盖C波段和L波段。那么光源1~3可以覆盖DWDM系统中常用的波段。应注意,由于光源3生成的指示指定波长的光信号覆盖C波段和L波段,当光源1或者光源2失效时,光源3还可以作为光源1或光源2的备份。
本申请实施例提供一种波长配置系统,该波长配置系统包括电层信号处理装置和分合波装置。其中,电层信号处理装置接收合分波装置发送的光信号后自动配置对应的光收发接口的波长。该波长配置系统无需复杂、易出错的人工配置过程,在更短时间内更准确地完成电层信号处理装置的波长配置。
图5为本申请实施例提供一种波长配置方法。该波长配置方法应用于如图1至图4b所示的波长配置系统中,由电层信号处理装置和合分波装置之间的交互实现,包括以下步骤:
101,合分波装置向电层信号处理装置发送光信号,光信号用于指示电层信号处理装置待配置的指定波长。
102,电层信号处理装置获取光信号指示的指定波长。
103,电层信号处理装置将电层信号处理装置中与合分波装置相连接的光收发接口的波长配置为光信号指示的指定波长。
在一种实现方式中,电层信号处理装置获取光信号指示的指定波长,具体执行步骤为:电层信号处理装置获取光信号承载的波长信息。波长信息包括起始位置和指定波长,或者波长信息包括起始位置和指定波长的标识。波长信息还可以包括校验位置。其中,起始位置、指定波长、指定波长的标识和校验位置请参考图1至图4b实施例中对应的描述,在此不再赘述。
在一种实现方式中,合分波装置向电层信号处理装置发送光信号之前,合分波装置中的波长可调光源生成指示指定波长的光信号。
在一种实现方式中,合分波装置向电层信号处理装置发送光信号之前,合分波装置中的多个光源生成指示指定波长的光信号。可选的,合分波装置中的合波器将多个光源生成的多个光信号进行合并。
综上,图5实施例中的步骤101~103以及多种实现方式中的具体执行过程和详细描述,都可以参考图1至图4b中对应的描述,在此不再赘述。
本申请实施例提供一种波长配置方法,该波长配置方法由电层信号处理装置和合分波装置之间的交互实现。其中,合分波装置向电层信号处理装置发送指示指定波长的光信号,电层信号处理装置接收光信号后自动配置波长。可见,该波长配置方法无需人工参与配置,自动完成波长配置。
基于上述图1至图5实施例中对本申请实施例提供的波长配置系统以及波长配置方法的描述,下面对波长配置方法在DWDM波长自动配置系统中的整体实现过程进行详细的描述。图6为本申请实施例提供的一种DWDM波长自动配置系统的示意图。其中,图6所示的DWDM波长自动配置系统包括M个DWDM电层单板和合分波单板。本实施例中假设DWDM电层单板1~M(M≤N)可以与合分波单板的光收发接口1~N中的任意M个光收发接口相连接。具体连接方式,可以是通过光纤相连接,或者是采用其他光波导材料相连接。其中,图6所示的DWDM电层单板具备图1至图5实施例中所示的电层信号处理装置的功能。图6所示的合分波单板具备图1至图5实施例中所示的合分波装置的功能。
下面对本申请实施例提供的波长配置方法应用于如图6所示的DWDM波长自动配置系 统中的具体步骤进行描述。
201,合分波单板接收自动配置启动指令,开始采用轮询的方式向光收发接口1~N发送用于指示指定波长的光信号。
202,合分波单板中的光源生成用于指示指定波长λ 1的光信号1,并将光信号1通过合波器和分波器分配至光收发接口1。
203,合分波单板中的光收发接口1发送光信号1。
204,合分波单板中的光收发接口1发送光信号1后,在指定的定时周期内未检测到任何光信号。则合分波单板确定光收发接口1未连接DWDM电层单板,继续轮询下一个光收发接口。
205,合分波单板中的光源生成用于指示指定波长λ 2的光信号2,并将光信号2通过合波器和分波器分配至光收发接口2。
206,合分波单板中的光收发接口2发送光信号2。
207,与光收发接口2相连接的DWDM电层单板1接收光信号2,获取光信号2指示的指定波长λ 2
208,DWDM电层单板1将自身的光收发接口的波长配置为指定波长λ 2
209,合分波单板中的光收发接口2发送光信号2后,在指定的定时周期内检测到光信号。则合分波单板确定与光收发接口2相连接的DWDM电层单板1的波长配置成功。合分波单板继续轮询下一个光收发接口。
210,根据步骤201至步骤209类推,合分波单板中余下的光收发接口若与DWDM电层单板相连接,则向与其相连接的DWDM电层单板发送用于指示指定波长的光信号。直至与合分波单板上的光收发接口相连接的全部DWDM电层单板的波长配置成功。应理解,步骤210不是指单个的步骤,而是指代了类似于步骤201至步骤209的一系列步骤。上述步骤201至步骤210的具体实现方式可以参考图1至图5实施例中对应的描述。为避免重复,在此不再详细赘述。
在一种实现方式中,步骤201中合分波单板接收的自动配置启动指令可以是管理设备发送的开局指令,用于指示DWDM波长自动配置系统开通业务开启波长自动配置。可选的,当步骤210执行完成后,合分波单板向管理设备发送自动配置完成指令,以通知管理设备该DWDM波长自动配置系统配置成功。配置完成后,该DWDM波长自动配置系统可以实现相关的业务功能。
在一种实现方式中,步骤204中的合分波单板中可以设置定时器。当合分波单板对光收发接口1~N进行轮询时,合分波单板采用定时器,按照指定的定时周期轮询光收发接口1~N。例如,合分波单板中设置的定时器的周期为T。当合分波单板中的光收发接口n(1≤n≤N)发出光信号n后,定时器开始计时。若在周期T时间内,光收发接口n检测到光信号,或者合分波单板中的光功率检测器件检测到指定波长λ n的光功率,则表示光收发接口n连接的DWDM电层单板的波长配置成功。其中,光收发接口n可以通过光电二极管(photodiode,PD)实现光信号的检测。若在周期T时间内,光收发接口n未检测到光信号,或者合分波单板中的光功率检测器件未检测到指定波长λ n的光功率,则表示光收发接口n未连接DWDM电层单板。
图7为本申请实施例提供的一种波长配置装置的示意图。图7所示的波长配置装置能够实现上述图5实施例的方法流程中的一个或者多个的步骤。为避免重复,在此不再详细赘述。该波长配置装置包括接口701和至少一个处理器702。其中,接口701和处理器702可以通 过一条或多条通信总线相互连接,也可以通过其它方式相连接。
在一种实现方式中,接口701用于接收光信号,或者发送光信号。例如,接口701为光收发接口。
在一种实现方式中,处理器702用于对光信号进行处理。例如,处理器用于获取光信号指示的指定波长。其中,处理器702可以包括一个或多个处理器,例如该处理器702可以是一个或多个中央处理器(central processing unit,CPU),网络处理器(network processor,NP),硬件芯片或者其任意组合。在处理器702是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
本申请实施例提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以进行本申请实施例中的波长配置方法。其中,接口可以为输入/输出接口、管脚或电路等。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。

Claims (24)

  1. 一种波长配置系统,其特征在于,所述波长配置系统包括电层信号处理装置和合分波装置,其中:
    所述合分波装置,用于向所述电层信号处理装置发送光信号,所述光信号用于指示所述电层信号处理装置待配置的指定波长;
    所述电层信号处理装置用于获取所述光信号指示的指定波长;
    所述电层信号处理装置还用于将所述电层信号处理装置中与所述合分波装置相连接的光收发接口的波长配置为所述光信号指示的指定波长。
  2. 根据权利要求1所述的系统,其特征在于,所述电层信号处理装置用于获取所述光信号指示的指定波长,包括:
    所述电层信号处理装置用于获取所述光信号承载的波长信息,所述波长信息用于指示所述指定波长或所述指定波长的标识。
  3. 根据权利要求2所述的系统,其特征在于,所述波长信息包括起始位置和所述指定波长;或者,所述波长信息包括起始位置和所述指定波长的标识。
  4. 根据权利要求2或3所述的系统,其特征在于,所述波长信息还包括校验位置。
  5. 根据权利要求1所述的系统,其特征在于,所述合分波装置包括单个波长可调光源;所述波长可调光源用于生成指示指定波长的光信号。
  6. 根据权利要求1所述的系统,其特征在于,所述合分波装置包括多个光源,所述多个光源用于生成指示指定波长的光信号,所述多个光源中不同的光源产生的光信号覆盖不完全重合的波段。
  7. 根据所述权利要求6所述的系统,其特征在于,所述合分波装置还包括合波器,所述合波器用于将所述多个光源生成的多个光信号进行合并。
  8. 一种电层信号处理装置,其特征在于,包括处理器和光收发接口;所述处理器和所述光收发接口相连接,其中:
    所述光收发接口用于接收来自合分波装置的光信号,所述光信号用于指示所述电层信号处理装置待配置的指定波长;
    所述处理器用于获取所述光信号指示的指定波长;
    所述处理器还用于将所述电层信号处理装置中与所述合分波装置相连接的光收发接口的波长配置为所述光信号指示的指定波长。
  9. 根据权利要求8所述的装置,其特征在于,所述处理器用于获取所述光信号指示的指定波长,包括:
    所述处理器用于获取所述光信号承载的波长信息,所述波长信息用于指示所述指定波长或所述指定波长的标识。
  10. 根据权利要求9所述的装置,其特征在于,所述波长信息包括起始位置和所述指定波长;或者,所述波长信息包括起始位置和所述指定波长的标识。
  11. 一种合分波装置,其特征在于,包括光源、光纤、合分波器和光收发接口;所述光源与所述光纤耦合,所述光纤连接至所述合分波器,所述合分波器与所述光收发接口相连接;
    所述光源用于生成光信号,所述光信号用于指示所述电层信号处理装置待配置的指定波长;
    所述光纤和所述合分波器用于将所述光信号传输至所述光收发接口;
    所述光收发接口用于向所述电层信号处理装置发送所述光信号。
  12. 根据权利要求11所述的装置,其特征在于,所述合分波装置还包括处理器,所述处理器用于生成波长信息;所述光信号承载所述波长信息,所述波长信息用于指示所述指定波长或所述指定波长的标识。
  13. 根据权利要求12所述的装置,其特征在于,所述波长信息包括起始位置和所述指定波长;或者,所述波长信息包括起始位置和所述指定波长的标识。
  14. 根据权利要求11所述的装置,其特征在于,所述光源为单个波长可调光源;所述光源用于生成光信号,包括:
    所述波长可调光源用于生成指示指定波长的光信号。
  15. 根据权利要求11所述的装置,其特征在于,所述光源包括多个光源,所述光源用于生成光信号,包括:
    所述多个光源用于生成指示指定波长的光信号,所述多个光源中不同的光源产生的光信号覆盖不完全重合的波段。
  16. 根据权利要求15所述的装置,其特征在于,所述合分波装置还包括合波器,所述合波器与所述光源相连接,所述合波器与所述光纤连接,所述合波器用于将所述多个光源生成的多个光信号进行合并。
  17. 一种波长配置方法,其特征在于,应用于波长配置系统,所述波长配置系统包括电层信号处理装置和合分波装置;所述方法包括:
    所述合分波装置向所述电层信号处理装置发送光信号,所述光信号用于指示所述电层信号处理装置待配置的指定波长;
    所述电层信号处理装置获取所述光信号指示的指定波长;
    所述电层信号处理装置将所述电层信号处理装置中与所述合分波装置相连接的光收发接口的波长配置为所述光信号指示的指定波长。
  18. 根据权利要求17所述的方法,其特征在于,所述电层信号处理装置获取所述光信号指示的指定波长,包括:
    所述电层信号处理装置获取所述光信号承载的波长信息;所述波长信息用于指示所述指定波长或所述指定波长的标识。
  19. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述合分波装置中的波长可调光源生成指示指定波长的光信号。
  20. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述合分波装置的多个光源生成指示指定波长的光信号,所述指示指定波长的光信号覆盖不完全重合的波段。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述合分波装置中的合波器将所述多个光源生成的多个光信号进行合并。
  22. 一种波长配置方法,其特征在于,应用于电层信号处理装置,所述方法包括:
    所述电层信号处理装置接收来自合分波装置的光信号,所述光信号用于指示所述电层信号处理装置待配置的指定波长;
    所述电层信号处理装置获取所述光信号指示的指定波长;
    所述电层信号处理装置将所述电层信号处理装置中与所述合分波装置相连接的光收发接口的波长配置为所述光信号指示的指定波长。
  23. 根据权利要求22所述的方法,其特征在于,所述电层信号处理装置获取所述光信号指示的指定波长,包括:
    所述电层信号处理装置获取所述光信号承载的波长信息,所述波长信息用于指示所述指定波长或所述指定波长的标识。
  24. 一种波长配置系统,其特征在于,包括:
    合分波装置,所述合分波装置为如权利要求11至15任意一项所述的合分波装置;
    多个电层信号处理装置,所述多个电层信号处理装置中的任意一个电层信号处理装置为如权利要求8至10任意一项所述的电层信号处理装置。
PCT/CN2022/078863 2021-03-05 2022-03-02 一种波长配置装置、系统和波长配置方法 WO2022184105A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22762568.8A EP4304114A1 (en) 2021-03-05 2022-03-02 Wavelength configuration apparatus and system, and wavelength configuration method
US18/460,117 US20230412298A1 (en) 2021-03-05 2023-09-01 Wavelength configuration apparatus and system, and wavelength configuration method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110245357.6 2021-03-05
CN202110245357.6A CN115021859A (zh) 2021-03-05 2021-03-05 一种波长配置装置、系统和波长配置方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/460,117 Continuation US20230412298A1 (en) 2021-03-05 2023-09-01 Wavelength configuration apparatus and system, and wavelength configuration method

Publications (1)

Publication Number Publication Date
WO2022184105A1 true WO2022184105A1 (zh) 2022-09-09

Family

ID=83064453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078863 WO2022184105A1 (zh) 2021-03-05 2022-03-02 一种波长配置装置、系统和波长配置方法

Country Status (4)

Country Link
US (1) US20230412298A1 (zh)
EP (1) EP4304114A1 (zh)
CN (1) CN115021859A (zh)
WO (1) WO2022184105A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103430572A (zh) * 2011-04-08 2013-12-04 华为技术有限公司 多波长无源光网络中的波长指示
WO2015186194A1 (ja) * 2014-06-03 2015-12-10 三菱電機株式会社 親局装置、子局装置、光通信システムおよび波長割当方法
CN106911419A (zh) * 2017-04-07 2017-06-30 青岛海信宽带多媒体技术有限公司 光模块的波长配置方法与装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6495785B2 (ja) * 2015-08-31 2019-04-03 日本電信電話株式会社 光伝送システム
CN109428665B (zh) * 2017-08-22 2020-10-23 中国电信股份有限公司 波分复用发送设备、接收设备、中继设备以及传输系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103430572A (zh) * 2011-04-08 2013-12-04 华为技术有限公司 多波长无源光网络中的波长指示
WO2015186194A1 (ja) * 2014-06-03 2015-12-10 三菱電機株式会社 親局装置、子局装置、光通信システムおよび波長割当方法
CN106911419A (zh) * 2017-04-07 2017-06-30 青岛海信宽带多媒体技术有限公司 光模块的波长配置方法与装置

Also Published As

Publication number Publication date
US20230412298A1 (en) 2023-12-21
EP4304114A1 (en) 2024-01-10
CN115021859A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
JP6873095B2 (ja) Roadmサービス側の光ファイバ接続をマッチングさせるための装置および方法
US7933518B2 (en) Intelligent optical systems and methods for optical-layer management
JPH03502033A (ja) 光通信回路網
EP3134986A1 (en) Apparatus and system for managing wavelengths in optical networks
JP2014513477A (ja) 海底光通信システムにおけるトランシーバの間でセキュア通信を確立するためのシステムおよび方法
JP6522659B2 (ja) 無線通信システムおよび無線ラジオ周波数装置
US8625984B2 (en) Transmission device, control device, and method of detecting erroneous connection of signal line
JP6907409B2 (ja) 較正機器及び方法、並びに波長分割多重化システム
CN115361088A (zh) 对光学网络中的光电收发器进行调谐的方法
US6868233B2 (en) Wavelength agile optical transponder for bi-directional, single fiber WDM system testing
US20190028190A1 (en) Passive Wavelength Division Mobile Fronthaul Network System
KR100645752B1 (ko) 파장분할다중방식 수동형 광 네트워크에서 광 선로종단장치
WO2019128953A1 (zh) 光线路终端的单板及光线路终端
WO2022184105A1 (zh) 一种波长配置装置、系统和波长配置方法
TW200415875A (en) Method and apparatus for testing network data signals in a wavelength division multiplexed optical network
US20230208522A1 (en) Communication system and method, and related device
US7650071B2 (en) Optical signal receiver, optical signal monitoring unit, and optical signal monitoring method
US11533107B2 (en) System and method of monitoring base station signal
WO2014134770A1 (zh) 光发射机、信号传输方法以及系统
US7076165B2 (en) Optical transponder with add/drop operation function of optical channels
US7471896B2 (en) Optical transponder and method for detecting and treating errors in optical channel sublayer of the optical transponder
US11728920B2 (en) Optical communication system and method of monitoring thereof
US11863237B2 (en) Optical communication device and method for setting wavelength thereof
US20220085877A1 (en) Optical communication device
WO2024139591A1 (zh) 一种光波长保护组倒换方法以及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022762568

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022762568

Country of ref document: EP

Effective date: 20231005

NENP Non-entry into the national phase

Ref country code: DE