WO2022183590A1 - 一种导流控制系统 - Google Patents
一种导流控制系统 Download PDFInfo
- Publication number
- WO2022183590A1 WO2022183590A1 PCT/CN2021/092296 CN2021092296W WO2022183590A1 WO 2022183590 A1 WO2022183590 A1 WO 2022183590A1 CN 2021092296 W CN2021092296 W CN 2021092296W WO 2022183590 A1 WO2022183590 A1 WO 2022183590A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- state
- balloon
- channel
- movable member
- Prior art date
Links
- 230000000694 effects Effects 0.000 claims abstract description 30
- 239000012530 fluid Substances 0.000 claims abstract description 29
- 238000012806 monitoring device Methods 0.000 claims abstract description 13
- 239000008280 blood Substances 0.000 claims description 52
- 210000004369 blood Anatomy 0.000 claims description 52
- 210000004351 coronary vessel Anatomy 0.000 claims description 19
- 210000003437 trachea Anatomy 0.000 claims description 12
- 230000003205 diastolic effect Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 210000001367 artery Anatomy 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000007872 degassing Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 32
- 229910052760 oxygen Inorganic materials 0.000 description 24
- 239000001301 oxygen Substances 0.000 description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 23
- 230000017531 blood circulation Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 16
- 230000008859 change Effects 0.000 description 14
- 210000000056 organ Anatomy 0.000 description 11
- 230000002612 cardiopulmonary effect Effects 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 230000000903 blocking effect Effects 0.000 description 6
- 210000003270 subclavian artery Anatomy 0.000 description 6
- 230000036770 blood supply Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 206010019280 Heart failures Diseases 0.000 description 4
- 210000000709 aorta Anatomy 0.000 description 4
- 230000000747 cardiac effect Effects 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000006213 oxygenation reaction Methods 0.000 description 4
- 230000010412 perfusion Effects 0.000 description 4
- 230000036772 blood pressure Effects 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 238000002618 extracorporeal membrane oxygenation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 206010007556 Cardiac failure acute Diseases 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007954 hypoxia Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 238000009565 veno-venous ECMO Methods 0.000 description 2
- 241001631457 Cannula Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000004199 lung function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001706 oxygenating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1601—Control or regulation
- A61M1/1603—Regulation parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1698—Blood oxygenators with or without heat-exchangers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3653—Interfaces between patient blood circulation and extra-corporal blood circuit
- A61M1/3659—Cannulae pertaining to extracorporeal circulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3666—Cardiac or cardiopulmonary bypass, e.g. heart-lung machines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
- A61M2205/3334—Measuring or controlling the flow rate
Definitions
- the present disclosure relates to the technical field of fluid control, and in particular, to a diversion control system.
- Extracorporeal cardiopulmonary support is a percutaneous implantable mechanical circulatory assistance technology.
- the extracorporeal cardiopulmonary support system usually consists of three parts: the main engine, the pump head and the membrane oxygenator.
- the host controls and monitors the operation of the extracorporeal cardiopulmonary support system, the pump head is used to circulate the blood inside and outside the body, and the membrane oxygenator is used to provide oxygen and exchange carbon dioxide in the blood discharged from the body.
- the extracorporeal cardiopulmonary support auxiliary system mainly drains the venous blood in the patient to the outside of the body, and returns the blood to the patient after oxygenating and removing carbon dioxide in the blood through the membrane oxygenator.
- the extracorporeal cardiopulmonary support system mainly has two forms: venovenous ECMO (VV-ECMO) and venous-arterial ECMO (VA-ECMO).
- VV-ECMO venovenous ECMO
- VA-ECMO venous-arterial ECMO
- the former only has respiratory assistance.
- the latter has both circulatory and respiratory assistance.
- VA-ECMO femoral arteriovenous cannulation
- IABP Intelligent Balloon Pump Therapy
- the oxygenated blood flow with high oxygen content returned by the femoral artery is far away from the coronary inlet, which does not help to improve the blood oxygenation near the coronary inlet, so it cannot improve the insufficient oxygen supply to the heart. Also, because of the presence of the IABP balloon, it is not possible to deliver high-oxygen blood to the heart by cannulating the subclavian artery or other arterial circuit closer to the coronary entrance.
- the IABP balloon greatly disturbs the aortic blood flow, which is likely to cause poor perfusion of organs (liver, kidney), etc., resulting in complications and unfavorable patient prognosis.
- the purpose of the present disclosure is to provide a diversion control system, which can flexibly adjust the flow direction and flow rate of the fluid based on the activity period of the target object.
- a diversion control system which can flexibly adjust the flow direction and flow rate of the fluid based on the activity period of the target object.
- the present disclosure provides a diversion control system, including:
- a conduit the conduit comprises a tube wall, a channel defined by the tube wall and a side hole opened on the tube wall, one end of the channel is an inlet, the other end is an outlet, the side hole is communicated with the channel and between said inlet and said outlet,
- An adjustment device the adjustment device includes a movable member and a driving member, the movable member is arranged in the channel, and the driving member can drive the movable member to be in a first state or a second state, when the movable member is in the first state or the second state.
- the movable member In the first state, the movable member at least partially blocks the channel, increasing the amount of fluid discharged through the side hole, and when the movable member is in the second state, the movable member reduces the pressure on the channel. occlusion, increasing the amount of fluid expelled through said outlet;
- the monitoring device is used to acquire the activity period of the target object, and transmit the activity period to the controller;
- the controller is connected to the driving member, and the controller is configured to control the driving member to drive the movable member to switch between a first state and a second state according to the active period, so as to make the fluid in the channel
- the flow direction matches the activity of the target.
- the present disclosure obtains the activity period of the target object through the monitoring device, and controls the action of the driving member according to the activity period of the target object, so as to drive the movable member to switch between the first state and the second state.
- the movable member When the movable member is in the first state, the movement When the movable member is in the second state, the blocking effect of the movable member on the channel is reduced or released, so that most of the fluid can be discharged through the side hole of the catheter.
- the outlet is discharged to achieve the effect of flexibly changing the flow direction and/or flow rate of the fluid in the conduit according to the activity cycle of the target object.
- the side hole on the catheter is advanced to the part close to the coronary artery in the blood vessel, and the movable part is driven to block the catheter channel during the systolic period of the heart,
- the oxygenated blood is forced to perfuse from the side hole to the coronary artery.
- the moving parts can remove the blockage of the catheter channel and guide the oxygenated blood to other organs, thereby simulating the heart.
- the blood pressure and blood flow generated by the pulsation solve the problem of insufficient oxygen supply to the heart.
- FIG. 1 is a schematic structural diagram of a diversion control system provided by an embodiment of the present disclosure
- FIG. 2 is a schematic structural diagram of a flow guiding device in a first state provided by an embodiment of the present disclosure
- FIG. 3 is a schematic structural diagram of a flow guiding device in a second state provided by an embodiment of the present disclosure
- Fig. 4 is a schematic diagram of a use state of the flow guiding device shown in Fig. 2;
- Fig. 5 is a schematic diagram of another use state of the flow guiding device shown in Fig. 2;
- FIG. 6 is another schematic structural diagram of a flow guiding device in a first state provided by an embodiment of the present disclosure
- FIG. 7 is another schematic structural diagram of a flow guiding device in a second state provided by an embodiment of the present disclosure.
- Fig. 8 is a schematic diagram of a use state of the flow guiding device shown in Fig. 6;
- Fig. 9 is a schematic diagram of another use state of the flow guiding device shown in Fig. 6;
- Fig. 10 is another structural schematic diagram of the flow guiding device in the first state provided by an embodiment of the present disclosure.
- FIG. 11 is another schematic structural diagram of the flow guiding device in a second state provided by an embodiment of the present disclosure.
- Fig. 12 is a schematic diagram of a use state of the flow guiding device shown in Fig. 10;
- FIG. 13 is a schematic diagram of another use state of the flow guiding device shown in FIG. 10 .
- the main problem of patients with acute heart failure is the lack of blood supply and oxygen supply to various organs including the heart.
- the current clinical method of VA-ECMO combined with IABP can solve the problem of blood supply to the heart, it cannot improve the problem of oxygen supply to the heart.
- the key to improving the oxygen supply of the heart is to introduce the blood with high oxygen content into the coronary arteries.
- the oxygen content of the blood that has undergone extracorporeal oxygenation is higher than that of the arterial blood.
- the flow rate of blood flow is determined by the power source such as the external blood pump and the pressure flow resistance, and the blood flow direction is determined by the position of the cannula and the opening of the cannula, which cannot change the blood flow during the blood delivery. direction of flow. That is, existing cannulas cannot meet the need for infusion of high oxygen content blood close to the coronary arteries.
- the embodiments of the present disclosure provide a diversion control system, which can change the flow direction of oxygenated blood in the human body, so as to increase the blood oxygen supply to the coronary arteries when the heart ejects blood, and increase the blood oxygen supply to the coronary arteries when the heart ejects blood.
- FIG. 1 is a schematic structural diagram of a diversion control system provided by an embodiment of the present disclosure.
- the diversion control system includes a conduit 2 , a regulating device 3 , a monitoring device 6 and a controller 7 .
- the conduit 2 includes a pipe wall 21 , a channel 22 defined by the pipe wall 21 and a side hole 25 opened on the pipe wall 21 .
- One end of the channel 22 is an inlet 23 and the other end is an outlet 24 , and the side hole 25 communicates with the channel 22 And it is located between the inlet 23 and the outlet 24 .
- the adjusting device 3 includes a movable member 4 and a driving member 5.
- the movable member 4 is arranged in the channel 22.
- the driving member 5 can drive the movable member 4 to be in the first state or the second state.
- the movable member 4 When the movable member 4 is in the first state, the movable member 4 at least partially block the channel 22, increasing the amount of fluid discharged through the side hole 25, when the movable member 4 is in the second state, the movable member 4 reduces the blockage of the channel 22 and increases the amount of fluid discharged through the outlet 24.
- the monitoring device 6 is used to acquire the movement period of the target object and transmit the movement period to the controller 7 .
- the controller 7 is connected with the driving member 5, and the controller 7 is used to control the driving member 5 to drive the movable member 4 to switch between the first state and the second state according to the activity cycle, so as to make the flow direction of the fluid in the channel 22 and the movement of the target object match.
- the monitoring device 6 may be an electrocardiogram monitor, which obtains the systolic and diastolic cycles of the heart by monitoring the electrocardiographic signal of the heart.
- the monitoring device 6 may include a sensor and a processor, and the sensor communicates with the processor; the sensor is arranged near the side hole 25 to collect the pressure signal of the coronary artery, and transmit the collected pressure signal to the
- the processor is used for extracting period data according to the pressure signal of the coronary artery, and using the period data obtained by extraction as the heart activity period.
- the sensor can be a pressure sensor or a pressure-sensitive device (such as a Mems pressure sensor chip).
- the pressure change data is obtained by continuously collecting the pressure values near the side hole 25.
- the processor can extract the pressure change data according to the coronary pressure signal.
- the pressure change data determines the activity cycle of the heart, wherein the period of pressure increase is the period of systole of the heart and the period of pressure decrease is the period of diastole of the heart.
- the processor can generate a pressure change curve according to the pressure change data.
- the pressure change curve is used to represent the change of the pressure value with time.
- the pressure change value at the next moment needs to be predicted
- the pressure change value at the current moment and the previous moment can be calculated.
- Match with the pressure value in the pressure change curve predict the pressure change trend at the next moment according to the matching result, and adjust the state of the movable element according to the pressure change trend to synchronize the action of the movable element with the cardiac ejection.
- the diversion control system can be used for extracorporeal cardiopulmonary support to improve or solve the problem of cardiac hypoxia in patients with heart failure.
- one end of the catheter 2 is connected to a blood supply module, such as a membrane oxygenator, and the other end of the catheter 2 is inserted into the body from the subclavian artery, so that the side hole 25 on the catheter 2 is located in the aorta opposite to the heart ;
- Use monitoring equipment to obtain the activity cycle of the heart; according to the activity cycle of the heart, control the movable part 4 in the catheter 2 to switch between the first state and the second state; wherein, when the movable part 4 is in the first state, the movable part 4 4.
- the channel 22 of the catheter 2 is at least partially blocked.
- the blood after extracorporeal oxygenation is injected into the body through the catheter 2, it is blocked by the movable member 4 and is forced to be discharged in the direction of the side hole 25, thereby increasing the amount of blood perfused to the coronary arteries.
- the movable member 4 When the movable member 4 is in the second state, the movable member 4 reduces the obstruction to the channel 22, and most of the oxygenated blood can be discharged from the outlet 24 of the channel 22, thereby increasing the amount of blood perfused to other organs.
- the embodiment of the present disclosure is described by taking the catheter inserted from the subclavian artery as an example. In practical applications, the solution provided by the embodiment of the present disclosure can be used when the catheter is intubated in other parts and the blood flow direction needs to be changed.
- the embodiments of the present disclosure alternately perfuse oxygenated blood to the heart or other organs based on the heart beat cycle, simulate the blood pressure and blood flow pulse generated by the heart beat, which not only improves the blood oxygen supply to the heart, but also ensures the blood flow perfusion effect of downstream organs .
- FIG. 2 and FIG. 3 show one possible configuration of the above-described catheter 2 and adjustment device 3 .
- the diversion device 1 includes a catheter 2 and a regulating device 3
- the catheter is used for guiding blood
- the regulating device 3 is used for regulating the blood flow in the catheter 2 . flow direction and/or flow.
- the conduit 2 is made of a flexible material and is a bendable hose.
- the conduit 2 includes a pipe wall 21, a channel 22 defined by the pipe wall 21, and a side hole 25 opened on the pipe wall 21.
- One end of the channel 22 is the inlet 23, and the other end is the outlet 24.
- the side hole 25 communicates with the channel 22 and is located there.
- the side holes 25 can be strip-shaped holes arranged along the length of the catheter 2 to minimize the influence of the side holes 25 on the cross-section of the channel 22, and to ensure that the blood flows from the inlet 23 to the outlet 24 as little as possible. Leak to side hole 25.
- the adjusting device 3 may include a gas source, a balloon 41 and a trachea 51, the balloon 41 is arranged in the channel 22 and is located between the outlet 24 and the side hole 25; 41 is inflated or deflated; balloon 41 is inflated after inflation to at least partially block passage 22, increasing the amount of fluid expelled through side hole 25, and balloon 41 is deflated after deflation to reduce obstruction of passage 22 , increasing the amount of fluid discharged through outlet 24 .
- the air source includes a first air source 52 and a second air source 53, the first air source 52 is used to inflate the balloon 41, the second air source 53 is used to exhaust the balloon 41, and the first air source 52 is used to inflate the balloon 41.
- the gas source 52 may be a high pressure gas source
- the second gas source 53 may be a negative pressure gas source or the atmosphere
- both the first gas source 52 and the second gas source 53 are arranged outside the passage 22 .
- One end of the trachea 51 is connected to the balloon 41, and the other end is a branch pipeline.
- the branch pipeline includes a first branch pipe and a second branch pipe. The first branch pipe is connected to the first gas source 52, and the second branch pipe is connected to the second gas source 53. connected.
- the first branch pipe is provided with a first valve 54
- the second branch pipe is provided with a second valve 55
- the first valve 54 is used to connect or close the gas delivery between the first gas source 52 and the balloon 41
- the second valve 55 It is used to connect or close the gas delivery between the second gas source 53 and the balloon 41 .
- the first valve 54 and the second valve 55 are connected to the controller 7 to control the air source to inflate or deflate the balloon 41, so that the balloon 41 is switched between the first state and the second state, wherein , the controller 7 can be a solenoid valve. Specifically, when the controller 7 controls the first valve 54 to open and the second valve 55 to close, the first air source 52 inflates the balloon 41 to inflate the balloon 41 to block the channel 22. At this time, the balloon 41 is in the first state, as shown in FIG.
- FIG. 3 and FIG. 4 show the use state diagrams of the flow guiding device 1 in FIG. 2 .
- the catheter is inserted from the subclavian artery 8, and the side hole is kept at the position of the aorta facing the coronary artery.
- the controller 7 controls the first valve 54 to be opened, the second valve 55 to be closed, and the first valve 54 is opened and the second valve 55 is closed.
- An air source 52 inflates the balloon 41, and the balloon 41 is inflated to block the passage 22, forcing the blood to flow from the side hole 25 to the coronary artery 9 of the heart, so as to increase the oxygen supply of the heart; see FIG.
- control the The device 7 controls the first valve 54 to close, the second valve 55 to open, the balloon 41 to contract to reduce or eliminate the obstruction to the channel 22, and the blood flows from the outlet 24 of the channel 22 to other organs except the heart.
- the degree of obstruction of the channel 22 by the balloon 41 can be adjusted by controlling the amount of inflation.
- FIG. 6 and FIG. 7 show another achievable structure of the catheter 2 and the adjustment device 3 described above.
- the diversion device 1 includes a catheter 2 and a regulating device 3
- the catheter 2 is used for guiding blood
- the regulating device 3 is used for regulating the blood flow in the catheter 2 . flow direction and/or flow.
- the conduit 2 includes a pipe wall 21, a channel 22 defined by the pipe wall 21, a side hole 25 opened on the pipe wall 21, and a valve plate 26 arranged near the side hole 25.
- One end of the channel 22 is the inlet 23, and the other end is the outlet 24.
- the side hole 25 communicates with the channel 22 and is located between the inlet 23 and the outlet 24.
- One side of the valve plate 26 is connected to the edge of the side hole 25, and the other side of the valve plate 26 is the active side.
- the catheter in the embodiment of the present disclosure is made of flexible material, and can be bent into a shape consistent with the path of the blood vessel during the process of being placed in the blood vessel.
- the adjusting device 3 includes an air source, a balloon 41 and a trachea 51.
- the balloon 41 is arranged in the channel 22 and is located between the outlet 24 and the side hole 25; Inflate or vent.
- the gas source includes a first gas source 52 for inflating the balloon 41 and a second gas source 53 for exhausting the balloon 41.
- the first gas source 52 may be a high-pressure gas source
- the second gas source 53 may be a negative pressure gas source or the atmosphere.
- One end of the trachea 51 is connected to the balloon 41, and the other end is a branch pipeline.
- the branch pipeline includes a first branch pipe and a second branch pipe. The first branch pipe is connected to the first gas source 52, and the second branch pipe is connected to the second gas source 53.
- first gas source 52 and the second gas source 53 are both disposed outside the channel 22 .
- a first valve 54 is arranged on the first branch pipe, and a second valve 55 is arranged on the second branch pipe.
- the first valve 54 is used to connect/close the gas delivery between the first gas source 52 and the balloon 41
- the second valve 55 It is used to connect/close the gas delivery between the second gas source 53 and the balloon 41 .
- the trachea 51 can be arranged along the inner wall or the outer wall of the catheter 2.
- the trachea channel 22 can also be opened on the tube wall 21 of the catheter 2, and the catheter 2 can be inserted into the channel 22 of the catheter from the trachea channel 22, so that the The inner wall of the catheter 2 is made smoother, and the obstruction of the trachea to the fluid in the channel 22 is minimized.
- the shape and size of the valve plate 26 are matched with the side hole 25. When the valve plate 26 blocks the side hole 25, the outer wall of the valve plate 26 is flush with the outer wall of the catheter 2, so as to avoid pulling out the catheter 2. Hook up the vascular tissue.
- the valve plate 26 is connected to the edge of the side hole 25 through an elastic member.
- the balloon 41 When the balloon 41 is inflated, the inflated balloon 41 blocks the channel 22, preventing the fluid from being discharged from the outlet 24, and the pressure exerted by the fluid accumulated in the channel 22 on the tube wall 21 increases.
- the pressure is greater than the supporting force of the elastic member At this time, the movable side of the valve plate 26 is deflected away from the side hole 25 , and the fluid in the channel 22 is discharged from the side hole 25 .
- the balloon 41 When the balloon 41 is deflated and contracted, the obstruction in the channel 22 is gradually eliminated, and the fluid can be discharged from the outlet 24 smoothly, so that the pressure of the fluid on the tube wall 21 is reduced, and the pressure on the valve plate 26 is also reduced.
- the elastic member drives the movable side of the valve plate 26 to block the side hole 25 and restore its initial position to achieve the effect of automatic reset.
- Both the first valve 54 and the second valve 55 are connected to the controller 7, and the controller 7 controls the switches of the first valve 54 and the second valve 55 to inflate or deflate the balloon 41, so that the balloon 41 is in the first valve.
- the controller 7 may be a solenoid valve. Specifically, when the controller 7 controls the first valve 54 to open and the second valve 55 to close, the first air source 52 inflates the balloon 41 to inflate the balloon 41 to block the channel 22. At this time, the balloon 41 is in the first state, as shown in FIG.
- the controller 7 controls the first valve 54 to close and the second valve 55 to open, the balloon 41 is connected to the external atmosphere or a negative pressure source, due to the contraction force of the balloon 41 itself and the adsorption effect of the negative pressure source, the gas in the balloon 41 will be quickly discharged, so that the balloon 41 is in the second state, as shown in FIG. 6 .
- FIG. 8 and FIG. 9 show the use state diagrams of the flow guiding device 1 in FIG. 6 .
- the catheter is inserted from the subclavian artery 8, and the side hole is left in the aorta facing the coronary artery.
- the controller 7 controls the first valve 54 to open, the second valve 55 to close, and the first valve 54 to be closed.
- An air source 52 inflates the balloon 41, and the balloon 41 is inflated to block the channel 22. With the continuous injection of blood, the pressure of the blood on the tube wall 21 from the channel inlet 23 to the balloon 41 gradually increases.
- the valve plate 26 When the supporting force of the elastic member is used, the valve plate 26 is opened, exposing the side hole 25, so that the blood flows from the side hole 25 to the coronary artery 9 of the heart, and the oxygen supply of the heart is increased; please refer to FIG. 9, during the diastole period, the controller 7 Control the first valve 54 to close and the second valve 55 to open. As the balloon 41 contracts, the obstruction of the balloon 41 to the channel 22 is gradually reduced, so that the blood can flow to other organs except the heart through the outlet 24 of the channel 22. The pressure on the tube wall 21 gradually decreases. When the pressure is less than the supporting force of the elastic member, the elastic member drives the valve plate 26 to reset to block the side hole 25 and prevent blood from flowing out of the side hole 25 .
- the degree of obstruction of the channel 22 by the balloon 41 can be adjusted by controlling the amount of inflation.
- the balloon 41 does not completely block the channel 22, blood can flow out from the side hole 25 and the outlet 24 at the same time.
- the channel 22 is used, the blood flows only from the side hole 25 .
- the movable side of the valve plate 26 is connected with a traction cable, and the traction cable extends toward the inlet 23 of the passage 22 .
- the active side of the valve plate 26 is deflected away from the side hole 25, thereby opening the side hole 25 and allowing fluid to flow out of the side hole 25.
- the valve plate 26 The movable side is close to the side hole 25 so as to block the side hole 25 and prevent the fluid from flowing out of the side hole 25 .
- valve plate 26 when the balloon 41 is inflated and inflated, the valve plate 26 can be controlled by the traction cable to open, so that the fluid in the channel 22 can be discharged through the side hole 25, and when the balloon 41 is deflated and deflated, the valve plate 26 can be controlled by the traction cable to close. , so that the fluid in the channel 22 is discharged from the outlet 24 .
- the controller 7 may include a solenoid valve and a stepping motor, the first valve 54 and the second valve 55 are connected to the solenoid valve, the traction cable is connected to the stepping motor, and the solenoid valve and the stepping motor work together. That is: when the first valve 54 is controlled to open and the second valve 55 is closed through the solenoid valve, the stepping motor is controlled to reverse, so that the traction cable is in a relaxed state. At this time, the valve plate 26 is opened, exposing the side hole 25, the first An air source 52 inflates the balloon 41 to inflate the balloon 41 to block the channel 22 , the balloon 41 is in the first state (as shown in FIG.
- the stepper motor is controlled to rotate forward, so that the traction cable is in a tight state.
- the valve plate 26 blocks the side hole 25 and the balloon 41 Connect the external atmosphere or negative pressure source, due to the self-contraction force of the balloon 41 and the adsorption of the negative pressure source, the gas in the balloon 41 will be quickly discharged, so that the balloon 41 is in the second state (as shown in FIG. 9 ), from Most of the blood injected into the channel inlet 23 can flow out from the channel 22 outlet 24 .
- the degree of obstruction of the channel 22 by the balloon 41 can be adjusted by controlling the amount of inflation.
- the balloon 41 does not completely block the channel 22, blood can flow out from the side hole 25 and the outlet 24 at the same time.
- the blood flows only from the side hole 25 .
- the stepper motor is set to tighten the traction cable when it is running forward and loosen the traction cable when it is running reversely.
- FIG. 10 and FIG. 11 show one possible configuration of the above-described catheter 2 and adjustment device 3 .
- a flow guiding device 1 including a conduit 2 and an adjustment device 3, wherein the conduit 2 is made of a flexible material, and includes a tube wall 21, a channel 22 defined by the tube wall 21 and One end of the channel 22 is the inlet 23 and the other end is the outlet 24 .
- the side hole 25 communicates with the channel 22 and is located between the inlet 23 and the outlet 24 .
- the regulating device 3 is used to regulate the flow direction and/or flow of the blood in the catheter 2 .
- the adjusting device 3 includes a valve 42, an elastic member 43 and a pulling cable 56.
- the valve 42 has a movable side and a connecting side.
- the active side of the valve 42 is deflected in the channel 22 to at least partially block the channel 22 and increase the amount of blood discharged through the side hole 25; when the cable 56 is in a relaxed state, The elastic member 43 drives the movable lateral hole 25 of the valve 42 to deflect, so as to at least partially block the side hole 25 and increase the amount of blood discharged through the outlet 24 .
- the shape of the valve 42 is similar to or consistent with the cross-section of the channel 22 in the catheter 2, and the size of the valve 42 is close to or larger than the cross-sectional size of the channel 22, so that when the valve 42 is deflected into the channel 22, it has a better ability to block the channel 22.
- the shape of the side hole 25 can be similar to or consistent with the cross section of the channel 22, such as a circle or an ellipse.
- the size of the side hole 25 is not larger than the size of the valve 42, so that the valve 42 has a better effect of blocking the side hole 25, The outflow of blood from the side holes 25 is blocked.
- the deflection direction of the valve 42 can be controlled by the pull cable 56.
- the pull cable 56 can be positioned at the inner side of the tube wall 21 at the opposite position to the side hole 25, so that , by pulling the cable 56 , the movable end of the valve 42 can be deflected into the channel 22 to achieve the effect of blocking the channel 22 .
- a positioning member 57 may be provided on the inner side of the tube wall 21 at a position opposite to the side hole 25 , and the connecting end of the pulling cable 56 is connected to the active end of the valve 42 after passing through the positioning member 57 .
- a limiter can also be provided in the pipe wall 21 , and the cable 56 passes through the limiter and then penetrates into the positioning member 57 , and the cable 56 can move relative to the limiter and the positioning member 57 .
- the stopper and the positioning piece 57 can make the cable 56 close to the pipe wall 21 to limit the movement path of the cable 56, thereby reducing the resistance of the cable 56 to the fluid in the pipeline.
- a guide tube can be provided on the tube wall 21, the upper end of the guide tube is close to the inlet 23 of the channel 22, the lower end of the guide tube is opposite to the side hole 25, and the pull cable 56 passes through the guide tube After the tube is connected to the free end of the valve 42, the pull cable 56 can move in the guide tube.
- the guide tube can be arranged on the inner side of the tube wall 21 , the outer side of the tube wall 21 or in the tube wall 21 .
- the lower end of the guide tube communicates with the channel 22
- a through hole needs to be opened on the tube wall 21, so that the lower end of the guide tube communicates with the through hole.
- a support member can also be provided on the inner side of the tube wall 21 at a position opposite to the side hole 25, and the support member is located below the positioning member 57 or the guiding tube.
- one end of the cable 56 is a connecting end, and the other end is a lifting end.
- the end is arranged outside the catheter 2 and is connected to the controller 7, the controller 7 is preferably a stepper motor, and the state of the valve 42 can be adjusted by the rotation of the stepper motor.
- the catheter is inserted from the subclavian artery 8, and the side hole is kept at the position of the aorta facing the coronary artery.
- the stepping motor rotates forward, and the cable 56 is tightened to make the valve 42 Switch from blocking the side hole 25 to blocking the channel 22 of the catheter 2.
- the valve 42 is in the first state, and most of the blood injected from the channel inlet 23 is blocked by the valve 42, and then flows out from the side hole 25, increasing the pressure on the heart.
- the valve 42 is in the second state at this time, and most of the blood injected from the channel inlet 23 can flow out from the outlet 24, increasing the perfusion to the gas organs other than the heart.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Emergency Medicine (AREA)
- Cardiology (AREA)
- Pulmonology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
一种导流控制系统,包括导管(2)、调节装置(3)、监测装置(6)和控制器(7),其中,导管(2)具有出口(24)、入口(23)和侧孔(25),调节装置(3)包括活动件(4)和驱动件(5),活动件(4)设置在导管(2)内,驱动件(5)连接活动件(4)和控制器(7),监测装置(6)用于采集目标物的活动周期,控制器(7)则根据活动周期控制驱动件(5),使驱动件(5)驱动活动件(4)在第一状态与第二状态之间切换,确保通道内流体的流向与目标物的活动周期匹配,实现了基于目标物的活动周期灵活调整流体流向及流量的效果。
Description
本公开涉及流体控制技术领域,特别涉及一种导流控制系统。
体外心肺支持辅助(extracorporeal membrane oxygenation,ECMO),为一种可经皮置入的机械循环辅助技术。体外心肺支持辅助系统通常由主机、泵头和膜式氧合器三个部分构成。主机对体外心肺支持辅助系统的运行进行控制和监测,泵头用于使体内外的血液进行循环,膜式氧合器用于提供氧气并交换体内排出的血液内的二氧化碳。体外心肺支持辅助系统主要引流患者体内的静脉血液至体外,经过膜式氧合器氧合并排除血液中的二氧化碳后的血液回输患者体内。根据血液回输的途径不同,体外心肺支持辅助系统主要有静脉到静脉(venovenous ECMO,VV-ECMO)和静脉到动脉(venous-arterial ECMO,VA-ECMO)两种形式,前者仅具有呼吸辅助作用,而后者同时具有循环和呼吸辅助作用。
对于急性心衰患者,其主要问题是包括心脏在内的各主要脏器供血供氧不足,且由于心脏自身供氧不足,则心脏输出进一步减少从而进一步加剧症状,最终导致患者因心力衰竭而死亡。目前临床上通常采用VA-ECMO(股动静脉插管)和IABP(Intra-Aortic Balloon Pump Therapy,主动脉球囊反搏)的方法进行生命支持及改善心衰的情况。但这一方法存在几个主要缺陷:
(1)经股动脉回输的氧合后的高含氧量血流离冠脉入口很远,无助于改善冠脉入口附近的血液氧合,因此无法改善心脏供氧不足的情况。并且,由于IABP球囊的存在,也无法通过在锁骨下动脉或其他动脉回路这些离冠脉入口更近的地方插管,来向心脏输入高氧含量的血液。
(2)由于缺陷(1)的存在,在患者自身肺部功能有缺陷造成氧合不足时,IABP球囊挤压入冠脉的血液也为氧含量较低的血液,虽然增加了心脏血供,但无助于根本性减轻心脏供氧不足的问题,无法或不足以纠正心衰的发展。
(3)IABP球囊对主动脉血流扰动较大,容易造成器官(肝脏、肾脏)等的灌注不良的情况,造成并发症且不利于患者预后。
可见,相关技术中缺乏有效解决或改善心脏自身供氧不足问题的方案。
发明内容
针对现有技术的缺陷,本公开的目的在于提供一种导流控制系统,能够基于目标物的活动周期灵活调整流体的流向及流量。将其用于体外心肺支持辅助时,能够解决或改善心脏自身供氧不足的问题。
本公开提供了一种导流控制系统,包括:
导管,所述导管包括管壁、由管壁限定的通道和开设在所述管壁上的侧孔,所述通道的一端为入口、另一端为出口,所述侧孔与所述通道连通且位于所述入口与所述出口之间,
调节装置,所述调节装置包括活动件和驱动件,所述活动件设置在所述通道内,所述驱动件能够驱动所述活动件处于第一状态或第二状态,当所述活动件处于第一状态时,所述活动件至少部分阻塞所述通道,增加经所述侧孔排出的流体的量,当所述活动件处于第二状态时,所述活动件减小对所述通道的阻塞,增加经所述出口排出的流体的量;
监测装置,所述监测装置用于获取目标物的活动周期,以及将所述活动周期传输至控制器;
所述控制器与所述驱动件相连,所述控制器用于根据所述活动周期控制所述驱动件驱动所述活动件在第一状态与第二状态之间切换,以使得所述通道内流体的流向与所述目标物的活动相匹配。
本公开通过监测装置获取目标物的活动周期,根据目标物的活动周期来控制驱动件动作,从而驱动活动件在第一状态与第二状态之间切换,当活动件处于第一状态时,活动件至少部分阻塞导管的通道,使大部分流体 能够经导管的侧孔排出,当活动件处于第二状态时,活动件对通道的阻塞作用被减小或解除,使大部分流体能够经导管的出口排出,实现根据目标物的活动周期灵活改变导管内流体的流向和/或流量的效果。
将本公开的导流控制系统用于体外心肺支持辅助时,将导管上的侧孔推进至血管中靠近冠状动脉的部位,在心脏的收缩时段,通过驱动活动件,使活动件阻塞导管通道,迫使氧合后的血液从侧孔向冠状动脉方向灌注,在心脏的舒张时段,通过驱动活动件,使活动件撤销对导管通道的阻塞,将氧合后的血液导向其他脏器,从而模拟心脏搏动产生的血压血流搏动,解决心脏供氧不足的问题。
为了更清楚地说明本公开的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1是本公开实施例提供的导流控制系统的结构示意图;
图2是本公开实施例提供的处于第一状态下的导流设备的一种结构示意图;
图3是本公开实施例提供的处于第二状态下的导流设备的一种结构示意图;
图4是图2所示导流设备的一种使用状态的示意图;
图5是图2所示导流设备的另一种使用状态的示意图;
图6是本公开实施例提供的处于第一状态下的导流设备的另一种结构示意图;
图7是本公开实施例提供的处于第二状态下的导流设备的另一种结构示意图;
图8是图6所示导流设备的一种使用状态的示意图;
图9是图6所示导流设备的另一种使用状态的示意图;
图10是本公开实施例提供的处于第一状态下的导流设备的另一种结构 示意图;
图11是本公开实施例提供的处于第二状态下的导流设备的另一种结构示意图;
图12是图10所示导流设备的一种使用状态的示意图;
图13是图10所示导流设备的另一种使用状态的示意图。
图中:1-导流设备,2-导管,3-调节装置,4-活动件,5-驱动件,6-监测装置,7-控制器,8-锁骨下动脉,9-冠状动脉,21-管壁,22-通道,23-入口,24-出口,25-侧孔,26-阀门板,41-球囊,42-瓣膜,43-弹性件,51-气管,52-第一气源,53-第二气源,54-第一阀,55-第二阀,56-拉索,57-定位件。
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
急性心衰患者的主要问题在于包括心脏在内的各脏器供血供氧不足,目前临床采用的VA-ECMO配合IABP的方法虽然能够解决心脏供血问题,但无法改善心脏供氧问题。
改善心脏供氧问题的关键在于将含氧量高的血液导入冠状动脉,经过体外氧合的血液的含氧量高于动脉血液的含氧量,如果将体外氧合的血液导向冠状动脉,必然能够改善心脏供氧。然而,目前血液插管在回输血流时,由体外血泵等动力源及压力流阻决定血流的流速,由置管位置及插管 开口等决定血流方向,无法改变血液输送过程中血流的方向。即,现有的插管不能满足在靠近冠状动脉的地方输入高含氧量血液的需求。为此,本公开实施例提供一种导流控制系统,能够改变氧合后血液在人体内的流向,实现在心脏射血时,增加对冠状动脉的血氧供给,在心脏射血以外,增加对其他脏器的血氧供给的效果,模拟心脏搏动产生的血压血流搏动,改善或者消除心脏缺氧的问题。
图1是本公开实施例提供的导流控制系统的结构示意图。请参见图1,导流控制系统包括导管2、调节装置3、监测装置6和控制器7。其中,导管2包括管壁21、由管壁21限定的通道22和开设在管壁21上的侧孔25,通道22的一端为入口23、另一端为出口24,侧孔25与通道22连通且位于入口23与出口24之间。调节装置3包括活动件4和驱动件5,活动件4设置在通道22内,驱动件5能够驱动活动件4处于第一状态或第二状态,当活动件4处于第一状态时,活动件4至少部分阻塞通道22,增加经侧孔25排出的流体的量,当活动件4处于第二状态时,活动件4减小对通道22的阻塞,增加经出口24排出的流体的量。监测装置6用于获取目标物的活动周期,以及将活动周期传输至控制器7。控制器7与驱动件5相连,控制器7用于根据活动周期控制驱动件5驱动活动件4在第一状态与第二状态之间切换,以使得通道22内流体的流向与目标物的活动相匹配。
在一个可行的实现方式中,监测装置6可以为心电监测仪,通过监测心脏的心电信号,获得心脏收缩与舒张的周期。
在另一个可行的实现方式中,监测装置6可以包括传感器和处理器,传感器与处理器通信;传感器设置在侧孔25附近,用于采集冠状动脉的压力信号,并将采集的压力信号传输至处理器;处理器用于根据冠状动脉的压力信号提取周期数据,将提取获得的周期数据作为心脏的活动周期。具体的,传感器可以为压力传感器或压敏器件(如Mems压力传感器芯片),通过连续采集侧孔25附近压力值,获得压力变化数据,处理器可以根据冠状动脉的压力信号提取压力变化数据,根据压力变化数据确定心脏的活动周期,其中,压力增加时段为心脏的收缩时段,压力减小时段为心脏的舒张时段。处理器可以根据压力变化数据生成压力变化曲线,该压力变化曲 线用于表征压力值随时间的变化,当需要预判下一时刻的压力变化时,可以将当前时刻和前一时刻的压力变化值与压力变化曲线中的压力值进行匹配,根据匹配结果预判下一时刻的压力变化趋势,从而根据压力变化趋势来调整活动件的状态,以使活动件的作动与心脏射血同步。
本公开提供的导流控制系统可用于体外心肺支持辅助,以改善或解决心衰患者心脏缺氧问题。具体为:将导管2的一端连接血液供给模块,例如膜式氧合器,导管2的另一端自锁骨下动脉置入体内,使导管2上的侧孔25处于主动脉中与心脏相对的位置;利用监测设备获取心脏的活动周期;根据心脏的活动周期,控制导管2内的活动件4在第一状态与第二状态之间切换;其中,当活动件4处于第一状态时,活动件4至少部分阻塞导管2的通道22,体外氧合后的血液在通过导管2注入体内时,受到活动件4阻挡,被迫向侧孔25方向排出,从而增加向冠状动脉灌注的血液的量,当活动件4处于第二状态时,活动件4减小对通道22的阻塞,大部分氧合后的血液都能从通道22的出口24排出,从而增加向其他脏器灌注的血液的量。本公开实施例以将导管从锁骨下动脉插入为例进行说明,实际应用中,在其他部位插管及需要改变血流方向时,均可以采用本公开实施例提供的方案。本公开实施例基于心脏搏动周期向心脏或其他脏器交替灌注氧合后的血液,模拟心脏搏动产生的血压血流搏动,既提高了心脏血氧供给,又能确保下游器官的血流灌注效果。
图2和图3示出了上述导管2及调节装置3的一种可实现结构。请参见图图2和图3,其展示了一种导流设备1,该导流设备1包括导管2和调节装置3,导管用于导流血液,调节装置3用于调节导管2内血液的流向和/或流量。其中,导管2由柔性材料制成,为可弯曲的软管。导管2包括管壁21、由管壁21限定的通道22和开设在管壁21上的侧孔25,通道22的一端为入口23、另一端为出口24,侧孔25与通道22连通且位于入口23与出口24之间。可选的,侧孔25可以是沿导管2的长度方向设置的条形孔,以尽量减小侧孔25对通道22截面的影响,确保血液在从入口23流向出口24过程中,尽量少的向侧孔25泄漏。调节装置3可以包括气源、球囊41和气管51,球囊41设置在通道22内且位于出口24与侧孔25之间; 气源通过气管51与球囊41相连,用于对球囊41进行充气或排气;球囊41在充气后膨胀,以至少部分阻塞通道22,增加经侧孔25排出的流体的量,球囊41在排气后收缩,以减小对通道22的阻塞,增加经出口24排出的流体的量。可选的,气源包括第一气源52和第二气源53,第一气源52用于对球囊41进行充气,第二气源53用于对球囊41进行排气,第一气源52可以是高压气源,第二气源53可以是负压气源或者大气,第一气源52和第二气源53均设置在通道22以外。气管51的一端与球囊41相连,另一端为分支管路,分支管路的包括第一支管和第二支管,第一支管与第一气源52相连,第二支管与第二气源53相连。第一支管上设有第一阀54,第二支管上设有第二阀55,第一阀54用于连通或关闭第一气源52与球囊41之间的气体输送,第二阀55用于连通或关闭第二气源53与球囊41之间的气体输送。
进一步的,将第一阀54、第二阀55与控制器7连接,以控制气源对球囊41进行充气或排气,使球囊41在第一状态与第二状态之间切换,其中,控制器7可以为电磁阀。具体的,在控制器7控制第一阀54打开、第二阀55关闭的情况下,第一气源52为球囊41充气,使球囊41充气膨胀以阻塞通道22,此时,球囊41处于第一状态,如图3所示;在控制器7控制第一阀54关闭、第二阀55打开的情况下,球囊41连接外部大气或者负压源,由于球囊41自身收缩力及负压源的吸附作用,会迅速排出球囊41中的气体,使球囊41处于第二状态,如图2所示。
图3和图4示出了图2中导流设备1的使用状态图。请参见图4,将导管自锁骨下动脉8插入,将侧孔停留在主动脉中面向冠状动脉的位置,在心脏收缩时段,控制器7控制第一阀54打开、第二阀55关闭,第一气源52为球囊41充气,球囊41充气膨胀以阻塞通道22,迫使血液从侧孔25流向心脏冠状动脉9,以增加心脏血氧供给;请参见图5,在心脏舒张时段,控制器7控制第一阀54关闭、第二阀55打开,球囊41收缩以减小或消除对通道22的阻塞,血液从通道22出口24流向除心脏外的其他脏器。实际应用中,球囊41对通道22的阻塞程度可以通过控制充气量来调节,在球囊41未完全阻塞通道22时,血液可以同时从侧孔25和出口24流出,在 球囊41完全阻塞通道22时,血液仅从侧孔25流出。
图6和图7示出了上述导管2及调节装置3的另一种可实现结构。请参见图6和图7,其展示了一种导流设备1,该导流设备1包括导管2和调节装置3,导管2用于导流血液,调节装置3用于调节导管2内血液的流向和/或流量。
导管2包括管壁21、由管壁21限定的通道22、开设在管壁21上的侧孔25和设置在侧孔25附近的阀门板26,通道22的一端为入口23、另一端为出口24,侧孔25与通道22连通且位于入口23与出口24之间,阀门板26的一侧与侧孔25的边沿相连,阀门板26的另一侧为活动侧。本公开实施例中的导管采用柔性材料制成,在置入血管过程中,可以弯曲成与血管路径一致的形状。
调节装置3包括气源、球囊41和气管51,球囊41设置在通道22内且位于出口24与侧孔25之间;气源通过气管51与球囊41相连,用于对球囊41进行充气或排气。其中,气源包括用于对球囊41进行充气的第一气源52和用于对球囊41进行排气的第二气源53,具体的,第一气源52可以是高压气源,第二气源53可以是负压气源或者大气。气管51的一端与球囊41相连,另一端为分支管路,分支管路的包括第一支管和第二支管,第一支管与第一气源52相连,第二支管与第二气源53相连,第一气源52和第二气源53均设置在通道22以外。在第一支管上设置第一阀54,在第二支管上设置第二阀55,第一阀54用于连通/关闭第一气源52与球囊41之间的气体输送,第二阀55用于连通/关闭第二气源53与球囊41之间的气体输送。需要说明的是,气管51可以沿着导管2内壁或者外壁设置,当然,也可以在导管2的管壁21上开设气管通道22,将导管2自气管通道22插入导管的通道22内,从而可以使导管2内壁较光滑,尽量减小气管对通道22内流体的阻碍。进一步的,阀门板26的形状和尺寸均与侧孔25相匹配,当阀门板26封堵侧孔25时,阀门板26的外壁与导管2的外壁齐平,从而避免在拔出导管2时勾连血管组织。
在一种可行的实现方式中,阀门板26通过弹性件与侧孔25的边沿相连。在球囊41充气膨胀时,膨胀后的球囊41堵塞通道22,阻碍流体从出 口24排出,集聚在通道22内的流体向管壁21施加的压力增大,当压力大于弹性件的支撑力时,阀门板26的活动侧向远离侧孔25的方向偏转,通道22内流体从侧孔25排出。在球囊41排气收缩时,通道22内的阻碍逐渐消除,流体能够顺畅的从出口24排出,从而流体对管壁21的压力减小,施加在阀门板26上的压力也减小,当施加在阀门板26上的压力小于弹性件的支撑力时,弹性件带动阀门板26的活动侧封堵侧孔25,恢复其初始位置,达到自动复位的效果。
第一阀54和第二阀55均与控制器7连接,控制器7控制第一阀54和第二阀55的开关,来对球囊41进行充气或排气,使球囊41在第一状态与第二状态之间切换,其中,控制器7可以为电磁阀。具体的,在控制器7控制第一阀54打开、第二阀55关闭的情况下,第一气源52为球囊41充气,使球囊41充气膨胀以阻塞通道22,此时,球囊41处于第一状态,如图7所示;在控制器7控制第一阀54关闭、第二阀55打开的情况下,球囊41连接外部大气或者负压源,由于球囊41自身收缩力及负压源的吸附作用,会迅速排出球囊41中的气体,使球囊41处于第二状态,如图6所示。
图8和图9示出了图6中导流设备1的使用状态图。请参见图8,将导管自锁骨下动脉8插入,将侧孔停留在主动脉中面向冠状动脉的位置,在心脏收缩时段,控制器7控制第一阀54打开、第二阀55关闭,第一气源52为球囊41充气,球囊41充气膨胀以阻塞通道22,随着血液的持续注入,通道入口23至球囊41段中血液对管壁21的压力逐渐增大,当压力大于弹性件的支撑力时,阀门板26被打开,暴露出侧孔25,使血液从侧孔25流向心脏冠状动脉9,增加心脏血氧供给;请参见图9,在心脏舒张时段,控制器7控制第一阀54关闭、第二阀55打开,随着球囊41收缩,球囊41对通道22的阻塞逐渐减小,使得血液能够通过通道22出口24流向除心脏外的其他脏器,血液对管壁21的压力逐渐减小,当压力小于弹性件的支撑力时,弹性件带动阀门板26复位,以封堵侧孔25,阻挡血液从侧孔25流出。实际应用中,球囊41对通道22的阻塞程度可以通过控制充气量来调节,在球囊41未完全阻塞通道22时,血液可以同时从侧孔25和出口24 流出,在球囊41完全阻塞通道22时,血液仅从侧孔25流出。
在另一种可行的实现方式中,阀门板26的活动侧连接牵引索,牵引索向通道22的入口23延伸。当牵引索处于松弛状态时,阀门板26的活动侧向远离侧孔25的方向偏转,从而打开侧孔25,允许流体从侧孔25流出,当牵引索处于收紧状态时,阀门板26的活动侧贴近侧孔25,从而封堵侧孔25,阻止流体从侧孔25流出。具体的,可以在球囊41充气膨胀时,通过牵引索控制阀门板26打开,使通道22内流体可以经侧孔25排出,在球囊41排气收缩时候,通过牵引索控制阀门板26关闭,使通道22内流体从出口24排出。
进一步的,控制器7可以包括电磁阀和步进电机,第一阀54、第二阀55与电磁阀连接,牵引索与步进电机连接,电磁阀与步进电机协同工作。即:在通过电磁阀控制第一阀54打开、第二阀55关闭的同时,控制步进电机反转,使牵引索处于松弛状态,此时,阀门板26打开,暴露出侧孔25,第一气源52为球囊41充气,使球囊41充气膨胀以阻塞通道22,球囊41处于第一状态(如图8所示),从通道入口23注入的大部分血液能够从侧孔25流出;在通过电磁阀控制第一阀54关闭、第二阀55打开的同时,控制步进电机正转,使牵引索处于紧绷状态,此时,阀门板26遮挡侧孔25,球囊41连接外部大气或者负压源,由于球囊41自身收缩力及负压源的吸附作用,会迅速排出球囊41中的气体,使球囊41处于第二状态(如图9所示),从通道入口23注入的大部分血液能够从通道22出口24流出。实际应用中,球囊41对通道22的阻塞程度可以通过控制充气量来调节,在球囊41未完全阻塞通道22时,血液可以同时从侧孔25和出口24流出,在球囊41完全阻塞通道22时,血液仅从侧孔25流出。以上示例中,设置步进电机正转时收紧牵引索、反转时放松牵引索,实际应用时,也可以设置步进电机反转时收紧牵引索、正转时放松牵引索,本实施例对此不作限定。
图10和图11示出了上述导管2及调节装置3的一种可实现结构。请参见图10和图11,其展示了一种导流设备1,包括导管2和调节装置3,其中,导管2由柔性材料制成,包括管壁21、由管壁21限定的通道22和 开设在管壁21上的侧孔25,通道22的一端为入口23、另一端为出口24,侧孔25与通道22连通且位于入口23与出口24之间。调节装置3用于调节导管2内血液的流向和/或流量。调节装置3包括瓣膜42、弹性件43和拉索56,瓣膜42具有活动侧和连接侧,瓣膜42的连接侧通过弹性件43与侧孔25的边沿连接,瓣膜42的活动侧与拉索56相连;在拉索56处于收紧状态时,瓣膜42的活动侧向通道22内偏转,以至少部分阻塞通道22,增加经侧孔25排出的血液的量;在拉索56处于松弛状态时,弹性件43带动瓣膜42的活动侧向侧孔25偏转,以至少部分封堵侧孔25,增加经出口24排出的血液的量。
瓣膜42的形状与导管2内通道22的截面相近或一致,瓣膜42的尺寸接近或者大于通道22的截面尺寸,如此,瓣膜42在向通道22内偏转时,具有更好的封堵通道22的效果,从而能够阻挡血液向出口24方向流动,迫使血液从侧孔25流向冠状动脉9。侧孔25的形状可以与通道22的截面相近或一致,例如为圆形或者椭圆形,侧孔25的尺寸不大于瓣膜42的尺寸,使得瓣膜42具有较好的封堵侧孔25的效果,阻挡血液从侧孔25流出。
瓣膜42的偏转方向可以通过拉索56控制,为实现提拉拉索56使瓣膜42封堵通道22的效果,可以将拉索56定位在管壁21内侧与侧孔25相对的位置处,如此,通过提拉拉索56,就能使瓣膜42的活动端向通道22内偏转,实现封堵通道22的效果。
在一个可行的实现方式中,可以在管壁21内侧与侧孔25相对的位置处设置定位件57,将拉索56的连接端穿过定位件57后与瓣膜42的活动端连接。在此基础上,还可以在管壁21内设置限位件,拉索56穿过限位件后穿入定位件57中,拉索56能够相对于限位件和定位件57移动。通过限位件和定位件57可使拉索56贴近管壁21,限制拉索56的移动路径,从而降低拉索56对管道内流体的阻力。
在另一个可行的实现方式中,可以在管壁21上设置导引管,导引管的上端靠近通道22的入口23,导引管的下端与侧孔25相对,拉索56穿过导引管后与瓣膜42的活动端相连,拉索56能够在导引管内移动。具体的,导引管可以设置在管壁21的内侧、管壁21的外侧或者管壁21中,当设置 在管壁21中时,导引管的下端与通道22连通,当设置在管壁21外侧时,需要在管壁21上开设通孔,使导引管的下端与通孔连通。
此外,还可以在管壁21内侧与侧孔25相对的位置处设置支撑件,支撑件位于定位件57或者导引管的下方,当拉索56处于收紧状态时,瓣膜42的活动端处于支撑件与限位件之间,流体集聚在入口23与瓣膜42之间时,支撑件能够为瓣膜42提供支撑力。
本公开实施例中,拉索56的一端为连接端、另一端为提拉端,拉索56的连接端穿入导管2的通道22后与瓣膜42的连接侧相连,拉索56的提拉端设置在导管2以外,且与控制器7相连,控制器7优选为步进电机,通过步进电机转动可以调节瓣膜42的状态。如图13所示,将导管自锁骨下动脉8插入,将侧孔停留在主动脉中面向冠状动脉的位置,在心脏的收缩时段,步进电机正转,收紧拉索56,使瓣膜42由封堵侧孔25切换为封堵导管2通道22,此时瓣膜42处于第一状态,从通道入口23注入的大部分血液受瓣膜42阻挡,转而从侧孔25流出,增加对心脏的冠状动脉9的灌注;如图12所示,在心脏的舒张时段,步进电机反转,以松开拉索56,瓣膜42在弹性件43的带动下复位,由封堵导管2通道22切换为封堵侧孔25,此时瓣膜42处于第二状态,从通道入口23注入的大部分血液能够从出口24流出,增加对除心脏以外的气体脏器的灌注。以上示例中,步进电机正转时收紧拉索56、反转时放松拉索56,实际应用中,也可以设置为:步进电机反转时收紧拉索56、正转时放松拉索56,本实施例对此不作限定。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种导流控制系统,其特征在于,包括:导管,所述导管包括管壁、由管壁限定的通道和开设在所述管壁上的侧孔,所述通道的一端为入口、另一端为出口,所述侧孔与所述通道连通且位于所述入口与所述出口之间,调节装置,所述调节装置包括活动件和驱动件,所述活动件设置在所述通道内,所述驱动件能够驱动所述活动件处于第一状态或第二状态,当所述活动件处于第一状态时,所述活动件至少部分阻塞所述通道,增加经所述侧孔排出的流体的量,当所述活动件处于第二状态时,所述活动件减小对所述通道的阻塞,增加经所述出口排出的流体的量;监测装置,所述监测装置用于获取目标物的活动周期,以及将所述活动周期传输至控制器;所述控制器与所述驱动件相连,所述控制器用于根据所述活动周期控制所述驱动件驱动所述活动件在第一状态与第二状态之间切换,以使得所述通道内流体的流向与所述目标物的活动相匹配。
- 根据权利要求1所述的系统,其特征在于,所述流体为血液,所述目标物为心脏,所述活动周期包括所述心脏的收缩时段和舒张时段。
- 根据权利要求2所述的系统,其特征在于,所述导管的侧孔朝向在所述心脏的冠状动脉;所述控制器用于:在所述心脏的收缩时段,控制所述驱动件驱动所述活动件处于所述第一状态,在所述心脏的舒张时段,控制所述驱动件驱动所述活动件处于所述第二状态。
- 根据权利要求1所述的系统,其特征在于,所述监测装置为心电监测仪。
- 根据权利要求3所述的系统,其特征在于,所述监测装置包括传感器和处理器,所述传感器与所述处理器通信;所述传感器设置在所述侧孔附近,用于采集所述冠状动脉的压力信号,并将采集的压力信号传输至所述处理器;所述处理器用于根据所述冠状动脉的压力信号提取周期数据,将提取获得的周期数据作为所述心脏的活动周期。
- 根据权利要求1所述的系统,其特征在于,所述活动件为可膨胀的球囊,所述球囊位于所述侧孔与所述出口之间;所述驱动件包括气源、气管和阀,所述气源通过所述气管与所述球囊相连,所述阀设置在所述气管上,所述气源用于对所述球囊进行充气或排气,所述阀用于连通或关断所述气源与所述球囊之间的气体传输。
- 根据权利要求6所述的系统,其特征在于,所述气源包括第一气源和第二气源,所述第一气源用于对所述球囊进行充气,所述第二气源用于对所述球囊进行排气;所述气管的一端与所述球囊相连、另一端为分支管路,所述分支管路包括第一支管和第二支管,所述第一支管与所述第一气源相连,所述第二支管与所述第二气源相连;所述阀包括第一阀和第二阀,所述第一阀设置在所述第一支管上,所述第二阀设置在所述第二支管上。
- 根据权利要求7所述的系统,其特征在于,所述第一阀、所述第二阀均与所述控制器连接;在所述控制器控制第一阀打开、第二阀关闭的情况下,所述球囊处于所述第一状态;在所述控制器控制第一阀关闭、第二阀打开的情况下,所述球囊处于所述第二状态。
- 根据权利要求1所述的系统,其特征在于,所述活动件为可偏转的瓣膜,所述瓣膜具有活动侧和连接侧,所述瓣膜的连接侧通过弹性件与所述侧孔的边沿连接;所述驱动件包括牵引索,所述牵引索的一端与所述瓣膜的活动侧相连、 另一端与所述控制器相连;当所述控制器控制所述牵引索处于收紧状态时,所述牵引索带动所述瓣膜的活动侧向所述通道内偏转,使所述瓣膜处于所述第一状态;当所述控制器控制所述牵引索处于松弛状态时,所述弹性件带动所述瓣膜的活动侧向所述侧孔偏转,使所述瓣膜处于所述第二状态。
- 根据权利要求1所述的系统,其特征在于,所述导管由柔性材料制成。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110228806.6 | 2021-03-02 | ||
CN202110228806.6A CN113018543B (zh) | 2021-03-02 | 2021-03-02 | 一种导流控制系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022183590A1 true WO2022183590A1 (zh) | 2022-09-09 |
Family
ID=76465315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/092296 WO2022183590A1 (zh) | 2021-03-02 | 2021-05-08 | 一种导流控制系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113018543B (zh) |
WO (1) | WO2022183590A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113018545B (zh) * | 2021-03-02 | 2021-11-19 | 江苏赛腾医疗科技有限公司 | 导流调节装置 |
CN115006685B (zh) * | 2022-04-19 | 2023-06-02 | 中国医学科学院阜外医院 | 一种防失血的主动脉灌注管 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050059923A1 (en) * | 2003-09-17 | 2005-03-17 | Ricardo Gamboa | Fenestration with intrinsic means of selective closure incorporated to a tubular body and used in interventional cardiovascular procedures |
US20130317455A1 (en) * | 2008-03-04 | 2013-11-28 | Infusion Innovations | Devices, Assemblies, and Methods for Controlling Fluid Flow |
CN204261112U (zh) * | 2014-11-21 | 2015-04-15 | 宋会中 | 一种血液透析用血流量调节器 |
CN206081275U (zh) * | 2016-04-22 | 2017-04-12 | 张健 | 带侧孔和瓣膜的指引导管 |
CN108525109A (zh) * | 2018-05-04 | 2018-09-14 | 林若骐 | 一种经皮动脉植入的导管装置 |
CN208436205U (zh) * | 2018-01-24 | 2019-01-29 | 重庆医科大学附属儿童医院 | 儿童单肺通气气管导管 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4014317A (en) * | 1972-02-18 | 1977-03-29 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Multipurpose cardiocirculatory assist cannula and methods of use thereof |
US5112301A (en) * | 1991-06-19 | 1992-05-12 | Strato Medical Corporation | Bidirectional check valve catheter |
US5180364A (en) * | 1991-07-03 | 1993-01-19 | Robert Ginsburg | Valved self-perfusing catheter guide |
US5792118A (en) * | 1994-03-07 | 1998-08-11 | Kurth; Paul A. | Permanent catheter with an exterior balloon valve and method of using the same |
IL114517A0 (en) * | 1995-07-10 | 1995-11-27 | R D C Rafael Dev Corp Ltd | Heart assist system |
US5928132A (en) * | 1998-03-31 | 1999-07-27 | Datascope Investment Corp. | Closed chest intra-aortic balloon based ventricular assist device |
US6364867B2 (en) * | 1999-07-01 | 2002-04-02 | Catheter Innovations, Inc. | Anti-clotting methods and apparatus for indwelling catheter tubes |
US6398714B1 (en) * | 1999-07-29 | 2002-06-04 | Intra-Vasc.Nl B.V. | Cardiac assist catheter pump and catheter and fitting for use therein |
US20090270815A1 (en) * | 2008-04-29 | 2009-10-29 | Infraredx, Inc. | Catheter Priming System |
US8702678B2 (en) * | 2011-08-03 | 2014-04-22 | Venous Therapy, Inc. | Assemblies, systems, and methods for infusing therapeutic agents into the body |
CN112791304A (zh) * | 2016-07-12 | 2021-05-14 | 怡忠科技股份有限公司 | 体外生命支持系统 |
US10525232B2 (en) * | 2017-09-06 | 2020-01-07 | Becton, Dickinson And Company | Smart obturator assembly |
CN208756643U (zh) * | 2017-12-06 | 2019-04-19 | 安徽通灵仿生科技有限公司 | 一种主动脉内球囊反搏装置 |
CN110180043A (zh) * | 2019-07-05 | 2019-08-30 | 北京安生生物技术有限责任公司 | 一种顺序球囊反搏式左心辅助装置 |
-
2021
- 2021-03-02 CN CN202110228806.6A patent/CN113018543B/zh active Active
- 2021-05-08 WO PCT/CN2021/092296 patent/WO2022183590A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050059923A1 (en) * | 2003-09-17 | 2005-03-17 | Ricardo Gamboa | Fenestration with intrinsic means of selective closure incorporated to a tubular body and used in interventional cardiovascular procedures |
US20130317455A1 (en) * | 2008-03-04 | 2013-11-28 | Infusion Innovations | Devices, Assemblies, and Methods for Controlling Fluid Flow |
CN204261112U (zh) * | 2014-11-21 | 2015-04-15 | 宋会中 | 一种血液透析用血流量调节器 |
CN206081275U (zh) * | 2016-04-22 | 2017-04-12 | 张健 | 带侧孔和瓣膜的指引导管 |
CN208436205U (zh) * | 2018-01-24 | 2019-01-29 | 重庆医科大学附属儿童医院 | 儿童单肺通气气管导管 |
CN108525109A (zh) * | 2018-05-04 | 2018-09-14 | 林若骐 | 一种经皮动脉植入的导管装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113018543B (zh) | 2021-10-08 |
CN113018543A (zh) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4014317A (en) | Multipurpose cardiocirculatory assist cannula and methods of use thereof | |
CN109414539B (zh) | 体外生命支持系统 | |
US6974436B1 (en) | Integrated pump and cannula system and related methods | |
US4985014A (en) | Ventricular venting loop | |
WO2022183590A1 (zh) | 一种导流控制系统 | |
US4080958A (en) | Apparatus for aiding and improving the blood flow in patients | |
JP7509494B2 (ja) | カテーテルポンプシステム、およびカテーテルポンプ駆動装置の制御方法 | |
US5171207A (en) | Apparatus and method of use for pulsatile blood flow | |
WO2016041220A1 (zh) | 一种左心室辅助装置 | |
US20220313889A1 (en) | Control for Non-Occlusive Blood Pumps | |
US11253691B2 (en) | Intra-aortic dual balloon driving pump catheter device | |
CN112915294A (zh) | 一种提供下肢血液灌注的va-ecmo股动脉插管及置管方法 | |
US20220016410A1 (en) | System for Cardiac Assistance, Method for Operating the System and Cardiac Support Method | |
CN220159038U (zh) | 一种提供搏动式血流的循环辅助装置 | |
CN117085241A (zh) | 一种外置脉动型微创介入心室机械辅助装置 | |
WO2022183591A1 (zh) | 导流调节装置 | |
WO2022183589A1 (zh) | 导流控制装置 | |
US20190344055A1 (en) | Intra-aortic dual balloon pump catheter device | |
Darling et al. | Modified ultrafiltration in pediatric cardiopulmonary bypass | |
CN111135360A (zh) | 一种右心辅助装置及其控制方法 | |
CN106267398A (zh) | 一种辅助循环用双向动脉导管、控制系统及其控制方法 | |
TW201907965A (zh) | 體外生命支持系統 | |
CN217612491U (zh) | 一种主动脉内双球囊反搏导管及主动脉内球囊反搏装置 | |
CN221787578U (zh) | 一种ecmo治疗管路 | |
CN219614552U (zh) | 一种ecmo用非恒压血流发生器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21928671 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21928671 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21928671 Country of ref document: EP Kind code of ref document: A1 |