WO2022183389A1 - 一种无线通信方法、通信装置及通信系统 - Google Patents

一种无线通信方法、通信装置及通信系统 Download PDF

Info

Publication number
WO2022183389A1
WO2022183389A1 PCT/CN2021/078785 CN2021078785W WO2022183389A1 WO 2022183389 A1 WO2022183389 A1 WO 2022183389A1 CN 2021078785 W CN2021078785 W CN 2021078785W WO 2022183389 A1 WO2022183389 A1 WO 2022183389A1
Authority
WO
WIPO (PCT)
Prior art keywords
index
channel
common signal
signal
resource
Prior art date
Application number
PCT/CN2021/078785
Other languages
English (en)
French (fr)
Inventor
官磊
李胜钰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180094766.9A priority Critical patent/CN116897520A/zh
Priority to EP21928480.9A priority patent/EP4290793A4/en
Priority to PCT/CN2021/078785 priority patent/WO2022183389A1/zh
Publication of WO2022183389A1 publication Critical patent/WO2022183389A1/zh
Priority to US18/458,641 priority patent/US20230413160A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the embodiments of the present application relate to the field of wireless communication technologies, and in particular, to a wireless communication method, a communication device, and a communication system.
  • the fifth generation (5G) new radio (NR) system provides more flexibility in system design properties, including basic parameters, frame structure, and channel time-frequency resource design, etc., can better support forward compatibility and scalability, but there is still inflexibility in the design of common signals.
  • Embodiments of the present application provide a wireless communication method, a communication device, and a communication system, so as to realize flexible transmission of common signals on different beams.
  • an embodiment of the present application provides a wireless communication method, and the method can be executed by a terminal or a component (such as a chip, a device, etc.) used for the terminal.
  • the method includes: detecting a common signal; and determining, according to the detected first common signal, a first index of the first common signal in a first set and a second index of the first common signal, where the first set includes a plurality of A common signal, the plurality of common signals include the first common signal, and the first common signal includes a synchronization signal; the first index corresponds to a plurality of resources, and the second index is used to indicate one resource among the plurality of resources, the
  • the resources include time domain resources and/or frequency domain resources; according to the first index and the second index, or according to the second index, the resources of the first common signal are determined.
  • the terminal determines the first index and the second index of the first common signal in the first set according to the detected first common signal, and further determines the resource of the first common signal.
  • one common signal may correspond to one or more resources, and different resources may be time-division multiplexed, so a common signal has multiple transmission opportunities.
  • the transmission timing of the public signal corresponding to a certain beam transmission direction can be flexibly adjusted.
  • the sequential sending order of each common signal corresponding to different beam sending directions can be determined according to service requirements, and then the resources occupied by each common signal can be determined.
  • the first index or the second index is determined according to a first grouping rule; wherein, the common signals in the first set are divided into at least one group according to the first grouping rule, the at least Each group in a group corresponds to a resource set, and the resource set includes at least one resource among multiple resources corresponding to the first index.
  • the resource sets corresponding to different groups may be the same or different.
  • a first grouping rule corresponding to the first set is determined from a plurality of candidate grouping rules according to the sequence of the synchronization signal; or, according to a common signal in a group corresponding to the first set
  • the first grouping rule corresponding to the first set is determined from the plurality of candidate grouping rules; or, according to the time division duplex configuration, the first grouping rule corresponding to the first set is determined from the plurality of candidate grouping rules.
  • the first index is determined according to the sequence of the synchronization signal.
  • the first index is determined according to a first channel corresponding to the first common signal, where the first channel is a broadcast channel, a channel carrying system information, or a control channel, and the control channel is used for scheduling The channel that carries system information.
  • the first index is determined according to one or more of the following information corresponding to the first channel: information used to indicate the first index, the scrambling code of the first channel, DMRS sequence of the first channel.
  • the first index of the first common signal in the first set can be flexibly determined.
  • the second index is determined according to the sequence of the synchronization signal.
  • the second index is determined according to a first channel corresponding to the first common signal, where the first channel is a broadcast channel, a channel carrying system information, or a control channel, and the control channel is used for scheduling The channel that carries system information.
  • the second index is determined according to one or more of the following information corresponding to the first channel: information used to indicate the second index, the scrambling code of the first channel, DMRS sequence of the first channel.
  • the second index of the first common signal can be flexibly determined.
  • the resources of the common signals other than the first common signal in the first set are determined.
  • the resource of the second common signal is determined according to the first index or the second index; the second common signal is received according to the resource of the second common signal; wherein, the second common signal It includes a control channel or a channel carrying system information, and the control channel is used to schedule the channel carrying system information.
  • RRM measurement is performed according to the first public signal, and an RRM measurement result corresponding to the first public signal is obtained, and the RRM measurement result is identified by the first index; The RRM measurement result corresponding to the first common signal.
  • an embodiment of the present application provides a wireless communication method, and the method can be performed by a wireless access network device or a component (such as a chip, an apparatus, etc.) used for the wireless access network device.
  • the method includes: acquiring a first set, the first set includes a plurality of common signals, the plurality of common signals includes a first common signal, the first common signal includes a synchronization signal; the first common signal is in the first set
  • the index of is a first index, the first index corresponds to a plurality of resources, and the second index of the first common signal is used to indicate a resource in the plurality of resources, and the resource includes time domain resources and/or frequency domain resources;
  • the common signals in the first set are sent to the terminal.
  • the first set corresponds to a first grouping rule
  • the first grouping rule is used to determine the first index or the second index; wherein, the common signals in the first set are based on the first grouping rule.
  • a grouping rule is divided into at least one group, and each group in the at least one group corresponds to a resource set, and the resource set includes at least one resource among a plurality of resources corresponding to the first index.
  • the sequence of the synchronization signals corresponds to the first grouping rule; or, the number of common signals in a group corresponding to the first set corresponds to the first grouping rule; or, the time-division dual
  • the job configuration corresponds to the first grouping rule.
  • the sequence of synchronization signals corresponds to the first index of the first common signal in the first set.
  • the first channel corresponding to the first common signal corresponds to the first index
  • the first channel is a broadcast channel, a channel carrying system information, or a control channel
  • the control channel is used for scheduling The channel that carries system information.
  • one or more of the following information corresponding to the first channel corresponds to the first index: information used to indicate the first index, the scrambling code of the first channel, DMRS sequence of the first channel.
  • the sequence of the synchronization signal corresponds to the second index.
  • the first channel corresponding to the first common signal corresponds to the second index
  • the first channel is a broadcast channel, a channel carrying system information, or a control channel
  • the control channel is used for scheduling The channel that carries system information.
  • one or more of the following information corresponding to the first channel corresponds to the second index: information used to indicate the second index, the scrambling code of the first channel, DMRS sequence of the first channel.
  • the first index or the second index corresponds to the resource of the second common signal; wherein the second common signal includes a control channel or a channel carrying system information, and the control channel is used for scheduling The channel that carries system information.
  • an RRM measurement result corresponding to the first common signal from the terminal is received, and the RRM measurement result is identified by the first index.
  • an embodiment of the present application provides a communication device, where the device may be a terminal or a chip used for the terminal.
  • the apparatus has the function of implementing any implementation method of the above-mentioned first aspect. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • an embodiment of the present application provides a communication apparatus, and the apparatus may be a wireless access network device or a chip used for the wireless access network device.
  • the device has the function of implementing any implementation method of the second aspect above. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • an embodiment of the present application provides a communication device, including a processor and a memory; the memory is used to store computer instructions, and when the device runs, the processor executes the computer instructions stored in the memory, so that the device executes Any of the implementation methods of the first aspect or the second aspect above.
  • an embodiment of the present application provides a communication apparatus, including a unit or means for executing each step of any implementation method in the first aspect or the second aspect.
  • an embodiment of the present application provides a communication device, including a processor and an interface circuit, where the processor is configured to communicate with other devices through the interface circuit, and execute any implementation method in the first aspect or the second aspect.
  • the processor includes one or more.
  • an embodiment of the present application provides a communication device, including a processor coupled to a memory, where the processor is configured to call a program stored in the memory to execute any implementation method in the first aspect or the second aspect above .
  • the memory may be located within the device or external to the device.
  • the processor can be one or more.
  • an embodiment of the present application further provides a computer-readable storage medium, where an instruction is stored in the computer-readable storage medium, when the computer-readable storage medium runs on a communication device, causes the first aspect or the second aspect to be executed. Any implementation method is executed.
  • embodiments of the present application further provide a computer program product, the computer program product includes a computer program, and when the computer program is run by the communication device, any implementation method in the first aspect or the second aspect is executed.
  • an embodiment of the present application further provides a chip system, including: a processor configured to execute any implementation method in the first aspect or the second aspect.
  • an embodiment of the present application further provides a communication system, where the communication system includes a communication device for executing any implementation method of the above first aspect and a communication device for executing any implementation method of the above second aspect .
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the present application is applied;
  • FIG. 2 is a schematic diagram of the time-frequency resource positions of signals/channels in the 4G LTE system
  • Figure 3 is a schematic diagram of the resource location of the SSB in the 5G NR system
  • Figure 4 is a schematic diagram of the resource multiplexing mode of SSB and initial public PDCCH in the 5G NR system;
  • FIG. 5 is a schematic diagram of dynamic scheduling of different beam directions in which common signals cannot be performed at the time of transmission;
  • FIG. 6 is a schematic diagram of a grouping rule
  • FIG. 8 is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system 1000 to which an embodiment of the present application is applied.
  • the communication system includes a radio access network 100 and a core network 200 .
  • the communication system 1000 may further include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 1 ), and may also include at least one terminal (such as 120a-120j in FIG. 1 ).
  • the terminal is connected to the wireless access network device in a wireless way, and the wireless access network device is connected to the core network in a wireless or wired way.
  • the core network device and the radio access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device can be integrated on the same physical device, or they can be one physical device. It integrates the functions of some core network equipment and some functions of the wireless access network equipment. Terminals and terminals and wireless access network devices and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 1 is just a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the radio access network equipment can be a base station (base station), an evolved NodeB (eNodeB), a transmission reception point (TRP), and a next generation NodeB (gNB) in the 5G mobile communication system , the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the wireless fidelity (wireless fidelity, WiFi) system, etc.; it can also complete the base station part
  • a functional module or unit for example, may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the radio access network device may be a macro base station (110a in FIG. 1), a micro base station or an indoor station (110b in FIG.
  • a relay node or a donor node and the like.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device.
  • a base station is used as an example of a radio access network device for description.
  • a terminal may also be referred to as terminal equipment, user equipment (UE), mobile station, mobile terminal, and the like.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed in the air on aircraft, balloons, and satellites. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or drone 120i in FIG. 1 may be configured as a mobile base station, for those terminals 120j accessing the radio access network 100 through 120i, the terminal 120i is Base station; but for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • the communication between 110a and 120i may also be performed through an interface protocol between the base station and the base station.
  • both the base station and the terminal may be collectively referred to as communication devices, 110a and 110b in FIG. 1 may be referred to as communication devices with base station functions, and 120a-120j in FIG. 1 may be referred to as communication devices with terminal functions.
  • Communication between base stations and terminals, between base stations and base stations, and between terminals and terminals can be carried out through licensed spectrum, through unlicensed spectrum, or through licensed spectrum and unlicensed spectrum at the same time; It is possible to communicate using the frequency spectrum below gigahertz (GHz), and it is also possible to use the frequency spectrum above 6 GHz for communication, and it is also possible to use the frequency spectrum below 6 GHz and the frequency spectrum above 6 GHz for communication at the same time.
  • GHz gigahertz
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the function of the base station may also be performed by a module (eg, a chip) in the base station, or may be performed by a control subsystem including the function of the base station.
  • the control subsystem including the base station function here may be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal can also be performed by a module (such as a chip or a modem) in the terminal, and can also be performed by a device including the terminal functions.
  • the base station sends downlink signals or downlink information to the terminal, and the downlink information is carried on the downlink channel;
  • the terminal sends the uplink signal or uplink information to the base station, and the uplink information is carried on the uplink channel.
  • a terminal needs to establish a wireless connection with a cell controlled by the base station.
  • the cell that has established a wireless connection with the terminal is called the serving cell of the terminal.
  • the serving cell When the terminal communicates with the serving cell, it will also be interfered by signals from neighboring cells.
  • the time domain symbols may be orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, or may be discrete Fourier transform spread spectrum OFDM (Discrete Fourier Transform-spread-OFDM, DFT) symbols -s-OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • DFT discrete Fourier Transform-spread-OFDM
  • the symbols in the embodiments of the present application all refer to time-domain symbols.
  • a physical downlink shared channel (PDSCH), a physical downlink control channel (PDCCH), and a physical uplink shared channel (PUSCH)
  • the physical broadcast channel (PBCH) is only an example of the downlink data channel, downlink control channel, uplink data channel and broadcast channel.
  • the data channel, control channel and broadcast channel may be There are different names, which are not limited in this embodiment of the present application.
  • the basic parameters of the system, the frame structure, and the time-frequency resource design of the signal are relatively fixed. specific:
  • the 4G LTE system only supports a fixed subcarrier spacing (SCS) of 15 kilohertz (kilohertz, KHz).
  • SCS subcarrier spacing
  • One radio frame includes 10 subframes, each subframe includes 14 OFDM symbols (hereinafter referred to as symbols) for a normal cyclic prefix, and the time-domain scheduling granularity is one subframe.
  • the carrier bandwidth only supports a limited number of bandwidths, including 1.4 megahertz (megahertz, MHz), 3MHz, 5MHz, 10MHz, 15MHz, and 20MHz.
  • the frequency scheduling granularity is 12 subcarriers, that is, a resource block (resource block, RB) bandwidth.
  • the RB is a basic time-frequency scheduling unit, and specifically includes a time-frequency two-dimensional resource composed of one subframe in the time domain and 12 subcarriers in the frequency, where one subcarrier of one symbol is the smallest time-frequency resource, which is called a resource unit (resource element, RE), that is, 1 RB includes 12 ⁇ 14 REs.
  • RE resource element
  • the signal used for initial access is within the bandwidth of 6 RBs in the center of the carrier, including primary synchronization signal (PSS), secondary synchronization signal (secondary synchronization signal) synchronization signal, SSS) and PBCH.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH PBCH
  • a cell-specific reference signal (CRS) needs to be sent on each RB in each subframe for functions such as measurement, channel estimation, demodulation, and time-frequency tracking.
  • PDCCH is used for the scheduling of uplink and downlink data channels and common information. Specifically, it is scattered over the entire carrier bandwidth by time-frequency interleaving. The time domain is located in the first n symbols of a subframe, and n is a natural number in 1-4. one.
  • the public information may include a system information block (SIB), a random access channel (RACH) response, a paging message, and the like.
  • SIB system information block
  • RACH random access channel
  • the basic system parameters, frame structure, and signal time-frequency resource design are relatively flexible. specific:
  • the 5G NR system supports a variety of SCSs. Specifically, for frequency range 1 (generally considered below 6GHz), it supports 15/30/60KHz SCS; for frequency range 2 (generally considered to be above 6GHz) , supports 60KHz and 120KHz SCS.
  • One radio frame includes 10 subframes, and the duration of each subframe is 1 millisecond (ms).
  • the time-domain scheduling granularity of the NR system is defined as time slots, and each time slot includes 14 OFDM symbols (hereinafter referred to as symbols) for a normal cyclic prefix. Therefore, for different SCSs, the number of time slots included in a subframe is different.
  • one subframe includes one time slot; for 30KHz SCS, one subframe includes two time slots, and each time slot The duration of the slot is 0.5ms.
  • the NR communication system supports flexible carrier bandwidth, that is, there are only limited types of carrier bandwidths that are not limited to the LTE system, and the basic scheduling granularity in the frequency domain is also 12 subcarriers.
  • the signal used for initial access in the NR system is called a synchronization signal/PBCH block (SSB), and the SSB includes PSS, SSS, and PBCH.
  • the frequency domain location of the SSB in the carrier is flexible, that is, it does not need to be restricted to be located in the center of the carrier as in the LTE system.
  • the NR system introduces the concept of bandwidth part (BWP) to decouple the system-level carrier from the terminal-level BWP.
  • BWP bandwidth part
  • the NR system can support a 100MHz bandwidth carrier, but the terminal can only support a 20MHz BWP reception. ability.
  • time domain period NR supports a variety of SSB transmission periods.
  • the terminal assumes that the SSB transmission period is 20ms, that is, the duration of two radio frames.
  • the SSB transmission period is 20ms, that is, the duration of two radio frames.
  • a beamforming mechanism is introduced into the common channel in the NR system, and omnidirectional coverage is achieved by beaming multiple SSBs.
  • the NR system largely cancels the always-existing signal transmission (for example, in the LTE system, regardless of whether there is data transmission, the always-existing CRS needs to be transmitted on each RB of each subframe), and replaced by functional decoupling Introduce the reference signal (reference signal, RS) of the corresponding function, such as SSS or channel state information reference signal (channel state information-reference signal, CSI-RS) for high-level measurement, CSI-RS for channel estimation or demodulation for demodulation
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PDCCH is also used for the scheduling of uplink and downlink data channels and common information, but it does not need to be scattered over the entire carrier bandwidth through time-frequency interleaving, but can be sent in the frequency domain resources of a part of the RB in the carrier. Part of the RB is called a control resource set (CORESET).
  • CORESET control resource set
  • the detection position of the PDCCH in the time domain is determined by the search space configuration, and unlike the LTE system, the PDCCH needs to be detected in each subframe.
  • 5G NR communication system provides more flexibility in system design, including basic parameters, frame structure and channel time-frequency resource design, etc., which can better support forward compatibility and scalability sex.
  • the initial access process of the terminal mainly includes:
  • the master information block (MIB) in the PBCH receives the master information block (MIB) in the PBCH, and obtain the necessary system information of the NR system, including the initial BWP and the time-frequency resource configuration of the PDCCH scheduling common channel (including the frequency domain CORESET and the time domain search space resource allocation), etc.;
  • MIB master information block
  • receive SIB1 receive SIB1, and obtain necessary system information other than the system information in the MIB, including RACH configuration, time division duplexing (time division duplexing, TDD) frame structure configuration, etc.;
  • the terminal detects the system paging message, or the terminal sends random access to establish a radio resource control (radio resource control, RRC) connection with the base station;
  • RRC radio resource control
  • the terminal and the base station can perform normal data transmission.
  • NR adopts a beamforming mechanism, and transmits multiple SSBs in multiple beam directions by time division multiplexing (TDM). It can be called a common signal transmission mode or a common signal beam scanning transmission mode, and the common signal here includes SSB.
  • TDM time division multiplexing
  • the multiple SSBs adopt the resource multiplexing mode of TDM, and the resource positions of the respective SSBs are fixed.
  • FIG. 3 it is a schematic diagram of the resource location of the SSB in the 5G NR system.
  • the set of SSB beams is represented by the SSB index number.
  • the frequency domain position of the SSB is relatively flexible, and only needs to be on a predefined frequency grid.
  • the set of SSBs is located in the first half of a certain radio frame, and the time domain position of each SSB is fixed. Referring to Fig. 3, taking 30KHz SCS as an example, the 8 SSBs are located in the first 4 time slots of the first half frame, and the specific symbol positions are also fixed positions as shown in Fig. 3.
  • the beam transmission directions of the multiple SSBs are different, and they are transmitted in a fixed order.
  • the beam directions from SSB0 to SSB7 are direction 1 to direction 8, respectively.
  • the sending sequence is: send SSB0 in direction 1, and send SSB1 in direction 2.
  • send SSB2 in direction 3 send SSB3 in direction 4
  • send SSB4 in direction 5 send SSB5 in direction 6
  • send SSB6 in direction 7 send SSB7 in direction 8. Therefore, multiple SSBs occupy fixed resources respectively, and the base station transmits the beams of the multiple SSBs on the corresponding resources in a fixed direction.
  • the common PDCCH used for scheduling common channels (such as SIB1 and other SIBs, paging messages, etc.)
  • the time-frequency resource is determined by the CORESET in the frequency domain and the search space in the time domain.
  • FIG. 4 it is a schematic diagram of the resource multiplexing mode of SSB and initial common PDCCH in the 5G NR system. Among them, the PDCCH is used to schedule the channel carrying the SIB.
  • NR For frequency range 1 (Frequency Range 1, FR1), NR only supports SSB and PDCCH as TDM, that is, mode 1 (pattern 1); for frequency range 2 (Frequency Range 2, FR2), NR system supports SSB and PDCCH for TDM Or frequency division multiplexing (frequency division multiplexing, FDM) multiplexing mode, wherein FDM is further divided into pattern 2 (pattern 2) and pattern 3 (pattern 3).
  • FDM frequency division multiplexing
  • FR1 is 450MHz to 6000MHz
  • FR2 is 24250MHz to 52600MHz.
  • the current public signal transmission mode has a fixed corresponding relationship with the frame structure.
  • FR2 due to the higher deployment frequency, more antenna elements will be used to achieve greater beamforming gain.
  • the mainstream in the industry is to use analog beams.
  • all frequency domain resources can only use the same beam weighting value, so that the beam can only point in a certain direction.
  • FIG. 5 it is a schematic diagram of dynamic scheduling of beam directions in which common signals cannot be sent at the moment of transmission.
  • the beams of each public signal sent are scanned and sent in different directions in a certain order, and the beams of each public signal are sent in a fixed direction, and the time-frequency resources occupied by each public signal are also relatively fixed.
  • public signal 2 when the beam of public signal 2 is sent, it is possible that there are no terminals or a small number of terminals in the beam direction of public signal 2, while there are terminals or a large number of terminals in other directions. Only public signal 2 can be sent, and the beam direction of public signal 2 is fixed, so it cannot point to the direction with terminals or a large number of terminals. On the one hand, terminals with communication needs cannot be served. The ineffective transmission of the signal beam results in a waste of resources.
  • each common signal transmission mode corresponds to a common signal set
  • a common signal set includes multiple common signals
  • each of the multiple common signals Each common signal corresponds to one beam transmission direction. Different common signals generally correspond to different beam transmission directions.
  • a common signal sending manner is used to indicate the sequential sending order of a plurality of common signals in the common signal set.
  • the base station can determine the public signal transmission mode corresponding to the public signal set according to the service requirements, and transmit a plurality of public signals in the public signal set to the terminal according to the public signal transmission mode.
  • the terminal may detect one or more common signals among the plurality of common signals, and obtain information such as synchronization signals from the detected common signals.
  • "set" may be an abbreviation for "common signal set”.
  • the embodiment of the present application can group multiple public signals in a common signal set according to different candidate grouping rules to obtain one or more groups, each group corresponds to a resource set, and each resource The set includes one or more resources among the resources corresponding to the multiple common signals, and each resource includes time domain resources and/or frequency domain resources.
  • the public signals in the same group share the resources in the same resource set, that is, a public signal in a group can use any resource in the corresponding resource set of the group, but a resource can only be allocated at a certain time. Used for a public signal.
  • FIG. 6 is a schematic diagram of a grouping rule.
  • the grouping rule is to divide the common signals in the first set into four groups, where the first set includes common signals 0 to common information 7 . As follows:
  • Group 1 includes common signal 0 and common signal 4.
  • Group 1 corresponds to resource set 1 consisting of resource 1 and resource 5.
  • common signal 0 corresponds to one of resource 1 or resource 5
  • common signal 4 corresponds to resource 1 or the other of resource 5;
  • Group 2 includes common signal 1 and common signal 5.
  • Group 2 corresponds to resource set 2 consisting of resource 2 and resource 6.
  • common signal 1 corresponds to one of resource 2 or resource 6
  • common signal 5 corresponds to resource 2 or the other of Resource 6;
  • Group 3 includes common signal 2 and common signal 6.
  • Group 3 corresponds to resource set 3 consisting of resource 3 and resource 7.
  • common signal 2 corresponds to one of resource 3 or resource 7
  • common signal 6 corresponds to resource 3 or the other of resource 7;
  • Group 4 includes common signal 3 and common signal 7.
  • Group 4 corresponds to resource set 4 consisting of resource 4 and resource 8.
  • common signal 3 corresponds to one of resource 4 or resource 8
  • common signal 7 corresponds to resource 4 or the other of resource 8.
  • each common signal corresponds to a beam transmission direction, for example, common signal 0 to common signal 7 correspond to directions 1 to 8 respectively.
  • the common signal sending manners corresponding to the first set include common signal sending manner 1, common signal sending manner 2, and common signal sending manner 3.
  • the public signal transmission sequence corresponding to the public signal transmission mode 1 is: public signal 0, public signal 1, public signal 2, public signal 3, public signal 4, public signal 5, public signal 6, public signal 7, and are public Signal 0 is allocated resource 1, common signal 1 is allocated resource 2, common signal 2 is allocated resource 3, common signal 3 is allocated resource 4, common signal 4 is allocated resource 5, common signal 5 is allocated resource 6, common signal 6 is allocated Allocate resource 7, and allocate resource 8 for common signal 7;
  • the public signal transmission sequence corresponding to public signal transmission mode 2 is: public signal 0, public signal 5, public signal 2, public signal 3, public signal 4, public signal 1, public signal 6, public signal 7, and public signal 0 Allocate resource 1, allocate resource 2 for common signal 5, allocate resource 3 for common signal 2, allocate resource 4 for common signal 3, allocate resource 5 for common signal 4, allocate resource 6 for common signal 1, allocate resource for common signal 6 7. Allocate resource 8 for common signal 7;
  • the public signal transmission order corresponding to public signal transmission mode 3 is: public signal 4, public signal 5, public signal 6, public signal 3, public signal 0, public signal 1, public signal 2, public signal 7, and public signal 4 Allocate resource 1, resource 2 for common signal 5, resource 3 for common signal 6, resource 4 for common signal 3, resource 5 for common signal 0, resource 6 for common signal 1, resource for common signal 2 7. Allocate resource 8 for common signal 7.
  • the base station When the base station sends a set of multiple public signals to the terminal, it can flexibly select the transmission time of each public signal according to service requirements and grouping rules. Since each public signal corresponds to a beam transmission direction, different public signals generally correspond to different beam transmissions Therefore, it is possible to select the public signal corresponding to a certain beam transmission direction at a certain transmission time according to the service requirements for transmission, which helps to improve the probability of the public signal being detected by the terminal, improve the system performance, and reduce the waste of resources.
  • the service requirements mentioned here may refer to the specific locations at which terminals have transmission requirements at the time of sending the public signal, and the number of terminals that have transmission requirements. The base station can select and send the public signal directed to the terminal that needs transmission.
  • FIG. 7 is a schematic diagram of flexible transmission of common signal beams.
  • the first set includes common signals 0 to 7, and the grouping rules are the same as those in the example shown in Fig. 6 .
  • the base station sends common signals 0 to 7 in the first set to the terminal according to the grouping rule.
  • the public signal sending order corresponding to the common signal sending mode is: common signal 0, common signal 1, common signal 6, common signal 3, common signal 4, common signal 5, common signal 2, common signal 7. It can be seen that at the first moment (referred to as moment A) when the public signal 2 or the public signal 6 can be sent in FIG. 7, the base station chooses to send the public signal 6, and at the second moment when the public signal 2 or the public signal can be sent.
  • the base station chooses to transmit the common signal 2 .
  • the base station determines that the number of terminals in the direction pointed by the beam of the common signal 6 is large, so the base station decides to send the common signal 6, and at time B, sends the common signal 2. Therefore, based on service requirements, the base station can flexibly select a common signal from the corresponding group to send at the sending time, so as to realize the flexible sending of multiple common signals on different beams, improve the probability that the common signal is detected by the terminal, and improve the communication efficiency.
  • the base station sends multiple common signals in the first set to the terminal, and a common signal detected by the terminal among the multiple common signals is called the first common signal.
  • the second common signal is a common signal associated with the first common signal.
  • the first common signal includes a synchronization signal and a broadcast channel
  • the second common signal includes a control channel or a channel carrying system information.
  • the synchronization signal includes PSS and SSS.
  • the broadcast channel may be a PBCH, which is used to carry the MIB.
  • the control channel may be a PDCCH, which is used to schedule a channel carrying system information, where the system information may include SIB, and the SIB here may include SIB1.
  • the first common signal includes a synchronization signal
  • the second common signal includes a control channel or a channel carrying system information
  • the synchronization signal includes PSS and SSS.
  • the control channel may be a PDCCH, which is used to schedule a channel carrying system information, where the system information may be minimum necessary system information, the minimum necessary system information includes MIB and SIB, and the SIB here may include SIB1. It should be noted that the name of MIB or SIB here may have other names in future technological evolution.
  • the communication methods provided in the embodiments of the present application may be performed by a terminal or a component (such as a chip, a device, etc.) for a terminal, and a base station or a component (such as a chip, a device, etc.) for the base station.
  • a terminal or a component such as a chip, a device, etc.
  • a base station or a component such as a chip, a device, etc.
  • FIG. 8 is a schematic diagram of a wireless communication method according to an embodiment of the present application. The method includes the following operations:
  • the base station acquires the first set.
  • the first set includes a plurality of common signals including a first common signal including a synchronization signal.
  • the index of the first common signal in the first set is the first index, the first index corresponds to multiple resources, and the second index of the first common signal is used to indicate one resource among the multiple resources, and the resource includes time domain resources and/or frequency domain resources.
  • the first set may be predefined, eg by a protocol.
  • the first group may be grouped according to a first grouping rule, and the first grouping rule may be one of multiple candidate groups; or, the first grouping rule may also be predefined, that is, there is only this grouping rule; or, There may also be no such grouping rule, in which case all common signals in the first set can be regarded as one group.
  • the common signals in the first set are divided into at least one group according to the first grouping rule, and each group in the at least one group corresponds to a resource set, and the resource set includes at least one resource among multiple resources corresponding to the first set.
  • the aforementioned FIG. 6 may be an example of the first grouping rule.
  • the base station sends the common signal in the first set to the terminal.
  • the base station can flexibly select a public signal to send from the groups corresponding to the sending time according to service requirements and grouping rules.
  • One group can correspond to multiple sending times. Any one common signal may be transmitted at any one of the multiple transmission moments. Since each public signal corresponds to a beam transmission direction, it is possible to select the public signal corresponding to a beam transmission direction at a certain transmission time according to business requirements, thereby helping to improve the probability of the public signal being detected by the terminal. Improve system performance and reduce resource waste.
  • FIG. 7 is an example of the base station sending the common signals in the first set to the terminal.
  • the terminal detects a public signal.
  • the terminal detects the common signal sent by the base station, and can detect the first common signal in the first set sent.
  • the terminal may detect the synchronization signal according to the candidate sequence of the synchronization signal and the corresponding SCS.
  • the candidate sequences can be pre-defined by the standard, such as using a unified PSS and SSS candidate sequences, or a set of candidate sequences can be predefined for each frequency band, and the candidate sequences corresponding to different frequency bands can be the same or different, such as frequency band 1
  • the first set of candidate sequences is used, and the second set of candidate sequences is used for band 2.
  • the SCS of the synchronization signal can be associated with the frequency band.
  • frequency band 1 uses 15KHz and 30KHz SCS
  • frequency band 2 uses 120KHz and 240Khz SCS.
  • all frequency bands can use one SCS or one SCS set.
  • the terminal can detect a certain synchronization signal, for example, a certain synchronization signal with an SCS of 30KHz is detected on the frequency band 1.
  • the terminal may receive the broadcast channel, and the SCS of the broadcast channel may be the same as the SCS of the above synchronization signal or there may be a certain correlation.
  • the time-frequency resources of the broadcast channel may also have a certain correlation with the time-frequency resources of the above synchronization signal, for example, on the same or adjacent symbols, or on the same or adjacent RBs.
  • the terminal determines, according to the detected first common signal, a first index of the first common signal in the first set and a second index of the first common signal.
  • the terminal may further determine the first set according to the first common signal. For example, there may be various sets sent by the base station to the terminal, for example, including a set composed of 10 common signals, a set composed of 8 common signals, or a set composed of 6 common signals.
  • the base station may select one of the sets, and send the common signals in the set to the terminal, and the set is the first set.
  • the terminal may determine, according to the first common signal, which set of the foregoing multiple sets the first set to which the first common signal belongs is.
  • the terminal may determine the first set according to the sequence of synchronization signals of the first common signal, or the terminal may determine the first set according to the first channel corresponding to the first common signal.
  • the first channel may be a broadcast channel, a channel carrying system information, or a control channel, where the control channel is used to schedule the channel carrying system information.
  • the protocol may also predefine the first set sent by the base station to the terminal, that is, the first set sent by the base station to the terminal is known in advance by the terminal. Therefore, the terminal may not need to perform the above-mentioned operation of determining the first set.
  • the terminal determines the resource of the first common signal according to the first index and the second index, or according to the second index.
  • the first index of the first common signal in the first set corresponds to multiple resources
  • the second index may indicate one of the multiple resources. Therefore, according to the first index and the second index, the terminal can Determine the resource of the first common signal.
  • the first common signal can be any one of the sent common signal 0 to common signal 7, and after the terminal detects the first common signal, it can determine the first common signal in the first set.
  • an index, which is used to indicate which number of the first common signal the first common signal is in the first set, and a second index of the first common signal can also be determined, where the second index indicates a plurality of pieces of the first common information one of the resources.
  • the terminal can determine that the first common signal corresponds to resource 4 and resource according to the first index.
  • the terminal may determine the resources actually allocated by the base station for the common signal 3 according to the second index. For example, if the second index indicates resource 4, the terminal determines that the resource of the common signal 3 is resource 4, that is, the base station actually allocates resources for the common signal 3. 4.
  • the terminal determines the resource of the first common signal from multiple resources corresponding to the first set according to the second index.
  • the terminal does not need to use the first index when determining the resource of the first common signal.
  • the resource of the first common signal may be any one of multiple resources corresponding to the first common signal, wherein the multiple resources corresponding to the first common signal are also referred to as multiple resources corresponding to the first index, or referred to as multiple resources corresponding to the first index. Multiple resources corresponding to the first set.
  • the first grouping rule divides common signal 0 to common signal 7 into a group, and the group corresponds to a resource set consisting of resource 1 to resource 8, and the base station can allocate resources to any one of the eight common signals.
  • the base station can transmit the 8 common signals in the first set in an arbitrary transmission order.
  • the first common signal detected by the terminal may be any one of the transmitted common signals 0 to 7.
  • the first index of the first common signal in the first set may be determined, using In order to indicate that the first common signal is the first common signal in the first set, and, a second index of the first common signal can also be determined, and the second index indicates a plurality of resources corresponding to the first common information (i.e., One of Resource 1 to Resource 8).
  • the terminal determines that the first index of the detected first public signal is 3, the first public signal indicated by the first index is public signal 3, and the second index indicates a resource among resources 1 to 8, such as the first If the second index indicates resource 1, it can be determined that the base station has allocated resource 1 for common signal 3.
  • the terminal determines the first index and the second index of the first common signal in the first set according to the detected first common signal, and further determines the resource of the first common signal.
  • one common signal may correspond to one or more resources, and different resources may be time-division multiplexed, so a common signal has multiple transmission opportunities.
  • the transmission timing of the public signal corresponding to a certain beam transmission direction can be flexibly adjusted.
  • the sequential sending order of each common signal corresponding to different beam sending directions can be determined according to service requirements, and then the resources occupied by each common signal can be determined.
  • the terminal may further determine the resources of the common signal in the first set except the first common signal according to the first set and the resources of the first common signal.
  • the first set includes 8 common signals, which are respectively common signal 0 to common signal 7, and the first common signal detected by the terminal is common signal 3.
  • the terminal can also A set, the first index of the common signal 3, and the resources of the common signal 3, determine the resources of the common signal 0 to the common signal 2, and the common signal 4 to the common signal 7.
  • the terminal may further determine the resources of the second common signal according to the first index or the second index; and receive the second common signal according to the resources of the second common signal.
  • the first index of the first common signal and the resources of the second common signal there is a correspondence between the first index of the first common signal and the resources of the second common signal, so the first index of the first common signal and the first index of the first common signal and the second common signal can be The correspondence between the resources determines the resources of the second common signal corresponding to the first index.
  • one of the multiple resources corresponding to the first common signal can be determined according to the second index, and then the resources of the second common signal corresponding to the resources of the first common signal can be determined according to the determined resources of the first common signal. .
  • the terminal can also perform radio resource management (radio resource management, RRM) measurement according to the first public signal, and obtain the RRM measurement result corresponding to the first public signal, and the RRM measurement result is determined by the first public signal.
  • RRM radio resource management
  • An index is used for identification; and the RRM measurement result corresponding to the first common signal is sent to the base station.
  • the RRM measurement results include but are not limited to: reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), received signal strength indication (received signal strength indication, RSSI) or signal and at least one of the interference plus noise ratio (Signal to interference plus noise ratio, SINR).
  • the first index of the first public signal in the first set may be determined according to any of the following methods:
  • Method 1 Determine the first index of the first common signal in the first set according to the sequence of the synchronization signal.
  • sequence 1 of the synchronization signal corresponds to the first index
  • sequence 2 of the synchronization signal and the sequence 3 of the synchronization signal respectively correspond to other indexes.
  • the sequence of the synchronization signal here may be the sequence of PSS or the sequence of SSS.
  • sequence combination 1 of PSS and SSS corresponds to the first index
  • sequence combination 2 of PSS and SSS and sequence combination 3 of PSS and SSS correspond to other indexes respectively.
  • the first index of the first common signal in the first set is determined according to the first channel corresponding to the first common signal.
  • the first index of the first common signal in the first set is determined according to one or more of the following information corresponding to the first channel: information used to indicate the first index, a scrambling code of the first channel , the DMRS sequence of the first channel.
  • the information used to indicate the first index corresponds to the first field of the first channel.
  • the first field contains 3 bits, it can indicate eight indexes, for example, "000" indicates the first index, and the other seven bits of information are used to indicate other indexes.
  • scrambling code 1 corresponds to the first index
  • scrambling code 2 and scrambling code 3 correspond to other indexes.
  • DMRS sequence 1 corresponds to the first index
  • DMRS sequence 2 and DMRS sequence 3 correspond to other indices.
  • the second index of the first public signal may be determined according to any of the following methods:
  • the second index of the first common signal is determined according to the sequence of the synchronization signal.
  • sequence 1 of the synchronization signal corresponds to the second index
  • sequence 2 of the synchronization signal and sequence 3 of the synchronization signal respectively correspond to other indexes.
  • the sequence of the synchronization signal here may be the sequence of PSS or the sequence of SSS.
  • sequence combination 1 of PSS and SSS corresponds to the second index
  • sequence combination 2 of PSS and SSS and sequence combination 3 of PSS and SSS correspond to other indexes respectively.
  • the second index of the first common signal is determined according to the first channel corresponding to the first common signal.
  • the second index of the first common signal is determined according to one or more of the following information corresponding to the first channel: information used to indicate the second index, the scrambling code of the first channel, the DMRS sequence.
  • the information used to indicate the second index corresponds to the second field of the first channel.
  • the second field contains 3 bits, it can indicate eight indexes, for example, "000" indicates the second index, and the other seven bits of information are used to indicate other indexes.
  • scrambling code 1 corresponds to the second index
  • scrambling code 2 and scrambling code 3 correspond to other indexes.
  • DMRS sequence 1 corresponds to the second index
  • DMRS sequence 2 and DMRS sequence 3 correspond to other indices.
  • the first index of the first common signal in the first set and the second index of the first common signal may be determined according to the sequence of synchronization signals.
  • the relationship between the sequence of the synchronization signal and the first index and the second index is shown in Table 1.
  • the first index is determined to be 2
  • the second index is determined to be index 0.
  • the sequence of the synchronization signal is sequence 6, it is determined that the first index is 3, and the second index is index 1.
  • the first index of the first common signal in the first set and the second index of the first common signal may also be determined according to the control channel corresponding to the first common signal.
  • the control channel corresponding to the first common signal exemplary, taking the scrambling code of the control channel as an example, the relationship between the scrambling code of the control channel and the first index and the second index is shown in Table 2.
  • Scrambler 7 4 0
  • Scramble code 8 4 1 ... ... ...
  • the scrambling code of the control channel is scrambling code 3
  • the first index is 2 and the second index is index 0.
  • the scrambling code of the control channel is scrambling code 6
  • the first index is 3 and the second index is index 1.
  • the first index of the first common signal in the first set is determined according to the sequence of synchronization signals, and the second index of the first common signal is determined according to the broadcast channel corresponding to the first common signal.
  • the first index of the first common signal in the first set is determined according to the broadcast channel corresponding to the first common signal
  • the second index of the first common signal is determined according to the control channel corresponding to the first common signal
  • a grouping rule for common signals is also used.
  • the terminal determines the first index or the second index according to the first grouping rule.
  • the terminal determines a first grouping rule corresponding to the first set from multiple candidate rules.
  • the first grouping rule determined by the terminal is as follows:
  • Group 1 includes common signal 0 and common signal 4, and group 1 corresponds to resource set 1 consisting of resource 1 and resource 5;
  • Group 2 includes common signal 1 and common signal 5, and group 2 corresponds to resource set 2 consisting of resource 2 and resource 6;
  • Group 3 includes common signal 2 and common signal 6, and group 3 corresponds to resource set 3 consisting of resource 3 and resource 7;
  • Group 4 includes common signal 3 and common signal 7 , and group 4 corresponds to resource set 4 consisting of resource 4 and resource 8 .
  • a certain field of the control channel is used to indicate the first index and the second index.
  • the terminal obtains the bit information in this field of the control channel. Since there are 8 common signals in total, the terminal first obtains the first 3 bits of information in this field, and determines the first index according to the 3 bits of information. Then the terminal determines that there are two common signals in each group according to the first grouping rule corresponding to the first set, and the terminal further only needs to obtain 1-bit information in this field, for example, to obtain the fourth-bit information, according to the 1-bit information
  • the second index can be determined.
  • the terminal can determine that the detected first public signal is public signal 3, and the corresponding resource 4.
  • the terminal can determine that the detected first public signal is public signal 5 and corresponds to Resource 6.
  • the terminal may determine the first grouping rule corresponding to the first set from a plurality of candidate grouping rules according to any one or more of the following methods:
  • a first grouping rule corresponding to the first set is determined from a plurality of candidate grouping rules according to the sequence of the synchronization signal in the first common signal.
  • sequence 1 of the synchronization signal corresponds to the first grouping rule
  • sequence 2 of the synchronization signal, sequence 3 of the synchronization signal, etc. correspond to other candidate grouping rules.
  • the sequence of the synchronization signal here may be the sequence of PSS or the sequence of SSS.
  • sequence combination 1 of PSS and SSS corresponds to the first grouping rule
  • sequence combination 2 of PSS and SSS correspond to other candidate grouping rules.
  • sequence combination 3 of PSS and SSS correspond to other candidate grouping rules.
  • a first grouping rule corresponding to the first set is determined from a plurality of candidate grouping rules according to the number of common signals in a grouping corresponding to the first set.
  • the terminal can determine the first set corresponding to the first set according to the quantity information and the predefined rule. grouping rules.
  • the terminal determines that the first grouping rule is:
  • Group 1 includes common signal 0 and common signal 4, and group 1 corresponds to resource set 1 consisting of resource 1 and resource 5;
  • Group 2 includes common signal 1 and common signal 5, and group 2 corresponds to resource set 2 consisting of resource 2 and resource 6;
  • Group 3 includes common signal 2 and common signal 6, and group 3 corresponds to resource set 3 consisting of resource 3 and resource 7;
  • Group 4 includes common signal 3 and common signal 7 , and group 4 corresponds to resource set 4 consisting of resource 4 and resource 8 .
  • the terminal determines that the first grouping rule is:
  • Group 1 includes common signal 0 to common signal 3, and group 1 corresponds to resource set 1 consisting of resource 1 to resource 4;
  • Group 2 includes common signal 4 to common signal 7 , and group 2 corresponds to resource set 2 consisting of resource 5 to resource 8 .
  • a first grouping rule corresponding to the first set is determined from a plurality of candidate grouping rules.
  • Each TDD configuration indicates the ratio between uplink time domain resources and downlink time domain resources.
  • the time domain resources here include at least one of symbols, time slots, subframes or radio frames.
  • the terminal may acquire the current TDD configuration from the detected first public signal.
  • TDD configuration 1 corresponds to the first grouping rule
  • TDD configuration 2 and TDD configuration 3 respectively correspond to other candidate grouping rules.
  • the terminal determines that the current TDD configuration is TDD configuration 1
  • the terminal determines the first grouping rule corresponding to the first set from the multiple candidate grouping rules.
  • the base station and the terminal include corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 9 and FIG. 10 are schematic structural diagrams of possible communication apparatuses provided by embodiments of the present application. These communication apparatuses can be used to implement the functions of the terminal or the base station in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be one of the terminals 120a-120j shown in FIG. 1, the base station 110a or 110b shown in FIG. 1, or a terminal or base station modules (eg chips).
  • the communication apparatus 900 includes a processing unit 910 and a transceiver unit 920 .
  • the communication apparatus 900 is configured to implement the functions of the terminal or the base station in the method embodiment shown in FIG. 8 above.
  • the transceiver unit 920 is used to receive the public signal from the base station; the processing unit 910 is used to detect the public signal; a common signal, determining a first index of the first common signal in a first set and a second index of the first common signal, the first set including a plurality of common signals including the first common signal a signal, the first common signal includes a synchronization signal; the first index corresponds to a plurality of resources, and the second index is used to indicate a resource in the plurality of resources, and the resource includes a time domain resource and/or a frequency domain resource; and , according to the first index and the second index, or according to the second index, to determine the resource of the first common signal.
  • the processing unit 910 is further configured to determine the first index or the second index according to the first grouping rule; wherein, the common signals in the first set are according to the first grouping rule is divided into at least one group, and each group in the at least one group corresponds to a resource set, and the resource set includes at least one resource among the multiple resources corresponding to the first index.
  • the processing unit 910 is further configured to determine a first grouping rule corresponding to the first set from a plurality of candidate grouping rules according to the sequence of the synchronization signal; or, according to the corresponding first set The number of common signals in one grouping of the number of , the first grouping rule corresponding to the first set is determined from a plurality of candidate grouping rules; the first grouping rule.
  • the processing unit 910 is configured to determine the first index according to the sequence of the synchronization signal.
  • the processing unit 910 is configured to determine a first index according to a first channel corresponding to the first common signal, where the first channel is a broadcast channel, a channel carrying system information, or a control channel, the The control channel is used to schedule the channel carrying system information.
  • the processing unit 910 is configured to determine the first index according to one or more of the following information corresponding to the first channel: information used to indicate the first index, the first index The scrambling code of a channel, the DMRS sequence of the first channel.
  • the processing unit 910 is configured to determine the second index according to the sequence of the synchronization signal.
  • the processing unit 910 is configured to determine the second index according to a first channel corresponding to the first common signal, where the first channel is a broadcast channel, a channel carrying system information, or a control channel,
  • the control channel is used to schedule the channel carrying system information.
  • the processing unit 910 is configured to determine the second index according to one or more of the following information corresponding to the first channel: information used to indicate the second index, the first channel The scrambling code of a channel, the DMRS sequence of the first channel.
  • the processing unit 910 is further configured to determine, according to the resources of the first common signal and the first set, the resources of the common signals in the first set except the first common signal.
  • the processing unit 910 is further configured to determine the resource of the second common signal according to the first index or the second index; receive the resource through the transceiver unit 920 according to the resource of the second common signal a second common signal; wherein the second common signal includes a control channel or a channel carrying system information, and the control channel is used to schedule the channel carrying system information.
  • the processing unit 910 is further configured to perform radio resource management RRM measurement according to the first public signal, and obtain an RRM measurement result corresponding to the first public signal, where the RRM measurement result is determined by the first index performing identification; the transceiver unit 920 is further configured to send the RRM measurement result corresponding to the first public signal to the wireless access network device.
  • the processing unit 910 is configured to acquire a first set, where the first set includes multiple common signals, and the multiple common signals include the first Common signal, the first common signal includes a synchronization signal; the index of the first common signal in the first set is a first index, the first index corresponds to multiple resources, and the second index of the first common signal is used for Indicates one resource among the multiple resources, where the resource includes time domain resources and/or frequency domain resources; the transceiver unit 920 is configured to send the common signal in the first set to the terminal.
  • the first set corresponds to a first grouping rule
  • the first grouping rule is used to determine the first index or the second index; wherein, the common signals in the first set are based on the first grouping rule.
  • a grouping rule is divided into at least one group, and each group in the at least one group corresponds to a resource set, and the resource set includes at least one resource among a plurality of resources corresponding to the first index.
  • the sequence of the synchronization signals corresponds to the first grouping rule; or, the number of common signals in a group corresponding to the first set corresponds to the first grouping rule; or, the time-division dual
  • the working configuration corresponds to the first grouping rule.
  • the sequence of the synchronization signal corresponds to the first index.
  • the first channel corresponding to the first common signal corresponds to the first index
  • the first channel is a broadcast channel, a channel carrying system information, or a control channel
  • the control channel is used for scheduling The channel that carries system information.
  • one or more of the following information corresponding to the first channel corresponds to the first index: information used to indicate the first index, the scrambling code of the first channel, DMRS sequence of the first channel.
  • the sequence of the synchronization signal corresponds to the second index.
  • the first channel corresponding to the first common signal corresponds to the second index
  • the first channel is a broadcast channel, a channel carrying system information, or a control channel
  • the control channel is used for scheduling The channel that carries system information.
  • one or more of the following information corresponding to the first channel corresponds to the second index: information used to indicate the second index, the scrambling code of the first channel, DMRS sequence of the first channel.
  • the first index or the second index corresponds to the resource of the second common signal; wherein the second common signal includes a control channel or a channel carrying system information, and the control channel is used for scheduling A channel that carries system information.
  • the transceiver unit 920 is further configured to receive a radio resource management RRM measurement result corresponding to the first public signal from the terminal, where the RRM measurement result is identified by the first index.
  • the communication apparatus 1000 includes a processor 1010 and an interface circuit 1020 .
  • the processor 1010 and the interface circuit 1020 are coupled to each other.
  • the interface circuit 1020 can be a transceiver or an input-output interface.
  • the communication apparatus 1000 may further include a memory 1030 for storing instructions executed by the processor 1010 or input data required by the processor 1010 to run the instructions or data generated after the processor 1010 runs the instructions.
  • the processor 1010 is used to implement the function of the above-mentioned processing unit 910
  • the interface circuit 1020 is used to implement the function of the above-mentioned transceiver unit 920 .
  • the terminal chip implements the functions of the terminal in the above method embodiments.
  • the terminal chip receives information from other modules (such as radio frequency modules or antennas) in the terminal, and the information is sent to the terminal by the base station; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), the information is The information is sent by the terminal to the base station.
  • the base station chip When the above communication device is a chip applied to a base station, the base station chip implements the functions of the base station in the above method embodiments.
  • the base station chip receives information from other modules (such as radio frequency modules or antennas) in the base station, and the information is sent by the terminal to the base station; or, the base station chip sends information to other modules in the base station (such as radio frequency modules or antennas), the information is The information is sent by the base station to the terminal.
  • modules such as radio frequency modules or antennas
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions may be composed of corresponding software modules, and software modules may be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the base station or terminal.
  • the processor and the storage medium may also exist in the base station or terminal as discrete components.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions.
  • the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, special purpose computer, computer network, base station, user equipment, or other programmable apparatus.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website site, computer, A server or data center transmits by wire or wireless to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, or the like that integrates one or more available media.
  • the usable media may be magnetic media, such as floppy disks, hard disks, magnetic tapes; optical media, such as digital video discs; and semiconductor media, such as solid-state drives.
  • the computer-readable storage medium may be a volatile or non-volatile storage medium, or may include both types of storage media, volatile and non-volatile.
  • “at least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are a kind of "or” relationship; in the formula of this application, the character "/” indicates that the related objects are a kind of "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种无线通信方法、通信装置及通信系统。该方法中,终端根据检测到的SSB确定SSB在第一集合中的第一索引和第二索引,然后确定该SSB的资源。由于一个SSB可以对应一个或多个资源,且不同资源之间可以时分复用,因此一个SSB有多种发送时机。由于每个SSB对应一个波束发送方向,因而对应某个波束发送方向的SSB的发送时机是可以灵活调整的。在发送一个集合中的多个SSB时,可以根据业务需求确定对应不同波束发送方向的各个SSB的先后发送顺序,进而确定各个SSB占用的资源。该方法可以实现一个集合中的多个SSB在不同的波束上的灵活发送,可以提升SSB发送时被终端检测到的可能性,从而减少资源浪费。

Description

一种无线通信方法、通信装置及通信系统 技术领域
本申请实施例涉及无线通信技术领域,具体涉及一种无线通信方法、通信装置及通信系统。
背景技术
第五代(5th generation,5G)新无线(new radio,NR)系统相比第四代(4th generation,4G)长期演进(long term evolution,LTE)系统,在系统设计方面提供了更多的灵活性,包括基本参数、帧结构以及信道的时频资源设计等,可以更好的支持前向兼容和可扩展性,但在公共信号的设计上还存在不够灵活的地方。
发明内容
本申请实施例提供了一种无线通信方法、通信装置及通信系统,用以实现公共信号在不同的波束上的灵活发送。
本申请实施例具体可以通过如下技术方案实现:
第一方面,本申请实施例提供一种无线通信方法,该方法可以由终端或用于终端的部件(如芯片、装置等)执行。该方法包括:检测公共信号;根据检测到的第一公共信号,确定该第一公共信号在第一集合中的第一索引和该第一公共信号的第二索引,该第一集合包括多个公共信号,该多个公共信号包括该第一公共信号,该第一公共信号包括同步信号;该第一索引对应多个资源,该第二索引用于指示该多个资源中的一个资源,该资源包括时域资源和/或频域资源;根据该第一索引和该第二索引,或根据该第二索引,确定该第一公共信号的资源。
基于上述方案,终端根据检测到的第一公共信号确定第一公共信号在第一集合中的第一索引和第二索引,进一步确定该第一公共信号的资源。该方法中,一个公共信号可以对应一个或多个资源,且不同资源之间可以是时分复用的,因此一个公共信号有多种发送时机。并且由于每个公共信号对应一个波束发送方向,因而对应某个波束发送方向的公共信号的发送时机是可以灵活调整的。在发送一个集合中的多个公共信号时,可以根据业务需求,确定对应不同波束发送方向的各个公共信号的先后发送顺序,进而确定各个公共信号占用的资源。通过该方法可以实现一个集合中的多个公共信号在不同的波束上的灵活发送,可以提升公共信号被终端检测到的可能性,从而减少资源浪费。
在一种可能的实现方法中,根据第一分组规则,确定该第一索引或该第二索引;其中,该第一集合中的公共信号按照该第一分组规则被分成至少一个分组,该至少一个分组中的每一个分组对应一个资源集合,该资源集合包括该第一索引对应的多个资源中的至少一个资源。其中,不同的分组对应的资源集合可以相同,也可以不同。
在一种可能的实现方法中,根据该同步信号的序列,从多个候选分组规则中确定该第一集合对应的第一分组规则;或者,根据该第一集合对应的一个分组内的公共信号的数量,从多个候选分组规则中确定该第一集合对应的第一分组规则;或者,根据时分双工配置,从多个候选分组规则中确定该第一集合对应的第一分组规则。
在一种可能的实现方法中,根据该同步信号的序列,确定该第一索引。
在一种可能的实现方法中,根据该第一公共信号对应的第一信道,确定该第一索引,该第一信道为广播信道、承载系统信息的信道或控制信道,该控制信道用于调度该承载系统信息的信道。
在一种可能的实现方法中,根据该第一信道对应的以下信息中的一个或多个信息,确定该第一索引:用于指示该第一索引的信息、该第一信道的扰码、该第一信道的DMRS序列。
通过上述方法,可以灵活确定第一公共信号在第一集合中的第一索引。
在一种可能的实现方法中,根据该同步信号的序列,确定该第二索引。
在一种可能的实现方法中,根据该第一公共信号对应的第一信道,确定该第二索引,该第一信道为广播信道、承载系统信息的信道或控制信道,该控制信道用于调度该承载系统信息的信道。
在一种可能的实现方法中,根据该第一信道对应的以下信息中的一个或多个信息,确定该第二索引:用于指示该第二索引的信息、该第一信道的扰码、该第一信道的DMRS序列。
通过上述方法,可以灵活确定第一公共信号的第二索引。
在一种可能的实现方法中,根据该第一公共信号的资源和该第一集合,确定该第一集合中除该第一公共信号之外的公共信号的资源。
在一种可能的实现方法中,根据该第一索引或该第二索引,确定第二公共信号的资源;根据该第二公共信号的资源,接收该第二公共信号;其中,第二公共信号包括控制信道或承载系统信息的信道,该控制信道用于调度该承载系统信息的信道。
在一种可能的实现方法中,根据该第一公共信号进行RRM测量,得到该第一公共信号对应的RRM测量结果,该RRM测量结果由该第一索引进行标识;向无线接入网设备发送该第一公共信号对应的RRM测量结果。
第二方面,本申请实施例提供一种无线通信方法,该方法可以由无线接入网设备或用于无线接入网设备的部件(如芯片、装置等)执行。该方法包括:获取第一集合,该第一集合包括多个公共信号,该多个公共信号包括第一公共信号,该第一公共信号包括同步信号;该第一公共信号在该第一集合中的索引为第一索引,该第一索引对应多个资源,该第一公共信号的第二索引用于指示该多个资源中的一个资源,该资源包括时域资源和/或频域资源;向终端发送该第一集合中的公共信号。
在一种可能的实现方法中,该第一集合对应第一分组规则,该第一分组规则用于确定该第一索引或该第二索引;其中,该第一集合中的公共信号按照该第一分组规则被分成至少一个分组,该至少一个分组中的每一个分组对应一个资源集合,该资源集合包括该第一索引对应的多个资源中的至少一个资源。
在一种可能的实现方法中,该同步信号的序列与该第一分组规则对应;或者,该第一集合对应的一个分组内的公共信号的数量与该第一分组规则对应;或者,时分双工配置与该第一分组规则对应。
在一种可能的实现方法中,该同步信号的序列,与该第一公共信号在该第一集合中的该第一索引对应。
在一种可能的实现方法中,该第一公共信号对应的第一信道,与该第一索引对应,该第一信道为广播信道、承载系统信息的信道或控制信道,该控制信道用于调度该承载系统 信息的信道。
在一种可能的实现方法中,该第一信道对应的以下信息中的一个或多个信息,与该第一索引对应:用于指示该第一索引的信息、该第一信道的扰码、该第一信道的DMRS序列。
在一种可能的实现方法中,该同步信号的序列,与该第二索引对应。
在一种可能的实现方法中,该第一公共信号对应的第一信道,与该第二索引对应,该第一信道为广播信道、承载系统信息的信道或控制信道,该控制信道用于调度该承载系统信息的信道。
在一种可能的实现方法中,该第一信道对应的以下信息中的一个或多个信息,与该第二索引对应:用于指示该第二索引的信息、该第一信道的扰码、该第一信道的DMRS序列。
在一种可能的实现方法中,该第一索引或该第二索引,与第二公共信号的资源对应;其中,第二公共信号包括控制信道或承载系统信息的信道,该控制信道用于调度该承载系统信息的信道。
在一种可能的实现方法中,接收来自该终端的与该第一公共信号对应的RRM测量结果,该RRM测量结果由该第一索引进行标识。
第三方面,本申请实施例提供一种通信装置,该装置可以是终端,还可以是用于终端的芯片。该装置具有实现上述第一方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请实施例提供一种通信装置,该装置可以是无线接入网设备,还可以是用于无线接入网设备的芯片。该装置具有实现上述第二方面的任意实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请实施例提供一种通信装置,包括处理器和存储器;该存储器用于存储计算机指令,当该装置运行时,该处理器执行该存储器存储的计算机指令,以使该装置执行上述第一方面或第二方面中的任意实现方法。
第六方面,本申请实施例提供一种通信装置,包括用于执行上述第一方面或第二方面中的任意实现方法的各个步骤的单元或手段(means)。
第七方面,本申请实施例提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述第一方面或第二方面中的任意实现方法。该处理器包括一个或多个。
第八方面,本申请实施例提供一种通信装置,包括与存储器耦合的处理器,该处理器用于调用所述存储器中存储的程序,以执行上述第一方面或第二方面中的任意实现方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器可以是一个或多个。
第九方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得上述第一方面或第二方面中的任意实现方法被执行。
第十方面,本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序,当计算机程序被通信装置运行时,使得上述第一方面或第二方面中的任意实现方法被执行。
第十一方面,本申请实施例还提供一种芯片系统,包括:处理器,用于执行上述第一 方面或第二方面中的任意实现方法。
第十二方面,本申请实施例还提供了一种通信系统,该通信系统包括用于执行上述第一方面的任意实现方法的通信装置和用于执行上述第二方面的任意实现方法的通信装置。
附图说明
图1为本申请实施例应用的通信系统的架构示意图;
图2为4G LTE系统中的信号/信道的时频资源位置示意图;
图3为5G NR系统中SSB的资源位置示意图;
图4为5G NR系统中SSB和初始公共PDCCH的资源复用方式示意图;
图5为公共信号无法在发送时刻进行不同波束方向的动态调度示意图;
图6为一种分组规则示意图;
图7为公共信号的波束发送示意图;
图8为本申请实施例提供的一种无线通信方法示意图;
图9为本申请的实施例提供的一种通信装置的结构示意图;
图10为本申请的实施例提供的一种通信装置的结构示意图。
具体实施方式
图1是本申请实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请的实施例中,以基站作为无线接入网设备的一个举例进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智 能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫兹(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上。终端为了与基站进行通信,需要与基站控制的小区建立无线连接。与终端建立了无线连接的小区称为该终端的服务小区。当终端与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
在本申请的实施例中,时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是离散傅里叶变换扩频OFDM(Discrete Fourier Transform-spread-OFDM,DFT-s-OFDM)符号。如果没有特别说明,本申请实施例中的符号均指时域符号。
可以理解的是,本申请的实施例中,物理下行共享信道(physical downlink shared channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)和物理广播信道(physical broadcast channel,PBCH)只是作为下行数据信道、下行控制信道、上行数据信道和广播信道一种举例,在不同的系统和不同的场景中,数据信道、控制信道和广播信道可能有不同的名称,本申请实施例对此并不做限定。
4GLTE系统中,系统基本参数、帧结构以及信号的时频资源设计相对比较固定。具体的:
第一,系统基本参数和帧结构方面,4G LTE系统仅支持固定15千赫兹(kilohertz,KHz)的子载波间隔(subcarrier spacing,SCS)。一个无线帧包括10个子帧,每个子帧对于正常循环前缀时包括14个OFDM符号(下面简称符号),时域调度粒度为一个子帧。载波带宽只支持有限的几种,具体包括1.4兆赫兹(megahertz,MHz)、3MHz、5MHz、10MHz、15MHz、20MHz这6种带宽,频率调度粒度为12个子载波,即一个资源块(resource block,RB)的带宽。该RB为基本的时频调度单元,具体包括时域的1个子帧和频率的12个子载波组成的时频两维资源,其中一个符号的一个子载波为最小的时频资源,称为资源单元(resource element,RE),即1个RB包括12x14个RE。
第二,信号的时频资源方面,一个子帧中,用于初始接入的信号处于载波中心的6个RB的带宽内,包括主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和PBCH。参考图2,为4G LTE系统中的信号/信道的时频资源位置示意图。终端接收到PBCH后,才能获取到载波带宽。PSS和SSS发送周期为5个子帧,PBCH发送周期为10个子帧。无论是否存在数据传输,每个子帧中的每个RB上都需要发送小区特定参考信号(cell-specific reference signal,CRS),用于测量、信道估计、解调和时频跟踪等功能。PDCCH用于上下行数据信道和公共信息的调度,具体通过时频交织的方式被打散到整个载波带宽上,时域位于一个子帧的前n个符号内,n为1-4中的自然数之一。在本申请中,公共信息可以包括系统信息块(system information block,SIB)、随机接入信道(random access channel,RACH)应答、寻呼消息等。
5G NR系统中,系统基本参数、帧结构以及信号的时频资源设计相对比较灵活。具体的:
第一,系统基本参数和帧结构方面,5G NR系统支持多种SCS,具体对于频率范围1(一般认为6GHz以下),支持15/30/60KHz的SCS;对于频率范围2(一般认为6GHz以上),支持60KHz和120KHz的SCS。一个无线帧包括10个子帧,每个子帧的时长是1毫秒(ms)。NR系统的时域调度粒度定义为时隙,每个时隙对于正常循环前缀时包括14个OFDM符号(下面简称符号)。因此,对于不同的SCS,1个子帧中包括的时隙数是不同的,比如对于15KHz SCS,1个子帧包括1个时隙;对于30KHz SCS,1个子帧包括2个时隙,每个时隙的时长是0.5ms。NR通信系统支持灵活的载波带宽,即不限制载波带宽只有LTE系统的有限几种,频域的基本调度粒度也为12个子载波。
第二,信号的时频资源方面,NR系统中用于初始接入的信号称为同步信号/广播信道块(synchronization signal/PBCH block,SSB),该SSB包括PSS、SSS和PBCH。SSB在载波中的频域位置是灵活的,即不需要如LTE系统那样被限制必须位于载波中心。NR系统引入带宽部分(bandwidth part,BWP)的概念,将系统级别的载波和终端级别的BWP解耦,比如NR系统可以支持100MHz带宽的载波,但终端可以只支持其中的某个20MHz的BWP接收能力。时域周期方面,NR支持多种SSB发送周期,在初始接入阶段终端假设SSB发送周期为20ms,即两个无线帧的时长。为了提升覆盖,NR系统中对公共信道引入了波束赋形机制,并通过对多个SSB进行波束发送的方式来实现全向覆盖。此外,NR系统很大程度上取消了一直存在的信号发送(比如LTE系统中无论是否存在数据传输,每个子帧的每个RB上都需要发送一直存在的CRS),取而代之的是通过功能解耦的方式引入相应功能的参考信号(reference signal,RS),比如高层测量用SSS或信道状态信息参考信 号(channel state information-reference signal,CSI-RS)、信道估计用CSI-RS或解调用解调参考信号(demodulation reference signal,DMRS)等,每种功能的RS按需配置和发送。PDCCH还是用于上下行数据信道和公共信息的调度,但不需要一定通过时频交织的方式被打散到整个载波带宽上,而是可以在载波中的一部分RB的频域资源内发送,该部分RB称为控制资源集(conntrol resource set,CORESET)。PDCCH在时域的检测位置由搜索空间配置来确定,也不像LTE系统那样,每个子帧都需要检测PDCCH。
总结下来,5G NR通信系统相比4G LTE,在系统设计方面提供了更多的灵活性,包括基本参数、帧结构以及信道的时频资源设计等,可以更好的支持前向兼容和可扩展性。
NR系统中,终端的初始接入流程主要包括:
首先,检测PSS和SSS做到与NR系统的时频同步,并获取物理小区标识;
然后,接收PBCH中的主信息块(master information block,MIB),获取NR系统的必要系统信息,包括初始BWP以及调度公共信道的PDCCH的时频资源配置(包括频域CORESET和时域搜索空间的资源配置)等;
然后,接收SIB1,获取除MIB中系统信息之外的必要系统信息,包括RACH配置、时分双工(time division duplexing,TDD)帧结构配置等;
然后,终端检测系统寻呼消息,或者终端发送随机接入来与基站建立无线资源控制(radio resource control,RRC)连接;
RRC连接成功建立后,终端和基站就可以进行正常的数据传输了。
为实现初始接入的公共信道的全向覆盖,NR采用波束赋形机制,通过将多个SSB在多个波束方向上采用时分复用(time division multiplexing,TDM)的方式发送,这种发送方式可以称为公共信号发送方式或公共信号波束扫描发送方式,这里的公共信号包括SSB。针对待发送的多个SSB,该多个SSB采用TDM的资源复用方式,并且各个SSB的资源位置是固定的。参考图3,为5G NR系统中SSB的资源位置示意图。其中,在一个SSB周期内,支持以TDM方式发送一套SSB波束,该一套SSB波束由SSB索引号代表,比如对于3GHz~6GHz频段部署的NR系统,该一套SSB包括SSB索引#0、#1、…、#7的8个SSB波束。SSB的频域位置比较灵活,只需要在预先定义好的某频率栅格上即可。对于时域位置,该套SSB位于某个无线帧的前半帧内,且每个SSB的时域位置是固定的。参考图3,以30KHz SCS为例,该8个SSB位于前半帧的前4个时隙中,具体的符号位置也是如图3所示的固定位置。针对该发送的多个SSB,该多个SSB的波束发送方向不同,且按照固定的顺序进行发送。以图3所示的8个SSB为例,SSB0至SSB7的波束方向分别为方向1至方向8,在发送该8个SSB时,发送顺序依次为:在方向1发送SSB0,在方向2发送SSB1,在方向3发送SSB2,在方向4发送SSB3,在方向5发送SSB4,在方向6发送SSB5,在方向7发送SSB6,在方向8发送SSB7。因此,多个SSB分别占用固定的资源,基站按照固定方向在相应的资源上发送该多个SSB的波束。
除SSB采用波束扫描发送方式外,在初始接入阶段用于调度公共信道(比如包括SIB1和其他SIB、寻呼消息等)的公共PDCCH也是通过类似的波束扫描发送方式进行发送的,该公共PDCCH的时频资源由频域的CORESET和时域的搜索空间共同确定。参考图4,为5G NR系统中SSB和初始公共PDCCH的资源复用方式示意图。其中,PDCCH用于调 度承载SIB的信道。对于频率范围1(Frequency Range 1,FR1),NR仅支持SSB与PDCCH是TDM的,即模式1(pattern 1);对于频率范围2(Frequency Range 2,FR2),NR系统支持SSB与PDCCH进行TDM或频分复用(frequency division multiplexing,FDM)的复用方式,其中FDM又分为模式2(pattern 2)和模式3(pattern 3)。其中,FR1为450MHz至6000MHz,FR2为24250MHz至52600MHz。
基于上面描述的NR系统的初始接入机制,可以看出,目前的公共信号发送方式与帧结构具有固定的对应关系。并且,对于FR2,由于部署频率较高,会采用更多的天线阵子来实现更大的波束赋形增益,目前业界主流是采用模拟波束。对于模拟波束赋形机制,同一时刻,所有频域资源都只能采用相同的波束加权值,导致波束只能指向某一方向。参考图5,为公共信号无法在发送时刻进行波束方向的动态调度示意图。该示例中,发送的每个公共信号的波束按照一定顺序在不同方向进行扫描发送,并且每个公共信号的波束的发送的方向是固定的,每个公共信号占用的时频资源也是相对固定的。以公共信号2为例,当发送公共信号2的波束时,有可能在公共信号2的波束方向没有终端或终端数量较少,而在其它方向有终端或终端数量较多,但由于在当前时刻只能发送公共信号2,而公共信号2的波束方向是固定的,因而无法指向有终端或终端数量较多的方向,一方面导致有通信需求的终端无法得到服务,另一方面,导致该公共信号的波束的无效发送,造成资源浪费。
因此,如何实现公共信号的灵活发送,是本申请实施例要解决的问题。
为解决该问题,本申请实施例中,引入多种公共信号发送方式,每种公共信号发送方式对应一个公共信号集合,一个公共信号集合中包括多个公共信号,该多个公共信号中的每个公共信号对应一个波束发送方向。不同公共信号一般对应不同的波束发送方向。一种公共信号发送方式用于表示公共信号集合中的多个公共信号的先后发送顺序。基站可以根据业务需要,确定公共信号集合对应的公共信号发送方式,并根据该公共信号发送方式向终端发送该公共信号集合内的多个公共信号。终端可以检测到该多个公共信号中的一个或多个公共信号,并从检测到的公共信号内获取同步信号等信息。在本申请中,如果没有特殊说明,“集合”可以是“公共信号集合”的简称。
作为一种实现方法,本申请实施例可以根据不同的候选分组规则,对一个公共信号集合内的多个公共信号进行分组,得到一个或多个分组,每个分组对应一个资源集合,每个资源集合包括该多个公共信号对应的资源中的一个或多个资源,每个资源包括时域资源和/或频域资源。其中,同一分组内的公共信号共享同一个资源集合内的资源,也即一个组内的某个公共信号可以使用该组对应的资源集合内的任意资源,但一个资源在某一时刻只能分配给一个公共信号使用。
图6为一种分组规则示意图,该分组规则是将第一集合中的公共信号分为四组,其中第一集合包括公共信号0至公共信息7。如下所示:
组1:包括公共信号0和公共信号4,组1对应由资源1和资源5组成的资源集合1,在一次发送中,公共信号0对应资源1或资源5中的一个,公共信号4对应资源1或资源5中的另一个;
组2:包括公共信号1和公共信号5,组2对应由资源2和资源6组成的资源集合2,在一次发送中,公共信号1对应资源2或资源6中的一个,公共信号5对应资源2或资源 6中的另一个;
组3:包括公共信号2和公共信号6,组3对应由资源3和资源7组成的资源集合3,在一次发送中,公共信号2对应资源3或资源7中的一个,公共信号6对应资源3或资源7中的另一个;
组4:包括公共信号3和公共信号7,组4对应由资源4和资源8组成的资源集合4,在一次发送中,公共信号3对应资源4或资源8中的一个,公共信号7对应资源4或资源8中的另一个。
根据上述分组规则,可以得到第一集合对应的多种公共信号发送方式,该多种公共信号发送方式中的任意一种公共信号发送方式对应的公共信号发送顺序可以表述为:公共信号0或公共信号4中的一个,公共信号1或公共信号5中的一个,公共信号2或公共信号6中的一个,公共信号3或公共信号7中的一个,公共信号0或公共信号4中的另一个,公共信号1或公共信号5中的另一个,公共信号2或公共信号6中的另一个,公共信号3或公共信号7中的另一个。其中,每个公共信号对应一个波束发送方向,比如,公共信号0至公共信号7分别对应方向1至方向8。
作为示例,第一集合对应的公共信号发送方式包括公共信号发送方式1、公共信号发送方式2和公共信号发送方式3。
其中,公共信号发送方式1对应的公共信号发送顺序为:公共信号0,公共信号1,公共信号2,公共信号3,公共信号4,公共信号5,公共信号6,公共信号7,且为公共信号0分配资源1,为公共信号1分配资源2,为公共信号2分配资源3,为公共信号3分配资源4,为公共信号4分配资源5,为公共信号5分配资源6,为公共信号6分配资源7,为公共信号7分配资源8;
公共信号发送方式2对应的公共信号发送顺序为:公共信号0,公共信号5,公共信号2,公共信号3,公共信号4,公共信号1,公共信号6,公共信号7,且为公共信号0分配资源1,为公共信号5分配资源2,为公共信号2分配资源3,为公共信号3分配资源4,为公共信号4分配资源5,为公共信号1分配资源6,为公共信号6分配资源7,为公共信号7分配资源8;
公共信号发送方式3对应的公共信号发送顺序为:公共信号4,公共信号5,公共信号6,公共信号3,公共信号0,公共信号1,公共信号2,公共信号7,且为公共信号4分配资源1,为公共信号5分配资源2,为公共信号6分配资源3,为公共信号3分配资源4,为公共信号0分配资源5,为公共信号1分配资源6,为公共信号2分配资源7,为公共信号7分配资源8。
基站在向终端发送一个集合的多个公共信号时,可以根据业务需求及分组规则,灵活选择各个公共信号的发送时间,由于每个公共信号对应一个波束发送方向,不同公共信号一般对应不同波束发送方向,因而可以实现根据业务需求,在某个发送时刻选择对应某个波束发送方向的公共信号进行发送,从而有助于提升公共信号被终端检测到的概率,提高系统性能,减少资源浪费。这里所说的业务需求,可以是指在该公共信号的发送时刻,具体处于哪些位置的终端有传输需求,以及有传输需求的终端的数量有多少。基站可以选择指向有传输需求的终端的公共信号进行发送。
图7为公共信号波束灵活发送示意图。该示例中,第一集合包括公共信号0至公共信 号7,且分组规则与图6所示的示例中的分组规则相同。基站根据该分组规则,向终端发送第一集合中的公共信号0至公共信号7。并且,公共信号发送方式对应的公共信号发送顺序依次为:公共信号0,公共信号1,公共信号6,公共信号3,公共信号4,公共信号5,公共信号2,公共信号7。可以看到,在图7中第一个可以发送公共信号2或公共信号6的时刻(简称为时刻A),基站选择了发送公共信号6,而在第二个可以发送公共信号2或公共信号6的时刻(简称为时刻B),基站选择了发送公共信号2。这是因为:基站在时刻A,确定在公共信号6的波束所指向的方向的终端数量较多,因此基站决定发送公共信号6,而在时刻B,发送公共信号2。因此,基站可以基于业务需求,在发送时刻从对应的分组中灵活选择一个公共信号进行发送,以实现多个公共信号在不同波束上的灵活发送,提升公共信号被终端检测到的概率,提升通信效率。
本申请实施例中,基站向终端发送第一集合中的多个公共信号,该多个公共信号中被终端检测到的公共信号称为第一公共信号。第二公共信号是与第一公共信号关联的公共信号。本申请实施例中的第一公共信号和第二公共信号的实现方法,包括但不限于:
实现方法一,第一公共信号包括同步信号和广播信道,第二公共信号包括控制信道或承载系统信息的信道。
可选的,该同步信号包括PSS和SSS。广播信道可以是PBCH,用于承载MIB。控制信道可以是PDCCH,用于调度承载系统信息的信道,该系统信息可以包括SIB,这里的SIB可以包括SIB1。
实现方法二,第一公共信号包括同步信号,第二公共信号包括控制信道或承载系统信息的信道。
可选的,该同步信号包括PSS和SSS。控制信道可以是PDCCH,用于调度承载系统信息的信道,这里的系统信息可以是最小必要系统信息,最小必要系统信息包括MIB和SIB,这里的SIB可以包括SIB1。需要说明的是,这里的MIB或SIB的名称在未来技术演进中可能有其它名称。
本申请实施例提供的通信方法可以由终端或用于终端的部件(如芯片、装置等),以及基站或用于基站的部件(如芯片、装置等)执行。为便于说明,以下描述中,以终端和基站执行该方法为例进行说明。
图8为本申请实施例提供的一种无线通信方法示意图。该方法包括以下操作:
801,基站获取第一集合。
该第一集合包括多个公共信号,该多个公共信号包括第一公共信号,该第一公共信号包括同步信号。该第一公共信号在该第一集合中的索引为第一索引,第一索引对应多个资源,第一公共信号的第二索引用于指示该多个资源中的一个资源,该资源包括时域资源和/或频域资源。第一集合可以是预定义的,例如由协议预定义。
其中,第一集合可以按照第一分组规则进行分组,第一分组规则可以是多个候选分组中的一个;或者,第一分组规则也可以是预定义的,即只有这一个分组规则;或者,也可以没有该分组规则,此时第一集合中的所有公共信号可以看做是一个分组。第一集合中的公共信号按照第一分组规则被分成至少一个分组,该至少一个分组中的每一个分组对应一个资源集合,该资源集合包括第一集合对应的多个资源中的至少一个资源。例如,前述图6可以是该第一分组规则的一个示例。
802,基站向终端发送第一集合中的公共信号。
基站在向终端发送第一集合中的公共信号时,可以根据业务需求及分组规则,从发送时刻对应的分组中灵活选择一个公共信号进行发送,一个分组可以对应多个发送时刻,该分组内的任意一个公共信号可以在该多个发送时刻中的任意一个发送时刻进行发送。由于每个公共信号对应一个波束发送方向,因而可以实现根据业务需求,在某个发送时刻选择对应某个波束发送方向的公共信号进行发送,从而有助于提升公共信号被终端检测到的概率,提高系统性能,减少资源浪费。图7是基站向终端发送第一集合中的公共信号的一个示例。
803,终端检测公共信号。
比如,终端对基站发送的公共信号进行检测,可以检测到发送的第一集合中的第一公共信号。
作为一种实现方法,终端可以根据同步信号的候选序列以及对应的SCS来检测同步信号。其中,候选序列可以由标准预先定义,比如用统一的PSS和SSS的候选序列,或者也可以为每个频段预定义一套候选序列,不同频段对应的候选序列可以相同也可以不同,比如频段1用第一套候选序列,频段2用第二套候选序列。
同步信号的SCS可以跟频段关联,比如频段1用15KHz和30KHz的SCS,频段2用120KHz和240Khz的SCS。再比如,所有频段可以使用一个SCS或一个SCS集合。
通过检测候选SCS和候选序列,终端可以检测到某个同步信号,比如在频段1上检测出了SCS为30KHz的某个同步信号。
检测出同步信号后,终端可以接收广播信道,广播信道的SCS可以与上述同步信号的SCS相同或存在某种关联关系。广播信道的时频资源也可以与上述同步信号的时频资源存在某种关联关系,比如在相同或相邻的符号上,或者在相同或相邻的RB上。
804,终端根据检测到的第一公共信号,确定第一公共信号在第一集合中的第一索引和第一公共信号的第二索引。
作为一种实现方法,终端在检测到第一公共信号后,还可以根据第一公共信号确定第一集合。比如,基站向终端发送的集合可以有多种,比如包括由10个公共信号构成的集合,由8个公共信号构成的集合或由6个公共信号构成的集合。基站可以选择其中一个集合,向终端发送该集合中的公共信号,该集合即为第一集合。终端在检测到第一公共信号之后,可以根据第一公共信号,确定第一公共信号所属的第一集合是上述多个集合中的哪一个集合。比如,终端可以根据第一公共信号的同步信号的序列确定第一集合,或者终端可以根据第一公共信号对应的第一信道确定第一集合。在本申请中,该第一信道可以为广播信道、承载系统信息的信道或控制信道,该控制信道用于调度该承载系统信息的信道。
作为另一种实现方法,也可以是协议预定义基站向终端发送的第一集合,也即基站向终端发送的第一集合是预先被终端获知的。因此,终端可以不需要执行上述确定第一集合的操作。
805,终端根据第一索引和第二索引,或根据第二索引,确定第一公共信号的资源。
作为一种实现方法,第一公共信号在第一集合中的第一索引对应多个资源,而第二索引可以指示该多个资源中的一个,因此终端根据第一索引和第二索引,能够确定第一公共信号的资源。以图7为例,该第一公共信号可以是发送的公共信号0至公共信号7中的任一个,在终端检测第一公共信号之后,可以确定第一公共信号在第一集合中的第一索引, 用于指示该第一公共信号是第一集合中的第几个公共信号,以及,还可以确定第一公共信号的第二索引,该第二索引指示了第一公共信息对应的多个资源中的一个。比如,确定检测到的第一公共信号的第一索引是3,该第一索引指示的第一公共信号是公共信号3,则终端根据第一索引可以确定第一公共信号对应由资源4和资源8组成的资源集合,也即基站在发送公共信号3时,为公共信号3分配资源4或资源8。进一步地,终端可以根据第二索引确定基站为公共信号3实际分配的资源,比如第二索引指示资源4,则终端确定公共信号3的资源为资源4,也即基站为公共信号3实际分配资源4。
作为另一种实现方法,终端根据第二索引,从第一集合对应的多个资源中确定第一公共信号的资源。该方案下,终端确定第一公共信号的资源时,不需要使用第一索引。并且,第一公共信号的资源可以是第一公共信号对应的多个资源中的任一个,其中第一公共信号对应的多个资源,也称为第一索引对应的多个资源,或称为第一集合对应的多个资源。比如,第一分组规则将公共信号0至公共信号7分为一个分组,该分组对应的由资源1至资源8组成的资源集合,基站可以为该8个公共信号中的任意一个公共信号分配资源1至资源8中的任意一个资源。因此,基站可以按照任意的发送顺序来发送第一集合中的8个公共信号。终端检测到的第一公共信号可以是发送的公共信号0至公共信号7中的任一个,在终端检测第一公共信号之后,可以确定第一公共信号在第一集合中的第一索引,用于指示该第一公共信号是第一集合中的第几个公共信号,以及,还可以确定第一公共信号的第二索引,该第二索引指示了第一公共信息对应的多个资源(即资源1至资源8)中的一个。比如,终端确定检测到的第一公共信号的第一索引是3,该第一索引指示的第一公共信号是公共信号3,第二索引指示资源1至资源8中的某个资源,比如第二索引指示的是资源1,则可以确定基站为公共信号3分配了资源1。
基于上述方案,终端根据检测到的第一公共信号确定第一公共信号在第一集合中的第一索引和第二索引,进一步确定该第一公共信号的资源。该方法中,一个公共信号可以对应一个或多个资源,且不同资源之间可以是时分复用的,因此一个公共信号有多种发送时机。并且由于每个公共信号对应一个波束发送方向,因而对应某个波束发送方向的公共信号的发送时机是可以灵活调整的。在发送一个集合中的多个公共信号时,可以根据业务需求,确定对应不同波束发送方向的各个公共信号的先后发送顺序,进而确定各个公共信号占用的资源。通过该方法可以实现一个集合中的多个公共信号在不同的波束上的灵活发送,可以提升公共信号被终端检测到的可能性,从而减少资源浪费。
作为一种实现方法,在上述操作805之后,终端还可以根据第一集合和第一公共信号的资源,确定第一集合中除第一公共信号之外的公共信号的资源。例如,第一集合包括8个公共信号,分别为公共信号0至公共信号7,终端检测到的第一公共信号为公共信号3,则终端在确定了公共信号3的资源后,还可以根据第一集合、公共信号3的第一索引以及公共信号3的资源,确定公共信号0至公共信号2,以及公共信号4至公共信号7的资源。
作为一种实现方法,在上述操作805之后,终端还可以根据第一索引或第二索引,确定第二公共信号的资源;以及根据第二公共信号的资源,接收第二公共信号。该第二公共信号的含义可以参考前述描述,不再赘述。比如,第一公共信号的第一索引与第二公共信号的资源之间存在对应关系,因此可以根据第一公共信号的第一索引,以及第一公共信号 的第一索引与第二公共信号的资源之间的对应关系,确定与第一索引对应的第二公共信号的资源。再比如,根据第二索引可以确定第一公共信号对应的多个资源中的一个,然后再根据确定的第一公共信号的资源,确定与第一公共信号的资源对应的第二公共信号的资源。
作为一种实现方法,在上述操作805之后,终端还可以根据第一公共信号进行无线资源管理(radio resource management,RRM)测量,得到第一公共信号对应的RRM测量结果,该RRM测量结果由第一索引进行标识;以及向基站发送第一公共信号对应的RRM测量结果。其中,RRM测量结果包括但不限于:参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、接收信号强度指示(received signal strength indication,RSSI)或信号与干扰加噪声比(Signal to interference plus noise ratio,SINR)中的至少一个。
本申请实施例中,可以根据以下任一种方法确定第一公共信号在第一集合中的第一索引:
方法1,根据同步信号的序列,确定第一公共信号在第一集合中的第一索引。
比如,同步信号的序列1对应第一索引,同步信号的序列2、同步信号的序列3分别对应其它索引。这里的同步信号的序列可以是PSS的序列,也可以是SSS的序列。
再比如,PSS和SSS的序列组合1对应第一索引,PSS和SSS的序列组合2、PSS和SSS的序列组合3分别对应其它索引。
方法2,根据第一公共信号对应的第一信道,确定第一公共信号在第一集合中的第一索引。
可选的,根据第一信道对应的以下信息中的一个或多个信息,确定第一公共信号在第一集合中的第一索引:用于指示第一索引的信息、第一信道的扰码、第一信道的DMRS序列。
用于指示第一索引的信息对应第一信道的第一字段,比如该第一字段包含3比特,则可以指示八个索引,例如“000”指示第一索引,其它七个比特信息用于指示其它索引。
第一信道的扰码有多种,比如扰码1对应第一索引,扰码2、扰码3等对应其它索引。当终端获取到第一信道的扰码1,则确定第一索引。
第一信道的DMRS序列有多种,比如DMRS序列1对应第一索引,DMRS序列2、DMRS序列3等对应其它索引。当终端获取到第一信道的DMRS序列1,则确定第一索引。
本申请实施例中,可以根据以下任一种方法确定第一公共信号的第二索引:
方法1,根据同步信号的序列,确定第一公共信号的第二索引。
比如,同步信号的序列1对应第二索引,同步信号的序列2、同步信号的序列3分别对应其它索引。这里的同步信号的序列可以是PSS的序列,也可以是SSS的序列。
再比如,PSS和SSS的序列组合1对应第二索引,PSS和SSS的序列组合2、PSS和SSS的序列组合3分别对应其它索引。
方法2,根据第一公共信号对应的第一信道,确定第一公共信号的第二索引。
可选的,根据第一信道对应的以下信息中的一个或多个信息,确定第一公共信号的第二索引:用于指示第二索引的信息、第一信道的扰码、第一信道的DMRS序列。
用于指示第二索引的信息对应第一信道的第二字段,比如该第二字段包含3比特,则可以指示八个索引,例如“000”指示第二索引,其它七个比特信息用于指示其它索引。
第一信道的扰码有多种,比如扰码1对应第二索引,扰码2、扰码3等对应其它索引。当终端获取到第一信道的扰码1,则确定第二索引。
第一信道的DMRS序列有多种,比如DMRS序列1对应第二索引,DMRS序列2、DMRS序列3等对应其它索引。当终端获取到第一信道的DMRS序列1,则确定第二索引。
需要说明的是,上述确定第一索引的方法,与上述确定第二索引的方法,可以相互结合实施。
比如,可以根据同步信号的序列,确定第一公共信号在第一集合中的第一索引,以及确定第一公共信号的第二索引。示例性地,同步信号的序列与第一索引、第二索引的关系如表1所示。
表1
同步信号的序列 第一索引 第二索引
序列1 1 0
序列2 1 1
序列3 2 0
序列4 2 1
序列5 3 0
序列6 3 1
序列7 4 0
序列8 4 1
…… …… ……
例如,当同步信号的序列为序列3,则确定第一索引为2,第二索引为索引0。当同步信号的序列为序列6,则确定第一索引为3,第二索引为索引1。
再比如,还可以根据第一公共信号对应的控制信道,确定第一公共信号在第一集合中的第一索引,以及确定第一公共信号的第二索引。示例性地,以控制信道的扰码为例,控制信道的扰码与第一索引、第二索引的关系如表2所示。
表2
控制信道的扰码 第一索引 第二索引
扰码1 1 0
扰码2 1 1
扰码3 2 0
扰码4 2 1
扰码5 3 0
扰码6 3 1
扰码7 4 0
扰码8 4 1
…… …… ……
例如,当控制信道的扰码为扰码3,则确定第一索引为2,第二索引为索引0。当控制信道的扰码为扰码6,则确定第一索引为3,第二索引为索引1。
再比如,根据同步信号的序列确定第一公共信号在第一集合中的第一索引,以及根据第一公共信号对应的广播信道确定第一公共信号的第二索引。
再比如,根据第一公共信号对应的广播信道确定第一公共信号在第一集合中的第一索引,以及根据第一公共信号对应的控制信道确定第一公共信号的第二索引。
作为一种实现方法,本申请实施例中,在确定第一索引或第二索引时,还使用到了公共信号的分组规则。比如,终端根据第一分组规则,确定第一索引或第二索引。可选的,终端从多个候选规则中确定第一集合对应的第一分组规则。
下面结合示例进行说明。
比如,终端确定的第一分组规则如下:
组1包括公共信号0和公共信号4,组1对应由资源1和资源5组成的资源集合1;
组2包括公共信号1和公共信号5,组2对应由资源2和资源6组成的资源集合2;
组3包括公共信号2和公共信号6,组3对应由资源3和资源7组成的资源集合3;
组4包括公共信号3和公共信号7,组4对应由资源4和资源8组成的资源集合4。
在一个示例中,控制信道的某个字段用于指示第一索引和第二索引。终端获取到控制信道的该字段中的比特信息,由于公共信号一共有8个,因此终端先获取该字段的前3比特信息,根据该3比特信息确定第一索引。然后终端根据第一集合对应的第一分组规则,确定每个分组中有两个公共信号,则终端进一步只需要在该字段中获取1比特信息,比如获取第4比特信息,根据该1比特信息可以确定第二索引。比如,确定的第一索引为3,用于指示公共信号3,第二索引为“0”,用于指示资源4,则终端可以确定检测到的第一公共信号为公共信号3,且对应资源4。再比如,确定的第一索引为5,用于指示公共信号5,第二索引为“1”,用于指示资源6,则终端可以确定检测到的第一公共信号为公共信号5,且对应资源6。
作为一种实现方法,终端可以根据以下任一种或多种方法,从多个候选分组规则中确定第一集合对应的第一分组规则:
方法1,根据第一公共信号中的同步信号的序列,从多个候选分组规则中确定第一集合对应的第一分组规则。
比如,同步信号的序列1对应第一分组规则,同步信号的序列2、同步信号的序列3等对应其它候选分组规则。这里的同步信号的序列可以是PSS的序列,也可以是SSS的序列。
再比如,PSS和SSS的序列组合1对应第一分组规则,PSS和SSS的序列组合2、PSS和SSS的序列组合3等对应其它候选分组规则。
方法2,根据第一集合对应的一个分组内的公共信号的数量,从多个候选分组规则中 确定第一集合对应的第一分组规则。
比如,终端从基站收到一个数量信息,该数量信息指示了第一集合对应的一个分组内的公共信号的数量,则终端可以根据该数量信息以及预定义规则,确定第一集合对应的第一分组规则。
例如,终端收到数量信息为2,即每个分组内包含2个公共信号,则终端确定第一分组规则为:
组1包括公共信号0和公共信号4,组1对应由资源1和资源5组成的资源集合1;
组2包括公共信号1和公共信号5,组2对应由资源2和资源6组成的资源集合2;
组3包括公共信号2和公共信号6,组3对应由资源3和资源7组成的资源集合3;
组4包括公共信号3和公共信号7,组4对应由资源4和资源8组成的资源集合4。
再例如,终端收到数量信息为4,即每个分组内包含4个公共信号,则终端确定第一分组规则为:
组1包括公共信号0至公共信号3,组1对应由资源1至资源4组成的资源集合1;
组2包括公共信号4至公共信号7,组2对应由资源5至资源8组成的资源集合2。
方法3,根据TDD配置,从多个候选分组规则中确定第一集合对应的第一分组规则。
每种TDD配置指示了上行时域资源与下行时域资源之间的比例。这里的时域资源包括符号、时隙、子帧或无线帧中的至少一种。可选的,终端可以从检测到的第一公共信号中获取到当前的TDD配置。
比如,TDD配置1对应第一分组规则,TDD配置2、TDD配置3分别对应其它的候选分组规则。当终端确定当前的TDD配置为TDD配置1,则终端从多个候选分组规则中确定第一集合对应的第一分组规则。
可以理解的是,为了实现上述实施例中功能,基站和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图9和图10为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端或基站的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端120a-120j中的一个,也可以是如图1所示的基站110a或110b,还可以是应用于终端或基站的模块(如芯片)。
如图9所示,通信装置900包括处理单元910和收发单元920。通信装置900用于实现上述图8中所示的方法实施例中终端或基站的功能。
当通信装置900用于实现图8所示的方法实施例中终端的功能时:收发单元920,用于接收来自基站的公共信号;处理单元910,用于检测该公共信号;根据检测到的第一公共信号,确定该第一公共信号在第一集合中的第一索引和该第一公共信号的第二索引,该第一集合包括多个公共信号,该多个公共信号包括该第一公共信号,该第一公共信号包括 同步信号;该第一索引对应多个资源,该第二索引用于指示该多个资源中的一个资源,该资源包括时域资源和/或频域资源;以及,根据该第一索引和该第二索引,或根据该第二索引,确定该第一公共信号的资源。
在一种可能的实现方法中,处理单元910,还用于根据该第一分组规则,确定该第一索引或该第二索引;其中,该第一集合中的公共信号按照该第一分组规则被分成至少一个分组,该至少一个分组中的每一个分组对应一个资源集合,该资源集合包括该第一索引对应的多个资源中的至少一个资源。
在一种可能的实现方法中,处理单元910,还用于根据该同步信号的序列,从多个候选分组规则中确定该第一集合对应的第一分组规则;或者,根据该第一集合对应的一个分组内的公共信号的数量,从多个候选分组规则中确定该第一集合对应的第一分组规则;或者,根据时分双工配置,从多个候选分组规则中确定该第一集合对应的第一分组规则。
在一种可能的实现方法中,处理单元910,用于根据该同步信号的序列,确定该第一索引。
在一种可能的实现方法中,处理单元910,用于根据该第一公共信号对应的第一信道,确定第一索引,该第一信道为广播信道、承载系统信息的信道或控制信道,该控制信道用于调度该承载系统信息的信道。
在一种可能的实现方法中,处理单元910,用于根据该第一信道对应的以下信息中的一个或多个信息,确定该第一索引:用于指示该第一索引的信息、该第一信道的扰码、该第一信道的DMRS序列。
在一种可能的实现方法中,处理单元910,用于根据该同步信号的序列,确定该第二索引。
在一种可能的实现方法中,处理单元910,用于根据该第一公共信号对应的第一信道,确定该第二索引,该第一信道为广播信道、承载系统信息的信道或控制信道,该控制信道用于调度该承载系统信息的信道。
在一种可能的实现方法中,处理单元910,用于根据该第一信道对应的以下信息中的一个或多个信息,确定该第二索引:用于指示该第二索引的信息、该第一信道的扰码、该第一信道的DMRS序列。
在一种可能的实现方法中,处理单元910,还用于根据该第一公共信号的资源和该第一集合,确定该第一集合中除该第一公共信号之外的公共信号的资源。
在一种可能的实现方法中,处理单元910,还用于根据该第一索引或该第二索引,确定第二公共信号的资源;根据该第二公共信号的资源,通过收发单元920接收该第二公共信号;其中,第二公共信号包括控制信道或承载系统信息的信道,该控制信道用于调度该承载系统信息的信道。
在一种可能的实现方法中,处理单元910,还用于根据该第一公共信号进行无线资源管理RRM测量,得到该第一公共信号对应的RRM测量结果,该RRM测量结果由该第一索引进行标识;收发单元920,还用于向无线接入网设备发送该第一公共信号对应的RRM测量结果。
当通信装置900用于实现图8所示的方法实施例中基站的功能时:处理单元910,用于获取第一集合,该第一集合包括多个公共信号,该多个公共信号包括第一公共信号,该 第一公共信号包括同步信号;该第一公共信号在该第一集合中的索引为第一索引,该第一索引对应多个资源,该第一公共信号的第二索引用于指示该多个资源中的一个资源,该资源包括时域资源和/或频域资源;收发单元920,用于向终端发送该第一集合中的公共信号。
在一种可能的实现方法中,该第一集合对应第一分组规则,该第一分组规则用于确定该第一索引或该第二索引;其中,该第一集合中的公共信号按照该第一分组规则被分成至少一个分组,该至少一个分组中的每一个分组对应一个资源集合,该资源集合包括该第一索引对应的多个资源中的至少一个资源。
在一种可能的实现方法中,该同步信号的序列与该第一分组规则对应;或者,该第一集合对应的一个分组内的公共信号的数量与该第一分组规则对应;或者,时分双工配置与该第一分组规则对应。
在一种可能的实现方法中,该同步信号的序列,与该第一索引对应。
在一种可能的实现方法中,该第一公共信号对应的第一信道,与该第一索引对应,该第一信道为广播信道、承载系统信息的信道或控制信道,该控制信道用于调度该承载系统信息的信道。
在一种可能的实现方法中,该第一信道对应的以下信息中的一个或多个信息,与该第一索引对应:用于指示该第一索引的信息、该第一信道的扰码、该第一信道的DMRS序列。
在一种可能的实现方法中,该同步信号的序列,与该第二索引对应。
在一种可能的实现方法中,该第一公共信号对应的第一信道,与该第二索引对应,该第一信道为广播信道、承载系统信息的信道或控制信道,该控制信道用于调度该承载系统信息的信道。
在一种可能的实现方法中,该第一信道对应的以下信息中的一个或多个信息,与该第二索引对应:用于指示该第二索引的信息、该第一信道的扰码、该第一信道的DMRS序列。
在一种可能的实现方法中,该第一索引或该第二索引,与第二公共信号的资源对应;其中,第二公共信号包括控制信道或承载系统信息的信道,该控制信道用于调度承载系统信息的信道。
在一种可能的实现方法中,收发单元920,还用于接收来自终端的与该第一公共信号对应的无线资源管理RRM测量结果,该RRM测量结果由该第一索引进行标识。
有关上述处理单元910和收发单元920更详细的描述可以直接参考图8所示的方法实施例中相关描述直接得到,这里不加赘述。
如图10所示,通信装置1000包括处理器1010和接口电路1020。处理器1010和接口电路1020之间相互耦合。可以理解的是,接口电路1020可以为收发器或输入输出接口。可选的,通信装置1000还可以包括存储器1030,用于存储处理器1010执行的指令或存储处理器1010运行指令所需要的输入数据或存储处理器1010运行指令后产生的数据。
当通信装置1000用于实现图8所示的方法时,处理器1010用于实现上述处理单元910的功能,接口电路1020用于实现上述收发单元920的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是基站发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给基站的。
当上述通信装置为应用于基站的芯片时,该基站芯片实现上述方法实施例中基站的功能。该基站芯片从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给基站的;或者,该基站芯片向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、基站、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先 后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (30)

  1. 一种无线通信方法,其特征在于,包括:
    检测公共信号;
    根据检测到的第一公共信号,确定所述第一公共信号在第一集合中的第一索引和所述第一公共信号的第二索引,所述第一集合包括多个公共信号,所述多个公共信号包括所述第一公共信号,所述第一公共信号包括同步信号;所述第一索引对应多个资源,所述第二索引用于指示所述多个资源中的一个资源,所述资源包括时域资源和/或频域资源;
    根据所述第一索引和所述第二索引,或根据所述第二索引,确定所述第一公共信号的资源。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    根据第一分组规则,确定所述第一索引或所述第二索引;
    其中,所述第一集合中的公共信号按照所述第一分组规则被分成至少一个分组,所述至少一个分组中的每一个分组对应一个资源集合,所述资源集合包括所述第一索引对应的多个资源中的至少一个资源。
  3. 如权利要求2所述的方法,其特征在于,还包括:
    根据所述同步信号的序列,从多个候选分组规则中确定所述第一集合对应的第一分组规则;或者,
    根据所述第一集合对应的一个分组内的公共信号的数量,从多个候选分组规则中确定所述第一集合对应的第一分组规则;或者,
    根据时分双工配置,从多个候选分组规则中确定所述第一集合对应的第一分组规则。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述确定所述第一公共信号在第一集合中的第一索引,包括:
    根据所述同步信号的序列,确定所述第一索引。
  5. 如权利要求1至3中任一项所述的方法,其特征在于,所述确定所述第一公共信号在第一集合中的第一索引,包括:
    根据所述第一公共信号对应的第一信道,确定所述第一索引,所述第一信道为广播信道、承载系统信息的信道或控制信道,所述控制信道用于调度所述承载系统信息的信道。
  6. 如权利要求5所述的方法,其特征在于,所述根据所述第一公共信号对应的第一信道,确定所述第一索引,包括:
    根据所述第一信道对应的以下信息中的一个或多个信息,确定所述第一索引:
    用于指示所述第一索引的信息、所述第一信道的扰码、所述第一信道的解调参考信号DMRS序列。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述确定所述第一公共信号的第二索引,包括:
    根据所述同步信号的序列,确定所述第二索引。
  8. 如权利要求1至6中任一项所述的方法,其特征在于,所述确定所述第一公共信号的第二索引,包括:
    根据所述第一公共信号对应的第一信道,确定所述第二索引,所述第一信道为广播信道、承载系统信息的信道或控制信道,所述控制信道用于调度所述承载系统信息的信道。
  9. 如权利要求8所述的方法,其特征在于,根据所述第一公共信号对应的第一信道,确定所述第二索引,包括:
    根据所述第一信道对应的以下信息中的一个或多个信息,确定所述第二索引:
    用于指示所述第二索引的信息、所述第一信道的扰码、所述第一信道的DMRS序列。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,还包括:
    根据所述第一公共信号的资源和所述第一集合,确定所述第一集合中除所述第一公共信号之外的公共信号的资源。
  11. 如权利要求1至9中任一项所述的方法,其特征在于,还包括:
    根据所述第一索引或所述第二索引,确定第二公共信号的资源;
    根据所述第二公共信号的资源,接收所述第二公共信号;
    其中,所述第二公共信号包括控制信道或承载系统信息的信道,所述控制信道用于调度所述承载系统信息的信道。
  12. 如权利要求1至11中任一项所述的方法,其特征在于,还包括:
    根据所述第一公共信号进行无线资源管理RRM测量,得到所述第一公共信号对应的RRM测量结果,所述RRM测量结果由所述第一索引进行标识;
    向无线接入网设备发送所述RRM测量结果。
  13. 一种无线通信方法,其特征在于,包括:
    获取第一集合,所述第一集合包括多个公共信号,所述多个公共信号包括第一公共信号,所述第一公共信号包括同步信号;所述第一公共信号在所述第一集合中的索引为第一索引,所述第一索引对应多个资源,所述第一公共信号的第二索引用于指示所述多个资源中的一个资源,所述资源包括时域资源和/或频域资源;
    向终端发送所述第一集合中的公共信号。
  14. 如权利要求13所述的方法,其特征在于,所述第一集合对应第一分组规则,所述第一分组规则用于确定所述第一索引或所述第二索引;
    其中,所述第一集合中的公共信号按照所述第一分组规则被分成至少一个分组,所述至少一个分组中的每一个分组对应一个资源集合,所述资源集合包括所述第一索引对应的多个资源中的至少一个资源。
  15. 如权利要求14所述的方法,其特征在于,所述同步信号的序列与所述第一分组规则对应;或者,
    所述第一集合对应的一个分组内的公共信号的数量与所述第一分组规则对应;或者,
    时分双工配置与所述第一分组规则对应。
  16. 如权利要求13至15中任一项所述的方法,其特征在于,所述同步信号的序列与所述第一索引对应。
  17. 如权利要求13至15中任一项所述的方法,其特征在于,所述第一公共信号对应的第一信道,与所述第一索引对应,所述第一信道为广播信道、承载系统信息的信道或控制信道,所述控制信道用于调度所述承载系统信息的信道。
  18. 如权利要求17所述的方法,其特征在于,所述第一信道对应的以下信息中的一个或多个信息,与所述第一索引对应:
    用于指示所述第一索引的信息、所述第一信道的扰码、所述第一信道的解调参考信号DMRS序列。
  19. 如权利要求13至18中任一项所述的方法,其特征在于,所述同步信号的序列与所述第二索引对应。
  20. 如权利要求13至18中任一项所述的方法,其特征在于,所述第一公共信号对应的第一信道,与所述第二索引对应,所述第一信道为广播信道、承载系统信息的信道或控制信道,所述控制信道用于调度所述承载系统信息的信道。
  21. 如权利要求20所述的方法,其特征在于,所述第一信道对应的以下信息中的一个或多个信息,与所述第二索引对应:
    用于指示所述第二索引的信息、所述第一信道的扰码、所述第一信道的DMRS序列。
  22. 如权利要求13至21中任一项所述的方法,其特征在于,所述第一索引或所述第二索引,与第二公共信号的资源对应;
    其中,所述第二公共信号包括控制信道或承载系统信息的信道,所述控制信道用于调度所述承载系统信息的信道。
  23. 如权利要求13至22中任一项所述的方法,其特征在于,还包括:
    接收来自所述终端的与所述第一公共信号对应的无线资源管理RRM测量结果,所述RRM测量结果由所述第一索引进行标识。
  24. 一种通信装置,其特征在于,包括用于执行如权利要求1至12中任一项所述方法的模块。
  25. 一种通信装置,其特征在于,包括用于执行如权利要求13至23中任一项所述方法的模块。
  26. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至12中任一项所述的方法。
  27. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求13至23中任一项所述的方法。
  28. 一种计算机程序,其特征在于,当所述计算机程序被通信装置执行时,实现如权利要求1至23中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至23中任一项所述的方法。
  30. 一种通信系统,其特征在于,包括用于执行如权利要求1至12中任一项所述方法的通信装置和用于执行如权利要求13至23中任一项所述方法的通信装置。
PCT/CN2021/078785 2021-03-02 2021-03-02 一种无线通信方法、通信装置及通信系统 WO2022183389A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180094766.9A CN116897520A (zh) 2021-03-02 2021-03-02 一种无线通信方法、通信装置及通信系统
EP21928480.9A EP4290793A4 (en) 2021-03-02 2021-03-02 WIRELESS COMMUNICATION METHOD, COMMUNICATION APPARATUS AND COMMUNICATION SYSTEM
PCT/CN2021/078785 WO2022183389A1 (zh) 2021-03-02 2021-03-02 一种无线通信方法、通信装置及通信系统
US18/458,641 US20230413160A1 (en) 2021-03-02 2023-08-30 Wireless communication method, communication apparatus, and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078785 WO2022183389A1 (zh) 2021-03-02 2021-03-02 一种无线通信方法、通信装置及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/458,641 Continuation US20230413160A1 (en) 2021-03-02 2023-08-30 Wireless communication method, communication apparatus, and communication system

Publications (1)

Publication Number Publication Date
WO2022183389A1 true WO2022183389A1 (zh) 2022-09-09

Family

ID=83153844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078785 WO2022183389A1 (zh) 2021-03-02 2021-03-02 一种无线通信方法、通信装置及通信系统

Country Status (4)

Country Link
US (1) US20230413160A1 (zh)
EP (1) EP4290793A4 (zh)
CN (1) CN116897520A (zh)
WO (1) WO2022183389A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294950A (zh) * 2019-07-25 2020-06-16 北京展讯高科通信技术有限公司 同步信号块的发送、时隙位置确定方法及装置、存储介质、基站、终端
US20200196254A1 (en) * 2018-12-13 2020-06-18 Nxp Usa, Inc. Early detection of ssb index using prioritized candidate ssb index ordering
CN112134674A (zh) * 2017-03-17 2020-12-25 Oppo广东移动通信有限公司 同步信号块检测方法、同步信号块传输方法、装置及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147065A1 (en) * 2019-01-17 2020-07-23 Qualcomm Incorporated On-demand measurements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112134674A (zh) * 2017-03-17 2020-12-25 Oppo广东移动通信有限公司 同步信号块检测方法、同步信号块传输方法、装置及系统
US20200196254A1 (en) * 2018-12-13 2020-06-18 Nxp Usa, Inc. Early detection of ssb index using prioritized candidate ssb index ordering
CN111294950A (zh) * 2019-07-25 2020-06-16 北京展讯高科通信技术有限公司 同步信号块的发送、时隙位置确定方法及装置、存储介质、基站、终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4290793A4 *

Also Published As

Publication number Publication date
CN116897520A (zh) 2023-10-17
US20230413160A1 (en) 2023-12-21
EP4290793A4 (en) 2024-04-10
EP4290793A1 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
CN108029112B (zh) 共享通信介质中的控制信令
JP7206023B2 (ja) リソース場所を示し、それを受信するための方法、デバイス、装置、および記憶媒体
JP7166352B2 (ja) 新無線におけるページングオケージョンの設計
US11129155B2 (en) Method for configuring transmission direction of time-frequency resource, and apparatus
WO2018196716A1 (zh) 一种寻呼指示的传输方法及装置
CN114503744A (zh) 用于在无线通信系统中发送和接收信号的方法和装置
US20210258958A1 (en) Communications Method and Apparatus
EP3157273B1 (en) Base-station device, terminal device, and communication method
WO2019086012A1 (zh) 一种通信方法及装置
WO2017177378A1 (zh) 通信系统中用于发送和接收控制信令的方法和装置
WO2022183389A1 (zh) 一种无线通信方法、通信装置及通信系统
WO2022012396A1 (zh) 一种通信方法及装置
KR20200138386A (ko) 클리어 채널 청취 방법, 장치 및 기기
WO2022183390A1 (zh) 一种无线通信方法、通信装置及通信系统
US20240049300A1 (en) Random access method, communication apparatus, and communication system
CN111543101A (zh) 用于剩余最小系统信息的方法、网络设备和终端设备
WO2023284490A1 (zh) 一种通信方法和装置
WO2023093610A1 (zh) 一种通信方法及装置
US20240114508A1 (en) Method and apparatus for communication of enhanced reduced capability user equipment in wireless communication system
WO2023130480A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
CN118057888A (zh) 一种通信方法及装置
CN117596669A (zh) 通信方法、装置及系统
CN115989707A (zh) 在无线通信系统中使用协作通信收发数据的方法和装置
CN117500070A (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180094766.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021928480

Country of ref document: EP

Effective date: 20230906

NENP Non-entry into the national phase

Ref country code: DE