WO2022182152A1 - Novel compound and organic light emitting device using same - Google Patents

Novel compound and organic light emitting device using same Download PDF

Info

Publication number
WO2022182152A1
WO2022182152A1 PCT/KR2022/002694 KR2022002694W WO2022182152A1 WO 2022182152 A1 WO2022182152 A1 WO 2022182152A1 KR 2022002694 W KR2022002694 W KR 2022002694W WO 2022182152 A1 WO2022182152 A1 WO 2022182152A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
added
organic layer
water
Prior art date
Application number
PCT/KR2022/002694
Other languages
French (fr)
Korean (ko)
Inventor
김민준
이동훈
서상덕
김영석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202280007768.4A priority Critical patent/CN116615421A/en
Publication of WO2022182152A1 publication Critical patent/WO2022182152A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/84Naphthothiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers

Definitions

  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode.
  • the organic layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light-emitting device, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the present invention provides a compound represented by Formula 1 or Formula 2:
  • Ar is substituted or unsubstituted C 6-60 aryl
  • R 1 to R 6 is a substituent represented by the following formula (3), and the rest are each independently hydrogen or deuterium;
  • L is a single bond, substituted or unsubstituted C 6-60 arylene, or substituted or unsubstituted C 2-60 heteroarylene including at least one selected from the group consisting of N, O and S,
  • L 1 and L 2 are each independently a single bond, substituted or unsubstituted C 6-60 arylene, or substituted or unsubstituted C including any one or more selected from the group consisting of N, O and S 2-60 heteroarylene;
  • Ar 1 and Ar 2 are each independently, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted C 2-60 hetero comprising at least one selected from the group consisting of N, O and S aryl,
  • R 5 or R 6 is a substituent represented by Formula 3,
  • L 1 is substituted or unsubstituted C 6-60 arylene
  • Ar 1 is substituted or unsubstituted C 8-60 aryl
  • L 1 is a single bond, or substituted or unsubstituted C 6-60 arylene
  • Ar 1 is C 2-60 including at least one selected from the group consisting of substituted or unsubstituted N, O, and S heteroaryl.
  • the present invention is a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one organic material layer includes a compound represented by Formula 1 or Formula 2 provide the element.
  • the compound represented by Formula 1 or Formula 2 may be used as a material for an organic layer of an organic light emitting device, and may improve efficiency, low driving voltage, and/or lifespan characteristics in the organic light emitting device.
  • the compound represented by Formula 1 or Formula 2 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • FIG. 2 shows an example of an organic light emitting device including a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8, and a cathode 4 did it
  • substituted or unsubstituted refers to deuterium; halogen group; nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an aryl phosphine group; or N, O, and S atom means that it is substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably from 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like.
  • the present invention is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20.
  • the aryl group may be a monocyclic aryl group, such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, etc. can be
  • the present invention is not limited thereto.
  • the heterocyclic group is a heterocyclic group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but it is preferably from 2 to 60 carbon atoms.
  • heterocyclic group examples include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothioph
  • the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, and the arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group.
  • the description of the heterocyclic group described above for heteroaryl among heteroarylamines may be applied.
  • the alkenyl group among the aralkenyl groups is the same as the examples of the above-described alkenyl groups.
  • the description of the above-described aryl group may be applied except that arylene is a divalent group.
  • the description of the above-described heterocyclic group may be applied, except that heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents.
  • the heterocyclic group is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that it is formed by combining two substituents.
  • At least one hydrogen may be substituted with deuterium.
  • Ar is substituted or unsubstituted C 6-12 aryl. More preferably, Ar is phenyl, biphenyl, or naphthyl.
  • L is a single bond, or substituted or unsubstituted C 6-12 arylene. More preferably, L is a single bond, phenylene, biphenyldiyl, terphenyldiyl, naphthylene, or -(phenylene)-(naphthylene)-. More preferably, L is a single bond, 1,4-phenylene, 4,4'-biphenyldiyl, or 2,6-naphthylene.
  • L 1 and L 2 are each independently a single bond, or a substituted or unsubstituted C 6-12 arylene.
  • L 1 and L 2 are each independently a single bond, phenylene, or biphenyldiyl. More preferably, L 1 and L 2 are each independently a single bond, 1,4-phenylene, or 4,4'-biphenyldiyl.
  • Ar 1 and Ar 2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, naphthylphenyl, phenylnaphthyl, phenanthrenyl, dimethylfluorenyl, diphenylfluorenyl, dibenzofuranyl, dibenzothiophenyl, 9H-carbazol-9-yl, or 9-phenyl-9H-carbazolyl.
  • R 1 to R 4 is a substituent represented by Formula 3, and the rest are each independently hydrogen or deuterium; R 5 and R 6 are each independently hydrogen or deuterium.
  • R 1 to R 4 are each independently hydrogen or deuterium;
  • One of R 5 and R 6 is a substituent represented by Formula 3, and the rest is hydrogen or deuterium.
  • L 1 is phenylene, or biphenyldiyl
  • Ar 1 is biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dimethylfluorenyl, or diphenylfluorenyl; or L 1 is a single bond, phenylene, or biphenyldiyl, and Ar 1 is dibenzofuranyl, dibenzothiophenyl, 9H-carbazol-9-yl, or 9-phenyl-9H-carbazolyl.
  • Ar 1 and Ar 2 are each independently terphenylyl, naphthyl, phenanthrenyl, dimethylfluorenyl, diphenylfluorenyl, dibenzofuranyl, dibenzothiophenyl, 9H-carba zol-9-yl, or 9-phenyl-9H-carbazolyl.
  • Ar 1 is phenyl
  • Ar 2 is phenyl, biphenyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, dibenzothiophenyl, 9H-carbazol-9-yl, or 9-phenyl-9H-carbazolyl
  • Ar 1 is biphenylyl
  • Ar 2 is terphenylyl, phenanthrenyl, dibenzofuranyl, dibenzothiophenyl, 9H-carbazol-9-yl, or 9-phenyl-9H-carbazolyl.
  • L 1 and L 2 are each independently a single bond, phenylene, or biphenyldiyl, more preferably, L 1 and L 2 are each independently, a single bond, 1,4- phenylene, or 4,4'-biphenyldiyl.
  • the present invention provides a method for preparing a compound in which R 1 is Formula 3 in the compound represented by Formula 1, as shown in Scheme 1 below, and the other compounds represented by Formula 1 and the compound represented by Formula 2 It can be prepared in a similar way.
  • X is halogen, preferably bromo, or chloro
  • Y is hydrogen when L is a single bond
  • L is single If it is not a bond, it is -B(OH) 2 .
  • Scheme 1 is an amine substitution reaction or Suzuki coupling reaction, and is preferably performed in the presence of a palladium catalyst and a base, and the reactor for each reaction can be changed as known in the art. The manufacturing method may be more specific in Preparation Examples to be described later.
  • the present invention provides an organic light emitting device including the compound represented by Formula 1 or Formula 2 above.
  • the present invention provides a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a compound represented by Formula 1 or Formula 2 A light emitting device is provided.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic layer may include an emission layer, and the emission layer includes a compound represented by Formula 1 or Formula 2 above.
  • the compound according to the present invention can be used as a dopant in the light emitting layer.
  • the organic layer may include an electron transport layer or an electron injection layer, and the electron transport layer or the electron injection layer includes a compound represented by Formula 1 or Formula 2 above.
  • the electron transport layer, the electron injection layer, or the layer that transports and injects electrons at the same time includes the compound represented by Chemical Formula 1 or Chemical Formula 2 above.
  • the organic layer may include a light emitting layer and an electron transport layer
  • the electron transport layer may include a compound represented by Formula 1 or Formula 2 above.
  • the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of the organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • the compound represented by Formula 1 or Formula 2 may be included in the emission layer.
  • the compound represented by Formula 1 or Formula 2 may be included in one or more of the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer.
  • the organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Formula 1 or Formula 2 above. Also, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon it can be prepared by depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 or Formula 2 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is an anode
  • anode material a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer.
  • the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multi-layered material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect on the light emitting layer or the light emitting material, and is produced in the light emitting layer
  • a compound which prevents the movement of excitons to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • HOMO highest occupied molecular orbital
  • the hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, polyaniline and polythiophene-based conductive polymers, and the like, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer.
  • the light emitting material is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compounds; compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV)-based polymers; spiro compounds; polyfluorene, rubrene, and the like, but is not limited thereto.
  • the emission layer may include a host material and a dopant material.
  • the host material includes a condensed aromatic ring derivative or a heterocyclic compound containing compound.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc.
  • heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the dopant material examples include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group.
  • styrylamine compound a substituted or unsubstituted It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer. do. Specific examples include Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transport layer may be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function and followed by a layer of aluminum or silver. Specifically cesium, barium, calcium, ytterbium and samarium, followed in each case by an aluminum layer or a silver layer.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer.
  • a compound which prevents movement to a layer and is excellent in the ability to form a thin film is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc., derivatives thereof, metals complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
  • the metal complex compound examples include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc.
  • the present invention is not limited thereto.
  • the organic light emitting device according to the present invention may be a top emission type, a back emission type, or a double side emission type depending on the material used.
  • Compound AB was prepared in the same manner as in Preparation Example 1, except that 1-bromo-4-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound AC was prepared in the same manner as in Preparation Example 1, except that 1-bromo-5-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound AD was prepared in the same manner as in Preparation Example 1, except that 1-bromo-6-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound AE was prepared in the same manner as in Preparation Example 1, except that 1-bromo-7-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound AF was prepared in the same manner as in Preparation Example 1, except that 1-bromo-8-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound AG was prepared in the same manner as in Preparation Example 1, except that [1,1'-biphenyl]-4-carbonyl chloride was used instead of benzyl chloride.
  • Compound AM was prepared in the same manner as in Preparation Example 1, except that 2-naphthoyl chloride was used instead of benzyl chloride.
  • Compound BA was prepared in the same manner as in Preparation Example 1, except that 2-bromo-3-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound BB was prepared in the same manner as in Preparation Example 1, except that 2-bromo-4-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound BC was prepared in the same manner as in Preparation Example 1, except that 2-bromo-5-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound BD was prepared in the same manner as in Preparation Example 1, except that 2-bromo-6-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound BE was prepared in the same manner as in Preparation Example 1, except that 2-bromo-7-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound BF was prepared in the same manner as in Preparation Example 1, except that 2-bromo-8-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • compound AQ (10 g, 28.9 mmol), compound amine36 (10.6 g, 28.9 mmol), sodium tert-butoxide (9.2 g, 43.4 mmol) were added to xylene (200 ml), and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • a glass substrate coated with indium tin oxide (ITO) to a thickness of 1,000 ⁇ was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product manufactured by Fischer Co. was used as the detergent
  • distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water.
  • ultrasonic washing was performed for 10 minutes by repeating twice with distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, and after drying, it was transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • the following HI-1 compound was formed to a thickness of 1150 ⁇ , but the following A-1 compound was p-doped at a concentration of 1.5% to form a hole injection layer.
  • the following HT-1 compound was vacuum-deposited to form a hole transport layer having a thickness of 800 ⁇ .
  • compound 1 prepared above was vacuum-deposited to form an electron-blocking layer having a thickness of 150 ⁇ . on the electron-suppressing layer.
  • the following RH-1 compound as a host and the following Dp-7 compound as a dopant were vacuum-deposited at a weight ratio of 98:2 to form a red light emitting layer having a thickness of 400 ⁇ .
  • the following HB-1 compound was vacuum-deposited to form a hole blocking layer having a thickness of 30 ⁇ .
  • the following ET-1 compound and the following LiQ compound were vacuum-deposited at a weight ratio of 2:1 to form an electron injection and transport layer having a thickness of 300 ⁇ .
  • lithium fluoride (LiF) to a thickness of 12 ⁇ and aluminum to a thickness of 1,000 ⁇ were sequentially deposited to form a cathode.
  • the deposition rate of organic material was maintained at 0.4-0.7 ⁇ /sec
  • the deposition rate of lithium fluoride of the negative electrode was maintained at 0.3 ⁇ /sec
  • the deposition rate of aluminum was maintained at 2 ⁇ /sec
  • the vacuum degree during deposition was 2x10 -7
  • an organic light emitting device was manufactured.
  • An organic light emitting diode was manufactured in the same manner as in Experimental Example 1, except that the compounds shown in Tables 1 to 5 were used instead of Compound 1.
  • An organic light emitting diode was manufactured in the same manner as in Experimental Example 1, except that the compound shown in Table 6 was used instead of Compound 1.
  • Compounds C-1 to C-16 in Table 6 were as follows, respectively.
  • the lifetime T95 means the time (hr) required for the luminance to decrease from the initial luminance (6000 nit) to 95%.
  • the lifetime characteristics can be greatly improved while maintaining high efficiency. It can be determined that this is because the compound of the present invention has higher stability for electrons and holes than the compound of Comparative Example. In conclusion, it can be confirmed that when the compound of the present invention is used as the electron suppression layer of the red light emitting layer, the driving voltage, luminous efficiency, and lifespan characteristics of the organic light emitting device can be improved.
  • Substrate 2 Anode

Abstract

The present specification relates to: a compound represented by chemical formula 1 or 2; and an organic light emitting device comprising a first electrode, a second electrode, and one or more organic layers provided between the first electrode and the second electrode, wherein one or more of the organic layers comprise the compound represented by chemical formula 1 or 2.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자Novel compound and organic light emitting device using same
관련 출원(들)과의 상호 인용Cross-Citation with Related Application(s)
본 출원은 2021년 2월 24일자 한국 특허 출원 제10-2021-0024930호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2021-0024930 dated February 24, 2021, and all contents disclosed in the documents of the Korean patent applications are incorporated as a part of this specification.
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to a novel compound and an organic light emitting device comprising the same.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. In general, the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material. The organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode. The organic layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light-emitting device, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like. When a voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer. When the injected holes and electrons meet, excitons are formed, and the excitons It lights up when it falls back to the ground state.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.The development of new materials for organic materials used in organic light emitting devices as described above is continuously required.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호(Patent Document 0001) Korean Patent Publication No. 10-2000-0051826
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to a novel compound and an organic light emitting device comprising the same.
본 발명은 하기 화학식 1 또는 화학식 2로 표시되는 화합물을 제공한다:The present invention provides a compound represented by Formula 1 or Formula 2:
[화학식 1][Formula 1]
Figure PCTKR2022002694-appb-img-000001
Figure PCTKR2022002694-appb-img-000001
[화학식 2][Formula 2]
Figure PCTKR2022002694-appb-img-000002
Figure PCTKR2022002694-appb-img-000002
상기 화학식 1 및 2에서, In Formulas 1 and 2,
Ar은 치환 또는 비치환된 C6-60 아릴이고, Ar is substituted or unsubstituted C 6-60 aryl,
R1 내지 R6 중 하나는 하기 화학식 3으로 표시되는 치환기이고, 나머지는 각각 독립적으로 수소, 또는 중수소이고,One of R 1 to R 6 is a substituent represented by the following formula (3), and the rest are each independently hydrogen or deuterium;
[화학식 3][Formula 3]
Figure PCTKR2022002694-appb-img-000003
Figure PCTKR2022002694-appb-img-000003
상기 화학식 3에서, In Formula 3,
L은 단일 결합, 치환 또는 비치환된 C6-60 아릴렌, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고, L is a single bond, substituted or unsubstituted C 6-60 arylene, or substituted or unsubstituted C 2-60 heteroarylene including at least one selected from the group consisting of N, O and S,
L1 및 L2는 각각 독립적으로, 단일 결합, 치환 또는 비치환된 C6-60 아릴렌, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고, L 1 and L 2 are each independently a single bond, substituted or unsubstituted C 6-60 arylene, or substituted or unsubstituted C including any one or more selected from the group consisting of N, O and S 2-60 heteroarylene;
Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고, Ar 1 and Ar 2 are each independently, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted C 2-60 hetero comprising at least one selected from the group consisting of N, O and S aryl,
단, R5 또는 R6가 상기 화학식 3으로 표시되는 치환기인 경우, However, when R 5 or R 6 is a substituent represented by Formula 3,
L1은 치환 또는 비치환된 C6-60 아릴렌이고, Ar1은 치환 또는 비치환된 C8-60 아릴이거나, 또는L 1 is substituted or unsubstituted C 6-60 arylene, Ar 1 is substituted or unsubstituted C 8-60 aryl, or
L1은 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고, Ar1은 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이다.L 1 is a single bond, or substituted or unsubstituted C 6-60 arylene, Ar 1 is C 2-60 including at least one selected from the group consisting of substituted or unsubstituted N, O, and S heteroaryl.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1 또는 화학식 2로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.In addition, the present invention is a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one organic material layer includes a compound represented by Formula 1 or Formula 2 provide the element.
상술한 화학식 1 또는 화학식 2로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1 또는 화학식 2로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.The compound represented by Formula 1 or Formula 2 may be used as a material for an organic layer of an organic light emitting device, and may improve efficiency, low driving voltage, and/or lifespan characteristics in the organic light emitting device. In particular, the compound represented by Formula 1 or Formula 2 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.2 shows an example of an organic light emitting device including a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8, and a cathode 4 did it
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.Hereinafter, it will be described in more detail to help the understanding of the present invention.
본 명세서에서,
Figure PCTKR2022002694-appb-img-000004
또는
Figure PCTKR2022002694-appb-img-000005
는 다른 치환기에 연결되는 결합을 의미한다.
In this specification,
Figure PCTKR2022002694-appb-img-000004
or
Figure PCTKR2022002694-appb-img-000005
means a bond connected to another substituent.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.As used herein, the term "substituted or unsubstituted" refers to deuterium; halogen group; nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an aryl phosphine group; or N, O, and S atom means that it is substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more, or substituted or unsubstituted, in which two or more substituents of the above-exemplified substituents are connected . For example, "a substituent in which two or more substituents are connected" may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably from 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
Figure PCTKR2022002694-appb-img-000006
Figure PCTKR2022002694-appb-img-000006
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, in the ester group, the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
Figure PCTKR2022002694-appb-img-000007
Figure PCTKR2022002694-appb-img-000007
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
Figure PCTKR2022002694-appb-img-000008
Figure PCTKR2022002694-appb-img-000008
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. In the present specification, the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. However, the present invention is not limited thereto.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl and the like, but are not limited thereto.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but is not limited thereto.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20. The aryl group may be a monocyclic aryl group, such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2022002694-appb-img-000009
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
Figure PCTKR2022002694-appb-img-000009
etc. can be However, the present invention is not limited thereto.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, the heterocyclic group is a heterocyclic group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but it is preferably from 2 to 60 carbon atoms. Examples of the heterocyclic group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadia and a jolyl group, a phenothiazinyl group, and a dibenzofuranyl group, but is not limited thereto.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.In the present specification, the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, and the arylamine group is the same as the example of the aryl group described above. In the present specification, the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group. In the present specification, the description of the heterocyclic group described above for heteroaryl among heteroarylamines may be applied. In the present specification, the alkenyl group among the aralkenyl groups is the same as the examples of the above-described alkenyl groups. In the present specification, the description of the above-described aryl group may be applied except that arylene is a divalent group. In the present specification, the description of the above-described heterocyclic group may be applied, except that heteroarylene is a divalent group. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents. In the present specification, the heterocyclic group is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that it is formed by combining two substituents.
상기 화학식 1 및 2에서, 하나 이상의 수소는 중수소로 치환될 수 있다. In Formulas 1 and 2, at least one hydrogen may be substituted with deuterium.
바람직하게는, Ar은 치환 또는 비치환된 C6-12 아릴이다. 보다 바람직하게는, Ar은 페닐, 비페닐, 또는 나프틸이다. Preferably, Ar is substituted or unsubstituted C 6-12 aryl. More preferably, Ar is phenyl, biphenyl, or naphthyl.
바람직하게는, L은 단일 결합, 또는 치환 또는 비치환된 C6-12 아릴렌이다. 보다 바람직하게는, L은 단일 결합, 페닐렌, 비페닐디일, 터페닐디일, 나프틸렌, 또는 -(페닐렌)-(나프틸렌)-이다. 보다 바람직하게는, L은 단일 결합, 1,4-페닐렌, 4,4’-비페닐디일, 또는 2,6-나프틸렌이다.Preferably, L is a single bond, or substituted or unsubstituted C 6-12 arylene. More preferably, L is a single bond, phenylene, biphenyldiyl, terphenyldiyl, naphthylene, or -(phenylene)-(naphthylene)-. More preferably, L is a single bond, 1,4-phenylene, 4,4'-biphenyldiyl, or 2,6-naphthylene.
바람직하게는, L1 및 L2는 각각 독립적으로, 단일 결합, 또는 치환 또는 비치환된 C6-12 아릴렌이다. 바람직하게는, L1 및 L2는 각각 독립적으로, 단일 결합, 페닐렌, 또는 비페닐디일이다. 보다 바람직하게는, L1 및 L2는 각각 독립적으로, 단일 결합, 1,4-페닐렌, 또는 4,4’-비페닐디일이다. Preferably, L 1 and L 2 are each independently a single bond, or a substituted or unsubstituted C 6-12 arylene. Preferably, L 1 and L 2 are each independently a single bond, phenylene, or biphenyldiyl. More preferably, L 1 and L 2 are each independently a single bond, 1,4-phenylene, or 4,4'-biphenyldiyl.
바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 나프틸페닐, 페닐나프틸, 페난쓰레닐, 디메틸플루오레닐, 디페닐플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 9H-카바졸-9-일, 또는 9-페닐-9H-카바졸릴이다. Preferably, Ar 1 and Ar 2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, naphthylphenyl, phenylnaphthyl, phenanthrenyl, dimethylfluorenyl, diphenylfluorenyl, dibenzofuranyl, dibenzothiophenyl, 9H-carbazol-9-yl, or 9-phenyl-9H-carbazolyl.
바람직하게는, R1 내지 R4 중 하나는 상기 화학식 3으로 표시되는 치환기이고, 나머지는 각각 독립적으로 수소, 또는 중수소이고; R5 및 R6는 각각 독립적으로 수소, 또는 중수소이다. Preferably, one of R 1 to R 4 is a substituent represented by Formula 3, and the rest are each independently hydrogen or deuterium; R 5 and R 6 are each independently hydrogen or deuterium.
바람직하게는, R1 내지 R4는 각각 독립적으로 수소, 또는 중수소이고; R5 및 R6 중 하나는 상기 화학식 3으로 표시되는 치환기이고, 나머지는 수소, 또는 중수소이다. 여기서 바람직하게는, L1은 페닐렌, 또는 비페닐디일이고, Ar1은 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 디메틸플루오레닐, 또는 디페닐플루오레닐이나; 또는 L1은 단일결합, 페닐렌, 또는 비페닐디일이고, Ar1은 디벤조퓨라닐, 디벤조티오페닐, 9H-카바졸-9-일, 또는 9-페닐-9H-카바졸릴이다. 보다 바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 터페닐릴, 나프틸, 페난쓰레닐, 디메틸플루오레닐, 디페닐플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 9H-카바졸-9-일, 또는 9-페닐-9H-카바졸릴이다. 또는, 바람직하게는, Ar1은 페닐이고, Ar2는 페닐, 비페닐, 터페닐릴, 나프틸, 페난쓰레닐, 디벤조퓨라닐, 디벤조티오페닐, 9H-카바졸-9-일, 또는 9-페닐-9H-카바졸릴이거나; 또는 Ar1은 비페닐릴이고, Ar2는 터페닐릴, 페난쓰레닐, 디벤조퓨라닐, 디벤조티오페닐, 9H-카바졸-9-일, 또는 9-페닐-9H-카바졸릴이다. 여기서, 바람직하게는, L1 및 L2는 각각 독립적으로, 단일 결합, 페닐렌, 또는 비페닐디일이고, 보다 바람직하게는, L1 및 L2는 각각 독립적으로, 단일 결합, 1,4-페닐렌, 또는 4,4’-비페닐디일이다. Preferably, R 1 to R 4 are each independently hydrogen or deuterium; One of R 5 and R 6 is a substituent represented by Formula 3, and the rest is hydrogen or deuterium. Preferably, L 1 is phenylene, or biphenyldiyl, Ar 1 is biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dimethylfluorenyl, or diphenylfluorenyl; or L 1 is a single bond, phenylene, or biphenyldiyl, and Ar 1 is dibenzofuranyl, dibenzothiophenyl, 9H-carbazol-9-yl, or 9-phenyl-9H-carbazolyl. More preferably, Ar 1 and Ar 2 are each independently terphenylyl, naphthyl, phenanthrenyl, dimethylfluorenyl, diphenylfluorenyl, dibenzofuranyl, dibenzothiophenyl, 9H-carba zol-9-yl, or 9-phenyl-9H-carbazolyl. Or, preferably, Ar 1 is phenyl, Ar 2 is phenyl, biphenyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, dibenzothiophenyl, 9H-carbazol-9-yl, or 9-phenyl-9H-carbazolyl; or Ar 1 is biphenylyl, and Ar 2 is terphenylyl, phenanthrenyl, dibenzofuranyl, dibenzothiophenyl, 9H-carbazol-9-yl, or 9-phenyl-9H-carbazolyl. Here, preferably, L 1 and L 2 are each independently a single bond, phenylene, or biphenyldiyl, more preferably, L 1 and L 2 are each independently, a single bond, 1,4- phenylene, or 4,4'-biphenyldiyl.
상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물의 대표적인 예는 하기와 같다:Representative examples of the compound represented by Formula 1 or Formula 2 are as follows:
Figure PCTKR2022002694-appb-img-000010
Figure PCTKR2022002694-appb-img-000010
Figure PCTKR2022002694-appb-img-000011
Figure PCTKR2022002694-appb-img-000011
Figure PCTKR2022002694-appb-img-000012
Figure PCTKR2022002694-appb-img-000012
Figure PCTKR2022002694-appb-img-000013
Figure PCTKR2022002694-appb-img-000013
Figure PCTKR2022002694-appb-img-000014
Figure PCTKR2022002694-appb-img-000014
Figure PCTKR2022002694-appb-img-000015
Figure PCTKR2022002694-appb-img-000015
Figure PCTKR2022002694-appb-img-000016
Figure PCTKR2022002694-appb-img-000016
Figure PCTKR2022002694-appb-img-000017
Figure PCTKR2022002694-appb-img-000017
Figure PCTKR2022002694-appb-img-000018
Figure PCTKR2022002694-appb-img-000018
Figure PCTKR2022002694-appb-img-000019
Figure PCTKR2022002694-appb-img-000019
Figure PCTKR2022002694-appb-img-000020
Figure PCTKR2022002694-appb-img-000020
Figure PCTKR2022002694-appb-img-000021
Figure PCTKR2022002694-appb-img-000021
Figure PCTKR2022002694-appb-img-000022
Figure PCTKR2022002694-appb-img-000022
Figure PCTKR2022002694-appb-img-000023
Figure PCTKR2022002694-appb-img-000023
Figure PCTKR2022002694-appb-img-000024
Figure PCTKR2022002694-appb-img-000024
Figure PCTKR2022002694-appb-img-000025
Figure PCTKR2022002694-appb-img-000025
Figure PCTKR2022002694-appb-img-000026
Figure PCTKR2022002694-appb-img-000026
Figure PCTKR2022002694-appb-img-000027
Figure PCTKR2022002694-appb-img-000027
Figure PCTKR2022002694-appb-img-000028
Figure PCTKR2022002694-appb-img-000028
Figure PCTKR2022002694-appb-img-000029
Figure PCTKR2022002694-appb-img-000029
Figure PCTKR2022002694-appb-img-000030
Figure PCTKR2022002694-appb-img-000030
Figure PCTKR2022002694-appb-img-000031
Figure PCTKR2022002694-appb-img-000031
Figure PCTKR2022002694-appb-img-000032
Figure PCTKR2022002694-appb-img-000032
Figure PCTKR2022002694-appb-img-000033
Figure PCTKR2022002694-appb-img-000033
Figure PCTKR2022002694-appb-img-000034
Figure PCTKR2022002694-appb-img-000034
Figure PCTKR2022002694-appb-img-000035
Figure PCTKR2022002694-appb-img-000035
Figure PCTKR2022002694-appb-img-000036
Figure PCTKR2022002694-appb-img-000036
Figure PCTKR2022002694-appb-img-000037
Figure PCTKR2022002694-appb-img-000037
Figure PCTKR2022002694-appb-img-000038
Figure PCTKR2022002694-appb-img-000038
Figure PCTKR2022002694-appb-img-000039
Figure PCTKR2022002694-appb-img-000039
Figure PCTKR2022002694-appb-img-000040
Figure PCTKR2022002694-appb-img-000040
Figure PCTKR2022002694-appb-img-000041
Figure PCTKR2022002694-appb-img-000041
Figure PCTKR2022002694-appb-img-000042
Figure PCTKR2022002694-appb-img-000042
Figure PCTKR2022002694-appb-img-000043
Figure PCTKR2022002694-appb-img-000043
Figure PCTKR2022002694-appb-img-000044
Figure PCTKR2022002694-appb-img-000044
Figure PCTKR2022002694-appb-img-000045
Figure PCTKR2022002694-appb-img-000045
Figure PCTKR2022002694-appb-img-000046
Figure PCTKR2022002694-appb-img-000046
Figure PCTKR2022002694-appb-img-000047
Figure PCTKR2022002694-appb-img-000047
Figure PCTKR2022002694-appb-img-000048
Figure PCTKR2022002694-appb-img-000048
Figure PCTKR2022002694-appb-img-000049
Figure PCTKR2022002694-appb-img-000049
Figure PCTKR2022002694-appb-img-000050
Figure PCTKR2022002694-appb-img-000050
Figure PCTKR2022002694-appb-img-000051
Figure PCTKR2022002694-appb-img-000051
Figure PCTKR2022002694-appb-img-000052
Figure PCTKR2022002694-appb-img-000052
Figure PCTKR2022002694-appb-img-000053
Figure PCTKR2022002694-appb-img-000053
Figure PCTKR2022002694-appb-img-000054
Figure PCTKR2022002694-appb-img-000054
Figure PCTKR2022002694-appb-img-000055
Figure PCTKR2022002694-appb-img-000055
Figure PCTKR2022002694-appb-img-000056
Figure PCTKR2022002694-appb-img-000056
Figure PCTKR2022002694-appb-img-000057
Figure PCTKR2022002694-appb-img-000057
Figure PCTKR2022002694-appb-img-000058
Figure PCTKR2022002694-appb-img-000058
Figure PCTKR2022002694-appb-img-000059
Figure PCTKR2022002694-appb-img-000059
Figure PCTKR2022002694-appb-img-000060
Figure PCTKR2022002694-appb-img-000060
Figure PCTKR2022002694-appb-img-000061
Figure PCTKR2022002694-appb-img-000061
Figure PCTKR2022002694-appb-img-000062
Figure PCTKR2022002694-appb-img-000062
Figure PCTKR2022002694-appb-img-000063
Figure PCTKR2022002694-appb-img-000063
Figure PCTKR2022002694-appb-img-000064
Figure PCTKR2022002694-appb-img-000064
Figure PCTKR2022002694-appb-img-000065
Figure PCTKR2022002694-appb-img-000065
Figure PCTKR2022002694-appb-img-000066
Figure PCTKR2022002694-appb-img-000066
Figure PCTKR2022002694-appb-img-000067
Figure PCTKR2022002694-appb-img-000067
Figure PCTKR2022002694-appb-img-000068
Figure PCTKR2022002694-appb-img-000068
Figure PCTKR2022002694-appb-img-000069
Figure PCTKR2022002694-appb-img-000069
Figure PCTKR2022002694-appb-img-000070
Figure PCTKR2022002694-appb-img-000070
Figure PCTKR2022002694-appb-img-000071
Figure PCTKR2022002694-appb-img-000071
Figure PCTKR2022002694-appb-img-000072
Figure PCTKR2022002694-appb-img-000072
Figure PCTKR2022002694-appb-img-000073
Figure PCTKR2022002694-appb-img-000073
Figure PCTKR2022002694-appb-img-000074
Figure PCTKR2022002694-appb-img-000074
Figure PCTKR2022002694-appb-img-000075
Figure PCTKR2022002694-appb-img-000075
Figure PCTKR2022002694-appb-img-000076
Figure PCTKR2022002694-appb-img-000076
Figure PCTKR2022002694-appb-img-000077
Figure PCTKR2022002694-appb-img-000077
Figure PCTKR2022002694-appb-img-000078
Figure PCTKR2022002694-appb-img-000078
Figure PCTKR2022002694-appb-img-000079
Figure PCTKR2022002694-appb-img-000079
Figure PCTKR2022002694-appb-img-000080
Figure PCTKR2022002694-appb-img-000080
Figure PCTKR2022002694-appb-img-000081
Figure PCTKR2022002694-appb-img-000081
Figure PCTKR2022002694-appb-img-000082
Figure PCTKR2022002694-appb-img-000082
Figure PCTKR2022002694-appb-img-000083
Figure PCTKR2022002694-appb-img-000083
Figure PCTKR2022002694-appb-img-000084
Figure PCTKR2022002694-appb-img-000084
Figure PCTKR2022002694-appb-img-000085
Figure PCTKR2022002694-appb-img-000085
Figure PCTKR2022002694-appb-img-000086
Figure PCTKR2022002694-appb-img-000086
Figure PCTKR2022002694-appb-img-000087
Figure PCTKR2022002694-appb-img-000087
Figure PCTKR2022002694-appb-img-000088
Figure PCTKR2022002694-appb-img-000088
Figure PCTKR2022002694-appb-img-000089
Figure PCTKR2022002694-appb-img-000089
Figure PCTKR2022002694-appb-img-000090
Figure PCTKR2022002694-appb-img-000090
Figure PCTKR2022002694-appb-img-000091
Figure PCTKR2022002694-appb-img-000091
Figure PCTKR2022002694-appb-img-000092
Figure PCTKR2022002694-appb-img-000092
Figure PCTKR2022002694-appb-img-000093
Figure PCTKR2022002694-appb-img-000093
Figure PCTKR2022002694-appb-img-000094
Figure PCTKR2022002694-appb-img-000094
Figure PCTKR2022002694-appb-img-000095
Figure PCTKR2022002694-appb-img-000095
Figure PCTKR2022002694-appb-img-000096
Figure PCTKR2022002694-appb-img-000096
Figure PCTKR2022002694-appb-img-000097
Figure PCTKR2022002694-appb-img-000097
Figure PCTKR2022002694-appb-img-000098
Figure PCTKR2022002694-appb-img-000098
Figure PCTKR2022002694-appb-img-000099
Figure PCTKR2022002694-appb-img-000099
Figure PCTKR2022002694-appb-img-000100
Figure PCTKR2022002694-appb-img-000100
Figure PCTKR2022002694-appb-img-000101
Figure PCTKR2022002694-appb-img-000101
Figure PCTKR2022002694-appb-img-000102
Figure PCTKR2022002694-appb-img-000102
Figure PCTKR2022002694-appb-img-000103
Figure PCTKR2022002694-appb-img-000103
Figure PCTKR2022002694-appb-img-000104
Figure PCTKR2022002694-appb-img-000104
Figure PCTKR2022002694-appb-img-000105
Figure PCTKR2022002694-appb-img-000105
Figure PCTKR2022002694-appb-img-000106
Figure PCTKR2022002694-appb-img-000106
Figure PCTKR2022002694-appb-img-000107
Figure PCTKR2022002694-appb-img-000107
Figure PCTKR2022002694-appb-img-000108
Figure PCTKR2022002694-appb-img-000108
Figure PCTKR2022002694-appb-img-000109
Figure PCTKR2022002694-appb-img-000109
Figure PCTKR2022002694-appb-img-000110
Figure PCTKR2022002694-appb-img-000110
Figure PCTKR2022002694-appb-img-000111
Figure PCTKR2022002694-appb-img-000111
Figure PCTKR2022002694-appb-img-000112
Figure PCTKR2022002694-appb-img-000112
Figure PCTKR2022002694-appb-img-000113
Figure PCTKR2022002694-appb-img-000113
Figure PCTKR2022002694-appb-img-000114
Figure PCTKR2022002694-appb-img-000114
Figure PCTKR2022002694-appb-img-000115
Figure PCTKR2022002694-appb-img-000115
Figure PCTKR2022002694-appb-img-000116
Figure PCTKR2022002694-appb-img-000116
Figure PCTKR2022002694-appb-img-000117
Figure PCTKR2022002694-appb-img-000117
Figure PCTKR2022002694-appb-img-000118
Figure PCTKR2022002694-appb-img-000118
Figure PCTKR2022002694-appb-img-000119
Figure PCTKR2022002694-appb-img-000119
Figure PCTKR2022002694-appb-img-000120
Figure PCTKR2022002694-appb-img-000120
Figure PCTKR2022002694-appb-img-000121
Figure PCTKR2022002694-appb-img-000121
Figure PCTKR2022002694-appb-img-000122
Figure PCTKR2022002694-appb-img-000122
Figure PCTKR2022002694-appb-img-000123
Figure PCTKR2022002694-appb-img-000123
Figure PCTKR2022002694-appb-img-000124
Figure PCTKR2022002694-appb-img-000124
Figure PCTKR2022002694-appb-img-000125
Figure PCTKR2022002694-appb-img-000125
Figure PCTKR2022002694-appb-img-000126
Figure PCTKR2022002694-appb-img-000126
또한, 본 발명은 하기 반응식 1과 같이, 상기 화학식 1로 표시되는 화합물에서 R1이 화학식 3인 화합물의 제조 방법을 제공하며, 그 외 나머지 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물도 유사한 방법으로 제조할 수 있다. In addition, the present invention provides a method for preparing a compound in which R 1 is Formula 3 in the compound represented by Formula 1, as shown in Scheme 1 below, and the other compounds represented by Formula 1 and the compound represented by Formula 2 It can be prepared in a similar way.
[반응식 1][Scheme 1]
Figure PCTKR2022002694-appb-img-000127
Figure PCTKR2022002694-appb-img-000127
상기 반응식 1 및 2에서, X 및 Y를 제외한 나머지 정의는 앞서 정의한 바와 같으며, X는 할로겐이고, 바람직하게는 브로모, 또는 클로로이고, Y는 L이 단일결합인 경우 수소이고, L이 단일결합이 아닌 경우 -B(OH)2이다. 상기 반응식 1은 아민 치환 반응 또는 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 각 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.In Schemes 1 and 2, definitions other than X and Y are the same as defined above, X is halogen, preferably bromo, or chloro, Y is hydrogen when L is a single bond, and L is single If it is not a bond, it is -B(OH) 2 . Scheme 1 is an amine substitution reaction or Suzuki coupling reaction, and is preferably performed in the presence of a palladium catalyst and a base, and the reactor for each reaction can be changed as known in the art. The manufacturing method may be more specific in Preparation Examples to be described later.
또한, 본 발명은 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. In addition, the present invention provides an organic light emitting device including the compound represented by Formula 1 or Formula 2 above. In one example, the present invention provides a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a compound represented by Formula 1 or Formula 2 A light emitting device is provided.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.The organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. as an organic material layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물을 포함한다. 특히, 본 발명에 따른 화합물은 발광층의 도펀트로 사용할 수 있다. In addition, the organic layer may include an emission layer, and the emission layer includes a compound represented by Formula 1 or Formula 2 above. In particular, the compound according to the present invention can be used as a dopant in the light emitting layer.
또한, 상기 유기물 층은 전자수송층, 또는 전자주입층을 포함할 수 있고, 상기 전자수송층, 또는 전자주입층은 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물을 포함한다. In addition, the organic layer may include an electron transport layer or an electron injection layer, and the electron transport layer or the electron injection layer includes a compound represented by Formula 1 or Formula 2 above.
또한, 상기 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물을 포함한다. In addition, the electron transport layer, the electron injection layer, or the layer that transports and injects electrons at the same time includes the compound represented by Chemical Formula 1 or Chemical Formula 2 above.
또한, 상기 유기물 층은 발광층 및 전자수송층을 포함하고, 상기 전자수송층은 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물을 포함할 수 있다. In addition, the organic layer may include a light emitting layer and an electron transport layer, and the electron transport layer may include a compound represented by Formula 1 or Formula 2 above.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.In addition, the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. Also, the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of the organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물은 상기 발광층에 포함될 수 있다. FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 . In such a structure, the compound represented by Formula 1 or Formula 2 may be included in the emission layer.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물은 상기 정공주입층, 정공수송층, 발광층 및 전자수송층 중 1층 이상에 포함될 수 있다. 2 shows an example of an organic light emitting device including a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8, and a cathode 4 did it In such a structure, the compound represented by Formula 1 or Formula 2 may be included in one or more of the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. The organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Formula 1 or Formula 2 above. Also, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. At this time, by using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode. and, after forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon, it can be prepared by depositing a material that can be used as a cathode thereon. In addition to this method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
또한, 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.In addition, the compound represented by Formula 1 or Formula 2 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device. Here, the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다. In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890). However, the manufacturing method is not limited thereto.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.In one example, the first electrode is an anode, the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. As the anode material, a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer. Specific examples of the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. The cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multi-layered material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. The hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect on the light emitting layer or the light emitting material, and is produced in the light emitting layer A compound which prevents the movement of excitons to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer. Specific examples of the hole injection material include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, polyaniline and polythiophene-based conductive polymers, and the like, but are not limited thereto.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. The hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer. A material capable of transporting holes from the anode or hole injection layer to the light emitting layer as a hole transport material. A material with high hole mobility. This is suitable. Specific examples include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. The light emitting material is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable. Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compounds; compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV)-based polymers; spiro compounds; polyfluorene, rubrene, and the like, but is not limited thereto.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. The emission layer may include a host material and a dopant material. The host material includes a condensed aromatic ring derivative or a heterocyclic compound containing compound. Specifically, condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc., and heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.Examples of the dopant material include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex. Specifically, the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group. As the styrylamine compound, a substituted or unsubstituted It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted. Specifically, there are styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like, but is not limited thereto. In addition, the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.The electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer. do. Specific examples include Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes, and the like, but are not limited thereto. The electron transport layer may be used with any desired cathode material as used in accordance with the prior art. In particular, examples of suitable cathode materials are conventional materials having a low work function and followed by a layer of aluminum or silver. Specifically cesium, barium, calcium, ytterbium and samarium, followed in each case by an aluminum layer or a silver layer.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. The electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer. A compound which prevents movement to a layer and is excellent in the ability to form a thin film is preferable. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc., derivatives thereof, metals complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc. However, the present invention is not limited thereto.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.The organic light emitting device according to the present invention may be a top emission type, a back emission type, or a double side emission type depending on the material used.
상기 화학식 1 또는 2로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.Preparation of the compound represented by Formula 1 or 2 and the organic light emitting device including the same will be described in detail in Examples below. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.
[제조예][Production Example]
제조예 1: 화합물 AA의 제조Preparation Example 1: Preparation of compound AA
Figure PCTKR2022002694-appb-img-000128
Figure PCTKR2022002694-appb-img-000128
질소 분위기에서 1-브로모-3-클로로나프탈렌-2-아민(15 g, 58.5 mmol)와 벤질 클로라이드(9.9 g, 70.2 mmol)를 클로로포름(300 ml)에 넣고 교반하였다. 이 후 피리딘(6.9 g, 87.7 mmol)를 적가하였다. 상온에서 9시간 반응 후 에탄올(600 ml)을 넣고 고체화 하였다. 고체를 여과한 후, 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 AA_P1를 17.4 g 제조하였다. (수율 83%, MS: [M+H]+= 360)In a nitrogen atmosphere, 1-bromo-3-chloronaphthalen-2-amine (15 g, 58.5 mmol) and benzyl chloride (9.9 g, 70.2 mmol) were added to chloroform (300 ml) and stirred. Then pyridine (6.9 g, 87.7 mmol) was added dropwise. After 9 hours of reaction at room temperature, ethanol (600 ml) was added and solidified. After filtering the solid, it was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.4 g of compound AA_P1. (Yield 83%, MS: [M+H] + = 360)
질소 분위기에서 화합물 AA_P1(15 g, 41.6 mmol)와 포스포러스 펜타설파이드(9.2 g, 41.6 mmol)를 피리딘(150 ml)에 넣고 교반 및 환류하였다. 10시간 반응 후 상온으로 식히고 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 AA_P2를 8.3 g 제조하였다. (수율 53%, MS: [M+H]+= 376)Compound AA_P1 (15 g, 41.6 mmol) and phosphorus pentasulfide (9.2 g, 41.6 mmol) were added to pyridine (150 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After 10 hours of reaction, the mixture was cooled to room temperature and the organic layer was distilled off. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 8.3 g of compound AA_P2. (Yield 53%, MS: [M+H] + = 376)
질소 분위기에서 화합물 AA_P2(15 g, 39.8 mmol)와 포타슘 카보네이트(16.5 g, 119.5 mmol)를 DMF(150 ml)에 넣고 교반 및 환류하였다. 이 후, 충분히 교반한 후 쿠퍼 아이오다이드(0.1 g, 0.4 mmol)와 1,10-페난쓰롤린(0.1 g, 0.8 mmol)을 투입하였다. 11시간 반응 후 상온으로 식힌 후, 물(300 ml)에 부어 고체화 하였다. 고체를 여과한 후, 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 AA를 8.8 g 제조하였다. (수율 75%, MS: [M+H]+= 296)Compound AA_P2 (15 g, 39.8 mmol) and potassium carbonate (16.5 g, 119.5 mmol) were added to DMF (150 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After sufficient stirring, copper iodide (0.1 g, 0.4 mmol) and 1,10-phenanthroline (0.1 g, 0.8 mmol) were added. After reaction for 11 hours, the mixture was cooled to room temperature, and then poured into water (300 ml) to solidify. After filtering the solid, it was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 8.8 g of compound AA. (yield 75%, MS: [M+H] + = 296)
제조예 2: 화합물 AB의 제조Preparation Example 2: Preparation of compound AB
Figure PCTKR2022002694-appb-img-000129
Figure PCTKR2022002694-appb-img-000129
1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-4-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AB를 제조하였다.Compound AB was prepared in the same manner as in Preparation Example 1, except that 1-bromo-4-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
제조예 3: 화합물 AC의 제조Preparation Example 3: Preparation of compound AC
Figure PCTKR2022002694-appb-img-000130
Figure PCTKR2022002694-appb-img-000130
1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-5-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AC를 제조하였다.Compound AC was prepared in the same manner as in Preparation Example 1, except that 1-bromo-5-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
제조예 4: 화합물 AD의 제조Preparation Example 4: Preparation of compound AD
Figure PCTKR2022002694-appb-img-000131
Figure PCTKR2022002694-appb-img-000131
1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-6-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AD를 제조하였다.Compound AD was prepared in the same manner as in Preparation Example 1, except that 1-bromo-6-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
제조예 5: 화합물 AE의 제조Preparation Example 5: Preparation of compound AE
Figure PCTKR2022002694-appb-img-000132
Figure PCTKR2022002694-appb-img-000132
1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-7-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AE를 제조하였다.Compound AE was prepared in the same manner as in Preparation Example 1, except that 1-bromo-7-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
제조예 6: 화합물 AF의 제조Preparation Example 6: Preparation of compound AF
Figure PCTKR2022002694-appb-img-000133
Figure PCTKR2022002694-appb-img-000133
1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-8-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AF를 제조하였다.Compound AF was prepared in the same manner as in Preparation Example 1, except that 1-bromo-8-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
제조예 7: 화합물 AG의 제조Preparation Example 7: Preparation of compound AG
Figure PCTKR2022002694-appb-img-000134
Figure PCTKR2022002694-appb-img-000134
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AG를 제조하였다.Compound AG was prepared in the same manner as in Preparation Example 1, except that [1,1'-biphenyl]-4-carbonyl chloride was used instead of benzyl chloride.
제조예 8: 화합물 AH의 제조Preparation 8: Preparation of compound AH
Figure PCTKR2022002694-appb-img-000135
Figure PCTKR2022002694-appb-img-000135
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-4-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AH를 제조하였다.[1,1'-biphenyl]-4-carbonyl chloride was used instead of benzyl chloride and 1-bromo-4-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine. Except that, compound AH was prepared in the same manner as in Preparation Example 1.
제조예 9: 화합물 AI의 제조Preparation Example 9: Preparation of compound AI
Figure PCTKR2022002694-appb-img-000136
Figure PCTKR2022002694-appb-img-000136
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-5-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AH를 제조하였다.[1,1'-biphenyl]-4-carbonyl chloride was used instead of benzyl chloride and 1-bromo-5-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine. Except that, compound AH was prepared in the same manner as in Preparation Example 1.
제조예 10: 화합물 AJ의 제조Preparation 10: Preparation of compound AJ
Figure PCTKR2022002694-appb-img-000137
Figure PCTKR2022002694-appb-img-000137
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-6-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AJ를 제조하였다.[1,1'-biphenyl]-4-carbonyl chloride was used instead of benzyl chloride and 1-bromo-6-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine. Except that, Compound AJ was prepared in the same manner as in Preparation Example 1.
제조예 11: 화합물 AK의 제조Preparation Example 11: Preparation of compound AK
Figure PCTKR2022002694-appb-img-000138
Figure PCTKR2022002694-appb-img-000138
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-7-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AK를 제조하였다.[1,1'-biphenyl]-4-carbonyl chloride was used instead of benzyl chloride and 1-bromo-7-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine. Except that, compound AK was prepared in the same manner as in Preparation Example 1.
제조예 12: 화합물 AL의 제조Preparation 12: Preparation of compound AL
Figure PCTKR2022002694-appb-img-000139
Figure PCTKR2022002694-appb-img-000139
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-8-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AL를 제조하였다.[1,1'-biphenyl]-4-carbonyl chloride was used instead of benzyl chloride and 1-bromo-8-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine. Except for that, compound AL was prepared in the same manner as in Preparation Example 1.
제조예 13: 화합물 AM의 제조Preparation 13: Preparation of compound AM
Figure PCTKR2022002694-appb-img-000140
Figure PCTKR2022002694-appb-img-000140
벤질 클로라이드대신 2-나프토일 클로라이드를 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AM를 제조하였다.Compound AM was prepared in the same manner as in Preparation Example 1, except that 2-naphthoyl chloride was used instead of benzyl chloride.
제조예 14: 화합물 AN의 제조Preparation 14: Preparation of compound AN
Figure PCTKR2022002694-appb-img-000141
Figure PCTKR2022002694-appb-img-000141
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-4-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AN를 제조하였다.The same method as in Preparation Example 1 except that 2-naphthoyl chloride was used instead of benzyl chloride and 1-bromo-4-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine to prepare compound AN.
제조예 15: 화합물 AO의 제조Preparation 15: Preparation of compound AO
Figure PCTKR2022002694-appb-img-000142
Figure PCTKR2022002694-appb-img-000142
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-5-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AO를 제조하였다.The same method as in Preparation Example 1, except that 2-naphthoyl chloride was used instead of benzyl chloride and 1-bromo-5-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine to prepare compound AO.
제조예 16: 화합물 AP의 제조Preparation 16: Preparation of compound AP
Figure PCTKR2022002694-appb-img-000143
Figure PCTKR2022002694-appb-img-000143
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-6-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AP를 제조하였다.The same method as in Preparation Example 1, except that 2-naphthoyl chloride was used instead of benzyl chloride and 1-bromo-6-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine to prepare the compound AP.
제조예 17: 화합물 AQ의 제조Preparation 17: Preparation of compound AQ
Figure PCTKR2022002694-appb-img-000144
Figure PCTKR2022002694-appb-img-000144
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-7-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AQ를 제조하였다.The same method as in Preparation Example 1, except that 2-naphthoyl chloride was used instead of benzyl chloride and 1-bromo-7-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine to prepare compound AQ.
제조예 18: 화합물 AR의 제조Preparation 18: Preparation of compound AR
Figure PCTKR2022002694-appb-img-000145
Figure PCTKR2022002694-appb-img-000145
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-8-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AR를 제조하였다.The same method as in Preparation Example 1, except that 2-naphthoyl chloride was used instead of benzyl chloride and 1-bromo-8-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine to prepare compound AR.
제조예 19: 화합물 BA의 제조Preparation 19: Preparation of compound BA
Figure PCTKR2022002694-appb-img-000146
Figure PCTKR2022002694-appb-img-000146
1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-3-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BA를 제조하였다.Compound BA was prepared in the same manner as in Preparation Example 1, except that 2-bromo-3-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
제조예 20: 화합물 BB의 제조Preparation 20: Preparation of compound BB
Figure PCTKR2022002694-appb-img-000147
Figure PCTKR2022002694-appb-img-000147
1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-4-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BB를 제조하였다.Compound BB was prepared in the same manner as in Preparation Example 1, except that 2-bromo-4-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
제조예 21: 화합물 BC의 제조Preparation 21: Preparation of compound BC
Figure PCTKR2022002694-appb-img-000148
Figure PCTKR2022002694-appb-img-000148
1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-5-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BC를 제조하였다.Compound BC was prepared in the same manner as in Preparation Example 1, except that 2-bromo-5-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
제조예 22: 화합물 BD의 제조Preparation 22: Preparation of compound BD
Figure PCTKR2022002694-appb-img-000149
Figure PCTKR2022002694-appb-img-000149
1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-6-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BD를 제조하였다.Compound BD was prepared in the same manner as in Preparation Example 1, except that 2-bromo-6-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
제조예 23: 화합물 BE의 제조Preparation 23: Preparation of compound BE
Figure PCTKR2022002694-appb-img-000150
Figure PCTKR2022002694-appb-img-000150
1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-7-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BE를 제조하였다.Compound BE was prepared in the same manner as in Preparation Example 1, except that 2-bromo-7-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
제조예 24: 화합물 BF의 제조Preparation 24: Preparation of compound BF
Figure PCTKR2022002694-appb-img-000151
Figure PCTKR2022002694-appb-img-000151
1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-8-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BF를 제조하였다.Compound BF was prepared in the same manner as in Preparation Example 1, except that 2-bromo-8-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
제조예 25: 화합물 BG의 제조Preparation 25: Preparation of compound BG
Figure PCTKR2022002694-appb-img-000152
Figure PCTKR2022002694-appb-img-000152
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-3-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BG를 제조하였다.[1,1'-biphenyl]-4-carbonyl chloride was used instead of benzyl chloride and 2-bromo-3-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine. Except that, compound BG was prepared in the same manner as in Preparation Example 1.
제조예 26: 화합물 BH의 제조Preparation 26: Preparation of compound BH
Figure PCTKR2022002694-appb-img-000153
Figure PCTKR2022002694-appb-img-000153
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-4-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BH를 제조하였다.[1,1'-biphenyl]-4-carbonyl chloride was used instead of benzyl chloride and 2-bromo-4-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine. Except that, compound BH was prepared in the same manner as in Preparation Example 1.
제조예 27: 화합물 BI의 제조Preparation 27: Preparation of compound BI
Figure PCTKR2022002694-appb-img-000154
Figure PCTKR2022002694-appb-img-000154
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-5-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BI를 제조하였다.[1,1'-biphenyl]-4-carbonyl chloride was used instead of benzyl chloride and 2-bromo-5-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine. Except that, compound BI was prepared in the same manner as in Preparation Example 1.
제조예 28: 화합물 BJ의 제조Preparation 28: Preparation of compound BJ
Figure PCTKR2022002694-appb-img-000155
Figure PCTKR2022002694-appb-img-000155
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-6-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BJ를 제조하였다.[1,1'-biphenyl]-4-carbonyl chloride was used instead of benzyl chloride and 2-bromo-6-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine. Except that, compound BJ was prepared in the same manner as in Preparation Example 1.
제조예 29: 화합물 BK의 제조Preparation 29: Preparation of compound BK
Figure PCTKR2022002694-appb-img-000156
Figure PCTKR2022002694-appb-img-000156
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-7-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BK를 제조하였다.[1,1'-biphenyl]-4-carbonyl chloride was used instead of benzyl chloride and 2-bromo-7-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine. Except that, compound BK was prepared in the same manner as in Preparation Example 1.
제조예 30: 화합물 BL의 제조Preparation 30: Preparation of compound BL
Figure PCTKR2022002694-appb-img-000157
Figure PCTKR2022002694-appb-img-000157
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-8-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BL를 제조하였다.[1,1'-biphenyl]-4-carbonyl chloride was used instead of benzyl chloride and 2-bromo-8-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine. Except that, compound BL was prepared in the same manner as in Preparation Example 1.
제조예 31: 화합물 BM의 제조Preparation 31: Preparation of compound BM
Figure PCTKR2022002694-appb-img-000158
Figure PCTKR2022002694-appb-img-000158
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-3-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BM를 제조하였다.The same method as in Preparation Example 1, except that 2-naphthoyl chloride was used instead of benzyl chloride and 2-bromo-3-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine to prepare compound BM.
제조예 32: 화합물 BN의 제조Preparation 32: Preparation of compound BN
Figure PCTKR2022002694-appb-img-000159
Figure PCTKR2022002694-appb-img-000159
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-4-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BN를 제조하였다.The same method as in Preparation Example 1, except that 2-naphthoyl chloride was used instead of benzyl chloride and 2-bromo-4-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine to prepare compound BN.
제조예 33: 화합물 BO의 제조Preparation 33: Preparation of compound BO
Figure PCTKR2022002694-appb-img-000160
Figure PCTKR2022002694-appb-img-000160
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-5-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BO를 제조하였다.The same method as in Preparation Example 1, except that 2-naphthoyl chloride was used instead of benzyl chloride and 2-bromo-5-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine to prepare compound BO.
제조예 34: 화합물 BP의 제조Preparation 34: Preparation of compound BP
Figure PCTKR2022002694-appb-img-000161
Figure PCTKR2022002694-appb-img-000161
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-6-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BP를 제조하였다.The same method as in Preparation Example 1, except that 2-naphthoyl chloride was used instead of benzyl chloride and 2-bromo-6-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine to prepare compound BP.
제조예 35: 화합물 BQ의 제조Preparation 35: Preparation of compound BQ
Figure PCTKR2022002694-appb-img-000162
Figure PCTKR2022002694-appb-img-000162
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-7-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BQ를 제조하였다.The same method as in Preparation Example 1, except that 2-naphthoyl chloride was used instead of benzyl chloride and 2-bromo-7-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine to prepare compound BQ.
제조예 36: 화합물 BR의 제조Preparation 36: Preparation of compound BR
Figure PCTKR2022002694-appb-img-000163
Figure PCTKR2022002694-appb-img-000163
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-8-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BR를 제조하였다.The same method as in Preparation Example 1, except that 2-naphthoyl chloride was used instead of benzyl chloride and 2-bromo-8-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine to prepare compound BR.
[실시예][Example]
실시예 1: 화합물 1의 제조Example 1: Preparation of compound 1
Figure PCTKR2022002694-appb-img-000164
Figure PCTKR2022002694-appb-img-000164
질소 분위기에서 화합물 AA(10 g, 33.8 mmol), 화합물 amine1(15.1 g, 33.8 mmol), 소디움 터트-부톡사이드(10.8 g, 50.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1 12.2 g을 얻었다. (수율 51%, MS: [M+H]+= 707)In a nitrogen atmosphere, compound AA (10 g, 33.8 mmol), compound amine1 (15.1 g, 33.8 mmol), sodium tert-butoxide (10.8 g, 50.7 mmol) were added to xylene (200 ml), and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 12.2 g of Compound 1. (Yield 51%, MS: [M+H] + = 707)
실시예 2: 화합물 2의 제조Example 2: Preparation of compound 2
Figure PCTKR2022002694-appb-img-000165
Figure PCTKR2022002694-appb-img-000165
질소 분위기에서 화합물 AB(10 g, 33.8 mmol), 화합물 amine2(12.2 g, 33.8 mmol), 소디움 터트-부톡사이드(10.8 g, 50.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2 10.5 g을 얻었다. (수율 50%, MS: [M+H]+= 621)In a nitrogen atmosphere, compound AB (10 g, 33.8 mmol), compound amine2 (12.2 g, 33.8 mmol), sodium tert-butoxide (10.8 g, 50.7 mmol) were added to xylene (200 ml), and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.5 g of Compound 2. (Yield 50%, MS: [M+H] + = 621)
실시예 3: 화합물 3의 제조Example 3: Preparation of compound 3
Figure PCTKR2022002694-appb-img-000166
Figure PCTKR2022002694-appb-img-000166
질소 분위기에서 화합물 AC(10 g, 33.8 mmol), 화합물 amine3(15.1 g, 33.8 mmol), 소디움 터트-부톡사이드(10.8 g, 50.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 3 13.1 g을 얻었다. (수율 55%, MS: [M+H]+= 707)Compound AC (10 g, 33.8 mmol), compound amine3 (15.1 g, 33.8 mmol), and sodium tert-butoxide (10.8 g, 50.7 mmol) were added to xylene (200 ml) in a nitrogen atmosphere, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 13.1 g of Compound 3. (Yield 55%, MS: [M+H] + = 707)
실시예 4: 화합물 4의 제조Example 4: Preparation of compound 4
Figure PCTKR2022002694-appb-img-000167
Figure PCTKR2022002694-appb-img-000167
질소 분위기에서 화합물 AF(10 g, 33.8 mmol), 화합물 amine4(11.7 g, 33.8 mmol), 소디움 터트-부톡사이드(10.8 g, 50.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 4 11.2 g을 얻었다. (수율 55%, MS: [M+H]+= 605)Compound AF (10 g, 33.8 mmol), compound amine4 (11.7 g, 33.8 mmol), sodium tert-butoxide (10.8 g, 50.7 mmol) in xylene (200 ml) in a nitrogen atmosphere were stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 11.2 g of compound 4 . (Yield 55%, MS: [M+H] + = 605)
실시예 5: 화합물 5의 제조Example 5: Preparation of compound 5
Figure PCTKR2022002694-appb-img-000168
Figure PCTKR2022002694-appb-img-000168
질소 분위기에서 화합물 AE(10 g, 33.8 mmol), 화합물 amine5(11.3 g, 33.8 mmol), 소디움 터트-부톡사이드(10.8 g, 50.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 5 10.4 g을 얻었다. (수율 52%, MS: [M+H]+= 595)Compound AE (10 g, 33.8 mmol), compound amine5 (11.3 g, 33.8 mmol), sodium tert-butoxide (10.8 g, 50.7 mmol) in xylene (200 ml) in a nitrogen atmosphere were stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.4 g of compound 5. (Yield 52%, MS: [M+H] + = 595)
실시예 6: 화합물 6의 제조Example 6: Preparation of compound 6
Figure PCTKR2022002694-appb-img-000169
Figure PCTKR2022002694-appb-img-000169
질소 분위기에서 화합물 AE(10 g, 33.8 mmol), 화합물 amine6(12.6 g, 33.8 mmol), 소디움 터트-부톡사이드(10.8 g, 50.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 6 10.7 g을 얻었다. (수율 50%, MS: [M+H]+= 631)In a nitrogen atmosphere, compound AE (10 g, 33.8 mmol), compound amine6 (12.6 g, 33.8 mmol), sodium tert-butoxide (10.8 g, 50.7 mmol) were added to xylene (200 ml), and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.7 g of Compound 6. (Yield 50%, MS: [M+H] + = 631)
실시예 7: 화합물 7의 제조Example 7: Preparation of compound 7
Figure PCTKR2022002694-appb-img-000170
Figure PCTKR2022002694-appb-img-000170
질소 분위기에서 화합물 AD(10 g, 33.8 mmol), 화합물 amine7(10 g, 33.8 mmol), 소디움 터트-부톡사이드(10.8 g, 50.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 7 9.9 g을 얻었다. (수율 53%, MS: [M+H]+= 555)Compound AD (10 g, 33.8 mmol), compound amine7 (10 g, 33.8 mmol), sodium tert-butoxide (10.8 g, 50.7 mmol) were added to xylene (200 ml) in a nitrogen atmosphere, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.9 g of Compound 7. (Yield 53%, MS: [M+H] + = 555)
실시예 8: 화합물 8의 제조Example 8: Preparation of compound 8
Figure PCTKR2022002694-appb-img-000171
Figure PCTKR2022002694-appb-img-000171
질소 분위기에서 화합물 AA(15 g, 50.7 mmol)와 화합물 amine8(24.2 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 8를 18.4 g 제조하였다. (수율 54%, MS: [M+H]+= 671)Compound AA (15 g, 50.7 mmol) and compound amine8 (24.2 g, 53.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.4 g of compound 8. (Yield 54%, MS: [M+H] + = 671)
실시예 9: 화합물 9의 제조Example 9: Preparation of compound 9
Figure PCTKR2022002694-appb-img-000172
Figure PCTKR2022002694-appb-img-000172
질소 분위기에서 화합물 AC(15 g, 50.7 mmol)와 화합물 amine9(28.2 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 9를 20.8 g 제조하였다. (수율 55%, MS: [M+H]+= 746)Compound AC (15 g, 50.7 mmol) and compound amine9 (28.2 g, 53.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.8 g of compound 9. (Yield 55%, MS: [M+H] + = 746)
실시예 10: 화합물 10의 제조Example 10: Preparation of compound 10
Figure PCTKR2022002694-appb-img-000173
Figure PCTKR2022002694-appb-img-000173
질소 분위기에서 화합물 AB(15 g, 50.7 mmol)와 화합물 amine10(28.2 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 10를 18.9 g 제조하였다. (수율 50%, MS: [M+H]+= 746)Compound AB (15 g, 50.7 mmol) and compound amine10 (28.2 g, 53.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.9 g of compound 10. (Yield 50%, MS: [M+H] + = 746)
실시예 11: 화합물 11의 제조Example 11: Preparation of compound 11
Figure PCTKR2022002694-appb-img-000174
Figure PCTKR2022002694-appb-img-000174
질소 분위기에서 화합물 AD(15 g, 50.7 mmol)와 화합물 amine11(23.5 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 11를 18.3 g 제조하였다. (수율 55%, MS: [M+H]+= 657)Compound AD (15 g, 50.7 mmol) and compound amine 11 (23.5 g, 53.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.3 g of compound 11. (Yield 55%, MS: [M+H] + = 657)
실시예 12: 화합물 12의 제조Example 12: Preparation of compound 12
Figure PCTKR2022002694-appb-img-000175
Figure PCTKR2022002694-appb-img-000175
질소 분위기에서 화합물 AD(15 g, 50.7 mmol)와 화합물 amine12(28.8 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 12를 19.9 g 제조하였다. (수율 52%, MS: [M+H]+= 757)Compound AD (15 g, 50.7 mmol) and compound amine12 (28.8 g, 53.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.9 g of compound 12. (Yield 52%, MS: [M+H] + = 757)
실시예 13: 화합물 13의 제조Example 13: Preparation of compound 13
Figure PCTKR2022002694-appb-img-000176
Figure PCTKR2022002694-appb-img-000176
질소 분위기에서 화합물 AE(15 g, 50.7 mmol)와 화합물 amine13(22.1 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 13를 17.6 g 제조하였다. (수율 55%, MS: [M+H]+= 632)Compound AE (15 g, 50.7 mmol) and compound amine13 (22.1 g, 53.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.6 g of compound 13. (Yield 55%, MS: [M+H] + = 632)
실시예 14: 화합물 14의 제조Example 14: Preparation of compound 14
Figure PCTKR2022002694-appb-img-000177
Figure PCTKR2022002694-appb-img-000177
질소 분위기에서 화합물 AE(15 g, 50.7 mmol)와 화합물 amine14(20.2 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 14를 16.6 g 제조하였다. (수율 55%, MS: [M+H]+= 595)Compound AE (15 g, 50.7 mmol) and compound amine14 (20.2 g, 53.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.6 g of compound 14. (Yield 55%, MS: [M+H] + = 595)
실시예 15: 화합물 15의 제조Example 15: Preparation of compound 15
Figure PCTKR2022002694-appb-img-000178
Figure PCTKR2022002694-appb-img-000178
질소 분위기에서 화합물 AE(15 g, 50.7 mmol)와 화합물 amine11(23.5 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 15를 16.6 g 제조하였다. (수율 50%, MS: [M+H]+= 657)Compound AE (15 g, 50.7 mmol) and compound amine 11 (23.5 g, 53.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.6 g of compound 15. (Yield 50%, MS: [M+H] + = 657)
실시예 16: 화합물 16의 제조Example 16: Preparation of compound 16
Figure PCTKR2022002694-appb-img-000179
Figure PCTKR2022002694-appb-img-000179
질소 분위기에서 화합물 AE(15 g, 50.7 mmol)와 화합물 amine15(28.2 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 16를 20.8 g 제조하였다. (수율 55%, MS: [M+H]+= 746)Compound AE (15 g, 50.7 mmol) and compound amine15 (28.2 g, 53.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.8 g of compound 16. (Yield 55%, MS: [M+H] + = 746)
실시예 17: 화합물 17의 제조Example 17: Preparation of compound 17
Figure PCTKR2022002694-appb-img-000180
Figure PCTKR2022002694-appb-img-000180
질소 분위기에서 화합물 AF(15 g, 50.7 mmol)와 화합물 amine16(26.4 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 17를 18.4 g 제조하였다. (수율 51%, MS: [M+H]+= 711)Compound AF (15 g, 50.7 mmol) and compound amine 16 (26.4 g, 53.2 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.4 g of compound 17. (Yield 51%, MS: [M+H] + = 711)
실시예 18: 화합물 18의 제조Example 18: Preparation of compound 18
Figure PCTKR2022002694-appb-img-000181
Figure PCTKR2022002694-appb-img-000181
질소 분위기에서 화합물 AA(15 g, 50.7 mmol)와 화합물 amine17(31.5 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 18를 22.5 g 제조하였다. (수율 55%, MS: [M+H]+= 808)Compound AA (15 g, 50.7 mmol) and compound amine17 (31.5 g, 53.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 22.5 g of compound 18. (Yield 55%, MS: [M+H] + = 808)
실시예 19: 화합물 19의 제조Example 19: Preparation of compound 19
Figure PCTKR2022002694-appb-img-000182
Figure PCTKR2022002694-appb-img-000182
질소 분위기에서 화합물 AB(15 g, 50.7 mmol)와 화합물 amine18(34.3 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 19를 22.2 g 제조하였다. (수율 51%, MS: [M+H]+= 860)Compound AB (15 g, 50.7 mmol) and compound amine 18 (34.3 g, 53.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 22.2 g of compound 19. (Yield 51%, MS: [M+H] + = 860)
실시예 20: 화합물 20의 제조Example 20: Preparation of compound 20
Figure PCTKR2022002694-appb-img-000183
Figure PCTKR2022002694-appb-img-000183
질소 분위기에서 화합물 AD(15 g, 50.7 mmol)와 화합물 amine19(23.5 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 20를 17 g 제조하였다. (수율 51%, MS: [M+H]+= 657)Compound AD (15 g, 50.7 mmol) and compound amine19 (23.5 g, 53.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17 g of compound 20. (Yield 51%, MS: [M+H] + = 657)
실시예 21: 화합물 21의 제조Example 21: Preparation of compound 21
Figure PCTKR2022002694-appb-img-000184
Figure PCTKR2022002694-appb-img-000184
질소 분위기에서 화합물 AD(15 g, 50.7 mmol)와 화합물 amine20(28.2 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 0.5 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 21를 19.9 g 제조하였다. (수율 50%, MS: [M+H]+= 784)Compound AD (15 g, 50.7 mmol) and compound amine 20 (28.2 g, 53.2 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 0.5 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.9 g of compound 21. (Yield 50%, MS: [M+H] + = 784)
실시예 22: 화합물 22의 제조Example 22: Preparation of compound 22
Figure PCTKR2022002694-appb-img-000185
Figure PCTKR2022002694-appb-img-000185
질소 분위기에서 화합물 AE(15 g, 50.7 mmol)와 화합물 amine21(22.1 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 22를 16.9 g 제조하였다. (수율 53%, MS: [M+H]+= 631)Compound AE (15 g, 50.7 mmol) and compound amine21 (22.1 g, 53.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.9 g of compound 22. (Yield 53%, MS: [M+H] + = 631)
실시예 23: 화합물 23의 제조Example 23: Preparation of compound 23
Figure PCTKR2022002694-appb-img-000186
Figure PCTKR2022002694-appb-img-000186
질소 분위기에서 화합물 AE(15 g, 50.7 mmol)와 화합물 amine21(22.1 g, 53.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21 g, 152.1 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 23를 16 g 제조하였다. (수율 50%, MS: [M+H]+= 631)Compound AE (15 g, 50.7 mmol) and compound amine21 (22.1 g, 53.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21 g, 152.1 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16 g of compound 23. (Yield 50%, MS: [M+H] + = 631)
실시예 24: 화합물 24의 제조Example 24: Preparation of compound 24
Figure PCTKR2022002694-appb-img-000187
Figure PCTKR2022002694-appb-img-000187
질소 분위기에서 화합물 AH(10 g, 26.9 mmol), 화합물 amine23(10.7 g, 26.9 mmol), 소디움 터트-부톡사이드(8.6 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 24 10.4 g을 얻었다. (수율 53%, MS: [M+H]+= 734)Compound AH (10 g, 26.9 mmol), compound amine23 (10.7 g, 26.9 mmol), sodium tert-butoxide (8.6 g, 40.3 mmol) in xylene (200 ml) in a nitrogen atmosphere were stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.4 g of Compound 24. (Yield 53%, MS: [M+H] + = 734)
실시예 25: 화합물 25의 제조Example 25: Preparation of compound 25
Figure PCTKR2022002694-appb-img-000188
Figure PCTKR2022002694-appb-img-000188
질소 분위기에서 화합물 AJ(10 g, 26.9 mmol), 화합물 amine24(12 g, 26.9 mmol), 소디움 터트-부톡사이드(8.6 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 25 11.2 g을 얻었다. (수율 53%, MS: [M+H]+= 784)Compound AJ (10 g, 26.9 mmol), compound amine24 (12 g, 26.9 mmol), sodium tert-butoxide (8.6 g, 40.3 mmol) in xylene (200 ml) in a nitrogen atmosphere were stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 11.2 g of compound 25. (Yield 53%, MS: [M+H] + = 784)
실시예 26: 화합물 26의 제조Example 26: Preparation of compound 26
Figure PCTKR2022002694-appb-img-000189
Figure PCTKR2022002694-appb-img-000189
질소 분위기에서 화합물 AJ(10 g, 26.9 mmol), 화합물 amine25(10 g, 26.9 mmol), 소디움 터트-부톡사이드(8.6 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 26 9.7 g을 얻었다. (수율 51%, MS: [M+H]+= 708)Compound AJ (10 g, 26.9 mmol), compound amine25 (10 g, 26.9 mmol), and sodium tert-butoxide (8.6 g, 40.3 mmol) were added to xylene (200 ml) in a nitrogen atmosphere, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.7 g of compound 26. (Yield 51%, MS: [M+H] + = 708)
실시예 27: 화합물 27의 제조Example 27: Preparation of compound 27
Figure PCTKR2022002694-appb-img-000190
Figure PCTKR2022002694-appb-img-000190
질소 분위기에서 화합물 AK(10 g, 26.9 mmol), 화합물 amine26(9.4 g, 26.9 mmol), 소디움 터트-부톡사이드(8.6 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 27 9.6 g을 얻었다. (수율 52%, MS: [M+H]+= 685)Compound AK (10 g, 26.9 mmol), compound amine 26 (9.4 g, 26.9 mmol), and sodium tert-butoxide (8.6 g, 40.3 mmol) were added to xylene (200 ml) in a nitrogen atmosphere, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.6 g of compound 27. (Yield 52%, MS: [M+H] + = 685)
실시예 28: 화합물 28의 제조Example 28: Preparation of compound 28
Figure PCTKR2022002694-appb-img-000191
Figure PCTKR2022002694-appb-img-000191
질소 분위기에서 화합물 AI(15 g, 40.3 mmol)와 화합물 amine27(18.7 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 28를 16.3 g 제조하였다. (수율 55%, MS: [M+H]+= 734)Compound AI (15 g, 40.3 mmol) and compound amine27 (18.7 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.3 g of compound 28. (Yield 55%, MS: [M+H] + = 734)
실시예 29: 화합물 29의 제조Example 29: Preparation of compound 29
Figure PCTKR2022002694-appb-img-000192
Figure PCTKR2022002694-appb-img-000192
질소 분위기에서 화합물 AK(15 g, 40.3 mmol)와 화합물 amine28(15.5 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 29를 14.3 g 제조하였다. (수율 54%, MS: [M+H]+= 657)Compound AK (15 g, 40.3 mmol) and compound amine28 (15.5 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.3 g of compound 29. (Yield 54%, MS: [M+H] + = 657)
실시예 30: 화합물 30의 제조Example 30: Preparation of compound 30
Figure PCTKR2022002694-appb-img-000193
Figure PCTKR2022002694-appb-img-000193
질소 분위기에서 화합물 AG(15 g, 40.3 mmol)와 화합물 amine29(24 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 30를 17.3 g 제조하였다. (수율 50%, MS: [M+H]+= 859)Compound AG (15 g, 40.3 mmol) and compound amine29 (24 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.3 g of compound 30. (Yield 50%, MS: [M+H] + = 859)
실시예 31: 화합물 31의 제조Example 31: Preparation of compound 31
Figure PCTKR2022002694-appb-img-000194
Figure PCTKR2022002694-appb-img-000194
질소 분위기에서 화합물 AI(15 g, 40.3 mmol)와 화합물 amine30(20.8 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 31를 17.4 g 제조하였다. (수율 55%, MS: [M+H]+= 783)Compound AI (15 g, 40.3 mmol) and compound amine30 (20.8 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.4 g of compound 31. (Yield 55%, MS: [M+H] + = 783)
실시예 32: 화합물 32의 제조Example 32: Preparation of compound 32
Figure PCTKR2022002694-appb-img-000195
Figure PCTKR2022002694-appb-img-000195
질소 분위기에서 화합물 AJ(15 g, 40.3 mmol)와 화합물 amine31(21.9 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 32를 17.3 g 제조하였다. (수율 53%, MS: [M+H]+= 809)Compound AJ (15 g, 40.3 mmol) and compound amine31 (21.9 g, 42.4 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.3 g of compound 32. (Yield 53%, MS: [M+H] + = 809)
실시예 33: 화합물 33의 제조Example 33: Preparation of compound 33
Figure PCTKR2022002694-appb-img-000196
Figure PCTKR2022002694-appb-img-000196
질소 분위기에서 화합물 AK(15 g, 40.3 mmol)와 화합물 amine32(24 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 33를 17.7 g 제조하였다. (수율 51%, MS: [M+H]+= 859)Compound AK (15 g, 40.3 mmol) and compound amine32 (24 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.7 g of compound 33. (Yield 51%, MS: [M+H] + = 859)
실시예 34: 화합물 34의 제조Example 34: Preparation of compound 34
Figure PCTKR2022002694-appb-img-000197
Figure PCTKR2022002694-appb-img-000197
질소 분위기에서 화합물 AL(15 g, 40.3 mmol)와 화합물 amine33(21.9 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 34를 17.3 g 제조하였다. (수율 53%, MS: [M+H]+= 809)Compound AL (15 g, 40.3 mmol) and compound amine33 (21.9 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.3 g of compound 34. (Yield 53%, MS: [M+H] + = 809)
실시예 35: 화합물 35의 제조Example 35: Preparation of compound 35
Figure PCTKR2022002694-appb-img-000198
Figure PCTKR2022002694-appb-img-000198
질소 분위기에서 화합물 AI(15 g, 40.3 mmol)와 화합물 amine34(21.4 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 35를 16.1 g 제조하였다. (수율 50%, MS: [M+H]+= 797)Compound AI (15 g, 40.3 mmol) and compound amine34 (21.4 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.1 g of compound 35. (Yield 50%, MS: [M+H] + = 797)
실시예 36: 화합물 36의 제조Example 36: Preparation of compound 36
Figure PCTKR2022002694-appb-img-000199
Figure PCTKR2022002694-appb-img-000199
질소 분위기에서 화합물 AH(15 g, 40.3 mmol)와 화합물 amine35(21.8 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 36를 16.3 g 제조하였다. (수율 50%, MS: [M+H]+= 807)Compound AH (15 g, 40.3 mmol) and compound amine35 (21.8 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.3 g of compound 36. (Yield 50%, MS: [M+H] + = 807)
실시예 37: 화합물 37의 제조Example 37: Preparation of compound 37
Figure PCTKR2022002694-appb-img-000200
Figure PCTKR2022002694-appb-img-000200
질소 분위기에서 화합물 AQ(10 g, 28.9 mmol), 화합물 amine36(10.6 g, 28.9 mmol), 소디움 터트-부톡사이드(9.2 g, 43.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 37 10.7 g을 얻었다. (수율 55%, MS: [M+H]+= 675)In a nitrogen atmosphere, compound AQ (10 g, 28.9 mmol), compound amine36 (10.6 g, 28.9 mmol), sodium tert-butoxide (9.2 g, 43.4 mmol) were added to xylene (200 ml), and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.7 g of compound 37. (Yield 55%, MS: [M+H] + = 675)
실시예 38: 화합물 38의 제조Example 38: Preparation of compound 38
Figure PCTKR2022002694-appb-img-000201
Figure PCTKR2022002694-appb-img-000201
질소 분위기에서 화합물 AQ(10 g, 28.9 mmol), 화합물 amine37(12.9 g, 28.9 mmol), 소디움 터트-부톡사이드(9.2 g, 43.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 38 11.6 g을 얻었다. (수율 53%, MS: [M+H]+= 757)Compound AQ (10 g, 28.9 mmol), compound amine37 (12.9 g, 28.9 mmol), sodium tert-butoxide (9.2 g, 43.4 mmol) in xylene (200 ml) in a nitrogen atmosphere were stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 11.6 g of compound 38. (Yield 53%, MS: [M+H] + = 757)
실시예 39: 화합물 39의 제조Example 39: Preparation of compound 39
Figure PCTKR2022002694-appb-img-000202
Figure PCTKR2022002694-appb-img-000202
질소 분위기에서 화합물 AQ(10 g, 28.9 mmol), 화합물 amine38(9.7 g, 28.9 mmol), 소디움 터트-부톡사이드(9.2 g, 43.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 39 9.7 g을 얻었다. (수율 52%, MS: [M+H]+= 645)Compound AQ (10 g, 28.9 mmol), compound amine38 (9.7 g, 28.9 mmol), and sodium tert-butoxide (9.2 g, 43.4 mmol) were added to xylene (200 ml) in a nitrogen atmosphere, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.7 g of compound 39. (Yield 52%, MS: [M+H] + = 645)
실시예 40: 화합물 40의 제조Example 40: Preparation of compound 40
Figure PCTKR2022002694-appb-img-000203
Figure PCTKR2022002694-appb-img-000203
질소 분위기에서 화합물 AN(15 g, 43.4 mmol)와 화합물 amine39(23.6 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 40를 17.3 g 제조하였다. (수율 51%, MS: [M+H]+= 783)Compound AN (15 g, 43.4 mmol) and compound amine39 (23.6 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.3 g of compound 40. (Yield 51%, MS: [M+H] + = 783)
실시예 41: 화합물 41의 제조Example 41: Preparation of compound 41
Figure PCTKR2022002694-appb-img-000204
Figure PCTKR2022002694-appb-img-000204
질소 분위기에서 화합물 AQ(15 g, 43.4 mmol)와 화합물 amine27(16.6 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 41를 13.7 g 제조하였다. (수율 50%, MS: [M+H]+= 631)Compound AQ (15 g, 43.4 mmol) and compound amine27 (16.6 g, 45.5 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.7 g of compound 41. (Yield 50%, MS: [M+H] + = 631)
실시예 42: 화합물 42의 제조Example 42: Preparation of compound 42
Figure PCTKR2022002694-appb-img-000205
Figure PCTKR2022002694-appb-img-000205
질소 분위기에서 화합물 AR(15 g, 43.4 mmol)와 화합물 amine40(20.1 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 42를 16.5 g 제조하였다. (수율 54%, MS: [M+H]+= 707)Compound AR (15 g, 43.4 mmol) and compound amine 40 (20.1 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.5 g of compound 42. (Yield 54%, MS: [M+H] + = 707)
실시예 43: 화합물 43의 제조Example 43: Preparation of compound 43
Figure PCTKR2022002694-appb-img-000206
Figure PCTKR2022002694-appb-img-000206
질소 분위기에서 화합물 AP(15 g, 43.4 mmol)와 화합물 amine41(26.5 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 43를 18.7 g 제조하였다. (수율 51%, MS: [M+H]+= 847)Compound AP (15 g, 43.4 mmol) and compound amine41 (26.5 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.7 g of compound 43. (Yield 51%, MS: [M+H] + = 847)
실시예 44: 화합물 44의 제조Example 44: Preparation of compound 44
Figure PCTKR2022002694-appb-img-000207
Figure PCTKR2022002694-appb-img-000207
질소 분위기에서 화합물 AQ(15 g, 43.4 mmol)와 화합물 amine42(22.4 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 44를 17.7 g 제조하였다. (수율 54%, MS: [M+H]+= 757)Compound AQ (15 g, 43.4 mmol) and compound amine42 (22.4 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.7 g of compound 44. (Yield 54%, MS: [M+H] + = 757)
실시예 45: 화합물 45의 제조Example 45: Preparation of compound 45
Figure PCTKR2022002694-appb-img-000208
Figure PCTKR2022002694-appb-img-000208
질소 분위기에서 화합물 AN(15 g, 43.4 mmol)와 화합물 amine43(25.8 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 45를 18.4 g 제조하였다. (수율 51%, MS: [M+H]+= 834)Compound AN (15 g, 43.4 mmol) and compound amine 43 (25.8 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.4 g of compound 45. (Yield 51%, MS: [M+H] + = 834)
실시예 46: 화합물 46의 제조Example 46: Preparation of compound 46
Figure PCTKR2022002694-appb-img-000209
Figure PCTKR2022002694-appb-img-000209
질소 분위기에서 화합물 AN(15 g, 43.4 mmol)와 화합물 amine44(22.4 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 46를 16.7 g 제조하였다. (수율 51%, MS: [M+H]+= 757)Compound AN (15 g, 43.4 mmol) and compound amine44 (22.4 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.7 g of compound 46. (Yield 51%, MS: [M+H] + = 757)
실시예 47: 화합물 47의 제조Example 47: Preparation of compound 47
Figure PCTKR2022002694-appb-img-000210
Figure PCTKR2022002694-appb-img-000210
질소 분위기에서 화합물 AQ(15 g, 43.4 mmol)와 화합물 amine45(25.8 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 47를 19.1 g 제조하였다. (수율 53%, MS: [M+H]+= 833)Compound AQ (15 g, 43.4 mmol) and compound amine45 (25.8 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.1 g of compound 47. (Yield 53%, MS: [M+H] + = 833)
실시예 48: 화합물 48의 제조Example 48: Preparation of compound 48
Figure PCTKR2022002694-appb-img-000211
Figure PCTKR2022002694-appb-img-000211
질소 분위기에서 화합물 AO(15 g, 43.4 mmol)와 화합물 amine46(18.9 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 48를 15.6 g 제조하였다. (수율 53%, MS: [M+H]+= 681)Compound AO (15 g, 43.4 mmol) and compound amine46 (18.9 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.6 g of compound 48. (Yield 53%, MS: [M+H] + = 681)
실시예 49: 화합물 49의 제조Example 49: Preparation of compound 49
Figure PCTKR2022002694-appb-img-000212
Figure PCTKR2022002694-appb-img-000212
질소 분위기에서 화합물 AP(15 g, 43.4 mmol)와 화합물 amine47(22.4 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 49를 17.7 g 제조하였다. (수율 54%, MS: [M+H]+= 757)Compound AP (15 g, 43.4 mmol) and compound amine 47 (22.4 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.7 g of compound 49. (Yield 54%, MS: [M+H] + = 757)
실시예 50: 화합물 50의 제조Example 50: Preparation of compound 50
Figure PCTKR2022002694-appb-img-000213
Figure PCTKR2022002694-appb-img-000213
질소 분위기에서 화합물 BA(10 g, 33.9 mmol), 화합물 amine48(12.6 g, 33.9 mmol), 소디움 터트-부톡사이드(10.8 g, 50.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 50 11.3 g을 얻었다. (수율 53%, MS: [M+H]+= 631)In a nitrogen atmosphere, compound BA (10 g, 33.9 mmol), compound amine48 (12.6 g, 33.9 mmol), sodium tert-butoxide (10.8 g, 50.8 mmol) were added to xylene (200 ml), and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 11.3 g of Compound 50. (Yield 53%, MS: [M+H] + = 631)
실시예 51: 화합물 51의 제조Example 51: Preparation of compound 51
Figure PCTKR2022002694-appb-img-000214
Figure PCTKR2022002694-appb-img-000214
질소 분위기에서 화합물 BA(10 g, 33.9 mmol), 화합물 amine49(13.5 g, 33.9 mmol), 소디움 터트-부톡사이드(10.8 g, 50.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 51 11.1 g을 얻었다. (수율 50%, MS: [M+H]+= 657)Compound BA (10 g, 33.9 mmol), compound amine49 (13.5 g, 33.9 mmol), sodium tert-butoxide (10.8 g, 50.8 mmol) in xylene (200 ml) in a nitrogen atmosphere was stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 11.1 g of compound 51. (Yield 50%, MS: [M+H] + = 657)
실시예 52: 화합물 52의 제조Example 52: Preparation of compound 52
Figure PCTKR2022002694-appb-img-000215
Figure PCTKR2022002694-appb-img-000215
질소 분위기에서 화합물 BC(10 g, 33.9 mmol), 화합물 amine50(15.6 g, 33.9 mmol), 소디움 터트-부톡사이드(10.8 g, 50.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 52 12.2 g을 얻었다. (수율 50%, MS: [M+H]+= 720)Compound BC (10 g, 33.9 mmol), compound amine50 (15.6 g, 33.9 mmol), and sodium tert-butoxide (10.8 g, 50.8 mmol) were added to xylene (200 ml) in a nitrogen atmosphere, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 12.2 g of compound 52. (Yield 50%, MS: [M+H] + = 720)
실시예 53: 화합물 53의 제조Example 53: Preparation of compound 53
Figure PCTKR2022002694-appb-img-000216
Figure PCTKR2022002694-appb-img-000216
질소 분위기에서 화합물 BB(10 g, 33.9 mmol), 화합물 amine51(14.4 g, 33.9 mmol), 소디움 터트-부톡사이드(10.8 g, 50.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 53 12.7 g을 얻었다. (수율 55%, MS: [M+H]+= 684)In a nitrogen atmosphere, compound BB (10 g, 33.9 mmol), compound amine51 (14.4 g, 33.9 mmol), sodium tert-butoxide (10.8 g, 50.8 mmol) were added to xylene (200 ml), and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 12.7 g of compound 53. (Yield 55%, MS: [M+H] + = 684)
실시예 54: 화합물 54의 제조Example 54: Preparation of compound 54
Figure PCTKR2022002694-appb-img-000217
Figure PCTKR2022002694-appb-img-000217
질소 분위기에서 화합물 BD(10 g, 33.9 mmol), 화합물 amine52(15.2 g, 33.9 mmol), 소디움 터트-부톡사이드(10.8 g, 50.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 54 12.7 g을 얻었다. (수율 53%, MS: [M+H]+= 707)Compound BD (10 g, 33.9 mmol), compound amine52 (15.2 g, 33.9 mmol), sodium tert-butoxide (10.8 g, 50.8 mmol) in xylene (200 ml) in a nitrogen atmosphere were stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 12.7 g of compound 54. (Yield 53%, MS: [M+H] + = 707)
실시예 55: 화합물 55의 제조Example 55: Preparation of compound 55
Figure PCTKR2022002694-appb-img-000218
Figure PCTKR2022002694-appb-img-000218
질소 분위기에서 화합물 BE(10 g, 33.9 mmol), 화합물 amine53(13.5 g, 33.9 mmol), 소디움 터트-부톡사이드(10.8 g, 50.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 55 11.1 g을 얻었다. (수율 50%, MS: [M+H]+= 657)Compound BE (10 g, 33.9 mmol), compound amine53 (13.5 g, 33.9 mmol), sodium tert-butoxide (10.8 g, 50.8 mmol) in xylene (200 ml) in a nitrogen atmosphere were stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 11.1 g of compound 55. (Yield 50%, MS: [M+H] + = 657)
실시예 56: 화합물 56의 제조Example 56: Preparation of compound 56
Figure PCTKR2022002694-appb-img-000219
Figure PCTKR2022002694-appb-img-000219
질소 분위기에서 화합물 BA(15 g, 50.8 mmol)와 화합물 amine54(25.7 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 56를 18.4 g 제조하였다. (수율 52%, MS: [M+H]+= 698)Compound BA (15 g, 50.8 mmol) and compound amine54 (25.7 g, 53.4 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.4 g of compound 56. (Yield 52%, MS: [M+H] + = 698)
실시예 57: 화합물 57의 제조Example 57: Preparation of compound 57
Figure PCTKR2022002694-appb-img-000220
Figure PCTKR2022002694-appb-img-000220
질소 분위기에서 화합물 BC(15 g, 50.8 mmol)와 화합물 amine55(23.6 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 57를 18 g 제조하였다. (수율 54%, MS: [M+H]+= 658)Compound BC (15 g, 50.8 mmol) and compound amine55 (23.6 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18 g of compound 57. (Yield 54%, MS: [M+H] + = 658)
실시예 58: 화합물 58의 제조Example 58: Preparation of compound 58
Figure PCTKR2022002694-appb-img-000221
Figure PCTKR2022002694-appb-img-000221
질소 분위기에서 화합물 BC(15 g, 50.8 mmol)와 화합물 amine56(25.2 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 58를 19.2 g 제조하였다. (수율 55%, MS: [M+H]+= 687)Compound BC (15 g, 50.8 mmol) and compound amine56 (25.2 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.2 g of compound 58. (Yield 55%, MS: [M+H] + = 687)
실시예 59: 화합물 59의 제조Example 59: Preparation of compound 59
Figure PCTKR2022002694-appb-img-000222
Figure PCTKR2022002694-appb-img-000222
질소 분위기에서 화합물 BF(15 g, 50.8 mmol)와 화합물 amine57(31 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 59를 21.8 g 제조하였다. (수율 54%, MS: [M+H]+= 796)Compound BF (15 g, 50.8 mmol) and compound amine57 (31 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.8 g of compound 59. (Yield 54%, MS: [M+H] + = 796)
실시예 60: 화합물 60의 제조Example 60: Preparation of compound 60
Figure PCTKR2022002694-appb-img-000223
Figure PCTKR2022002694-appb-img-000223
질소 분위기에서 화합물 BE(15 g, 50.8 mmol)와 화합물 amine58(34.3 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 60를 21.8 g 제조하였다. (수율 50%, MS: [M+H]+= 859)Compound BE (15 g, 50.8 mmol) and compound amine58 (34.3 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.8 g of compound 60. (Yield 50%, MS: [M+H] + = 859)
실시예 61: 화합물 61의 제조Example 61: Preparation of compound 61
Figure PCTKR2022002694-appb-img-000224
Figure PCTKR2022002694-appb-img-000224
질소 분위기에서 화합물 BE(15 g, 50.8 mmol)와 화합물 amine59(21.1 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 61를 17.1 g 제조하였다. (수율 55%, MS: [M+H]+= 611)Compound BE (15 g, 50.8 mmol) and compound amine59 (21.1 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.1 g of compound 61. (Yield 55%, MS: [M+H] + = 611)
실시예 62: 화합물 62의 제조Example 62: Preparation of compound 62
Figure PCTKR2022002694-appb-img-000225
Figure PCTKR2022002694-appb-img-000225
질소 분위기에서 화합물 BC(15 g, 50.8 mmol)와 화합물 amine60(28.3 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 62를 19.7 g 제조하였다. (수율 52%, MS: [M+H]+= 746)Compound BC (15 g, 50.8 mmol) and compound amine60 (28.3 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.7 g of compound 62. (Yield 52%, MS: [M+H] + = 746)
실시예 63: 화합물 63의 제조Example 63: Preparation of compound 63
Figure PCTKR2022002694-appb-img-000226
Figure PCTKR2022002694-appb-img-000226
질소 분위기에서 화합물 BE(15 g, 50.8 mmol)와 화합물 amine61(22.2 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 63를 16.7 g 제조하였다. (수율 52%, MS: [M+H]+= 631)Compound BE (15 g, 50.8 mmol) and compound amine61 (22.2 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.7 g of compound 63. (Yield 52%, MS: [M+H] + = 631)
실시예 64: 화합물 64의 제조Example 64: Preparation of compound 64
Figure PCTKR2022002694-appb-img-000227
Figure PCTKR2022002694-appb-img-000227
질소 분위기에서 화합물 BD(15 g, 50.8 mmol)와 화합물 amine62(26.2 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 64를 10.9 g 제조하였다. (수율 53%, MS: [M+H]+= 407)Compound BD (15 g, 50.8 mmol) and compound amine62 (26.2 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.9 g of compound 64. (Yield 53%, MS: [M+H] + = 407)
실시예 65: 화합물 65의 제조Example 65: Preparation of compound 65
Figure PCTKR2022002694-appb-img-000228
Figure PCTKR2022002694-appb-img-000228
질소 분위기에서 화합물 BD(15 g, 50.8 mmol)와 화합물 amine63(21.6 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 65를 16.7 g 제조하였다. (수율 53%, MS: [M+H]+= 621)Compound BD (15 g, 50.8 mmol) and compound amine63 (21.6 g, 53.4 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.7 g of compound 65. (Yield 53%, MS: [M+H] + = 621)
실시예 66: 화합물 66의 제조Example 66: Preparation of compound 66
Figure PCTKR2022002694-appb-img-000229
Figure PCTKR2022002694-appb-img-000229
질소 분위기에서 화합물 BF(15 g, 50.8 mmol)와 화합물 amine64(29.9 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 66를 19.7 g 제조하였다. (수율 50%, MS: [M+H]+= 776)Compound BF (15 g, 50.8 mmol) and compound amine64 (29.9 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.7 g of compound 66. (Yield 50%, MS: [M+H] + = 776)
실시예 67: 화합물 67의 제조Example 67: Preparation of compound 67
Figure PCTKR2022002694-appb-img-000230
Figure PCTKR2022002694-appb-img-000230
질소 분위기에서 화합물 BC(15 g, 50.8 mmol)와 화합물 amine65(30.3 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 67를 20.3 g 제조하였다. (수율 51%, MS: [M+H]+= 783)Compound BC (15 g, 50.8 mmol) and compound amine 65 (30.3 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.3 g of compound 67. (Yield 51%, MS: [M+H] + = 783)
실시예 68: 화합물 68의 제조Example 68: Preparation of compound 68
Figure PCTKR2022002694-appb-img-000231
Figure PCTKR2022002694-appb-img-000231
질소 분위기에서 화합물 BB(15 g, 50.8 mmol)와 화합물 amine66(30.3 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 68를 21.5 g 제조하였다. (수율 54%, MS: [M+H]+= 783)Compound BB (15 g, 50.8 mmol) and compound amine66 (30.3 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.5 g of compound 68. (Yield 54%, MS: [M+H] + = 783)
실시예 69: 화합물 69의 제조Example 69: Preparation of compound 69
Figure PCTKR2022002694-appb-img-000232
Figure PCTKR2022002694-appb-img-000232
질소 분위기에서 화합물 BB(15 g, 50.8 mmol)와 화합물 amine67(27.6 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 69를 20.5 g 제조하였다. (수율 55%, MS: [M+H]+= 733)Compound BB (15 g, 50.8 mmol) and compound amine67 (27.6 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.5 g of compound 69. (Yield 55%, MS: [M+H] + = 733)
실시예 70: 화합물 70의 제조Example 70: Preparation of compound 70
Figure PCTKR2022002694-appb-img-000233
Figure PCTKR2022002694-appb-img-000233
질소 분위기에서 화합물 BF(15 g, 50.8 mmol)와 화합물 amine68(28.9 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 70를 19.2 g 제조하였다. (수율 50%, MS: [M+H]+= 757)Compound BF (15 g, 50.8 mmol) and compound amine68 (28.9 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.2 g of compound 70. (Yield 50%, MS: [M+H] + = 757)
실시예 71: 화합물 71의 제조Example 71: Preparation of compound 71
Figure PCTKR2022002694-appb-img-000234
Figure PCTKR2022002694-appb-img-000234
질소 분위기에서 화합물 BE(15 g, 50.8 mmol)와 화합물 amine69(30.3 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 71를 21.5 g 제조하였다. (수율 54%, MS: [M+H]+= 783)Compound BE (15 g, 50.8 mmol) and compound amine69 (30.3 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.5 g of compound 71. (Yield 54%, MS: [M+H] + = 783)
실시예 72: 화합물 72의 제조Example 72: Preparation of compound 72
Figure PCTKR2022002694-appb-img-000235
Figure PCTKR2022002694-appb-img-000235
질소 분위기에서 화합물 BC(15 g, 50.8 mmol)와 화합물 amine70(24.8 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 72를 17.3 g 제조하였다. (수율 50%, MS: [M+H]+= 681)Compound BC (15 g, 50.8 mmol) and compound amine70 (24.8 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.3 g of compound 72. (Yield 50%, MS: [M+H] + = 681)
실시예 73: 화합물 73의 제조Example 73: Preparation of compound 73
Figure PCTKR2022002694-appb-img-000236
Figure PCTKR2022002694-appb-img-000236
질소 분위기에서 화합물 BF(15 g, 50.8 mmol)와 화합물 amine71(22.2 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 73를 16.7 g 제조하였다. (수율 52%, MS: [M+H]+= 631)Compound BF (15 g, 50.8 mmol) and compound amine71 (22.2 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.7 g of compound 73. (Yield 52%, MS: [M+H] + = 631)
실시예 74: 화합물 74의 제조Example 74: Preparation of compound 74
Figure PCTKR2022002694-appb-img-000237
Figure PCTKR2022002694-appb-img-000237
질소 분위기에서 화합물 BC(15 g, 50.8 mmol)와 화합물 amine72(37 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 74를 23.1 g 제조하였다. (수율 50%, MS: [M+H]+= 910)Compound BC (15 g, 50.8 mmol) and compound amine72 (37 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.1 g of compound 74. (Yield 50%, MS: [M+H] + = 910)
실시예 75: 화합물 75의 제조Example 75: Preparation of compound 75
Figure PCTKR2022002694-appb-img-000238
Figure PCTKR2022002694-appb-img-000238
질소 분위기에서 화합물 BD(15 g, 50.8 mmol)와 화합물 amine73(34.4 g, 53.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.1 g, 152.5 mmol)를 물(63 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 75를 24 g 제조하였다. (수율 55%, MS: [M+H]+= 860)Compound BD (15 g, 50.8 mmol) and compound amine73 (34.4 g, 53.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (21.1 g, 152.5 mmol) was dissolved in water (63 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.6 g, 1.2 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24 g of compound 75. (Yield 55%, MS: [M+H] + = 860)
실시예 76: 화합물 76의 제조Example 76: Preparation of compound 76
Figure PCTKR2022002694-appb-img-000239
Figure PCTKR2022002694-appb-img-000239
질소 분위기에서 화합물 BG(10 g, 26.9 mmol), 화합물 amine74(10 g, 26.9 mmol), 소디움 터트-부톡사이드(8.6 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 76 10.4 g을 얻었다. (수율 55%, MS: [M+H]+= 707)Compound BG (10 g, 26.9 mmol), compound amine74 (10 g, 26.9 mmol), and sodium tert-butoxide (8.6 g, 40.3 mmol) were added to xylene (200 ml) in a nitrogen atmosphere, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.4 g of compound 76. (Yield 55%, MS: [M+H] + = 707)
실시예 77: 화합물 77의 제조Example 77: Preparation of compound 77
Figure PCTKR2022002694-appb-img-000240
Figure PCTKR2022002694-appb-img-000240
질소 분위기에서 화합물 BI(10 g, 26.9 mmol), 화합물 amine75(9 g, 26.9 mmol), 소디움 터트-부톡사이드(8.6 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 77 9.9 g을 얻었다. (수율 55%, MS: [M+H]+= 671)Compound BI (10 g, 26.9 mmol), compound amine75 (9 g, 26.9 mmol), and sodium tert-butoxide (8.6 g, 40.3 mmol) were added to xylene (200 ml) in a nitrogen atmosphere, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.9 g of compound 77. (Yield 55%, MS: [M+H] + = 671)
실시예 78: 화합물 78의 제조Example 78: Preparation of compound 78
Figure PCTKR2022002694-appb-img-000241
Figure PCTKR2022002694-appb-img-000241
질소 분위기에서 화합물 BK(10 g, 26.9 mmol), 화합물 amine76(11.3 g, 26.9 mmol), 소디움 터트-부톡사이드(8.6 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 78 10.8 g을 얻었다. (수율 53%, MS: [M+H]+= 757)Compound BK (10 g, 26.9 mmol), compound amine76 (11.3 g, 26.9 mmol), sodium tert-butoxide (8.6 g, 40.3 mmol) in xylene (200 ml) in a nitrogen atmosphere were stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.8 g of compound 78. (Yield 53%, MS: [M+H] + = 757)
실시예 79: 화합물 79의 제조Example 79: Preparation of compound 79
Figure PCTKR2022002694-appb-img-000242
Figure PCTKR2022002694-appb-img-000242
질소 분위기에서 화합물 BJ(10 g, 26.9 mmol), 화합물 amine77(10 g, 26.9 mmol), 소디움 터트-부톡사이드(8.6 g, 40.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 79 10.3 g을 얻었다. (수율 54%, MS: [M+H]+= 708)Compound BJ (10 g, 26.9 mmol), compound amine77 (10 g, 26.9 mmol), and sodium tert-butoxide (8.6 g, 40.3 mmol) were added to xylene (200 ml) in a nitrogen atmosphere, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.3 g of compound 79. (Yield 54%, MS: [M+H] + = 708)
실시예 80: 화합물 80의 제조Example 80: Preparation of compound 80
Figure PCTKR2022002694-appb-img-000243
Figure PCTKR2022002694-appb-img-000243
질소 분위기에서 화합물 BJ(15 g, 40.3 mmol)와 화합물 amine78(15.5 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 80를 13.8 g 제조하였다. (수율 52%, MS: [M+H]+= 657)Compound BJ (15 g, 40.3 mmol) and compound amine78 (15.5 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.8 g of compound 80. (Yield 52%, MS: [M+H] + = 657)
실시예 81: 화합물 81의 제조Example 81: Preparation of compound 81
Figure PCTKR2022002694-appb-img-000244
Figure PCTKR2022002694-appb-img-000244
질소 분위기에서 화합물 BG(15 g, 40.3 mmol)와 화합물 amine79(20.8 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 81를 16.7 g 제조하였다. (수율 53%, MS: [M+H]+= 783)Compound BG (15 g, 40.3 mmol) and compound amine79 (20.8 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.7 g of compound 81. (Yield 53%, MS: [M+H] + = 783)
실시예 82: 화합물 82의 제조Example 82: Preparation of compound 82
Figure PCTKR2022002694-appb-img-000245
Figure PCTKR2022002694-appb-img-000245
질소 분위기에서 화합물 BG(15 g, 40.3 mmol)와 화합물 amine80(20.8 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 82를 16.1 g 제조하였다. (수율 51%, MS: [M+H]+= 783)Compound BG (15 g, 40.3 mmol) and compound amine80 (20.8 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.1 g of compound 82. (Yield 51%, MS: [M+H] + = 783)
실시예 83: 화합물 83의 제조Example 83: Preparation of compound 83
Figure PCTKR2022002694-appb-img-000246
Figure PCTKR2022002694-appb-img-000246
질소 분위기에서 화합물 BI(15 g, 40.3 mmol)와 화합물 amine81(25.1 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 83를 19.7 g 제조하였다. (수율 55%, MS: [M+H]+= 889)Compound BI (15 g, 40.3 mmol) and compound amine81 (25.1 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.7 g of compound 83. (Yield 55%, MS: [M+H] + = 889)
실시예 84: 화합물 84의 제조Example 84: Preparation of compound 84
Figure PCTKR2022002694-appb-img-000247
Figure PCTKR2022002694-appb-img-000247
질소 분위기에서 화합물 BH(15 g, 40.3 mmol)와 화합물 amine82(19.3 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 84를 15.7 g 제조하였다. (수율 52%, MS: [M+H]+= 747)Compound BH (15 g, 40.3 mmol) and compound amine82 (19.3 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.7 g of compound 84. (Yield 52%, MS: [M+H] + = 747)
실시예 85: 화합물 85의 제조Example 85: Preparation of compound 85
Figure PCTKR2022002694-appb-img-000248
Figure PCTKR2022002694-appb-img-000248
질소 분위기에서 화합물 BL(15 g, 40.3 mmol)와 화합물 amine83(21.9 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 85를 17.3 g 제조하였다. (수율 53%, MS: [M+H]+= 809)Compound BL (15 g, 40.3 mmol) and compound amine83 (21.9 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.3 g of compound 85. (Yield 53%, MS: [M+H] + = 809)
실시예 86: 화합물 86의 제조Example 86: Preparation of compound 86
Figure PCTKR2022002694-appb-img-000249
Figure PCTKR2022002694-appb-img-000249
질소 분위기에서 화합물 BI(15 g, 40.3 mmol)와 화합물 amine84(21.4 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 86를 16.4 g 제조하였다. (수율 51%, MS: [M+H]+= 797)Compound BI (15 g, 40.3 mmol) and compound amine84 (21.4 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.4 g of compound 86. (Yield 51%, MS: [M+H] + = 797)
실시예 87: 화합물 87의 제조Example 87: Preparation of compound 87
Figure PCTKR2022002694-appb-img-000250
Figure PCTKR2022002694-appb-img-000250
질소 분위기에서 화합물 BG(15 g, 40.3 mmol)와 화합물 amine85(22.5 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 87를 16.6 g 제조하였다. (수율 50%, MS: [M+H]+= 823)Compound BG (15 g, 40.3 mmol) and compound amine85 (22.5 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.6 g of compound 87. (Yield 50%, MS: [M+H] + = 823)
실시예 88: 화합물 88의 제조Example 88: Preparation of compound 88
Figure PCTKR2022002694-appb-img-000251
Figure PCTKR2022002694-appb-img-000251
질소 분위기에서 화합물 BI(15 g, 40.3 mmol)와 화합물 amine86(21.4 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 88를 16.4 g 제조하였다. (수율 51%, MS: [M+H]+= 797)Compound BI (15 g, 40.3 mmol) and compound amine86 (21.4 g, 42.4 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.4 g of compound 88. (Yield 51%, MS: [M+H] + = 797)
실시예 89: 화합물 89의 제조Example 89: Preparation of compound 89
Figure PCTKR2022002694-appb-img-000252
Figure PCTKR2022002694-appb-img-000252
질소 분위기에서 화합물 BJ(15 g, 40.3 mmol)와 화합물 amine87(19.7 g, 42.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.7 g, 121 mmol)를 물(50 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 89를 16.5 g 제조하였다. (수율 54%, MS: [M+H]+= 757)Compound BJ (15 g, 40.3 mmol) and compound amine87 (19.7 g, 42.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.7 g, 121 mmol) was dissolved in water (50 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.5 g of compound 89. (Yield 54%, MS: [M+H] + = 757)
실시예 90: 화합물 90의 제조Example 90: Preparation of compound 90
Figure PCTKR2022002694-appb-img-000253
Figure PCTKR2022002694-appb-img-000253
질소 분위기에서 화합물 BN(10 g, 28.9 mmol), 화합물 amine88(10.7 g, 28.9 mmol), 소디움 터트-부톡사이드(9.2 g, 43.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 90 10.2 g을 얻었다. (수율 52%, MS: [M+H]+= 681)Compound BN (10 g, 28.9 mmol), compound amine88 (10.7 g, 28.9 mmol), sodium tert-butoxide (9.2 g, 43.4 mmol) in xylene (200 ml) in a nitrogen atmosphere were stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.2 g of compound 90. (Yield 52%, MS: [M+H] + = 681)
실시예 91: 화합물 91의 제조Example 91: Preparation of compound 91
Figure PCTKR2022002694-appb-img-000254
Figure PCTKR2022002694-appb-img-000254
질소 분위기에서 화합물 BM(10 g, 28.9 mmol), 화합물 amine89(12.2 g, 28.9 mmol), 소디움 터트-부톡사이드(9.2 g, 43.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 91 10.8 g을 얻었다. (수율 51%, MS: [M+H]+= 731)Compound BM (10 g, 28.9 mmol), compound amine89 (12.2 g, 28.9 mmol), and sodium tert-butoxide (9.2 g, 43.4 mmol) were added to xylene (200 ml) in a nitrogen atmosphere, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.8 g of compound 91. (Yield 51%, MS: [M+H] + = 731)
실시예 92: 화합물 92의 제조Example 92: Preparation of compound 92
Figure PCTKR2022002694-appb-img-000255
Figure PCTKR2022002694-appb-img-000255
질소 분위기에서 화합물 BQ(10 g, 28.9 mmol), 화합물 amine90(11.5 g, 28.9 mmol), 소디움 터트-부톡사이드(9.2 g, 43.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 92 10.4 g을 얻었다. (수율 51%, MS: [M+H]+= 707)Compound BQ (10 g, 28.9 mmol), compound amine90 (11.5 g, 28.9 mmol), sodium tert-butoxide (9.2 g, 43.4 mmol) in xylene (200 ml) in a nitrogen atmosphere were stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.4 g of compound 92. (Yield 51%, MS: [M+H] + = 707)
실시예 93: 화합물 93의 제조Example 93: Preparation of compound 93
Figure PCTKR2022002694-appb-img-000256
Figure PCTKR2022002694-appb-img-000256
질소 분위기에서 화합물 BP(10 g, 28.9 mmol), 화합물 amine91(11.5 g, 28.9 mmol), 소디움 터트-부톡사이드(9.2 g, 43.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 93 10.6 g을 얻었다. (수율 52%, MS: [M+H]+= 707)Compound BP (10 g, 28.9 mmol), compound amine91 (11.5 g, 28.9 mmol), sodium tert-butoxide (9.2 g, 43.4 mmol) in xylene (200 ml) in a nitrogen atmosphere were stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 3 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.6 g of compound 93. (Yield 52%, MS: [M+H] + = 707)
실시예 94: 화합물 94의 제조Example 94: Preparation of compound 94
Figure PCTKR2022002694-appb-img-000257
Figure PCTKR2022002694-appb-img-000257
질소 분위기에서 화합물 BP(15 g, 43.4 mmol)와 화합물 amine92(24.4 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 94를 18.4 g 제조하였다. (수율 53%, MS: [M+H]+= 801)Compound BP (15 g, 43.4 mmol) and compound amine92 (24.4 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.4 g of compound 94. (Yield 53%, MS: [M+H] + = 801)
실시예 95: 화합물 95의 제조Example 95: Preparation of compound 95
Figure PCTKR2022002694-appb-img-000258
Figure PCTKR2022002694-appb-img-000258
질소 분위기에서 화합물 BP(15 g, 43.4 mmol)와 화합물 amine93(25.8 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 95를 18 g 제조하였다. (수율 50%, MS: [M+H]+= 833)Compound BP (15 g, 43.4 mmol) and compound amine93 (25.8 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 8 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18 g of compound 95. (Yield 50%, MS: [M+H] + = 833)
실시예 96: 화합물 96의 제조Example 96: Preparation of compound 96
Figure PCTKR2022002694-appb-img-000259
Figure PCTKR2022002694-appb-img-000259
질소 분위기에서 화합물 BN(15 g, 43.4 mmol)와 화합물 amine94(24.8 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 96를 19 g 제조하였다. (수율 54%, MS: [M+H]+= 811)Compound BN (15 g, 43.4 mmol) and compound amine94 (24.8 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19 g of compound 96. (Yield 54%, MS: [M+H] + = 811)
실시예 97: 화합물 97의 제조Example 97: Preparation of compound 97
Figure PCTKR2022002694-appb-img-000260
Figure PCTKR2022002694-appb-img-000260
질소 분위기에서 화합물 BN(15 g, 43.4 mmol)와 화합물 amine95(23 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 97를 19.7 g 제조하였다. (수율 50%, MS: [M+H]+= 909)Compound BN (15 g, 43.4 mmol) and compound amine95 (23 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.7 g of compound 97. (Yield 50%, MS: [M+H] + = 909)
실시예 98: 화합물 98의 제조Example 98: Preparation of compound 98
Figure PCTKR2022002694-appb-img-000261
Figure PCTKR2022002694-appb-img-000261
질소 분위기에서 화합물 BR(15 g, 43.4 mmol)와 화합물 amine96(20.1 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 98를 15.3 g 제조하였다. (수율 50%, MS: [M+H]+= 707)Compound BR (15 g, 43.4 mmol) and compound amine96 (20.1 g, 45.5 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.3 g of compound 98. (Yield 50%, MS: [M+H] + = 707)
실시예 99: 화합물 99의 제조Example 99: Preparation of compound 99
Figure PCTKR2022002694-appb-img-000262
Figure PCTKR2022002694-appb-img-000262
질소 분위기에서 화합물 BP(15 g, 43.4 mmol)와 화합물 amine97(25.8 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 99를 19.5 g 제조하였다. (수율 54%, MS: [M+H]+= 833)Compound BP (15 g, 43.4 mmol) and compound amine 97 (25.8 g, 45.5 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 12 hours, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.5 g of compound 99. (Yield 54%, MS: [M+H] + = 833)
실시예 100: 화합물 100의 제조Example 100: Preparation of compound 100
Figure PCTKR2022002694-appb-img-000263
Figure PCTKR2022002694-appb-img-000263
질소 분위기에서 화합물 BN(15 g, 43.4 mmol)와 화합물 amine98(23.6 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 100를 18.7 g 제조하였다. (수율 55%, MS: [M+H]+= 783)Compound BN (15 g, 43.4 mmol) and compound amine98 (23.6 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.7 g of compound 100. (Yield 55%, MS: [M+H] + = 783)
실시예 101: 화합물 101의 제조Example 101: Preparation of compound 101
Figure PCTKR2022002694-appb-img-000264
Figure PCTKR2022002694-appb-img-000264
질소 분위기에서 화합물 BN(15 g, 43.4 mmol)와 화합물 amine98(23.6 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 100를 18.7 g 제조하였다. (수율 55%, MS: [M+H]+= 783)Compound BN (15 g, 43.4 mmol) and compound amine98 (23.6 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.7 g of compound 100. (Yield 55%, MS: [M+H] + = 783)
실시예 102: 화합물 102의 제조Example 102: Preparation of compound 102
Figure PCTKR2022002694-appb-img-000265
Figure PCTKR2022002694-appb-img-000265
질소 분위기에서 화합물 BP(15 g, 43.4 mmol)와 화합물 amine100(25.8 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 102를 19.1 g 제조하였다. (수율 53%, MS: [M+H]+= 833)Compound BP (15 g, 43.4 mmol) and compound amine100 (25.8 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.1 g of compound 102. (Yield 53%, MS: [M+H] + = 833)
실시예 103: 화합물 103의 제조Example 103: Preparation of compound 103
Figure PCTKR2022002694-appb-img-000266
Figure PCTKR2022002694-appb-img-000266
질소 분위기에서 화합물 BO(15 g, 43.4 mmol)와 화합물 amine101(23 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 103를 18.4 g 제조하였다. (수율 55%, MS: [M+H]+= 771)Compound BO (15 g, 43.4 mmol) and compound amine101 (23 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 1.0 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.4 g of compound 103. (Yield 55%, MS: [M+H] + = 771)
실시예 104: 화합물 104의 제조Example 104: Preparation of compound 104
Figure PCTKR2022002694-appb-img-000267
Figure PCTKR2022002694-appb-img-000267
질소 분위기에서 화합물 BO(15 g, 43.4 mmol)와 화합물 amine102(25.8 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 104를 19.9 g 제조하였다. (수율 55%, MS: [M+H]+= 833)Compound BO (15 g, 43.4 mmol) and compound amine102 (25.8 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.9 g of compound 104. (Yield 55%, MS: [M+H] + = 833)
실시예 105: 화합물 105의 제조Example 105: Preparation of compound 105
Figure PCTKR2022002694-appb-img-000268
Figure PCTKR2022002694-appb-img-000268
질소 분위기에서 화합물 BN(15 g, 43.4 mmol)와 화합물 amine103(25.8 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 105를 19.5 g 제조하였다. (수율 54%, MS: [M+H]+= 833)Compound BN (15 g, 43.4 mmol) and compound amine103 (25.8 g, 45.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (18 g, 130.1 mmol) was dissolved in water (54 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1.0 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.5 g of compound 105. (Yield 54%, MS: [M+H] + = 833)
[실험예][Experimental example]
실험예 1Experimental Example 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with indium tin oxide (ITO) to a thickness of 1,000 Å was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves. At this time, a product manufactured by Fischer Co. was used as the detergent, and distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water. After washing ITO for 30 minutes, ultrasonic washing was performed for 10 minutes by repeating twice with distilled water. After washing with distilled water, ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, and after drying, it was transported to a plasma cleaner. In addition, after cleaning the substrate for 5 minutes using oxygen plasma, the substrate was transported to a vacuum evaporator.
이렇게 준비된 ITO 투명 전극 위에, 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-doping하여 정공주입층을 형성하였다. 상기 정공주입층 위에, 하기 HT-1 화합물을 진공 증착하여 막 두께 800 Å의 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에, 앞서 제조한 화합물 1을 진공 증착하여 막 두께 150 Å의 전자억제층을 형성하였다. 상기 전자억제층 위에. 호스트로 하기 RH-1 화합물 및 도판트로 하기 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 막 두께 400 Å의 적색 발광층을 형성하였다. 상기 발광층 위에, 하기 HB-1 화합물을 진공 증착하여 막 두께 30 Å의 정공저지층을 형성하였다. 상기 정공저지층 위에, 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 막 두께 300Å의 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에, 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다. On the thus prepared ITO transparent electrode, the following HI-1 compound was formed to a thickness of 1150 Å, but the following A-1 compound was p-doped at a concentration of 1.5% to form a hole injection layer. On the hole injection layer, the following HT-1 compound was vacuum-deposited to form a hole transport layer having a thickness of 800 Å. Then, on the hole transport layer, compound 1 prepared above was vacuum-deposited to form an electron-blocking layer having a thickness of 150 Å. on the electron-suppressing layer. The following RH-1 compound as a host and the following Dp-7 compound as a dopant were vacuum-deposited at a weight ratio of 98:2 to form a red light emitting layer having a thickness of 400 Å. On the light emitting layer, the following HB-1 compound was vacuum-deposited to form a hole blocking layer having a thickness of 30 Å. On the hole blocking layer, the following ET-1 compound and the following LiQ compound were vacuum-deposited at a weight ratio of 2:1 to form an electron injection and transport layer having a thickness of 300 Å. On the electron injection and transport layer, lithium fluoride (LiF) to a thickness of 12 Å and aluminum to a thickness of 1,000 Å were sequentially deposited to form a cathode.
Figure PCTKR2022002694-appb-img-000269
Figure PCTKR2022002694-appb-img-000269
상기의 과정에서 유기물의 증착속도는 0.4~0.7 Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2x10-7 ~ 5x10-6 torr를 유지하여, 유기 발광 소자를 제작했다.In the above process, the deposition rate of organic material was maintained at 0.4-0.7 Å/sec, the deposition rate of lithium fluoride of the negative electrode was maintained at 0.3 Å/sec, and the deposition rate of aluminum was maintained at 2 Å/sec, and the vacuum degree during deposition was 2x10 -7 To maintain ~ 5x10 -6 torr, an organic light emitting device was manufactured.
실험예 2 내지 105Experimental Examples 2 to 105
화합물 1 대신 하기 표 1 내지 5에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. An organic light emitting diode was manufactured in the same manner as in Experimental Example 1, except that the compounds shown in Tables 1 to 5 were used instead of Compound 1.
비교실험예 1 내지 16Comparative Experimental Examples 1 to 16
화합물 1 대신 하기 표 6에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 6에서 화합물 C-1 내지 C-16은 각각 하기와 같았다. An organic light emitting diode was manufactured in the same manner as in Experimental Example 1, except that the compound shown in Table 6 was used instead of Compound 1. Compounds C-1 to C-16 in Table 6 were as follows, respectively.
Figure PCTKR2022002694-appb-img-000270
Figure PCTKR2022002694-appb-img-000270
상기 실험예 및 비교실험예에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율을 측정(15 mA/cm2)하고 그 결과를 하기 표 1 내지 6에 나타냈다. 수명 T95는 휘도가 초기 휘도(6000 nit)에서 95%로 감소되는데 소요되는 시간(hr)을 의미한다.When a current was applied to the organic light emitting diodes prepared in the Experimental Examples and Comparative Experimental Examples, voltage and efficiency were measured (15 mA/cm 2 ), and the results are shown in Tables 1 to 6 below. The lifetime T95 means the time (hr) required for the luminance to decrease from the initial luminance (6000 nit) to 95%.
전자억제층electron suppression layer 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color
실험예 1Experimental Example 1 화합물 1 compound 1 4.06 4.06 17.7417.74 219219 적색Red
실험예 2Experimental Example 2 화합물 2 compound 2 3.98 3.98 17.5817.58 213213 적색Red
실험예 3Experimental Example 3 화합물 3 compound 3 3.96 3.96 18.1218.12 235235 적색Red
실험예 4Experimental Example 4 화합물 4 compound 4 4.02 4.02 17.8317.83 212212 적색Red
실험예 5Experimental Example 5 화합물 5 compound 5 3.81 3.81 21.1721.17 249249 적색Red
실험예 6Experimental Example 6 화합물 6 compound 6 3.74 3.74 19.4119.41 243243 적색Red
실험예 7Experimental Example 7 화합물 7 compound 7 3.98 3.98 17.5317.53 232232 적색Red
실험예 8Experimental Example 8 화합물 8 compound 8 4.05 4.05 18.1618.16 228228 적색Red
실험예 9Experimental Example 9 화합물 9compound 9 3.96 3.96 17.6217.62 235235 적색Red
실험예 10Experimental Example 10 화합물 10compound 10 3.99 3.99 18.1618.16 230230 적색Red
실험예 11Experimental Example 11 화합물 11compound 11 3.86 3.86 19.4419.44 198198 적색Red
실험예 12Experimental Example 12 화합물 12compound 12 3.89 3.89 19.3219.32 197197 적색Red
실험예 13Experimental Example 13 화합물 13compound 13 3.75 3.75 20.3920.39 253253 적색Red
실험예 14Experimental Example 14 화합물 14compound 14 3.78 3.78 19.3719.37 251251 적색Red
실험예 15Experimental Example 15 화합물 15compound 15 3.77 3.77 20.5420.54 256256 적색Red
실험예 16Experimental Example 16 화합물 16compound 16 3.81 3.81 19.4319.43 191191 적색Red
실험예 17Experimental Example 17 화합물 17compound 17 3.95 3.95 18.5018.50 248248 적색Red
실험예 18Experimental Example 18 화합물 18compound 18 3.94 3.94 18.9018.90 231231 적색Red
실험예 19Experimental Example 19 화합물 19compound 19 3.95 3.95 18.4618.46 242242 적색Red
실험예 20Experimental Example 20 화합물 20compound 20 3.98 3.98 18.8518.85 242242 적색Red
전자억제층electron suppression layer 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color
실험예 21Experimental Example 21 화합물 21compound 21 3.98 3.98 19.0119.01 242242 적색Red
실험예 22Experimental Example 22 화합물 22compound 22 3.94 3.94 18.2718.27 249249 적색Red
실험예 23Experimental Example 23 화합물 23compound 23 3.90 3.90 18.3418.34 241241 적색Red
실험예 24Experimental Example 24 화합물 24compound 24 3.92 3.92 18.6918.69 246246 적색Red
실험예 25Experimental Example 25 화합물 25compound 25 3.98 3.98 18.6218.62 231231 적색Red
실험예 26Experimental Example 26 화합물 26compound 26 3.80 3.80 19.4419.44 248248 적색Red
실험예 27Experimental Example 27 화합물 27compound 27 3.81 3.81 20.7720.77 259259 적색Red
실험예 28Experimental Example 28 화합물 28compound 28 3.70 3.70 20.0820.08 262262 적색Red
실험예 29Experimental Example 29 화합물 29compound 29 3.78 3.78 19.3819.38 250250 적색Red
실험예 30Experimental Example 30 화합물 30compound 30 3.76 3.76 20.2620.26 260260 적색Red
실험예 31Experimental Example 31 화합물 31compound 31 3.91 3.91 18.0418.04 245245 적색Red
실험예 32Experimental Example 32 화합물 32compound 32 3.96 3.96 18.8818.88 241241 적색Red
실험예 33Experimental Example 33 화합물 33compound 33 3.99 3.99 18.0518.05 250250 적색Red
실험예 34Experimental Example 34 화합물 34compound 34 3.82 3.82 19.8519.85 259259 적색Red
실험예 35Experimental Example 35 화합물 35compound 35 3.88 3.88 18.5118.51 243243 적색Red
실험예 36Experimental Example 36 화합물 36compound 36 3.96 3.96 18.6718.67 234234 적색Red
실험예 37Experimental Example 37 화합물 37compound 37 3.71 3.71 20.4020.40 257257 적색Red
실험예 38Experimental Example 38 화합물 38compound 38 3.94 3.94 18.4618.46 248248 적색Red
실험예 39Experimental Example 39 화합물 39compound 39 3.79 3.79 20.1520.15 245245 적색Red
실험예 40Experimental Example 40 화합물 40compound 40 3.72 3.72 20.6520.65 267267 적색Red
전자억제층electron suppression layer 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color
실험예 41Experimental Example 41 화합물 41compound 41 3.98 3.98 19.9619.96 265265 적색Red
실험예 42Experimental Example 42 화합물 42compound 42 4.04 4.04 19.4619.46 245245 적색Red
실험예 43Experimental Example 43 화합물 43compound 43 3.91 3.91 19.0119.01 203203 적색Red
실험예 44Experimental Example 44 화합물 44compound 44 3.88 3.88 19.5519.55 206206 적색Red
실험예 45Experimental Example 45 화합물 45compound 45 3.91 3.91 19.1919.19 191191 적색Red
실험예 46Experimental Example 46 화합물 46compound 46 3.78 3.78 20.5020.50 266266 적색Red
실험예 47Experimental Example 47 화합물 47compound 47 3.88 3.88 18.9618.96 208208 적색Red
실험예 48Experimental Example 48 화합물 48compound 48 3.86 3.86 18.9218.92 195195 적색Red
실험예 49Experimental Example 49 화합물 49compound 49 3.85 3.85 19.0619.06 210210 적색Red
실험예 50Experimental Example 50 화합물 50compound 50 3.86 3.86 19.3619.36 197197 적색Red
실험예 51Experimental Example 51 화합물 51compound 51 3.84 3.84 19.6519.65 202202 적색Red
실험예 52Experimental Example 52 화합물 52compound 52 3.85 3.85 18.8718.87 193193 적색Red
실험예 53Experimental Example 53 화합물 53compound 53 3.77 3.77 20.5320.53 248248 적색Red
실험예 54Experimental Example 54 화합물 54compound 54 3.82 3.82 20.0620.06 250250 적색Red
실험예 55Experimental Example 55 화합물 55compound 55 3.73 3.73 20.8720.87 264264 적색Red
실험예 56Experimental Example 56 화합물 56compound 56 3.82 3.82 20.6420.64 266266 적색Red
실험예 57Experimental Example 57 화합물 57compound 57 3.79 3.79 21.2921.29 261261 적색Red
실험예 58Experimental Example 58 화합물 58compound 58 3.80 3.80 19.6219.62 249249 적색Red
실험예 59Experimental Example 59 화합물 59compound 59 3.78 3.78 21.2321.23 263263 적색Red
실험예 60Experimental Example 60 화합물 60compound 60 3.83 3.83 18.7618.76 199199 적색Red
전자억제층electron suppression layer 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color
실험예 61Experimental Example 61 화합물 61compound 61 3.88 3.88 18.9618.96 208208 적색Red
실험예 62Experimental Example 62 화합물 62compound 62 3.86 3.86 18.9218.92 195195 적색Red
실험예 63Experimental Example 63 화합물 63compound 63 3.85 3.85 19.0619.06 210210 적색Red
실험예 64Experimental Example 64 화합물 64compound 64 3.90 3.90 19.8919.89 212212 적색Red
실험예 65Experimental Example 65 화합물 65compound 65 3.91 3.91 19.6219.62 195195 적색Red
실험예 66Experimental Example 66 화합물 66compound 66 3.91 3.91 19.3219.32 197197 적색Red
실험예 67Experimental Example 67 화합물 67compound 67 3.92 3.92 19.7619.76 194194 적색Red
실험예 68Experimental Example 68 화합물 68compound 68 3.85 3.85 19.0619.06 193193 적색Red
실험예 69Experimental Example 69 화합물 69compound 69 3.88 3.88 19.3819.38 217217 적색Red
실험예 70Experimental Example 70 화합물 70compound 70 3.88 3.88 18.7118.71 197197 적색Red
실험예 71Experimental Example 71 화합물 71compound 71 3.98 3.98 18.1518.15 233233 적색Red
실험예 72Experimental Example 72 화합물 72compound 72 3.98 3.98 18.0618.06 249249 적색Red
실험예 73Experimental Example 73 화합물 73compound 73 3.94 3.94 19.0119.01 250250 적색Red
실험예 74Experimental Example 74 화합물 74compound 74 3.90 3.90 18.0118.01 250250 적색Red
실험예 75Experimental Example 75 화합물 75compound 75 3.90 3.90 18.8718.87 234234 적색Red
실험예 76Experimental Example 76 화합물 76compound 76 3.98 3.98 18.0518.05 245245 적색Red
실험예 77Experimental Example 77 화합물 77compound 77 3.92 3.92 18.2418.24 244244 적색Red
실험예 78Experimental Example 78 화합물 78compound 78 3.89 3.89 18.0118.01 246246 적색Red
실험예 79Experimental Example 79 화합물 79compound 79 3.90 3.90 18.6918.69 244244 적색Red
실험예 80Experimental Example 80 화합물 80compound 80 3.96 3.96 18.8718.87 237237 적색Red
전자억제층electron suppression layer 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color
실험예 81Experimental Example 81 화합물 81compound 81 4.00 4.00 17.6017.60 235235 적색Red
실험예 82Experimental Example 82 화합물 82compound 82 3.95 3.95 18.2018.20 216216 적색Red
실험예 83Experimental Example 83 화합물 83compound 83 3.96 3.96 18.2418.24 216216 적색Red
실험예 84Experimental Example 84 화합물 84compound 84 4.07 4.07 17.6217.62 213213 적색Red
실험예 85Experimental Example 85 화합물 85compound 85 3.98 3.98 17.6117.61 217217 적색Red
실험예 86Experimental Example 86 화합물 86compound 86 4.07 4.07 17.9617.96 238238 적색Red
실험예 87Experimental Example 87 화합물 87compound 87 3.97 3.97 18.0318.03 212212 적색Red
실험예 88Experimental Example 88 화합물 88compound 88 4.05 4.05 17.5517.55 216216 적색Red
실험예 89Experimental Example 89 화합물 89compound 89 3.97 3.97 17.7317.73 217217 적색Red
실험예 90Experimental Example 90 화합물 90compound 90 4.03 4.03 17.7517.75 221221 적색Red
실험예 91Experimental Example 91 화합물 91compound 91 3.89 3.89 19.5119.51 215215 적색Red
실험예 92Experimental Example 92 화합물 92compound 92 3.86 3.86 19.8319.83 208208 적색Red
실험예 93Experimental Example 93 화합물 93compound 93 3.81 3.81 19.5419.54 260260 적색Red
실험예 94Experimental Example 94 화합물 94compound 94 3.83 3.83 19.7919.79 214214 적색Red
실험예 95Experimental Example 95 화합물 95compound 95 3.90 3.90 19.8319.83 216216 적색Red
실험예 96Experimental Example 96 화합물 96compound 96 3.91 3.91 19.0919.09 206206 적색Red
실험예 97Experimental Example 97 화합물 97compound 97 3.81 3.81 18.7518.75 213213 적색Red
실험예 98Experimental Example 98 화합물 98compound 98 3.82 3.82 19.4019.40 205205 적색Red
실험예 99Experimental Example 99 화합물 99compound 99 3.84 3.84 19.8519.85 211211 적색Red
실험예 100Experimental Example 100 화합물 100compound 100 3.83 3.83 19.2619.26 208208 적색Red
실험예 101Experimental Example 101 화합물 101compound 101 3.76 3.76 19.2419.24 243243 적색Red
실험예 102Experimental Example 102 화합물 102compound 102 3.83 3.83 20.8420.84 250250 적색Red
실험예 103Experimental Example 103 화합물 103compound 103 3.79 3.79 21.1621.16 267267 적색Red
실험예 104Experimental Example 104 화합물 104compound 104 3.84 3.84 19.9819.98 263263 적색Red
실험예 105Experimental Example 105 화합물 105compound 105 3.80 3.80 19.8119.81 253253 적색Red
전자억제층electron suppression layer 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color
비교실험예 1Comparative Experiment Example 1 화합물 C-1compound C-1 4.14 4.14 16.3016.30 163163 적색Red
비교실험예 2Comparative Experimental Example 2 화합물 C-2compound C-2 4.13 4.13 16.6016.60 167167 적색Red
비교실험예 3Comparative Experimental Example 3 화합물 C-3compound C-3 4.15 4.15 16.7916.79 170170 적색Red
비교실험예 4Comparative Experimental Example 4 화합물 C-4compound C-4 4.29 4.29 14.9814.98 9090 적색Red
비교실험예 5Comparative Experiment Example 5 화합물 C-5compound C-5 4.26 4.26 14.2814.28 9494 적색Red
비교실험예 6Comparative Experiment Example 6 화합물 C-6compound C-6 4.27 4.27 14.3614.36 104104 적색Red
비교실험예 7Comparative Experimental Example 7 화합물 C-7compound C-7 4.15 4.15 15.4215.42 146146 적색Red
비교실험예 8Comparative Experimental Example 8 화합물 C-8compound C-8 4.12 4.12 16.1716.17 141141 적색Red
비교실험예 9Comparative Experimental Example 9 화합물 C-9compound C-9 4.16 4.16 15.5115.51 151151 적색Red
비교실험예 10Comparative Experimental Example 10 화합물 C-10compound C-10 4.12 4.12 17.0917.09 168168 적색Red
비교실험예 11Comparative Experimental Example 11 화합물 C-11compound C-11 4.38 4.38 15.2215.22 103103 적색Red
비교실험예 12Comparative Experimental Example 12 화합물 C-12compound C-12 4.37 4.37 16.0016.00 9696 적색Red
비교실험예 13Comparative Experiment Example 13 화합물 C-13compound C-13 4.38 4.38 14.7814.78 126126 적색Red
비교실험예 14Comparative Experimental Example 14 화합물 C-14compound C-14 4.26 4.26 14.6214.62 8282 적색Red
비교실험예 15Comparative Experimental Example 15 화합물 C-15compound C-15 4.15 4.15 16.7816.78 156156 적색Red
비교실험예 16Comparative Experimental Example 16 화합물 C-16compound C-16 4.14 4.14 16.3916.39 154154 적색Red
실험예 1 내지 105 및 비교실험예 1 내지 16에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 상기 표 1의 결과를 얻었다. 상기 실험예 1의 적색 유기 발광 소자는 종래 널리 사용되고 있는 물질을 사용하였으며, 적색 발광층의 도판트로 Dp-7을 사용하는 구조이다. 비교예 1 내지 16은 화합물 1 대신 C-1 내지 C-16을 사용하여 유기 발광 소자를 제조했다. 상기 표 1의 결과를 보면 본 발명의 화합물이 전자억제층으로 사용했을 때 비교예 물질에 비해서 구동 전압이 크게 낮아졌으며, 효율 측면에도 상승을 한 것으로 보아 호스트에서 적색 도판트로 에너지 전달이 잘 이뤄진다는 것을 알 수 있었다. 또한 높은 효율을 유지하면서도 수명 특성을 크게 개선시킬 수 있는 것을 알 수 있었다. 이것은 결국 비교예 화합물 보다 본 발명의 화합물이 전자와 정공에 대한 안정도가 높기 때문이라 판단할 수 있다. 결론적으로 본 발명의 화합물을 적색 발광층의 전자 억제층으로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있다. When a current was applied to the organic light emitting diodes fabricated in Experimental Examples 1 to 105 and Comparative Experimental Examples 1 to 16, the results shown in Table 1 were obtained. The red organic light-emitting device of Experimental Example 1 used a material widely used in the prior art, and has a structure using Dp-7 as a dopant for the red light-emitting layer. In Comparative Examples 1 to 16, organic light emitting devices were prepared by using C-1 to C-16 instead of Compound 1. Looking at the results of Table 1, when the compound of the present invention was used as an electron suppression layer, the driving voltage was significantly lower than that of the comparative example material, and it was found that the energy transfer from the host to the red dopant was well done as it was also increased in terms of efficiency. could see that In addition, it was found that the lifetime characteristics can be greatly improved while maintaining high efficiency. It can be determined that this is because the compound of the present invention has higher stability for electrons and holes than the compound of Comparative Example. In conclusion, it can be confirmed that when the compound of the present invention is used as the electron suppression layer of the red light emitting layer, the driving voltage, luminous efficiency, and lifespan characteristics of the organic light emitting device can be improved.
[부호의 설명][Explanation of code]
1: 기판 2: 양극1: Substrate 2: Anode
3: 발광층 4: 음극3: light emitting layer 4: cathode
5: 정공주입층 6: 정공수송층5: hole injection layer 6: hole transport layer
7: 발광층 8: 전자수송층7: light emitting layer 8: electron transport layer

Claims (12)

  1. 하기 화학식 1 또는 2로 표시되는 화합물:A compound represented by Formula 1 or 2:
    [화학식 1][Formula 1]
    Figure PCTKR2022002694-appb-img-000271
    Figure PCTKR2022002694-appb-img-000271
    [화학식 2][Formula 2]
    Figure PCTKR2022002694-appb-img-000272
    Figure PCTKR2022002694-appb-img-000272
    상기 화학식 1 및 2에서, In Formulas 1 and 2,
    Ar은 치환 또는 비치환된 C6-60 아릴이고, Ar is substituted or unsubstituted C 6-60 aryl,
    R1 내지 R6 중 하나는 하기 화학식 3으로 표시되는 치환기이고, 나머지는 각각 독립적으로 수소, 또는 중수소이고,One of R 1 to R 6 is a substituent represented by the following formula (3), and the rest are each independently hydrogen or deuterium;
    [화학식 3][Formula 3]
    Figure PCTKR2022002694-appb-img-000273
    Figure PCTKR2022002694-appb-img-000273
    상기 화학식 3에서, In Formula 3,
    L은 단일 결합, 치환 또는 비치환된 C6-60 아릴렌, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고, L is a single bond, substituted or unsubstituted C 6-60 arylene, or substituted or unsubstituted C 2-60 heteroarylene including at least one selected from the group consisting of N, O and S,
    L1 및 L2는 각각 독립적으로, 단일 결합, 치환 또는 비치환된 C6-60 아릴렌, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고, L 1 and L 2 are each independently a single bond, substituted or unsubstituted C 6-60 arylene, or substituted or unsubstituted C including any one or more selected from the group consisting of N, O and S 2-60 heteroarylene;
    Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고, Ar 1 and Ar 2 are each independently, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted C 2-60 hetero comprising at least one selected from the group consisting of N, O and S aryl,
    단, R5 또는 R6가 상기 화학식 3으로 표시되는 치환기인 경우, However, when R 5 or R 6 is a substituent represented by Formula 3,
    L1은 치환 또는 비치환된 C6-60 아릴렌이고, Ar1은 치환 또는 비치환된 C8-60 아릴이거나, 또는L 1 is substituted or unsubstituted C 6-60 arylene, Ar 1 is substituted or unsubstituted C 8-60 aryl, or
    L1은 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고, Ar1은 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이다.L 1 is a single bond, or substituted or unsubstituted C 6-60 arylene, Ar 1 is C 2-60 including at least one selected from the group consisting of substituted or unsubstituted N, O, and S heteroaryl.
  2. 제1항에 있어서, According to claim 1,
    Ar은 페닐, 비페닐, 또는 나프틸인,Ar is phenyl, biphenyl, or naphthyl;
    화합물.compound.
  3. 제1항에 있어서, According to claim 1,
    L은 단일 결합, 페닐렌, 비페닐디일, 터페닐디일, 나프틸렌, 또는 -(페닐렌)-(나프틸렌)-인,L is a single bond, phenylene, biphenyldiyl, terphenyldiyl, naphthylene, or -(phenylene)-(naphthylene)-;
    화합물. compound.
  4. 제1항에 있어서, According to claim 1,
    L1 및 L2는 각각 독립적으로, 단일 결합, 페닐렌, 또는 비페닐디일인,L 1 and L 2 are each independently a single bond, phenylene, or biphenyldiyl,
    화합물. compound.
  5. 제1항에 있어서, According to claim 1,
    Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 나프틸페닐, 페닐나프틸, 페난쓰레닐, 디메틸플루오레닐, 디페닐플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 9H-카바졸-9-일, 또는 9-페닐-9H-카바졸릴인,Ar 1 and Ar 2 are each independently, phenyl, biphenylyl, terphenylyl, naphthyl, naphthylphenyl, phenylnaphthyl, phenanthrenyl, dimethylfluorenyl, diphenylfluorenyl, dibenzofuranyl , which is dibenzothiophenyl, 9H-carbazol-9-yl, or 9-phenyl-9H-carbazolyl;
    화합물. compound.
  6. 제1항에 있어서, According to claim 1,
    R1 내지 R4 중 하나는 상기 화학식 3으로 표시되는 치환기이고, 나머지는 각각 독립적으로 수소, 또는 중수소이고,One of R 1 to R 4 is a substituent represented by Formula 3, and the rest are each independently hydrogen or deuterium;
    R5 및 R6는 각각 독립적으로 수소, 또는 중수소인,R 5 and R 6 are each independently hydrogen or deuterium,
    화합물. compound.
  7. 제1항에 있어서, According to claim 1,
    R1 내지 R4는 각각 독립적으로 수소, 또는 중수소이고,R 1 to R 4 are each independently hydrogen, or deuterium,
    R5 및 R6 중 하나는 상기 화학식 3으로 표시되는 치환기이고, 나머지는 수소, 또는 중수소인,One of R 5 and R 6 is a substituent represented by Formula 3, and the remainder is hydrogen or deuterium,
    화합물. compound.
  8. 제7항에 있어서, 8. The method of claim 7,
    L1은 페닐렌, 또는 비페닐디일이고,L 1 is phenylene, or biphenyldiyl,
    Ar1은 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 디메틸플루오레닐, 또는 디페닐플루오레닐인,Ar 1 is biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dimethylfluorenyl, or diphenylfluorenyl;
    화합물. compound.
  9. 제7항에 있어서, 8. The method of claim 7,
    L1은 단일결합, 페닐렌, 또는 비페닐디일이고,L 1 is a single bond, phenylene, or biphenyldiyl,
    Ar1은 디벤조퓨라닐, 디벤조티오페닐, 9H-카바졸-9-일, 또는 9-페닐-9H-카바졸릴인,Ar 1 is dibenzofuranyl, dibenzothiophenyl, 9H-carbazol-9-yl, or 9-phenyl-9H-carbazolyl;
    화합물.compound.
  10. 제1항에 있어서, According to claim 1,
    상기 화학식 1 또는 2로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,The compound represented by Formula 1 or 2 is any one selected from the group consisting of
    화합물:compound:
    Figure PCTKR2022002694-appb-img-000274
    Figure PCTKR2022002694-appb-img-000274
    Figure PCTKR2022002694-appb-img-000275
    Figure PCTKR2022002694-appb-img-000275
    Figure PCTKR2022002694-appb-img-000276
    Figure PCTKR2022002694-appb-img-000276
    Figure PCTKR2022002694-appb-img-000277
    Figure PCTKR2022002694-appb-img-000277
    Figure PCTKR2022002694-appb-img-000278
    Figure PCTKR2022002694-appb-img-000278
    Figure PCTKR2022002694-appb-img-000279
    Figure PCTKR2022002694-appb-img-000279
    Figure PCTKR2022002694-appb-img-000280
    Figure PCTKR2022002694-appb-img-000280
    Figure PCTKR2022002694-appb-img-000281
    Figure PCTKR2022002694-appb-img-000281
    Figure PCTKR2022002694-appb-img-000282
    Figure PCTKR2022002694-appb-img-000282
    Figure PCTKR2022002694-appb-img-000283
    Figure PCTKR2022002694-appb-img-000283
    Figure PCTKR2022002694-appb-img-000284
    Figure PCTKR2022002694-appb-img-000284
    Figure PCTKR2022002694-appb-img-000285
    Figure PCTKR2022002694-appb-img-000285
    Figure PCTKR2022002694-appb-img-000286
    Figure PCTKR2022002694-appb-img-000286
    Figure PCTKR2022002694-appb-img-000287
    Figure PCTKR2022002694-appb-img-000287
    Figure PCTKR2022002694-appb-img-000288
    Figure PCTKR2022002694-appb-img-000288
    Figure PCTKR2022002694-appb-img-000289
    Figure PCTKR2022002694-appb-img-000289
    Figure PCTKR2022002694-appb-img-000290
    Figure PCTKR2022002694-appb-img-000290
    Figure PCTKR2022002694-appb-img-000291
    Figure PCTKR2022002694-appb-img-000291
    Figure PCTKR2022002694-appb-img-000292
    Figure PCTKR2022002694-appb-img-000292
    Figure PCTKR2022002694-appb-img-000293
    Figure PCTKR2022002694-appb-img-000293
    Figure PCTKR2022002694-appb-img-000294
    Figure PCTKR2022002694-appb-img-000294
    Figure PCTKR2022002694-appb-img-000295
    Figure PCTKR2022002694-appb-img-000295
    Figure PCTKR2022002694-appb-img-000296
    Figure PCTKR2022002694-appb-img-000296
    Figure PCTKR2022002694-appb-img-000297
    Figure PCTKR2022002694-appb-img-000297
    Figure PCTKR2022002694-appb-img-000298
    Figure PCTKR2022002694-appb-img-000298
    Figure PCTKR2022002694-appb-img-000299
    Figure PCTKR2022002694-appb-img-000299
    Figure PCTKR2022002694-appb-img-000300
    Figure PCTKR2022002694-appb-img-000300
    Figure PCTKR2022002694-appb-img-000301
    Figure PCTKR2022002694-appb-img-000301
    Figure PCTKR2022002694-appb-img-000302
    Figure PCTKR2022002694-appb-img-000302
    Figure PCTKR2022002694-appb-img-000303
    Figure PCTKR2022002694-appb-img-000303
    Figure PCTKR2022002694-appb-img-000304
    Figure PCTKR2022002694-appb-img-000304
    Figure PCTKR2022002694-appb-img-000305
    Figure PCTKR2022002694-appb-img-000305
    Figure PCTKR2022002694-appb-img-000306
    Figure PCTKR2022002694-appb-img-000306
    Figure PCTKR2022002694-appb-img-000307
    Figure PCTKR2022002694-appb-img-000307
    Figure PCTKR2022002694-appb-img-000308
    Figure PCTKR2022002694-appb-img-000308
    Figure PCTKR2022002694-appb-img-000309
    Figure PCTKR2022002694-appb-img-000309
    Figure PCTKR2022002694-appb-img-000310
    Figure PCTKR2022002694-appb-img-000310
    Figure PCTKR2022002694-appb-img-000311
    Figure PCTKR2022002694-appb-img-000311
    Figure PCTKR2022002694-appb-img-000312
    Figure PCTKR2022002694-appb-img-000312
    Figure PCTKR2022002694-appb-img-000313
    Figure PCTKR2022002694-appb-img-000313
    Figure PCTKR2022002694-appb-img-000314
    Figure PCTKR2022002694-appb-img-000314
    Figure PCTKR2022002694-appb-img-000315
    Figure PCTKR2022002694-appb-img-000315
    Figure PCTKR2022002694-appb-img-000316
    Figure PCTKR2022002694-appb-img-000316
    Figure PCTKR2022002694-appb-img-000317
    Figure PCTKR2022002694-appb-img-000317
    Figure PCTKR2022002694-appb-img-000318
    Figure PCTKR2022002694-appb-img-000318
    Figure PCTKR2022002694-appb-img-000319
    Figure PCTKR2022002694-appb-img-000319
    Figure PCTKR2022002694-appb-img-000320
    Figure PCTKR2022002694-appb-img-000320
    Figure PCTKR2022002694-appb-img-000321
    Figure PCTKR2022002694-appb-img-000321
    Figure PCTKR2022002694-appb-img-000322
    Figure PCTKR2022002694-appb-img-000322
    Figure PCTKR2022002694-appb-img-000323
    Figure PCTKR2022002694-appb-img-000323
    Figure PCTKR2022002694-appb-img-000324
    Figure PCTKR2022002694-appb-img-000324
    Figure PCTKR2022002694-appb-img-000325
    Figure PCTKR2022002694-appb-img-000325
    Figure PCTKR2022002694-appb-img-000326
    Figure PCTKR2022002694-appb-img-000326
    Figure PCTKR2022002694-appb-img-000327
    Figure PCTKR2022002694-appb-img-000327
    Figure PCTKR2022002694-appb-img-000328
    Figure PCTKR2022002694-appb-img-000328
    Figure PCTKR2022002694-appb-img-000329
    Figure PCTKR2022002694-appb-img-000329
    Figure PCTKR2022002694-appb-img-000330
    Figure PCTKR2022002694-appb-img-000330
    Figure PCTKR2022002694-appb-img-000331
    Figure PCTKR2022002694-appb-img-000331
    Figure PCTKR2022002694-appb-img-000332
    Figure PCTKR2022002694-appb-img-000332
    Figure PCTKR2022002694-appb-img-000333
    Figure PCTKR2022002694-appb-img-000333
    Figure PCTKR2022002694-appb-img-000334
    Figure PCTKR2022002694-appb-img-000334
    Figure PCTKR2022002694-appb-img-000335
    Figure PCTKR2022002694-appb-img-000335
    Figure PCTKR2022002694-appb-img-000336
    Figure PCTKR2022002694-appb-img-000336
    Figure PCTKR2022002694-appb-img-000337
    Figure PCTKR2022002694-appb-img-000337
    Figure PCTKR2022002694-appb-img-000338
    Figure PCTKR2022002694-appb-img-000338
    Figure PCTKR2022002694-appb-img-000339
    Figure PCTKR2022002694-appb-img-000339
    Figure PCTKR2022002694-appb-img-000340
    Figure PCTKR2022002694-appb-img-000340
    Figure PCTKR2022002694-appb-img-000341
    Figure PCTKR2022002694-appb-img-000341
    Figure PCTKR2022002694-appb-img-000342
    Figure PCTKR2022002694-appb-img-000342
    Figure PCTKR2022002694-appb-img-000343
    Figure PCTKR2022002694-appb-img-000343
    Figure PCTKR2022002694-appb-img-000344
    Figure PCTKR2022002694-appb-img-000344
    Figure PCTKR2022002694-appb-img-000345
    Figure PCTKR2022002694-appb-img-000345
    Figure PCTKR2022002694-appb-img-000346
    Figure PCTKR2022002694-appb-img-000346
    Figure PCTKR2022002694-appb-img-000347
    Figure PCTKR2022002694-appb-img-000347
    Figure PCTKR2022002694-appb-img-000348
    Figure PCTKR2022002694-appb-img-000348
    Figure PCTKR2022002694-appb-img-000349
    Figure PCTKR2022002694-appb-img-000349
    Figure PCTKR2022002694-appb-img-000350
    Figure PCTKR2022002694-appb-img-000350
    Figure PCTKR2022002694-appb-img-000351
    Figure PCTKR2022002694-appb-img-000351
    Figure PCTKR2022002694-appb-img-000352
    Figure PCTKR2022002694-appb-img-000352
    Figure PCTKR2022002694-appb-img-000353
    Figure PCTKR2022002694-appb-img-000353
    Figure PCTKR2022002694-appb-img-000354
    Figure PCTKR2022002694-appb-img-000354
    Figure PCTKR2022002694-appb-img-000355
    Figure PCTKR2022002694-appb-img-000355
    Figure PCTKR2022002694-appb-img-000356
    Figure PCTKR2022002694-appb-img-000356
    Figure PCTKR2022002694-appb-img-000357
    Figure PCTKR2022002694-appb-img-000357
    Figure PCTKR2022002694-appb-img-000358
    Figure PCTKR2022002694-appb-img-000358
    Figure PCTKR2022002694-appb-img-000359
    Figure PCTKR2022002694-appb-img-000359
    Figure PCTKR2022002694-appb-img-000360
    Figure PCTKR2022002694-appb-img-000360
    Figure PCTKR2022002694-appb-img-000361
    Figure PCTKR2022002694-appb-img-000361
    Figure PCTKR2022002694-appb-img-000362
    Figure PCTKR2022002694-appb-img-000362
    Figure PCTKR2022002694-appb-img-000363
    Figure PCTKR2022002694-appb-img-000363
    Figure PCTKR2022002694-appb-img-000364
    Figure PCTKR2022002694-appb-img-000364
    Figure PCTKR2022002694-appb-img-000365
    Figure PCTKR2022002694-appb-img-000365
    Figure PCTKR2022002694-appb-img-000366
    Figure PCTKR2022002694-appb-img-000366
    Figure PCTKR2022002694-appb-img-000367
    Figure PCTKR2022002694-appb-img-000367
    Figure PCTKR2022002694-appb-img-000368
    Figure PCTKR2022002694-appb-img-000368
    Figure PCTKR2022002694-appb-img-000369
    Figure PCTKR2022002694-appb-img-000369
    Figure PCTKR2022002694-appb-img-000370
    Figure PCTKR2022002694-appb-img-000370
    Figure PCTKR2022002694-appb-img-000371
    Figure PCTKR2022002694-appb-img-000371
    Figure PCTKR2022002694-appb-img-000372
    Figure PCTKR2022002694-appb-img-000372
    Figure PCTKR2022002694-appb-img-000373
    Figure PCTKR2022002694-appb-img-000373
    Figure PCTKR2022002694-appb-img-000374
    Figure PCTKR2022002694-appb-img-000374
    Figure PCTKR2022002694-appb-img-000375
    Figure PCTKR2022002694-appb-img-000375
    Figure PCTKR2022002694-appb-img-000376
    Figure PCTKR2022002694-appb-img-000376
    Figure PCTKR2022002694-appb-img-000377
    Figure PCTKR2022002694-appb-img-000377
    Figure PCTKR2022002694-appb-img-000378
    Figure PCTKR2022002694-appb-img-000378
    Figure PCTKR2022002694-appb-img-000379
    Figure PCTKR2022002694-appb-img-000379
    Figure PCTKR2022002694-appb-img-000380
    Figure PCTKR2022002694-appb-img-000380
    Figure PCTKR2022002694-appb-img-000381
    Figure PCTKR2022002694-appb-img-000381
    Figure PCTKR2022002694-appb-img-000382
    Figure PCTKR2022002694-appb-img-000382
    Figure PCTKR2022002694-appb-img-000383
    Figure PCTKR2022002694-appb-img-000383
    Figure PCTKR2022002694-appb-img-000384
    Figure PCTKR2022002694-appb-img-000384
    Figure PCTKR2022002694-appb-img-000385
    Figure PCTKR2022002694-appb-img-000385
    Figure PCTKR2022002694-appb-img-000386
    Figure PCTKR2022002694-appb-img-000386
    Figure PCTKR2022002694-appb-img-000387
    Figure PCTKR2022002694-appb-img-000387
    Figure PCTKR2022002694-appb-img-000388
    Figure PCTKR2022002694-appb-img-000388
    Figure PCTKR2022002694-appb-img-000389
    Figure PCTKR2022002694-appb-img-000389
    Figure PCTKR2022002694-appb-img-000390
    Figure PCTKR2022002694-appb-img-000390
  11. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제10항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers contains the compound according to any one of claims 1 to 10 which is an organic light emitting device.
  12. 제11항에 있어서, 12. The method of claim 11,
    상기 화합물을 포함하는 유기물층은 전자억제층인, The organic layer containing the compound is an electron suppression layer,
    유기 발광 소자.organic light emitting device.
PCT/KR2022/002694 2021-02-24 2022-02-24 Novel compound and organic light emitting device using same WO2022182152A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280007768.4A CN116615421A (en) 2021-02-24 2022-02-24 Novel compound and organic light emitting device comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0024930 2021-02-24
KR20210024930 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022182152A1 true WO2022182152A1 (en) 2022-09-01

Family

ID=83049543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002694 WO2022182152A1 (en) 2021-02-24 2022-02-24 Novel compound and organic light emitting device using same

Country Status (3)

Country Link
KR (1) KR20220121213A (en)
CN (1) CN116615421A (en)
WO (1) WO2022182152A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030283A1 (en) * 2015-08-19 2017-02-23 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent device comprising the same
KR20180099487A (en) * 2017-02-27 2018-09-05 롬엔드하스전자재료코리아유한회사 A plurality of host materials and organic electroluminescent device comprising the same
CN110734431A (en) * 2019-11-18 2020-01-31 烟台九目化学股份有限公司 oxazole compounds containing triazine structure and application thereof
CN111039888A (en) * 2019-12-23 2020-04-21 长春海谱润斯科技有限公司 Compound for organic electroluminescent device and organic electroluminescent device thereof
WO2020262925A1 (en) * 2019-06-24 2020-12-30 덕산네오룩스 주식회사 Organic electric element
CN112341449A (en) * 2020-11-10 2021-02-09 长春海谱润斯科技股份有限公司 Triarylamine organic compound containing spirofluorene and organic light-emitting device thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (en) 1999-01-27 2004-05-10 주식회사 엘지화학 New organomattalic complex molecule for the fabrication of organic light emitting diodes
KR102420146B1 (en) * 2019-06-18 2022-07-12 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030283A1 (en) * 2015-08-19 2017-02-23 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent device comprising the same
KR20180099487A (en) * 2017-02-27 2018-09-05 롬엔드하스전자재료코리아유한회사 A plurality of host materials and organic electroluminescent device comprising the same
WO2020262925A1 (en) * 2019-06-24 2020-12-30 덕산네오룩스 주식회사 Organic electric element
CN110734431A (en) * 2019-11-18 2020-01-31 烟台九目化学股份有限公司 oxazole compounds containing triazine structure and application thereof
CN111039888A (en) * 2019-12-23 2020-04-21 长春海谱润斯科技有限公司 Compound for organic electroluminescent device and organic electroluminescent device thereof
CN112341449A (en) * 2020-11-10 2021-02-09 长春海谱润斯科技股份有限公司 Triarylamine organic compound containing spirofluorene and organic light-emitting device thereof

Also Published As

Publication number Publication date
KR20220121213A (en) 2022-08-31
CN116615421A (en) 2023-08-18

Similar Documents

Publication Publication Date Title
WO2022015084A1 (en) Organic light-emitting element
WO2021096228A1 (en) Organic light emitting device
WO2021210911A1 (en) Novel compound and organic light-emitting element comprising same
WO2022025714A1 (en) Organic light emitting device
WO2022039520A1 (en) Novel compound and organic light-emitting device comprising same
WO2021221475A1 (en) Organic light-emitting device
WO2021230714A1 (en) Organic light-emitting element
WO2020222569A1 (en) Organic light-emitting device
WO2022231389A1 (en) Organic light emitting device
WO2022086296A1 (en) Organic light-emitting device
WO2022086171A1 (en) Organic light-emitting device
WO2021261977A1 (en) Organic light-emitting device
WO2022019536A1 (en) Compound and organic light-emitting device comprising same
WO2021261962A1 (en) Organic light-emitting device
WO2021230715A1 (en) Organic light-emitting element
WO2021210910A1 (en) Novel compound and organic light emitting device using same
WO2022019535A1 (en) Compound and organic light-emitting device comprising same
WO2020263000A1 (en) Novel compound and organic light emitting device using same
WO2020189984A1 (en) Organic light emitting diode
WO2022182152A1 (en) Novel compound and organic light emitting device using same
WO2022182153A1 (en) Novel compound and organic light emitting device using same
WO2022131757A1 (en) Novel compound and organic light emitting device comprising same
WO2022177288A1 (en) Novel compound and organic light emitting device comprising same
WO2023085670A1 (en) Novel compound and organic light-emitting device comprising same
WO2022177287A1 (en) Novel compound and organic light-emitting device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22760068

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007768.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22760068

Country of ref document: EP

Kind code of ref document: A1