WO2022182039A1 - Method for manufacturing artificial breast prosthesis - Google Patents

Method for manufacturing artificial breast prosthesis Download PDF

Info

Publication number
WO2022182039A1
WO2022182039A1 PCT/KR2022/002143 KR2022002143W WO2022182039A1 WO 2022182039 A1 WO2022182039 A1 WO 2022182039A1 KR 2022002143 W KR2022002143 W KR 2022002143W WO 2022182039 A1 WO2022182039 A1 WO 2022182039A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
mold
artificial breast
manufacturing
rotated
Prior art date
Application number
PCT/KR2022/002143
Other languages
French (fr)
Korean (ko)
Inventor
김병휘
심은정
김민경
송주동
장일석
Original Assignee
오스템임플란트 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오스템임플란트 주식회사 filed Critical 오스템임플란트 주식회사
Publication of WO2022182039A1 publication Critical patent/WO2022182039A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/12Mammary prostheses and implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0077Special surfaces of prostheses, e.g. for improving ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/04Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/38Moulds, cores or other substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/48Compensating volume change, e.g. retraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/52Measuring, controlling or regulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0077Special surfaces of prostheses, e.g. for improving ingrowth
    • A61F2002/0081Special surfaces of prostheses, e.g. for improving ingrowth directly machined on the prosthetic surface, e.g. holes, grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • A61F2240/002Designing or making customized prostheses
    • A61F2240/004Using a positive or negative model, e.g. moulds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/08Coatings comprising two or more layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/04Materials or treatment for tissue regeneration for mammary reconstruction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material

Definitions

  • the present invention relates to a method for manufacturing an artificial breast implant, and more particularly, to a method for manufacturing an artificial breast implant capable of preventing the rippling phenomenon in which the upper end of the implant is folded.
  • the implant is manufactured using a silicone material that is harmless to the human body for the purpose of not giving a feeling of rejection or resistance to the treatment site or the body.
  • saline a silicone material that is harmless to the human body for the purpose of not giving a feeling of rejection or resistance to the treatment site or the body.
  • hydro-gel a silicone gel that is used.
  • implants filled with silicone gel inside the shell have excellent durability and touch, and are widely used as cosmetic applications for correcting the shape of a specific body part, such as the nose, breast, or buttocks, or enlarging the size.
  • rippling refers to a phenomenon in which the upper end of the implant is folded as shown in FIG. 1 .
  • the conventional artificial breast implants are based on a single-viscosity filler, and a downward tilting phenomenon of the filler generally occurs, and this downward biasing phenomenon is a major cause of the rippling phenomenon.
  • the artificial breast implant having a stress concentration region which is a relatively weak region due to stress, has a limit in durability and has a problem in that the lifespan is reduced due to fatigue and ruptures in the living body when an impact is applied.
  • the present invention is to solve the problems of the prior art described above, and an object of the present invention is to provide a method for manufacturing an artificial breast implant with improved rupture resistance against rippling.
  • One aspect of the present invention is a mold coating step of coating a silicone solution on the mold surface of the implant shape to obtain a shell; a shell thickness control step of reinforcing the thickness of the side portion of the shell; and a shell curing step of drying or curing the shell; Including, in the shell thickness control step, the mold is rotated, and centrifugal force according to gravity and rotation acts on the silicone solution on the surface of the mold to strengthen the thickness of the side part of the shell.
  • the mold separation step of separating the mold from the shell is characterized in that it further comprises.
  • the filling step of filling the filling in the inner receiving space of the shell is characterized in that it further comprises.
  • the shell thickness control step and the shell hardening step are characterized in that made at the same time.
  • the mold is characterized in that it is rotated by a driving unit.
  • the mold, the apex end is arranged to face the opposite direction of the gravity direction, characterized in that it is rotated at a predetermined speed.
  • the rotational speed of the mold is characterized in that gradually increase.
  • the mold its apex end is arranged perpendicular to the direction of gravity, characterized in that it is rotated at a predetermined speed.
  • the mold, the apex end is arranged to face the direction of gravity, characterized in that it is rotated at a predetermined speed.
  • the thickness of the side part of the shell is increased to increase the folding durability and folding resistance of the shell, and the cohesive force of the filling side part of the implant is strengthened to prevent the filling from being drawn downward, thereby minimizing the occurrence of ripple and
  • the durability against rippling is increased and the stability of the artificial breast implant is improved.
  • FIG. 1 shows a rippling phenomenon of a conventional artificial breast implant.
  • FIG. 2 is a flowchart of a method for manufacturing an artificial breast implant according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a filling step according to an embodiment of the present invention.
  • FIG. 4 is a process diagram of an artificial breast implant according to an embodiment of the present invention.
  • FIG. 5 is a view showing various embodiments of the shell thickness control step according to an embodiment of the present invention.
  • FIG 6 and 7 are views showing various embodiments of the artificial breast implant manufactured according to the manufacturing method of the present invention.
  • 1 shows a rippling phenomenon of a conventional artificial breast implant.
  • 2 is a flowchart of a method for manufacturing an artificial breast implant according to an embodiment of the present invention.
  • 3 is a flowchart of a filling step according to an embodiment of the present invention.
  • 4 is a process diagram of an artificial breast implant according to an embodiment of the present invention.
  • 5 is a view showing various embodiments of the shell thickness control step according to an embodiment of the present invention.
  • 6 and 7 are views showing various embodiments of the artificial breast implant manufactured according to the manufacturing method of the present invention.
  • the artificial breast implant 1 is composed of a shell 100 and a filler 200 filled in the shell 100 .
  • the shell 100 is made of a silicone material that is harmless to the human body used in applying a normal breast implant, and an accommodation space is formed therein, and various shapes are formed according to the user's needs.
  • An opening formed in the manufacturing process of the shell 100 and a patch part 110 for closing the opening to form an internal accommodation space are provided on the bottom surface of the shell 100 .
  • the filler 200 that is harmless to the human body and can give elasticity is accommodated.
  • the manufacturing method of the artificial breast implant (1) includes a mold coating step (S10), a shell thickness control step (S20), a shell hardening step (S30), a mold separation step (S40), filling of the filler Step S50 is included.
  • the mold 10 is formed in a breast shape, and a rod 11 formed to extend in the longitudinal direction is coupled to the bottom surface thereof. 4 , the mold 10 is immersed in the silicone solution 12 to coat the entire outer peripheral surface of the mold 10 with the silicone solution 12 .
  • the coating method is not limited thereto, and may be coated by spraying the silicone solution 12 on the mold 10 through spraying or the like.
  • the shell thickness adjusting step (S20) according to an embodiment of the present invention will be described in detail.
  • the thickness is the same in all parts of the shell, if one side is repeatedly folded, there is a problem that the physical properties of the corresponding part are weakened.
  • the side portion of the shell 100 is reinforced by rotating the mold 10 . That is, the present invention applies centrifugal force according to the rotation of the mold 10 as well as gravity to the silicone solution 12 on the surface of the mold 10 to strengthen the side portion of the shell 100, To this end, the mold 10 is coupled to the driving unit 20 rotated at a constant speed. At this time, since it is sufficient if the shell 100 is rotated at a constant speed, the driving unit 20 of various structures may be applied. In addition, it goes without saying that external forces other than the above-described gravity and centrifugal force may additionally act on the silicone solution 12 on the surface of the mold 10 .
  • the centrifugal force increases as it goes away in the radial direction of the rotation shaft, the centrifugal force acts at the maximum on the side of the mold 10 that is farthest from the rod 11 .
  • the side portion of the shell 100 may be formed to be thick.
  • the rotation speed of the shell 100 may be selected between 1 and 1000 rpm, which will depend on the viscosity of the silicone solution 12 and the surface tension between the surface of the mold 10 and the silicone solution 12 .
  • the viscosity of the silicone solution 12 is high, it will not be easily separated from the mold 10 , so it will not be necessary to increase the rotation speed of the mold 10 by that much.
  • the characteristics of the surface of the silicone solution 12 and the mold 10 will also affect the rotation speed. If the surface tension between the silicone solution 12 and the surface of the mold 10 is small, there is a possibility that the silicone solution 12 drips from the mold 10, so that a high rotation speed is preferably applied. In addition, a higher rotation speed may be applied to thicken the side portion of the shell 100 .
  • the rotational speed of the shell 100 may be increased step by step from a low speed to a medium speed, a high speed.
  • the rotational speed of the shell 100 is gradually increased, the centrifugal force becomes greater than gravity, and accordingly, the silicone solution 12 aggregates on the side surface of the mold 10, and the side surface of the shell 100 becomes thick.
  • the rotational motion of the mold 10 may be rotated while the mold 10 is mounted perpendicular to the direction of gravity, in addition to the case where the apex end of the mold 10 faces upward, as described above. ), it can be rotated upside down so that the apex ends in the direction of gravity.
  • the silicone solution 12 flows to the side surface of the mold 10 by gravity.
  • the side portion may be formed to be thick.
  • the silicone solution 12 falls from the surface of the mold 10 , and it is preferable to rotate at a low speed so that the silicone solution 12 can be maintained on the surface of the mold 10 . .
  • the silicone solution 12 is the apex end of the mold 10 positioned downward by gravity. and flows to the side of the mold 10 by centrifugal force. Accordingly, the thickness of the upper and lower portions of the shell 100 is minimized, and the shell 100 having a thick side portion can be formed.
  • the shell thickness adjusting step (S20) it is preferable to alternate the case where the apex end of the mold 10 is rotated to face upward and the case where the apex end of the mold 10 is rotated to face downward. .
  • the silicone solution 12 on the surface of the mold 10 flows to the side of the mold 10 by gravity and centrifugal force.
  • the thickness of the apex end side of the shell 100 becomes thin.
  • the side surface of the shell 100 While increasing the thickness, it is possible to equalize the thickness of the upper and lower sides of the shell 100 .
  • the shell thickness adjusting step (S20) since the shell 100 with a reinforced side part is formed, the folding resistance of a specific part is increased, and the folding durability can also be increased at the same time.
  • the silicone solution 12 coated on the surface of the mold 10 as described above is dried or cured naturally or through a drying device to adhere to the mold 10, and thus the silicone shell (100) is formed.
  • the silicone solution 12 may be dried or cured through a drying device at the same time as the mold 10 is rotated.
  • the rod 11 coupled to the mold 10 is removed, and an opening formed at the connection portion between the mold 10 and the rod 11 is opened to form the silicon shell 100 in the mold ( 10) by turning it over and removing it, so that the shell 100 can be obtained. Then, by bonding the patch part 110 of a silicone material having the same elasticity and physical properties as the shell 100, the opening is closed.
  • the filler 200 may be injected by inserting an injection into the receiving space through the patch 110, and as an example of the filler 200, saline solution Fillers of various materials such as (saline), hydro-gel (hydro-gel) and silicone gel (silicone gel) can be applied.
  • saline solution Fillers of various materials such as (saline), hydro-gel (hydro-gel) and silicone gel (silicone gel) can be applied.
  • the shell 100 is characterized in that the filling is filled so that the physical properties are different for each internal position.
  • the shell 100 is rotated and the filling is filled so that a silicone filling with strong cohesive force can be formed on the side portion of the inner receiving space of the shell 100 . That is, in the present invention, not only gravity but also centrifugal force according to the rotation of the shell 100 is applied to the silicone filling inside the shell 100 to flow the silicone filling to the inner side of the shell 100 .
  • external forces other than the above-described gravity and centrifugal force may additionally act on the silicone filling inside the shell 100 .
  • the filling step includes a first filling step (S51), a rotation hardening step (S52), a second filling step (S53), and a curing step (S54).
  • the first filler 210 is injected into the receiving space inside the shell 100 by inserting an injection into the patch part 110 .
  • the first filler 210 is selected as a material having higher viscosity and cohesiveness than the second filler 220 to be described later.
  • the shell 100 is seated on the driving unit 20 rotating at a constant speed. Centrifugal force according to gravity and rotation of the driving unit 20 acts on the first filling material 210 , and it flows to the side of the shell 100 inner accommodation space. In that state, when curing through a drying device, the first filler 210 is positioned on the side of the shell 100 .
  • the rotation speed of the shell 100 may be adjusted according to the height of the side portion to be formed and the viscosity of the filling, and may be preferably selected between 1 and 1000 rpm.
  • the second filler 220 having lower viscosity and cohesiveness than the first filler 210 is injected into the patch 110 to fill the remaining accommodation space, and the filler is secondarily cured through a drying device.
  • the first filler 210 having high viscosity and cohesiveness is disposed on the side surface.
  • the filling is drawn downward by strengthening the cohesive force of the filling in the side part of the artificial breast implant (1), which may be vulnerable to rupture due to frequent rippling.
  • the rupture resistance of the artificial breast implant (1) is increased. Accordingly, it is possible to prevent the artificial breast implant 1 from being ruptured in vivo.
  • the artificial breast implant 1 with reinforced side and bottom surfaces may be obtained.
  • the shell 100 is mounted upside down, the first filler 210' is filled and cured, and then the second filler 220 having high viscosity and cohesiveness is placed above the cured first filler 210'.
  • the artificial breast implant 1 with reinforced side and bottom surfaces can be obtained.
  • the folding durability and folding resistance of the shell 100 are increased, and the side filling cohesive force of the artificial breast implant (1) which may be vulnerable to rupture As this is strengthened, the occurrence of rippling is minimized and durability against rippling is increased, so that the stability of the artificial breast implant (1) is improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

An embodiment of the present invention provides a method for manufacturing an artificial breast prosthesis, the method comprising: a mold coating step for coating the surface of a prosthesis-shaped mold with a silicone solution in order to obtain a shell; a shell thickness adjustment step for reinforcing the thickness of the side surface of the shell; and a shell curing step for drying or curing the shell. In the shell thickness adjustment step, the mold is rotated, and gravity and the centrifugal force due to the rotation act upon the silicone solution on the surface of the mold, thereby reinforcing the thickness of the side surface of the shell.

Description

인공유방 보형물 제조방법Method for manufacturing artificial breast implants
본 발명은 인공유방 보형물 제조방법에 관한 것으로, 더욱 상세하게는 보형물 상단부가 접히는 리플링 현상을 방지할 수 있는 인공유방 보형물 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an artificial breast implant, and more particularly, to a method for manufacturing an artificial breast implant capable of preventing the rippling phenomenon in which the upper end of the implant is folded.
보형물은 시술부위나 거부감이나 혹은 저항감을 주지 않기 위한 목적으로 인체에 무해한 실리콘 재질을 사용하여 제작되는 것으로, 생체적합성이 우수한 실리콘 재질의 주머니(쉘) 내부에 충전물이 채워진 형태로서, 충전물은 식염수(saline), 하이드로 겔(hydro-gel) 및 실리콘 겔(silicone gel) 등이 사용된다. The implant is manufactured using a silicone material that is harmless to the human body for the purpose of not giving a feeling of rejection or resistance to the treatment site or the body. saline), hydro-gel, and silicone gel are used.
이 중, 실리콘 겔이 쉘 내부에 충전된 보형물은 내구성 및 촉감이 우수하여 코, 유방 또는 엉덩이 등 신체 특정 부위의 형태를 보정하거나 크기를 확대하기 위한 미용의 용도로서 널리 사용되고 있다.Among them, implants filled with silicone gel inside the shell have excellent durability and touch, and are widely used as cosmetic applications for correcting the shape of a specific body part, such as the nose, breast, or buttocks, or enlarging the size.
한편, 인공유방 보형물의 경우 생체 내 이식되어 장기간 존재하는 것이 일반적이며, 이러한 점으로 인해 생체 안전성뿐만 아니라 인공유방 보형물의 안정성 역시 중요한 고려사항이다. 최근 인공유방 보형물의 경우 충전물의 물성을 조절하여 자연스러운 형태를 가질 수 있게끔 개발되어 왔으나, 그로 인해 발생되는 또다른 형태의 부작용이 발생하고 있다. On the other hand, in the case of artificial breast implants, it is common to be implanted in vivo and exist for a long period of time. Recently, artificial breast implants have been developed to have a natural shape by controlling the physical properties of the filling, but other types of side effects are occurring.
이는 흔히 리플링(Rippling)이라 불리며, 도1 에 참조된 바와 같이 보형물의 상단부가 접히는 현상을 일컫는다. 종래의 인공유방 보형물의 경우 쉘의 모든 부위에서의 두께가 동일하기 때문에 리플링이 특정 부위에 지속적으로 반복되는 경우 해당 부위의 물성이 약화되어 상대적 취약부위를 유발하게 된다. 아울러, 종래의 인공유방 보형물은 단일 점도의 충전물을 기반으로 하고 있어, 충전물의 하방 쏠림 현상이 일반적으로 발생하고 있으며, 이러한 하방 쏠림 현상은 리플링 현상의 주요 원인이 된다.This is often called rippling, and refers to a phenomenon in which the upper end of the implant is folded as shown in FIG. 1 . In the case of a conventional artificial breast implant, since the thickness in all parts of the shell is the same, when rippling is continuously repeated in a specific part, the physical properties of the part are weakened, thereby causing a relatively weak part. In addition, the conventional artificial breast implants are based on a single-viscosity filler, and a downward tilting phenomenon of the filler generally occurs, and this downward biasing phenomenon is a major cause of the rippling phenomenon.
이와 같이 응력에 의한 상대적인 취약부위인 응력집중부위를 가진 인공유방 보형물은 내구력에 한계점을 가지게 되며 피로에 의해 수명이 저하되고 충격이 가해지는 경우 생체 내에서 파열되는 문제점이 있었다.As such, the artificial breast implant having a stress concentration region, which is a relatively weak region due to stress, has a limit in durability and has a problem in that the lifespan is reduced due to fatigue and ruptures in the living body when an impact is applied.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 리플링에 대한 파열 저항성이 향상된 인공유방 보형물의 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention is to solve the problems of the prior art described above, and an object of the present invention is to provide a method for manufacturing an artificial breast implant with improved rupture resistance against rippling.
본 발명의 일 측면은 쉘을 획득하기 위하여, 보형물 형상의 몰드 표면에 실리콘 용액을 코팅하는 몰드 코팅단계; 상기 쉘의 측면부 두께를 강화하는 쉘 두께조절단계; 및 상기 쉘을 건조 또는 경화시키는 쉘 경화단계; 를 포함하고, 상기 쉘 두께조절단계에서 상기 몰드는 회전되어, 상기 몰드 표면 상의 실리콘 용액에는 중력 및 회전에 따른 원심력이 작용함으로써 상기 쉘의 측면부 두께를 강화하는 인공유방 보형물 제조방법을 제공한다.One aspect of the present invention is a mold coating step of coating a silicone solution on the mold surface of the implant shape to obtain a shell; a shell thickness control step of reinforcing the thickness of the side portion of the shell; and a shell curing step of drying or curing the shell; Including, in the shell thickness control step, the mold is rotated, and centrifugal force according to gravity and rotation acts on the silicone solution on the surface of the mold to strengthen the thickness of the side part of the shell.
일 실시예에 있어서, 상기 쉘로부터 상기 몰드를 분리시키는 몰드 분리단계; 를 더 포함하는 것을 특징으로 한다.In one embodiment, the mold separation step of separating the mold from the shell; It is characterized in that it further comprises.
일 실시예에 있어서, 상기 쉘 내부 수용공간에 충전물을 충전하는 충전물 충전단계; 를 더 포함하는 것을 특징으로 한다.In one embodiment, the filling step of filling the filling in the inner receiving space of the shell; It is characterized in that it further comprises.
일 실시예에 있어서, 상기 쉘 두께조절단계 및 상기 쉘 경화단계는 동시에 이루어지는 것을 특징으로 한다.In one embodiment, the shell thickness control step and the shell hardening step are characterized in that made at the same time.
일 실시예에 있어서, 상기 몰드는 구동부에 의해 회전되는 것을 특징으로 한다.In one embodiment, the mold is characterized in that it is rotated by a driving unit.
일 실시예에 있어서, 상기 몰드는, 그 정점단이 중력방향의 반대방향을 향하도록 배치되고, 소정의 속도로 회전되는 것을 특징으로 한다.In one embodiment, the mold, the apex end is arranged to face the opposite direction of the gravity direction, characterized in that it is rotated at a predetermined speed.
일 실시예에 있어서, 상기 몰드의 회전속도는 점차 증가하는 것을 특징으로 한다.In one embodiment, the rotational speed of the mold is characterized in that gradually increase.
일 실시예에 있어서, 상기 몰드는, 그 정점단이 중력방향에 수직하도록 배치되고, 소정의 속도로 회전되는 것을 특징으로 한다.In one embodiment, the mold, its apex end is arranged perpendicular to the direction of gravity, characterized in that it is rotated at a predetermined speed.
일 실시예에 있어서, 상기 몰드는, 그 정점단이 중력방향을 향하도록 배치되고, 소정의 속도로 회전되는 것을 특징으로 한다.In one embodiment, the mold, the apex end is arranged to face the direction of gravity, characterized in that it is rotated at a predetermined speed.
본 발명의 일 측면에 따르면, 쉘의 측면부 두께가 두꺼워져 쉘의 접힘 내구성 및 접힘 저항성이 증가되고, 보형물의 측면부 충전물 응집력이 강화되어 충전물이 하방으로 쏠리는 것이 방지되고, 이에 리플링 발생이 최소화되고 리플링에 대한 내구도가 증가되어 인공유방 보형물의 안정성이 향상된다.According to one aspect of the present invention, the thickness of the side part of the shell is increased to increase the folding durability and folding resistance of the shell, and the cohesive force of the filling side part of the implant is strengthened to prevent the filling from being drawn downward, thereby minimizing the occurrence of ripple and The durability against rippling is increased and the stability of the artificial breast implant is improved.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It should be understood that the effects of the present invention are not limited to the above-described effects, and include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 종래 인공유방 보형물의 리플링 현상을 도시한다.1 shows a rippling phenomenon of a conventional artificial breast implant.
도 2는 본 발명의 일 실시예에 의한 인공유방 보형물의 제조방법의 흐름도이다.2 is a flowchart of a method for manufacturing an artificial breast implant according to an embodiment of the present invention.
도 3는 본 발명의 일 실시예에 의한 충전물 충전단계의 흐름도이다.3 is a flowchart of a filling step according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 의한 인공유방 보형물의 공정도이다.4 is a process diagram of an artificial breast implant according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 의한 쉘 두께조절단계의 다양한 실시예를 나타내는 도면이다.5 is a view showing various embodiments of the shell thickness control step according to an embodiment of the present invention.
도 6 및 도 7 은 본 발명의 제조방법에 따라 제조된 인공유방 보형물의 다양한 실시예를 나타내는 도면이다.6 and 7 are views showing various embodiments of the artificial breast implant manufactured according to the manufacturing method of the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, the present invention will be described with reference to the accompanying drawings. However, the present invention may be embodied in several different forms, and thus is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is "connected" with another part, this includes not only the case of being "directly connected" but also the case of being "indirectly connected" with another member interposed therebetween. . In addition, when a part "includes" a certain component, this means that other components may be further provided without excluding other components unless otherwise stated.
본 명세서에서 사용되는 '제 1' 또는 '제 2' 와 같은 서수를 포함하는 용어는 다양한 구성 요소들 또는 단계들을 설명하기 위해 사용될 수 있으나, 해당 구성 요소들 또는 단계들은 서수에 의해 한정되지 않아야 한다. 서수를 포함하는 용어는 하나의 구성 요소 또는 단계를 다른 구성 요소들 또는 단계들로부터 구별하기 위한 용도로만 해석되어야 한다.As used herein, terms including an ordinal number such as 'first' or 'second' may be used to describe various elements or steps, but the elements or steps should not be limited by the ordinal number. . Terms containing an ordinal number should only be construed for the purpose of distinguishing one element or step from other elements or steps.
도 1은 종래 인공유방 보형물의 리플링 현상을 도시한다. 도 2는 본 발명의 일 실시예에 의한 인공유방 보형물의 제조방법의 흐름도이다. 도 3는 본 발명의 일 실시예에 의한 충전물 충전단계의 흐름도이다. 도 4는 본 발명의 일 실시예에 의한 인공유방 보형물의 공정도이다. 도 5는 본 발명의 일 실시예에 의한 쉘 두께조절단계의 다양한 실시예를 나타내는 도면이다. 도 6 및 도 7 은 본 발명의 제조방법에 따라 제조된 인공유방 보형물의 다양한 실시예를 나타내는 도면이다.1 shows a rippling phenomenon of a conventional artificial breast implant. 2 is a flowchart of a method for manufacturing an artificial breast implant according to an embodiment of the present invention. 3 is a flowchart of a filling step according to an embodiment of the present invention. 4 is a process diagram of an artificial breast implant according to an embodiment of the present invention. 5 is a view showing various embodiments of the shell thickness control step according to an embodiment of the present invention. 6 and 7 are views showing various embodiments of the artificial breast implant manufactured according to the manufacturing method of the present invention.
이하, 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
참조된 바와 같이, 본 발명의 일 실시예에 따른 인공유방 보형물(1)은 쉘(100) 및 쉘(100) 내부에 충전되는 충전물(200)로 구성된다. 쉘(100)은, 통상의 가슴 보형물을 적용함에 있어 사용되는 인체에 무해한 실리콘재로 구성된 것으로, 내부에는 수용공간이 형성되며 사용자의 요구에 따라 다양한 형상을 이루게 된다.As referenced, the artificial breast implant 1 according to an embodiment of the present invention is composed of a shell 100 and a filler 200 filled in the shell 100 . The shell 100 is made of a silicone material that is harmless to the human body used in applying a normal breast implant, and an accommodation space is formed therein, and various shapes are formed according to the user's needs.
쉘(100)의 저면에는 쉘(100)의 제조과정에서 형성되는 개구 및 상기 개구를 폐쇄하여 내부의 수용공간을 형성하는 패치부(110)가 마련된다. 쉘(100)의 수용공간에는 인체에 무해하며 탄성을 부여할 수 있는 충전물(200)이 수용된다.An opening formed in the manufacturing process of the shell 100 and a patch part 110 for closing the opening to form an internal accommodation space are provided on the bottom surface of the shell 100 . In the receiving space of the shell 100, the filler 200 that is harmless to the human body and can give elasticity is accommodated.
이하에서는, 본 발명의 일 실시예에 따른 인공유방 보형물(1)의 제조방법에 대해 상세히 서술한다.Hereinafter, a method of manufacturing the artificial breast implant 1 according to an embodiment of the present invention will be described in detail.
본 발명의 일 실시예에 따른 인공유방 보형물(1)의 제조방법은, 몰드 코팅단계(S10), 쉘 두께조절단계(S20), 쉘 경화단계(S30), 몰드 분리단계(S40), 충전물 충전단계(S50)를 포함한다.The manufacturing method of the artificial breast implant (1) according to an embodiment of the present invention includes a mold coating step (S10), a shell thickness control step (S20), a shell hardening step (S30), a mold separation step (S40), filling of the filler Step S50 is included.
먼저, 몰드 코팅단계(S10)에 대해 서술한다. 몰드(10)는 유방형상으로 형성되며, 그 저면에는 길이방향으로 연장되도록 형성되는 로드(11)가 결합된다. 도4에 참조된 바와 같이, 몰드(10)를 실리콘 용액(12)에 침지시켜, 몰드(10)의 외주면 표면 전체에 실리콘 용액(12)을 코팅한다. 코팅방법은 이에 한정되는 것은 아니고 스프레이 등을 통해 몰드(10)에 실리콘 용액(12)을 분사하여 코팅할 수도 있을 것이다.First, the mold coating step (S10) will be described. The mold 10 is formed in a breast shape, and a rod 11 formed to extend in the longitudinal direction is coupled to the bottom surface thereof. 4 , the mold 10 is immersed in the silicone solution 12 to coat the entire outer peripheral surface of the mold 10 with the silicone solution 12 . The coating method is not limited thereto, and may be coated by spraying the silicone solution 12 on the mold 10 through spraying or the like.
이하에서는, 본 발명의 일 실시예에 따른 쉘 두께조절단계(S20)에 대해 상세히 서술한다. 전술한 바와 같이, 종래의 인공유방 보형물의 경우 쉘의 모든 부위에서 두께가 동일하기 때문에 한쪽이 반복적으로 접히게 되면, 해당 부위의 물성이 약화된다는 문제가 있었다.Hereinafter, the shell thickness adjusting step (S20) according to an embodiment of the present invention will be described in detail. As described above, in the case of a conventional artificial breast implant, since the thickness is the same in all parts of the shell, if one side is repeatedly folded, there is a problem that the physical properties of the corresponding part are weakened.
따라서, 본 발명의 일 실시예에 따른 쉘 두께조절단계(S20)에서는, 몰드(10)를 회전시켜 쉘(100)의 측면부를 강화하는 것을 특징으로 한다. 즉, 본 발명은 몰드(10) 표면 상의 실리콘 용액(12)에 중력뿐만 아니라 상기 몰드(10)의 회전에 따른 원심력을 작용하여, 쉘(100)의 측면부를 강화하는 것을 특징으로 하는 발명으로서, 이를 위해, 몰드(10)를 일정한 속도로 회전되는 구동부(20)에 결합시킨다. 이 때, 쉘(100)은 일정한 속도로 회전되기만 하면 충분하기 때문에, 다양한 구조의 구동부(20)가 적용될 수 있을 것이다. 아울러, 몰드(10) 표면 상의 실리콘 용액(12)에는 상술한 중력 및 원심력 이외의 외력이 추가로 작용할 수 있음은 물론이다.Accordingly, in the shell thickness adjusting step (S20) according to an embodiment of the present invention, the side portion of the shell 100 is reinforced by rotating the mold 10 . That is, the present invention applies centrifugal force according to the rotation of the mold 10 as well as gravity to the silicone solution 12 on the surface of the mold 10 to strengthen the side portion of the shell 100, To this end, the mold 10 is coupled to the driving unit 20 rotated at a constant speed. At this time, since it is sufficient if the shell 100 is rotated at a constant speed, the driving unit 20 of various structures may be applied. In addition, it goes without saying that external forces other than the above-described gravity and centrifugal force may additionally act on the silicone solution 12 on the surface of the mold 10 .
상세하게는, 도 4에 참조된 바와 같이, 몰드(10)의 정점단이 상측을 향하도록 구동부(20)에 결합되는 경우, 몰드(10) 표면 상의 실리콘 용액(12)은 중력에 의해 몰드(10)의 외주 표면을 따라 하방으로 유동하게 된다. 이 때, 구동부(20)에 의해 몰드(10)가 회전되는 경우 원심력이 작용하는 바, 실리콘 용액(12)이 몰드(10) 표면으로부터 흘러내리는 것을 방지할 수 있다.Specifically, as shown in FIG. 4 , when the apex end of the mold 10 is coupled to the driving unit 20 to face upward, the silicone solution 12 on the surface of the mold 10 is caused by gravity to the mold ( 10) flows downward along the outer circumferential surface. At this time, when the mold 10 is rotated by the driving unit 20 , a centrifugal force acts, so that the silicone solution 12 can be prevented from flowing down from the surface of the mold 10 .
아울러, 원심력은 회전축의 반경방향으로 멀어질수록 증가하기 때문에, 로드(11)에서 가장 멀리 이격되는 몰드(10)의 측면부에 원심력이 최대로 작용한다. In addition, since the centrifugal force increases as it goes away in the radial direction of the rotation shaft, the centrifugal force acts at the maximum on the side of the mold 10 that is farthest from the rod 11 .
즉, 상기와 같이 몰드(10)를 회전시키는 경우, 중력 및 원심력에 의한 합력은 몰드(10)의 측면부에 최대로 작용되는 바, 실리콘 용액(12)은 몰드(10)의 측면부에 보다 응집하게 되어, 쉘(100)의 측면부가 두껍게 형성될 수 있다.That is, when the mold 10 is rotated as described above, the resultant force due to gravity and centrifugal force is maximally applied to the side surface of the mold 10 , so that the silicone solution 12 is more cohesive to the side surface of the mold 10 . Thus, the side portion of the shell 100 may be formed to be thick.
한편, 쉘(100)의 회전 속도는 1~1000rpm 사이에서 선택될 수 있으며, 이는 실리콘 용액(12)의 점성 및 몰드(10) 표면과 실리콘 용액(12) 사이의 표면장력에 따라 좌우될 것이다. 예를 들어, 실리콘 용액(12)의 점성이 큰 경우 몰드(10)로부터 쉽게 떨어지지 않을 것이기 때문에, 그 만큼 몰드(10)의 회전속도를 빠르게 할 필요가 없을 것이다. 아울러, 실리콘 용액(12)과 몰드(10) 표면의 특성도 회전속도에 영향을 줄 것이다. 실리콘 용액(12)과 몰드(10) 표면사이의 표면장력이 작은 경우라면, 실리콘 용액(12)이 몰드(10)로부터 똑똑 떨어질 가능성이 있으므로 빠른 회전 속도가 적용됨이 바람직할 것이다. 또한, 쉘(100)의 측면부를 두껍게 형성하기 위하여 더 빠른 회전 속도가 적용될 수도 있을 것이다.Meanwhile, the rotation speed of the shell 100 may be selected between 1 and 1000 rpm, which will depend on the viscosity of the silicone solution 12 and the surface tension between the surface of the mold 10 and the silicone solution 12 . For example, if the viscosity of the silicone solution 12 is high, it will not be easily separated from the mold 10 , so it will not be necessary to increase the rotation speed of the mold 10 by that much. In addition, the characteristics of the surface of the silicone solution 12 and the mold 10 will also affect the rotation speed. If the surface tension between the silicone solution 12 and the surface of the mold 10 is small, there is a possibility that the silicone solution 12 drips from the mold 10, so that a high rotation speed is preferably applied. In addition, a higher rotation speed may be applied to thicken the side portion of the shell 100 .
보다 바람직하게는, 쉘(100)의 회전속도는 저속에서 시작하여, 중속, 고속으로 단계별로 증가될 수 있다. 상세하게는, 쉘(100)이 저속으로 회전하는 경우, 실리콘 용액(12)에 작용되는 원심력보다 중력에 의한 작용이 더 크기 때문에, 실리콘 용액(12)은 천천히 몰드(10) 하단으로 유동한다. 쉘(100)의 회전속도를 점차 증가시키는 경우, 중력보다 원심력이 커지게 되고, 이에 따라, 실리콘 용액(12)은 몰드(10)의 측면부에 응집하게 되어, 쉘(100)의 측면부가 두껍게 형성될 수 있다.More preferably, the rotational speed of the shell 100 may be increased step by step from a low speed to a medium speed, a high speed. In detail, when the shell 100 rotates at a low speed, since the action by gravity is greater than the centrifugal force acting on the silicone solution 12 , the silicone solution 12 slowly flows to the bottom of the mold 10 . When the rotational speed of the shell 100 is gradually increased, the centrifugal force becomes greater than gravity, and accordingly, the silicone solution 12 aggregates on the side surface of the mold 10, and the side surface of the shell 100 becomes thick. can be
한편, 몰드(10)의 회전운동은 상술한 바와 같이, 몰드(10)의 정점단이 상측을 향하는 경우 외에도, 몰드(10)가 중력방향에 수직하도록 거치되어 회전될 수 있고, 또한 몰드(10)의 정점단이 중력방향을 향하도록 거꾸로 세워 회전될 수도 있다. 상세하게는, 도5(b)에 도시된 바와 같이, 몰드(10)가 중력방향에 수직하도록 거치되어 회전되는 경우, 실리콘 용액(12)은 중력에 의하여 몰드(10)의 측면부로 유동하게 되어, 측면부가 두껍게 형성될 수 있다. 이 경우, 쉘(100)이 고속으로 회전되면 실리콘 용액(12)이 몰드(10) 표면에서 떨어지는 바, 실리콘 용액(12)이 몰드(10) 표면에 유지될 수 있도록 저속으로 회전됨이 바람직하다.On the other hand, the rotational motion of the mold 10 may be rotated while the mold 10 is mounted perpendicular to the direction of gravity, in addition to the case where the apex end of the mold 10 faces upward, as described above. ), it can be rotated upside down so that the apex ends in the direction of gravity. Specifically, as shown in Fig. 5(b), when the mold 10 is mounted and rotated perpendicular to the direction of gravity, the silicone solution 12 flows to the side surface of the mold 10 by gravity. , the side portion may be formed to be thick. In this case, when the shell 100 is rotated at a high speed, the silicone solution 12 falls from the surface of the mold 10 , and it is preferable to rotate at a low speed so that the silicone solution 12 can be maintained on the surface of the mold 10 . .
아울러, 도 5(c)에 참조된 바와 같이, 몰드(10)의 정점단이 하방을 향하도록 회전되는 경우, 실리콘 용액(12)은, 중력에 의해 하방에 위치하는 몰드(10)의 정점단으로 유동하게 되고, 아울러 원심력에 의해 몰드(10)의 측면부로 유동하게 된다. 이에, 쉘(100)의 상부와 하부 두께는 최소화하면서도, 측면부의 두께가 두꺼운 쉘(100)을 형성할 수 있다.In addition, as shown in Fig. 5 (c), when the apex end of the mold 10 is rotated to face downward, the silicone solution 12 is the apex end of the mold 10 positioned downward by gravity. and flows to the side of the mold 10 by centrifugal force. Accordingly, the thickness of the upper and lower portions of the shell 100 is minimized, and the shell 100 having a thick side portion can be formed.
바람직하게는, 쉘 두께조절단계(S20)에서는 몰드(10)의 정점단이 상측을 향하도록 회전하는 경우와, 몰드(10)의 정점단이 하방을 향하도록 회전하는 경우를 교대함이 바람직하다. 상술한 바와 같이, 몰드(10)의 정점단이 상측을 향하도록 하여 회전하면, 몰드(10) 표면 상의 실리콘 용액(12)이 중력 및 원심력에 의해 몰드(10)의 측면부로 유동하게 되는 바, 쉘(100)의 정점단측 두께가 얇아지게 된다. 반대로, 몰드(10)의 정점단이 하방을 향하도록 회전하면, 중력에 의해 몰드(10) 표면 상의 실리콘 용액(12)은 몰드(10)의 정점단으로 유동하게 되고, 아울러 실리콘 용액(12)은 원심력에 의해 몰드(10)의 측면부로 유동하게 된다. Preferably, in the shell thickness adjusting step (S20), it is preferable to alternate the case where the apex end of the mold 10 is rotated to face upward and the case where the apex end of the mold 10 is rotated to face downward. . As described above, when the top end of the mold 10 is rotated to face upward, the silicone solution 12 on the surface of the mold 10 flows to the side of the mold 10 by gravity and centrifugal force. The thickness of the apex end side of the shell 100 becomes thin. Conversely, when the apex of the mold 10 is rotated to face downward, the silicone solution 12 on the surface of the mold 10 by gravity flows to the apex of the mold 10, and the silicone solution 12 The silver flows to the side of the mold 10 by centrifugal force.
즉, 상기와 같이, 몰드(10)의 정점단이 상측을 향하도록 회전하는 경우와, 몰드(10)의 정점단이 하방을 향하도록 회전하는 경우를 번갈아 실시하는 경우, 쉘(100)의 측면부를 두껍게 하면서도, 쉘(100)의 상측과 하측의 두께를 균일화할 수 있다.That is, as described above, when the case where the apex end of the mold 10 is rotated to face upward and the case where the apex end of the mold 10 is rotated to face downward is alternately carried out, the side surface of the shell 100 While increasing the thickness, it is possible to equalize the thickness of the upper and lower sides of the shell 100 .
이와 같이, 본 발명의 일 실시예에 따른 쉘 두께조절단계(S20)에 따르면, 측면부가 강화된 쉘(100)이 형성되는 바, 특정 부위의 접힘 저항성이 높아지고 동시에 접힘 내구성 역시 증가될 수 있다.As described above, according to the shell thickness adjusting step (S20) according to an embodiment of the present invention, since the shell 100 with a reinforced side part is formed, the folding resistance of a specific part is increased, and the folding durability can also be increased at the same time.
이후, 쉘 경화단계(S30)에서는, 상기와 같이 몰드(10)의 표면에 코팅 형성된 실리콘 용액(12)을 자연 또는 건조장치를 통해 건조 또는 경화시켜 몰드(10)에 점착시키게 되고, 이에 실리콘 쉘(100)이 형성된다. 바람직하게는, 상술한 쉘 두께조절단계(S20)에서, 몰드(10)의 회전과 동시에 실리콘 용액(12)을 건조장치를 통해 건조 또는 경화시킬 수 있다.Thereafter, in the shell curing step (S30), the silicone solution 12 coated on the surface of the mold 10 as described above is dried or cured naturally or through a drying device to adhere to the mold 10, and thus the silicone shell (100) is formed. Preferably, in the above-described shell thickness control step (S20), the silicone solution 12 may be dried or cured through a drying device at the same time as the mold 10 is rotated.
이후, 몰드 분리단계(S40)에서는 몰드(10)에 결합된 로드(11)를 제거하고, 몰드(10)와 로드(11)의 연결부위에 형성되는 개구를 벌려 실리콘 쉘(100)을 몰드(10)로부터 뒤집어 탈거하면 되는 것으로, 이에 쉘(100)을 획득할 수 있게 된다. 이어서, 쉘(100)과 동일한 탄성 및 물성을 가지는 실리콘재의 패치부(110)를 접합하여, 상기 개구를 폐쇄한다.Thereafter, in the mold separation step (S40), the rod 11 coupled to the mold 10 is removed, and an opening formed at the connection portion between the mold 10 and the rod 11 is opened to form the silicon shell 100 in the mold ( 10) by turning it over and removing it, so that the shell 100 can be obtained. Then, by bonding the patch part 110 of a silicone material having the same elasticity and physical properties as the shell 100, the opening is closed.
이하에서는, 본 발명의 일 실시예에 따른 충전물 충전단계(S50) 대해 상세히 서술한다. Hereinafter, the filling step (S50) according to an embodiment of the present invention will be described in detail.
충전물(200)의 충전 방법으로는 주사 주입 방식을 적용하되, 바람직하게는 패치부(110)를 통해 수용공간 내로 주사를 삽입하여 충전물(200)을 주입하면 되고, 충전물(200)의 예로는 식염수(saline), 하이드로 겔(hydro-gel) 및 실리콘 겔(silicone gel) 등 다양한 재질의 충전물이 적용될 수 있다.As a filling method of the filler 200, an injection injection method is applied, but preferably, the filler 200 may be injected by inserting an injection into the receiving space through the patch 110, and as an example of the filler 200, saline solution Fillers of various materials such as (saline), hydro-gel (hydro-gel) and silicone gel (silicone gel) can be applied.
한편, 상술한 바와 같이, 종래의 인공유방 보형물은 단일 점도의 충전물을 기반으로 충전물의 하방 쏠림 현상이 일반적으로 발생하고 있으며, 이러한 하방 쏠림 현상은 리플링 현상이 발생하는 주요원인이다.On the other hand, as described above, in conventional artificial breast implants, a downward biasing phenomenon generally occurs based on a single-viscosity filler, and this downward biasing phenomenon is a major cause of the rippling phenomenon.
따라서, 본 발명에서는 쉘(100) 내부 위치별로 물성이 다르도록 충전물을 충전하는 것을 특징으로 한다. 바람직하게는, 쉘(100) 내부 수용공간의 측면부에 응집력이 강한 실리콘 충전물이 형성될 수 있도록, 쉘(100)을 회전시키며 충전물을 충전하는 것을 특징으로 한다. 즉, 본 발명에서는 쉘(100) 내부의 실리콘 충전물에 중력뿐만 아니라 상기 쉘(100)의 회전에 따른 원심력을 작용하여, 실리콘 충전물을 쉘(100) 내부의 측면부로 유동시키는 것을 특징으로 한다. 이 때, 쉘(100) 내부의 실리콘 충전물에는 상술한 중력 및 원심력 이외의 외력이 추가로 작용할 수 있음은 물론이다.Therefore, in the present invention, the shell 100 is characterized in that the filling is filled so that the physical properties are different for each internal position. Preferably, it is characterized in that the shell 100 is rotated and the filling is filled so that a silicone filling with strong cohesive force can be formed on the side portion of the inner receiving space of the shell 100 . That is, in the present invention, not only gravity but also centrifugal force according to the rotation of the shell 100 is applied to the silicone filling inside the shell 100 to flow the silicone filling to the inner side of the shell 100 . At this time, of course, external forces other than the above-described gravity and centrifugal force may additionally act on the silicone filling inside the shell 100 .
상세하게는, 본 발명의 일 실시예에 따른 충전물 충전단계는 제 1 충전물 충전단계(S51), 회전경화단계(S52), 제 2 충전물 충전단계(S53), 경화단계(S54)를 포함한다.Specifically, the filling step according to an embodiment of the present invention includes a first filling step (S51), a rotation hardening step (S52), a second filling step (S53), and a curing step (S54).
먼저, 도 4 에 참조된 바와 같이, 패치부(110)에 주사를 삽입하여 제 1 충전물(210)을 쉘(100) 내부 수용공간에 주입한다. 이 때, 제 1 충전물(210)은 후술할 제 2 충전물(220)보다 점도 및 응집성이 높은 재질로 선택된다. 이어서, 쉘(100)을 일정한 속도로 회전하는 구동부(20) 위에 안착시킨다. 제 1 충전물(210)에는 중력과 구동부(20)의 회전에 따른 원심력이 작용하여, 이는 쉘(100) 내부 수용공간의 측면부로 유동하게 된다. 그 상태에서, 건조장치를 통해 경화시키는 경우, 제 1 충전물(210)은 쉘(100)의 측면부에 위치하게 된다.First, as shown in FIG. 4 , the first filler 210 is injected into the receiving space inside the shell 100 by inserting an injection into the patch part 110 . At this time, the first filler 210 is selected as a material having higher viscosity and cohesiveness than the second filler 220 to be described later. Then, the shell 100 is seated on the driving unit 20 rotating at a constant speed. Centrifugal force according to gravity and rotation of the driving unit 20 acts on the first filling material 210 , and it flows to the side of the shell 100 inner accommodation space. In that state, when curing through a drying device, the first filler 210 is positioned on the side of the shell 100 .
여기서, 쉘(100)의 회전 속도는 형성하고자 하는 측면부의 높이와 충전물의 점도 등에 따라 조절될 수 있으며, 바람직하게는 1~1000rpm 사이에서 선택될 수 있을 것이다.Here, the rotation speed of the shell 100 may be adjusted according to the height of the side portion to be formed and the viscosity of the filling, and may be preferably selected between 1 and 1000 rpm.
다음으로, 제 1 충전물(210)보다 점도 및 응집성이 낮은 제 2 충전물(220)을 패치부(110)에 주사를 삽입하여 남은 수용공간을 채우고, 건조장치를 통해 충전물을 2차 경화시킨다. 그 결과, 도 6에 나타나는 바와 같은, 측면부에 점도 및 응집성이 높은 제 1 충전물(210)이 배치되는 인공유방 보형물(1)을 획득할 수 있다. Next, the second filler 220 having lower viscosity and cohesiveness than the first filler 210 is injected into the patch 110 to fill the remaining accommodation space, and the filler is secondarily cured through a drying device. As a result, as shown in FIG. 6 , it is possible to obtain the artificial breast implant 1 in which the first filler 210 having high viscosity and cohesiveness is disposed on the side surface.
즉, 본 발명의 일 실시예에 따른 충전물 충전단계(S50)에 따르면, 리플링이 자주 일어나 파열에 취약할 수 있는 인공유방 보형물(1) 측면부에 충전물의 응집력을 강화시킴으로써 충전물이 하방으로 쏠리는 것이 방지되어 인공유방 보형물(1)의 파열저항성이 증대된다. 이에 따라 인공유방 보형물(1)이 생체내에서 파열되는 것을 방지할 수 있다.That is, according to the filling step (S50) according to an embodiment of the present invention, the filling is drawn downward by strengthening the cohesive force of the filling in the side part of the artificial breast implant (1), which may be vulnerable to rupture due to frequent rippling. As a result, the rupture resistance of the artificial breast implant (1) is increased. Accordingly, it is possible to prevent the artificial breast implant 1 from being ruptured in vivo.
한편, 상기 회전경화단계(S52)를 거치지 않더라도, 도 7에 도시된 바와 같은, 측면부 및 바닥면이 강화된 인공유방 보형물(1)을 획득할 수도 있을 것이다. 예를 들면, 쉘(100)을 거꾸로 거치하여, 제 1 충전물(210')을 충전하여 경화시키고, 이어서 경화된 제 1 충전물(210') 상방에 점도 및 응집성이 높은 제 2 충전물(220)을 충전하여, 다시 경화시키는 경우, 측면부 및 바닥면이 강화된 인공유방 보형물(1)을 획득할 수 있다.On the other hand, even without going through the rotation hardening step (S52), as shown in FIG. 7, the artificial breast implant 1 with reinforced side and bottom surfaces may be obtained. For example, the shell 100 is mounted upside down, the first filler 210' is filled and cured, and then the second filler 220 having high viscosity and cohesiveness is placed above the cured first filler 210'. When filling and curing again, the artificial breast implant 1 with reinforced side and bottom surfaces can be obtained.
본 발명의 일 실시예에 따른 인공유방 보형물(1) 제조방법에 따르면, 쉘(100)의 접힘 내구성 및 접힘 저항성이 증가되고, 아울러 파열에 취약할 수 있는 인공유방 보형물(1)의 측면부 충전물 응집력이 강화되는 바, 리플링 발생이 최소화되고 리플링에 대한 내구도가 증가되어 인공유방 보형물(1)의 안정성이 향상된다.According to the method for manufacturing the artificial breast implant (1) according to an embodiment of the present invention, the folding durability and folding resistance of the shell 100 are increased, and the side filling cohesive force of the artificial breast implant (1) which may be vulnerable to rupture As this is strengthened, the occurrence of rippling is minimized and durability against rippling is increased, so that the stability of the artificial breast implant (1) is improved.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and likewise components described as distributed may also be implemented in a combined form.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention.
[부호의 설명][Explanation of code]
1 인공유방 보형물1 Artificial breast implant
10 몰드10 mold
11 로드11 rods
12 실리콘 용액12 silicone solution
20 구동부20 drive
100 쉘100 shells
110 패치부110 patch part
200 충전물200 filling
210, 210' 제 1 충전물210, 210' first filler
220, 220' 제 2 충전물220, 220' 2nd filler

Claims (9)

  1. 쉘을 획득하기 위하여, 보형물 형상의 몰드 표면에 실리콘 용액을 코팅하는 몰드 코팅단계;In order to obtain a shell, a mold coating step of coating a silicone solution on the mold surface of the shape of the implant;
    상기 쉘의 측면부 두께를 강화하는 쉘 두께조절단계; 및a shell thickness control step of reinforcing the thickness of the side portion of the shell; and
    상기 쉘을 건조 또는 경화시키는 쉘 경화단계; 를 포함하고,a shell curing step of drying or curing the shell; including,
    상기 쉘 두께조절단계에서 상기 몰드는 회전되어, 상기 몰드 표면 상의 실리콘 용액에는 중력 및 회전에 따른 원심력이 작용함으로써 상기 쉘의 측면부 두께를 강화하는, 인공유방 보형물 제조방법. In the shell thickness control step, the mold is rotated, and centrifugal force according to gravity and rotation acts on the silicone solution on the mold surface to strengthen the thickness of the side part of the shell.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 쉘로부터 상기 몰드를 분리시키는 몰드 분리단계; 를 더 포함하는 것을 특징으로 하는, 인공유방 보형물 제조방법.a mold separation step of separating the mold from the shell; A method for manufacturing an artificial breast implant, characterized in that it further comprises a.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 쉘 내부 수용공간에 충전물을 충전하는 충전물 충전단계; 를 더 포함하는 것을 특징으로 하는, 인공유방 보형물 제조방법.a filling step of filling the shell inner accommodating space with a filling material; A method for manufacturing an artificial breast implant, characterized in that it further comprises a.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 쉘 두께조절단계 및 상기 쉘 경화단계는 동시에 이루어지는 것을 특징으로 하는, 인공유방 보형물 제조방법.The method for manufacturing an artificial breast implant, characterized in that the shell thickness control step and the shell hardening step are performed at the same time.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 몰드는 구동부에 의해 회전되는 것을 특징으로 하는, 인공유방 보형물 제조방법.The mold is rotated by a driving unit, the artificial breast implant manufacturing method.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 몰드는, 그 정점단이 중력방향의 반대방향을 향하도록 배치되고, 소정의 속도로 회전되는 것을 특징으로 하는, 인공유방 보형물 제조방법.The mold, an artificial breast prosthesis manufacturing method, characterized in that the apex end is arranged to face the direction opposite to the direction of gravity, characterized in that rotated at a predetermined speed.
  7. 제 6 항에 있어서,7. The method of claim 6,
    상기 몰드의 회전속도는 점차 증가하는 것을 특징으로 하는, 인공유방 보형물 제조방법Method for manufacturing an artificial breast implant, characterized in that the rotation speed of the mold is gradually increased
  8. 제 1 항에 있어서,The method of claim 1,
    상기 몰드는, 그 정점단이 중력방향에 수직하도록 배치되고, 소정의 속도로 회전되는 것을 특징으로 하는, 인공유방 보형물 제조방법.The mold, the apex end is disposed so as to be perpendicular to the direction of gravity, characterized in that the rotation at a predetermined speed, artificial breast prosthesis manufacturing method.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 몰드는, 그 정점단이 중력방향을 향하도록 배치되고, 소정의 속도로 회전되는 것을 특징으로 하는, 인공유방 보형물 제조방법.The mold, an artificial breast prosthesis manufacturing method, characterized in that the apex is disposed to face the direction of gravity, characterized in that rotated at a predetermined speed.
PCT/KR2022/002143 2021-02-25 2022-02-14 Method for manufacturing artificial breast prosthesis WO2022182039A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0025871 2021-02-25
KR1020210025871A KR102580384B1 (en) 2021-02-25 2021-02-25 The manufacturing method of the silicone artificial breast prosthesis

Publications (1)

Publication Number Publication Date
WO2022182039A1 true WO2022182039A1 (en) 2022-09-01

Family

ID=83049382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002143 WO2022182039A1 (en) 2021-02-25 2022-02-14 Method for manufacturing artificial breast prosthesis

Country Status (2)

Country Link
KR (1) KR102580384B1 (en)
WO (1) WO2022182039A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030018387A1 (en) * 2001-07-18 2003-01-23 Schuessler David J. Rotational molding of medical articles
KR20100111190A (en) * 2009-04-06 2010-10-14 유원석 Art breast manufacture method for minimize of stress-concentration
US20110046729A1 (en) * 2009-08-18 2011-02-24 Allergan, Inc. Reinforced Prosthetic Implant With Flexible Shell
KR20110103964A (en) * 2008-11-20 2011-09-21 알러간, 인코포레이티드 System and method for molding soft fluid-filled implant shells
KR20120032392A (en) * 2010-09-28 2012-04-05 유원석 Process of silicon implant having shell improved durability

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CR20200419A (en) * 2018-02-18 2020-10-23 G & G Biotechnology Ltd Implants with enhanced shell adhesion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030018387A1 (en) * 2001-07-18 2003-01-23 Schuessler David J. Rotational molding of medical articles
KR20110103964A (en) * 2008-11-20 2011-09-21 알러간, 인코포레이티드 System and method for molding soft fluid-filled implant shells
KR20100111190A (en) * 2009-04-06 2010-10-14 유원석 Art breast manufacture method for minimize of stress-concentration
US20110046729A1 (en) * 2009-08-18 2011-02-24 Allergan, Inc. Reinforced Prosthetic Implant With Flexible Shell
KR20120032392A (en) * 2010-09-28 2012-04-05 유원석 Process of silicon implant having shell improved durability

Also Published As

Publication number Publication date
KR102580384B1 (en) 2023-09-21
KR20220121966A (en) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2022182024A1 (en) Method for manufacturing breast implant
US4650487A (en) Multi-lumen high profile mammary implant
US4773909A (en) Multi-lumen high profile mammary implant
US4472226A (en) Silicone gel filled prosthesis
CA2733925C (en) Soft filled prosthesis shell with discrete fixation surfaces
US4455691A (en) Silicone gel filled prosthesis
WO2011046273A1 (en) Silicone artificial breast prosthesis which minimizes stress concentration, and production method therefor
US5376117A (en) Breast prostheses
US6136039A (en) Dual durometer silicone liner for prosthesis
EP2346440B1 (en) Soft filled prosthesis shell with discrete fixation surfaces
US11678976B2 (en) Injectable physiologically adaptive intraocular lenses (IOL's)
US8703230B2 (en) System and method for molding soft fluid-filled implant shells
AU2002336002B2 (en) Composition and method for producing shapable implants in vivo and implants produced thereby
WO2022182039A1 (en) Method for manufacturing artificial breast prosthesis
US11426273B2 (en) Intraocular lens including silicone oil
AU2002336002A1 (en) Composition and method for producing shapable implants in vivo and implants produced thereby
WO2000059365A2 (en) Biomedical devices with polyimide coating
BR112013006795A2 (en) silicone prosthesis of the round or anatomical type having a shell with improved durability and method for its manufacture
WO2016182728A1 (en) Accommodation-responsive intraocular lenses
WO2011132871A2 (en) Subantral membrane elevator and method for manufacturing the same
WO2010117149A2 (en) Method for producing an artificial breast prosthesis with a minimized concentration of stresses
WO2022177233A1 (en) Breast implant comprising silicone gels of various properties
WO2020190086A2 (en) Artificial eye aid and artificial eye assembly provided with same
EP4181825B1 (en) Intraocular lens including silicone oil
WO2022177232A1 (en) Artificial implant and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759957

Country of ref document: EP

Kind code of ref document: A1