WO2022181966A1 - Microcapsule comprising multi-component wax and method for manufacturing same - Google Patents

Microcapsule comprising multi-component wax and method for manufacturing same Download PDF

Info

Publication number
WO2022181966A1
WO2022181966A1 PCT/KR2022/000027 KR2022000027W WO2022181966A1 WO 2022181966 A1 WO2022181966 A1 WO 2022181966A1 KR 2022000027 W KR2022000027 W KR 2022000027W WO 2022181966 A1 WO2022181966 A1 WO 2022181966A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcapsules
microcapsule
wax
palm oil
component
Prior art date
Application number
PCT/KR2022/000027
Other languages
French (fr)
Korean (ko)
Inventor
류상아
황윤호
오희묵
전경희
윤종선
이준배
이효민
Original Assignee
코스맥스 주식회사
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코스맥스 주식회사, 포항공과대학교 산학협력단 filed Critical 코스맥스 주식회사
Publication of WO2022181966A1 publication Critical patent/WO2022181966A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • A23P10/35Encapsulation of particles, e.g. foodstuff additives with oils, lipids, monoglycerides or diglycerides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/24Thermal properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/805Corresponding aspects not provided for by any of codes A61K2800/81 - A61K2800/95

Definitions

  • It relates to a microcapsule containing a multi-component wax and a method for manufacturing the same.
  • Emulsions are widely used in cosmetics in the form of lotions or creams to effectively deliver various cosmetic active ingredients to maintain or promote our health and beauty. Emulsions can dissolve both hydrophilic and hydrophobic substances frequently used in cosmetics, and can control the rheological properties of cosmetic formulations without significantly affecting the effectiveness of active ingredients. However, since emulsions are inherently unstable, coalescence of emulsion droplets and bulk phase separation are generally observed over time, even with appropriate emulsifiers.
  • microcapsules in which a core portion including an active ingredient is encapsulated with a protective shell may be used. This enables efficient storage of sensitive active ingredients such as vitamins, nutrients and therapeutics from oxidation and degradation.
  • a conventional method for producing microcapsules with such a core-shell structure multiphase emulsion droplets prepared through bulk emulsification technology are used as templates. Microcapsules prepared by this method generally have high polydispersity and low loading efficiency.
  • microcapsules with an impermeable membrane for encapsulation and retention of small molecules can be fabricated.
  • PEGDA low molecular weight poly(ethylene glycol) diacrylate
  • PCM thermally reactive phase change material
  • Capsules with shells containing waxy materials have recently been shown to provide a hermetic function. This means an absolute seal without leakage of the loaded material over a long period of time.
  • the PMC capsules can melt above the melting temperature designed for on-demand release of the material.
  • the size of the existing PMC capsule is in millimeters, and the shape of the capsule cannot be precisely adjusted.
  • One aspect is a shell portion comprising a multi-component wax; and an aqueous core part; wherein the multi-component wax is characterized in that the phase changes according to temperature change, and the shell part does not have pores or cracks, to provide a microcapsule.
  • Another aspect is to provide a cosmetic composition comprising the microcapsules.
  • Another aspect is to provide a functional food composition comprising the microcapsules.
  • Another aspect is a shell part composed of an oil phase; and a core part composed of an aqueous phase, wherein the shell part comprises a multi-component wax, forming double droplets; and sequentially crystallizing the multi-component wax.
  • One aspect is a shell portion comprising a multi-component wax; and an aqueous core part;
  • the multi-component wax is characterized in that the phase changes according to the temperature change
  • the shell portion provides a microcapsule that does not have pores or cracks.
  • the microcapsules have a characteristic of releasing the supported material according to a change in temperature.
  • the microcapsules can be controlled to change phase at a specific temperature.
  • the shell part may include a multi-component wax of a liquid or solid phase change material (PCM).
  • PCM liquid or solid phase change material
  • the microcapsules may be melted from a solid phase to a liquid phase as they are heated above a specific temperature (eg, 30 to 40° C.).
  • a specific temperature eg, 30 to 40° C.
  • the multi-component wax may crystallize or solidify from a liquid phase to a solid phase.
  • the multi-component wax since the multi-component wax is sequentially melted or crystallized according to temperature change, there may be no pores or cracks in the shell part.
  • a component having a low melting point may fill initial cracks and pores created by crystallization of a component having a high melting point.
  • an intact shell without pores or cracks can be created.
  • the microcapsules may release the compound according to a change in temperature. If the temperature is lower than the melting point of the multi-component wax, the wax may crystallize into a solid, and if it is higher than the melting point, it may be melted into a liquid.
  • microcapsules having the hermetically sealed properties of the material supported on the core and the release properties according to temperature changes can be usefully applied in various fields such as cosmetic compositions, functional food compositions, and the like.
  • the multi-component wax refers to a wax comprising two or more components.
  • the multi-component wax may be an animal or vegetable fatty acid or an animal or vegetable fatty acid ester.
  • the multi-component wax may be a vegetable wax, specifically palm oil.
  • the animal and vegetable fatty acid ester may be an animal or vegetable fatty acid glyceride.
  • the glyceride may include monoglyceride, diglyceride, lyglyceride and triglyceride.
  • the multi-component wax may be palm oil. In this case, it may include triglycerides, monoglycerides and diglycerides.
  • the shell part refers to an external shell part that is a shell part surrounding the core part of the microcapsule structure.
  • the shell part may include a multi-component wax.
  • the multi-component wax may be used in an amount of 50% to 100% by weight, 60% to 100% by weight, 70% to 100% by weight, 80% to 100% by weight, 90% to 100% by weight of the total composition of the shell part. %, 90% to 99% by weight or 95% to 99% by weight.
  • the microcapsule may have sealing properties and temperature response properties.
  • the core part refers to a part enclosed in the shell part of the microcapsule structure.
  • the core part may be an aqueous core part and may include a hydrophilic material.
  • the hydrophilic material may include a polar material, an acidic material, or a basic material.
  • the aqueous core part may be in an aqueous solution state.
  • the aqueous solution may contain a water-soluble surfactant to stabilize the water-oil interface.
  • a water-soluble surfactant to stabilize the water-oil interface.
  • an aqueous solution containing polyethylene glycol (polyethyleneglycol, PEG), polyvinyl alcohol (poly(vinyl alcohol), PVA), polyvinylpyrrolidone (PVP), or a combination thereof may be used.
  • the content of the water-soluble surfactant may be 0.1 w/w% to 30 w/w%, 1 w/w% to 20 w/w%, and 3 w/w% to 10 w/w% based on the total aqueous solution. It may be w/w%, and may be 4 w/w% to 6 w/w%.
  • the surfactant is included in the composition range of the aqueous core part, the interface between water and oil may be stabilized.
  • the melting point of the multi-component wax may vary depending on the composition of the component.
  • the melting point may be 20 to 50 °C, 25 to 45 °C, or 30 to 40 °C.
  • the multi-component wax may have a different melting point (or melting point) of each component included. Accordingly, the components may be sequentially melted or cooled during the melting or cooling process. Accordingly, the multi-component wax may be sequentially melted or sequentially crystallized.
  • the microcapsule may have a diameter of 50 to 500 ⁇ m, 100 to 450 ⁇ m, 150 to 400 ⁇ m, 200 to 350 ⁇ m, 250 to 330 ⁇ m, 270 to 310 ⁇ m, or 275 to 305 ⁇ m.
  • the diameter of the core part may be 50 to 500 ⁇ m, 100 to 450 ⁇ m, 150 to 400 ⁇ m, 200 to 350 ⁇ m, 200 to 300 ⁇ m, 210 to 250 ⁇ m, or 220 to 245 ⁇ m.
  • the diameter of the microcapsule or the diameter of the core portion can be adjusted by controlling the internal and intermediate flow rates and flow rates.
  • the total flow rate may be between 1500 and 3500 ⁇ l/hr, between 2000 and 3000 ⁇ l/hr or between 2200 and 2700 ⁇ l/hr.
  • the internal flow rate may be 100 to 3000 ⁇ l/hr, 300 to 2500 ⁇ l/hr, or 500 to 2,000 ⁇ l/hr.
  • the flow rate of the external continuous phase may be from 1,000 to 20,000 ⁇ l/hr, from 5,000 to 15,000 ⁇ l/hr, or from 8,000 to 12,000 ⁇ l/hr.
  • the core part may further include calcium ions.
  • the calcium ions may be included in the core portion in the form of calcium chloride.
  • it may be for heat-induced gelation. When the shell portion of the microcapsule containing the calcium ions is melted at a specific temperature, the calcium ions supported therein may be released. Heat-induced release of calcium ions can induce gelation by reacting with external components. In one embodiment, the heat-induced release of calcium ions may react with sodium alginate solution to form an alginate hydrogel.
  • the core part may further include ethylenediaminetetraacetic acid (EDTA).
  • EDTA ethylenediaminetetraacetic acid
  • the microcapsule containing the EDTA it may be for dissolving the hydrogel.
  • the EDTA may reduce the bonding strength of components constituting the structure in the gel.
  • the EDTA can reduce the bond strength of egg box structures.
  • the EDTA can be used for chelation to decompose or dissolve the preformed alginate hydrogel.
  • Another aspect provides a cosmetic composition comprising the microcapsules.
  • the cosmetic composition may include microcapsules in an appropriate amount depending on the purpose of use.
  • the cosmetic composition may include microcapsules in an amount of 0.1 to 100% by weight, 1 to 100% by weight, 10 to 90% by weight, or 50 to 90% by weight.
  • the microcapsules included in the cosmetic composition may further include an acidic material, for example, a strong acid.
  • an acidic environment is required to maintain the activity of certain cosmetic ingredients, such as vitamin C, but cosmetic ingredients and acidic ingredients may not be compatible. Therefore, the microcapsules can be used for efficient loading and transportation of a wide range of substances without changing the entire cosmetic formulation to acidic acidity in the microcapsules.
  • the microcapsules may further include a cosmetically active substance.
  • the cosmetically active substance may have anti-aging, antioxidant, anti-inflammatory, anti-infective, moisturizing, whitening, anti-wrinkle or skin-improving effects.
  • the cosmetically active substance may be niacinamide.
  • the niacinamide may exhibit a whitening effect by inhibiting pigment movement in the basal layer of human skin. Due to this, it can be widely used in cosmetics.
  • the cosmetic composition is a solution, an ointment for external use, a cream (eg, a nourishing cream, a massage cream, a moisture cream, a hand cream, etc.), a foam, a lotion (eg, a nourishing lotion, a flexible lotion, etc.), a pack, a softening water, an emulsion , makeup bases, essences (eg body essences, etc.), soaps, liquid cleansers, bath products, sunscreen creams, sun oils, suspensions, emulsions, pastes, gels, skins, lotions (eg body lotions, etc.) ), oils (eg body oils, etc.), powders, soaps, surfactant-containing cleansing, oils (eg body oils, etc.), foundations (eg powder foundations, emulsion foundations, wax foundations, etc.) ), may be prepared in a formulation selected from the group consisting of patches and sprays, but is not limited thereto.
  • a cream eg, a nourishing
  • the cosmetic composition may further include one or more cosmetically acceptable carriers to be formulated in general skin cosmetics, and as common ingredients, for example, oil, water, surfactant, humectant, lower alcohol, thickener, chelating agent , dyes, preservatives, fragrances, etc. may be appropriately blended, but the present invention is not limited thereto.
  • one or more cosmetically acceptable carriers to be formulated in general skin cosmetics, and as common ingredients, for example, oil, water, surfactant, humectant, lower alcohol, thickener, chelating agent , dyes, preservatives, fragrances, etc. may be appropriately blended, but the present invention is not limited thereto.
  • the cosmetically acceptable carrier included in the cosmetic composition varies depending on the formulation of the cosmetic composition.
  • the formulation of the cosmetic composition is an ointment, paste, cream or gel, animal oil, vegetable oil, wax, etc. may be used.
  • the formulation of the cosmetic composition is a powder or a spray, lactose, talc, silica, etc. may be used, and in particular, in the case of a spray, a propellant may be further included.
  • a solvent, solubilizer, or emulsifier may be used.
  • the formulation of the cosmetic composition is a suspension, a liquid diluent, suspending agent, etc. may be used.
  • the carrier may be used alone or in combination of two or more.
  • the cosmetic composition may be used as a transdermal administration method such as directly applied to the skin or sprayed, and the administration route of the composition may be administered through any general route as long as it can reach the target tissue.
  • the amount of the cosmetic composition used may be appropriately adjusted according to individual differences or formulations such as age, degree of lesion, etc., and may be used for one week to several months by applying a small amount to the skin once to several times a day.
  • microcapsules are as described above.
  • microcapsules Another aspect provides a functional food composition comprising the microcapsules.
  • the multi-component wax it can be ingested as a component harmless to the human body. Therefore, the microcapsules can also be used for functional foods.
  • the functional food composition may include microcapsules in an appropriate amount depending on the purpose of use.
  • the functional food composition may include microcapsules in an amount of 0.1 to 100% by weight, 1 to 100% by weight, 10 to 90% by weight, or 50 to 90% by weight.
  • the functional food composition may further include a functional material having effects such as antioxidant, anticancer, anti-inflammatory, and blood circulation improvement.
  • the food may include both functional health food or health supplement food in a conventional sense.
  • the food is a drink, meat, sausage, bread, biscuit, rice cake, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gum, dairy products including ice cream, various soups, beverages, alcoholic beverages and vitamin complexes, dairy products, and dairy products.
  • microcapsules are as described above.
  • Another aspect is a shell part composed of an oil phase; and a core part composed of an aqueous phase, wherein the shell part comprises a multi-component wax, forming double droplets; and
  • It provides a method of manufacturing microcapsules comprising a; sequentially crystallizing the multi-component wax.
  • the method for manufacturing the microcapsule includes forming double droplets, wherein the double droplets include a shell part composed of an oil phase and a core part composed of an aqueous phase, and the shell includes a multi-component wax.
  • the double droplet forming step is a step of forming a droplet including a wax shell including a multi-component wax of microcapsules.
  • a double droplet including a wax shell part and an aqueous core part is formed.
  • the forming of the double droplet may be performed using a microfluidic device.
  • the microfluidic device may consist of two tapered cylindrical glass capillaries each having an inner diameter and an outer diameter.
  • the cylindrical glass capillary may be an injection capillary or a collection capillary.
  • the injection capillary and collection capillary may be hydrophilic or hydrophobic.
  • the injection capillary may be hydrophobic and the collection capillary may be hydrophilic.
  • the two cylindrical glass capillaries may be separately introduced into a square glass capillary from opposite directions to be coaxially aligned.
  • the microfluidic device comprises: an outer tube containing a flow of water; an inner tube positioned inside the outer tube and including an oil flow including a multi-component wax; and a small inner tube within the inner tube containing an inner water flow that will constitute the core of the double droplet; and an orifice positioned to face the inner tube containing the oil flow and containing the external water flow.
  • the step of sequentially crystallizing the multi-component wax may be performed by heating the multi-component wax above a melting point and then collecting and freezing the melted multi-component wax below the melting point.
  • the multi-component wax-based droplets may be collected at 17° C. and frozen.
  • sucrose may be further added to match the osmotic pressure of the inner and outer aqueous phases. This can inhibit water transport through the intermediate stage and prevent rupture of the emulsion droplets before quenching.
  • the method of manufacturing the microcapsules may further include a droplet forming step.
  • the aqueous phase may be injected through an injection capillary to form an internal droplet.
  • multi-component wax as an intermediate step, it can be injected through the interstices of the injection capillary and the square on the same side as the injection capillary.
  • the multi-component wax may be in a molten state.
  • the intermediate step may be performed using a multi-component wax and a surfactant (eg, Span 80) together.
  • Another aqueous phase can be injected through a square capillary tube opposite to the outer continuous phase to emulsify the homogeneous biphasic fluid into uniform palm oil-based double emulsion droplets.
  • the another aqueous phase may further comprise PVA.
  • the specific content of the microcapsule is as described above.
  • the microcapsule may not have pores or cracks.
  • the microcapsule may be melted at a defined temperature.
  • the temperature-responsive phase change of the wax material may be utilized to achieve on-demand release of the encapsulated material.
  • the microcapsules may have biocompatibility or edible potential.
  • the microcapsules can be compartmentalized and used for efficient loading and transportation of a wide range of materials.
  • the microcapsule can be efficiently manufactured using the manufacturing method.
  • a shell part comprising a multi-component wax according to an aspect; and an aqueous core part; wherein the multi-component wax is characterized in that the phase changes according to temperature changes, and the shell part has no pores or cracks, microcapsules, cosmetic compositions or functional food compositions comprising the same, and According to the manufacturing method thereof, the supported material can be transported more efficiently, and there is an effect that the material can be released at a specific temperature.
  • Figure 1A is a schematic diagram of a glass capillary microfluidic device and temperature control platform used to prepare wax-based microcapsules.
  • 1B and 1C are optical micrographs and fluorescence micrographs of the prepared palm oil-based microcapsules. Scale bar is 200 ⁇ m.
  • 1D shows the core and overall capsule diameter distribution of palm oil-based microcapsules.
  • FIG. 2 is a graph showing the controllability of the core-shell ratio of palm oil-based microcapsules.
  • the total flow rate of the inner and intermediate stages was kept constant at 2500 ⁇ l/hr, and the flow rate of the inner stage was increased from 500 ⁇ l/hr to 2,000 ⁇ l/hr.
  • the flow rate of the external continuous phase was fixed at 10,000 ⁇ l/hr.
  • 3A is a schematic diagram illustrating small molecule (sucrose) permeability experiments for two types of wax layers, eicosane and palm oil, respectively.
  • Figure 3B shows the osmotic pressure change of the upper aqueous solution with time for the eicosan and palm oil layers.
  • 3C and 3D are electron micrographs showing the surface topology of wax-based microcapsules with eicosan shell and palm oil shell, respectively. Scale bar is 200 ⁇ m.
  • 3E and 3F are optical and fluorescence micrographs of palm oil-based microcapsules encapsulating sulforodamine B (red fluorescent dye). Micrographs were taken 4 weeks after preparation. Scale bar is 200 ⁇ m.
  • 3G is a series of composite micrographs and schematics showing the release of encapsulated sulforodamine B from microcapsules when heated above the melting point of palm oil.
  • the white dotted circle represents the projected surface area of the molten wax phase at the air-water interface. Scale bar is 200 ⁇ m.
  • Figure 4A is a graph comparing the DSC thermal analysis of palm oil and eicosan with and without a surfactant (Span 80).
  • Figure 4B is a graph comparing the results of Eicosan microcapsules with or without 1% Span 80.
  • Figure 4C is a graph comparing the results of palm oil microcapsules with or without 1% Span 80.
  • FIG. 5A is an optical micrograph of palm oil-based microcapsules encapsulating fluorescein sodium salt (green fluorescent dye), and FIG. 5B is a fluorescence micrograph. Micrographs were taken 4 weeks after preparation. Scale bar is 200 ⁇ m.
  • 6A shows the UV visible spectra of niacinamide solutions at various concentrations (0.2 mM, 0.3 mM and 0.5 mM).
  • FIG. 6B shows the UV visible spectrum of a 0.01 mM poly(vinyl alcohol) (PVA) solution.
  • FIG. 7A shows the UV visible spectrum showing the temperature-dependent phased release of niacinamide from palm oil-based microcapsules upon heating together with a schematic diagram of each phase.
  • 7B is a schematic and optical micrograph showing the release of hydrochloric acid solution from palm oil-based microcapsules upon heating.
  • 7C is a schematic and photographic representation of palm oil-based microcapsules encapsulating calcium chloride solution for heat-induced gelation.
  • Figure 7D is a schematic and photographic representation of palm oil-based microcapsules encapsulating an ethylenediaminetetraacetic acid (EDTA) solution for dissolution of a preformed hydrogel.
  • EDTA ethylenediaminetetraacetic acid
  • Figure 7E shows that partial gelation of alginate solution and complete gelation through additional shear occurs with palm oil-based microcapsules encapsulating calcium chloride solution when exposed to body temperature.
  • the osmotic pressure of each fluid used in the experiment was measured with an osmometer (Osmomat 3000D) at room temperature and atmospheric pressure.
  • the thermal properties of the analogs to which eicosan, palm oil and surfactant (Span® 80) were added were analyzed using differential scanning calorimetry (DSC, DSC Q200, TA instrument). In DSC analysis, each sample is heated at a rate of 20 °C min -1 to 60 °C under N 2 , then cooled at a rate of 20 °C min -1 to -40 °C, and again at a rate of 10 °C min -1 to 60 °C. heated.
  • niacinamide The release of niacinamide from microcapsules containing palm oil shells was analyzed using a UV-visible spectrophotometer (UV-1800, Shimadzu). The spectral range of the assay was 400 nm to 200 nm.
  • palm oil-based emulsion droplets were observed using an inverted microscope (Eclipse Ts2, Nikon) equipped with a high-speed camera (FASTCAM Mini UX50, Photron).
  • Microcapsules containing palm oil were prepared using a microfluidic device.
  • a specific manufacturing method is as follows.
  • Microcapsules containing palm oil were prepared using a glass capillary microfluidic device with a custom temperature control platform (see Fig. 1A).
  • the glass capillary microfluidic device consists of two tapered cylindrical glass capillaries with inner and outer diameters of 0.58 mm and 1.00 mm, respectively.
  • the two cylindrical glass capillaries, the injection capillary and the collection capillary have outer diameters of 0.14 mm and 0.66 mm, respectively.
  • the injection capillary (diameter 0.14 mm) was hydrophobically modified using octadecyl trichloro silane.
  • the collection capillary (0.66 mm in diameter) was hydrophilically modified using 2-[methoxy(polyethyleneoxy)propyl]trimethoxy silane.
  • the resulting two cylindrical glass capillaries were individually introduced into square glass capillaries from opposite directions for coaxial alignment.
  • an aqueous phase containing 0.5 mM sulforodamine B (red fluorescent dye) was injected through an injection capillary to form an inner droplet.
  • Melted palm oil of Span 80 1% (w/w) was used as an intermediate step, and the palm oil was injected through the gap between the square and the injection capillary on the same side as the injection capillary.
  • Another aqueous phase comprising 10% poly(vinyl alcohol) (PVA) was injected through a square capillary tube opposite the outer continuous phase to emulsify the homogeneous biphasic fluid into uniform palm oil based double emulsion droplets.
  • the microfluidic device and intermediate stage syringe were heated to 55°C, which is above the melting point of palm oil, using a custom temperature controlled platform and syringe heater.
  • the osmotic pressures of the inner and outer aqueous phases were matched by the addition of sucrose in either stage to inhibit water transport through the intermediate stage and to prevent rupture of the emulsion droplets prior to quenching.
  • the resulting palm oil-based droplets were collected in a quench bath (17° C.), frozen in the molten palm oil phase, and then stored in a refrigerator (1° C.).
  • Microcapsules containing the resulting monodisperse palm oil containing sulforodamine B (red fluorescent dye) in an aqueous core were observed (see FIGS. 1B and 1C ).
  • the average diameters of the core and the entire capsule were 234 ⁇ m and 286 ⁇ m, with coefficient variation (CV) of 2.38% and 2.07%, respectively (see FIG. 1D ).
  • Palm oil-based microcapsules having the same size but different core-shell ratios can be manufactured by controlling the flow rates of the inner and middle stages while keeping the sum and the outer stage flow rates constant (see FIG. 2 ).
  • Core diameters, expressed as a function of internal phase flow velocity, show that the overall size of the microcapsules remains the same (457.5 ⁇ 5.6 ⁇ m), while the core diameters range from 302.8 ⁇ 27.2 ⁇ m to 318.8 ⁇ 5.5 ⁇ m, 367.7 ⁇ 7.9 ⁇ m, and 386.2 ⁇ increased to 10.7 ⁇ m.
  • Eicosan melting point: 38° C.
  • sucrose having a molecular weight (MW) of 342 g ⁇ mol -1 and a hydrodynamic diameter of 0.9 nm was selected as a small molecule model.
  • a 40% sucrose solution was prepared, and 500 ⁇ l each was dispensed into two centrifuge tubes. Dissolved eicosane and 130 ⁇ l of dissolved palm oil were injected into each tube. Next, the centrifuge tube was quenched to 4° C. to solidify the wax layer. Then 600 ⁇ l of deionized water was added on each of the two frozen wax layers. This resulted in two sets of centrifugation tubes in which a 40% sucrose solution and pure deionized water were separated by a layer of frozen wax composed of either eicosane or palm oil with a thickness of 0.0250 mm (see Fig. 3A).
  • the osmotic pressure of the upper aqueous solution was monitored in these two systems for 2 months.
  • the aqueous solution on the eicosan layer showed a steady increase in osmotic pressure, whereas the aqueous solution on the palm oil layer did not increase the osmotic pressure even after 2 months (see Fig. 3B).
  • palm oil layer acts as a good physical barrier and provides a hermetic seal against small molecules such as sucrose.
  • Two sets of wax-based microcapsules each containing eicosan or palm oil shell were prepared, and the surface topology of the resulting microcapsules was monitored.
  • Eicosan is composed of a single component and exhibits a relatively narrow melting point and thus high crystallinity (see Fig. 4A). Therefore, cracks or pore formation occurred during the cooling process (see FIG. 3C ).
  • palm oil mainly consists of triglycerides containing various fatty acids and small amounts of monoglycerides and diglycerides.
  • Triglycerides can be further classified into two groups with different melting points as indicated by the two broad peaks appearing in the DSC plot of FIG. 4A. During the cooling process, two groups with different melting points can lead to sequential crystallization, so the group with the lower melting point can fill the initial cracks and pores created by the crystallization of the group with the higher melting point, creating an intact shell without pores or cracks. (See Figure 3D).
  • palm oil-based microcapsules encapsulated with 0.5 mM sulforodamine B (red fluorescent dye) solution were prepared, and the change of microcapsules was confirmed when the temperature was raised to 55 °C.
  • Palm oil-based microcapsules were initially located at the air-water interface because of the lower density of palm oil than the aqueous continuous phase. When heat was applied, the phase transition of the palm oil shell occurred asymmetrically, and the melted palm oil began to spread at the air-water interface. Local dilution and rupture of the molten wax-based emulsion droplets were induced, followed by release of a red fluorescent dye into the aqueous continuous phase (see Figure 3G).
  • Niacinamide (Vitamin B3) was encapsulated in palm oil based microcapsules. 5% PVA was added to the aqueous core to increase the viscosity of the inner phase and prevent backflow during the production of niacinamide encapsulated microcapsules.
  • Niacinamide exhibited two characteristic peaks at wavelengths of 214 nm and 262 nm, respectively (see FIG. 6A ). Since the peak at 214 nm overlaps the peak of PVA (see Fig. 6B), the peak at 262 nm was selected to analyze the amount of niacinamide released from the microcapsules.
  • the UV visible spectrum of the niacinamide encapsulated microcapsule suspension showed negligible absorbance at 262 nm before heating, but this peak increased after heating, indicating the heat-induced release of niacinamide from the microcapsules (see Fig. 7A).
  • Palm oil-based microcapsules encapsulated in 0.5 M hydrochloric acid solution and 5% of PVA in an aqueous core (pH 0.79) were prepared and dispersed in an indicator solution (10 mM methyl red in ethanol) at pH 12.58. When the solution becomes acidic ( ⁇ pH 4.4), the color of the indicator solution changes from yellow to red, allowing visualization of acid release from the microcapsules upon heating.
  • Palm oil-based microcapsules can be used for heat-induced gelation and preformed hydrogel dissolution by encapsulating a calcium chloride solution or ethylenediaminetetraacetic acid (EDTA) solution in an aqueous core.
  • EDTA ethylenediaminetetraacetic acid
  • Palm oil-based microcapsules containing 2% calcium chloride solution were dispersed in 5% sodium alginate solution. After that, when heated above the melting point of palm oil, calcium ions are released, and the G block ( ⁇ -L-glucuronic acid) and calcium ions of the alginate block copolymer are ionically crosslinked to form an egg box structure.
  • palm oil After applying shear stress, palm oil does not leave a footprint, so it can be used efficiently in skin care products. These results show that palm oil-based microcapsules are applicable to cosmetics.
  • EDTA can be used to reduce the bond strength and chelate the egg carton structures to degrade the preformed alginate hydrogel.

Abstract

The present invention relates to a microcapsule comprising: a shell part comprising a multi-component wax; and an aqueous core part, wherein the multi-component wax changes phase according to temperature change, and the shell part is absent of pores or cracks, and the present invention provides a cosmetic composition and a functional food composition comprising same microcapsule, and a method for manufacturing same.

Description

다성분 왁스를 포함하는 마이크로 캡슐 및 이의 제조 방법Microcapsules containing multi-component wax and manufacturing method thereof
다성분 왁스를 포함하는 마이크로 캡슐 및 이의 제조 방법에 관한 것이다.It relates to a microcapsule containing a multi-component wax and a method for manufacturing the same.
에멀젼은 우리의 건강과 아름다움을 유지하거나 증진하기 위해 다양한 화장품 활성 성분을 효과적으로 전달하기 위해 화장품에 로션 또는 크림 형태로 널리 사용된다. 에멀젼은 화장품에 자주 사용되는 친수성 물질과 소수성 물질을 모두 용해시킬 수 있으며 활성 성분의 효율성에 큰 영향을 주지 않으면서 화장품 제형의 유변학적 특성을 조절할 수 있다. 그러나, 에멀젼은 본질적으로 불안정하기 때문에 적절한 유화제를 사용하더라도 시간이 지남에 따라 에멀젼 액적 (droplet)의 유착과 벌크 상분리가 일반적으로 관찰된다.Emulsions are widely used in cosmetics in the form of lotions or creams to effectively deliver various cosmetic active ingredients to maintain or promote our health and beauty. Emulsions can dissolve both hydrophilic and hydrophobic substances frequently used in cosmetics, and can control the rheological properties of cosmetic formulations without significantly affecting the effectiveness of active ingredients. However, since emulsions are inherently unstable, coalescence of emulsion droplets and bulk phase separation are generally observed over time, even with appropriate emulsifiers.
이러한 문제점을 피하기 위한 방법으로 활성 성분을 포함하는 코어부를 보호 쉘로 캡슐화한 마이크로 캡슐을 이용할 수 있다. 이것은 산화와 열화로부터 비타민, 영양소, 치료제와 같은 민감한 활성 성분의 효율적인 저장을 가능하게 한다. 이러한 코어-쉘 구조의 마이크로 캡슐을 생산하는 기존의 방법으로는 벌크 유화 기술을 통해 제조된 다상 에멀젼 액적을 템플릿으로 사용한다. 이러한 방법에 의해 제조된 마이크로 캡슐은 일반적으로 높은 다분산도와 낮은 로딩 효율을 갖는다.As a method for avoiding this problem, microcapsules in which a core portion including an active ingredient is encapsulated with a protective shell may be used. This enables efficient storage of sensitive active ingredients such as vitamins, nutrients and therapeutics from oxidation and degradation. As a conventional method for producing microcapsules with such a core-shell structure, multiphase emulsion droplets prepared through bulk emulsification technology are used as templates. Microcapsules prepared by this method generally have high polydispersity and low loading efficiency.
최근 액적 미세 유체학의 발전으로 인해 크기, 구조 및 조성을 정밀하게 조정할 수 있는 단분산 다상 에멀젼 액적을 높은 부하 효율로 제조할 수 있게 되었다. 특히, 다양한 수중유중수 (water-in-oil-in-water, W/O/W) 이중 에멀젼 제형은 주변 환경으로부터 캡슐화된 활성 물질을 보호하고 방지하기 위해 고체 물리적 쉘 내에 원하는 활성 물질을 포함하는 수성 코어부를 둘러싸기 위한 템플릿으로 연구되었다. 예를 들어, 과불화 폴리에테르 (perfluoropolyether, PFPE) 기반 마이크로 캡슐을 제조하기 위한 미세유체 접근 방식을 이용하면, 쉘의 전능성 특성으로 인해 캡슐화된 활성 물질의 유지력을 향상시킬 수 있다. 또한, 티올-엔 광중합을 이용하면 작은 분자의 캡슐화 및 유지를 위한 불투과성 막이 있는 마이크로 캡슐을 제작할 수 있다. 이와 별도로 저분자량 폴리(에틸렌글리콜) 디아크릴레이트 (PEGDA)는 친수성 물질과 소수성 물질을 동시에 캡슐화할 수 있는 생체 적합성 PEG 기반 마이크로 캡슐을 제조하기 위한 중간 단계로 사용되는 기술도 보고된 바 있다. 이러한 모든 접근 방식은 캡슐화된 물질의 안정적인 저장 및 생체 적합성을 어느 정도 제공하지만, 물질을 원하는 조건하에 방출하는 능력이 부족하고 파열 및 방출시 쉘의 잔류물을 남기므로 화장품 응용 분야에서 적용 가능성을 제한한다.Recent advances in droplet microfluidics have made it possible to fabricate monodisperse multiphase emulsion droplets with high loading efficiencies with precise tunable size, structure and composition. In particular, various water-in-oil-in-water (W/O/W) dual emulsion formulations contain the desired active substance within a solid physical shell to protect and prevent the encapsulated active substance from the surrounding environment. It has been studied as a template for enclosing the aqueous core. For example, using a microfluidic approach to fabricate perfluoropolyether (PFPE)-based microcapsules can improve the retention of encapsulated active materials due to the totipotent nature of the shell. In addition, using thiol-ene photopolymerization, microcapsules with an impermeable membrane for encapsulation and retention of small molecules can be fabricated. Separately, it has also been reported that low molecular weight poly(ethylene glycol) diacrylate (PEGDA) is used as an intermediate step for manufacturing biocompatible PEG-based microcapsules capable of encapsulating hydrophilic and hydrophobic materials at the same time. All these approaches provide some degree of stable storage and biocompatibility of the encapsulated material, but lack the ability to release the material under desired conditions and leave a residue of the shell upon rupture and release, limiting its applicability in cosmetic applications. do.
이러한 문제점의 해결 방법으로 쉘의 재료로 열 반응상 변화 재료 (phase change material, PCM)를 사용하는 방법이 있다. 최근 왁스 재료 (알칸 및 지방산)를 포함하는 쉘이 있는 캡슐은 밀폐 기능을 제공하는 것으로 나타났다. 이는 장기간에 걸쳐 담지된 물질의 누출이 없는 절대적인 밀봉을 의미한다. 또한, 상기 PMC 캡슐은 물질의 주문형 방출을 하기 위해 설계된 용융 온도 이상에서 녹을 수 있다. 그러나 기존의 PMC 캡슐은 그 크기가 밀리미터 단위이며, 캡슐 형태를 정확하게 조정할 수 없었다.As a solution to this problem, there is a method of using a thermally reactive phase change material (PCM) as a material of the shell. Capsules with shells containing waxy materials (alkanes and fatty acids) have recently been shown to provide a hermetic function. This means an absolute seal without leakage of the loaded material over a long period of time. In addition, the PMC capsules can melt above the melting temperature designed for on-demand release of the material. However, the size of the existing PMC capsule is in millimeters, and the shape of the capsule cannot be precisely adjusted.
최근 온도에 반응하여 담지 물질을 방출하는 생체 적합성 왁스 기반의 마이크로 캡슐이 보고되었다. 그러나 후속 연구에서 상기 캡슐은 상전이 과정에서 쉘에 생성된 균열을 통해 캡슐화된 물질의 누출이 보고된 바 있다.Recently, biocompatible wax-based microcapsules that release support material in response to temperature have been reported. However, in a subsequent study, it was reported that the encapsulated material leaked through the cracks created in the shell during the phase transition process.
따라서, 쉘의 특성에 대한 연구를 통한 새로운 온도 민감성 및 생체 적합성 마이크로 캡슐 제형에 대한 필요성이 있다. 또한 이러한 마이크로 캡슐의 화장품 또는 식품에의 적용을 위한 캡슐화된 물질의 주문형 방출과 밀폐 밀봉을 동시에 달성하기 위한 새로운 접근법이 필요하다.Therefore, there is a need for novel temperature-sensitive and biocompatible microcapsule formulations through the study of the properties of the shell. There is also a need for a new approach to simultaneously achieve the hermetic sealing and on-demand release of the encapsulated material for application of these microcapsules to cosmetics or food.
일 양상은 다성분 왁스를 포함하는 쉘부; 및 수성 코어부;를 포함하고, 상기 다성분 왁스는 온도 변화에 따라 상 변화하는 것을 특징으로 하고, 상기 쉘부는 기공 또는 균열이 없는 것인, 마이크로 캡슐을 제공하는 것이다.One aspect is a shell portion comprising a multi-component wax; and an aqueous core part; wherein the multi-component wax is characterized in that the phase changes according to temperature change, and the shell part does not have pores or cracks, to provide a microcapsule.
다른 양상은 상기 마이크로 캡슐을 포함하는 화장료 조성물을 제공하는 것이다.Another aspect is to provide a cosmetic composition comprising the microcapsules.
다른 양상은 상기 마이크로 캡슐을 포함하는 기능성 식품 조성물을 제공하는 것이다.Another aspect is to provide a functional food composition comprising the microcapsules.
다른 양상은 오일상으로 구성된 쉘부; 및 수상으로 구성된 코어부;를 포함하며, 상기 쉘부는 다성분 왁스를 포함하는, 이중 액적을 형성하는 단계; 및 상기 다성분 왁스를 순차적 결정화시키는 단계;를 포함하는 마이크로 캡슐의 제조방법을 제공하는 것이다.Another aspect is a shell part composed of an oil phase; and a core part composed of an aqueous phase, wherein the shell part comprises a multi-component wax, forming double droplets; and sequentially crystallizing the multi-component wax.
일 양상은 다성분 왁스를 포함하는 쉘부; 및 수성 코어부;를 포함하고,One aspect is a shell portion comprising a multi-component wax; and an aqueous core part;
상기 다성분 왁스는 온도 변화에 따라 상 변화하는 것을 특징으로 하고,The multi-component wax is characterized in that the phase changes according to the temperature change,
상기 쉘부는 기공 또는 균열이 없는 것인, 마이크로 캡슐을 제공한다.The shell portion provides a microcapsule that does not have pores or cracks.
상기 마이크로 캡슐은 온도 변화에 따른 담지된 물질의 방출 특성을 갖는다. 상기 마이크로 캡슐은 특정 온도에서 상 변화하도록 조절할 수 있다. 상기 쉘부는 액체상 또는 고체상의 상변화물질 (Phase Change Material, PCM) 중 다성분 왁스를 포함할 수 있다. 상기 마이크로 캡슐은 특정 온도 (예를 들어, 30 내지 40℃) 이상으로 가열됨에 따라 고체상에서 액체상으로 용융될 수 있다. 또한, 상기 다성분 왁스가 특정 온도 이하로 냉각됨에 따라 액체상에서 고체상으로 결정화 또는 응고될 수 있다. 또한, 상기 다성분 왁스는 온도 변화에 따른 순차적 용융 또는 결정화가 되기 때문에 상기 쉘부에는 기공 또는 균열이 없을 수 있다. 예를 들어, 냉각 과정에서 융점이 다른 성분들이 순차적으로 결정화될 수 있으므로 융점이 낮은 성분이 융점이 높은 성분의 결정화로 인해 만들어진 초기 균열과 기공을 채울 수 있다. 그 결과 기공이나 균열이 없는 온전한 껍질을 생성할 수 있다. The microcapsules have a characteristic of releasing the supported material according to a change in temperature. The microcapsules can be controlled to change phase at a specific temperature. The shell part may include a multi-component wax of a liquid or solid phase change material (PCM). The microcapsules may be melted from a solid phase to a liquid phase as they are heated above a specific temperature (eg, 30 to 40° C.). In addition, as the multi-component wax is cooled below a certain temperature, it may crystallize or solidify from a liquid phase to a solid phase. In addition, since the multi-component wax is sequentially melted or crystallized according to temperature change, there may be no pores or cracks in the shell part. For example, since components having different melting points may be sequentially crystallized during the cooling process, a component having a low melting point may fill initial cracks and pores created by crystallization of a component having a high melting point. As a result, an intact shell without pores or cracks can be created.
상기 마이크로 캡슐은 온도 변화에 따라 화합물을 방출시킬 수 있다. 온도가 다성분 왁스의 녹는점보다 낮으면 상기 왁스가 고체로 결정화하고, 녹는점보다 높으면 액체로 용융될 수 있다.The microcapsules may release the compound according to a change in temperature. If the temperature is lower than the melting point of the multi-component wax, the wax may crystallize into a solid, and if it is higher than the melting point, it may be melted into a liquid.
이와 같이, 코어부에 담지된 물질의 밀폐된 밀봉 특성 및 온도 변화에 따른 방출 특성을 갖는 마이크로 캡슐은 화장료 조성물, 기능성 식품 조성물 등과 같은 다양한 분야에서 유용하게 적용될 수 있다.As described above, the microcapsules having the hermetically sealed properties of the material supported on the core and the release properties according to temperature changes can be usefully applied in various fields such as cosmetic compositions, functional food compositions, and the like.
상기 다성분 왁스는 두 개 이상의 성분을 포함하는 왁스를 말한다. 예를 들어, 상기 다성분 왁스는 동식물성 지방산 또는 동식물성 지방산 에스테르 등일 수 있다. 예를 들어, 상기 다성분 왁스는 식물성 왁스일 수 있으며, 구체적으로 팜유일 수 있다. 상기 동식물성 지방산 에스테르는 동식물성 지방산 글리세라이드일 수 있다. 상기 글리세라이드는 모노글리세라이드, 디글리세라이드, 리글리세라이드 및 트리글리세리드 등을 포함할 수 있다. 일 실시예에서, 상기 다성분 왁스는 팜유일 수 있다. 이 경우 트리글리세리드, 모노글리세리드 및 디글리세리드를 포함할 수 있다.The multi-component wax refers to a wax comprising two or more components. For example, the multi-component wax may be an animal or vegetable fatty acid or an animal or vegetable fatty acid ester. For example, the multi-component wax may be a vegetable wax, specifically palm oil. The animal and vegetable fatty acid ester may be an animal or vegetable fatty acid glyceride. The glyceride may include monoglyceride, diglyceride, lyglyceride and triglyceride. In one embodiment, the multi-component wax may be palm oil. In this case, it may include triglycerides, monoglycerides and diglycerides.
상기 쉘부는 마이크로 캡슐 구조 중 코어부를 감싸는 껍데기 부분인, 외부의 쉘 부분을 말한다. 상기 쉘부는 다성분 왁스를 포함할 수 있다. 예를 들어, 다성분 왁스를 쉘부 전체 조성의 50 중량% 내지 100 중량%, 60 중량% 내지 100 중량%, 70 중량% 내지 100 중량%, 80 중량% 내지 100 중량%, 90 중량% 내지 100 중량%, 90 중량% 내지 99 중량% 또는 95 중량% 내지 99 중량%로 포함할 수 있다. 상기 쉘부에 다성분 왁스가 상기 조성 범위로 포함되는 경우, 마이크로 캡슐이 밀봉 특성 및 온도 반응 특성을 가질 수 있다.The shell part refers to an external shell part that is a shell part surrounding the core part of the microcapsule structure. The shell part may include a multi-component wax. For example, the multi-component wax may be used in an amount of 50% to 100% by weight, 60% to 100% by weight, 70% to 100% by weight, 80% to 100% by weight, 90% to 100% by weight of the total composition of the shell part. %, 90% to 99% by weight or 95% to 99% by weight. When the multi-component wax is included in the shell part within the composition range, the microcapsule may have sealing properties and temperature response properties.
상기 코어부는 마이크로 캡슐 구조 중 쉘부에 싸여있는 부분을 말한다. 상기 코어부는 수성 코어부일 수 있으며, 친수성 물질을 포함할 수 있다. 예를 들어, 상기 친수성 물질은 극성 물질, 산성 물질 또는 염기성 물질 등을 포함할 수 있다.The core part refers to a part enclosed in the shell part of the microcapsule structure. The core part may be an aqueous core part and may include a hydrophilic material. For example, the hydrophilic material may include a polar material, an acidic material, or a basic material.
상기 수성 코어부는 수용액 상태일 수 있다. 상기 수용액은 물과 오일 계면을 안정화시키기 위해 수용성 계면활성제를 포함할 수 있다. 예를 들어, 폴리에틸렌글리콜 (polyethyleneglycol, PEG), 폴리비닐알콜 (poly(vinyl alcohol), PVA), 폴리비닐피롤리돈 (polyvinylpyrrolidone, PVP), 또는 이들의 조합을 포함한 수용액을 사용할 수 있다.The aqueous core part may be in an aqueous solution state. The aqueous solution may contain a water-soluble surfactant to stabilize the water-oil interface. For example, an aqueous solution containing polyethylene glycol (polyethyleneglycol, PEG), polyvinyl alcohol (poly(vinyl alcohol), PVA), polyvinylpyrrolidone (PVP), or a combination thereof may be used.
이때, 상기 수용성 계면활성제의 함량은 전체 수용액에 대하여 0.1 w/w% 내지 30 w/w%일 수 있으며, 1 w/w% 내지 20 w/w%일 수 있고, 3 w/w% 내지 10 w/w%일 수 있으며, 4 w/w% 내지 6 w/w%일 수 있다. 상기 수성 코어부에 계면활성제가 상기 조성 범위로 포함되는 경우, 물과 오일의 계면이 안정화될 수 있다.In this case, the content of the water-soluble surfactant may be 0.1 w/w% to 30 w/w%, 1 w/w% to 20 w/w%, and 3 w/w% to 10 w/w% based on the total aqueous solution. It may be w/w%, and may be 4 w/w% to 6 w/w%. When the surfactant is included in the composition range of the aqueous core part, the interface between water and oil may be stabilized.
상기 다성분 왁스의 녹는점은 성분의 조성에 따라 달라질 수 있다. 예를 들어, 상기 녹는점은 20 내지 50℃, 25 내지 45℃ 또는 30 내지 40℃일 수 있다. 또한, 상기 다성분 왁스는 포함된 성분이 각자 다른 녹는점 (또는 융점)을 가지고 있을 수 있다. 따라서 용융 또는 냉각 과정에서 상기 성분들이 순차적으로 녹거나 냉각될 수 있다. 이에 따라, 상기 다성분 왁스는 순차적 용융 또는 순차적 결정화될 수 있다.The melting point of the multi-component wax may vary depending on the composition of the component. For example, the melting point may be 20 to 50 ℃, 25 to 45 ℃, or 30 to 40 ℃. In addition, the multi-component wax may have a different melting point (or melting point) of each component included. Accordingly, the components may be sequentially melted or cooled during the melting or cooling process. Accordingly, the multi-component wax may be sequentially melted or sequentially crystallized.
상기 마이크로 캡슐의 직경은 50 내지 500 ㎛, 100 내지 450 ㎛, 150 내지 400 ㎛, 200 내지 350 ㎛, 250 내지 330 ㎛, 270 내지 310 ㎛ 또는 275 내지 305 ㎛ 일 수 있다.The microcapsule may have a diameter of 50 to 500 μm, 100 to 450 μm, 150 to 400 μm, 200 to 350 μm, 250 to 330 μm, 270 to 310 μm, or 275 to 305 μm.
상기 코어부의 직경은 50 내지 500 ㎛, 100 내지 450 ㎛, 150 내지 400 ㎛, 200 내지 350 ㎛, 200 내지 300 ㎛, 210 내지 250 ㎛ 또는 220 내지 245 ㎛ 일 수 있다.The diameter of the core part may be 50 to 500 μm, 100 to 450 μm, 150 to 400 μm, 200 to 350 μm, 200 to 300 μm, 210 to 250 μm, or 220 to 245 μm.
일 실시예에서, 상기 마이크로 캡슐의 직경 또는 코어부의 직경은 내부 및 중간 유속 및 유량을 제어함으로써 조절할 수 있다. 예를 들어, 총 유량은 1500 내지 3500 ㎕/hr, 2000 내지 3000 ㎕/hr 또는 2200 내지 2700 ㎕/hr 일 수 있다. 또한, 내부 유량은 100 내지 3000 ㎕/hr, 300 내지 2500 ㎕/hr 또는 500 내지 2,000 ㎕/hr일 수 있다. 외부 연속상의 유량은 1,000 내지 20,000 ㎕/hr, 5,000 내지 15,000 ㎕/hr 또는 8,000 내지 12,000 ㎕/hr일 수 있다.In one embodiment, the diameter of the microcapsule or the diameter of the core portion can be adjusted by controlling the internal and intermediate flow rates and flow rates. For example, the total flow rate may be between 1500 and 3500 μl/hr, between 2000 and 3000 μl/hr or between 2200 and 2700 μl/hr. Also, the internal flow rate may be 100 to 3000 μl/hr, 300 to 2500 μl/hr, or 500 to 2,000 μl/hr. The flow rate of the external continuous phase may be from 1,000 to 20,000 μl/hr, from 5,000 to 15,000 μl/hr, or from 8,000 to 12,000 μl/hr.
상기 코어부는 칼슘이온을 더 포함할 수 있다. 일 실시예에서, 상기 칼슘이온은 염화칼슘 상태로 코어부에 포함될 수 있다. 또한, 상기 칼슘이온을 포함하는 마이크로 캡슐의 경우, 열 유도 겔화용일 수 있다. 상기 칼슘이온을 포함하는 마이크로 캡슐의 쉘부가 특정 온도에서 용융되는 경우, 내부에 담지된 칼슘이온을 방출할 수 있다. 열 유도 방출된 칼슘이온은 외부 성분과 반응하여 겔화를 유도할 수 있다. 일 실시예에서, 열 유도 방출된 칼슘이온은 알긴산 나트륨 용액과 반응하여, 알지네이트 하이드로겔을 형성할 수 있다.The core part may further include calcium ions. In one embodiment, the calcium ions may be included in the core portion in the form of calcium chloride. In addition, in the case of the microcapsule containing the calcium ion, it may be for heat-induced gelation. When the shell portion of the microcapsule containing the calcium ions is melted at a specific temperature, the calcium ions supported therein may be released. Heat-induced release of calcium ions can induce gelation by reacting with external components. In one embodiment, the heat-induced release of calcium ions may react with sodium alginate solution to form an alginate hydrogel.
상기 코어부는 에틸렌디아민테트라아세트산 (ethylenediaminetetraacetic acid, EDTA)을 더 포함할 수 있다. 상기 EDTA를 포함하는 마이크로 캡슐의 경우, 하이드로겔 용해용일 수 있다. 상기 EDTA는 겔 내 구조를 이루는 성분들의 결합 강도를 감소시킬 수 있다. 예를 들어, 상기 EDTA는 달걀 상자 구조의 결합 강도를 감소시킬 수 있다. 또한, 상기 EDTA는 킬레이트화에 사용되어 미리 형성된 알지네이트 하이드로겔을 분해 또는 용해할 수 있다.The core part may further include ethylenediaminetetraacetic acid (EDTA). In the case of the microcapsule containing the EDTA, it may be for dissolving the hydrogel. The EDTA may reduce the bonding strength of components constituting the structure in the gel. For example, the EDTA can reduce the bond strength of egg box structures. In addition, the EDTA can be used for chelation to decompose or dissolve the preformed alginate hydrogel.
다른 양상은 상기 마이크로 캡슐을 포함하는 화장료 조성물을 제공한다.Another aspect provides a cosmetic composition comprising the microcapsules.
상기 화장료 조성물은 마이크로 캡슐을 사용 목적에 따라 적절한 함량으로 포함할 수 있다. 예를 들어, 상기 화장료 조성물은 마이크로 캡슐을 0.1 내지 100 중량%, 1 내지 100 중량%, 10 내지 90 중량%, 또는 50 내지 90 중량%로 포함할 수 있다.The cosmetic composition may include microcapsules in an appropriate amount depending on the purpose of use. For example, the cosmetic composition may include microcapsules in an amount of 0.1 to 100% by weight, 1 to 100% by weight, 10 to 90% by weight, or 50 to 90% by weight.
상기 화장료 조성물에 포함된 마이크로 캡슐은 산성 물질을 더 포함할 수 있으며, 예를 들어, 강산을 포함할 수 있다. 예를 들어, 상기 마이크로 캡슐은 강산을 캡슐 내의 구획화하여 담지할 수 있다. 비타민 C와 같은 특정 화장품 성분의 활성을 유지하려면 산성 환경이 필요하지만, 화장품 성분과 산 성분은 상성이 맞지 않을 수 있다. 따라서, 마이크로 캡슐 내에서 산성 구획화하여 전체 화장품 제형이 산성으로 변경하지 않고도, 마이크로 캡슐을 광범위한 물질의 효율적인 담지 및 운송에 이용할 수 있다.The microcapsules included in the cosmetic composition may further include an acidic material, for example, a strong acid. For example, the microcapsule may be loaded by compartmentalizing the strong acid in the capsule. An acidic environment is required to maintain the activity of certain cosmetic ingredients, such as vitamin C, but cosmetic ingredients and acidic ingredients may not be compatible. Therefore, the microcapsules can be used for efficient loading and transportation of a wide range of substances without changing the entire cosmetic formulation to acidic acidity in the microcapsules.
다른 실시예에서, 상기 마이크로 캡슐은 미용 활성 물질을 더 포함할 수 있다. 상기 미용 활성 물질은 항노화, 항산화, 항염증, 항감염, 보습, 미백, 주름 개선 또는 피부 개선 효과 등을 가질 수 있다. 예를 들어, 상기 미용 활성 물질은 나이아신아미드일 수 있다. 상기 나이아신아미드는 사람 피부의 기저층에서 색소 이동을 억제하여 미백 효과를 나타낼 수 있다. 이로 인해 화장품에 널리 사용될 수 있다.In another embodiment, the microcapsules may further include a cosmetically active substance. The cosmetically active substance may have anti-aging, antioxidant, anti-inflammatory, anti-infective, moisturizing, whitening, anti-wrinkle or skin-improving effects. For example, the cosmetically active substance may be niacinamide. The niacinamide may exhibit a whitening effect by inhibiting pigment movement in the basal layer of human skin. Due to this, it can be widely used in cosmetics.
상기 화장료 조성물은 용액, 외용 연고, 크림(예를 들어, 영양크림, 마사지크림, 수분 크림, 핸드 크림 등), 폼, 화장수(예를 들어, 영양 화장수, 유연 화장수 등), 팩, 유연수, 유액, 메이크업 베이스, 에센스(예를 들어, 바디 에센스 등), 비누, 액체 세정료, 입욕제, 선 스크린 크림, 선 오일, 현탁액, 유탁액, 페이스트, 겔, 스킨, 로션(예를 들어, 바디 로션 등), 오일(예를 들어, 바디 오일 등), 파우더, 비누, 계면 활성제-함유 클렌징, 오일(예를 들어, 바디 오일 등), 파운데이션(예를 들어, 분말 파운데이션, 유탁액 파운데이션, 왁스 파운데이션 등), 패취 및 스프레이로 구성된 군으로부터 선택되는 제형으로 제조할 수 있으나, 이에 제한되는 것은 아니다.The cosmetic composition is a solution, an ointment for external use, a cream (eg, a nourishing cream, a massage cream, a moisture cream, a hand cream, etc.), a foam, a lotion (eg, a nourishing lotion, a flexible lotion, etc.), a pack, a softening water, an emulsion , makeup bases, essences (eg body essences, etc.), soaps, liquid cleansers, bath products, sunscreen creams, sun oils, suspensions, emulsions, pastes, gels, skins, lotions (eg body lotions, etc.) ), oils (eg body oils, etc.), powders, soaps, surfactant-containing cleansing, oils (eg body oils, etc.), foundations (eg powder foundations, emulsion foundations, wax foundations, etc.) ), may be prepared in a formulation selected from the group consisting of patches and sprays, but is not limited thereto.
상기 화장료 조성물은 일반 피부 화장료에 배합되는 화장품학적으로 허용 가능한 담체를 1 종 이상 추가로 포함할 수 있으며, 통상의 성분으로 예를 들면 유분, 물, 계면 활성제, 보습제, 저급 알코올, 증점제, 킬레이트제, 색소, 방부제, 향료 등을 적절히 배합할 수 있으나, 이에 제한되는 것은 아니다.The cosmetic composition may further include one or more cosmetically acceptable carriers to be formulated in general skin cosmetics, and as common ingredients, for example, oil, water, surfactant, humectant, lower alcohol, thickener, chelating agent , dyes, preservatives, fragrances, etc. may be appropriately blended, but the present invention is not limited thereto.
상기 화장료 조성물에 포함되는 화장품학적으로 허용 가능한 담체는 화장료 조성물의 제형에 따라 다양하다. 상기 화장료 조성물의 제형이 연고, 페이스트, 크림 또는 젤인 경우에는, 동물성 유, 식물성 유, 왁스 등을 사용할 수 있다. 상기 화장료 조성물의 제형이 파우더 또는 스프레이인 경우에는, 락토스, 탈크, 실리카 등을 사용할 수 있고, 특히 스프레이인 경우에는 추진제를 더 포함할 수 있다. 상기 화장료 조성물의 제형이 용액 또는 유탁액인 경우에는, 용매, 용해화제 또는 유탁화제 등을 이용할 수 있다. 상기 화장료 조성물의 제형이 현탁액인 경우에는, 액상의 희석제, 현탁제, 등이 이용될 수 있다. 상기 담체는 단독으로 사용되거나 2 종 이상 혼합되어 사용될 수 있다.The cosmetically acceptable carrier included in the cosmetic composition varies depending on the formulation of the cosmetic composition. When the formulation of the cosmetic composition is an ointment, paste, cream or gel, animal oil, vegetable oil, wax, etc. may be used. When the formulation of the cosmetic composition is a powder or a spray, lactose, talc, silica, etc. may be used, and in particular, in the case of a spray, a propellant may be further included. When the formulation of the cosmetic composition is a solution or emulsion, a solvent, solubilizer, or emulsifier may be used. When the formulation of the cosmetic composition is a suspension, a liquid diluent, suspending agent, etc. may be used. The carrier may be used alone or in combination of two or more.
상기 화장료 조성물은 피부에 직접 도포하거나 살포하는 등의 경피 투여 방법으로 사용될 수 있으며, 상기 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다.The cosmetic composition may be used as a transdermal administration method such as directly applied to the skin or sprayed, and the administration route of the composition may be administered through any general route as long as it can reach the target tissue.
상기 화장료 조성물의 사용량은 연령, 병변의 정도 등의 개인 차이나 제형에 따라 적절하게 조절될 수 있으며, 1 일 1회 내지 수회 적댱량을 피부에 도포하여 1 주일 내지 수개월 사용될 수 있다.The amount of the cosmetic composition used may be appropriately adjusted according to individual differences or formulations such as age, degree of lesion, etc., and may be used for one week to several months by applying a small amount to the skin once to several times a day.
기타 상기 마이크로 캡슐의 구체적인 내용에 대해서는 전술된 바와 같다.Other details of the microcapsules are as described above.
다른 양상은 상기 마이크로 캡슐을 포함하는 기능성 식품 조성물을 제공한다. 상기 다성분 왁스의 경우, 인체에 무해한 성분으로서 섭취가 가능하다. 따라서, 상기 마이크로 캡슐을 기능성 식품에도 이용할 수 있다.Another aspect provides a functional food composition comprising the microcapsules. In the case of the multi-component wax, it can be ingested as a component harmless to the human body. Therefore, the microcapsules can also be used for functional foods.
상기 기능성 식품 조성물은 마이크로 캡슐을 사용 목적에 따라 적절한 함량으로 포함할 수 있다. 예를 들어, 상기 기능성 식품 조성물은 마이크로 캡슐을 0.1 내지 100 중량%, 1 내지 100 중량%, 10 내지 90 중량%, 또는 50 내지 90 중량%로 포함할 수 있다.The functional food composition may include microcapsules in an appropriate amount depending on the purpose of use. For example, the functional food composition may include microcapsules in an amount of 0.1 to 100% by weight, 1 to 100% by weight, 10 to 90% by weight, or 50 to 90% by weight.
상기 기능성 식품 조성물은 항산화, 항암, 항염증, 혈행개선 등의 효과를 갖는 기능성 물질을 더 포함할 수 있다.The functional food composition may further include a functional material having effects such as antioxidant, anticancer, anti-inflammatory, and blood circulation improvement.
상기 기능성 식품 조성물에서 식품은 통상적인 의미의 건강기능식품 또는 건강보조식품을 모두 포함할 수 있다. 예를 들어, 상기 식품은 드링크제, 육류, 소시지, 빵, 비스킷, 떡, 초콜릿, 캔디류, 스낵류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 알코올 음료 및 비타민 복합제, 유제품 및 유가공 제품 등일 수 있다.In the functional food composition, the food may include both functional health food or health supplement food in a conventional sense. For example, the food is a drink, meat, sausage, bread, biscuit, rice cake, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gum, dairy products including ice cream, various soups, beverages, alcoholic beverages and vitamin complexes, dairy products, and dairy products.
기타 상기 마이크로 캡슐의 구체적인 내용에 대해서는 전술된 바와 같다.Other details of the microcapsules are as described above.
다른 양상은 오일상으로 구성된 쉘부; 및 수상으로 구성된 코어부;를 포함하며, 상기 쉘부는 다성분 왁스를 포함하는, 이중 액적을 형성하는 단계; 및Another aspect is a shell part composed of an oil phase; and a core part composed of an aqueous phase, wherein the shell part comprises a multi-component wax, forming double droplets; and
상기 다성분 왁스를 순차적 결정화시키는 단계;를 포함하는 마이크로 캡슐의 제조방법을 제공한다.It provides a method of manufacturing microcapsules comprising a; sequentially crystallizing the multi-component wax.
상기 마이크로 캡슐의 제조방법은 이중 액적을 형성하는 단계로, 상기 이중 액적은 오일상으로 구성된 쉘부 및 수상으로 구성된 코어부를 포함하고, 상기 쉘은 다성분 왁스를 포함하는 단계를 포함한다.The method for manufacturing the microcapsule includes forming double droplets, wherein the double droplets include a shell part composed of an oil phase and a core part composed of an aqueous phase, and the shell includes a multi-component wax.
상기 이중 액적 형성 단계는 마이크로 캡슐의 다성분 왁스를 포함하는 왁스 쉘을 포함하는 액적을 형성하는 단계이다. 상기 이중 액적 형성 단계에서는, 왁스 쉘부 및 수성 코어부를 포함하는 이중 액적을 형성한다.The double droplet forming step is a step of forming a droplet including a wax shell including a multi-component wax of microcapsules. In the double droplet forming step, a double droplet including a wax shell part and an aqueous core part is formed.
상기 이중 액적을 형성하는 단계는 미세 유체 장치를 사용하여 수행될 수 있다. 예를 들어, 상기 미세 유체 장치는 각각 내경 및 외경을 갖는 2개의 테이퍼 원통형 유리 모세관으로 구성될 수 있다. 상기 원통형 유리 모세관은 주입 모세관 또는 수집 모세관일 수 있다. 상기 주입 모세관 및 수집 모세관은 친수성 또는 소수성일 수 있다. 예를 들어, 상기 주입 모세관은 소수성일 수 있으며, 상기 수집 모세관은 친수성일 수 있다. 상기 2개의 원통형 유리 모세관은 반대 방향에서 정사각형 유리 모세관에 개별적으로 도입하여 동축 정렬된 상태일 수 있다.The forming of the double droplet may be performed using a microfluidic device. For example, the microfluidic device may consist of two tapered cylindrical glass capillaries each having an inner diameter and an outer diameter. The cylindrical glass capillary may be an injection capillary or a collection capillary. The injection capillary and collection capillary may be hydrophilic or hydrophobic. For example, the injection capillary may be hydrophobic and the collection capillary may be hydrophilic. The two cylindrical glass capillaries may be separately introduced into a square glass capillary from opposite directions to be coaxially aligned.
일 실시예에서, 상기 미세 유체 장치는 물 흐름을 포함하는 외부관; 상기 외부관의 내부에 위치하며, 다성분 왁스를 포함하는 오일 흐름을 포함하는 내부관; 및 이중 액적의 코어를 구성할 내부 물 흐름을 포함하는 상기 내부관 내의 작은 내부관; 및 오일 흐름을 포함하는 내부관과 마주보게 위치하며, 바깥 물 흐름을 포함하는 오리피스;를 포함할 수 있다.In one embodiment, the microfluidic device comprises: an outer tube containing a flow of water; an inner tube positioned inside the outer tube and including an oil flow including a multi-component wax; and a small inner tube within the inner tube containing an inner water flow that will constitute the core of the double droplet; and an orifice positioned to face the inner tube containing the oil flow and containing the external water flow.
상기 다성분 왁스를 순차적 결정화시키는 단계는 상기 다성분 왁스를 녹는점 이상으로 가열한 후, 녹은 다성분 왁스를 녹는점 이하에서 수집하여 동결시켜 수행될 수 있다. 일 실시예에서, 상기 다성분 왁스를 55℃로 가열한 후, 다성분 왁스 기반의 액적을 17℃에서 수집하여 동결시킬 수 있다.The step of sequentially crystallizing the multi-component wax may be performed by heating the multi-component wax above a melting point and then collecting and freezing the melted multi-component wax below the melting point. In one embodiment, after heating the multi-component wax to 55° C., the multi-component wax-based droplets may be collected at 17° C. and frozen.
또한, 상기 결정화시키는 단계에서 내부 및 외부 수성상의 삼투압을 일치시키기 위해 수크로스를 더 첨가할 수 있다. 이에 따라 중간 단계를 통한 물 수송을 억제하고 급냉 전에 에멀젼 액적의 파열을 방지할 수 있다.In addition, in the crystallization step, sucrose may be further added to match the osmotic pressure of the inner and outer aqueous phases. This can inhibit water transport through the intermediate stage and prevent rupture of the emulsion droplets before quenching.
상기 마이크로 캡슐의 제조방법은 액적 형성 단계를 더 포함할 수 있다. 상기 액적 형성 단계는 수성상을 주입 모세관을 통해 주입하여 내부 액적을 형성할 수 있다. 그리고 다성분 왁스를 중간 단계로 사용하여, 주입 모세관과 같은 면에서 정사각형 및 주입 모세관의 틈새를 통해 주입할 수 있다. 상기 다성분 왁스는 녹은 상태일 수 있다. 또한, 상기 중간 단계는 다성분 왁스와 계면활성제 (예: Span 80)을 함께 사용하여 수행될 수 있다. 또 다른 수성상은 외부 연속상과 반대쪽에서 정사각형 모세관을 통해 주입하여 동류 2상 유체를 균일한 팜유 기반 이중 에멀젼 액적으로 유화할 수 있다. 상기 또 다른 수성상은 PVA를 더 포함할 수 있다.The method of manufacturing the microcapsules may further include a droplet forming step. In the droplet forming step, the aqueous phase may be injected through an injection capillary to form an internal droplet. And using multi-component wax as an intermediate step, it can be injected through the interstices of the injection capillary and the square on the same side as the injection capillary. The multi-component wax may be in a molten state. In addition, the intermediate step may be performed using a multi-component wax and a surfactant (eg, Span 80) together. Another aqueous phase can be injected through a square capillary tube opposite to the outer continuous phase to emulsify the homogeneous biphasic fluid into uniform palm oil-based double emulsion droplets. The another aqueous phase may further comprise PVA.
상기 마이크로 캡슐의 구체적인 내용에 대해서는 전술된 바와 같다.The specific content of the microcapsule is as described above.
일 실시예에 따르면, 상기 마이크로 캡슐은 기공이나 균열을 가지지 않을 수 있다.According to an embodiment, the microcapsule may not have pores or cracks.
일 실시예에 따르면, 상기 마이크로 캡슐은 정의된 온도에서 녹을 수 있다.According to one embodiment, the microcapsule may be melted at a defined temperature.
일 실시예에 따르면, 왁스 재료의 온도 반응 상 변화를 활용하여 캡슐화된 물질의 주문형 방출을 달성할 수 있다.According to one embodiment, the temperature-responsive phase change of the wax material may be utilized to achieve on-demand release of the encapsulated material.
일 실시예에 따르면, 상기 마이크로 캡슐은 생체 적합성 또는 식용 가능성을 가질 수 있다.According to one embodiment, the microcapsules may have biocompatibility or edible potential.
일 실시예에 따르면, 상기 마이크로 캡슐을 구획화하여 광범위한 물질의 효율적인 담지 및 운송에 이용할 수 있다.According to one embodiment, the microcapsules can be compartmentalized and used for efficient loading and transportation of a wide range of materials.
일 실시예에 따르면, 상기 제조방법을 이용하여 상기 마이크로 캡슐을 효율적으로 제조할 수 있다.According to one embodiment, the microcapsule can be efficiently manufactured using the manufacturing method.
일 양상에 따른 다성분 왁스를 포함하는 쉘부; 및 수성 코어부;를 포함하고, 상기 다성분 왁스는 온도 변화에 따라 상 변화하는 것을 특징으로 하고, 상기 쉘부는 기공 또는 균열이 없는 것인, 마이크로 캡슐, 이를 포함하는 화장품 조성물 또는 기능성 식품 조성물 및 이의 제조 방법에 의하면, 담지된 물질을 보다 효율적으로 운송할 수 있으며, 특정 온도에서 상기 물질을 방출할 수 있는 효과가 있다.A shell part comprising a multi-component wax according to an aspect; and an aqueous core part; wherein the multi-component wax is characterized in that the phase changes according to temperature changes, and the shell part has no pores or cracks, microcapsules, cosmetic compositions or functional food compositions comprising the same, and According to the manufacturing method thereof, the supported material can be transported more efficiently, and there is an effect that the material can be released at a specific temperature.
도 1A는 왁스 기반 마이크로 캡슐을 준비하는데 사용되는 유리 모세관 미세 유체 장치 및 온도 제어 플랫폼의 개략도이다. Figure 1A is a schematic diagram of a glass capillary microfluidic device and temperature control platform used to prepare wax-based microcapsules.
도 1B 및 도 1C는 제조된 팜유 기반 마이크로 캡슐의 광학 현미경 사진 및 형광 현미경 사진이다. 스케일 바는 200 μm이다. 1B and 1C are optical micrographs and fluorescence micrographs of the prepared palm oil-based microcapsules. Scale bar is 200 μm.
도 1D는 팜유 기반 마이크로 캡슐의 코어 및 전체 캡슐 직경 분포를 나타낸다.1D shows the core and overall capsule diameter distribution of palm oil-based microcapsules.
도 2는 팜유 기반 마이크로 캡슐의 코어-쉘 비율의 제어 가능성을 보여주는 그래프이다. 내부 및 중간 단계의 총 유량은 2500 ㎕/hr로 일정하게 유지되고, 내부 단계의 유량은 500 ㎕/hr에서 2,000 ㎕/hr로 증가하였다. 외부 연속상의 유속은 10,000 ㎕/hr로 고정하였다.2 is a graph showing the controllability of the core-shell ratio of palm oil-based microcapsules. The total flow rate of the inner and intermediate stages was kept constant at 2500 μl/hr, and the flow rate of the inner stage was increased from 500 μl/hr to 2,000 μl/hr. The flow rate of the external continuous phase was fixed at 10,000 μl/hr.
도 3A는 두 가지 유형의 왁스 층, 각각 에이코산 및 팜유에 대한 소분자 (자당) 투과성 실험을 설명하는 개략도이다. 3A is a schematic diagram illustrating small molecule (sucrose) permeability experiments for two types of wax layers, eicosane and palm oil, respectively.
도 3B는 에이코산 및 팜유 층에 대한 시간에 따른 상부 수용액의 삼투압 변화를 나타낸다. Figure 3B shows the osmotic pressure change of the upper aqueous solution with time for the eicosan and palm oil layers.
도 3C 및 도 3D는 각각 에이코산 쉘과 팜유 쉘이 있는 왁스 기반 마이크로 캡슐의 표면 토폴로지를 보여주는 전자 현미경 사진이다. 스케일 바는 200 μm이다. 3C and 3D are electron micrographs showing the surface topology of wax-based microcapsules with eicosan shell and palm oil shell, respectively. Scale bar is 200 μm.
도 3E 및 도 3F는 설포로다민 B (적색 형광 염료)를 캡슐화하는 팜유 기반 마이크로 캡슐의 광학 및 형광 현미경 사진이다. 현미경 사진은 준비된 지 4 주 후에 촬영하였다. 스케일 바는 200 μm이다. 3E and 3F are optical and fluorescence micrographs of palm oil-based microcapsules encapsulating sulforodamine B (red fluorescent dye). Micrographs were taken 4 weeks after preparation. Scale bar is 200 μm.
도 3G는 팜유의 융점 이상으로 가열할 때 마이크로 캡슐로부터 캡슐화된 설포로다민 B의 방출을 보여주는 일련의 복합 현미경 사진 및 개략도이다. 흰색 점선 원은 공기-물 경계면에서 용융 왁스 단계의 투영된 표면적을 나타낸다. 스케일 바는 200 μm이다.3G is a series of composite micrographs and schematics showing the release of encapsulated sulforodamine B from microcapsules when heated above the melting point of palm oil. The white dotted circle represents the projected surface area of the molten wax phase at the air-water interface. Scale bar is 200 μm.
도 4A는 계면 활성제 (Span 80) 유무에 따른 팜유 및 에이코산의 DSC 열 분석을 비교한 그래프이다. Figure 4A is a graph comparing the DSC thermal analysis of palm oil and eicosan with and without a surfactant (Span 80).
도 4B는 1% Span 80의 유무에 따른 에이코산 마이크로 캡슐의 결과를 비교한 그래프이다. Figure 4B is a graph comparing the results of Eicosan microcapsules with or without 1% Span 80.
도 4C는 1% Span 80의 유무에 따른 팜유 마이크로 캡슐의 결과를 비교한 그래프이다.Figure 4C is a graph comparing the results of palm oil microcapsules with or without 1% Span 80.
도 5A는 플루오레세인 나트륨염 (녹색 형광 염료)을 캡슐화하는 팜유 기반 마이크로 캡슐의 광학 현미경 사진이며, 도 5B는 형광 현미경 사진이다. 현미경 사진은 준비된지 4 주 후에 촬영하였다. 스케일 바는 200 μm이다.5A is an optical micrograph of palm oil-based microcapsules encapsulating fluorescein sodium salt (green fluorescent dye), and FIG. 5B is a fluorescence micrograph. Micrographs were taken 4 weeks after preparation. Scale bar is 200 μm.
도 6A는 다양한 농도 (0.2 mM, 0.3 mM 및 0.5 mM)의 나이아신아미드 용액의 UV 가시 스펙트럼을 나타낸다. 6A shows the UV visible spectra of niacinamide solutions at various concentrations (0.2 mM, 0.3 mM and 0.5 mM).
도 6B는 0.01 mM 폴리(비닐 알코올) (PVA) 용액의 UV 가시 스펙트럼을 나타낸다.6B shows the UV visible spectrum of a 0.01 mM poly(vinyl alcohol) (PVA) solution.
도 7A는 각 단계의 개략도와 함께 가열시 팜유 기반 마이크로 캡슐에서 나이아신아미드의 온도에 따른 단계적 방출을 보여주는 UV 가시 스펙트럼을 나타낸다. 7A shows the UV visible spectrum showing the temperature-dependent phased release of niacinamide from palm oil-based microcapsules upon heating together with a schematic diagram of each phase.
도 7B는 가열시 팜유 기반 마이크로 캡슐에서 염산 용액의 방출을 보여주는 개략도 및 광학 현미경 사진이다. 7B is a schematic and optical micrograph showing the release of hydrochloric acid solution from palm oil-based microcapsules upon heating.
도 7C는 열 유도 겔화를 위해 염화칼슘 용액을 캡슐화하는 팜유 기반 마이크로 캡슐의 개략도 및 사진이다. 7C is a schematic and photographic representation of palm oil-based microcapsules encapsulating calcium chloride solution for heat-induced gelation.
도 7D는 미리 형성된 하이드로 겔의 용해를 위해 에틸렌 디아민 테트라 아세트산 (EDTA) 용액을 캡슐화하는 팜유 기반 마이크로 캡슐의 개략도 및 사진이다. Figure 7D is a schematic and photographic representation of palm oil-based microcapsules encapsulating an ethylenediaminetetraacetic acid (EDTA) solution for dissolution of a preformed hydrogel.
도 7E는 체온에 노출되었을 때 염화칼슘 용액을 캡슐화하는 팜유 기반 마이크로 캡슐로 알지네이트 용액의 부분 겔화 및 추가 전단 (shear)을 통한 완전한 겔화가 일어남을 나타낸다. Figure 7E shows that partial gelation of alginate solution and complete gelation through additional shear occurs with palm oil-based microcapsules encapsulating calcium chloride solution when exposed to body temperature.
도 7F는 염화칼슘 용액이 없는 팜유 기반 마이크로 캡슐에 대한 알지네이트 용액에서 겔화가 일어나지 않음을 나타낸다.7F shows that gelation does not occur in alginate solution for palm oil-based microcapsules without calcium chloride solution.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are for illustrative purposes of the present invention, and the scope of the present invention is not limited to these examples.
재료ingredient
팜유 (Tm = 30℃ 내지 40℃), 에이코산 (99 %, Tm = 38℃), span® 80, 폴리 (비닐 알코올) (PVA, 87% 내지 89% 가수 분해, Mw = 13,000 내지 23,000), 설포로다민 B (적색 형광 염료), 플루오레세인 나트륨염 (녹색 형광 염료), 에리오 글라우신 나트륨염 (청색 염료), 수크로스 (≥99.5%), 염산 (35.0 내지 37.0 %), 메틸 레드 (산 지시약), 칼슘 염화물 (≥93.0%), 알긴산 나트륨, 에틸렌 디아민 테트라 아세트산 (EDTA)은 Sigma-Aldrich에서 구입하였다. Niacinamide (Vitamin B3)는 DSM Nutritional Products에서 구입하였다. 2-[메톡시(폴리에틸렌옥시) 9-12 프로필]트리메톡실 실란 (친수성 처리)은 Gelest, Inc에서 구입했으며, 옥타데실트리클로실란 (90%, 소수성 처리)은 ACROS ORGANICS에서 구입하였다. 유리 모세관은 World Precision Instruments에서 구입하였다. 정제수 (EXL®. 28℃에서 18.2 MΩ·cm)가 모든 실험에 사용되었다. EDTA 용액을 캡슐화하는 팜유 쉘을 포함하는 마이크로 캡슐의 경우 EDTA 분말이 산성 pH 조건에서 낮은 용해도를 갖기 때문에 캡슐화 전에 EDTA 용액의 pH를 8.3으로 조정하였다.palm oil (Tm = 30 °C to 40 °C), eicosane (99%, Tm = 38 °C), span® 80, poly (vinyl alcohol) (PVA, 87% to 89% hydrolysis, Mw = 13,000 to 23,000), Sulforodamine B (red fluorescent dye), fluorescein sodium salt (green fluorescent dye), erioglaucine sodium salt (blue dye), sucrose (≥99.5%), hydrochloric acid (35.0 to 37.0%), methyl red (acid indicator), calcium chloride (≥93.0%), sodium alginate, ethylene diamine tetra acetic acid (EDTA) were purchased from Sigma-Aldrich. Niacinamide (Vitamin B3) was purchased from DSM Nutritional Products. 2-[Methoxy(polyethyleneoxy) 9-12 propyl]trimethoxyl silane (hydrophilic treatment) was purchased from Gelest, Inc, and octadecyltriclosilane (90%, hydrophobic treatment) was obtained from ACROS ORGANICS. Glass capillaries were purchased from World Precision Instruments. Purified water (EXL®. 18.2 MΩ·cm at 28°C) was used for all experiments. In the case of microcapsules containing palm oil shell encapsulating the EDTA solution, the pH of the EDTA solution was adjusted to 8.3 before encapsulation because EDTA powder had low solubility in acidic pH conditions.
실험 방법Experimental method
실험에 사용된 각 유체의 삼투압은 상온 및 대기압에서 삼투압계 (Osmomat 3000D)로 측정하였다. 에이코산, 팜유 및 계면 활성제 (Span® 80)가 첨가된 유사체의 열적 특성은 시차 주사 열량계 (differential scanning calorimetry, DSC, DSC Q200, TA 기기)를 사용하여 분석하였다. DSC 분석에서는 N2 하에서 각 시료를 20℃ min-1 ~ 60℃의 속도로 가열한 다음 20℃ min-1 ~ -40℃의 속도로 냉각하고, 10℃ min-1 ~ 60 ℃의 속도로 다시 가열하였다.The osmotic pressure of each fluid used in the experiment was measured with an osmometer (Osmomat 3000D) at room temperature and atmospheric pressure. The thermal properties of the analogs to which eicosan, palm oil and surfactant (Span® 80) were added were analyzed using differential scanning calorimetry (DSC, DSC Q200, TA instrument). In DSC analysis, each sample is heated at a rate of 20 °C min -1 to 60 °C under N 2 , then cooled at a rate of 20 °C min -1 to -40 °C, and again at a rate of 10 °C min -1 to 60 °C. heated.
UV-visible spectrophotometer (UV-1800, Shimadzu)를 사용하여 팜유 쉘을 포함하는 마이크로 캡슐에서 나이아신 아미드의 방출을 분석하였다. 분석의 스펙트럼 범위는 400 nm 내지 200 nm이었다.The release of niacinamide from microcapsules containing palm oil shells was analyzed using a UV-visible spectrophotometer (UV-1800, Shimadzu). The spectral range of the assay was 400 nm to 200 nm.
왁스 기반 마이크로 캡슐의 표면 토폴로지는 전계 방출 주사 전자 현미경 (SEM) (JSM 7800F Prime)을 사용하여 관찰하였다.The surface topology of wax-based microcapsules was observed using a field emission scanning electron microscope (SEM) (JSM 7800F Prime).
팜유 쉘을 포함하는 마이크로 캡슐의 제조에서 각 유체의 유속은 주사기 펌프 (KDS Legato ™ 100)를 사용하여 제어하였다.In the preparation of microcapsules containing palm oil shell, the flow rate of each fluid was controlled using a syringe pump (KDS Legato ™ 100).
고속 카메라 (FASTCAM Mini UX50, Photron)가 장착된 도립 현미경 (Eclipse Ts2, Nikon)을 사용하여 팜유 기반 에멀젼 방울의 생성을 관찰하였다.The formation of palm oil-based emulsion droplets was observed using an inverted microscope (Eclipse Ts2, Nikon) equipped with a high-speed camera (FASTCAM Mini UX50, Photron).
실시예 1. 마이크로 캡슐의 제조Example 1. Preparation of microcapsules
미세 유체 장치를 사용하여 팜유를 포함하는 마이크로 캡슐을 제조하였다. 구체적인 제조 방법은 다음과 같다.Microcapsules containing palm oil were prepared using a microfluidic device. A specific manufacturing method is as follows.
(1) 유리 모세관 미세 유체 장치 제조(1) glass capillary microfluidic device fabrication
맞춤형 온도 제어 플랫폼이 있는 유리 모세관 미세 유체 장치를 사용하여 팜유를 포함하는 마이크로 캡슐을 제조하였다 (도 1A 참조). 유리 모세관 미세 유체 장치는 각각 0.58 mm 및 1.00 mm의 내경 및 외경을 갖는 2개의 테이퍼 원통형 유리 모세관으로 구성된다. 상기 두 개의 원통형 유리 모세관인 주입 모세관 및 수집 모세관은 각각 0.14 mm 및 0.66 mm의 외경을 갖는다. 주입 모세관 (직경 0.14mm)은 옥타데실 트리클로로 실란을 사용하여 소수성으로 변형하였다. 수집 모세관 (직경 0.66 mm)은 2-[메톡시(폴리에틸렌옥시)프로필]트리메톡시 실란을 사용하여 친수성으로 변형하였다. 생성된 2 개의 원통형 유리 모세관을 반대 방향에서 정사각형 유리 모세관에 개별적으로 도입하여 동축 정렬하였다.Microcapsules containing palm oil were prepared using a glass capillary microfluidic device with a custom temperature control platform (see Fig. 1A). The glass capillary microfluidic device consists of two tapered cylindrical glass capillaries with inner and outer diameters of 0.58 mm and 1.00 mm, respectively. The two cylindrical glass capillaries, the injection capillary and the collection capillary, have outer diameters of 0.14 mm and 0.66 mm, respectively. The injection capillary (diameter 0.14 mm) was hydrophobically modified using octadecyl trichloro silane. The collection capillary (0.66 mm in diameter) was hydrophilically modified using 2-[methoxy(polyethyleneoxy)propyl]trimethoxy silane. The resulting two cylindrical glass capillaries were individually introduced into square glass capillaries from opposite directions for coaxial alignment.
(2) 액적 형성(2) droplet formation
액적 형성 동안 0.5 mM의 설포로다민 B (적색 형광 염료)를 포함하는 수성상을 주입 모세관을 통해 주입하여 내부 액적을 형성하였다. Span 80 1%(w/w)인 녹은 팜유를 중간 단계로 사용하며, 상기 팜유를 주입 모세관과 같은 면에서 정사각형 및 주입 모세관의 틈새를 통해 주입하였다. 10% 폴리(비닐 알코올) (PVA)을 포함하는 또 다른 수성상은 외부 연속상과 반대쪽에서 정사각형 모세관을 통해 주입하여 동류 2상 유체를 균일한 팜유 기반 이중 에멀젼 액적으로 유화하였다. 액적이 형성되는 동안 미세 유체 장치와 중간 단계용 주사기를 맞춤형 온도 제어 플랫폼과 주사기 히터를 사용하여 팜유의 융점 이상인 55℃로 가열하였다. 내부 및 외부 수성상의 삼투압은 중간 단계를 통한 물 수송을 억제하고 급냉 전에 에멀젼 액적의 파열을 방지하기 위해 어느 한 단계에서 수크로스를 첨가하여 일치시켰다. 생성된 팜유 기반 액적을 담금질 욕조 (17℃)에서 수집하여 녹은 팜유 상을 동결시킨 후, 냉장고 (1℃)에서 보관하였다. 수성 코어에 설포로다민 B (적색 형광 염료)를 함유하는 결과적인 단분산 팜유를 포함하는 마이크로 캡슐을 관찰하였다 (도 1B 및 도 1C 참조). 코어와 전체 캡슐의 평균 직경은 계수 변동 (coefficient variation, CV)이 각각 2.38% 및 2.07% 인 234 μm 및 286 μm로 나타났다 (도 1D 참조).During droplet formation, an aqueous phase containing 0.5 mM sulforodamine B (red fluorescent dye) was injected through an injection capillary to form an inner droplet. Melted palm oil of Span 80 1% (w/w) was used as an intermediate step, and the palm oil was injected through the gap between the square and the injection capillary on the same side as the injection capillary. Another aqueous phase comprising 10% poly(vinyl alcohol) (PVA) was injected through a square capillary tube opposite the outer continuous phase to emulsify the homogeneous biphasic fluid into uniform palm oil based double emulsion droplets. During droplet formation, the microfluidic device and intermediate stage syringe were heated to 55°C, which is above the melting point of palm oil, using a custom temperature controlled platform and syringe heater. The osmotic pressures of the inner and outer aqueous phases were matched by the addition of sucrose in either stage to inhibit water transport through the intermediate stage and to prevent rupture of the emulsion droplets prior to quenching. The resulting palm oil-based droplets were collected in a quench bath (17° C.), frozen in the molten palm oil phase, and then stored in a refrigerator (1° C.). Microcapsules containing the resulting monodisperse palm oil containing sulforodamine B (red fluorescent dye) in an aqueous core were observed (see FIGS. 1B and 1C ). The average diameters of the core and the entire capsule were 234 μm and 286 μm, with coefficient variation (CV) of 2.38% and 2.07%, respectively (see FIG. 1D ).
크기는 같지만 코어-쉘의 비율이 다른 팜유 기반의 마이크로 캡슐을 내부 및 중간 단계의 유속을 제어하면서 그 합과 외부 단계 유속을 일정하게 유지함으로써 제조할 수 있다 (도 2 참조). 내부 위상 유속의 함수로 표시된 코어 직경은 마이크로 캡슐의 전체 크기가 동일하게 유지되는 반면 (457.5 ± 5.6 μm), 코어 직경은 302.8 ± 27.2 μm에서 318.8 ± 5.5 μm로, 367.7 ± 7.9 μm로, 386.2 ± 10.7 μm로 증가하였다. Palm oil-based microcapsules having the same size but different core-shell ratios can be manufactured by controlling the flow rates of the inner and middle stages while keeping the sum and the outer stage flow rates constant (see FIG. 2 ). Core diameters, expressed as a function of internal phase flow velocity, show that the overall size of the microcapsules remains the same (457.5 ± 5.6 µm), while the core diameters range from 302.8 ± 27.2 µm to 318.8 ± 5.5 µm, 367.7 ± 7.9 µm, and 386.2 ± increased to 10.7 μm.
상기 결과는 조정 가능한 코어-쉘 비율을 가진 매우 균일한 팜유 기반의 마이크로 캡슐이 액적 미세 유체를 사용하여 성공적으로 생산될 수 있음을 나타낸다.The above results indicate that highly uniform palm oil-based microcapsules with tunable core-shell ratio can be successfully produced using droplet microfluidics.
실험예 1. 밀폐성 밀봉 성능 분석Experimental Example 1. Hermetic sealing performance analysis
생산된 팜유 기반 마이크로 캡슐의 밀폐성 밀봉 성능을 조사하기 위해 먼저 모델 소분자에 대한 팜유 층의 투과성을 평가하고 다른 유형의 왁스 재료인 에이코산과 거동을 비교하였다. 팜유와 유사한 녹는점을 가지는 에이코산 (녹는점: 38℃)을 대조군의 왁스 재료로 선택하였다. 또한, 분자량 (MW)이 342 g·mol-1이고 유체 역학적 직경이 0.9 nm인 자당을 소형 분자 모델로 선택하였다.To investigate the hermetic sealing performance of the produced palm oil-based microcapsules, we first evaluated the permeability of the palm oil layer to model small molecules and compared the behavior with other types of wax material, eicosane. Eicosan (melting point: 38° C.) having a melting point similar to palm oil was selected as the wax material for the control. In addition, sucrose having a molecular weight (MW) of 342 g·mol -1 and a hydrodynamic diameter of 0.9 nm was selected as a small molecule model.
상기 두 종류의 왁스 층의 저분자 투과성을 확인하기 위해 40% 자당 용액을 준비하고 두 개의 원심 분리 튜브에 각각 500 ㎕씩 분주하였다. 녹은 에이코산과 녹은 팜유 130 ㎕를 각 튜브에 주입하였다. 다음으로, 원심 분리 튜브를 4℃로 급냉하여 왁스 층을 고형화하였다. 그 다음 상기 두 동결된 왁스 층 위에 각각 탈이온수 600 ㎕를 첨가하였다. 그 결과 40% 자당 용액과 순수 탈이온수가 두께가 0.0250 mm인 에이코산 또는 팜유로 구성된 냉동 왁스 층으로 분리된 두 세트의 원심 분리 튜브가 생성되었다 (도 3A 참조).In order to check the low molecular permeability of the two types of wax layers, a 40% sucrose solution was prepared, and 500 μl each was dispensed into two centrifuge tubes. Dissolved eicosane and 130 μl of dissolved palm oil were injected into each tube. Next, the centrifuge tube was quenched to 4° C. to solidify the wax layer. Then 600 μl of deionized water was added on each of the two frozen wax layers. This resulted in two sets of centrifugation tubes in which a 40% sucrose solution and pure deionized water were separated by a layer of frozen wax composed of either eicosane or palm oil with a thickness of 0.0250 mm (see Fig. 3A).
이 두 시스템에서 2개월 동안 상부 수용액의 삼투압을 모니터링하였다. 에이코산 층 위에 있는 수용액이 삼투압의 꾸준한 증가를 나타내는 반면, 팜유 층 위에 있는 수용액은 2 개월 후에도 삼투압이 증가하지 않았다 (도 3B 참조). The osmotic pressure of the upper aqueous solution was monitored in these two systems for 2 months. The aqueous solution on the eicosan layer showed a steady increase in osmotic pressure, whereas the aqueous solution on the palm oil layer did not increase the osmotic pressure even after 2 months (see Fig. 3B).
이 결과는 팜유 층이 우수한 물리적 장벽 역할을 하며 자당과 같은 작은 분자에 대해 밀폐 밀봉을 제공함을 나타낸다.These results indicate that the palm oil layer acts as a good physical barrier and provides a hermetic seal against small molecules such as sucrose.
실험예 2. 마이크로 캡슐 표면 토폴로지 확인Experimental Example 2. Confirmation of microcapsule surface topology
에이코산 또는 팜유 쉘을 포함하는 왁스 기반 마이크로 캡슐을 각각 두 세트 준비하고, 상기 생성된 마이크로 캡슐의 표면 토폴로지를 모니터링하였다.Two sets of wax-based microcapsules each containing eicosan or palm oil shell were prepared, and the surface topology of the resulting microcapsules was monitored.
그 결과, 에이코산 기반 마이크로 캡슐에는 기공과 균열이 존재하는 반면 (도 3C 참조), 팜유로 구성된 유사한 마이크로 캡슐에서는 눈에 띄는 기공이나 균열이 관찰되지 않았다 (도 3D 참조).As a result, pores and cracks were present in the eicosan-based microcapsules (see Fig. 3C), whereas no noticeable pores or cracks were observed in the similar microcapsules composed of palm oil (see Fig. 3D).
에이코산은 단일 성분으로 구성되며 상대적으로 좁은 융점을 나타내므로 높은 결정도를 나타낸다 (도 4A 참조). 따라서 냉각 과정에서 균열 또는 기공 형성이 발생하였다 (도 3C 참조).Eicosan is composed of a single component and exhibits a relatively narrow melting point and thus high crystallinity (see Fig. 4A). Therefore, cracks or pore formation occurred during the cooling process (see FIG. 3C ).
반면, 팜유는 주로 다양한 지방산을 함유한 트리글리세리드와 소량의 모노글리세리드와 디글리세리드로 구성되어 있다. 트리글리세라이드는 도 4A의 DSC 플롯에 나타나는 두 개의 넓은 피크로 표시되는 것처럼 녹는점이 다른 두 그룹으로 더 분류될 수 있다. 냉각 과정에서 융점이 다른 두 그룹은 순차적 결정화로 이어질 수 있으므로 융점이 낮은 그룹이 융점이 높은 그룹의 결정화로 인해 만들어진 초기 균열과 기공을 채울 수 있어, 기공이나 균열이 없는 온전한 껍질을 생성할 수 있다 (도 3D 참조).On the other hand, palm oil mainly consists of triglycerides containing various fatty acids and small amounts of monoglycerides and diglycerides. Triglycerides can be further classified into two groups with different melting points as indicated by the two broad peaks appearing in the DSC plot of FIG. 4A. During the cooling process, two groups with different melting points can lead to sequential crystallization, so the group with the lower melting point can fill the initial cracks and pores created by the crystallization of the group with the higher melting point, creating an intact shell without pores or cracks. (See Figure 3D).
에이코산과 팜유에 계면활성제인 Span 80을 첨가해도 상전이 거동은 크게 변화하지 않았다 (도 4B 및 도 4C 참조). Even when Span 80, a surfactant, was added to eicosane and palm oil, the phase transition behavior did not change significantly (see FIGS. 4B and 4C).
이러한 결과는 다성분 왁스 재료에 의해 제공되는 순차적 결정화가 냉각 과정에서 기공 또는 균열 형성을 억제할 수 있음을 나타낸다. 쉘 재료로 팜유를 사용하면 상대적으로 얇은 쉘을 가진 마이크로 캡슐에서 뛰어난 밀폐 밀봉 효과를 가질 수 있다.These results indicate that the sequential crystallization provided by the multi-component wax material can suppress the formation of pores or cracks during cooling. The use of palm oil as a shell material can have an excellent hermetic sealing effect in microcapsules with a relatively thin shell.
0.5 mM 설포로다민 B 용액 (적색 형광 염료, MW=581 g·mol-1)을 캡슐화하는 250 μm 두께의 팜유 기반 마이크로 캡슐을 준비하였다. 4주 동안 배양한 후에도 팜유 쉘을 통해 작은 형광 염료가 누출되지 않음을 확인하였다 (도 3E 및 도 3F 참조). 더 낮은 분자량의 형광 염료 분자인 플루오레세인 나트륨염 (녹색 형광 염료, MW = 376 g·mol-1)를 이용하여 유사한 실험을 한 결과, 팜유 기반 마이크로 캡슐은 최소 4주 동안 밀봉 성능을 유지함을 확인하였다 (도 5A 및 도 5B 참조).A 250 μm thick palm oil-based microcapsule encapsulating a 0.5 mM sulforodamine B solution (red fluorescent dye, MW=581 g·mol −1 ) was prepared. It was confirmed that a small fluorescent dye did not leak through the palm oil shell even after culturing for 4 weeks (see FIGS. 3E and 3F ). A similar experiment using a lower molecular weight fluorescent dye molecule, fluorescein sodium salt (green fluorescent dye, MW = 376 g mol -1 ), showed that palm oil-based microcapsules maintained sealing performance for at least 4 weeks. was confirmed (see FIGS. 5A and 5B).
실험예 3. 온도 반응 상전이에 따른 주문 방출형 거동 관찰Experimental Example 3. Observation of ordered emission behavior according to temperature response phase transition
팜유 기반 마이크로 캡슐의 방출 메커니즘을 이해하기 위해, 0.5 mM 설포로다민 B (적색 형광 염료) 용액을 캡슐화한 팜유 기반 마이크로 캡슐을 준비하고, 온도를 55℃로 올릴 때 마이크로 캡슐의 변화를 확인하였다.To understand the release mechanism of palm oil-based microcapsules, palm oil-based microcapsules encapsulated with 0.5 mM sulforodamine B (red fluorescent dye) solution were prepared, and the change of microcapsules was confirmed when the temperature was raised to 55 °C.
팜유 기반 마이크로 캡슐은 수성 연속상보다 팜유의 밀도가 낮기 때문에 초기에 공기-물 경계면에 위치하였다. 열을 가하면 팜유 껍질의 상전이가 비대칭적으로 일어나고 녹은 팜유가 공기-물 경계면에 퍼지기 시작하였다. 용융 왁스 기반 에멀젼 액적의 국부적인 희석 및 파열을 유도한 다음 적색 형광 염료를 수성 연속상으로 방출하였다 (도 3G 참조).Palm oil-based microcapsules were initially located at the air-water interface because of the lower density of palm oil than the aqueous continuous phase. When heat was applied, the phase transition of the palm oil shell occurred asymmetrically, and the melted palm oil began to spread at the air-water interface. Local dilution and rupture of the molten wax-based emulsion droplets were induced, followed by release of a red fluorescent dye into the aqueous continuous phase (see Figure 3G).
실험예 4. 화장품 활성제 담지 효율 확인Experimental Example 4. Confirmation of cosmetic active agent loading efficiency
상기 팜유 기반 마이크로 캡슐이 화장품 활성 물질의 캡슐화 및 열에 의한 방출에 미치는 영향을 확인하였다.The effect of the palm oil-based microcapsules on encapsulation and heat release of cosmetic active substances was confirmed.
나이아신아미드 (비타민 B3)를 팜유 기반 마이크로 캡슐에 캡슐화하였다. 5% PVA를 수성 코어에 추가하여 내부상의 점도를 높이고 나이아신아미드가 캡슐화된 마이크로 캡슐 생산 중 역류를 방지하였다.Niacinamide (Vitamin B3) was encapsulated in palm oil based microcapsules. 5% PVA was added to the aqueous core to increase the viscosity of the inner phase and prevent backflow during the production of niacinamide encapsulated microcapsules.
가열시 방출되는 나이아신아미드의 양을 결정하기 위해 먼저 다양한 농도의 탈이온수에서 나이아신아미드의 UV 가시 스펙트럼을 관찰하였다. 나이아신아미드는 각각 214 nm 및 262 nm의 파장에서 두 가지 특성 피크를 나타냈다 (도 6A 참조). 214 nm의 피크는 PVA의 피크와 겹치기 때문에 (도 6B 참조), 마이크로 캡슐에서 방출된 나이아신아미드의 양을 분석하기 위해 262 nm의 피크를 선택하였다.In order to determine the amount of niacinamide released upon heating, the UV visible spectrum of niacinamide in various concentrations of deionized water was first observed. Niacinamide exhibited two characteristic peaks at wavelengths of 214 nm and 262 nm, respectively (see FIG. 6A ). Since the peak at 214 nm overlaps the peak of PVA (see Fig. 6B), the peak at 262 nm was selected to analyze the amount of niacinamide released from the microcapsules.
나이아신아미드 캡슐화 마이크로 캡슐 현탁액의 UV 가시 스펙트럼은 가열 전 262 nm에서 무시할 수 있는 흡광도를 나타내지만, 이 피크는 가열 후 증가하여 마이크로 캡슐에서 나이아신아미드의 열 유도된 방출을 나타냈다 (도 7A 참조).The UV visible spectrum of the niacinamide encapsulated microcapsule suspension showed negligible absorbance at 262 nm before heating, but this peak increased after heating, indicating the heat-induced release of niacinamide from the microcapsules (see Fig. 7A).
또한, 팜유 기반 마이크로 캡슐에서 나이아신아미드의 열 유도된 단계적 방출을 확인하기 위해 중간에 마이크로 캡슐 첨가 단계를 포함하는 2 단계 가열 공정을 도입하였다. In addition, to confirm the thermally induced stepwise release of niacinamide from palm oil-based microcapsules, a two-step heating process including a microcapsule addition step was introduced in the middle.
이러한 결과는 팜유 기반 마이크로 캡슐의 생체 적합성 및 온도 반응 거동을 활용하여 나이아신아미드와 같은 화장품 성분을 효과적으로 전달할 수 있음을 나타낸다.These results indicate that cosmetic ingredients such as niacinamide can be effectively delivered by utilizing the biocompatibility and temperature response behavior of palm oil-based microcapsules.
실험예 5. 강산 담지 효율 확인Experimental Example 5. Confirmation of strong acid loading efficiency
0.5 M 염산 용액과 수성 코어 (pH 0.79)에 PVA의 5%를 캡슐화한 팜유 기반 마이크로 캡슐을 준비하고, pH 12.58의 지표 용액 (에탄올에서 10 mM 메틸 레드)에 분산하였다. 용액이 산성이 되면 (<pH 4.4) 표시 용액의 색이 노란색에서 빨간색으로 변경되어 가열시 마이크로 캡슐에서 산 방출을 시각화 할 수 있다.Palm oil-based microcapsules encapsulated in 0.5 M hydrochloric acid solution and 5% of PVA in an aqueous core (pH 0.79) were prepared and dispersed in an indicator solution (10 mM methyl red in ethanol) at pH 12.58. When the solution becomes acidic (<pH 4.4), the color of the indicator solution changes from yellow to red, allowing visualization of acid release from the microcapsules upon heating.
용액 온도를 55℃로 증가시키면 마이크로 캡슐 현탁액의 색이 국부적으로 노란색에서 빨간색으로 변하는 것을 관찰하였다. 이는 마이크로 캡슐에서 연속상으로 염산의 열 유도된 방출 하였음을 나타낸다 (도 7B 참조).It was observed that the color of the microcapsule suspension was locally changed from yellow to red when the solution temperature was increased to 55°C. This indicates that there was a thermally induced release of hydrochloric acid from the microcapsules into the continuous phase (see Fig. 7B).
실험예 6. 열 유도 겔화 및 미리 형성된 하이드로겔 용해 확인Experimental Example 6. Confirmation of heat-induced gelation and dissolution of preformed hydrogels
팜유 기반 마이크로 캡슐은 수성 코어에 염화칼슘 용액 또는 에틸렌디아민테트라아세트산 (EDTA) 용액을 캡슐화하여 열 유도 겔화 및 미리 형성된 하이드로겔 용해에 사용할 수 있다.Palm oil-based microcapsules can be used for heat-induced gelation and preformed hydrogel dissolution by encapsulating a calcium chloride solution or ethylenediaminetetraacetic acid (EDTA) solution in an aqueous core.
(1) 열 유도 겔화(1) heat-induced gelation
2% 염화칼슘 용액을 함유한 팜유 기반 마이크로 캡슐을 5% 알긴산 나트륨 용액에 분산하였다. 이후 팜유의 녹는점 이상으로 가열하면 칼슘 이온이 방출되고 알긴산 블록 공중 합체의 G 블록 (α-L- 글루루론산)과 칼슘 이온이 이온 가교되어 달걀 상자 구조 (egg box structure)를 형성한다.Palm oil-based microcapsules containing 2% calcium chloride solution were dispersed in 5% sodium alginate solution. After that, when heated above the melting point of palm oil, calcium ions are released, and the G block (α-L-glucuronic acid) and calcium ions of the alginate block copolymer are ionically crosslinked to form an egg box structure.
마이크로 캡슐에서 칼슘 이온을 방출하여 알지네이트 용액의 열 유도 겔화를 명확하게 시각화하기 위해 알긴산 나트륨 용액 내에 별 모양의 프레임을 놓고 프레임 내에 칼슘 이온만 포함된 팜유 기반 마이크로 캡슐을 추가하였다. 이 후 가열하면 별 모양의 알지네이트 하이드로겔이 형성되었다 (도 7C 참조).To clearly visualize the heat-induced gelation of the alginate solution by releasing calcium ions from the microcapsules, a star-shaped frame was placed in the sodium alginate solution, and palm oil-based microcapsules containing only calcium ions were added in the frame. After heating, a star-shaped alginate hydrogel was formed (see Fig. 7C).
칼슘 이온의 열 유도된 방출을 확인하기 위해 팜유 기반 마이크로 캡슐을 손 위에 올려 체온 환경에 적용하였다. 염화칼슘 용액을 함유하는 마이크로 캡슐이 포함된 알기네이트 용액은 체온에 노출될 경우 부분적인 겔화 및 추가적인 전단 응력(shear)을 통해 완전한 겔화 거동을 보였다 (도 7E 참조). 반면, 염화칼슘 용액이 없는 마이크로 캡슐에 대한 유사한 실험은 명백한 겔화를 나타내지 않았다 (도 7F 참조).To confirm the thermally induced release of calcium ions, palm oil-based microcapsules were placed on the hand and applied to the body temperature environment. The alginate solution containing microcapsules containing calcium chloride solution showed complete gelation behavior through partial gelation and additional shear stress when exposed to body temperature (see FIG. 7E ). On the other hand, similar experiments on microcapsules without calcium chloride solution showed no apparent gelation (see Fig. 7F).
전단 응력을 적용한 후 팜유의 발자국이 남지 않아 스킨 케어 제품에서 효율적으로 활용될 수 있다. 이러한 결과는 팜유 기반 마이크로 캡슐이 화장품에 적용 가능함을 보여준다.After applying shear stress, palm oil does not leave a footprint, so it can be used efficiently in skin care products. These results show that palm oil-based microcapsules are applicable to cosmetics.
(2) EDTA 용액에 의한 미리 형성된 하이드로겔의 열 유발 용해 확인(2) Confirmation of heat-induced dissolution of preformed hydrogels by EDTA solution
EDTA는 달걀 상자 구조의 결합 강도를 감소시키고 킬레이트화 하는데 사용되어 미리 형성된 알지네이트 하이드로겔을 분해할 수 있다.EDTA can be used to reduce the bond strength and chelate the egg carton structures to degrade the preformed alginate hydrogel.
EDTA 용액을 캡슐화하는 마이크로 캡슐 유무에 따른 두 세트의 알긴산 하이드로겔 현탁액을 준비하고 가열시의 변화를 비교하였다.Two sets of alginic acid hydrogel suspensions with or without microcapsules encapsulating the EDTA solution were prepared and the changes upon heating were compared.
상기 두 가지 현탁액 모두 하이드로겔과 수성 연속상 사이의 시각적 대비를 높이기 위해 배지에 에리오글라우신 나트륨염 (청색 염료)을 첨가하였다. 알지네이트 하이드로겔이 초기에 EDTA 캡슐화된 마이크로 캡슐을 가진 하이드로겔 현탁액에서만 용해되는 것을 확인하였다 (도 7D 참조). 킬레이팅 반응은 일반적으로 오랜 시간이 필요하므로, 하이드로겔 용해는 가열 적용 후 3시간 후에 평가하였다.For both suspensions, erioglaucine sodium salt (blue dye) was added to the medium to enhance the visual contrast between the hydrogel and the aqueous continuous phase. It was confirmed that the alginate hydrogel was initially dissolved only in the hydrogel suspension with EDTA encapsulated microcapsules (see FIG. 7D ). Since the chelating reaction generally requires a long time, the hydrogel dissolution was evaluated 3 hours after the application of heat.

Claims (10)

  1. 다성분 왁스를 포함하는 쉘부; 및 수성 코어부;를 포함하고,a shell part comprising a multi-component wax; and an aqueous core part;
    상기 다성분 왁스는 온도 변화에 따라 상 변화하는 것을 특징으로 하고,The multi-component wax is characterized in that the phase changes according to the temperature change,
    상기 쉘부는 기공 또는 균열이 없는 것인, 마이크로 캡슐.The shell portion will have no pores or cracks, microcapsules.
  2. 청구항 1에 있어서, 상기 다성분 왁스는 팜유 왁스인, 마이크로 캡슐.The microcapsule of claim 1 , wherein the multi-component wax is palm oil wax.
  3. 청구항 1에 있어서, 상기 다성분 왁스는 30 내지 40℃에서 성분들이 순차적 용융되는 것인, 마이크로 캡슐.The microcapsule according to claim 1, wherein the multi-component wax is sequentially melted at 30 to 40°C.
  4. 청구항 3에 있어서, 상기 성분은 트리글리세리드, 모노글리세리드 및 디글리세리드로 이루어진 군에서 선택된 하나 이상인, 마이크로 캡슐.The microcapsule of claim 3, wherein the component is at least one selected from the group consisting of triglycerides, monoglycerides and diglycerides.
  5. 청구항 1에 있어서, 상기 마이크로 캡슐의 직경은 200 내지 350 ㎛인, 마이크로 캡슐.The microcapsule of claim 1, wherein the microcapsule has a diameter of 200 to 350 μm.
  6. 청구항 1에 있어서, 상기 코어부는 칼슘이온을 더 포함하는, 열 유도 겔화용 마이크로 캡슐.The microcapsule for heat-induced gelation according to claim 1, wherein the core part further comprises calcium ions.
  7. 청구항 1에 있어서, 상기 코어부는 EDTA를 더 포함하는, 하이드로겔 용해용 마이크로 캡슐.The microcapsule for dissolving hydrogel according to claim 1, wherein the core part further comprises EDTA.
  8. 청구항 1 내지 7 중 어느 한 항의 마이크로 캡슐을 포함하는, 화장료 조성물.A cosmetic composition comprising the microcapsules of any one of claims 1 to 7.
  9. 청구항 1 내지 5 중 어느 한 항의 마이크로 캡슐을 포함하는, 기능성 식품 조성물.A functional food composition comprising the microcapsules of any one of claims 1 to 5.
  10. 오일상으로 구성된 쉘부; 및 수상으로 구성된 코어부;를 포함하며, 상기 쉘부는 다성분 왁스를 포함하는, 이중 액적을 형성하는 단계; 및a shell part composed of an oil phase; and a core part composed of an aqueous phase, wherein the shell part comprises a multi-component wax, forming double droplets; and
    상기 다성분 왁스를 순차적 결정화시키는 단계;를 포함하는 마이크로 캡슐의 제조방법.A method of manufacturing microcapsules comprising a; sequentially crystallizing the multi-component wax.
PCT/KR2022/000027 2021-02-26 2022-01-03 Microcapsule comprising multi-component wax and method for manufacturing same WO2022181966A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210026311A KR102609653B1 (en) 2021-02-26 2021-02-26 Microcapsule comprising multicomponent wax and method for manufacturing the same
KR10-2021-0026311 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181966A1 true WO2022181966A1 (en) 2022-09-01

Family

ID=83048329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000027 WO2022181966A1 (en) 2021-02-26 2022-01-03 Microcapsule comprising multi-component wax and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102609653B1 (en)
WO (1) WO2022181966A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102633971B1 (en) * 2022-11-24 2024-02-06 코스맥스 주식회사 Microcapsule composed of shell part comprising multicomponent wax and oily core part and cosmetic composition comprising the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050084485A (en) * 2002-12-23 2005-08-26 발켐 코포레이션 Controlled release encapsulated bioactive substances
KR20120008460A (en) * 2010-07-16 2012-01-30 에스케이이노베이션 주식회사 Preparing method of organic phase change material through hydroprocessing reaction of animal and vegetable oil
KR20150122204A (en) * 2013-02-27 2015-10-30 이엘씨 매니지먼트 엘엘씨 Compositions with thermally-regulating material
KR101602138B1 (en) * 2014-11-21 2016-03-10 강원대학교산학협력단 Temperature dependent solid lipid particle with calcium chloride particle and manufacturing method thereof
KR20160055314A (en) * 2014-11-07 2016-05-18 한국과학기술원 Temperature sensitive Capsule and Method of preparing the same
KR20190115429A (en) * 2018-04-02 2019-10-11 주식회사 옵티팜 Alginate microcapsules for cell membrane formation and a method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050084485A (en) * 2002-12-23 2005-08-26 발켐 코포레이션 Controlled release encapsulated bioactive substances
KR20120008460A (en) * 2010-07-16 2012-01-30 에스케이이노베이션 주식회사 Preparing method of organic phase change material through hydroprocessing reaction of animal and vegetable oil
KR20150122204A (en) * 2013-02-27 2015-10-30 이엘씨 매니지먼트 엘엘씨 Compositions with thermally-regulating material
KR20160055314A (en) * 2014-11-07 2016-05-18 한국과학기술원 Temperature sensitive Capsule and Method of preparing the same
KR101602138B1 (en) * 2014-11-21 2016-03-10 강원대학교산학협력단 Temperature dependent solid lipid particle with calcium chloride particle and manufacturing method thereof
KR20190115429A (en) * 2018-04-02 2019-10-11 주식회사 옵티팜 Alginate microcapsules for cell membrane formation and a method for producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANG SEONG JIN; WI SEUNGHWAN; JEONG SU-GWANG; KIM SUMIN: "Analysis on phase transition range of the pure and mixed phase change materials (PCM) using a thermostatic chamber test and differentiation", JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, KLUWER, DORDRECHT,, NL, vol. 131, no. 2, 29 July 2017 (2017-07-29), NL , pages 1999 - 2004, XP036421089, ISSN: 1388-6150, DOI: 10.1007/s10973-017-6603-y *
RYU SANG A, HWANG YOON-HO, OH HEEMUK, JEON KYOUNGHEE, LEE JE HYUN, YOON JONGSUN, LEE JUN BAE, LEE HYOMIN: "Biocompatible Wax-Based Microcapsules with Hermetic Sealing for Thermally Triggered Release of Actives", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 13, no. 30, 4 August 2021 (2021-08-04), US , pages 36380 - 36387, XP055961616, ISSN: 1944-8244, DOI: 10.1021/acsami.1c04652 *

Also Published As

Publication number Publication date
KR20220122110A (en) 2022-09-02
KR102609653B1 (en) 2023-12-05

Similar Documents

Publication Publication Date Title
Akhtar et al. Encapsulation of flavonoid in multiple emulsion using spinning disc reactor technology
CN101801416B (en) Sealmess capsule
Comunian et al. Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic technique
EP1030687B1 (en) Cosmetic or dermopharmaceutical composition in the form of hydrophobic beads and methods for preparing same
KR100541753B1 (en) Microcapsule and a process for its preparation
US9192679B2 (en) Galenical system for active transport, method for preparation and use
WO2022181966A1 (en) Microcapsule comprising multi-component wax and method for manufacturing same
US20100291197A1 (en) hot melt-filled soft capsules
WO2017164429A1 (en) Emulsion bead and method for manufacturing same
WO2015020286A1 (en) Stable triple-layer capsule using poorly water-soluble substance, manufacturing method therefor and cosmetic composition using same
EP2324812A2 (en) Composition exhibiting enhanced formulation stability and delivery of topical active ingredients
JP2002539268A (en) Stable glycerin-in-oil emulsion
CA2563680A1 (en) Seamless capsule containing water-soluble active substance
KR20010013086A (en) Water containing wax-based product
US5711936A (en) Ultramulsion based ingestible compositions
CA2438199A1 (en) Process for making microcapsules involving phase inversion
WO2020105840A1 (en) Composition for stabilizing poorly soluble components and cosmetic composition comprising same
US20100129453A1 (en) Emulsions comprising rubber arabicum
JP4472035B2 (en) Capsule formulation with excellent long-term storage stability
JP3201914B2 (en) W / O type microcapsule emulsion.
WO2019177187A1 (en) Method of manufacturing composition material for skin moisturizing containing vehicle having multi-layer globule
KR101102935B1 (en) Multiple lipid microcapsules, a manufacturing method of the same and a cosmetic composition containing the same
KR930005323B1 (en) External preparations
KR102633971B1 (en) Microcapsule composed of shell part comprising multicomponent wax and oily core part and cosmetic composition comprising the same
KR0170578B1 (en) Gel type cosmetic composition containing oil membrane capsule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759885

Country of ref document: EP

Kind code of ref document: A1