WO2022181433A1 - Horizontal-type powder surface film forming device - Google Patents

Horizontal-type powder surface film forming device Download PDF

Info

Publication number
WO2022181433A1
WO2022181433A1 PCT/JP2022/006347 JP2022006347W WO2022181433A1 WO 2022181433 A1 WO2022181433 A1 WO 2022181433A1 JP 2022006347 W JP2022006347 W JP 2022006347W WO 2022181433 A1 WO2022181433 A1 WO 2022181433A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrel
powder
horizontal
pressure
film
Prior art date
Application number
PCT/JP2022/006347
Other languages
French (fr)
Japanese (ja)
Inventor
智弘 丸子
Original Assignee
株式会社フルヤ金属
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フルヤ金属 filed Critical 株式会社フルヤ金属
Publication of WO2022181433A1 publication Critical patent/WO2022181433A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders

Definitions

  • the present disclosure relates to a powder surface film forming apparatus for forming a thin film on the surface of each powder particle.
  • a thin film is formed on the surface of the particles in order to add new functions to the powder.
  • a wet method such as a plating method or a sol-gel method has been widely used to form a thin film on the surface of particles. While the wet method has the advantage of mass production, it is difficult to form a thin film containing multiple elements on the complex surfaces of particles. Moreover, since it is a wet method, the solvent remains on the surface of the powder, inside the thin film, and further on the surface of the thin film, and there is a problem that the intended function cannot be exhibited.
  • the object of the present disclosure is to improve the stirring efficiency of the powder by the dry method, to continuously produce the powder whose surface is coated with a thin film, and to form an even amount of film with respect to the raw material powder.
  • Another object of the present invention is to provide a horizontal powder surface film-forming apparatus that achieves high productivity by properly controlling the film-forming speed.
  • the horizontal powder surface deposition apparatus comprises a laterally tilted barrel, a rotating mechanism for rotating the main axis of the barrel as a rotation axis, and a pressure in the barrel to a predetermined pressure below atmospheric pressure. and a film forming mechanism installed in the barrel, and a horizontal powder surface film forming mechanism for forming a thin film on the surface of the raw material powder put in the barrel while rotating the barrel.
  • the apparatus is characterized in that the barrel has an inner surface of the side wall as a bottom surface, a passage extending spirally around the rotation axis, and a top surface of the passage that is open.
  • the passages are preferably provided with partitions between adjacent passages.
  • the raw material powder placed in the passage can be moved along the main axis direction of the barrel while being reliably and efficiently stirred by the rotation of the barrel. can be deposited over a wider area in a wider state, resulting in higher deposition efficiency.
  • the partition may be a continuous spiral partition, a continuous spiral step partition, or a plurality of partitions arranged in a spiral step shape with portions facing each other. It is preferable that the partition is an intermittent spiral stepped partition, or a partition that is a combination of at least two of these three kinds of partitions.
  • the boundary between the passages has a shape extending spirally around the rotation axis of the barrel on the inner surface of the side wall of the barrel. can take
  • the passage preferably has a projection on the bottom surface. After the raw material powder passes through the projections, it acts like a fluid and forms a Karman vortex, thereby obtaining a stirring effect.
  • the horizontal powder surface deposition apparatus preferably has a knocker for impacting the barrel or a vibrator for vibrating the barrel.
  • the impact or vibration applied to the barrel agitates the raw material powder, making it easier to form a film over the entire powder.
  • a powder supply mechanism that supplies the raw material powder into the barrel from one end surface of the barrel, and a thin film formed on the surface from the other end surface of the barrel.
  • a powder recovery mechanism for recovering the coated powder the powder supply mechanism having a first preliminary chamber capable of adjusting pressure and atmosphere, the first preliminary chamber having a powder inlet and a and is connected to one end face of the barrel via a first opening/closing mechanism, the powder recovery mechanism has a second preliminary chamber capable of adjusting pressure and atmosphere, and the second preliminary chamber It is preferable that the chamber is connected to the other end surface of the barrel via a second opening/closing mechanism, and is also connected to the powder recovery port.
  • the raw material powder is continuously introduced from one side of the barrel, and the introduction of the raw material powder can be performed in a vacuum atmosphere or at a predetermined gas pressure. It is a structure that allows the powder surface to be deposited during the movement, and furthermore, the coated powder that has completed the deposition is continuously discharged, and the inside of the barrel is a vacuum atmosphere or a predetermined gas pressure.
  • the structure can be such that the coating powder can be discharged to the atmosphere while maintaining the
  • the rotating mechanism has a regulator for the number of rotations of the barrel and a switch for forward/reverse rotation of the rotation direction.
  • the motion of the barrel can be diversified, thereby more efficiently stirring the raw material powder in the barrel, and as a result, the raw material powder can be uniformly coated.
  • the powder recovery mechanism has a second preliminary chamber capable of adjusting pressure and atmosphere, and the second The preliminary chamber is connected to one end face of the barrel via a second opening/closing mechanism and is connected to the powder recovery port, and the rotating mechanism includes a regulator for the number of rotations of the barrel and a positive rotation direction. It is preferable to have a reverse/reverse switch.
  • the raw material powder is continuously introduced from one side of the barrel, and the introduction of the raw material powder can be performed in a vacuum atmosphere or at a predetermined gas pressure.
  • the horizontal powder surface deposition apparatus preferably has an angle adjustment mechanism for adjusting the inclination of the main axis of the barrel.
  • the slanting angle of the barrel facilitates the movement of the powder, making introduction, movement and discharge more reliable.
  • the film-forming mechanism preferably has a film-forming source using a sputtering method, an ion plating method, an ion beam method, or an atom beam method.
  • a variety of deposition mechanisms can be selected, all of which can provide a uniform coating powder.
  • the powder stirring efficiency by the dry method is improved, the powder whose surface is coated with a thin film is continuously produced, and the film thickness is uniform with respect to the raw material powder. It is possible to provide a horizontal powder surface film-forming apparatus that achieves high productivity by properly controlling the film-forming speed.
  • FIG. 1 is a schematic diagram showing a first example of a horizontal powder surface deposition apparatus according to this embodiment
  • FIG. Fig. 2 is a schematic perspective view of the barrel and partition of the first example
  • Fig. 2 is a schematic cross-sectional view showing the barrel and partition of the first example
  • It is a schematic diagram showing a second example of a horizontal powder surface deposition apparatus according to the present embodiment
  • FIG. 11 is a schematic perspective view of a second example barrel and partition; It is a schematic diagram showing a third example of a horizontal powder surface deposition apparatus according to the present embodiment
  • FIG. 11 is a schematic perspective view of a third example barrel and partition; It is the schematic which shows the state which tilted the 1st example to the lower right.
  • FIG. 11 is a schematic perspective view of a fourth example barrel and partition
  • FIG. A horizontal powder surface deposition apparatus 100 includes a barrel 1 tilted sideways, a rotation mechanism 7 that rotates the main shaft of the barrel 1 as a rotation axis 2, and a and a film forming mechanism 43 installed in the barrel 1, and a thin film is formed on the surface of the raw material powder 42 put in the barrel 1 while rotating the barrel 1.
  • the barrel 1 has a bottom surface 44 on the inner surface of the side wall and a passage 45 extending spirally around the rotating shaft 2. The top surface of the passage 45 is open. .
  • the barrel 1 preferably has a tubular shape, more preferably a cylindrical shape or a polygonal tubular shape. Moreover, it is preferable that the end face of the barrel 1 has an opening. For example, as shown in FIG. 2, the end face of the barrel 1 may have an annular flat surface with an opening 46 in the center, or may have an opening 47 with no surface at all.
  • the barrel 1 is tilted sideways and has a rotation mechanism 7 that rotates around the main axis of the barrel 1 as the rotation axis 2 .
  • the rotating mechanism 7 has a drive motor 3, a drive shaft 4 rotated by the drive motor 3, a drive roll 5 rotated by the drive shaft 4, and a slave roll 6 freely rotating.
  • the drive roll 5 and follower roll 6 are in contact with the outer surface of the side wall of the barrel 1 .
  • the rotation mechanism 7 preferably has a regulator (not shown) for the number of revolutions of the barrel 1 .
  • the adjuster is, for example, a rotation adjuster or gearbox of the drive motor 3 . It is preferable that the rotation mechanism 7 further has a switch for forward/reverse rotation of the rotation direction of the drive shaft 4 .
  • the changeover is, for example, a geared rotation converter or a rotation converter of the drive motor 3 .
  • the barrel 1 has at least the openings 46 and 47 of the barrel 1 covered by the vacuum chamber 24 .
  • FIG. 1 shows a form in which a portion of the side wall of the barrel 1 is covered with the heating/cooling mechanism 48 and both ends of the barrel including the openings 46 and 47 of the barrel 1 are covered with the vacuum chamber 24. It may be covered by chamber 24 .
  • the pressure adjusting mechanism 23 is connected to the vacuum chamber 24 .
  • the pressure adjustment mechanism 23 is, for example, an exhaust pump.
  • the pressure adjusting mechanism 23 further includes a pipe 21 connected to the vacuum chamber 24 and a first gas system 18 connected to the pipe 21 .
  • the pressure regulating mechanism 23 can maintain the pressure in the barrel 1 at a predetermined pressure below the atmospheric pressure and replace it with a predetermined gas atmosphere by means of exhaust by the exhaust pump and gas supply by the first gas system 18 .
  • the heating/cooling mechanism 48 heats the raw material powder 42 by heating the barrel 1, and cools the barrel 1 after the film is formed on the raw material powder 42. may have
  • the film forming mechanism 43 is preferably installed inside the barrel 1 .
  • the film-forming mechanism 43 has illustrated the form which has the film-forming apparatus 25 and the film-forming material 26.
  • a film-forming material is discharged from the film-forming material 26 toward the raw material powder 42 in the barrel 1 by the film-forming device 25 .
  • the raw material powder 42 is gathered on the vertically lower side of the inner surface of the side wall inside the barrel 1 by gravity. Therefore, it is preferable that the film forming mechanism 43 discharges the thin film forming substance downward as shown in FIG.
  • the film forming mechanism 43 preferably has a film forming source using a sputtering method, an ion plating method, an ion beam method, or an atom beam method.
  • a variety of deposition mechanisms can be selected, all of which can provide a uniform coating powder.
  • the passage 45 has the inner surface of the side wall of the barrel 1 as the bottom surface 44 and extends spirally around the rotating shaft 2 .
  • the top surface of the passage 45 is open. Since the film-forming mechanism 43 discharges the thin-film-forming substance downward, the top surface of the passage 45 is open, so that the inside surface of the side wall in the barrel 1 is discharged vertically downward in the passage 45 .
  • a film-forming material can be applied to the surface of each particle of the gathering raw material powder 42 .
  • the raw material powder 42 collected on the vertically lower side in the passage 45 tends to remain on the bottom surface on the vertically lower side when the barrel 1 rotates around the rotating shaft 2. , move in a spiral direction in the passage while being automatically stirred. At this time, as long as the barrel 1 rotates in the same direction, the raw material powder 42 is moved from one end face side of the barrel 1 to the other end face side. Further, when the barrel 1 rotates in the opposite direction, the raw material powder 42 is moved from the other end surface side of the barrel 1 to the one end surface side, that is, moved in the opposite direction. In FIG.
  • the shape of the passage 45 is not particularly limited as long as it extends spirally around the rotation axis.
  • a form in which grooves are provided on the inner surface side of the side wall of the barrel 1 is exemplified.
  • the groove has, for example, a semi-circular, V-shaped or U-shaped cross-section.
  • the passages 45 are preferably provided with partitions 40 between adjacent passages 45 .
  • the raw material powder 42 placed in the passage 45 can be moved along the main axis direction of the barrel 1 while being reliably and efficiently stirred by the rotation of the barrel 1 .
  • the partition 40 itself has a small end surface area, the raw material powder 42 can be formed into a film over a wider area, thereby increasing the film formation efficiency.
  • the partition 40 may be, for example, a partition wall formed by processing the inner surface of the side wall of the barrel 1, or a fence-like plate formed into a spiral shape and fixed to the inner surface of the side wall of the barrel 1.
  • the fixing of the partition plate includes a form of mechanical fixing or a form of joining and fixing.
  • the height of the partition 40 from the bottom surface 44 is, for example, 1 to 20 mm. It is preferable that the raw material powder 42 is supplied in such an amount that it does not climb over the partition 40 .
  • the distance between the partition 40 and the adjacent partition is preferably 50 to 100 mm, for example.
  • the thickness of the partition 40 is preferably 1 mm or less for the purpose of reducing film formation on the end faces of the partition.
  • the partition 40 is a continuous spiral partition (illustrated as the partition 40 in the horizontal powder surface deposition apparatus 100 in FIGS. 1 to 3), a continuous spiral step partition (FIGS. (illustrated as partition 40 in horizontal powder surface deposition apparatus 200 in FIG. 5) or intermittent spiral step partitions in which partitions are arranged in a spiral step pattern with portions facing each other (FIGS. 6-7). ), or a combination of at least two of these three types of partitions.
  • the boundary between the passages has a shape extending spirally around the rotation axis 2 of the barrel 1 on the inner surface of the side wall of the barrel 1. can take various forms. Any partition 40 can guide the raw material powder 42 along the spiral direction.
  • Combinations of partitions 40 include a combination of a continuous spiral partition and a continuous spiral step partition, a combination of a continuous spiral partition and an intermittent spiral step partition, and a continuous spiral step.
  • the passage 45 preferably has a protrusion 41 on the bottom surface 44. After the raw material powder 42 passes through the projections 41, it acts like a fluid and forms a Karman vortex, thereby obtaining a stirring effect.
  • 1 to 7 illustrate the projection 41 having a conical shape, but it may be a columnar projection, a cylindrical projection, a polygonal prismatic projection, a polygonal cylindrical projection, or a polygonal pyramidal projection.
  • the height of the protrusion 41 is preferably lower than the height of the partition 40 .
  • the width of the protrusion 41 is preferably 1 to 20% of the width of the passage 45 .
  • the protrusions 41 are evenly arranged at predetermined angles with respect to the rotating direction of the rotating shaft 2 . For example, they are arranged every 90°. Moreover, it is preferable to arrange them evenly along the direction of the rotating shaft 2 . For example, as shown in FIG. 1, it is preferable to arrange for each passage.
  • a knocker 50 that gives impact to the barrel 1 or a vibrator 50 that gives vibration.
  • the raw material powder 42 is agitated by the impact or vibration applied to the barrel 1, making it easier to form a film over the entire powder.
  • Both the knocker and the vibrator may be provided.
  • a plurality of knockers may be provided, and a plurality of vibrators may be provided.
  • the knocker 50 or vibrator 50 is arranged under the barrel 1 in FIG.
  • the knocker may be mechanical, electric, or pneumatic.
  • a powder supply mechanism that supplies raw material powder into the barrel 1 from one end face side of the barrel 1 and a thin film is formed on the surface from the other end face side of the barrel 1.
  • the powder supply mechanism has a first preliminary chamber 13 capable of adjusting pressure and atmosphere, and the first preliminary chamber 13 is connected to the powder inlet 9. and is connected to one end face of the barrel 1 via the first opening/closing mechanism 15, and the powder recovery mechanism has a second preliminary chamber 28 capable of adjusting pressure and atmosphere. 28 is preferably connected to the other end surface of barrel 1 via second opening/closing mechanism 27 and to powder recovery port 30 .
  • the powder inlet 9 is connected to the valve 11 via the pipe 10, and the valve 11 is connected to the first preliminary chamber 13 via the pipe 12.
  • the first spare chamber 13 is further connected via a pipe 14 to a first opening/closing mechanism 15 which, via a pipe 16 , is connected to an opening 46 at one end face of the barrel 1 in the vacuum chamber 24 .
  • the first spare chamber 13 is also connected to a second gas system 17 via a pipe 20 and to an exhaust pump 19 via a pipe 22 .
  • valves are appropriately arranged in the pipes 20 and 22 .
  • the powder supply mechanism has a powder inlet 9, a first preliminary chamber 13, a valve 11, a first opening/closing mechanism 15, a second gas system 17, an exhaust pump 19, and piping connecting these. Furthermore, the first gas system 18 is connected via a pipe 21 to an opening 46 in one end face of the barrel 1 in the vacuum chamber 24 . It is preferable that a valve is appropriately arranged in the pipe 21 .
  • the valve 11 can be omitted when the first preliminary chamber 13 and the powder inlet 9 are integrated into a case.
  • the first opening/closing mechanism 15 is a valve or a shutter.
  • the first gas system 18 releases atmospheric gases such as Ar, O 2 and N 2 in the barrel 1 or releases the film-forming gas in the barrel 1 .
  • the second gas system 17 releases a gas for adjusting the pressure of the first preliminary chamber 13, such as Ar.
  • the valve 11 can be opened when the pressure in the first preliminary chamber 13 substantially coincides with the atmospheric pressure.
  • the exhaust pump 19 evacuates the interior of the first preliminary chamber 13 and adjusts the pressure of the first preliminary chamber 13 .
  • the first opening/closing mechanism 15 can be opened when the pressures in the first preliminary chamber 13 and the pressure in the barrel 1 substantially match.
  • the powder recovery port 30 is connected to the valve 29 through the pipe 35, and the valve 29 is connected to the second preliminary chamber 28 through the pipe 34.
  • the second preliminary chamber 28 is further connected to a second opening/closing mechanism 27 via a pipe 33 , and the second opening/closing mechanism 27 is connected to the bottom wall of the vacuum chamber 24 on the side of the opening 47 on the other end surface of the barrel 1 .
  • the second spare chamber 28 is also connected to the third gas system 31 via a pipe 36 and to an exhaust pump 32 via a pipe 37 . Valves are preferably arranged in the pipes 36 and 37 as appropriate.
  • the powder recovery mechanism has a powder recovery port 30, a second preliminary chamber 28, a valve 29, a second opening/closing mechanism 27, a third gas system 31, an exhaust pump 32, and piping connecting these.
  • the valve 29 can be omitted.
  • the second opening/closing mechanism 27 is a valve or a shutter.
  • the third gas system 31 releases gas for adjusting the pressure of the second preliminary chamber 28 with Ar or the like.
  • the valve 29 can be opened when the pressure in the second preliminary chamber 28 substantially matches the atmospheric pressure.
  • the exhaust pump 32 evacuates the inside of the second preliminary chamber 28 and adjusts the pressure of the second preliminary chamber 28 .
  • the second opening/closing mechanism 27 can be opened when the pressure in the second preliminary chamber 28 and the pressure in the barrel 1 substantially match.
  • the pressure adjustment mechanism 23 discharges atmospheric gases such as Ar, O 2 and N 2 released from the first gas system 18 inside the barrel 1 . Also, the film-forming gas in the barrel 1 is discharged.
  • the horizontal powder surface deposition apparatus 100 has a structure in which the raw material powder is continuously introduced from one side of the barrel, and the raw material powder can be introduced in a vacuum atmosphere or under a predetermined gas pressure. It is a structure in which the powder is continuously moved to the opposite side while moving, and a film can be formed on the powder surface during the movement. The structure can be such that the powder can be discharged to the atmosphere while maintaining a vacuum atmosphere or a predetermined gas pressure.
  • the horizontal powder surface deposition apparatus 100 preferably has an angle adjustment mechanism 8 that adjusts the inclination of the main axis of the barrel 1.
  • an angle adjustment mechanism 8 that adjusts the inclination of the main axis of the barrel 1.
  • the inclination of the main shaft of the barrel 1 is preferably adjusted up to 20° when the horizontal direction is 0°.
  • the horizontal powder surface deposition apparatus 400 includes a powder supply mechanism that supplies powder into the barrel 1 from one end surface of the barrel 1, and a thin film from one end surface of the barrel 1. and a powder recovery mechanism for recovering powder having a film formed on the surface thereof, the powder supply mechanism has a first preliminary chamber 13 capable of adjusting pressure and atmosphere, and the first preliminary chamber 13 is It is connected to the powder inlet 9 and to one end face of the barrel 1 via the first opening/closing mechanism 15.
  • the powder recovery mechanism has a second preliminary chamber 28 capable of adjusting pressure and atmosphere.
  • the second preliminary chamber 28 is connected to one end surface of the barrel 1 via the second opening/closing mechanism 27 and is connected to the powder recovery port 30, and the rotation mechanism adjusts the rotation speed of the barrel 1. It is preferable to have a device and a switch for forward/reverse rotation of the rotation direction.
  • the description will focus on differences from the horizontal powder surface deposition apparatus 100 shown in FIGS.
  • the horizontal powder surface deposition apparatus 100 and the horizontal powder surface deposition apparatus 400 have the same configuration except for the differences described below.
  • the horizontal powder surface deposition apparatus 400 has a powder supply mechanism and a powder recovery mechanism similar to the powder supply mechanism and powder recovery mechanism of the horizontal powder surface deposition apparatus 100 .
  • the powder supply mechanism of the horizontal powder surface coating apparatus 100 is connected to one end surface of the barrel, and the powder recovery mechanism is connected to the other end surface of the barrel, whereas the horizontal powder surface coating apparatus 400 is connected to the other end surface of the barrel.
  • both the powder supply mechanism and the powder recovery mechanism are connected to one end face side of the barrel.
  • one end face of the barrel 1 (the left end face in FIG. 1) has an annular flat surface with an opening 46 in the center.
  • the end face on the other end face side of the barrel 1 (the right end face in FIG.
  • one end face of the barrel 1 (the left end face in FIG. 10) is an opening 47 having no surface on the end face.
  • the end face on the other end face side of the barrel 1 (right end face in FIG. 10) has an annular flat surface with an opening 46 in the center. That is, the end face of the barrel 1 on the side for recovering the powder coated with the thin film has an opening 47 with no face at all.
  • the partition 40 restricts the movement of the powder along the direction of the rotating shaft 2 of the barrel 1. Therefore, by controlling the rotation of the barrel 1, the powder can be prevented from spilling into the vacuum chamber 24.
  • the end face of the barrel 1 may be unified into a form having an opening 47 with no surface at all, instead of having a form having an annular flat surface with an opening 46 in the center. Further, when the end face of the barrel 1 is configured to have an annular flat surface with an opening 46 in the center, the annular plate forming the annular flat surface may be detachable.
  • the raw material powder is continuously introduced from one side of the barrel, and the raw material powder can be introduced in a vacuum atmosphere or under a predetermined gas pressure. It is a structure in which the powder is continuously moved to the opposite side, and a film can be formed on the powder surface during that movement.
  • the powder after film formation is discharged from the powder input side by rotating the barrel in the reverse direction, and the inside of the barrel is maintained at a vacuum atmosphere or a predetermined gas pressure.
  • the structure can be such that the powder can be discharged to the atmosphere.
  • the motion of the barrel can be diversified, thereby more efficiently agitating the powder in the barrel, and as a result, forming a uniform film on the raw material powder.
  • a third preliminary chamber may be provided between the first opening/closing mechanism 15 and the vacuum chamber 24 (not shown). As long as the raw material powder is kept on standby under the same pressure as in the barrel, the raw material powder can be fed into the barrel at any time by adjusting the feeding amount, and new raw powder can be fed into the first preliminary chamber. It can be put in from the powder inlet.
  • a fourth preliminary chamber may be provided between the vacuum chamber 24 and the second opening/closing mechanism 27 (not shown). If the coating powder is kept on standby under the same pressure as in the barrel, the amount of the coating powder to be moved to the second preliminary chamber can be adjusted. This is particularly effective when the amount of coating powder exceeds the capacity of the second preliminary chamber.
  • Preliminary process of putting raw materials into the barrel First, it is preferable to remove moisture from the raw material powder in advance by applying a vacuum atmosphere or further heating. It has the effect of preventing powder agglomeration. A film is formed on these powders by this horizontal powder surface film forming apparatus.
  • the raw material powder is put into the first preliminary chamber 13 which is open to the atmosphere from the powder inlet 9, and the second gas system 17 and the exhaust pump 19 are used with the valve 11 and the first opening/closing mechanism 15 closed. 1 Preliminary chamber 13 is set to a desired pressure and replaced with a gas atmosphere.
  • the first gas system 18 and the pressure adjusting mechanism 23 are used to set the pressure inside the vacuum chamber 24 and the inside of the barrel 1 to a desired pressure, thereby replacing the inside with a desired gas atmosphere.
  • the first opening/closing mechanism 15 is opened, and raw material powder is supplied to the inside of the barrel 1 in the vacuum chamber 24 .
  • the pressure in the first preliminary chamber 13, the pressure in the vacuum chamber 24 and the pressure in the barrel 1 are approximately the same.
  • the direction of rotation is reversed to move the bottom surface 44 on the vertically downward side of the barrel 1 toward the front side of the paper, and the film formation is continued.
  • the direction of rotation is reversed so as to move the bottom face 44 on the vertically downward side of the barrel 1 to the other side of the paper. In this way, the rotation direction of the barrel 1 is rotated forward and reversed to obtain a desired thickness of the thin film.
  • the third gas system 31 and the exhaust pump 32 are used to set the pressure in the second preliminary chamber 28 to a desired pressure and replace it with a gas atmosphere.
  • the pressure in the second preliminary chamber 28 the pressure in the vacuum chamber 24 and the pressure in the barrel 1 are approximately the same.
  • Step of recovering powder after film formation The second opening/closing mechanism 27 is opened, and the film-formed powder is moved to the second preliminary chamber 28 . After the movement is completed, the second opening/closing mechanism 27 is closed. Next, the exhaust pump 32 is stopped, and the inside of the second preliminary chamber 28 is brought to the atmospheric pressure using the third gas system 31 . Next, the valve 29 is opened and the powder formed into a film is taken out from the powder recovery port 30 .
  • the stirring efficiency it is possible to improve the stirring efficiency by adopting a continuous structure and further by adopting a mechanism that provides a spiral passage 45 in the barrel 1 where film formation is performed. Furthermore, the movement of the powder is controlled by the spiral partition 40, and the rotation speed of the barrel 1 can control the deposition time. At that time, by supplying raw material powder 42 evenly and continuously to the powder film-forming portion in the barrel 1, the film-forming efficiency is increased, and furthermore, the barrel length is switched between normal and reverse rotation of the barrel 1.
  • the film formation productivity can be improved by making the length variable, such as by substantially lengthening the length.
  • the inside of the barrel 1 always maintains a vacuum, and has a structure in which film formation is performed by sputtering, ion plating, ion beam, or atom beam, and the necessary gas is continuously maintained at the necessary gas pressure. .
  • it is a structure in which a pressure of 0.5 Pa is maintained by inserting argon.
  • the raw material powder is charged from atmospheric pressure, a predetermined vacuum atmosphere is created in the first preliminary chamber for holding and supplying the raw material powder, and the gas pressure is adjusted to the same gas pressure as in the barrel 1. can be continuously supplied to The raw material powder 42 put into the barrel 1 spreads according to the interval of the spiral partition 40 and exists at the bottom by gravity.
  • the film-forming component is blown from the film-forming mechanism 43 to reach the surface of the powder, and the film-forming proceeds. Since the stirring of the powder spreading in the space between the spiral partitions 40 is gentle, the powder is stirred more by applying impact or vibration, for example.
  • the knocker vibrates around the barrel and the vibration propagates to vibrate the powder. This vibration agitates the powder and further forms a film over the entire powder.
  • the powder in the barrel 1 gathers at the bottom of the spiral partition and moves, but in the forward rotation in which the barrel rotates in the same direction as the spiral shape, the discharged powder is discharged on the opposite side of the powder introduction. In order to maintain the vacuum in the barrel for powder supply and discharge, a separate chamber is required, but as shown in FIGS.
  • the angle adjustment mechanism 8 makes the barrel 1 angled within 20° in the direction in which the powder advances, thereby facilitating the movement of the powder and ensuring the introduction, movement, and discharge of the powder. can be done. If the angle of the barrel 1 exceeds 20° during film formation of the raw material powder 42, the powder may agglomerate in the spiral partition 40 and effective film formation may not be possible. It is necessary to set the angle so that the powder is widely distributed in the passage 45 between the partitions 40 while observing the fluidity of the powder. If the purpose is to discharge powder, there is no problem in making the angle greater than this.
  • Ar, Kr or Xe is introduced as a plasma generating gas and the gas pressure is between 0.01 and 10 Pa. Furthermore, when performing high-speed film formation of oxides and nitrides with a DC power supply, oxygen gas and / or nitrogen gas is added so that the pressure is 10% or less of the plasma gas pressure to generate plasma, and the powder surface to form a film.
  • Ar Kr and Xe
  • Ar is more preferably used. Since this has a high sputtering rate and is an inert gas, it is important not to alter the properties of the target. Furthermore, the pressure is set to 10 Pa or less.
  • the atoms sputtered from the target diffuse, and furthermore, the transfer energy of the atoms decreases. Because it does. Furthermore, in normal sputtering, it is often about 0.1 to 10 W/cm 2 , but it is preferable to set the cathode output to over 10 W/cm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The purpose of the present invention is to provide a horizontal-type powder surface film forming device which improves dry stirring efficiency of powder and continuously produces a powder covered on the surface with a fine film and which further achieves high productivity by suitably controlling the film forming speed so as to have an even amount of film formed on the raw powder. This horizontal-type powder surface film forming device 100 comprises: a horizontally inclined barrel 1; a rotation mechanism 7 which rotates the barrel 1 with the primary axis thereof as the rotation axis 2; a pressure regulating mechanism 23 which maintains the pressure of the barrel 1 at a prescribed pressure less than or equal to atmospheric pressure; and a film forming mechanism 43 which is installed inside of the barrel 1; while the barrel 1 is rotated, the horizontal-type powder surface film forming device 100 forms a thin film on the surface of a raw powder 42 which has been inserted into the barrel 1. The barrel 1 has a passage 45 that extends spirally around the rotation axis 2; the bottom surface 44 of the passage 45 is the inside surface on the side wall of the barrel 1, and the top surface of the passage 45 is open.

Description

横型粉末表面成膜装置Horizontal powder surface coating equipment
 本開示は、粉末の各粒子の表面に薄膜を形成させるための粉末表面成膜装置に関する。 The present disclosure relates to a powder surface film forming apparatus for forming a thin film on the surface of each powder particle.
 粉末に、新しい機能を付与するために、粒子の表面に薄膜を形成させる場合がある。例えば、メッキ法やゾルゲル法などの湿式法で、粒子の表面に薄膜を形成することは従来から広く使われている。湿式法では大量生産出来るメリットがある一方で、粒子表面という複雑な表面に多元素を含有する薄膜を形成することは難しい。更に、湿式であるが故に、その溶媒が粉末表面、薄膜の内部、更には薄膜の表面に残存してしまい、目的とする機能が発揮出来ない問題があった。 In some cases, a thin film is formed on the surface of the particles in order to add new functions to the powder. For example, a wet method such as a plating method or a sol-gel method has been widely used to form a thin film on the surface of particles. While the wet method has the advantage of mass production, it is difficult to form a thin film containing multiple elements on the complex surfaces of particles. Moreover, since it is a wet method, the solvent remains on the surface of the powder, inside the thin film, and further on the surface of the thin film, and there is a problem that the intended function cannot be exhibited.
 そこで、乾式法での粉末表面薄膜形成技術が望まれていた。乾式法を用いた成膜技術としてスパッタリング法があり、スパッタリング法を用いた粉末への成膜装置が提案されている(例えば、特許文献1を参照。)。 Therefore, a powder surface thin film formation technology using a dry method was desired. There is a sputtering method as a film forming technique using a dry method, and a powder film forming apparatus using the sputtering method has been proposed (see, for example, Patent Document 1).
 また、従来の課題である多元素同時成膜を実現した技術や粉末攪拌を改善した技術も提案されている(例えば、特許文献2及び特許文献3を参照。)。特許文献2及び特許文献3には、粉末表面成膜装置に攪拌板及びスクレーパを設置し、原料粉末の攪拌を促して原料粉末に対して等しくスパッタリングする装置が開示されている。また、粉末表面へ多元素薄膜の形成を可能とし、更には粉末を効果的に成膜可能な領域に誘導し、かつ、攪拌を行う治具を有する粉末表面成膜装置が提案されている。 There have also been proposals for a technology that achieves multi-element simultaneous film formation, which is a conventional problem, and a technology that improves powder agitation (see, for example, Patent Documents 2 and 3). Patent Literatures 2 and 3 disclose an apparatus in which a stirring plate and a scraper are installed in a powder surface film-forming apparatus to promote agitation of the raw material powder so that the raw material powder is evenly sputtered. In addition, a powder surface film forming apparatus has been proposed which enables the formation of a multi-element thin film on the powder surface, guides the powder to a region where film can be formed effectively, and has a jig for agitating the powder.
特許第3068947号公報Japanese Patent No. 3068947 特許第6789217号公報Japanese Patent No. 6789217 特許第6715003号公報Japanese Patent No. 6715003
 乾式法による粉末表面への成膜は、粉末へ高機能を付加することのできる有効な手段であることは明白である。しかし、特許文献1~3に開示の技術では、バレル形状の容器を横型に配置して粉末をその内部に入れ、これを回転させて攪拌を図り、更には粉末接触部へ攪拌治具を設置することで攪拌の改善は図られているものの、バレルの回転速度が速いと遠心力などによって粉末がバレルにくっついて安息角が高い位置まで上昇してしまい、安息角を超えて粉末が落下するとき、粉末がバレル中を飛散することによって成膜装置に付着することや、成膜中の放電が安定しなくなることがある。また、被覆粉末の粉末から膜の剥離などの問題を考慮すると、攪拌治具を速く動かせないことから十分に攪拌効率が良いとはいえなかった。また、粉末の連続投入が出来ず、バッチ式になることで生産性を著しく害する構造となっていた。 It is clear that forming a film on the powder surface by the dry method is an effective means of adding high functionality to the powder. However, in the techniques disclosed in Patent Documents 1 to 3, a barrel-shaped container is arranged horizontally, powder is put inside it, it is rotated to achieve stirring, and a stirring jig is installed at the powder contact part. Although the agitation is improved by doing so, if the rotation speed of the barrel is high, the powder sticks to the barrel due to centrifugal force and rises to a position where the angle of repose is high, and the powder falls beyond the angle of repose. Occasionally, the powder may scatter in the barrel and adhere to the film forming apparatus, or the discharge during film formation may become unstable. In addition, considering problems such as peeling of the coating powder from the coating powder, the stirring jig cannot be moved quickly, so the stirring efficiency cannot be said to be sufficiently good. In addition, the powder cannot be fed continuously, and the batch system has a structure that significantly impairs productivity.
 そこで本開示の目的は、乾式法による粉末の攪拌効率を向上し、更には薄膜で表面を被覆した粉末を連続的に製造し、更には、原料粉末に対して均等の成膜量となるように成膜速度を適正にコントロールすることで高い生産性を実現する横型粉末表面成膜装置を提供することである。 Therefore, the object of the present disclosure is to improve the stirring efficiency of the powder by the dry method, to continuously produce the powder whose surface is coated with a thin film, and to form an even amount of film with respect to the raw material powder. Another object of the present invention is to provide a horizontal powder surface film-forming apparatus that achieves high productivity by properly controlling the film-forming speed.
 本発明者は、鋭意検討した結果、横型の回転バレルの内面に、バレルの回転軸を中心としてらせん状に延びる通路を設けることによって、この通路に置かれた粉末はバレルの回転によって自動的に攪拌されながらバレルの一方の端から他方の端に搬送され、又はバレルの一方の端から他方の端に搬送されたのちバレルの他方の端から一方の端に逆方向に搬送され、さらに搬送途中で成膜を行えば原料粉末の表面に均一に薄膜を形成できることを見出し、本発明を完成させた。すなわち、本発明に係る横型粉末表面成膜装置は、横に傾けられたバレルと、該バレルの主軸を回転軸として自転させる回転機構と、前記バレル内の圧力を大気圧以下の所定の圧力に維持する圧力調整機構と、前記バレル内に設置された成膜機構と、を有し、前記バレルを回転させながら前記バレルに入れられた原料粉末の表面に薄膜を成膜する横型粉末表面成膜装置であって、前記バレルは、側壁の内側面を底面とし、前記回転軸を中心としてらせん状に延びる通路を有し、該通路の天面は開放されていることを特徴とする。 As a result of intensive studies, the present inventors found that by providing a passage extending spirally around the rotation axis of the barrel on the inner surface of a horizontal rotating barrel, the powder placed in this passage is automatically displaced by the rotation of the barrel. It is conveyed from one end of the barrel to the other end while being agitated, or is conveyed from one end of the barrel to the other end and then conveyed from the other end to the other end of the barrel in the reverse direction, and further during conveyance. The inventors have found that a uniform thin film can be formed on the surface of the raw material powder by forming a film in , and completed the present invention. That is, the horizontal powder surface deposition apparatus according to the present invention comprises a laterally tilted barrel, a rotating mechanism for rotating the main axis of the barrel as a rotation axis, and a pressure in the barrel to a predetermined pressure below atmospheric pressure. and a film forming mechanism installed in the barrel, and a horizontal powder surface film forming mechanism for forming a thin film on the surface of the raw material powder put in the barrel while rotating the barrel. The apparatus is characterized in that the barrel has an inner surface of the side wall as a bottom surface, a passage extending spirally around the rotation axis, and a top surface of the passage that is open.
 本発明に係る横型粉末表面成膜装置では、前記通路は、隣り合う通路間に仕切りが設けられていることが好ましい。通路に置かれた原料粉末をバレルの回転によって確実にかつ効率的に攪拌しつつバレルの主軸方向に沿って移動させることができ、また、仕切り自体はその端面の面積が小さいことから、原料粉末はより広い面積に広かった状態で成膜されることができ、成膜効率が高くなる。 In the horizontal powder surface deposition apparatus according to the present invention, the passages are preferably provided with partitions between adjacent passages. The raw material powder placed in the passage can be moved along the main axis direction of the barrel while being reliably and efficiently stirred by the rotation of the barrel. can be deposited over a wider area in a wider state, resulting in higher deposition efficiency.
 本発明に係る横型粉末表面成膜装置では、前記仕切りは、連続的ならせん状の仕切り、連続的ならせん階段状の仕切り又は複数の仕切りが互いに一部分が向き合った状態でらせん階段状に配置された断続的ならせん階段状の仕切りであるか、或いは、これら3種の仕切りのうち少なくとも2種を組み合わせた仕切りであることが好ましい。通路と通路との境界は、バレルの側壁の内側面上であってバレルの回転軸を中心としてらせん状に延びる形状を有するところ、この境界線に沿って配置される仕切りは、上記の各種形態をとることができる。 In the horizontal powder surface deposition apparatus according to the present invention, the partition may be a continuous spiral partition, a continuous spiral step partition, or a plurality of partitions arranged in a spiral step shape with portions facing each other. It is preferable that the partition is an intermittent spiral stepped partition, or a partition that is a combination of at least two of these three kinds of partitions. The boundary between the passages has a shape extending spirally around the rotation axis of the barrel on the inner surface of the side wall of the barrel. can take
 本発明に係る横型粉末表面成膜装置では、前記通路は前記底面に突起を有することが好ましい。原料粉末が突起を通過した後、流体のごとく作用し、カルマン渦を形成することで攪拌効果を得ることができる。 In the horizontal powder surface deposition apparatus according to the present invention, the passage preferably has a projection on the bottom surface. After the raw material powder passes through the projections, it acts like a fluid and forms a Karman vortex, thereby obtaining a stirring effect.
 本発明に係る横型粉末表面成膜装置では、前記バレルに衝撃を与えるノッカー又は振動を与える振動子を有することが好ましい。バレルに与えられる衝撃又は振動により原料粉末が攪拌され、より粉末全体に成膜されやすくなる。 The horizontal powder surface deposition apparatus according to the present invention preferably has a knocker for impacting the barrel or a vibrator for vibrating the barrel. The impact or vibration applied to the barrel agitates the raw material powder, making it easier to form a film over the entire powder.
 本発明に係る横型粉末表面成膜装置では、前記バレルの一方の端面側から前記バレルの中に前記原料粉末を供給する粉末供給機構と、前記バレルの他方の端面側から前記薄膜が表面に成膜されている被覆粉末を回収する粉末回収機構とを有し、前記粉末供給機構は、圧力調整及び雰囲気調整の可能な第1予備室を有し、該第1予備室は、粉末投入口とつながっており、かつ、前記バレルの一方の端面と第1開閉機構を介してつながっており、前記粉末回収機構は、圧力調整及び雰囲気調整の可能な第2予備室を有し、該第2予備室は、前記バレルの他方の端面と第2開閉機構を介してつながっており、かつ、粉末回収口とつながっていることが好ましい。バレルの一方から原料粉末を連続的に導入し、原料粉末の導入は真空雰囲気又は所定のガス圧にて行うことができる構造であり、更には、バレルを回転させながら反対側へ原料粉末を連続的に移動させ、その移動中に粉末表面に成膜を行うことができる構造であり、更には、成膜が終了した被覆粉末を連続的に排出させ、バレル内を真空雰囲気又は所定のガス圧に維持しながら、被覆粉末を大気に排出できる構造とすることができる。 In the horizontal powder surface deposition apparatus according to the present invention, there is provided a powder supply mechanism that supplies the raw material powder into the barrel from one end surface of the barrel, and a thin film formed on the surface from the other end surface of the barrel. a powder recovery mechanism for recovering the coated powder, the powder supply mechanism having a first preliminary chamber capable of adjusting pressure and atmosphere, the first preliminary chamber having a powder inlet and a and is connected to one end face of the barrel via a first opening/closing mechanism, the powder recovery mechanism has a second preliminary chamber capable of adjusting pressure and atmosphere, and the second preliminary chamber It is preferable that the chamber is connected to the other end surface of the barrel via a second opening/closing mechanism, and is also connected to the powder recovery port. The raw material powder is continuously introduced from one side of the barrel, and the introduction of the raw material powder can be performed in a vacuum atmosphere or at a predetermined gas pressure. It is a structure that allows the powder surface to be deposited during the movement, and furthermore, the coated powder that has completed the deposition is continuously discharged, and the inside of the barrel is a vacuum atmosphere or a predetermined gas pressure. The structure can be such that the coating powder can be discharged to the atmosphere while maintaining the
 本発明に係る横型粉末表面成膜装置では、前記回転機構は、前記バレルの回転数の調節器及び回転方向の正転・逆転の切り換え器を有することが好ましい。バレルの動きを多様化させることができ、それによってバレル内の原料粉末をより効率的に攪拌し、その結果、原料粉末に均一に成膜することができる。 In the horizontal powder surface deposition apparatus according to the present invention, it is preferable that the rotating mechanism has a regulator for the number of rotations of the barrel and a switch for forward/reverse rotation of the rotation direction. The motion of the barrel can be diversified, thereby more efficiently stirring the raw material powder in the barrel, and as a result, the raw material powder can be uniformly coated.
 本発明に係る横型粉末表面成膜装置では、前記バレルの一方の端面側から前記バレルの中に前記原料粉末を供給する粉末供給機構と、前記バレルの一方の端面側から前記薄膜が表面に成膜されている被覆粉末を回収する粉末回収機構と、を有し、前記粉末供給機構は、圧力調整及び雰囲気調整の可能な第1予備室を有し、該第1予備室は、粉末投入口とつながっており、かつ、前記バレルの一方の端面と第1開閉機構を介してつながっており、前記粉末回収機構は、圧力調整及び雰囲気調整の可能な第2予備室を有し、該第2予備室は、前記バレルの一方の端面と第2開閉機構を介してつながっており、かつ、粉末回収口とつながっており、前記回転機構は、前記バレルの回転数の調節器及び回転方向の正転・逆転の切り換え器を有することが好ましい。バレルの一方から原料粉末を連続的に導入し、原料粉末の導入は真空雰囲気又は所定のガス圧で行うことができる構造であり、更には、バレルを回転させながら反対の一方へ原料粉末を連続的に移動させ、その移動中に粉末表面に成膜を行うことができる構造であり、更には成膜の厚さを確保するために粉末をバレルの回転軸方向に沿って前後させることができる構造であり、更には、成膜が終了した粉末を、バレルを逆回転させることで、粉末投入側から排出させ、バレル内を真空雰囲気又は所定のガス圧に維持しながら、粉末を大気に排出できる構造とすることができる。さらにバレルの動きを多様化させることができ、それによってバレル内の粉末をより効率的に攪拌し、その結果、原料粉末に均一に成膜することができる。 In the horizontal powder surface deposition apparatus according to the present invention, there is provided a powder supply mechanism for supplying the raw material powder into the barrel from one end surface of the barrel, and a thin film formed on the surface from one end surface of the barrel. a powder recovery mechanism for recovering the coated powder, wherein the powder supply mechanism has a first preliminary chamber capable of adjusting pressure and atmosphere, and the first preliminary chamber includes a powder inlet. and is connected to one end face of the barrel via a first opening/closing mechanism, the powder recovery mechanism has a second preliminary chamber capable of adjusting pressure and atmosphere, and the second The preliminary chamber is connected to one end face of the barrel via a second opening/closing mechanism and is connected to the powder recovery port, and the rotating mechanism includes a regulator for the number of rotations of the barrel and a positive rotation direction. It is preferable to have a reverse/reverse switch. The raw material powder is continuously introduced from one side of the barrel, and the introduction of the raw material powder can be performed in a vacuum atmosphere or at a predetermined gas pressure. It is a structure in which the powder can be moved dynamically and a film can be formed on the surface of the powder during the movement, and the powder can be moved back and forth along the rotation axis direction of the barrel to ensure the thickness of the film. Furthermore, by rotating the barrel in reverse, the powder for which film formation has been completed is discharged from the powder input side, and the powder is discharged to the atmosphere while maintaining a vacuum atmosphere or a predetermined gas pressure in the barrel. It can be a structure that can be done. Furthermore, the motion of the barrel can be diversified, thereby more efficiently agitating the powder in the barrel, and as a result, forming a uniform film on the raw material powder.
 本発明に係る横型粉末表面成膜装置では、前記バレルの主軸の傾きを調整する角度調整機構を有することが好ましい。バレルに傾斜角度を付けることで粉末の移動を容易にし、導入、移動、排出をより確実に行うことができる。 The horizontal powder surface deposition apparatus according to the present invention preferably has an angle adjustment mechanism for adjusting the inclination of the main axis of the barrel. The slanting angle of the barrel facilitates the movement of the powder, making introduction, movement and discharge more reliable.
 本発明に係る横型粉末表面成膜装置では、前記成膜機構は、スパッタリング法、イオンプレーティング法、イオンビーム法又はアトムビーム法による成膜源を有することが好ましい。各種成膜機構を選択することができ、それらのいずれにおいても、均一な被覆粉末を得ることができる。 In the horizontal powder surface film-forming apparatus according to the present invention, the film-forming mechanism preferably has a film-forming source using a sputtering method, an ion plating method, an ion beam method, or an atom beam method. A variety of deposition mechanisms can be selected, all of which can provide a uniform coating powder.
 本開示によれば、乾式法による粉末の攪拌効率を向上し、更には、薄膜で表面を被覆した粉末を連続的に製造し、更には、原料粉末に対して均等の成膜量となるように成膜速度を適正にコントロールすることで高い生産性を実現する横型粉末表面成膜装置を提供することができる。 According to the present disclosure, the powder stirring efficiency by the dry method is improved, the powder whose surface is coated with a thin film is continuously produced, and the film thickness is uniform with respect to the raw material powder. It is possible to provide a horizontal powder surface film-forming apparatus that achieves high productivity by properly controlling the film-forming speed.
本実施形態に係る横型粉末表面成膜装置の第1例を示す概略図である。1 is a schematic diagram showing a first example of a horizontal powder surface deposition apparatus according to this embodiment; FIG. 第1例のバレル及び仕切りを示す斜視概略図である。Fig. 2 is a schematic perspective view of the barrel and partition of the first example; 第1例のバレル及び仕切りを示す断面概略図である。Fig. 2 is a schematic cross-sectional view showing the barrel and partition of the first example; 本実施形態に係る横型粉末表面成膜装置の第2例を示す概略図である。It is a schematic diagram showing a second example of a horizontal powder surface deposition apparatus according to the present embodiment. 第2例のバレル及び仕切りを示す斜視概略図である。FIG. 11 is a schematic perspective view of a second example barrel and partition; 本実施形態に係る横型粉末表面成膜装置の第3例を示す概略図である。It is a schematic diagram showing a third example of a horizontal powder surface deposition apparatus according to the present embodiment. 第3例のバレル及び仕切りを示す斜視概略図である。FIG. 11 is a schematic perspective view of a third example barrel and partition; 第1例を右下に傾けた状態を示す概略図である。It is the schematic which shows the state which tilted the 1st example to the lower right. 第1例を右上に傾けた状態を示す概略図である。It is the schematic which shows the state which tilted the 1st example to the upper right. 本実施形態に係る横型粉末表面成膜装置の第4例を示す概略図である。It is a schematic diagram showing a fourth example of a horizontal powder surface deposition apparatus according to the present embodiment. 第4例のバレル及び仕切りを示す斜視概略図である。FIG. 11 is a schematic perspective view of a fourth example barrel and partition;
 以降、本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。図中、各接合体において、同一名称の部位には、形状によらず、同一の符号を付した。 Hereinafter, the present invention will be described in detail by showing embodiments, but the present invention is not interpreted as being limited to these descriptions. Various modifications may be made to the embodiments as long as the effects of the present invention are achieved. In the figure, the parts with the same name are given the same reference numerals regardless of the shape.
 次に図1~図3を参照しながら、本実施形態に係る横型粉末表面成膜装置について説明する。本実施形態に係る横型粉末表面成膜装置100は、横に傾けられたバレル1と、バレル1の主軸を回転軸2として自転させる回転機構7と、バレル1内の圧力を大気圧以下の所定の圧力に維持する圧力調整機構23と、バレル1内に設置された成膜機構43と、を有し、バレル1を回転させながらバレル1に入れられた原料粉末42の表面に薄膜を成膜する横型粉末表面成膜装置であって、バレル1は、側壁の内側面を底面44とし、回転軸2を中心としてらせん状に延びる通路45を有し、通路45の天面は開放されている。 Next, a horizontal powder surface deposition apparatus according to this embodiment will be described with reference to FIGS. 1 to 3. FIG. A horizontal powder surface deposition apparatus 100 according to this embodiment includes a barrel 1 tilted sideways, a rotation mechanism 7 that rotates the main shaft of the barrel 1 as a rotation axis 2, and a and a film forming mechanism 43 installed in the barrel 1, and a thin film is formed on the surface of the raw material powder 42 put in the barrel 1 while rotating the barrel 1. The barrel 1 has a bottom surface 44 on the inner surface of the side wall and a passage 45 extending spirally around the rotating shaft 2. The top surface of the passage 45 is open. .
 バレル1は、筒形状を有することが好ましく、円筒形状又は多角筒形状とすることがより好ましい。また、バレル1の端面は開口を有していることが好ましい。例えば、図2に示すように、バレル1の端面は、中央に開口46を有する環状平面を有している形態、又は、端面に全く面のない開口47とした形態がある。バレル1は横に傾けられており、バレル1の主軸を回転軸2として自転させる回転機構7を有している。回転機構7は、駆動モータ3と、駆動モータ3によって回転させられる駆動シャフト4と、駆動シャフト4によって回転させられる駆動ロール5と、自在に回転する従属ロール6と、を有する。そして、駆動ロール5及び従属ロール6は、バレル1の側壁の外側面に接している。駆動モータ3が回転すると、駆動ロール5も回転し、バレル1が回転軸2を中心に自転させられる。このとき、従属ロール6も回転し、バレル1の重量バランスを整えている。回転機構7は、バレル1の回転数の調節器(不図示)を有することが好ましい。調節器は、例えば、駆動モータ3の回転調節器又は変速器である。回転機構7は、さらに、駆動シャフト4の回転方向の正転・逆転の切り換え器を有することが好ましい。切り換え器は、例えば、ギアによる回転変換器又は駆動モータ3の回転変換器である。 The barrel 1 preferably has a tubular shape, more preferably a cylindrical shape or a polygonal tubular shape. Moreover, it is preferable that the end face of the barrel 1 has an opening. For example, as shown in FIG. 2, the end face of the barrel 1 may have an annular flat surface with an opening 46 in the center, or may have an opening 47 with no surface at all. The barrel 1 is tilted sideways and has a rotation mechanism 7 that rotates around the main axis of the barrel 1 as the rotation axis 2 . The rotating mechanism 7 has a drive motor 3, a drive shaft 4 rotated by the drive motor 3, a drive roll 5 rotated by the drive shaft 4, and a slave roll 6 freely rotating. The drive roll 5 and follower roll 6 are in contact with the outer surface of the side wall of the barrel 1 . When the drive motor 3 rotates, the drive roll 5 also rotates, causing the barrel 1 to rotate around the rotating shaft 2 . At this time, the subordinate roll 6 also rotates, and the weight balance of the barrel 1 is adjusted. The rotation mechanism 7 preferably has a regulator (not shown) for the number of revolutions of the barrel 1 . The adjuster is, for example, a rotation adjuster or gearbox of the drive motor 3 . It is preferable that the rotation mechanism 7 further has a switch for forward/reverse rotation of the rotation direction of the drive shaft 4 . The changeover is, for example, a geared rotation converter or a rotation converter of the drive motor 3 .
 バレル1は、真空室24によって、バレル1の少なくとも開口46,47が覆われている。図1では、バレル1の側壁の一部を加熱・冷却機構48で覆い、バレル1の開口46,47を含むバレル両端を真空室24で覆った形態を示したが、バレル1の全体が真空室24によって覆われていてもよい。圧力調整機構23は真空室24に繋げられている。圧力調整機構23は、例えば排気ポンプである。圧力調整機構23は、さらに真空室24に接続された配管21と配管21に接続される第1ガス系統18と有することが好ましい。圧力調整機構23は、排気ポンプによる排気及び第1ガス系統18によるガス供給によって、バレル1内の圧力を大気圧以下の所定の圧力に維持し、所定のガス雰囲気に置換することができる。なお、加熱・冷却機構48は、バレル1を加熱することによって原料粉末42を加熱し、原料粉末42に成膜した後にバレル1を冷却しているが、原料粉末42を直接加熱するような機構を有していてもよい。 The barrel 1 has at least the openings 46 and 47 of the barrel 1 covered by the vacuum chamber 24 . FIG. 1 shows a form in which a portion of the side wall of the barrel 1 is covered with the heating/cooling mechanism 48 and both ends of the barrel including the openings 46 and 47 of the barrel 1 are covered with the vacuum chamber 24. It may be covered by chamber 24 . The pressure adjusting mechanism 23 is connected to the vacuum chamber 24 . The pressure adjustment mechanism 23 is, for example, an exhaust pump. Preferably, the pressure adjusting mechanism 23 further includes a pipe 21 connected to the vacuum chamber 24 and a first gas system 18 connected to the pipe 21 . The pressure regulating mechanism 23 can maintain the pressure in the barrel 1 at a predetermined pressure below the atmospheric pressure and replace it with a predetermined gas atmosphere by means of exhaust by the exhaust pump and gas supply by the first gas system 18 . The heating/cooling mechanism 48 heats the raw material powder 42 by heating the barrel 1, and cools the barrel 1 after the film is formed on the raw material powder 42. may have
 成膜機構43はバレル1内に設置されていることが好ましい。図1では、成膜機構43が成膜装置25及び成膜材料26を有する形態を図示した。成膜装置25によって成膜材料26からバレル1内の原料粉末42に向かって薄膜形成物質が放出される。原料粉末42は、重力によってバレル1内の側壁の内側面のうち鉛直下方側に集まっている。そこで、成膜機構43による薄膜形成物質の放出は、図1に示すように、下方に向けられていることが好ましい。成膜機構43は、より具体的には、スパッタリング法、イオンプレーティング法、イオンビーム法又はアトムビーム法による成膜源を有することが好ましい。各種成膜機構を選択することができ、それらのいずれにおいても、均一な被覆粉末を得ることができる。 The film forming mechanism 43 is preferably installed inside the barrel 1 . In FIG. 1, the film-forming mechanism 43 has illustrated the form which has the film-forming apparatus 25 and the film-forming material 26. As shown in FIG. A film-forming material is discharged from the film-forming material 26 toward the raw material powder 42 in the barrel 1 by the film-forming device 25 . The raw material powder 42 is gathered on the vertically lower side of the inner surface of the side wall inside the barrel 1 by gravity. Therefore, it is preferable that the film forming mechanism 43 discharges the thin film forming substance downward as shown in FIG. More specifically, the film forming mechanism 43 preferably has a film forming source using a sputtering method, an ion plating method, an ion beam method, or an atom beam method. A variety of deposition mechanisms can be selected, all of which can provide a uniform coating powder.
 通路45は、バレル1の側壁の内側面を底面44とし、回転軸2を中心としてらせん状に延びる。通路45の天面は開放されている。成膜機構43による薄膜形成物質の放出は下方に向けられているため、通路45の天面が開放されていることによって、バレル1内の側壁の内側面のうち通路45内の鉛直下方側に集まっている原料粉末42の各粒子の表面に薄膜形成物質を供給することができる。 The passage 45 has the inner surface of the side wall of the barrel 1 as the bottom surface 44 and extends spirally around the rotating shaft 2 . The top surface of the passage 45 is open. Since the film-forming mechanism 43 discharges the thin-film-forming substance downward, the top surface of the passage 45 is open, so that the inside surface of the side wall in the barrel 1 is discharged vertically downward in the passage 45 . A film-forming material can be applied to the surface of each particle of the gathering raw material powder 42 .
 通路45内の鉛直下方側に集まっている原料粉末42は、図2及び図3に示すように、バレル1が回転軸2を中心に自転するとき、鉛直下方側の底面に居残ろうとするため、通路内のらせん状の方向に自動的に攪拌されながら移動する。このとき、バレル1が同一方向に自転する限りは、原料粉末42は、バレル1の一方の端面側から他方の端面側に移動させられる。また、バレル1が逆方向に自転すると、原料粉末42はバレル1の他方の端面側から一方の端面側に移動、すなわち逆方向に移動させられる。図1では、前記バレル1の鉛直下方側の底面44を紙面の向こう側に移動する方向に回転させると左から右の方向に原料粉末42は移動させられる。原料粉末42の移動中に成膜機構43を作動させれば、自動的に攪拌されている原料粉末42の表面に薄膜を成膜することができる。 As shown in FIGS. 2 and 3, the raw material powder 42 collected on the vertically lower side in the passage 45 tends to remain on the bottom surface on the vertically lower side when the barrel 1 rotates around the rotating shaft 2. , move in a spiral direction in the passage while being automatically stirred. At this time, as long as the barrel 1 rotates in the same direction, the raw material powder 42 is moved from one end face side of the barrel 1 to the other end face side. Further, when the barrel 1 rotates in the opposite direction, the raw material powder 42 is moved from the other end surface side of the barrel 1 to the one end surface side, that is, moved in the opposite direction. In FIG. 1, when the bottom surface 44 on the vertically lower side of the barrel 1 is rotated in the direction of moving away from the plane of the paper, the raw material powder 42 is moved from left to right. By activating the film forming mechanism 43 while the raw material powder 42 is moving, a thin film can be formed on the surface of the raw material powder 42 that is being automatically stirred.
 通路45は、回転軸を中心としてらせん状に延びる形態であればその形状は特に制限されない。例えば、バレル1の側壁の内表面側に溝を設けた形態が例示される。溝は、断面が例えば、半円形、V字形又はU字形を有する。 The shape of the passage 45 is not particularly limited as long as it extends spirally around the rotation axis. For example, a form in which grooves are provided on the inner surface side of the side wall of the barrel 1 is exemplified. The groove has, for example, a semi-circular, V-shaped or U-shaped cross-section.
 本実施形態では、通路45は、隣り合う通路45間に仕切り40が設けられていることが好ましい。通路45に置かれた原料粉末42をバレル1の回転によって確実にかつ効率的に攪拌しつつバレル1の主軸方向に沿って移動させることができる。また仕切り40自体はその端面の面積が小さいことから、原料粉末42はより広い面積に広かった状態で成膜されることができ、成膜効率が高くなる。仕切り40としては、例えば、バレル1の側壁の内表面を加工して形成した仕切り壁の形態、又は、柵状の板をらせん状に形を整えて、バレル1の側壁の内表面に固定した仕切り板の形態がある。仕切り板の固定は、機械的に固定される形態、又は、接合されて固定される形態がある。仕切り40の底面44からの高さは、例えば1~20mmとする。原料粉末42は、仕切り40を乗り越えない量を供給されることが好ましい。仕切り40とその隣の仕切りとの間隔は、例えば、50~100mmが好ましい。仕切り40の厚さは、仕切りの端面への成膜を少なくすることを目的として1mm以下であることが好ましい。 In this embodiment, the passages 45 are preferably provided with partitions 40 between adjacent passages 45 . The raw material powder 42 placed in the passage 45 can be moved along the main axis direction of the barrel 1 while being reliably and efficiently stirred by the rotation of the barrel 1 . Further, since the partition 40 itself has a small end surface area, the raw material powder 42 can be formed into a film over a wider area, thereby increasing the film formation efficiency. The partition 40 may be, for example, a partition wall formed by processing the inner surface of the side wall of the barrel 1, or a fence-like plate formed into a spiral shape and fixed to the inner surface of the side wall of the barrel 1. There is a form of partition plate. The fixing of the partition plate includes a form of mechanical fixing or a form of joining and fixing. The height of the partition 40 from the bottom surface 44 is, for example, 1 to 20 mm. It is preferable that the raw material powder 42 is supplied in such an amount that it does not climb over the partition 40 . The distance between the partition 40 and the adjacent partition is preferably 50 to 100 mm, for example. The thickness of the partition 40 is preferably 1 mm or less for the purpose of reducing film formation on the end faces of the partition.
 仕切り40の各種形態について説明する。本実施形態では、仕切り40は、連続的ならせん状の仕切り(図1~図3の横型粉末表面成膜装置100における仕切り40として図示。)、連続的ならせん階段状の仕切り(図4~図5の横型粉末表面成膜装置200における仕切り40として図示。)又は複数の仕切りが互いに一部分が向き合った状態でらせん階段状に配置された断続的ならせん階段状の仕切り(図6~図7の横型粉末表面成膜装置300における仕切り40として図示。)であるか、或いは、これら3種の仕切りのうち少なくとも2種を組み合わせた仕切りであることが好ましい。通路と通路との境界は、バレル1の側壁の内側面上であってバレル1の回転軸2を中心としてらせん状に延びる形状を有するところ、この境界線に沿って配置される仕切りは、上記の各種形態をとることができる。いずれの仕切り40も原料粉末42をらせん状の方向に沿って誘導することができる。仕切り40を組み合わせるとしては、連続的ならせん状の仕切りと連続的ならせん階段状の仕切りの組み合わせ、連続的ならせん状の仕切りと断続的ならせん階段状の仕切りの組み合わせ、連続的ならせん階段状の仕切りと断続的ならせん階段状の仕切りの組み合わせ、又は、連続的ならせん状の仕切りと連続的ならせん階段状の仕切りと断続的ならせん階段状の仕切りの組み合わせがある。 Various forms of the partition 40 will be described. In this embodiment, the partition 40 is a continuous spiral partition (illustrated as the partition 40 in the horizontal powder surface deposition apparatus 100 in FIGS. 1 to 3), a continuous spiral step partition (FIGS. (illustrated as partition 40 in horizontal powder surface deposition apparatus 200 in FIG. 5) or intermittent spiral step partitions in which partitions are arranged in a spiral step pattern with portions facing each other (FIGS. 6-7). ), or a combination of at least two of these three types of partitions. The boundary between the passages has a shape extending spirally around the rotation axis 2 of the barrel 1 on the inner surface of the side wall of the barrel 1. can take various forms. Any partition 40 can guide the raw material powder 42 along the spiral direction. Combinations of partitions 40 include a combination of a continuous spiral partition and a continuous spiral step partition, a combination of a continuous spiral partition and an intermittent spiral step partition, and a continuous spiral step. A combination of a spiral stepped partition and an intermittent spiral stepped partition, or a combination of a continuous spiral stepped partition, a continuous spiral stepped partition and an intermittent spiral stepped partition.
 本実施形態では、通路45は底面44に突起41を有することが好ましい。原料粉末42が突起41を通過した後、流体のごとく作用し、カルマン渦を形成することで攪拌効果を得ることができる。図1~図7では、円錐状を有する突起41を図示したが、円柱状の突起、円筒状の突起、多角柱状の突起、多角筒状の突起又は多角錐状の突起としてもよい。突起41の高さは、仕切り40の高さよりも低い方が好ましい。また、突起41の幅は、通路45の幅に対して、1~20%の長さであることが好ましい。突起41は、回転軸2の回転方向に対して、所定角度ごとに均等に配置することが好ましい。例えば、90°毎に配置する。また、回転軸2の方向に沿って、均等に配置することが好ましい。例えば、図1に示すように、通路ごとに配置することが好ましい。 In this embodiment, the passage 45 preferably has a protrusion 41 on the bottom surface 44. After the raw material powder 42 passes through the projections 41, it acts like a fluid and forms a Karman vortex, thereby obtaining a stirring effect. 1 to 7 illustrate the projection 41 having a conical shape, but it may be a columnar projection, a cylindrical projection, a polygonal prismatic projection, a polygonal cylindrical projection, or a polygonal pyramidal projection. The height of the protrusion 41 is preferably lower than the height of the partition 40 . Also, the width of the protrusion 41 is preferably 1 to 20% of the width of the passage 45 . It is preferable that the protrusions 41 are evenly arranged at predetermined angles with respect to the rotating direction of the rotating shaft 2 . For example, they are arranged every 90°. Moreover, it is preferable to arrange them evenly along the direction of the rotating shaft 2 . For example, as shown in FIG. 1, it is preferable to arrange for each passage.
 本実施形態では、図1に示すように、バレル1に衝撃を与えるノッカー50又は振動を与える振動子50を有することが好ましい。バレル1に与えられる衝撃又は振動により原料粉末42が攪拌され、より粉末全体に成膜されやすくなる。ノッカーと振動子は、両方設けてもよい。また、複数のノッカーを設けてもよく、複数の振動子を設けてもよい。図1では、バレル1の下にノッカー50又は振動子50を配置したが、バレル1の横又は上に配置してもよい。ノッカーは、機械式、電気式、エアー式などどれでも良い。 In this embodiment, as shown in FIG. 1, it is preferable to have a knocker 50 that gives impact to the barrel 1 or a vibrator 50 that gives vibration. The raw material powder 42 is agitated by the impact or vibration applied to the barrel 1, making it easier to form a film over the entire powder. Both the knocker and the vibrator may be provided. Also, a plurality of knockers may be provided, and a plurality of vibrators may be provided. Although the knocker 50 or vibrator 50 is arranged under the barrel 1 in FIG. The knocker may be mechanical, electric, or pneumatic.
 本実施形態では、図1に示すように、バレル1の一方の端面側からバレル1の中に原料粉末を供給する粉末供給機構と、バレル1の他方の端面側から薄膜が表面に成膜されている被覆粉末を回収する粉末回収機構とを有し、粉末供給機構は、圧力調整及び雰囲気調整の可能な第1予備室13を有し、第1予備室13は、粉末投入口9とつながっており、かつ、バレル1の一方の端面と第1開閉機構15を介してつながっており、粉末回収機構は、圧力調整及び雰囲気調整の可能な第2予備室28を有し、第2予備室28は、バレル1の他方の端面と第2開閉機構27を介してつながっており、かつ、粉末回収口30とつながっていることが好ましい。 In this embodiment, as shown in FIG. 1, a powder supply mechanism that supplies raw material powder into the barrel 1 from one end face side of the barrel 1 and a thin film is formed on the surface from the other end face side of the barrel 1. The powder supply mechanism has a first preliminary chamber 13 capable of adjusting pressure and atmosphere, and the first preliminary chamber 13 is connected to the powder inlet 9. and is connected to one end face of the barrel 1 via the first opening/closing mechanism 15, and the powder recovery mechanism has a second preliminary chamber 28 capable of adjusting pressure and atmosphere. 28 is preferably connected to the other end surface of barrel 1 via second opening/closing mechanism 27 and to powder recovery port 30 .
 本実施形態では、図1に示すように、粉末投入口9は配管10を介してバルブ11に接続されており、バルブ11は配管12を介して第1予備室13に接続されている。第1予備室13はさらに配管14を介して第1開閉機構15に接続されており、第1開閉機構15は配管16を介して、真空室24中のバレル1の一方の端面にある開口46とつながっている。また、第1予備室13は、配管20を介して第2ガス系統17と接続されていて、また、配管22を介して排気ポンプ19とつながっている。配管20及び配管22には、適宜、バルブが配置されていることが好ましい。粉末供給機構は、粉末投入口9、第1予備室13、バルブ11、第1開閉機構15、第2ガス系統17、排気ポンプ19及びこれらを結ぶ配管を有している。さらに、第1ガス系統18が配管21を介して、真空室24中のバレル1の一方の端面にある開口46とつながっている。配管21には、適宜、バルブが配置されていることが好ましい。 In this embodiment, as shown in FIG. 1, the powder inlet 9 is connected to the valve 11 via the pipe 10, and the valve 11 is connected to the first preliminary chamber 13 via the pipe 12. The first spare chamber 13 is further connected via a pipe 14 to a first opening/closing mechanism 15 which, via a pipe 16 , is connected to an opening 46 at one end face of the barrel 1 in the vacuum chamber 24 . connected with The first spare chamber 13 is also connected to a second gas system 17 via a pipe 20 and to an exhaust pump 19 via a pipe 22 . Preferably, valves are appropriately arranged in the pipes 20 and 22 . The powder supply mechanism has a powder inlet 9, a first preliminary chamber 13, a valve 11, a first opening/closing mechanism 15, a second gas system 17, an exhaust pump 19, and piping connecting these. Furthermore, the first gas system 18 is connected via a pipe 21 to an opening 46 in one end face of the barrel 1 in the vacuum chamber 24 . It is preferable that a valve is appropriately arranged in the pipe 21 .
 第1予備室13と粉末投入口9を一体型のケースとした場合には、バルブ11を省略できる。第1開閉機構15としてはバルブ又はシャッターである。 The valve 11 can be omitted when the first preliminary chamber 13 and the powder inlet 9 are integrated into a case. The first opening/closing mechanism 15 is a valve or a shutter.
 第1ガス系統18は、バレル1内のAr、O、Nなどの雰囲気ガスを放出し、又は、バレル1内の成膜用ガスを放出する。第2ガス系統17は、Arなどで第1予備室13の圧力調整用のガスを放出する。第1予備室13の圧力が大気圧とほぼ一致したときバルブ11を開けることができる。 The first gas system 18 releases atmospheric gases such as Ar, O 2 and N 2 in the barrel 1 or releases the film-forming gas in the barrel 1 . The second gas system 17 releases a gas for adjusting the pressure of the first preliminary chamber 13, such as Ar. The valve 11 can be opened when the pressure in the first preliminary chamber 13 substantially coincides with the atmospheric pressure.
 排気ポンプ19は、第1予備室13内の真空引き及び第1予備室13の圧力調整を行う。第1予備室13とバレル1内の圧力がほぼ一致したとき第1開閉機構15を開けることができる。 The exhaust pump 19 evacuates the interior of the first preliminary chamber 13 and adjusts the pressure of the first preliminary chamber 13 . The first opening/closing mechanism 15 can be opened when the pressures in the first preliminary chamber 13 and the pressure in the barrel 1 substantially match.
 本実施形態では、図1に示すように、粉末回収口30は配管35を介してバルブ29に接続されており、バルブ29は配管34を介して第2予備室28に接続されている。第2予備室28はさらに配管33を介して第2開閉機構27に接続されており、第2開閉機構27は真空室24のうちバレル1の他方の端面にある開口47側の底壁とつながっている。また、第2予備室28は、配管36を介して第3ガス系統31と接続されていて、また、配管37を介して排気ポンプ32とつながっている。配管36及び配管37には、適宜、バルブが配置されていることが好ましい。粉末回収機構は、粉末回収口30、第2予備室28、バルブ29、第2開閉機構27、第3ガス系統31、排気ポンプ32及びこれらを結ぶ配管を有している。 In this embodiment, as shown in FIG. 1, the powder recovery port 30 is connected to the valve 29 through the pipe 35, and the valve 29 is connected to the second preliminary chamber 28 through the pipe 34. The second preliminary chamber 28 is further connected to a second opening/closing mechanism 27 via a pipe 33 , and the second opening/closing mechanism 27 is connected to the bottom wall of the vacuum chamber 24 on the side of the opening 47 on the other end surface of the barrel 1 . ing. The second spare chamber 28 is also connected to the third gas system 31 via a pipe 36 and to an exhaust pump 32 via a pipe 37 . Valves are preferably arranged in the pipes 36 and 37 as appropriate. The powder recovery mechanism has a powder recovery port 30, a second preliminary chamber 28, a valve 29, a second opening/closing mechanism 27, a third gas system 31, an exhaust pump 32, and piping connecting these.
 第2予備室28と粉末回収口30を一体型のケースとした場合には、バルブ29を省略できる。第2開閉機構27としてはバルブ又はシャッターである。 When the second preliminary chamber 28 and the powder recovery port 30 are integrated into the case, the valve 29 can be omitted. The second opening/closing mechanism 27 is a valve or a shutter.
 第3ガス系統31は、Arなどで第2予備室28の圧力調整用のガスを放出する。第2予備室28の圧力が大気圧とほぼ一致したときバルブ29を開けることができる。 The third gas system 31 releases gas for adjusting the pressure of the second preliminary chamber 28 with Ar or the like. The valve 29 can be opened when the pressure in the second preliminary chamber 28 substantially matches the atmospheric pressure.
 排気ポンプ32は、第2予備室28内の真空引き及び第2予備室28の圧力調整を行う。第2予備室28とバレル1内の圧力がほぼ一致したとき第2開閉機構27を開けることができる。 The exhaust pump 32 evacuates the inside of the second preliminary chamber 28 and adjusts the pressure of the second preliminary chamber 28 . The second opening/closing mechanism 27 can be opened when the pressure in the second preliminary chamber 28 and the pressure in the barrel 1 substantially match.
 圧力調整機構23はバレル1内にある第1ガス系統18から放出されたAr、O、Nなどの雰囲気ガスを排出する。また、バレル1内の成膜用ガスを排出する。 The pressure adjustment mechanism 23 discharges atmospheric gases such as Ar, O 2 and N 2 released from the first gas system 18 inside the barrel 1 . Also, the film-forming gas in the barrel 1 is discharged.
 横型粉末表面成膜装置100は、バレルの一方から原料粉末を連続的に導入し、原料粉末の導入は真空雰囲気又は所定のガス圧にて行うことができる構造であり、更には、バレルを回転させながら反対側へ粉末を連続的に移動させ、その移動中に粉末表面に成膜を行うことができる構造であり、更には、成膜が終了した粉末を連続的に排出させ、バレル内を真空雰囲気又は所定のガス圧に維持しながら、粉末を大気に排出できる構造とすることができる。 The horizontal powder surface deposition apparatus 100 has a structure in which the raw material powder is continuously introduced from one side of the barrel, and the raw material powder can be introduced in a vacuum atmosphere or under a predetermined gas pressure. It is a structure in which the powder is continuously moved to the opposite side while moving, and a film can be formed on the powder surface during the movement. The structure can be such that the powder can be discharged to the atmosphere while maintaining a vacuum atmosphere or a predetermined gas pressure.
 本実施形態では、横型粉末表面成膜装置100は、バレル1の主軸の傾きを調整する角度調整機構8を有することが好ましい。バレル1に傾斜角度を付けることで粉末の移動を容易にし、導入、移動、排出をより確実に行うことができる。図1ではバレル1の回転軸2と一致する主軸が水平である形態、図8では主軸が右下に傾いていてバレル1の通路45に原料粉末42があるときは、原料粉末が左から右へ移動しやすくなる形態、図9では主軸が右上に傾いていてバレル1の通路45に原料粉末42があるときは、原料粉末が右から左へ移動しやすくなる形態を示した。角度調整機構8として角度調整機構8a及び角度調整機構8bを伸縮させることで、バレル1の主軸の傾きを調整することが好ましい。粉末に成膜するときのバレル1の主軸の傾きは、水平方向を0°としたときに、最大20°まで角度調整することが好ましい。 In this embodiment, the horizontal powder surface deposition apparatus 100 preferably has an angle adjustment mechanism 8 that adjusts the inclination of the main axis of the barrel 1. By giving an inclination angle to the barrel 1, the movement of the powder is facilitated, and introduction, movement and discharge can be performed more reliably. In FIG. 1, the main axis which coincides with the rotation axis 2 of the barrel 1 is horizontal, and in FIG. FIG. 9 shows a mode in which the raw material powder 42 is easily moved from right to left when the main shaft is tilted to the upper right and the raw material powder 42 is in the passage 45 of the barrel 1 . It is preferable to adjust the inclination of the main shaft of the barrel 1 by expanding and contracting the angle adjusting mechanism 8 a and the angle adjusting mechanism 8 b as the angle adjusting mechanism 8 . The inclination of the main axis of the barrel 1 when forming a film on the powder is preferably adjusted up to 20° when the horizontal direction is 0°.
 次に、図10及び図11を参照して変形例である横型粉末表面成膜装置400を説明する。図10~図11に示すように、横型粉末表面成膜装置400では、バレル1の一方の端面側からバレル1の中に粉末を供給する粉末供給機構と、バレル1の一方の端面側から薄膜が表面に成膜されている粉末を回収する粉末回収機構と、を有し、粉末供給機構は、圧力調整及び雰囲気調整の可能な第1予備室13を有し、第1予備室13は、粉末投入口9とつながっており、かつ、バレル1の一方の端面と第1開閉機構15を介してつながっており、粉末回収機構は、圧力調整及び雰囲気調整の可能な第2予備室28を有し、第2予備室28は、バレル1の一方の端面と第2開閉機構27を介してつながっており、かつ、粉末回収口30とつながっており、回転機構は、バレル1の回転数の調節器及び回転方向の正転・逆転の切り換え器を有することが好ましい。 Next, a horizontal powder surface deposition apparatus 400 as a modification will be described with reference to FIGS. 10 and 11. FIG. As shown in FIGS. 10 and 11, the horizontal powder surface deposition apparatus 400 includes a powder supply mechanism that supplies powder into the barrel 1 from one end surface of the barrel 1, and a thin film from one end surface of the barrel 1. and a powder recovery mechanism for recovering powder having a film formed on the surface thereof, the powder supply mechanism has a first preliminary chamber 13 capable of adjusting pressure and atmosphere, and the first preliminary chamber 13 is It is connected to the powder inlet 9 and to one end face of the barrel 1 via the first opening/closing mechanism 15. The powder recovery mechanism has a second preliminary chamber 28 capable of adjusting pressure and atmosphere. The second preliminary chamber 28 is connected to one end surface of the barrel 1 via the second opening/closing mechanism 27 and is connected to the powder recovery port 30, and the rotation mechanism adjusts the rotation speed of the barrel 1. It is preferable to have a device and a switch for forward/reverse rotation of the rotation direction.
 図1~図3に示した横型粉末表面成膜装置100との相違点を中心に説明する。下記に示す相違点以外は、横型粉末表面成膜装置100と横型粉末表面成膜装置400とは同様の構成を有している。 The description will focus on differences from the horizontal powder surface deposition apparatus 100 shown in FIGS. The horizontal powder surface deposition apparatus 100 and the horizontal powder surface deposition apparatus 400 have the same configuration except for the differences described below.
 横型粉末表面成膜装置400は、横型粉末表面成膜装置100の粉末供給機構及び粉末回収機構と同様の粉末供給機構及び粉末回収機構を有している。しかし、横型粉末表面成膜装置100の粉末供給機構が、バレルの一方の端面側に接続され、粉末回収機構が他方の端面側に接続されているのに対して、横型粉末表面成膜装置400では、粉末供給機構と粉末回収機構の両方がバレルの一方の端面側に接続されている。また、横型粉末表面成膜装置100では、図2に示すように、バレル1の一方の端面側の端面(図1における左側の端面)は、中央に開口46を有する環状平面を有している形態であり、バレル1の他方の端面側の端面(図1における右側の端面)は、端面に全く面のない開口47とした形態である。これに対して、横型粉末表面成膜装置400では、図11に示すように、バレル1の一方の端面側の端面(図10における左側の端面)は、端面に全く面のない開口47とした形態であり、バレル1の他方の端面側の端面(図10における右側の端面)は、中央に開口46を有する環状平面を有している形態である。すなわち、薄膜で被覆済みの粉末を回収する側のバレル1の端面を、端面に全く面のない開口47を有する形態としている。なお、仕切り40があると、粉末はバレル1の回転軸2の方向に沿って移動が制限されるため、バレル1の回転を制御することによって、真空室24内に粉末がこぼれることを防止できるため、バレル1の端面を、中央に開口46を有する環状平面を有している形態とせずに、端面に全く面のない開口47を有する形態に統一しても構わない。また、バレル1の端面を、中央に開口46を有する環状平面を有している形態としたとき、環状平面を形成する環状板を取り外し可能としてもよい。 The horizontal powder surface deposition apparatus 400 has a powder supply mechanism and a powder recovery mechanism similar to the powder supply mechanism and powder recovery mechanism of the horizontal powder surface deposition apparatus 100 . However, the powder supply mechanism of the horizontal powder surface coating apparatus 100 is connected to one end surface of the barrel, and the powder recovery mechanism is connected to the other end surface of the barrel, whereas the horizontal powder surface coating apparatus 400 is connected to the other end surface of the barrel. , both the powder supply mechanism and the powder recovery mechanism are connected to one end face side of the barrel. In the horizontal powder surface deposition apparatus 100, as shown in FIG. 2, one end face of the barrel 1 (the left end face in FIG. 1) has an annular flat surface with an opening 46 in the center. The end face on the other end face side of the barrel 1 (the right end face in FIG. 1) is in the form of an opening 47 with no surface at all on the end face. On the other hand, in the horizontal powder surface deposition apparatus 400, as shown in FIG. 11, one end face of the barrel 1 (the left end face in FIG. 10) is an opening 47 having no surface on the end face. The end face on the other end face side of the barrel 1 (right end face in FIG. 10) has an annular flat surface with an opening 46 in the center. That is, the end face of the barrel 1 on the side for recovering the powder coated with the thin film has an opening 47 with no face at all. The partition 40 restricts the movement of the powder along the direction of the rotating shaft 2 of the barrel 1. Therefore, by controlling the rotation of the barrel 1, the powder can be prevented from spilling into the vacuum chamber 24. Therefore, the end face of the barrel 1 may be unified into a form having an opening 47 with no surface at all, instead of having a form having an annular flat surface with an opening 46 in the center. Further, when the end face of the barrel 1 is configured to have an annular flat surface with an opening 46 in the center, the annular plate forming the annular flat surface may be detachable.
 横型粉末表面成膜装置400では、バレルの一方から原料粉末を連続的に導入し、原料粉末の導入は真空雰囲気又は所定のガス圧で行うことができる構造であり、更には、バレルを回転させながら反対の一方へ粉末を連続的に移動させ、その移動中に粉末表面に成膜を行うことができる構造であり、更には成膜の厚さを確保するために粉末をバレルの回転軸方向に沿って前後させることができる構造であり、更には、成膜が終了した粉末を、バレルを逆回転させることで、粉末投入側から排出させ、バレル内を真空雰囲気又は所定のガス圧に維持しながら、粉末を大気に排出できる構造とすることができる。さらにバレルの動きを多様化させることができ、それによってバレル内の粉末をより効率的に攪拌し、その結果、原料粉末に均一に成膜することができる。 In the horizontal powder surface deposition apparatus 400, the raw material powder is continuously introduced from one side of the barrel, and the raw material powder can be introduced in a vacuum atmosphere or under a predetermined gas pressure. It is a structure in which the powder is continuously moved to the opposite side, and a film can be formed on the powder surface during that movement. In addition, the powder after film formation is discharged from the powder input side by rotating the barrel in the reverse direction, and the inside of the barrel is maintained at a vacuum atmosphere or a predetermined gas pressure. However, the structure can be such that the powder can be discharged to the atmosphere. Furthermore, the motion of the barrel can be diversified, thereby more efficiently agitating the powder in the barrel, and as a result, forming a uniform film on the raw material powder.
(予備室の変形例)
 図1において、第1開閉機構15と真空室24との間に第3予備室を設けてもよい(不図示。)。バレル内と同等の圧力の状態で原料粉末を待機させた状態であれば、バレルに原料粉末を投入するときに投入量を調整していつでも投入できるとともに、第1予備室では新たな原料粉末を粉末投入口から入れることができる。また、真空室24と第2開閉機構27との間に第4予備室を設けてもよい(不図示。)。バレル内と同等の圧力の状態で被覆粉末を待機させた状態であれば、第2予備室に被覆粉末を移動させる量を調整できる。被覆粉末の量が第2予備室の容量を超えてしまったときなどに特に有効である。
(Modified example of spare room)
In FIG. 1, a third preliminary chamber may be provided between the first opening/closing mechanism 15 and the vacuum chamber 24 (not shown). As long as the raw material powder is kept on standby under the same pressure as in the barrel, the raw material powder can be fed into the barrel at any time by adjusting the feeding amount, and new raw powder can be fed into the first preliminary chamber. It can be put in from the powder inlet. A fourth preliminary chamber may be provided between the vacuum chamber 24 and the second opening/closing mechanism 27 (not shown). If the coating powder is kept on standby under the same pressure as in the barrel, the amount of the coating powder to be moved to the second preliminary chamber can be adjusted. This is particularly effective when the amount of coating powder exceeds the capacity of the second preliminary chamber.
 次に、本実施形態に係る横型粉末表面成膜装置を用いて、薄膜を表面に被覆した粉末の製造方法について説明する。 Next, a method for manufacturing powder whose surface is coated with a thin film will be described using the horizontal powder surface deposition apparatus according to this embodiment.
(原料をバレルに投入する事前工程)
 まず、原料粉末は、真空雰囲気、或いは、更に加熱するなどで事前に水分を除去することが好ましい。粉末の凝集を防ぐ効果がある。これらの粉末に本横型粉末表面成膜装置で成膜を行う。次に粉末投入口9から大気解放された第1予備室13に原料粉末を入れ、バルブ11及び第1開閉機構15を閉の状態で、第2ガス系統17及び排気ポンプ19を用いて、第1予備室13を所望の圧力とし、ガス雰囲気に置換する。
(preliminary process of putting raw materials into the barrel)
First, it is preferable to remove moisture from the raw material powder in advance by applying a vacuum atmosphere or further heating. It has the effect of preventing powder agglomeration. A film is formed on these powders by this horizontal powder surface film forming apparatus. Next, the raw material powder is put into the first preliminary chamber 13 which is open to the atmosphere from the powder inlet 9, and the second gas system 17 and the exhaust pump 19 are used with the valve 11 and the first opening/closing mechanism 15 closed. 1 Preliminary chamber 13 is set to a desired pressure and replaced with a gas atmosphere.
(バレル内の圧力及び雰囲気調整)
 バレル1の内部に原料粉末を供給する前に、第1ガス系統18及び圧力調整機構23を用いて、真空室24及びバレル1内を所望の圧力とし、所望のガス雰囲気に置換する。
(Pressure and atmosphere adjustment in the barrel)
Before supplying the raw material powder to the inside of the barrel 1, the first gas system 18 and the pressure adjusting mechanism 23 are used to set the pressure inside the vacuum chamber 24 and the inside of the barrel 1 to a desired pressure, thereby replacing the inside with a desired gas atmosphere.
(バレルへ原料を投入する工程)
 第1開閉機構15を開とし、真空室24中のバレル1の内部に原料粉末を供給する。このとき、第1予備室13の圧力と真空室24及びバレル1内の圧力をほぼ一致させておくことが好ましい。また、原料粉末の供給は、一定速度で行うことが好ましい。
(The process of putting raw materials into the barrel)
The first opening/closing mechanism 15 is opened, and raw material powder is supplied to the inside of the barrel 1 in the vacuum chamber 24 . At this time, it is preferable that the pressure in the first preliminary chamber 13, the pressure in the vacuum chamber 24 and the pressure in the barrel 1 are approximately the same. Moreover, it is preferable to supply the raw material powder at a constant speed.
(バレル内での原料粉末の移動及び成膜)
 バレル1の鉛直下方側の底面44を紙面の向こう側に移動する方向に回転させることで、原料粉末42が通路45に沿って移動、すなわち、バレル1の回転軸2に沿って移動する。このとき、成膜機構43を作動させ、成膜を行う。また、バレル1に衝撃を与えるノッカー50又は振動を与える振動子50を作動させることが望ましい。原料粉末42がバレル1の一方の端面から他方の端面に移動する間に十分な膜厚の薄膜を成膜することができたら、原料粉末42を粉末回収口30に向かわせる準備が整う。また、薄膜の膜厚が不十分である場合、バレル1の鉛直下方側の底面44を紙面の手前側に移動する方向に回転方向を逆転させて、成膜を継続する。次いで原料粉末42がバレル1の一方の端面側に戻されたらバレル1の鉛直下方側の底面44を紙面の向こう側に移動する方向に回転方向をさらに逆転させる。こうしてバレル1の回転方向を正転、逆転させて、薄膜の膜厚を所望厚さとする。
(Movement and film formation of raw material powder in barrel)
By rotating the bottom surface 44 on the vertically lower side of the barrel 1 in a direction to move beyond the plane of the paper, the raw material powder 42 moves along the passage 45 , that is, moves along the rotating shaft 2 of the barrel 1 . At this time, the film forming mechanism 43 is operated to form a film. Moreover, it is desirable to operate the knocker 50 that gives impact to the barrel 1 or the vibrator 50 that gives vibration. When a thin film having a sufficient thickness is formed while the raw material powder 42 moves from one end face of the barrel 1 to the other end face, preparations for directing the raw material powder 42 to the powder recovery port 30 are completed. If the film thickness of the thin film is insufficient, the direction of rotation is reversed to move the bottom surface 44 on the vertically downward side of the barrel 1 toward the front side of the paper, and the film formation is continued. Next, when the raw material powder 42 is returned to one end face side of the barrel 1, the direction of rotation is reversed so as to move the bottom face 44 on the vertically downward side of the barrel 1 to the other side of the paper. In this way, the rotation direction of the barrel 1 is rotated forward and reversed to obtain a desired thickness of the thin film.
(成膜済みの粉末の回収の事前工程)
 バルブ29及び第2開閉機構27を閉の状態で、第3ガス系統31及び排気ポンプ32を用いて、第2予備室28を所望の圧力とし、ガス雰囲気に置換する。このとき、第2予備室28の圧力と真空室24及びバレル1内の圧力をほぼ一致させておくことが好ましい。
(Preliminary process for collecting powder after film formation)
With the valve 29 and the second opening/closing mechanism 27 closed, the third gas system 31 and the exhaust pump 32 are used to set the pressure in the second preliminary chamber 28 to a desired pressure and replace it with a gas atmosphere. At this time, it is preferable that the pressure in the second preliminary chamber 28, the pressure in the vacuum chamber 24 and the pressure in the barrel 1 are approximately the same.
(成膜済みの粉末の回収の工程)
 第2開閉機構27を開とし、第2予備室28に成膜済みの粉末を移動させる。移動完了後、第2開閉機構27を閉とする。ついで、排気ポンプ32を停止し、第3ガス系統31を用いて第2予備室28内を大気圧にする。次にバルブ29を開とし、粉末回収口30から成膜済みの粉末を取り出す。
(Step of recovering powder after film formation)
The second opening/closing mechanism 27 is opened, and the film-formed powder is moved to the second preliminary chamber 28 . After the movement is completed, the second opening/closing mechanism 27 is closed. Next, the exhaust pump 32 is stopped, and the inside of the second preliminary chamber 28 is brought to the atmospheric pressure using the third gas system 31 . Next, the valve 29 is opened and the powder formed into a film is taken out from the powder recovery port 30 .
 本実施形態では、連続式となる構造とし、更には、成膜を行うバレル1内にらせん状の通路45を与える機構とすることで、攪拌効率の向上を図ることが可能となった。更には、らせん状の仕切り40により、粉末の移動が制御され、バレル1の回転速度で成膜時間を制御できる。その際、バレル1内の粉末成膜部位に、均等に且つ連続的に原料粉末42を供給することで、成膜効率を上げ、更にはバレル長を、バレル1の回転の正・逆を切り替えることで実質的に長くするなど可変とすることで、成膜生産性の向上を図ることができる。また、バレル1内は、常に真空を保持し、スパッタリングやイオンプレーティング、イオンビーム、アトムビームにて成膜を行う構造を有し、必要なガスを必要なガス圧で維持し続ける構造としている。例えば0.5Paの圧力でアルゴンを入れて維持する構造である。更に原料粉末を大気圧から投入し、原料粉末を保持供給する第1予備室で所定の真空雰囲気を作り、更に、バレル1内と同じガス圧に調整した後、原料粉末をバレル1の端部へ連続的に供給することができる。バレル1に入れられた原料粉末42は、らせん状の仕切り40の間隔に応じて広がり、且つ、重力で底部に存在する。そこに、成膜機構43から成膜成分を飛ばして、粉末の表面に到達させ、成膜を進める。らせん状の仕切り40の間隔に広がる粉末の攪拌は緩やかである為、例えば衝撃や振動を与えることでより攪拌が行われる。ノッカーはバレルの周囲を振動させ、その振動が伝播して粉末を振動させる。この振動により粉末が攪拌され、更に、粉末全体にわたって成膜される。バレル1内の粉末はらせん状の仕切りの下部に集まり移動していくが、らせん形状に対して同方向にバレルを回転させる正回転では排出される粉末は粉末導入の反対側に排出される。粉末供給や排出はバレル内の真空を保持する為、別のチャンバーが必要となるが、図10及び図11に示すように、設備を簡素化する為、粉末の導入側を更に排出側とする為、正回転にて成膜した粉末を逆回転で粉末を導入側に戻し排出することも可能である。更には、原料粉末42の成膜時において角度調整機構8によってバレル1を粉末の進行方向に20°以内の角度を付けることで粉末の移動を容易にし、導入、移動、排出を確実に行う事ができる。原料粉末42の成膜時においてバレル1の角度が20°を超えると、らせん状の仕切り40に粉末が凝集してしまい効果的な成膜が出来ない場合がある。粉末の流動性を見ながら、仕切り40同士の間の通路45に広く粉末が分布する角度とする事が必要である。粉末排出を目的とする場合は、これ以上の角度にすることに何ら問題は無い。 In this embodiment, it is possible to improve the stirring efficiency by adopting a continuous structure and further by adopting a mechanism that provides a spiral passage 45 in the barrel 1 where film formation is performed. Furthermore, the movement of the powder is controlled by the spiral partition 40, and the rotation speed of the barrel 1 can control the deposition time. At that time, by supplying raw material powder 42 evenly and continuously to the powder film-forming portion in the barrel 1, the film-forming efficiency is increased, and furthermore, the barrel length is switched between normal and reverse rotation of the barrel 1. The film formation productivity can be improved by making the length variable, such as by substantially lengthening the length. In addition, the inside of the barrel 1 always maintains a vacuum, and has a structure in which film formation is performed by sputtering, ion plating, ion beam, or atom beam, and the necessary gas is continuously maintained at the necessary gas pressure. . For example, it is a structure in which a pressure of 0.5 Pa is maintained by inserting argon. Further, the raw material powder is charged from atmospheric pressure, a predetermined vacuum atmosphere is created in the first preliminary chamber for holding and supplying the raw material powder, and the gas pressure is adjusted to the same gas pressure as in the barrel 1. can be continuously supplied to The raw material powder 42 put into the barrel 1 spreads according to the interval of the spiral partition 40 and exists at the bottom by gravity. Then, the film-forming component is blown from the film-forming mechanism 43 to reach the surface of the powder, and the film-forming proceeds. Since the stirring of the powder spreading in the space between the spiral partitions 40 is gentle, the powder is stirred more by applying impact or vibration, for example. The knocker vibrates around the barrel and the vibration propagates to vibrate the powder. This vibration agitates the powder and further forms a film over the entire powder. The powder in the barrel 1 gathers at the bottom of the spiral partition and moves, but in the forward rotation in which the barrel rotates in the same direction as the spiral shape, the discharged powder is discharged on the opposite side of the powder introduction. In order to maintain the vacuum in the barrel for powder supply and discharge, a separate chamber is required, but as shown in FIGS. Therefore, it is also possible to return the powder formed by forward rotation to the introduction side and discharge it by reverse rotation. Furthermore, when the raw material powder 42 is formed into a film, the angle adjustment mechanism 8 makes the barrel 1 angled within 20° in the direction in which the powder advances, thereby facilitating the movement of the powder and ensuring the introduction, movement, and discharge of the powder. can be done. If the angle of the barrel 1 exceeds 20° during film formation of the raw material powder 42, the powder may agglomerate in the spiral partition 40 and effective film formation may not be possible. It is necessary to set the angle so that the powder is widely distributed in the passage 45 between the partitions 40 while observing the fluidity of the powder. If the purpose is to discharge powder, there is no problem in making the angle greater than this.
 本実施形態に係る横型粉末表面成膜装置でスパッタリングにて成膜する場合、プラズマ発生ガスとしてAr、Kr又はXeを導入し、そのガス圧は0.01~10Paの間であることが好ましい。更に、直流電源にて酸化物、窒化物の高速成膜を行う際には、酸素ガス及び/又は窒素ガスをプラズマガス圧の10%以下となるように添加してプラズマを発生させて粉末表面に成膜を行う。Ar、Kr、Xeのうち、より好ましくはArを使う。これはスパッタ速度が高く、不活性ガスであることから、ターゲットを変質させないことが重要である。更には、10Pa以下の圧力とする。10Paを超える高いガス圧では、ターゲットからスパッタした原子が拡散してしまい、更には、原子の移動エネルギーが下がってしまうことで、粉末へ原子が付着しても剥がれてしまい付着率の低下が発生するからである。更には、通常のスパッタでは0.1~10W/cm程度とすることが多いが、カソード出力を10W/cmを超えるようにすることが好ましい。 When forming a film by sputtering with the horizontal powder surface film-forming apparatus according to this embodiment, it is preferable that Ar, Kr or Xe is introduced as a plasma generating gas and the gas pressure is between 0.01 and 10 Pa. Furthermore, when performing high-speed film formation of oxides and nitrides with a DC power supply, oxygen gas and / or nitrogen gas is added so that the pressure is 10% or less of the plasma gas pressure to generate plasma, and the powder surface to form a film. Among Ar, Kr and Xe, Ar is more preferably used. Since this has a high sputtering rate and is an inert gas, it is important not to alter the properties of the target. Furthermore, the pressure is set to 10 Pa or less. At high gas pressures exceeding 10 Pa, the atoms sputtered from the target diffuse, and furthermore, the transfer energy of the atoms decreases. Because it does. Furthermore, in normal sputtering, it is often about 0.1 to 10 W/cm 2 , but it is preferable to set the cathode output to over 10 W/cm 2 .
100,200,300,400 横型粉末表面成膜装置
1 バレル
2 回転軸
3 駆動モータ
4 駆動シャフト
5 駆動ロール
6 従属ロール
7 回転機構
8,8a,8b 角度調整機構
9 粉末投入口
10,12,14,16,20~22,33~37 配管
11,29 バルブ
13 第1予備室
15 第1開閉機構
17 第2ガス系統
18 第1ガス系統
19,32 排気ポンプ
23 圧力調整機構
24 真空室
25 成膜装置
26 成膜材料
27 第2開閉機構
28 第2予備室
30 粉末回収口
31 第3ガス系統
40 仕切り
41 突起
42 原料粉末
43 成膜機構
44 底面
45 通路
46,47 開口
48 加熱・冷却機構
50 ノッカー又は振動子
 

 
100, 200, 300, 400 Horizontal powder surface film forming device 1 Barrel 2 Rotating shaft 3 Drive motor 4 Drive shaft 5 Drive roll 6 Follower roll 7 Rotation mechanism 8, 8a, 8b Angle adjustment mechanism 9 Powder input port 10, 12, 14 , 16, 20 to 22, 33 to 37 Piping 11, 29 Valve 13 First spare chamber 15 First opening/closing mechanism 17 Second gas system 18 First gas system 19, 32 Exhaust pump 23 Pressure adjustment mechanism 24 Vacuum chamber 25 Film formation Apparatus 26 Film-forming material 27 Second opening/closing mechanism 28 Second preliminary chamber 30 Powder recovery port 31 Third gas system 40 Partition 41 Projection 42 Raw material powder 43 Film-forming mechanism 44 Bottom surface 45 Passages 46, 47 Opening 48 Heating/cooling mechanism 50 Knocker or vibrator

Claims (10)

  1.  横に傾けられたバレルと、該バレルの主軸を回転軸として自転させる回転機構と、前記バレル内の圧力を大気圧以下の所定の圧力に維持する圧力調整機構と、前記バレル内に設置された成膜機構と、を有し、前記バレルを回転させながら前記バレルに入れられた原料粉末の表面に薄膜を成膜する横型粉末表面成膜装置であって、
     前記バレルは、側壁の内側面を底面とし、前記回転軸を中心としてらせん状に延びる通路を有し、該通路の天面は開放されていることを特徴とする横型粉末表面成膜装置。
    A laterally tilted barrel, a rotation mechanism for rotating the barrel around its main axis as a rotation axis, a pressure adjustment mechanism for maintaining the pressure in the barrel at a predetermined pressure below atmospheric pressure, and a pressure adjustment mechanism installed in the barrel. and a film forming mechanism, and a horizontal powder surface film forming apparatus for forming a thin film on the surface of the raw material powder put in the barrel while rotating the barrel,
    A horizontal powder surface deposition apparatus, wherein the barrel has an inner surface of a side wall as a bottom surface, has a passage extending spirally about the rotation shaft, and the top surface of the passage is open.
  2.  前記通路は、隣り合う通路間に仕切りが設けられていることを特徴とする請求項1に記載の横型粉末表面成膜装置。 The horizontal powder surface deposition apparatus according to claim 1, characterized in that said passages are provided with partitions between adjacent passages.
  3.  前記仕切りは、連続的ならせん状の仕切り、連続的ならせん階段状の仕切り又は複数の仕切りが互いに一部分が向き合った状態でらせん階段状に配置された断続的ならせん階段状の仕切りであるか、或いは、これら3種の仕切りのうち少なくとも2種を組み合わせた仕切りであることを特徴とする請求項2に記載の横型粉末表面成膜装置。 Is the partition a continuous spiral step partition, a continuous spiral step partition, or an intermittent spiral step partition in which a plurality of partitions are arranged in a spiral step with portions facing each other? 3. The horizontal powder surface deposition apparatus according to claim 2, wherein the partition is a combination of at least two of the three partitions.
  4.  前記通路は前記底面に突起を有することを特徴とする請求項1~3のいずれか一つに記載の横型粉末表面成膜装置。 The horizontal powder surface deposition apparatus according to any one of claims 1 to 3, wherein the passage has a projection on the bottom surface.
  5.  前記バレルに衝撃を与えるノッカー又は振動を与える振動子を有することを特徴とする請求項1~4のいずれか一つに記載の横型粉末表面成膜装置。 The horizontal powder surface deposition apparatus according to any one of claims 1 to 4, characterized by having a knocker for impacting the barrel or a vibrator for vibrating the barrel.
  6.  前記バレルの一方の端面側から前記バレルの中に前記原料粉末を供給する粉末供給機構と、前記バレルの他方の端面側から前記薄膜が表面に成膜されている被覆粉末を回収する粉末回収機構とを有し、
     前記粉末供給機構は、圧力調整及び雰囲気調整の可能な第1予備室を有し、該第1予備室は、粉末投入口とつながっており、かつ、前記バレルの一方の端面と第1開閉機構を介してつながっており、
     前記粉末回収機構は、圧力調整及び雰囲気調整の可能な第2予備室を有し、該第2予備室は、前記バレルの他方の端面と第2開閉機構を介してつながっており、かつ、粉末回収口とつながっていることを特徴とする請求項1~5のいずれか一つに記載の横型粉末表面成膜装置。
    A powder supply mechanism that supplies the raw material powder into the barrel from one end face of the barrel, and a powder recovery mechanism that recovers the coated powder on which the thin film is formed from the other end face of the barrel. and
    The powder supply mechanism has a first preliminary chamber capable of adjusting pressure and atmosphere. are connected through
    The powder recovery mechanism has a second preliminary chamber capable of adjusting pressure and atmosphere, the second preliminary chamber is connected to the other end surface of the barrel via a second opening/closing mechanism, and 6. The horizontal powder surface deposition apparatus according to any one of claims 1 to 5, characterized in that it is connected to the recovery port.
  7.  前記回転機構は、前記バレルの回転数の調節器及び回転方向の正転・逆転の切り換え器を有することを特徴とする請求項1~6のいずれか一つに記載の横型粉末表面成膜装置。 7. The horizontal powder surface deposition apparatus according to any one of claims 1 to 6, wherein the rotation mechanism has a rotation speed adjuster of the barrel and a rotation direction forward/reverse switch. .
  8.  前記バレルの一方の端面側から前記バレルの中に前記原料粉末を供給する粉末供給機構と、前記バレルの一方の端面側から前記薄膜が表面に成膜されている被覆粉末を回収する粉末回収機構と、を有し、
     前記粉末供給機構は、圧力調整及び雰囲気調整の可能な第1予備室を有し、該第1予備室は、粉末投入口とつながっており、かつ、前記バレルの一方の端面と第1開閉機構を介してつながっており、
     前記粉末回収機構は、圧力調整及び雰囲気調整の可能な第2予備室を有し、該第2予備室は、前記バレルの一方の端面と第2開閉機構を介してつながっており、かつ、粉末回収口とつながっており、
     前記回転機構は、前記バレルの回転数の調節器及び回転方向の正転・逆転の切り換え器を有することを特徴とする請求項1~5のいずれか一つに記載の横型粉末表面成膜装置。
    A powder supply mechanism that supplies the raw material powder into the barrel from one end face of the barrel, and a powder recovery mechanism that recovers the coated powder having the thin film formed thereon from one end face of the barrel. and
    The powder supply mechanism has a first preliminary chamber capable of adjusting pressure and atmosphere. are connected through
    The powder recovery mechanism has a second preliminary chamber capable of adjusting pressure and atmosphere, the second preliminary chamber is connected to one end surface of the barrel via a second opening/closing mechanism, and It is connected to the collection port,
    6. The horizontal powder surface deposition apparatus according to any one of claims 1 to 5, wherein the rotation mechanism has a rotation speed adjuster of the barrel and a rotation direction forward/reverse switch. .
  9.  前記バレルの主軸の傾きを調整する角度調整機構を有することを特徴とする請求項1~8のいずれか一つに記載の横型粉末表面成膜装置。 The horizontal powder surface deposition apparatus according to any one of claims 1 to 8, characterized by having an angle adjustment mechanism for adjusting the inclination of the main axis of the barrel.
  10.  前記成膜機構は、スパッタリング法、イオンプレーティング法、イオンビーム法又はアトムビーム法による成膜源を有することを特徴とする請求項1~9のいずれか一つに記載の横型粉末表面成膜装置。

     
    10. The horizontal powder surface deposition according to any one of claims 1 to 9, wherein the deposition mechanism has a deposition source by a sputtering method, an ion plating method, an ion beam method or an atom beam method. Device.

PCT/JP2022/006347 2021-02-26 2022-02-17 Horizontal-type powder surface film forming device WO2022181433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021030045A JP2022131217A (en) 2021-02-26 2021-02-26 Horizontal type powder surface film deposition apparatus
JP2021-030045 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181433A1 true WO2022181433A1 (en) 2022-09-01

Family

ID=83049340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006347 WO2022181433A1 (en) 2021-02-26 2022-02-17 Horizontal-type powder surface film forming device

Country Status (2)

Country Link
JP (1) JP2022131217A (en)
WO (1) WO2022181433A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153864A (en) * 1989-11-09 1991-07-01 Nippon Shokubai Kagaku Kogyo Co Ltd Method and device for surface coating of particle
JP2006257472A (en) * 2005-03-16 2006-09-28 Takayuki Abe Surface-treated product, surface treatment method and surface treatment device
JP2017057507A (en) * 2017-01-04 2017-03-23 日立化成株式会社 Drum spattering device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153864A (en) * 1989-11-09 1991-07-01 Nippon Shokubai Kagaku Kogyo Co Ltd Method and device for surface coating of particle
JP2006257472A (en) * 2005-03-16 2006-09-28 Takayuki Abe Surface-treated product, surface treatment method and surface treatment device
JP2017057507A (en) * 2017-01-04 2017-03-23 日立化成株式会社 Drum spattering device

Also Published As

Publication number Publication date
JP2022131217A (en) 2022-09-07

Similar Documents

Publication Publication Date Title
EP2084000B1 (en) Methods and apparatus for making coatings using electrostatic spray
FR2705165A1 (en) Plasma treatment installation and method for its operation.
CN108220917B (en) Continuous atomic layer deposition equipment for coating surfaces of nanoparticles
JP7271564B2 (en) Additive manufacturing equipment including a device for dispensing powder over a moving surface using vibration
JPS60228323A (en) Method and device for feeding powdered or granular material
WO2022181433A1 (en) Horizontal-type powder surface film forming device
JP3989553B2 (en) Bulk material vacuum deposition system
JP2004169172A (en) Magnetron sputtering system, and magnetron sputtering method
KR101578553B1 (en) Feeding apparatus for micropowder
CN103160795A (en) Target magnetron sputtering device and film coating method used for powder particle surface film coating
JP2022173300A (en) Powder feeding device, thermal spraying apparatus, powder feeding method, and thermal spraying method
KR20170039830A (en) Supply Apparatus and Method for Quantitative Distribution
JPH10310488A (en) Raw material supplying device
JP4866331B2 (en) Composite particle manufacturing equipment
JPH05271922A (en) Powder coating device
KR101333514B1 (en) Apparatus for continuous powder feeding
RU2767099C1 (en) Device for applying coatings on powder materials
CN215251152U (en) Coating diamond-like carbon film rolls and vibrates device
JP4820799B2 (en) Container rotating granulator and granulation system
WO2022181434A1 (en) Powder surface film-forming device and method for manufacturing coated powder
JP2006233334A (en) System for forming composite structure and forming method therefor
KR101559371B1 (en) Continuous feeder of uniformly fine powder
CN217650299U (en) Sprayer press-fitting machine of aerosol can
KR101559454B1 (en) Multi feeding apparatus for micropowder
JP3251790B2 (en) Powder coating equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759472

Country of ref document: EP

Kind code of ref document: A1