WO2022181321A1 - Uv radiation sensitive member, microcapsule, microcapsule production method, liquid dispersion for forming uv radiation sensitive layer, and uv radiation sensitive kit - Google Patents

Uv radiation sensitive member, microcapsule, microcapsule production method, liquid dispersion for forming uv radiation sensitive layer, and uv radiation sensitive kit Download PDF

Info

Publication number
WO2022181321A1
WO2022181321A1 PCT/JP2022/005017 JP2022005017W WO2022181321A1 WO 2022181321 A1 WO2022181321 A1 WO 2022181321A1 JP 2022005017 W JP2022005017 W JP 2022005017W WO 2022181321 A1 WO2022181321 A1 WO 2022181321A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
solvent
microcapsules
solvents
sensing member
Prior art date
Application number
PCT/JP2022/005017
Other languages
French (fr)
Japanese (ja)
Inventor
貴美 池田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023502263A priority Critical patent/JPWO2022181321A1/ja
Publication of WO2022181321A1 publication Critical patent/WO2022181321A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/48Photometry, e.g. photographic exposure meter using chemical effects
    • G01J1/50Photometry, e.g. photographic exposure meter using chemical effects using change in colour of an indicator, e.g. actinometer

Definitions

  • the present invention relates to an ultraviolet sensing member, microcapsules, a method for producing microcapsules, a dispersion for forming an ultraviolet sensitive layer, and an ultraviolet sensing kit.
  • Measurement of the amount of ultraviolet rays is carried out in various fields. Specific examples include measurement of the amount of ultraviolet rays applied to an object to be irradiated during the curing reaction of an ultraviolet curable resin, and measurement of the amount of ultraviolet rays applied to an object to be irradiated during ultraviolet sterilization of foods and the like.
  • an ultraviolet photometer is used as a method for measuring the amount of ultraviolet rays.
  • Patent Literature 1 discloses, as an ultraviolet photometer, an ultraviolet sensing member having an ultraviolet sensing layer containing capsules containing a color former and a photo-oxidizing agent.
  • the wavelength region to be measured is different in the conventional ultraviolet sensing member, when the conventional ultraviolet sensing member is irradiated with a wavelength of 222 nm at a predetermined integrated illuminance, the color cannot be sufficiently developed, and the coloring portion cannot be obtained. The color density had become low. In other words, the inventors have found that the sensitivity at a wavelength of 222 nm is inferior.
  • an object of the present invention is to provide an ultraviolet sensing member having excellent sensitivity at a wavelength of 222 nm.
  • Another object of the present invention is to provide microcapsules, a method for producing microcapsules, a dispersion for forming an ultraviolet sensitive layer, and an ultraviolet sensitive kit.
  • An ultraviolet sensing member comprising an ultraviolet sensitive layer containing microcapsules encapsulating a photoactive agent, a coloring agent, and a solvent, An ultraviolet sensing member that satisfies at least one of condition A and condition B.
  • Condition A The solvent contains a non-aromatic solvent X having a heteroatom.
  • Condition B the solvent contains an aromatic solvent Y and a non-aromatic solvent Z;
  • the ultraviolet sensing member according to [1] wherein the solvent has a boiling point of 100° C. or higher.
  • the non-aromatic solvent Z is one or more solvents selected from the group consisting of aliphatic hydrocarbons, aliphatic carboxylic acids, fatty acid esters, ether solvents, alcohol solvents, amide solvents, and ketone solvents.
  • the photoactive agent is a photooxidant
  • the photoactive agent is a photoacid generator, The ultraviolet sensing member according to any one of [1] to [5], wherein the coloring agent is a coloring agent that develops color under the action of an acid.
  • R 3 -L 1 -CX 3 X 4 X 5 (6) In general formula (6), R 3 represents an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • L 1 represents -SO- or -SO 2 -.
  • X 3 , X 4 and X 5 each independently represent a hydrogen atom or a halogen atom.
  • the microcapsules do not contain an ultraviolet absorber having a benzotriazole structure, or When the microcapsules contain an ultraviolet absorber having a benzotriazole structure, the content of the ultraviolet absorber having a benzotriazole structure is 1% by mass or less with respect to the total mass of the photoactive agent [1].
  • the ultraviolet sensing member according to any one of [8].
  • the ultraviolet sensing member according to any one of [1] to [9] which senses ultraviolet rays having a wavelength of 200 to 230 nm.
  • a microcapsule encapsulating a photoactive agent, a color former, and a solvent A microcapsule that satisfies at least one of condition A and condition B.
  • Condition A The solvent contains a non-aromatic solvent X having a heteroatom.
  • Condition B the solvent contains an aromatic solvent Y and a non-aromatic solvent Z;
  • the non-aromatic solvent Z is one or more solvents selected from the group consisting of aliphatic hydrocarbons, aliphatic carboxylic acids, fatty acid esters, ether solvents, alcohol solvents, amide solvents, and ketone solvents.
  • the photoactive agent is a photooxidant
  • the photoactive agent is a photoacid generator, The microcapsule according to any one of [11] to [15], wherein the coloring agent is a coloring agent that develops color under the action of an acid.
  • R 3 -L 1 -CX 3 X 4 X 5 (6) In general formula (6), R 3 represents an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • L 1 represents -SO- or -SO 2 -.
  • X 3 , X 4 and X 5 each independently represent a hydrogen atom or a halogen atom.
  • [11] A method for producing a microcapsule according to any one of [18], mixing the color former, the photoactive agent, the solvent, and the emulsifier in water to prepare an emulsion; forming a resin wall around the oil droplets containing the coloring agent, the photoactive agent, and the solvent in the emulsified liquid obtained in the above step for encapsulation to form the microcapsules. , a method for producing microcapsules.
  • [20] [11] A dispersion for forming an ultraviolet-sensitive layer, comprising the microcapsules of any one of [11] to [18].
  • An ultraviolet sensing kit comprising the ultraviolet sensing member according to any one of [1] to [10].
  • an ultraviolet sensing member with excellent sensitivity to a wavelength of 222 nm. Further, according to the present invention, it is possible to provide microcapsules, a method for producing microcapsules, a dispersion for forming an ultraviolet sensitive layer, and an ultraviolet sensitive kit.
  • FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of an ultraviolet sensing member of the present invention
  • a numerical range represented by "to” means a range including the numerical values before and after "to” as lower and upper limits.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of the numerical range described in other steps. good.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
  • the solid content means a component that forms a composition layer formed using the composition, and when the composition contains a solvent (for example, an organic solvent, water, etc.), the solvent is means all ingredients except
  • a liquid component is also regarded as a solid content.
  • ultraviolet light means light with a wavelength range of 10 to 400 nm.
  • (meth)acryl means "at least one of acryl and methacryl”.
  • the "boiling point” means the boiling point at standard atmospheric pressure.
  • the UV-sensitive member of the present invention is a UV-sensitive member provided with a UV-sensitive layer containing microcapsules encapsulating a photoactive agent, a coloring agent and a solvent, and satisfies at least one of Condition A and Condition B.
  • Condition A The solvent contains a non-aromatic solvent X with heteroatoms.
  • Condition B the solvent contains an aromatic solvent Y and a non-aromatic solvent Z;
  • a solvent that satisfies at least one of condition A and condition B is also referred to as a "specific solvent”.
  • the ultraviolet sensing member of the present invention having such a configuration has excellent sensitivity at a wavelength of 222 nm is not clear, the present inventors presume as follows.
  • the ultraviolet sensitive layer of the ultraviolet sensitive member of the present invention is irradiated with ultraviolet rays when measuring the amount of ultraviolet rays, in the area irradiated with ultraviolet rays (ultraviolet irradiated area), the amount of ultraviolet rays (e.g., integrated illuminance)
  • a colored portion is formed with the color density.
  • Developing a color with a color density corresponding to the amount of ultraviolet rays means that the colored image has gradation according to the amount of ultraviolet rays.
  • the above-mentioned main coloring mechanism of the UV-sensitive layer originates from the microcapsules contained in the UV-sensitive layer.
  • the coloring agent usually develops color within the microcapsules present in the UV-irradiated region.
  • the photoactive agent absorbs ultraviolet rays and is activated to generate acid and/or radicals, and the color former reacts with the acid and/or radicals to develop color.
  • the amount of acid and/or radicals generated from the photoactive agent varies depending on the amount of irradiated ultraviolet rays. The amount is also different.
  • the color density varies depending on the amount of ultraviolet rays applied, and a colored portion is formed with a color-developed density corresponding to the amount of ultraviolet rays.
  • a feature of the ultraviolet sensitive member of the present invention is that the microcapsules in the ultraviolet sensitive layer contain a photoactive agent, a coloring agent, and a specific solvent.
  • the present inventors found that when the microcapsules in the ultraviolet sensitive layer contain a specific solvent, the specific solvent has less absorption at a wavelength of 222 nm, and the specific solvent has a high solubility of the photoactive agent and the color former, resulting in color development. Since it is difficult to inhibit the reaction, it is presumed that it contributes to the improvement of the sensitivity at a wavelength of 222 nm.
  • the UV-sensitive member of the present invention has excellent sensitivity at a wavelength of 222 nm, and is resistant to so-called fogging, which is colored by unexpected light (wavelength region other than the target measurement wavelength region) such as fluorescent lamps. I found out.
  • the effect of the present invention is more excellent.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of an ultraviolet sensing member.
  • the UV sensitive member 10 comprises a support 12 and a UV sensitive layer 14 disposed on one surface of the support 12 and containing microcapsules containing a photoactive agent, a coloring agent and a specific solvent.
  • a coloring portion (not shown) is formed with a coloring density corresponding to the amount of ultraviolet rays.
  • FIG. 1 shows an embodiment in which the ultraviolet sensing member is sheet-shaped, the ultraviolet sensing member is not limited to this embodiment, and various shapes such as a block shape such as a rectangular parallelepiped and a columnar shape can be used as the shape of the ultraviolet sensing member. is.
  • a sheet-like ultraviolet sensing member (ultraviolet sensing sheet) is preferably used.
  • shape of the sheet-shaped ultraviolet sensing member various shapes such as square, rectangle, circle, ellipse, polygon other than quadrangle such as hexagon, and irregular shape can be used.
  • the sheet-like ultraviolet sensing member may be elongated.
  • the ultraviolet sensitive member 10 may have the ultraviolet sensitive layer 14 and may not have the support 12 .
  • the ultraviolet sensitive member 10 shown in FIG. 1 has a two-layer structure of the support 12 and the ultraviolet sensitive layer 14, but it is not limited to this aspect, and as described later, other layers than the support 12 and the ultraviolet sensitive layer 14 are formed. Other layers (eg, reflective layer, gloss layer, filter layer, etc.) may be provided.
  • the lower limit of the thickness of the ultraviolet sensing member 10 is preferably 5 ⁇ m or more, more preferably 25 ⁇ m or more. Also, the upper limit is preferably 1 cm or less, more preferably 2 mm or less. Each member of the ultraviolet sensing member will be described in detail below.
  • a support is a member for supporting the ultraviolet sensitive layer. If the ultraviolet sensitive layer itself can be handled, the ultraviolet sensitive member may not have a support.
  • the support examples include resin sheets, paper (including synthetic paper), cloth (including woven fabric and non-woven fabric), glass, wood, and metal.
  • the support is preferably a resin sheet or paper, more preferably a resin sheet or synthetic paper, and still more preferably a resin sheet.
  • Materials for the resin sheet include polyethylene-based resin, polypropylene-based resin, cyclic polyolefin-based resin, polystyrene-based resin, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, polyvinyl chloride-based resin, fluorine-based resin, Poly(meth)acrylic resins, polycarbonate resins, polyester resins (polyethylene terephthalate, polyethylene naphthalate, etc.), various polyamide resins such as nylon, polyimide resins, polyamideimide resins, polyarylphthalate resins, silicone resins, polysulfone-based resins, polyphenylene sulfide-based resins, polyethersulfone-based resins, polyurethane-based resins, acetal-based resins, and cellulose-based resins.
  • polyethylene-based resin polypropylene-based resin, cyclic polyolefin-
  • Synthetic paper includes biaxially stretched polypropylene or polyethylene terephthalate or the like to form a large number of microvoids (Yupo, etc.), synthetic paper made using synthetic fibers such as polyethylene, polypropylene, polyethylene terephthalate, and polyamide, and Examples include a part of paper, or a product laminated on one side or both sides of the paper.
  • the resin sheet is a white resin sheet in which a white pigment is dispersed in a resin.
  • the material of the resin in the white resin sheet include the same materials as those of the resin sheet described above.
  • the white resin sheet has UV reflectivity. Therefore, when the support is a white resin sheet, the ultraviolet rays irradiated to the ultraviolet sensing member are reflected by the support, so that scattering of the ultraviolet rays inside the ultraviolet sensing member can be suppressed. As a result, the detection accuracy of the amount of ultraviolet rays of the ultraviolet sensing member can be further improved.
  • white pigment reference can be made to the white pigment described in paragraph 0080 of WO 2016/017701, the contents of which are incorporated herein.
  • white resin sheet a white polyester sheet is preferable, and a white polyethylene terephthalate sheet is more preferable.
  • Commercially available white resin sheets include Yupo (manufactured by Yupo Corporation), Lumirror (manufactured by Toray Industries, Inc.), and Crisper (manufactured by Toyobo Co., Ltd.).
  • the lower limit of the thickness of the support is preferably 5 ⁇ m or more, more preferably 25 ⁇ m or more, and even more preferably 50 ⁇ m or more.
  • the upper limit is preferably 1 cm or less, more preferably 2 mm or less, and even more preferably 500 ⁇ m or less.
  • the UV-sensitive layer includes microcapsules (hereinafter also referred to as "specific microcapsules”) encapsulating a photoactive agent, a coloring agent, and a specific solvent.
  • specific microcapsules encapsulating a photoactive agent, a coloring agent, and a specific solvent.
  • the UV sensitive layer contains specific microcapsules.
  • the material constituting the specific microcapsules will be described in detail below.
  • a specific microcapsule usually has a core portion and a capsule wall for enclosing a core material forming the core portion (something to be encapsulated (hereinafter also referred to as “encapsulation component”)).
  • the specific microcapsules include a photoactive agent, a coloring agent, and a specific solvent as core materials (encapsulation components).
  • the photoactive agent is a photooxidizing agent and the color former is a color former that develops color upon oxidation.
  • the photoactive agent is a photoacid generator and the color former is a color former that develops color under the action of acid.
  • JP-A-59-190886 and JP-A-60-242094 can be cited, the contents of which are incorporated herein.
  • the capsule walls of the specific microcapsules are substantially composed of resin.
  • the phrase "substantially composed of resin” means that the resin content is 90% by mass or more, preferably 100% by mass, relative to the total mass of the capsule wall.
  • the capsule walls of the specific microcapsules are preferably made of resin.
  • the resin include polyurethane, polyurea, polyester, polycarbonate, urea-formaldehyde resin, melamine-formaldehyde resin, polystyrene, styrene-methacrylate copolymer, gelatin, polyvinylpyrrolidone, and polyvinyl alcohol.
  • the sensitivity at a wavelength of 222 nm can be further improved by forming a dense crosslinked structure that prevents inclusions from leaking and by controlling the transmittance at a wavelength of 222 nm. More preferably, one or more selected.
  • Polyurea is a polymer having multiple urea bonds and is preferably a reaction product formed from raw materials including polyamine and polyisocyanate. It should be noted that polyurea can be synthesized using polyisocyanate without using polyamine by utilizing the fact that a part of polyisocyanate reacts with water to form polyamine.
  • Polyurethane urea is a polymer having urethane bonds and urea bonds, and is preferably a reaction product formed from raw materials containing polyol, polyamine, and polyisocyanate. Incidentally, when the polyol and the polyisocyanate are reacted, part of the polyisocyanate may react with water to form a polyamine, resulting in a polyurethane urea.
  • Polyurethane is a polymer having a plurality of urethane bonds, and is preferably a reaction product formed from raw materials containing polyol and polyisocyanate.
  • Polyisocyanate preferably has an aromatic ring or an alicyclic ring. Among them, it is preferable that the polyisocyanate has an alicyclic ring from the viewpoint that the effects of the present invention are more excellent. When polyisocyanate having an alicyclic ring is used, the transparency of the microcapsule wall is excellent, so the sensitivity at a wavelength of 222 nm is more excellent.
  • the aromatic ring include aromatic hydrocarbon rings and aromatic heterocyclic rings, and aromatic hydrocarbon rings are preferably used.
  • the aromatic hydrocarbon ring may have a substituent.
  • the number of carbon atoms in the aromatic hydrocarbon ring is not particularly limited, but is preferably 6-30, more preferably 6-18, and even more preferably 6-10.
  • Aromatic hydrocarbon rings include, for example, benzene rings.
  • the number of aromatic rings in the polyisocyanate is not particularly limited, and may be one or two or more, preferably one.
  • the alicyclic ring may have a substituent. Although the number of carbon atoms in the alicyclic ring is not particularly limited, it is preferably 3-30, more preferably 3-18, and even more preferably 6-10.
  • the alicyclic ring includes, for example, a cyclohexane ring.
  • the number of alicyclic rings in the polyisocyanate is not particularly limited, and may be 1 or 2 or more, preferably 1 to 3.
  • Aromatic polyisocyanates include aromatic diisocyanates such as m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, naphthalene-1,4-diisocyanate, diphenylmethane-4,4'-diisocyanate, 3,3'-dimethoxy-biphenyl diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, xylylene-1,4-diisocyanate, xylylene-1,3-diisocyanate, 4-chloroxylylene-1,3-diisocyanate, 2-methylxylylene-1,3-diisocyanate, 4,4'-diphenylpropane diisocyanate and 4,4'-diphenylhexafluoropropane diisocyanate.
  • Aliphatic polyisocyanates include aliphatic diisocyanates such as trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, cyclohexylene-1,2-diisocyanate, cyclohexane sylene-1,3-diisocyanate, cyclohexylene-1,4-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,4-bis(isocyanatomethyl)cyclohexane, 1,3-bis(isocyanatomethyl)cyclohexane, isophorone Diisocyanates, lysine diisocyanate, hydrogenated tolylene diisocyanate and hydrogenated xylylene diisocyanate.
  • aliphatic diisocyanates such as trimethylene diisocyanate, hexamethylene diis
  • Polyisocyanates also include tri- or higher functional polyisocyanates (eg, tri-functional triisocyanate and tetra-functional tetraisocyanate).
  • Trifunctional or higher polyisocyanates include adducts of aromatic or alicyclic diisocyanates and compounds having 3 or more active hydrogen groups in one molecule (for example, trifunctional or higher polyols, polyamines or polythiols).
  • Tri- or more functional polyisocyanates adduct type tri- or more functional polyisocyanates
  • aromatic or alicyclic diisocyanate trimers are preferred.
  • Polyisocyanates also include formalin condensates of benzene isocyanate, polyisocyanates having polymerizable groups such as methacryloyloxyethyl isocyanate, and lysine triisocyanate.
  • polyisocyanate "Polyurethane Resin Handbook” (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)) can be cited.
  • Examples of commercially available polyisocyanates include Takenate (registered trademark) D-102, D-103, D-103H, D-103M2, P49-75S, D-110N, D-120N, D-140N, and D-160N.
  • NP1100 (manufactured by Mitsui Chemicals) Sumidule N3300, Desmodur (registered trademark) L75, UL57SP, N3200, N3600, N3900, Z4470BA (manufactured by Sumika Bayer Urethane), Coronate (registered trademark) HL, HX, L, HK (manufactured by Nippon Polyurethane), P301-75E (manufactured by Asahi Kasei), Duranate (registered trademark) TPA -100, TKA-100, TSA-100, TSS-100, TLA-100, 24A-100, TSE-100 (manufactured by Asahi Kasei) and Barnock (registered trademark) D-750 (manufactured by DIC).
  • Polyols include, for example, aliphatic and aromatic polyhydric alcohols, hydroxypolyesters, and hydroxypolyalkylene ethers. Specific examples include the polyols described in JP-A-60-049991, such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 6-hexanediol, 1,7-hebutanediol, 1,8-octanediol, propylene glycol, 2,3-dihydroxybutane, 1,2-dihydroxybutane, 1,3-dihydroxybutane, 2,2-dimethyl- 1,3-propanediol, 2,4-pentanediol, 2,5-hexanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanedimethanol, dihydroxycyclohexane, diethylene glycol, 1,2,6
  • polyamines examples include ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, p-phenylenediamine, m-phenylenediamine, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, 2- Hydroxytrimethylenediamine, diethylenetriamine, triethylenetriamine, triethylenetetramine, diethylaminopropylamine, tetraethylenepentamine, and amine adducts of epoxy compounds.
  • Polyisocyanate can also react with water to form polymeric substances.
  • Polyisocyanates, polyols, and polyamines include, for example, US Pat. No. 3,281,383, US Pat. No. 3,773,695, US Pat. and Japanese Patent Publication No. 48-084086, the contents of which are incorporated herein.
  • the average particle size of the microcapsules is preferably 0.1 to 100 ⁇ m in terms of volume average particle size.
  • the lower limit is more preferably 0.3 ⁇ m or more, and even more preferably 0.5 ⁇ m or more.
  • the upper limit is more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the average particle size (volume average particle size) of the microcapsules is 0.1 ⁇ m or more, the core material in the capsules can be more stably protected.
  • the average particle size (volume average particle size) of the microcapsules is 100 ⁇ m or less, the resolution of the colored image is further improved.
  • the average particle size (volume average particle size) of the microcapsules can be measured, for example, with a laser analysis/scattering particle size distribution analyzer LA950 (manufactured by Horiba, Ltd.).
  • LA950 laser analysis/scattering particle size distribution analyzer
  • the average particle size (volume average particle size) of the microcapsules can be measured with a scanning electron microscope (SEM). Specifically, the surface of the ultraviolet sensitive layer is observed with an SEM at a magnification of 5000, and the average particle size of all microcapsules present in the observed field of view is determined by image analysis. If microcapsules cannot be observed on the surface, a cross-sectional slice is prepared and measured in the same manner as above.
  • the above-mentioned microcapsule means a concept including specific microcapsules and other than specific microcapsules.
  • a specific microcapsule encloses a specific solvent.
  • a specific solvent is a solvent that satisfies at least one of condition A and condition B.
  • Condition A The solvent contains a non-aromatic solvent X with heteroatoms.
  • Condition B the solvent contains an aromatic solvent Y and a non-aromatic solvent Z;
  • Aromaatic solvent means a solvent having an aromatic ring in the molecule.
  • non-aromatic solvent means a solvent that does not have an aromatic ring in its molecule.
  • Non-aromatic solvent X is a non-aromatic solvent with heteroatoms.
  • the non-aromatic solvent X is not particularly limited as long as it has a heteroatom in its molecule and does not have an aromatic ring.
  • a non-aromatic solvent having an aliphatic structure is preferred.
  • "Having an aliphatic structure” means having a hydrocarbon group having no aromatic ring in the molecule.
  • the aromatic ring-free hydrocarbon group may be linear, branched, or cyclic.
  • carbon atoms in the hydrocarbon group may be substituted with heteroatoms and carbonyl carbon atoms.
  • the hydrocarbon group may further have a substituent, and the substituent may have a heteroatom.
  • heteroatoms include atoms other than carbon atoms and hydrogen atoms, preferably nitrogen, oxygen, phosphorus, or sulfur atoms, and more preferably oxygen atoms.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited, but is preferably 1-50, more preferably 6-50, and even more preferably 8-30.
  • the non-aromatic solvent X preferably contains one or more solvents selected from the group consisting of aliphatic carboxylic acids, fatty acid esters, ether solvents, alcohol solvents, amide solvents, and ketone solvents.
  • the non-aromatic solvent X preferably contains an alcoholic solvent from the viewpoint of promoting the color-developing reaction. From the viewpoint of suitability for the encapsulation reaction, it is also preferable to contain one or more solvents selected from the group consisting of aliphatic carboxylic acids, fatty acid esters, ether solvents, amide solvents, and ketone solvents.
  • aliphatic carboxylic acids examples include oleic acid, dimethyl succinate, diethyl succinate, and methyl laurate.
  • Fatty acid esters include, for example, unsaturated fatty acid esters and saturated fatty acid esters. Specific examples include natural animal and vegetable oils such as soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, coconut oil, castor oil, and fish oil. Moreover, fatty acid esters include aliphatic carboxylic acid esters, aliphatic sulfonic acid esters, and aliphatic phosphate esters, and aliphatic phosphate esters are preferred. Specific examples of aliphatic phosphates include tri(2-ethylhexyl)phosphate.
  • ether-based solvents examples include propylene glycol monobutyl ether.
  • ketone-based solvents examples include cyclohexanone.
  • a long-chain alkyl alcohol is preferable, a long-chain alkyl mono-alcohol is more preferable, and a long-chain alkyl mono-alcohol having 6 to 20 carbon atoms is even more preferable, because it facilitates the capsule-forming reaction.
  • long-chain alkyl monoalcohols having 6 to 20 carbon atoms include octanol.
  • amide-based solvents examples include N,N-diethyldodecanamide.
  • the boiling point of the non-aromatic solvent X is preferably 100°C or higher, more preferably 120°C or higher, and even more preferably 140°C or higher. Although the upper limit is not particularly limited, 500° C. or less is preferable. When the boiling point of the non-aromatic solvent X is 100° C. or higher, the specific solvent tends to remain without being removed from the specific microcapsules in the heating process such as the microencapsulation reaction.
  • the molecular weight of the non-aromatic solvent X is not particularly limited, and is often 100 or more, preferably 150 or more. Although the upper limit is not particularly limited, it is preferably 1000 or less, more preferably 600 or less, and even more preferably 500 or less.
  • the non-aromatic solvent X may be used alone or in combination of two or more.
  • the content of the non-aromatic solvent X in the specific microcapsules is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, more preferably 15 to 100% by mass, relative to the total mass of the solvent. % by mass is more preferred.
  • the type, content, and composition ratio of the non-aromatic solvent X can be analyzed by extracting the UV-sensitive layer with acetone, concentrating the obtained filtrate, and performing GC-MS (Gas Chromatography Mass Spectrometry) analysis.
  • Aromatic solvent Y is an aromatic solvent having an aromatic ring.
  • the aromatic solvent Y may have heteroatoms. That is, the aromatic solvent Y may be an aromatic solvent having a heteroatom or may be an aromatic solvent having no heteroatoms.
  • the aromatic solvent Y preferably has a heteroatom.
  • the aromatic ring of the aromatic solvent Y includes, for example, an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and the aromatic hydrocarbon ring is preferably used.
  • the aromatic hydrocarbon ring may be either a monocyclic ring or a condensed polycyclic ring, but is preferably a monocyclic ring.
  • the aromatic hydrocarbon ring may have a substituent. When the aromatic hydrocarbon ring has a plurality of substituents, the substituents may bond together to form an alicyclic ring.
  • the aromatic hydrocarbon ring may have an aliphatic structure.
  • the number of carbon atoms in the aromatic hydrocarbon ring is not particularly limited, but is preferably 6-30, more preferably 6-18, and even more preferably 6-10.
  • Examples of the monocyclic aromatic hydrocarbon ring include a benzene ring.
  • Examples of polycyclic aromatic hydrocarbon rings include naphthalene rings.
  • the aromatic heterocyclic ring may be either monocyclic or polycyclic. Moreover, the aromatic heterocyclic ring may have a substituent.
  • the number of aromatic rings in the aromatic solvent is not particularly limited, and may be one or two or more. In the case of containing two or more aromatic rings, the two aromatic rings form a polycyclic structure (but not including a condensed polycyclic structure) by binding to each other substituents that may be present on each aromatic ring. may be formed.
  • the heteroatom-containing aromatic solvent Y includes, for example, an aromatic solvent having an aromatic heterocycle in the molecule and an aromatic solvent having a heteroatom and an aromatic hydrocarbon ring in the molecule.
  • the heteroatom in the aromatic solvent Y having a heteroatom includes atoms other than carbon atoms and hydrogen atoms, preferably a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, more preferably an oxygen atom or a phosphorus atom. preferable.
  • the heteroatom-containing aromatic solvent Y includes a carboxylate ester linking group, a sulfonate ester linking group, and a phosphate ester, in terms of ensuring the transmittance at a wavelength of 222 nm, promoting the color-developing reaction, and improving the sensitivity at a wavelength of 222 nm. It preferably contains one or more groups selected from the group consisting of a linking group, a carbonyl linking group, and a sulfone linking group.
  • heteroatom-containing aromatic solvents Y include substituted or unsubstituted benzenesulfonate esters such as methyl benzenesulfonate, ethyl benzenesulfonate, methyl toluenesulfonate, and ethyl toluenesulfonate; dimethyl phthalate; Substituted or unsubstituted phthalic acid diesters such as diethyl phthalate, dibutyl phthalate, dipentyl phthalate, dihexyl phthalate, and dicyclohexyl phthalate; triphenyl phosphate (TPP), tricresyl phosphate (TCP), trixylenyl phosphate (TXP), cresyl diphenyl phosphate (CDP), 2-ethylhexyl diphenyl phosphate (EHDP), t-butylphenyl diphenyl phosphate (
  • the aromatic solvent Y may be used alone or in combination of two or more.
  • the content of the aromatic solvent Y is preferably more than 0% by mass and less than 100% by mass, more preferably 10 to 99% by mass, with respect to the total mass of the solvent, 20 More preferably, it is up to 95% by mass.
  • the boiling point and molecular weight of the aromatic solvent Y are the same as those of the non-aromatic solvent X described above, and the preferred embodiments are also the same.
  • the type, content and composition ratio of the solvent can be analyzed by the same method as the analysis method for the non-aromatic solvent X described above.
  • Non-aromatic solvent Z is a non-aromatic solvent.
  • the non-aromatic solvent Z may have heteroatoms. That is, the non-aromatic solvent Z may be a non-aromatic solvent with heteroatoms or a non-aromatic solvent without heteroatoms.
  • the heteroatom-containing non-aromatic solvent Z is the same as the heteroatom-containing non-aromatic solvent X described above, and the preferred embodiments thereof are also the same.
  • Non-aromatic solvents Z without heteroatoms include, for example, aliphatic hydrocarbons.
  • the aliphatic hydrocarbon may be linear, branched, or cyclic.
  • the number of carbon atoms in the aliphatic hydrocarbon is preferably 1-50, more preferably 8-50, even more preferably 10-30.
  • the aliphatic hydrocarbons are preferably aliphatic hydrocarbons having 1 to 50 carbon atoms, more preferably branched aliphatic hydrocarbons having 8 to 50 carbon atoms.
  • the non-aromatic solvent Z is one or more solvents selected from the group consisting of aliphatic hydrocarbons, aliphatic carboxylic acids, fatty acid esters, ether solvents, alcohol solvents, amide solvents, and ketone solvents. preferably included.
  • non-aromatic solvent Z examples include the above-mentioned non-aromatic solvent X, aliphatic hydrocarbons such as isoparaffins (e.g., isoparaffins having 10 to 30 carbon atoms), and natural high-boiling fractions such as mineral oils. mentioned.
  • the non-aromatic solvent Z may be used singly or in combination of two or more.
  • the content of the non-aromatic solvent Z in the specific microcapsules is preferably more than 0% by mass and less than 100% by mass, more preferably 1 to 50% by mass, relative to the total mass of the solvent, More preferably, it is 1 to 20% by mass.
  • the boiling point and molecular weight of the non-aromatic solvent Z are the same as those of the non-aromatic solvent X described above, and the preferred embodiments are also the same.
  • the type, content and composition ratio of the solvent can be analyzed by the same method as the analysis method for the non-aromatic solvent X described above.
  • the specific solvent preferably contains one or more solvents having a boiling point of 100° C. or higher, and more preferably all the specific solvents contained in the specific microcapsules have a boiling point of 100° C. or higher.
  • an upper limit of the boiling point of a specific solvent 500 degrees C or less is preferable.
  • All solvents contained in the specific microcapsules preferably have a boiling point of 100° C. or higher.
  • the upper limit of the boiling point of all solvents is preferably 500°C or less.
  • color former A specific microcapsule encloses a coloring agent.
  • color former refers to a compound that develops color from a substantially colorless state (colorless or weakly colored state) by acid and/or radicals generated from a photoactive agent. Point.
  • the coloring agent is preferably a compound that develops color by oxidation or a compound that develops color by the action of an acid, and is preferably a leuco dye.
  • the leuco dye is a compound that develops color by being oxidized from a substantially colorless state (hereinafter also referred to as "oxidative coloring leuco dye”), or a compound that develops color from a substantially colorless state.
  • oxidative coloring leuco dye a compound that develops color under the action of acid (hereinafter also referred to as “acid-color-forming leuco dye”) is preferred.
  • leuco dyes examples include triarylmethanephthalide-based compounds, fluoran-based compounds, phenothiazine-based compounds, indolylphthalide-based compounds, azaindolylphthalide-based compounds, leuco auramine-based compounds, rhodamine lactam-based compounds, triarylmethanephthalide-based compounds, Examples include arylmethane-based compounds, diarylmethane-based compounds, triazene-based compounds, spiropyran-based compounds, thiazine compounds, and fluorene-based compounds. For details of the above compounds, reference can be made to US Pat.
  • the coloring agents may be used singly or in combination of two or more.
  • Oxidative Color-Forming Leuco Dye One embodiment of the oxidation color-forming leuco dye is preferably a compound having one or two hydrogen atoms that develops color by removing electrons.
  • Such oxidative chromogenic leuco dyes include, for example, (a) aminotriarylmethane, (b) aminoxanthine, (c) aminothioxanthine, and (d) as described in US Pat. No. 3,445,234.
  • aminoarylmethanes are preferred, and aminotriarylmethanes are more preferred.
  • Aminotriarylmethane is preferably a compound represented by the following formula (L) or an acid salt thereof.
  • Ar 1 represents a phenyl group with R 1 R 2 N-substituents para to the bond to the methane carbon atom specified in formula (A1).
  • Ar 2 is a phenyl group having an R 1 R 2 N-substituent para to the bond to the methane carbon atom specified in formula (A1), or a phenyl group specified in formula (A2) ortho-position to the methane carbon atom, an alkyl group (preferably an alkyl group having 1 to 4 carbon atoms), an alkoxy group (preferably an alkoxy group having 1 to 4 carbon atoms), a fluorine atom, a chlorine atom, and, represents a phenyl group having a substituent selected from the group consisting of bromine atoms;
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a 2-hydroxyethyl group, a 2-cyanoethyl group or a benzyl group.
  • Ar 3 represents the same group as at least one of Ar 1 and Ar 2 , or represents a group different from Ar 1 and Ar 2 .
  • Ar 3 is (B1) a lower alkyl group (preferably an alkyl group having 1 to 4 carbon atoms), a lower alkoxy group (preferably 4 alkoxy groups), chlorine atom, diphenylamino group, cyano group, nitro group, hydroxy group, fluorine atom, bromine atom, alkylthio group, arylthio group, thioester group, alkylsulfonic acid group, arylsulfonic acid group, sulfonic acid a phenyl group optionally substituted with a substituent selected from the group consisting of a group consisting of a sulfonamide group, an alkylamide group, and an arylamide group; (B2) an amine group, a di-lower alkylamino group, and an alkyla
  • R 1 and R 2 are preferably a hydrogen atom or alkyl having 1 to 4 carbon atoms.
  • Ar 1 , Ar 2 and Ar 3 are all R 1 R 2 N para to the bond to the methane carbon atom specified in formula (A1). It preferably represents a phenyl group having a -substituent, and more preferably the same group.
  • oxidation chromogenic leuco dyes include tris(4-dimethylaminophenyl)methane, tris(4-diethylaminophenyl)methane, bis(4-diethylaminophenyl)-(4-diethylamino-2-methylphenyl)methane, Bis(4-diethylamino-2-methylphenyl)-(4-diethylaminophenyl)methane, bis(1-ethyl-2-methylindol-3-yl)-phenylmethane, 2-N-(3-trifluoromethylphenyl )-N-ethylamino-6-diethylamino-9-(2-methoxycarbonylphenyl)xanthene, 2-(2-chlorophenyl)amino-6-dibutylamino-9-(2-methoxycarbonylphenyl)xanthene, 2-di benzylamino-6
  • Acid-color-forming leuco dye As one aspect of the acid-color-forming leuco dye, it is preferably a compound that develops color by donating electrons or accepting protons such as acids. Specific examples include compounds having partial skeletons such as lactones, lactams, sultones, spiropyrans, esters, and amides, and these partial skeletons are ring-opened or cleaved upon contact with acids or protons.
  • Leuco dyes that develop color under the action of acid include, for example, 3,3-bis(2-methyl-1-octyl-3-indolyl)phthalide and 6′-(dibutylamino)-2′.
  • a specific microcapsule encloses a photoactive agent.
  • the photoactive agent is not particularly limited as long as it is a compound that is activated by light, but the photoactive agent that is activated by light preferably acts on a color former to develop color, and is a compound that is activated by ultraviolet light.
  • the photoactive agent is preferably one or more of a photooxidizing agent and a photoacid generator.
  • the photoactive agent preferably contains a photo-oxidizing agent.
  • the agent comprises a photoacid generator.
  • the content ratio of the photoactive agent to the color former is preferably 0.1 to 30, and 0.1 to 30 in terms of better sensitivity. 3 to 20 is more preferred.
  • the content ratio of the photoactive agent to the color former is preferably 0.4-3.
  • the content ratio of the agents is preferably 3-20, more preferably 10-20.
  • the content ratio of the photoactive agent to the color former is obtained by extracting the ultraviolet-sensitive layer with methanol, using a mixture of methanol and water as the eluent, performing liquid chromatography analysis, and calculating the ratio at the maximum absorption wavelength of each component. can be analyzed with
  • the photo-oxidizing agent is a compound that can be activated by ultraviolet rays to generate radicals and/or extract the hydrogen atoms of the coloring agent to color the coloring agent.
  • the photo-oxidizing agent is preferably one or more of radical generators and organic halogen compounds.
  • a mode in which a radical generator and an organic halogen compound are used in combination as the photoacid generator is also preferred.
  • the ratio of the content of the radical generator to the organic halogen compound is such that the gradation of the color-developing portion is more excellent. , preferably 0.1 to 10, more preferably 0.5 to 5.
  • the radical generator is not particularly limited as long as it is a compound that is activated by ultraviolet rays to generate radicals.
  • a hydrogen abstraction type radical generator is preferred.
  • the hydrogen abstraction type radical generator has the effect of abstracting hydrogen atoms from the color former to promote oxidation of the color former.
  • Radical generators include, for example, the azide polymer described on page 55 of the 1968 Spring Research Presentation Meeting of the Photographic Society of Japan; 2-azidobenzoxazole, benzoylazide, and 2- Azide compounds such as azidobenzimidazole; 3′-ethyl-1-methoxy-2-pyridothiacyanine perchlorate and 1-methoxy-2-methylpyridinium p-toluene as described in US Pat. No.
  • lophine dimer compounds such as 2,4,5-triarylimidazole dimers described in JP-B-62-039728; benzophenones; p-aminophenyl ketones; polynuclear quinones; Among them, one or more selected from lophine dimers and benzophenones are preferable, and lophine dimers are more preferable.
  • Rophine dimers include, for example, hexaarylbiimidazole compounds. As the hexaarylbiimidazole-based compound, the compounds described in paragraph 0047 of International Publication No. 2016/017701 can be considered, and the contents thereof are incorporated herein.
  • 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole is preferred.
  • 2,2′-bis(2-chlorophenyl)-4,4′,5,5′-tetraphenyl-1,2′-biimidazole include “B-IMD” (manufactured by Kurogane Kasei Co., Ltd.), And "B-CIM” (manufactured by Hodogaya Chemical Industry Co., Ltd.) can be used.
  • lophine dimers compounds represented by the following general formula (1) are also preferred.
  • A, B, and D are each independently a carbocyclic or heteroaryl group that is unsubstituted or substituted with a substituent that does not inhibit the dissociation of the dimer to the imidazolyl group or the oxidation of the coloring agent.
  • B and D are each independently preferably unsubstituted or have 1 to 3 substituents, and A is unsubstituted or has 1 to 4 substituents is preferred.
  • Knowledge known as lophine dimers and the like can be used for the compounds represented by the general formula (1) and methods for producing them. See, for example, US Pat. No. 3,552,973 at column 4, line 22 and column 6, line 3, the contents of which are incorporated herein.
  • One type of radical generator may be used alone, or two or more types may be mixed and used.
  • the organic halogen compound can accelerate the oxidation of the coloring agent.
  • a compound in which the number of halogen atoms in the molecule is 3 or more is preferable because the gradation of the color-developing portion is more excellent.
  • the upper limit of the number of halogen atoms is preferably 9 or less.
  • the organic halogen compounds are compounds other than lophine dimers and benzophenones.
  • An organic halogen compound may be used individually by 1 type, and may be used in mixture of 2 or more types. Examples of organic halogen compounds include compounds represented by the following general formulas (2) to (7).
  • P 0 represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group, or an optionally substituted aryl group.
  • Each X independently represents a halogen atom.
  • Halogen atoms represented by P 0 and X include fluorine, chlorine, bromine and iodine atoms, preferably chlorine or bromine.
  • substituents that the alkyl group and aryl group represented by P 0 may have include a hydroxy group, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an acetyl group, and , an alkoxy group having 1 to 6 carbon atoms, and the like.
  • Examples of compounds represented by the general formula (2) include trichloromethane, tribromomethane, carbon tetrachloride, carbon tetrabromide, p-nitrobenzotribromide, bromotrichloromethane, pensitrichloride, hexabromoethane, iodoform, 1,1,1-tribromo-2-methyl-2-propanol, 1,1,2,2-tetrabromoethane, 2,2,2-tribromoethanol, and 1,1,1-trichloro- 2-methyl-2-propanol can be mentioned.
  • R represents a substituent.
  • x represents an integer of 0 to 5;
  • substituents represented by R include a nitro group, a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an acetyl group, a haloacetyl group, and a group having 1 to 3 carbon atoms.
  • An alkoxy group is mentioned.
  • R may mutually be same or different.
  • An integer of 0 to 3 is preferable for x.
  • Examples of compounds represented by general formula (3) include o-nitro- ⁇ , ⁇ , ⁇ -tribromoacetophenone, m-nitro- ⁇ , ⁇ , ⁇ -tribromoacetophenone, p-nitro- ⁇ , ⁇ , ⁇ -tribromoacetophenone, ⁇ , ⁇ , ⁇ -tribromoacetophenone, and ⁇ , ⁇ , ⁇ -tribromo-3,4-cycloacetophenone.
  • R 1 represents an optionally substituted alkyl group or an optionally substituted aryl group.
  • X 1 represents a halogen atom.
  • the alkyl group represented by R 1 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and even more preferably an alkyl group having 1 to 6 carbon atoms.
  • the aryl group represented by R 1 is preferably an aryl group having 6 to 20 carbon atoms, more preferably an aryl group having 6 to 14 carbon atoms, and even more preferably an aryl group having 6 to 10 carbon atoms.
  • substituents that the alkyl group and aryl group represented by R 1 may have include a nitro group, a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an acetyl group, and a haloacetyl. and alkoxy groups having 1 to 3 carbon atoms.
  • the halogen atom represented by X 1 includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom, a bromine atom or an iodine atom, more preferably a chlorine atom or a bromine atom.
  • Examples of compounds represented by general formula (4) include 2,4-dinitrobenzenesulfonyl chloride, o-nitrobenzenesulfonyl chloride, m-nitrobenzenesulfonyl chloride, 3,3′-diphenylsulfonedisulfonyl chloride, and ethanesulfonyl chloride.
  • R 2 represents an optionally substituted alkyl group or an optionally substituted aryl group.
  • X2 represents a halogen atom.
  • the alkyl group optionally having substituent(s) and the aryl group optionally having substituent(s) represented by R 2 have a substituent represented by R 1 of general formula (4). is the same as an optionally substituted alkyl group and an optionally substituted aryl group, and preferred embodiments are also the same.
  • the halogen atom represented by X2 includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom, a bromine atom or an iodine atom, more preferably a chlorine atom or a bromine atom.
  • Examples of compounds represented by general formula (5) include 2,4-dinitrobenzenesulfenyl chloride and o-nitrobenzenesulfenyl chloride.
  • R 3 represents an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • L 1 represents -SO- or SO 2 -.
  • X 3 , X 4 and X 5 each independently represent a hydrogen atom or a halogen atom. However, not all of X 3 , X 4 and X 5 are hydrogen atoms.
  • the aryl group represented by R 3 is preferably an aryl group having 6 to 20 carbon atoms, more preferably an aryl group having 6 to 14 carbon atoms, and even more preferably an aryl group having 6 to 10 carbon atoms.
  • the heteroaryl group represented by R 3 is preferably a heteroaryl group having 4 to 20 carbon atoms, more preferably a heteroaryl group having 4 to 13 carbon atoms, and still more preferably a heteroaryl group having 4 to 9 carbon atoms.
  • substituents that the aryl group and heteroaryl group represented by R 3 may have include a nitro group, a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an acetyl group, A haloacetyl group and an alkoxy group having 1 to 3 carbon atoms are included.
  • the halogen atoms represented by X 3 , X 4 and X 5 include, for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom, a bromine atom or an iodine atom. , a chlorine atom or a bromine atom are more preferred.
  • Examples of compounds represented by general formula (6) include hexabromodimethylsulfoxide, pentabromodimethylsulfoxide, hexabromodimethylsulfone, trichloromethylphenylsulfone, tribromomethylphenylsulfone (BMPS), trichloro-p- Chlorophenylsulfone, Tribromomethyl-p-nitrophenylsulfone, 2-Trichloromethylbenzothiazolesulfone, 4,6-Cymethylpyrimidine-2-tribromomethylsulfone, Tetrabromodimethylsulfone, 2,4-Dichlorophenyl-trichloromethylsulfone sulfone, 2-methyl-4-chlorophenyltrichloromethylsulfone, 2,5-dimethyl-4-chlorophenyltrichloromethylsulfone, 2,4-dichlorophenyltrimethylsulfone, and tri-p-to
  • R4 represents an optionally substituted heteroaryl group.
  • X 6 , X 7 and X 8 each independently represent a hydrogen atom or a halogen atom. However, not all of X 6 , X 7 and X 8 are hydrogen atoms.
  • the heteroaryl group represented by R 4 is preferably a heteroaryl group having 4 to 20 carbon atoms, more preferably a heteroaryl group having 4 to 13 carbon atoms, and still more preferably a heteroaryl group having 4 to 9 carbon atoms.
  • substituents that the heteroaryl group represented by R 4 may have include a nitro group, a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an acetyl group, a haloacetyl group, An alkoxy group having 1 to 3 carbon atoms can be mentioned.
  • the halogen atoms represented by X 6 , X 7 and X 8 include, for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom, a bromine atom or an iodine atom. , a chlorine atom or a bromine atom are more preferred.
  • Examples of the compound represented by the general formula (7) include tribromoquinaldine, 2-tribromomethyl-4-methylquinoline, 4-tribromomethylpyrimidine, 4-phenyl-6-tribromomethylpyrimidine, 2 -trichloromethyl-6-nitrobenzothiazole, 1-phenyl-3-trichloromethylpyrazole, 2,5-ditribromomethyl-3,4-dibromothiophene, 2-trichloromethyl-3-(p-butoxystyryl)-1 ,3,4-oxadiazole, 2,6-didolychloromethyl-4-(p-methoxyphenyl)-triazine, and 2-(4-methylphenyl)-4,6-bis(trichloromethyl)-1 , 3,5-triazines.
  • the organic halogen compound the compound represented by the general formula (3), the compound represented by the general formula (6), or the compound represented by the general formula (7) is preferable, and the effect of the present invention is obtained. is more excellent, the compound represented by the general formula (6) is more preferable. Although the reason why the effect of the present invention is more excellent is not clear, it is presumed that the compound represented by the general formula (6) has good compatibility with the specific solvent and the wavelength of 222 nm.
  • the halogen atom contained in the above compound is preferably a chlorine atom, a bromine atom, or an iodine atom, and more preferably a chlorine atom or a bromine atom.
  • the organic halogen compounds may be used singly or in combination of two or more.
  • the photo-acid generator is preferably a compound that is cleaved by ultraviolet rays to generate an acid, and that can color the color former by the action of the acid.
  • the photoacid generator include nonionic photoacid generators and ionic photoacid generators, and nonionic photoacid generators are preferred because the effects of the present invention are more excellent.
  • nonionic photoacid generators include organic halogen compounds and oxime compounds. Among them, organic halogen compounds are preferred in that the effects of the present invention are more excellent, and compounds represented by the above-described general formula (6). is more preferred.
  • the organic halogen compound a compound having 3 or more halogen atoms in the molecule is preferable because the gradation of the color-developing portion is more excellent.
  • the upper limit of the number of halogen atoms is preferably 9 or less.
  • An organic halogen compound may be used individually by 1 type, and may be used in mixture of 2 or more types. Specific examples of the organic halogen compound include the same organic halogen compounds mentioned as the photo-oxidizing agent in the upper section.
  • Ionic photoacid generators include diazonium salts, iodonium salts, and sulfonium salts, with iodonium salts or sulfonium salts being preferred.
  • Examples of ionic photoacid color couplers include JP-A-62-161860, JP-A-61-67034, and JP-A-62-50382, the contents of which are incorporated herein.
  • the photoacid generator is not particularly limited as long as it is a compound that generates an acid upon exposure to light. Photoacid generators that generate inorganic acids such as hydrogen halide (e.g., hydrochloric acid), sulfuric acid, and nitric acid can be used.
  • a photo-acid generator that generates an inorganic acid is preferable, and a photo-acid generator that generates a hydrogen halide is more preferable, from the viewpoint that the effect of the present invention is more excellent.
  • photoacid generators include triarylsulfonium hexafluorophosphate, triarylsulfonium arsenate, triarylsulfonium antimonate, diaryliodonium hexafluorophosphate, diaryliodonium arsenate, diaryliodonium antimonate, and dialkylphenacyl.
  • Sulfonium tetrafluoroborate dialkylphenacylsulfonium hexafluorophosphate, dialkyl-4-hydroxyphenylsulfonium tetrafluoroborate, dialkyl-4-hydroxyphenylsulfonium hexafluorophosphate, N-bromosuccinimide, tribromomethylphenylsulfone, diphenyl iodine, 2-trichloromethyl-5-(p-butoxystyryl)-1.3.4-oxadiazole, and 2,6-ditrichloromethyl-4-(p-methoxyphenyl)-triazine .
  • the specific microcapsules preferably enclose a light stabilizer.
  • the light stabilizer is not particularly limited as long as it is a material that is stabilized by light, but it preferably acts as a so-called free radical trapping substance that traps free radicals of the activated photoactive agent.
  • a light stabilizer may be used individually by 1 type, and may use 2 or more types.
  • Light stabilizers include, for example, 2,5-bis(1,1,3,3-tetramethylbutyl)hydroquinone, hydroquinone, catechol, resorcinol, and polyhydric phenols such as hydroxyhydroquinone, and o-amino Aminophenols such as phenol and p-aminephenol can be mentioned.
  • the content ratio of the light stabilizer to the photoactive agent is preferably 0.0001 to 100, more preferably 0.0001 to 10, and 0.0005 to 1. More preferred.
  • the specific microcapsules may enclose a reducing agent.
  • the reducing agent has the function of deactivating the photo-oxidizing agent.
  • a reducing agent may also function as an antioxidant.
  • One reducing agent may be used alone, or two or more reducing agents may be used in combination. Examples of reducing agents include cyclic phenylhydrazide compounds.
  • the reducing agent the reducing agents described in paragraphs 0072 to 0075 of WO 2016/017701 can be considered, the contents of which are incorporated herein.
  • the specific microcapsules may enclose an ultraviolet absorber.
  • ultraviolet absorbers include benzotriazole compounds (ultraviolet absorbers having a benzotriazole structure), benzophenone compounds, triazine compounds, and benzodithiol compounds.
  • the ultraviolet absorber has a small absorption at a wavelength of 222 nm because the sensitivity at a wavelength of 222 nm is more excellent.
  • triazine compounds, benzophenone compounds, and benzodithiol compounds are preferably used.
  • the specific microcapsules do not enclose a benzotriazole compound having a large absorption at a wavelength of 222 nm.
  • the content of the benzotriazole compound is preferably 1% by mass or less, more preferably 0.5% by mass or less, relative to the total mass of the photoactive agent.
  • the lower limit is not particularly limited, it is, for example, 0.0001% by mass or more.
  • the content of the benzotriazole compound is preferably 1% by mass or less, more preferably 0.5% by mass or less, relative to the total mass of the color former.
  • the lower limit is not particularly limited, it is, for example, 0.0001% by mass or more.
  • triazine compounds include, for example, Adekastab LA-F70 (manufactured by Adeka Co., Ltd.), Tinuvin 1577 ED, Tinuvin 1600 (manufactured by BASF), 2,4-Bis(2,4-dimethylphenyl)-6-(2- hydroxy-4-n-octyloxyphenyl)-1,3,5-triazine, 2-(2,4-Dihydroxyphenyl)-4,6-diphenyl-1,3,5-triazine, and Ethylhexyl Triazone (Tokyo Kasei Co., Ltd. ) made).
  • Examples of commercially available benzophenone compounds include Chimassorb 81 and Chimassorb 81 FL (manufactured by BASF).
  • Benzodithiol compounds include, for example, compounds described in International Publication No. 2019/159570.
  • the specific microcapsules may optionally contain one or more additives such as waxes, solvents other than the specific solvent, and odor inhibitors.
  • the method for producing the specific microcapsules is not particularly limited, and examples thereof include known methods such as an interfacial polymerization method, an internal polymerization method, a phase separation method, an external polymerization method, and a coacervation method.
  • a method for producing the specific microcapsules for example, a method including an emulsification step and an encapsulation step shown below can be given as an example.
  • a resin wall (capsule wall) by an interfacial polymerization method.
  • Emulsification step A step of mixing a color former, a photoactive agent, a specific solvent, and an emulsifier in water to prepare an emulsion
  • Encapsulation step A color former in the emulsion obtained in the emulsification step, and light
  • the interfacial polymerization method will be described below, taking as an example a method for producing specific microcapsules having a capsule wall made of polyurea or polyurethaneurea.
  • a photoactive agent a specific solvent
  • capsule preparation solvent for example, a step of dispersing an oil phase containing polyisocyanate) in an aqueous phase containing an emulsifier to prepare an emulsion (emulsification step); and forming microcapsules (encapsulation step) encapsulating a photoactive agent selected from an oxidizing agent and a photoacid generator, a specific solvent, and a color former.
  • the capsule-forming solvent is usually a component that can be added for the purpose of improving the solubility of the core material in the solvent.
  • the capsule-forming solvent does not contain an aromatic ring in its molecule.
  • the capsule-forming solvent is removed by a drying treatment in the method for forming an ultraviolet-sensitive layer, which will be described later. Therefore, it is preferable that the microcapsules in the ultraviolet sensing member do not contain a capsule-forming solvent.
  • the solvent for capsule preparation is not particularly limited, and examples thereof include ethyl acetate (boiling point 77°C), isopropyl acetate (boiling point 89°C), methyl ethyl ketone (boiling point 80°C), and methylene chloride (boiling point 40°C).
  • the capsule-forming solvent may be used alone or in combination of two or more.
  • the type of emulsifier used in the emulsification step is not particularly limited, and examples thereof include dispersants and surfactants.
  • Dispersants include, for example, colloids that protect water-soluble polymers selected from known anionic polymers, nonionic polymers, and amphoteric polymers.
  • polyvinyl alcohol, gelatin, and , cellulose derivatives, and polyvinyl alcohol is preferably used.
  • the surfactant is preferably an anionic or nonionic surfactant such as alkylbenzenesulfonate (e.g. sodium dodecylbenzenesulfonate, ammonium dodecylbenzenesulfonate), alkylsulfonate (e.g. lauryl sodium sulfate, dioctyl sulfosuccinate sodium salt), and polyalkylene glycols (eg, polyoxyethylene nonylphenyl ether).
  • alkylbenzenesulfonate e.
  • the content of the specific microcapsules in the ultraviolet sensitive layer is not particularly limited, but is preferably 50 to 99% by weight, more preferably 60 to 90% by weight, based on the total weight of the ultraviolet sensitive layer.
  • the specific microcapsule content (solid content coating amount) in the ultraviolet sensitive layer is also preferably 0.1 to 30 g/m 2 .
  • the lower limit is preferably 0.5 g/m 2 or more, more preferably 1 g/m 2 or more.
  • the upper limit is preferably 25 g/m 2 or less, more preferably 20 g/m 2 or less.
  • the UV-sensitive layer may contain components other than the specific microcapsules described above.
  • Other ingredients include, for example, polymeric binders, reducing agents, light stabilizers, cross-linking agents, sensitizers, UV absorbers, and surfactants.
  • Polymeric binders include polyvinyl alcohol, methylcellulose, ethylcellulose, carboxymethylcellulose, hydroxypropylcellulose, gum arabic, gelatin, polyvinylpyrrolidone, casein, styrene-butadiene latex, acrylonitrile-butadiene latex, polyvinyl acetate, polyacrylate, and , ethicine-vinyl acetate copolymer and the like.
  • the polymer binder the polymer binder described in paragraph 0078 of JP-A-2017-167155 can be considered, and the contents thereof are incorporated herein.
  • the polymeric binder may be crosslinked. In other words, the polymeric binder may be a crosslinked binder.
  • the cross-linking agent is not particularly limited, and for example, glyoxazole can be used. Also, the cross-linking agent described in paragraph 0079 of JP-A-2017-167155 can be considered. The contents of which are incorporated herein.
  • reducing agents sensitizers, surfactants, etc., JP-A-1-207741, page 9, lower left column to page 10, upper left column, paragraphs 0038 to 0039 of JP-A-2004-233614, and , 0048 to 0059, the contents of which are incorporated herein.
  • the reducing agent light stabilizer, UV absorber and surfactant
  • the reducing agent, light stabilizer, UV absorber and surfactant that can be contained in the specific microcapsules can also be used.
  • the mass (solid content coating amount) per unit area of the ultraviolet sensitive layer is not particularly limited, but is preferably 0.1 to 30 g/m 2 , more preferably 0.5 to 25 g/m 2 , more preferably 1 to 10 g/m 2 . More preferred is m2 .
  • the thickness of the ultraviolet sensitive layer is preferably 0.1-30 ⁇ m, more preferably 0.5-25 ⁇ m, and even more preferably 1-10 ⁇ m.
  • a method for forming the ultraviolet-sensitive layer is not particularly limited, and includes known methods. For example, there is a method in which a support is coated with a dispersion for forming an ultraviolet sensitive layer containing specific microcapsules, and the coated film is subjected to a drying treatment, if necessary.
  • the ultraviolet-sensitive layer-forming dispersion contains specific microcapsules.
  • the microcapsule dispersion obtained by the interfacial polymerization method described above may be used as the dispersion for forming the ultraviolet sensitive layer.
  • the ultraviolet-sensitive layer-forming dispersion may contain other components that may be contained in the ultraviolet-sensitive layer described above.
  • the method of applying the dispersion for forming the ultraviolet sensitive layer is not particularly limited, and examples of coating machines used for coating include air knife coaters, rod coaters, bar coaters, curtain coaters, gravure coaters, and extrusion. Coaters, die coaters, slide bead coaters and blade coaters are included.
  • the coating film After applying the ultraviolet-sensitive layer-forming dispersion onto the support, the coating film may be subjected to a drying treatment, if necessary.
  • a drying treatment include heat treatment.
  • a UV sensitive member may be formed comprising a UV sensitive layer.
  • the temporary support is not particularly limited as long as it is a peelable support.
  • the UV sensitive member may have layers other than the support and UV sensitive layer described above.
  • Other layers include, for example, a reflective layer, a gloss layer, a filter layer, and a sensitivity adjustment layer.
  • the UV sensitive member may further comprise a reflective layer.
  • the ultraviolet sensitive layer has a reflective layer
  • the ultraviolet ray irradiated to the ultraviolet ray sensitive member can be reflected by the layer having ultraviolet reflective properties, so that scattering of the ultraviolet ray inside the ultraviolet ray sensitive member can be suppressed, and the detection accuracy of the amount of ultraviolet rays can be improved.
  • the reflective layer preferably has a reflectance of 10% or more, more preferably 50% or more, for light with a wavelength of 200 to 380 nm. The reflectance can be measured, for example, by diffuse reflectance measurement using an ultraviolet-visible spectrophotometer (UV-2700/Shimadzu Corporation).
  • an adhesion layer may be provided between the support and the reflective layer.
  • the reflective layer, the adhesion layer, and the production method thereof, the reflective layer, the adhesion layer, and the production method thereof described in paragraphs 0082 to 0091 of WO 2016/017701 can be referred to. The contents of which are incorporated herein.
  • the UV sensitive member may further comprise a glossy layer.
  • the UV-sensitive layer has a glossy layer, the front and back visibility can be improved.
  • the glossy layer and its manufacturing method the glossy layer and its manufacturing method described in paragraphs 0092 to 0094 of WO 2016/017701 can be referred to, and the contents thereof are incorporated herein.
  • the UV sensitive member further comprises a filter layer.
  • a filter layer is a layer that selectively transmits light of a specific wavelength.
  • "selectively transmit light of a specific wavelength” means to transmit light of a specific wavelength and block other light.
  • the transmittance of light having a wavelength to be transmitted is, for example, preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more.
  • the transmittance of light having a wavelength to be blocked is preferably 30% or less, more preferably 20% or less, and even more preferably 10% or less.
  • the filter layer is preferably a filter layer that blocks light with a wavelength of 300 nm or more, and is also preferably a filter layer that blocks light with a wavelength of over 230 nm.
  • An ultraviolet bandpass filter, a filter containing a dielectric, or the like is preferably used.
  • the spectral characteristics of the filter layer and the sensitivity adjustment layer described later can be measured using, for example, an ultraviolet-visible spectrophotometer (UV-2700/Shimadzu Corporation).
  • the filter layer preferably contains an ultraviolet absorber in order to block light of wavelengths other than the specific wavelength.
  • a known ultraviolet absorber can be used as the ultraviolet absorber.
  • the filter layer preferably contains an ultraviolet absorber that can be contained in the specific microcapsules.
  • the filter layer and its manufacturing method As for the filter layer and its manufacturing method, the filter layer and its manufacturing method described in paragraphs 0016 to 0026 of International Publication No. 2016/017701 can be considered, and the contents thereof are incorporated herein.
  • the ultraviolet sensing member When the ultraviolet sensing member has a filter layer, it may further have a sensitivity adjusting layer on the surface of the filter layer.
  • a sensitivity adjustment layer and its manufacturing method reference can be made to the sensitivity adjustment layer and its manufacturing method described in paragraphs 0095 to 0109 of WO 2016/017701, and the contents thereof are incorporated herein.
  • Embodiments of the ultraviolet sensing member are not limited to the embodiments described above. As other embodiments other than the embodiments described above, for example, the aspects described in FIGS. 1 to 5 of WO 2016/017701 can be considered, and the contents thereof are incorporated herein. Moreover, as another embodiment, it may be in the form of a kit, which will be described later. Alternatively, the specific microcapsules may be kneaded into a resin to form a molding. Examples of the resin include resins that can be used as a material for a resin sheet as a support.
  • the ultraviolet sensing member of the present invention can be colored according to the amount of ultraviolet rays, and the difference in color density of the colored portion can be visually confirmed. Moreover, when it is in a sheet form, it is possible to measure the amount of ultraviolet rays over a wide area.
  • the slope of the straight line obtained by plotting the logarithm of the integrated illuminance of the light with a wavelength of 222 nm applied to the ultraviolet sensing member on the horizontal axis and the color density of the ultraviolet sensitive layer on the vertical axis is suitable for the desired application. It can be adjusted accordingly. For example, when the slope is gradual (in other words, when the gradation is gradual), it can be applied to a wide energy range. be able to. When the slope ⁇ is within the above range, the color gradation suitable for detecting the amount of ultraviolet light is obtained, and the difference in color density of the colored portion can be easily confirmed visually.
  • integrated illuminance is integrated illuminance measured at a wavelength of 222 nm, and includes, for example, a value measured with a 222 nm wavelength UV illuminometer.
  • the following method may be used as a method for measuring the difference in color density of the coloring portion.
  • the obtained sheet is scanned with a scanner (eg, GT-F740/GT-X830, manufactured by Epson) or a reading device such as a smartphone.
  • the image obtained by reading is analyzed for the density of the colored portion using a UV light quantity distribution analysis system (FUD-7010J, manufactured by Fuji Film Co., Ltd.). Note that correction processing and calibration processing may be performed as necessary.
  • the UV sensing member can be used, for example, to measure the amount of UV rays emitted from an UV irradiation device when manufacturing a sheet while UV-curable resin is UV-cured in a roll-to-roll manner. It is also possible to routinely measure the amount of ultraviolet rays during the day, for example, in order to grasp the degree of sunburn caused by ultraviolet rays on people and objects.
  • an indoor sterilization device that sterilizes airborne bacteria and viruses in a manned environment and a sterilization device that sterilizes bacteria and viruses adhering to objects by irradiating ultraviolet rays have been developed.
  • the sterilization device performs sterilization by irradiating ultraviolet rays (UV-C: ultraviolet-C) with a wavelength of 200 to 280 nm.
  • UV-C ultraviolet-C
  • ultraviolet rays with a wavelength of 200 to 230 nm in particular, 222 nm UV
  • UV-C ultraviolet-C
  • the present invention also relates to a dispersion liquid for forming an ultraviolet sensitive layer capable of forming the ultraviolet sensitive layer of the ultraviolet sensitive member described above and a method for producing the same.
  • the dispersion for forming an ultraviolet sensitive layer of the present invention is a dispersion for forming an ultraviolet sensitive layer containing microcapsules encapsulating a photoactive agent, a coloring agent and a specific solvent. That is, the dispersion for forming an ultraviolet-sensitive layer of the present invention corresponds to a dispersion containing the specific microcapsules described above.
  • the composition of the dispersion for forming an ultraviolet sensitive layer of the present invention will be described in detail below.
  • the dispersion for forming an ultraviolet sensitive layer of the present invention contains specific microcapsules.
  • the specific microcapsules are the same as the specific microcapsules contained in the ultraviolet sensing member, and the preferred embodiments are also the same.
  • the content of the specific microcapsules in the ultraviolet-sensitive layer-forming dispersion is preferably 50 to 99% by mass, more preferably 60 to 90% by mass, based on the total solid content in the composition. preferable.
  • the dispersion for forming an ultraviolet sensitive layer of the present invention may contain other components than the specific microcapsules that can be contained in the ultraviolet sensitive layer.
  • Other components include, for example, polymer binders, cross-linking agents (cross-linking agents for forming cross-linked polymer binders (eg, glyoxazole, etc.)), reducing agents, sensitizers, and surfactants. Specific examples of other components are as described above.
  • the ultraviolet-sensitive layer-forming dispersion contains a polymeric binder
  • the content of the polymeric binder is preferably 1 to 50% by weight, preferably 5 to 40% by weight, based on the total solid content in the composition. %, more preferably 10 to 30% by mass.
  • the content of the surfactant is preferably 0.01 to 10% by mass, and 0.01 to 10% by mass, based on the total solid content in the composition. It is more preferably 1 to 5% by mass, even more preferably 0.2 to 2% by mass.
  • the method for producing the ultraviolet-sensitive layer-forming dispersion is not particularly limited, and includes, for example, the above-described method for producing the specific microcapsules. In other words, a manufacturing method including the above-described emulsification step and encapsulation step can be mentioned.
  • the dispersion for forming the ultraviolet sensitive layer has a composition obtained by adding an optional component for forming the ultraviolet sensitive layer to the microcapsule dispersion obtained by the production method including the emulsification step and the encapsulation step described above. It is preferably an object.
  • the present invention also relates to a UV sensing kit comprising the UV sensing member described above.
  • the ultraviolet sensing kit includes at least the ultraviolet sensing member described above.
  • the specific configuration of the UV sensing kit is not particularly limited. sheet, more preferably a filter sheet that blocks light with a wavelength of more than 230 nm), a light shielding bag (ultraviolet cut bag), a judgment sample, a limit sample (calibration sheet), a condensing jig such as a lens and a concave mirror, and an ultraviolet sensing member and another element selected from the group consisting of a holding member that holds a.
  • the holding member may have an opening for irradiating the ultraviolet sensing member held with ultraviolet rays, or the holding member and the judgment sample may be integrated.
  • Example 1 [Production of UV Sensing Member]
  • Mixture 1 having the following composition was added to a 5% by mass polyvinyl alcohol aqueous solution (202 parts), and then emulsified and dispersed at 20° C. to obtain an emulsion having a volume average particle size of 1 ⁇ m. Furthermore, the obtained emulsion was kept stirring at 50° C. for 4 hours. After that, the mixture was returned to room temperature and filtered to obtain an aqueous capsule dispersion.
  • Color former Leuco Crystal Violet (trade name “LCV”, manufactured by Yamada Chemical Co., Ltd.), 2.5 parts Organic halogen compound: Tribromomethylphenylsulfone (BMPS, manufactured by Sumitomo Seika Co., Ltd.), 1.25 parts Radical generator : Rofein dimer (2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, trade name "B-IMD”, Kurogane Kaseisha ), 2.5 parts Non-aromatic solvent X and Z: soybean oil (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 15 parts Aromatic solvent Y: tricresyl phosphate (TCP, manufactured by Daihachi Chemical Co., Ltd.) , 15 parts Capsule preparation solvent: ethyl acetate (manufactured by Showa Denko Co., Ltd.), 50 parts light
  • Obtained capsule dispersion (20 parts), polyvinyl alcohol 6 mass% aqueous solution (trade name “Denkasize EP-130”, manufactured by Denka Co., Ltd.) (5 parts), glyoxal (manufactured by Daito Kagaku Co., Ltd.) 0.05 part and a 50% by mass aqueous solution of sodium dodecylbenzenesulfonate (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) (0.09 parts) to prepare a dispersion for forming an ultraviolet sensitive layer (coating liquid for forming an ultraviolet sensitive layer). did.
  • the resulting coating solution for forming an ultraviolet sensitive layer was applied to a 75 ⁇ m thick white polyethylene terephthalate film (trade name “Crisper K1212” manufactured by Toyobo Co., Ltd.) so that the solid content coating amount was 5 g/m 2 , and heated to 105°C. It was dried by heating for 1 minute to prepare an ultraviolet sensitive member comprising a support and an ultraviolet sensitive layer.
  • the UV sensitive layer was about 5 ⁇ m.
  • Example 2 An ultraviolet sensing member was produced in the same manner as in Example 1, except that mixed solution 1 was changed to mixed solution 2 having the following composition.
  • Color former 3,3-bis (2-methyl-1-octyl-3-indolyl) phthalide (manufactured by BASF), 2.5 parts Organic halogen compound: tribromomethylphenylsulfone (BMPS, Sumitomo Seika Co., Ltd.) ), 1.25 parts
  • Non-aromatic solvents X and Z soybean oil (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 15 parts Aromatic solvent Y: tricresyl phosphate (TCP, manufactured by Daihachi Chemical Co., Ltd.) , 15 parts Capsule preparation solvent: ethyl acetate (manufactured by Showa Denko Co., Ltd.), 50 parts light stabilizer: 2,5-bis (1,1,3,3-tetramethylbutyl) hydroquino
  • Example 5 An ultraviolet sensing member of Example 5 was produced in the same manner as in Example 1, except that the components and formulations were changed to those shown in Table 1 and the stirring conditions were changed to 50° C. for 8 hours.
  • Example 6 An ultraviolet sensing member of Example 6 was produced in the same manner as in Example 2, except that the components and formulations were changed to those shown in Table 1 and the stirring conditions were changed to 50° C. for 8 hours.
  • Example 19 The ultraviolet sensing member of Example 19 was prepared in the same manner as in Example 2 except that the components and formulations were changed to those shown in Table 1 and the amount of the 6% by mass polyvinyl alcohol aqueous solution added to the capsule dispersion was changed to 7 parts. was made.
  • Comparative Example 1 refers to Example 1 of International Publication No. WO 2016/017701, and the ultraviolet sensing member of Comparative Example 1 is manufactured in the same manner as in Example 1 except that the components and formulations shown in Table 1 are changed. was made.
  • Table 1 is shown below. In addition, each component shown in Table 1 is as follows.
  • Isoparaffin Synthetic isoparaffin (manufactured by Idemitsu Kosan Co., Ltd., IP Solvent 1620, boiling point 166 to 202 ° C.)
  • BMPS Tribromomethylphenylsulfone (manufactured by Sumitomo Seika Co., Ltd.)
  • B-IMD lofein dimer (2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole (trade name "B-IMD", Manufactured by Kurogane Kasei))
  • D-110N polyisocyanate (adduct of xylylene-1,3-diisocyanate and trimethylolpropane, trade name “Takenate D-110N”, manufactured by Mitsui Chemicals, 75% by mass ethyl acetate solution)
  • D-120N polyisocyanate (an adduct of hydrogenated xylylene-1,3-diisocyanate and trimethylolpropane, trade name “Takenate D-120N”, manufactured by Mitsui Chemicals, Inc., 75% by mass ethyl acetate solution)
  • LCV corresponds to a coloring agent that develops color by oxidation, and exhibits blue color by oxidation.
  • the coloring agent A corresponds to a coloring agent that develops color under the action of an acid, and exhibits a red color under the action of the acid.
  • Ethyl acetate a solvent for preparing capsules used in Examples and Comparative Examples, did not remain in the microcapsules after preparation of the ultraviolet sensing member. In other words, the microcapsules in the ultraviolet sensing member of the present invention did not contain ethyl acetate.
  • ⁇ DA is 0.1 or more at an integrated illuminance of 1 mJ/cm 2 and ⁇ DA is 0.1 or more at an integrated illuminance of 3 mJ/cm 2 .
  • B ⁇ DA is less than 0.1 at an integrated illuminance of 1 mJ/cm 2 and ⁇ DA is 0.1 or more at an integrated illuminance of 3 mJ/cm 2 , or ⁇ DA is at an integrated illuminance of 1 mJ/cm 2 0.1 or more, and ⁇ DA is less than 0.1 when the integrated illuminance is 3 mJ/cm 2 .
  • C ⁇ DA is less than 0.1 at an integrated illuminance of 1 mJ/cm 2 and less than 0.1 at an integrated illuminance of 3 mJ/cm 2 .
  • the ultraviolet sensing member of the present invention has excellent sensitivity at a wavelength of 222 nm. It was confirmed that the effects of the present invention are more excellent when the photoactive agent is a photoacid generator and the color former is a color former that develops color under the action of acid (comparison with Examples 1 and 2, etc.). .
  • the capsule wall of the microcapsule contains one or more resins selected from the group consisting of polyurea, polyurethaneurea, and polyurethane having an alicyclic ring, it was confirmed that the effects of the present invention are more excellent (implementation (compare Examples 1 and 5).
  • UV Sensing Member 12 Support 14 UV Sensing Layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

The present invention provides: a UV radiation sensitive member that exhibits superior sensitivity to the wavelength of 222 nm; microcapsules; a microcapsule production method; a liquid dispersion for forming a UV radiation sensitive layer; and a UV radiation sensitive kit. A UV radiation sensitive member according to the present invention comprises a UV radiation sensitive layer including microcapsules in which a photoactive agent, a color former, and a solvent have been encapsulated, wherein at least one of condition A and condition B is satisfied.

Description

紫外線感知部材、マイクロカプセル、マイクロカプセルの製造方法、紫外線感知層形成用分散液、紫外線感知キットUV sensing member, microcapsule, microcapsule manufacturing method, dispersion liquid for forming UV sensitive layer, UV sensing kit
 本発明は、紫外線感知部材、マイクロカプセル、マイクロカプセルの製造方法、紫外線感知層形成用分散液、及び、紫外線感知キットに関する。 The present invention relates to an ultraviolet sensing member, microcapsules, a method for producing microcapsules, a dispersion for forming an ultraviolet sensitive layer, and an ultraviolet sensing kit.
 紫外線量の測定は、様々な分野で実施されている。具体的な一例としては、紫外線硬化樹脂の硬化反応での被照射物への紫外線量の測定、及び、食品等の紫外線殺菌における被照射物への紫外線量の測定が挙げられる。
 紫外線量の測定方法としては、紫外線光量計が使用されている。
 紫外線光量計には、半導体起電力を利用した紫外線光量計、及び、フォトクロミックを利用した紫外線光量計等の様々な種類がある。例えば、特許文献1では、紫外線光量計として、発色剤及び光酸化剤を内包したカプセルを含む紫外線感知層を備えた紫外線感知部材を開示している。
Measurement of the amount of ultraviolet rays is carried out in various fields. Specific examples include measurement of the amount of ultraviolet rays applied to an object to be irradiated during the curing reaction of an ultraviolet curable resin, and measurement of the amount of ultraviolet rays applied to an object to be irradiated during ultraviolet sterilization of foods and the like.
As a method for measuring the amount of ultraviolet rays, an ultraviolet photometer is used.
There are various types of ultraviolet light meters, such as ultraviolet light meters using semiconductor electromotive force and ultraviolet light meters using photochromics. For example, Patent Literature 1 discloses, as an ultraviolet photometer, an ultraviolet sensing member having an ultraviolet sensing layer containing capsules containing a color former and a photo-oxidizing agent.
国際公開第2016/017701号WO2016/017701
 従来の紫外線感知部材は、300nm以上の波長領域で使用されることが想定されている。一方で、近年、100~280nmの波長領域の深紫外線(例えば、低圧水銀ランプ、発光ダイオード、及び、エキシマランプ等を用いて照射される光)を用いて使用されることも多くなってきている。
 本発明者らは、特許文献1に記載された紫外線感知部材について検討したところ、波長222nmの感度に改善の余地があることを知見した。具体的には、従来の紫外線感知部材では、測定する波長領域が異なるため、従来の紫外線感知部材に対して、所定の積算照度で波長222nmを照射した際に、十分に発色できず発色部の発色濃度が低くなってしまっていた。つまり、波長222nmの感度が劣ることを知見した。
Conventional ultraviolet sensing members are assumed to be used in the wavelength region of 300 nm or more. On the other hand, in recent years, deep ultraviolet rays in the wavelength range of 100 to 280 nm (for example, light emitted from low-pressure mercury lamps, light-emitting diodes, excimer lamps, etc.) are often used. .
The present inventors studied the ultraviolet sensing member described in Patent Document 1 and found that there is room for improvement in the sensitivity at a wavelength of 222 nm. Specifically, since the wavelength region to be measured is different in the conventional ultraviolet sensing member, when the conventional ultraviolet sensing member is irradiated with a wavelength of 222 nm at a predetermined integrated illuminance, the color cannot be sufficiently developed, and the coloring portion cannot be obtained. The color density had become low. In other words, the inventors have found that the sensitivity at a wavelength of 222 nm is inferior.
 そこで、本発明は、波長222nmの感度に優れる紫外線感知部材を提供することを課題とする。
 また、本発明は、マイクロカプセル、マイクロカプセルの製造方法、紫外線感知層形成用分散液、及び、紫外線感知キットを提供することを課題とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an ultraviolet sensing member having excellent sensitivity at a wavelength of 222 nm.
Another object of the present invention is to provide microcapsules, a method for producing microcapsules, a dispersion for forming an ultraviolet sensitive layer, and an ultraviolet sensitive kit.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、以下に示す構成によって解決できることを見出し、本発明を完成させた。 As a result of intensive studies aimed at solving the above problems, the inventors found that the problems can be solved by the configuration shown below, and completed the present invention.
 〔1〕
 光活性剤と、発色剤と、溶媒とを内包するマイクロカプセルを含む紫外線感知層を備えた紫外線感知部材であって、
 条件A及び条件Bの少なくとも一方を満たす、紫外線感知部材。
 条件A:上記溶媒が、ヘテロ原子を有する非芳香族溶媒Xを含む。
 条件B:上記溶媒が、芳香族溶媒Yと、非芳香族溶媒Zとを含む。
 〔2〕
 上記溶媒が、沸点100℃以上である、〔1〕に記載の紫外線感知部材。
 〔3〕
 上記非芳香族溶媒Xが、脂肪族カルボン酸、脂肪酸エステル、エーテル系溶媒、アルコール系溶媒、アミド系溶媒、及び、ケトン系溶媒からなる群から選択される1種以上の溶媒を含む、〔1〕又は〔2〕に記載の紫外線感知部材。
 〔4〕
 上記非芳香族溶媒Zが、脂肪族炭化水素、脂肪族カルボン酸、脂肪酸エステル、エーテル系溶媒、アルコール系溶媒、アミド系溶媒、及び、ケトン系溶媒からなる群から選択される1種以上の溶媒を含む、〔1〕~〔3〕のいずれか1つに記載の紫外線感知部材。
 〔5〕
 上記芳香族溶媒Yが、ヘテロ原子を有する芳香族溶媒を含む、〔1〕~〔4〕のいずれか1つに記載の紫外線感知部材。
 〔6〕
 上記光活性剤が、光酸化剤であり、
 上記発色剤が、酸化されて発色する発色剤である、〔1〕~〔5〕のいずれか1つに記載の紫外線感知部材。
 〔7〕
 上記光活性剤が、光酸発生剤であり、
 上記発色剤が、酸の作用により発色する発色剤である、〔1〕~〔5〕のいずれか1つに記載の紫外線感知部材。
 〔8〕
 上記光活性剤が、一般式(6)で表される化合物を含む、〔1〕~〔7〕のいずれか1つに記載の紫外線感知部材。
 R-L-CX      (6)
 一般式(6)中、Rは、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を表す。Lは、-SO-又は-SO-を表す。X、X、及び、Xは、各々独立に、水素原子又はハロゲン原子を表す。ただし、X、X、及び、Xの全てが水素原子である場合を除く。
 〔9〕
 上記マイクロカプセルがベンゾトリアゾール構造を有する紫外線吸収剤を含まないか、又は、
 上記マイクロカプセルがベンゾトリアゾール構造を有する紫外線吸収剤を含む場合、上記ベンゾトリアゾール構造を有する紫外線吸収剤の含有量が、上記光活性剤全質量に対して、1質量%以下である、〔1〕~〔8〕のいずれか1つに記載の紫外線感知部材。
 〔10〕
 波長200~230nmの紫外線を感知する、〔1〕~〔9〕のいずれか1つに記載の紫外線感知部材。
 〔11〕
 光活性剤と、発色剤と、溶媒とを内包するマイクロカプセルであって、
 条件A及び条件Bの少なくとも一方を満たす、マイクロカプセル。
 条件A:上記溶媒が、ヘテロ原子を有する非芳香族溶媒Xを含む。
 条件B:上記溶媒が、芳香族溶媒Yと、非芳香族溶媒Zとを含む。
 〔12〕
 上記溶媒が、沸点100℃以上である、〔11〕に記載のマイクロカプセル。
 〔13〕
 上記非芳香族溶媒Xが、脂肪族カルボン酸、脂肪酸エステル、エーテル系溶媒、アルコール系溶媒、アミド系溶媒、及び、ケトン系溶媒からなる群から選択される1種以上の溶媒を含む、〔11〕又は〔12〕に記載のマイクロカプセル。
 〔14〕
 上記非芳香族溶媒Zが、脂肪族炭化水素、脂肪族カルボン酸、脂肪酸エステル、エーテル系溶媒、アルコール系溶媒、アミド系溶媒、及び、ケトン系溶媒からなる群から選択される1種以上の溶媒を含む、〔11〕~〔13〕のいずれか1つに記載のマイクロカプセル。
 〔15〕
 上記芳香族溶媒Yが、ヘテロ原子を有する芳香族溶媒を含む、〔11〕~〔14〕のいずれか1つに記載のマイクロカプセル。
 〔16〕
 上記光活性剤が、光酸化剤であり、
 上記発色剤が、酸化されて発色する発色剤である、〔11〕~〔15〕のいずれか1つに記載のマイクロカプセル。
 〔17〕
 上記光活性剤が、光酸発生剤であり、
 上記発色剤が、酸の作用により発色する発色剤である、〔11〕~〔15〕のいずれか1つに記載のマイクロカプセル。
 〔18〕
 上記光活性剤が、一般式(6)で表される化合物を含む、〔11〕~〔17〕のいずれか1つに記載のマイクロカプセル。
 R-L-CX      (6)
 一般式(6)中、Rは、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を表す。Lは、-SO-又は-SO-を表す。X、X、及び、Xは、各々独立に、水素原子又はハロゲン原子を表す。ただし、X、X、及び、Xの全てが水素原子である場合を除く。
 〔19〕
 〔11〕~〔18〕のいずれか1つに記載のマイクロカプセルの製造方法であって、
 上記発色剤と、上記光活性剤と、上記溶媒と、乳化剤とを水中で混合して、乳化液を調製する工程と、
 上記工程で得られた乳化液中の上記発色剤と上記光活性剤と上記溶媒とを含む油滴の周囲に樹脂の壁を形成してカプセル化し、上記マイクロカプセルを形成する工程と、を含む、マイクロカプセルの製造方法。
 〔20〕
 〔11〕~〔18〕のいずれか1つに記載のマイクロカプセルを含む紫外線感知層形成用分散液。
 〔21〕
 〔1〕~〔10〕のいずれか1つに記載の紫外線感知部材を含む、紫外線感知キット。
[1]
An ultraviolet sensing member comprising an ultraviolet sensitive layer containing microcapsules encapsulating a photoactive agent, a coloring agent, and a solvent,
An ultraviolet sensing member that satisfies at least one of condition A and condition B.
Condition A: The solvent contains a non-aromatic solvent X having a heteroatom.
Condition B: the solvent contains an aromatic solvent Y and a non-aromatic solvent Z;
[2]
The ultraviolet sensing member according to [1], wherein the solvent has a boiling point of 100° C. or higher.
[3]
[1 ] or the ultraviolet sensing member according to [2].
[4]
The non-aromatic solvent Z is one or more solvents selected from the group consisting of aliphatic hydrocarbons, aliphatic carboxylic acids, fatty acid esters, ether solvents, alcohol solvents, amide solvents, and ketone solvents. The ultraviolet sensing member according to any one of [1] to [3], comprising:
[5]
The ultraviolet sensing member according to any one of [1] to [4], wherein the aromatic solvent Y contains an aromatic solvent having a heteroatom.
[6]
the photoactive agent is a photooxidant,
The ultraviolet sensing member according to any one of [1] to [5], wherein the coloring agent is a coloring agent that develops color upon oxidation.
[7]
The photoactive agent is a photoacid generator,
The ultraviolet sensing member according to any one of [1] to [5], wherein the coloring agent is a coloring agent that develops color under the action of an acid.
[8]
The ultraviolet sensing member according to any one of [1] to [7], wherein the photoactive agent contains a compound represented by general formula (6).
R 3 -L 1 -CX 3 X 4 X 5 (6)
In general formula (6), R 3 represents an optionally substituted aryl group or an optionally substituted heteroaryl group. L 1 represents -SO- or -SO 2 -. X 3 , X 4 and X 5 each independently represent a hydrogen atom or a halogen atom. However, the case where all of X 3 , X 4 and X 5 are hydrogen atoms is excluded.
[9]
The microcapsules do not contain an ultraviolet absorber having a benzotriazole structure, or
When the microcapsules contain an ultraviolet absorber having a benzotriazole structure, the content of the ultraviolet absorber having a benzotriazole structure is 1% by mass or less with respect to the total mass of the photoactive agent [1]. The ultraviolet sensing member according to any one of [8].
[10]
The ultraviolet sensing member according to any one of [1] to [9], which senses ultraviolet rays having a wavelength of 200 to 230 nm.
[11]
A microcapsule encapsulating a photoactive agent, a color former, and a solvent,
A microcapsule that satisfies at least one of condition A and condition B.
Condition A: The solvent contains a non-aromatic solvent X having a heteroatom.
Condition B: the solvent contains an aromatic solvent Y and a non-aromatic solvent Z;
[12]
The microcapsules of [11], wherein the solvent has a boiling point of 100° C. or higher.
[13]
[11 ] or the microcapsule according to [12].
[14]
The non-aromatic solvent Z is one or more solvents selected from the group consisting of aliphatic hydrocarbons, aliphatic carboxylic acids, fatty acid esters, ether solvents, alcohol solvents, amide solvents, and ketone solvents. Microcapsules according to any one of [11] to [13].
[15]
The microcapsule according to any one of [11] to [14], wherein the aromatic solvent Y contains an aromatic solvent having a heteroatom.
[16]
the photoactive agent is a photooxidant,
The microcapsule according to any one of [11] to [15], wherein the coloring agent is a coloring agent that develops color upon oxidation.
[17]
The photoactive agent is a photoacid generator,
The microcapsule according to any one of [11] to [15], wherein the coloring agent is a coloring agent that develops color under the action of an acid.
[18]
The microcapsule according to any one of [11] to [17], wherein the photoactive agent contains a compound represented by general formula (6).
R 3 -L 1 -CX 3 X 4 X 5 (6)
In general formula (6), R 3 represents an optionally substituted aryl group or an optionally substituted heteroaryl group. L 1 represents -SO- or -SO 2 -. X 3 , X 4 and X 5 each independently represent a hydrogen atom or a halogen atom. However, the case where all of X 3 , X 4 and X 5 are hydrogen atoms is excluded.
[19]
[11] A method for producing a microcapsule according to any one of [18],
mixing the color former, the photoactive agent, the solvent, and the emulsifier in water to prepare an emulsion;
forming a resin wall around the oil droplets containing the coloring agent, the photoactive agent, and the solvent in the emulsified liquid obtained in the above step for encapsulation to form the microcapsules. , a method for producing microcapsules.
[20]
[11] A dispersion for forming an ultraviolet-sensitive layer, comprising the microcapsules of any one of [11] to [18].
[21]
An ultraviolet sensing kit comprising the ultraviolet sensing member according to any one of [1] to [10].
 本発明によれば、波長222nmの感度に優れる紫外線感知部材を提供できる。
 また、本発明によれば、マイクロカプセル、マイクロカプセルの製造方法、紫外線感知層形成用分散液、及び、紫外線感知キットを提供できる。
According to the present invention, it is possible to provide an ultraviolet sensing member with excellent sensitivity to a wavelength of 222 nm.
Further, according to the present invention, it is possible to provide microcapsules, a method for producing microcapsules, a dispersion for forming an ultraviolet sensitive layer, and an ultraviolet sensitive kit.
本発明の紫外線感知部材の実施形態の一例を示した模式断面図である。1 is a schematic cross-sectional view showing an example of an embodiment of an ultraviolet sensing member of the present invention; FIG.
 以下、本発明について詳細に説明する。
 なお、以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に制限されるものではない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本明細書において、固形分とは、組成物を用いて形成される組成物層を形成する成分を意味し、組成物が溶媒(例えば、有機溶媒及び水等)を含む場合、溶媒を除いた全ての成分を意味する。また、組成物層を形成する成分であれば、液体状の成分も固形分とみなす。
 また、本明細書において、紫外線とは、波長領域が10~400nmの光を意味する。
 また、本明細書において、(メタ)アクリルとは、「アクリル及びメタクリルの少なくとも一方」を意味する。
 また、本明細書において、「沸点」とは標準大気圧における沸点を意味する。
The present invention will be described in detail below.
In addition, although description of the constituent elements described below may be made based on a representative embodiment of the present invention, the present invention is not limited to such an embodiment.
In this specification, a numerical range represented by "to" means a range including the numerical values before and after "to" as lower and upper limits.
Further, in the numerical ranges described stepwise in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of the numerical range described in other steps. good. Moreover, in the numerical ranges described in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
Further, in this specification, the solid content means a component that forms a composition layer formed using the composition, and when the composition contains a solvent (for example, an organic solvent, water, etc.), the solvent is means all ingredients except In addition, as long as it is a component that forms a composition layer, a liquid component is also regarded as a solid content.
Further, in this specification, ultraviolet light means light with a wavelength range of 10 to 400 nm.
Moreover, in this specification, (meth)acryl means "at least one of acryl and methacryl".
Moreover, in this specification, the "boiling point" means the boiling point at standard atmospheric pressure.
[紫外線感知部材]
 本発明の紫外線感知部材は、光活性剤と、発色剤と、溶媒とを内包するマイクロカプセルを含む紫外線感知層を備えた紫外線感知部材であって、条件A及び条件Bの少なくとも一方を満たす。
 条件A:溶媒が、ヘテロ原子を有する非芳香族溶媒Xを含む。
 条件B:溶媒が、芳香族溶媒Yと、非芳香族溶媒Zとを含む。
 以下、条件A及び条件Bの少なくとも一方を満たす溶媒を、「特定溶媒」ともいう。
[Ultraviolet Sensing Member]
The UV-sensitive member of the present invention is a UV-sensitive member provided with a UV-sensitive layer containing microcapsules encapsulating a photoactive agent, a coloring agent and a solvent, and satisfies at least one of Condition A and Condition B.
Condition A: The solvent contains a non-aromatic solvent X with heteroatoms.
Condition B: the solvent contains an aromatic solvent Y and a non-aromatic solvent Z;
Hereinafter, a solvent that satisfies at least one of condition A and condition B is also referred to as a "specific solvent".
 このような構成を有する本発明の紫外線感知部材は、波長222nmの感度に優れる詳細なメカニズムは明らかではないが、本発明者らは以下のように推測している。 Although the detailed mechanism by which the ultraviolet sensing member of the present invention having such a configuration has excellent sensitivity at a wavelength of 222 nm is not clear, the present inventors presume as follows.
 本発明の紫外線感知部材の紫外線感知層は、紫外線量の測定に際して紫外線の照射を受けると、紫外線の照射を受けた領域(紫外線被照射領域)において、紫外線量(例えば、積算照度)に応じた発色濃度で発色した発色部(発色画像)が形成される。紫外線量に応じた発色濃度で発色するとは、発色画像が紫外線量に応じた階調性を有していることを意味する。 When the ultraviolet sensitive layer of the ultraviolet sensitive member of the present invention is irradiated with ultraviolet rays when measuring the amount of ultraviolet rays, in the area irradiated with ultraviolet rays (ultraviolet irradiated area), the amount of ultraviolet rays (e.g., integrated illuminance) A colored portion (colored image) is formed with the color density. Developing a color with a color density corresponding to the amount of ultraviolet rays means that the colored image has gradation according to the amount of ultraviolet rays.
 紫外線感知層の上記の主な発色機構は、紫外線感知層中に含まれるマイクロカプセルに由来している。紫外線感知層は紫外線の照射を受けると、通常、紫外線被照射領域に存在するマイクロカプセル内において発色剤が呈色する。例えば、光活性剤が紫外線を吸収して活性化して酸及び/又はラジカルを発生し、発色剤は、この酸及び/又はラジカル等と反応することによって呈色する。このとき、光活性剤から発生する酸及び/又はラジカルの発生量は照射された紫外線量に応じて異なり、光活性剤から発生する酸及び/又はラジカルの発生量によって、呈色する発色剤の量も異なる。この結果として、紫外線感知層の紫外線被照射領域では、照射された紫外線量に応じて発色濃度の濃淡が生じ、紫外線量に応じた発色濃度で発色した発色部が形成される。 The above-mentioned main coloring mechanism of the UV-sensitive layer originates from the microcapsules contained in the UV-sensitive layer. When the UV-sensitive layer is irradiated with UV rays, the coloring agent usually develops color within the microcapsules present in the UV-irradiated region. For example, the photoactive agent absorbs ultraviolet rays and is activated to generate acid and/or radicals, and the color former reacts with the acid and/or radicals to develop color. At this time, the amount of acid and/or radicals generated from the photoactive agent varies depending on the amount of irradiated ultraviolet rays. The amount is also different. As a result, in the ultraviolet-irradiated region of the ultraviolet-sensitive layer, the color density varies depending on the amount of ultraviolet rays applied, and a colored portion is formed with a color-developed density corresponding to the amount of ultraviolet rays.
 本発明の紫外線感知部材の特徴点としては、紫外線感知層中のマイクロカプセルが、光活性剤と、発色剤と、特定溶媒とを内包する点が挙げられる。 A feature of the ultraviolet sensitive member of the present invention is that the microcapsules in the ultraviolet sensitive layer contain a photoactive agent, a coloring agent, and a specific solvent.
 本発明者らは、紫外線感知層中のマイクロカプセルが特定溶媒を内包する場合、特定溶媒は波長222nmに対する吸収が少なく、更に、特定溶媒は光活性剤及び発色剤の溶解性が高く、呈色反応を阻害しにくいため、波長222nmの感度向上に寄与しているものと推察している。
 また、本発明の紫外線感知部材は、波長222nmの感度に優れるほか、蛍光灯等の想定外(目的の測定波長領域以外の波長領域)の光により発色してしまう、いわゆる、カブリが起こりにくいことがわかった。紫外線感知層に含まれるマイクロカプセルが特定溶媒を内包する場合、特定溶媒が発色反応を制御することで、カブリが起こりにくくなっていると推定している。
 以下、紫外線感知部材の波長222nmの感度がより優れることを、「本発明の効果がより優れる」ともいう。
The present inventors found that when the microcapsules in the ultraviolet sensitive layer contain a specific solvent, the specific solvent has less absorption at a wavelength of 222 nm, and the specific solvent has a high solubility of the photoactive agent and the color former, resulting in color development. Since it is difficult to inhibit the reaction, it is presumed that it contributes to the improvement of the sensitivity at a wavelength of 222 nm.
In addition, the UV-sensitive member of the present invention has excellent sensitivity at a wavelength of 222 nm, and is resistant to so-called fogging, which is colored by unexpected light (wavelength region other than the target measurement wavelength region) such as fluorescent lamps. I found out. It is presumed that when the microcapsules contained in the UV-sensitive layer enclose a specific solvent, the specific solvent controls the color-developing reaction, thereby making fogging less likely to occur.
Hereinafter, the more excellent sensitivity of the ultraviolet sensing member to a wavelength of 222 nm is also referred to as "the effect of the present invention is more excellent".
 以下、本発明の紫外線感知部材の実施形態について、図面を参照して詳述する。 Hereinafter, embodiments of the ultraviolet sensing member of the present invention will be described in detail with reference to the drawings.
〔第1実施形態〕
 図1は、紫外線感知部材の一実施形態の模式断面図である。
 紫外線感知部材10は、支持体12、及び、支持体12の一方の表面に配置された、光活性剤と、発色剤と、特定溶媒とを内包するマイクロカプセルを含む紫外線感知層14を備える。紫外線の照射を受けた紫外線感知層14では、紫外線量に応じた発色濃度で発色した発色部(不図示)が形成される。
 図1においては、紫外線感知部材がシート状である態様について示しているが、この態様に限定されず、紫外線感知部材の形状は、直方体及び円柱状等のブロック状等の各種の形状が利用可能である。なかでも、シート状の紫外線感知部材(紫外線感知シート)は、好適に利用される。
 また、シート状の紫外線感知部材の形状としては、正方形、長方形、円形、楕円形、六角形等の四角形以外の多角形、及び、不定形等、各種の形状が利用可能である。また、シート状の紫外線感知部材は、長尺状であってもよい。
[First embodiment]
FIG. 1 is a schematic cross-sectional view of one embodiment of an ultraviolet sensing member.
The UV sensitive member 10 comprises a support 12 and a UV sensitive layer 14 disposed on one surface of the support 12 and containing microcapsules containing a photoactive agent, a coloring agent and a specific solvent. In the ultraviolet sensing layer 14 irradiated with ultraviolet rays, a coloring portion (not shown) is formed with a coloring density corresponding to the amount of ultraviolet rays.
Although FIG. 1 shows an embodiment in which the ultraviolet sensing member is sheet-shaped, the ultraviolet sensing member is not limited to this embodiment, and various shapes such as a block shape such as a rectangular parallelepiped and a columnar shape can be used as the shape of the ultraviolet sensing member. is. Among them, a sheet-like ultraviolet sensing member (ultraviolet sensing sheet) is preferably used.
As for the shape of the sheet-shaped ultraviolet sensing member, various shapes such as square, rectangle, circle, ellipse, polygon other than quadrangle such as hexagon, and irregular shape can be used. Also, the sheet-like ultraviolet sensing member may be elongated.
 なお、後述するように、紫外線感知部材10は紫外線感知層14を有していればよく、支持体12を有していてなくてもよい。
 更に、図1に示す紫外線感知部材10は、支持体12と紫外線感知層14の2層構成であるが、この態様に制限されず、後述するように、支持体12及び紫外線感知層14以外のその他の層(例えば、反射層、光沢層及びフィルタ層等)を備えていてもよい。
As will be described later, the ultraviolet sensitive member 10 may have the ultraviolet sensitive layer 14 and may not have the support 12 .
Furthermore, the ultraviolet sensitive member 10 shown in FIG. 1 has a two-layer structure of the support 12 and the ultraviolet sensitive layer 14, but it is not limited to this aspect, and as described later, other layers than the support 12 and the ultraviolet sensitive layer 14 are formed. Other layers (eg, reflective layer, gloss layer, filter layer, etc.) may be provided.
 紫外線感知部材10の厚さの下限値としては、5μm以上であるのが好ましく、25μm以上であるのがより好ましい。また、上限値としては、1cm以下であるのが好ましく、2mm以下であるのがより好ましい。
 以下、紫外線感知部材の各部材について詳述する。
The lower limit of the thickness of the ultraviolet sensing member 10 is preferably 5 μm or more, more preferably 25 μm or more. Also, the upper limit is preferably 1 cm or less, more preferably 2 mm or less.
Each member of the ultraviolet sensing member will be described in detail below.
<<支持体>>
 支持体は、紫外線感知層を支持するための部材である。
 なお、紫外線感知層自体で取り扱いが可能な場合には、紫外線感知部材は支持体を有していなくてもよい。
<<Support>>
A support is a member for supporting the ultraviolet sensitive layer.
If the ultraviolet sensitive layer itself can be handled, the ultraviolet sensitive member may not have a support.
 支持体としては、例えば、樹脂シート、紙(合成紙を含む)、布(織布及び不織布を含む)、ガラス、木、及び、金属等が挙げられる。支持体としては、樹脂シート又は紙が好ましく、樹脂シート又は合成紙がより好ましく、樹脂シートが更に好ましい。
 樹脂シートの材料としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂(ポリエチレンテレフタレート及びポリエチレンナフタレート等)、各種のナイロン等のポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、及び、セルロース系樹脂が挙げられる。
 合成紙としては、ポリプロピレン又はポリエチレンテレフタレート等を二軸延伸してミクロボイドを多数形成したもの(ユポ等)、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、及び、ポリアミド等の合成繊維を用いて作製したもの、並びに、これらを紙の一部、片面又は両面に積層したもの、が挙げられる。
Examples of the support include resin sheets, paper (including synthetic paper), cloth (including woven fabric and non-woven fabric), glass, wood, and metal. The support is preferably a resin sheet or paper, more preferably a resin sheet or synthetic paper, and still more preferably a resin sheet.
Materials for the resin sheet include polyethylene-based resin, polypropylene-based resin, cyclic polyolefin-based resin, polystyrene-based resin, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, polyvinyl chloride-based resin, fluorine-based resin, Poly(meth)acrylic resins, polycarbonate resins, polyester resins (polyethylene terephthalate, polyethylene naphthalate, etc.), various polyamide resins such as nylon, polyimide resins, polyamideimide resins, polyarylphthalate resins, silicone resins, polysulfone-based resins, polyphenylene sulfide-based resins, polyethersulfone-based resins, polyurethane-based resins, acetal-based resins, and cellulose-based resins.
Synthetic paper includes biaxially stretched polypropylene or polyethylene terephthalate or the like to form a large number of microvoids (Yupo, etc.), synthetic paper made using synthetic fibers such as polyethylene, polypropylene, polyethylene terephthalate, and polyamide, and Examples include a part of paper, or a product laminated on one side or both sides of the paper.
 また、樹脂シートの他の好適な一態様としては、樹脂中に白色顔料を分散させてなる白色樹脂シートも挙げられる。上記白色樹脂シートにおける樹脂の材料としては、上述した樹脂シートの材料と同じものが挙げられる。
 白色樹脂シートは、紫外線反射性を有する。このため、支持体が白色樹脂シートである場合、紫外線感知部材に照射された紫外線は支持体で反射するため、紫外線の紫外線感知部材内部における散乱を抑制できる。この結果として、紫外線感知部材の紫外線量の検出精度がより向上し得る。
Another preferred embodiment of the resin sheet is a white resin sheet in which a white pigment is dispersed in a resin. Examples of the material of the resin in the white resin sheet include the same materials as those of the resin sheet described above.
The white resin sheet has UV reflectivity. Therefore, when the support is a white resin sheet, the ultraviolet rays irradiated to the ultraviolet sensing member are reflected by the support, so that scattering of the ultraviolet rays inside the ultraviolet sensing member can be suppressed. As a result, the detection accuracy of the amount of ultraviolet rays of the ultraviolet sensing member can be further improved.
 白色顔料としては、国際公開第2016/017701号の段落0080に記載された白色顔料を参酌でき、これらの内容は本明細書に組み込まれる。
 白色樹脂シートとしては、白色ポリエステルシートが好ましく、白色ポリエチレンテレフタレートシートがより好ましい。
 白色樹脂シートの市販品としては、ユポ(ユポコーポレーション社製)、ルミラー(東レ社製)、及び、クリスパー(東洋紡社製)が挙げられる。
As the white pigment, reference can be made to the white pigment described in paragraph 0080 of WO 2016/017701, the contents of which are incorporated herein.
As the white resin sheet, a white polyester sheet is preferable, and a white polyethylene terephthalate sheet is more preferable.
Commercially available white resin sheets include Yupo (manufactured by Yupo Corporation), Lumirror (manufactured by Toray Industries, Inc.), and Crisper (manufactured by Toyobo Co., Ltd.).
 支持体の厚さの下限値としては、5μm以上であるのが好ましく、25μm以上であるのがより好ましく、50μm以上であるのが更に好ましい。また、上限値としては、1cm以下であるのが好ましく、2mm以下であるのがより好ましく、500μm以下であるのが更に好ましい。 The lower limit of the thickness of the support is preferably 5 µm or more, more preferably 25 µm or more, and even more preferably 50 µm or more. The upper limit is preferably 1 cm or less, more preferably 2 mm or less, and even more preferably 500 μm or less.
<<紫外線感知層>>
 紫外線感知層は、光活性剤と、発色剤と、特定溶媒とを内包するマイクロカプセル(以下「特定マイクロカプセル」ともいう。)を含む。
 以下において、紫外線感知層に含まれ得る各種成分について詳述する。
<<Ultraviolet Sensing Layer>>
The UV-sensitive layer includes microcapsules (hereinafter also referred to as "specific microcapsules") encapsulating a photoactive agent, a coloring agent, and a specific solvent.
The various components that may be included in the UV sensitive layer are detailed below.
<特定マイクロカプセル>
 紫外線感知層は、特定マイクロカプセルを含む。
 以下、まず、特定マイクロカプセルを構成する材料について詳述する。
<Specific microcapsules>
The UV sensitive layer contains specific microcapsules.
First, the material constituting the specific microcapsules will be described in detail below.
 特定マイクロカプセルは、通常、コア部と、コア部をなすコア材(内包されるもの(以下「内包成分」ともいう。))を内包するためのカプセル壁と、を有する。
 特定マイクロカプセルは、コア材(内包成分)として、光活性剤と、発色剤と、特定溶媒と、を内包する。
A specific microcapsule usually has a core portion and a capsule wall for enclosing a core material forming the core portion (something to be encapsulated (hereinafter also referred to as “encapsulation component”)).
The specific microcapsules include a photoactive agent, a coloring agent, and a specific solvent as core materials (encapsulation components).
 特定マイクロカプセルの一の好適態様としては、光活性剤が光酸化剤であり、発色剤が酸化されて発色する発色剤であることが挙げられる。
 また、特定マイクロカプセルの別の好適態様としては、光活性剤が光酸発生剤であり、発色剤が酸の作用により発色する発色剤であることが挙げられる。
One preferred embodiment of the specific microcapsules is that the photoactive agent is a photooxidizing agent and the color former is a color former that develops color upon oxidation.
Another preferred embodiment of the specific microcapsules is that the photoactive agent is a photoacid generator and the color former is a color former that develops color under the action of acid.
 特定マイクロカプセルとしては、常温ではカプセル壁の物質隔離作用によりカプセル内外の物質の接触を妨げるものが好ましい。具体的には、特開昭59-190886号公報、及び、特開昭60-242094号公報が挙げられ、これらの内容は本明細書に組み込まれる。 As the specific microcapsule, it is preferable to prevent contact between substances inside and outside the capsule due to the substance isolation action of the capsule wall at room temperature. Specifically, JP-A-59-190886 and JP-A-60-242094 can be cited, the contents of which are incorporated herein.
(カプセル壁)
 特定マイクロカプセルのカプセル壁は、実質的に、樹脂で構成されることが好ましい。「実質的に樹脂で構成される」とは、樹脂の含有量が、カプセル壁全質量に対して、90質量%以上であることを意味し、100質量%であるのが好ましい。つまり、特定マイクロカプセルのカプセル壁は、樹脂で構成されることが好ましい。
 上記樹脂としては、例えば、ポリウレタン、ポリウレア、ポリエステル、ポリカーボネート、尿素-ホルムアルデヒド樹脂、メラミン-ホルムアルデヒド樹脂、ポリスチレン、スチレン-メタクリレート共重合体、ゼラチン、ポリビニルピロリドン、及び、ポリビニルアルコールが挙げられる。なかでも、内包物が漏れにくい密な架橋構造とし、かつ、波長222nmの透過率を制御することで、波長222nmの感度をより向上できる点で、ポリウレア、ポリウレタンウレア、及び、ポリウレタンからなる群から選ばれる1種以上であるのがより好ましい。
(capsule wall)
It is preferred that the capsule walls of the specific microcapsules are substantially composed of resin. The phrase "substantially composed of resin" means that the resin content is 90% by mass or more, preferably 100% by mass, relative to the total mass of the capsule wall. In other words, the capsule walls of the specific microcapsules are preferably made of resin.
Examples of the resin include polyurethane, polyurea, polyester, polycarbonate, urea-formaldehyde resin, melamine-formaldehyde resin, polystyrene, styrene-methacrylate copolymer, gelatin, polyvinylpyrrolidone, and polyvinyl alcohol. Among them, from the group consisting of polyurea, polyurethane urea, and polyurethane, in that the sensitivity at a wavelength of 222 nm can be further improved by forming a dense crosslinked structure that prevents inclusions from leaking and by controlling the transmittance at a wavelength of 222 nm. More preferably, one or more selected.
 ポリウレアは、ウレア結合を複数有するポリマーであり、ポリアミンとポリイソシアネートとを含む原料から形成される反応生成物であることが好ましい。
 なお、ポリイソシアネートの一部が水と反応してポリアミンとなることを利用して、ポリイソシアネートを用いて、ポリアミンを使用せずに、ポリウレアを合成することもできる。
 また、ポリウレタンウレアは、ウレタン結合及びウレア結合を有するポリマーであり、ポリオールと、ポリアミンと、ポリイソシアネートとを含む原料から形成される反応生成物であることが好ましい。
 なお、ポリオールとポリイソシアネートとを反応させる際に、ポリイソシアネートの一部が水と反応してポリアミンとなり、結果的にポリウレタンウレアが得られることがある。
 また、ポリウレタンとはウレタン結合を複数有するポリマーであり、ポリオールとポリイソシアネートとを含む原料から形成される反応生成物であることが好ましい。
Polyurea is a polymer having multiple urea bonds and is preferably a reaction product formed from raw materials including polyamine and polyisocyanate.
It should be noted that polyurea can be synthesized using polyisocyanate without using polyamine by utilizing the fact that a part of polyisocyanate reacts with water to form polyamine.
Polyurethane urea is a polymer having urethane bonds and urea bonds, and is preferably a reaction product formed from raw materials containing polyol, polyamine, and polyisocyanate.
Incidentally, when the polyol and the polyisocyanate are reacted, part of the polyisocyanate may react with water to form a polyamine, resulting in a polyurethane urea.
Polyurethane is a polymer having a plurality of urethane bonds, and is preferably a reaction product formed from raw materials containing polyol and polyisocyanate.
 ポリイソシアネートは、芳香環又は脂環を有していることが好ましい。
 なかでも、ポリイソシアネートは、本発明の効果がより優れる点で、脂環を有することが好ましい。脂環を有するポリイソシアネートを使用した場合、マイクロカプセル壁の透明性が優れるため、波長222nmの感度がより優れる。
 上記芳香環としては、例えば、芳香族炭化水素環及び芳香族複素環が挙げられ、芳香族炭化水素環が好ましく用いられる。
 上記芳香族炭化水素環は、置換基を有していてもよい。
 上記芳香族炭化水素環の炭素数は特に制限されないが、6~30が好ましく、6~18がより好ましく、6~10が更に好ましい。
 芳香族炭化水素環としては、例えば、ベンゼン環が挙げられる。
Polyisocyanate preferably has an aromatic ring or an alicyclic ring.
Among them, it is preferable that the polyisocyanate has an alicyclic ring from the viewpoint that the effects of the present invention are more excellent. When polyisocyanate having an alicyclic ring is used, the transparency of the microcapsule wall is excellent, so the sensitivity at a wavelength of 222 nm is more excellent.
Examples of the aromatic ring include aromatic hydrocarbon rings and aromatic heterocyclic rings, and aromatic hydrocarbon rings are preferably used.
The aromatic hydrocarbon ring may have a substituent.
The number of carbon atoms in the aromatic hydrocarbon ring is not particularly limited, but is preferably 6-30, more preferably 6-18, and even more preferably 6-10.
Aromatic hydrocarbon rings include, for example, benzene rings.
 ポリイソシアネートにおける芳香環の個数は特に制限されず、1個であっても、2個以上であってもよく、1個が好ましい。
 上記脂環は、置換基を有していてもよい。
 上記脂環の炭素数は特に制限されないが、3~30が好ましく、3~18がより好ましく、6~10が更に好ましい。
 脂環としては、例えば、シクロヘキサン環が挙げられる。
 ポリイソシアネートにおける脂環の個数は特に制限されず、1個であっても、2個以上であってもよく、1~3個が好ましい。
The number of aromatic rings in the polyisocyanate is not particularly limited, and may be one or two or more, preferably one.
The alicyclic ring may have a substituent.
Although the number of carbon atoms in the alicyclic ring is not particularly limited, it is preferably 3-30, more preferably 3-18, and even more preferably 6-10.
The alicyclic ring includes, for example, a cyclohexane ring.
The number of alicyclic rings in the polyisocyanate is not particularly limited, and may be 1 or 2 or more, preferably 1 to 3.
 芳香族ポリイソシアネートとしては、芳香族ジイソシアネートが挙げられ、例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート、ナフタレン-1,4-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、3,3’-ジメトキシ-ビフェニルジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、キシリレン-1,4-ジイソシアネート、キシリレン-1,3-ジイソシアネート、4-クロロキシリレン-1,3-ジイソシアネート、2-メチルキシリレン-1,3-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート及び4,4’-ジフェニルヘキサフルオロプロパンジイソシアネートが挙げられる。
 脂肪族ポリイソシアネートとしては、脂肪族ジイソシアネートが挙げられ、例えば、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,3-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,4-ビス(イソシアネートメチル)シクロヘキサン、1,3-ビス(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート、リジンジイソシアネート、水素化トリレンジイソシアネート及び水素化キシリレンジイソシアネートが挙げられる。
Aromatic polyisocyanates include aromatic diisocyanates such as m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, naphthalene-1,4-diisocyanate, diphenylmethane-4,4'-diisocyanate, 3,3'-dimethoxy-biphenyl diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, xylylene-1,4-diisocyanate, xylylene-1,3-diisocyanate, 4-chloroxylylene-1,3-diisocyanate, 2-methylxylylene-1,3-diisocyanate, 4,4'-diphenylpropane diisocyanate and 4,4'-diphenylhexafluoropropane diisocyanate.
Aliphatic polyisocyanates include aliphatic diisocyanates such as trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, cyclohexylene-1,2-diisocyanate, cyclohexane sylene-1,3-diisocyanate, cyclohexylene-1,4-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,4-bis(isocyanatomethyl)cyclohexane, 1,3-bis(isocyanatomethyl)cyclohexane, isophorone Diisocyanates, lysine diisocyanate, hydrogenated tolylene diisocyanate and hydrogenated xylylene diisocyanate.
 ポリイソシアネートとしては、3官能以上のポリイソシアネート(例えば、3官能のトリイソシアネート及び4官能のテトライソシアネート)も挙げられる。
 3官能以上のポリイソシアネートとしては、芳香族又は脂環族ジイソシアネートと1分子中に3つ以上の活性水素基を有する化合物(例えば、3官能以上の、ポリオール、ポリアミン又はポリチオール等)とのアダクト体(付加物)である3官能以上のポリイソシアネート(アダクト型である3官能以上のポリイソシアネート)及び芳香族又は脂環族ジイソシアネートの3量体(ビウレット型又はイソシアヌレート型)が好ましい。
ポリイソシアネートとしては、ベンゼンイソシアネートのホルマリン縮合物、メタクリロイルオキシエチルイソシアネート等の重合性基を有するポリイソシアネート及びリジントリイソシアネートも挙げられる。
 ポリイソシアネートについては「ポリウレタン樹脂ハンドブック」(岩田敬治編、日刊工業新聞社発行(1987))を援用できる。
Polyisocyanates also include tri- or higher functional polyisocyanates (eg, tri-functional triisocyanate and tetra-functional tetraisocyanate).
Trifunctional or higher polyisocyanates include adducts of aromatic or alicyclic diisocyanates and compounds having 3 or more active hydrogen groups in one molecule (for example, trifunctional or higher polyols, polyamines or polythiols). Tri- or more functional polyisocyanates (adduct type tri- or more functional polyisocyanates) and aromatic or alicyclic diisocyanate trimers (biuret type or isocyanurate type) are preferred.
Polyisocyanates also include formalin condensates of benzene isocyanate, polyisocyanates having polymerizable groups such as methacryloyloxyethyl isocyanate, and lysine triisocyanate.
Regarding polyisocyanate, "Polyurethane Resin Handbook" (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)) can be cited.
 ポリイソシアネートの市販品としては、例えば、タケネート(登録商標)D-102、D-103、D-103H、D-103M2、P49-75S、D-110N、D-120N、D-140N、D-160N、D-127N、D-170N、D-170HN、D-172N、D-177N、D-204、D-165N、NP1100(三井化学社製)スミジュールN3300、デスモジュール(登録商標)L75、UL57SP、N3200、N3600、N3900、Z4470BA(住化バイエルウレタン社製)、コロネート(登録商標)HL、HX、L、HK(日本ポリウレタン社製)、P301-75E(旭化成社製)、デュラネート(登録商標)TPA-100、TKA-100、TSA-100、TSS-100、TLA-100、24A-100、TSE-100(旭化成社製)及びバーノック(登録商標)D-750(DIC社製)が挙げられる。 Examples of commercially available polyisocyanates include Takenate (registered trademark) D-102, D-103, D-103H, D-103M2, P49-75S, D-110N, D-120N, D-140N, and D-160N. , D-127N, D-170N, D-170HN, D-172N, D-177N, D-204, D-165N, NP1100 (manufactured by Mitsui Chemicals) Sumidule N3300, Desmodur (registered trademark) L75, UL57SP, N3200, N3600, N3900, Z4470BA (manufactured by Sumika Bayer Urethane), Coronate (registered trademark) HL, HX, L, HK (manufactured by Nippon Polyurethane), P301-75E (manufactured by Asahi Kasei), Duranate (registered trademark) TPA -100, TKA-100, TSA-100, TSS-100, TLA-100, 24A-100, TSE-100 (manufactured by Asahi Kasei) and Barnock (registered trademark) D-750 (manufactured by DIC).
 ポリオールとしては、例えば、脂肪族、芳香族の多価アルコール、ヒドロキシポリエステル、及び、ヒドロキシポリアルキレンエーテルが挙げられる。
 具体的には、特開昭60-049991号公報に記載されたポリオールが挙げられ、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-へブタンジオール、1,8-オクタンジオール、プロピレングリコール、2,3-ジヒドロキシブタン、1,2-ジヒドロキシブタン、1,3-ジヒドロキシブタン、2,2-ジメチル-1,3-プロパンジオール、2,4-ペンタンジオール、2,5-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,4-シクロヘキサンジメタノール、ジヒドロキシシクロヘキサン、ジエチレングリコール、1,2,6-トリヒドロキシヘキサン、2-フェニルプロピレングリコール、1,1,1-トリメチロールプロパン、ヘキサントリオール、ペンタエリスリトール、ペンタエリスリトールエチレンオキサイド付加物、グリセリンエチレンオキサイド付加物、グリセリン、1,4-ジ(2-ヒドロキシエトキシ)ベンゼン、レゾルシノールジヒドロキシエチルエーテル等の芳香族多価アルコールとアルキレンオキサイドとの縮合生成物、p-キシリレングリコール、m-キシリレングリコール、α、α’-ジヒドロキシ-p-ジイソプロピルベンゼン、4,4’-ジヒドロキシ-ジフェニルメタン、2-(p、p’-ジヒドロキシジフェニルメチル)ベンジルアルコール、ビスフェノールAのエチレンオキサイド付加物、及び、ビスフェノールAのプロピレンオキサイド付加物が挙げられる。
 ポリオールは、イソシアネート基1モルに対して、水酸基の割合が0.02~2モルとなる量で使用されるのが好ましい。
Polyols include, for example, aliphatic and aromatic polyhydric alcohols, hydroxypolyesters, and hydroxypolyalkylene ethers.
Specific examples include the polyols described in JP-A-60-049991, such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 6-hexanediol, 1,7-hebutanediol, 1,8-octanediol, propylene glycol, 2,3-dihydroxybutane, 1,2-dihydroxybutane, 1,3-dihydroxybutane, 2,2-dimethyl- 1,3-propanediol, 2,4-pentanediol, 2,5-hexanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanedimethanol, dihydroxycyclohexane, diethylene glycol, 1,2,6 -trihydroxyhexane, 2-phenylpropylene glycol, 1,1,1-trimethylolpropane, hexanetriol, pentaerythritol, pentaerythritol ethylene oxide adduct, glycerin ethylene oxide adduct, glycerin, 1,4-di(2- hydroxyethoxy)benzene, condensation products of aromatic polyhydric alcohols such as resorcinol dihydroxyethyl ether and alkylene oxides, p-xylylene glycol, m-xylylene glycol, α,α'-dihydroxy-p-diisopropylbenzene, 4 ,4′-dihydroxy-diphenylmethane, 2-(p,p′-dihydroxydiphenylmethyl)benzyl alcohol, ethylene oxide adduct of bisphenol A, and propylene oxide adduct of bisphenol A.
The polyol is preferably used in such an amount that the ratio of hydroxyl groups is 0.02 to 2 mol per 1 mol of isocyanate groups.
 ポリアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、p-フェニレンジアミン、m-フェニレンジアミン、ピペラジン、2-メチルピペラジン、2,5-ジメチルピペラジン、2-ヒドロキシトリメチレンジアミン、ジエチレントリアミン、トリエチレントリアミン、トリエチレンテトラミン、ジエチルアミノプロピルアミン、テトラエチレンペンタミン、及び、エポキシ化合物のアミン付加物が挙げられる。 Examples of polyamines include ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, p-phenylenediamine, m-phenylenediamine, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, 2- Hydroxytrimethylenediamine, diethylenetriamine, triethylenetriamine, triethylenetetramine, diethylaminopropylamine, tetraethylenepentamine, and amine adducts of epoxy compounds.
 ポリイソシアネートは、水と反応して高分子物質を形成することもできる。 Polyisocyanate can also react with water to form polymeric substances.
 ポリイソシアネート、ポリオール、及び、ポリアミンとしては、例えば、米国特許3281383号、米国特許3773695号、米国特許3793268号、特公昭48-040347号公報、特公昭49-024159号公報、特開昭48-080191号公報、及び、特公昭48-084086号公報が挙げられ、これらの内容は本明細書に組み込まれる。 Polyisocyanates, polyols, and polyamines include, for example, US Pat. No. 3,281,383, US Pat. No. 3,773,695, US Pat. and Japanese Patent Publication No. 48-084086, the contents of which are incorporated herein.
 マイクロカプセルの平均粒子径としては、体積平均粒径で、0.1~100μmであるのが好ましい。下限値としては、0.3μm以上であるのがより好ましく、0.5μm以上であるのが更に好ましい。上限値としては、10μm以下であるのがより好ましく、5μm以下であるのが更に好ましい。マイクロカプセルの平均粒子径(体積平均粒径)が0.1μm以上である場合、カプセル内のコア材をより安定に保護できる。一方、マイクロカプセルの平均粒子径(体積平均粒径)が100μm以下である場合、発色画像の解像性がより向上する。
 なお、マイクロカプセルの平均粒子径(体積平均粒径)は、例えば、レーザー解析/散乱式粒子径分布測定装置LA950((株)堀場製作所製)で測定できる。
 また、紫外線感知部材に含まれるマイクロカプセルの平均粒子径を測定する場合には、マイクロカプセルの平均粒子径(体積平均粒径)は、走査型電子顕微鏡(SEM)で測定できる。具体的には、紫外線感知層の表面をSEMにて5000倍で観察し、観察した視野に存在する全てのマイクロカプセルについて画像解析により平均粒子径を求める。なお、表面にマイクロカプセルが観察できない場合には、断面切片を作製して上記同様に測定する。
 なお、上記マイクロカプセルは、特定マイクロカプセル及び特定マイクロカプセル以外を包含した概念を意味する。
The average particle size of the microcapsules is preferably 0.1 to 100 μm in terms of volume average particle size. The lower limit is more preferably 0.3 μm or more, and even more preferably 0.5 μm or more. The upper limit is more preferably 10 µm or less, and even more preferably 5 µm or less. When the average particle size (volume average particle size) of the microcapsules is 0.1 μm or more, the core material in the capsules can be more stably protected. On the other hand, when the average particle size (volume average particle size) of the microcapsules is 100 μm or less, the resolution of the colored image is further improved.
The average particle size (volume average particle size) of the microcapsules can be measured, for example, with a laser analysis/scattering particle size distribution analyzer LA950 (manufactured by Horiba, Ltd.).
When measuring the average particle size of the microcapsules contained in the ultraviolet sensing member, the average particle size (volume average particle size) of the microcapsules can be measured with a scanning electron microscope (SEM). Specifically, the surface of the ultraviolet sensitive layer is observed with an SEM at a magnification of 5000, and the average particle size of all microcapsules present in the observed field of view is determined by image analysis. If microcapsules cannot be observed on the surface, a cross-sectional slice is prepared and measured in the same manner as above.
In addition, the above-mentioned microcapsule means a concept including specific microcapsules and other than specific microcapsules.
(特定溶媒)
 特定マイクロカプセルは、特定溶媒を内包する。
 特定溶媒は、条件A及び条件Bの少なくとも一方を満たす溶媒である。
 条件A:溶媒が、ヘテロ原子を有する非芳香族溶媒Xを含む。
 条件B:溶媒が、芳香族溶媒Yと、非芳香族溶媒Zとを含む。
 「芳香族溶媒」とは、分子内に芳香環を有する溶媒を意味する。「非芳香族溶媒」とは、分子内に芳香環を有さない溶媒を意味する。
(specific solvent)
A specific microcapsule encloses a specific solvent.
A specific solvent is a solvent that satisfies at least one of condition A and condition B.
Condition A: The solvent contains a non-aromatic solvent X with heteroatoms.
Condition B: the solvent contains an aromatic solvent Y and a non-aromatic solvent Z;
"Aromatic solvent" means a solvent having an aromatic ring in the molecule. A "non-aromatic solvent" means a solvent that does not have an aromatic ring in its molecule.
・非芳香族溶媒X
 非芳香族溶媒Xは、ヘテロ原子を有する非芳香族溶媒である。
 非芳香族溶媒Xとしては、分子内に、ヘテロ原子を有し、芳香環を有さない非芳香族溶媒であれば特に制限されない。
・Non-aromatic solvent X
Non-aromatic solvent X is a non-aromatic solvent with heteroatoms.
The non-aromatic solvent X is not particularly limited as long as it has a heteroatom in its molecule and does not have an aromatic ring.
 非芳香族溶媒Xとしては、脂肪族構造を有する非芳香族溶媒が好ましい。
 「脂肪族構造を有する」とは、分子内に、芳香環を有さない炭化水素基を有することを意味する。
 上記芳香環を有さない炭化水素基は、直鎖状、分岐鎖状、及び、環状のいずれであってもよい。また、上記芳香環を有さない炭化水素基は、炭化水素基中の炭素原子が、ヘテロ原子及びカルボニル炭素で置換されていてもよい。また、上記炭化水素基は、更に置換基を有していてもよく、置換基がヘテロ原子を有していてもよい。
 ヘテロ原子としては、例えば、炭素原子及び水素原子以外の原子が挙げられ、窒素原子、酸素原子、リン原子、又は、硫黄原子が好ましく、酸素原子がより好ましい。
 上記炭化水素基の炭素数は特に制限されないが、1~50が好ましく、6~50がより好ましく、8~30が更に好ましい。
As the non-aromatic solvent X, a non-aromatic solvent having an aliphatic structure is preferred.
"Having an aliphatic structure" means having a hydrocarbon group having no aromatic ring in the molecule.
The aromatic ring-free hydrocarbon group may be linear, branched, or cyclic. In addition, in the above hydrocarbon group having no aromatic ring, carbon atoms in the hydrocarbon group may be substituted with heteroatoms and carbonyl carbon atoms. The hydrocarbon group may further have a substituent, and the substituent may have a heteroatom.
Examples of heteroatoms include atoms other than carbon atoms and hydrogen atoms, preferably nitrogen, oxygen, phosphorus, or sulfur atoms, and more preferably oxygen atoms.
The number of carbon atoms in the hydrocarbon group is not particularly limited, but is preferably 1-50, more preferably 6-50, and even more preferably 8-30.
 非芳香族溶媒Xは、脂肪族カルボン酸、脂肪酸エステル、エーテル系溶媒、アルコール系溶媒、アミド系溶媒、及び、ケトン系溶媒からなる群から選択される1種以上の溶媒を含むことが好ましい。
 また、非芳香族溶媒Xは、発色反応を促進する点から、アルコール系溶媒を含むことが好ましい。カプセル化反応適正の点から、脂肪族カルボン酸、脂肪酸エステル、エーテル系溶媒、アミド系溶媒、及び、ケトン系溶媒からなる群から選択される1種以上の溶媒を含むことも好ましい。
The non-aromatic solvent X preferably contains one or more solvents selected from the group consisting of aliphatic carboxylic acids, fatty acid esters, ether solvents, alcohol solvents, amide solvents, and ketone solvents.
In addition, the non-aromatic solvent X preferably contains an alcoholic solvent from the viewpoint of promoting the color-developing reaction. From the viewpoint of suitability for the encapsulation reaction, it is also preferable to contain one or more solvents selected from the group consisting of aliphatic carboxylic acids, fatty acid esters, ether solvents, amide solvents, and ketone solvents.
 脂肪族カルボン酸としては、例えば、オレイン酸、コハク酸ジメチル、コハク酸ジエチル、及び、ラウリン酸メチルが挙げられる。 Examples of aliphatic carboxylic acids include oleic acid, dimethyl succinate, diethyl succinate, and methyl laurate.
 脂肪酸エステルとしては、例えば、不飽和脂肪酸エステル及び飽和脂肪酸エステルが挙げられる。具体的には、大豆油、コーン油、綿実油、菜種油、オリーブ油、ヤシ油、ひまし油、及び、魚油等の天然動植物油が挙げられる。
 また、脂肪酸エステルとしては、脂肪族カルボン酸エステル、脂肪族スルホン酸エステル、及び、脂肪族リン酸エステルが挙げられ、脂肪族リン酸エステルが好ましい。脂肪族リン酸エステルとしては、具体的には、トリ(2-エチルヘキシエル)ホスフェートが挙げられる。
Fatty acid esters include, for example, unsaturated fatty acid esters and saturated fatty acid esters. Specific examples include natural animal and vegetable oils such as soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, coconut oil, castor oil, and fish oil.
Moreover, fatty acid esters include aliphatic carboxylic acid esters, aliphatic sulfonic acid esters, and aliphatic phosphate esters, and aliphatic phosphate esters are preferred. Specific examples of aliphatic phosphates include tri(2-ethylhexyl)phosphate.
 エーテル系溶媒としては、例えば、プロピレングリコールモノブチルエーテルが挙げられる。 Examples of ether-based solvents include propylene glycol monobutyl ether.
 ケトン系溶媒としては、例えば、シクロヘキサノンが挙げられる。 Examples of ketone-based solvents include cyclohexanone.
 アルコール系溶媒としては、カプセル形成反応を可能にしやすい点から、長鎖アルキルアルコールが好ましく、長鎖アルキルモノアルコールがより好ましく、炭素数6~20の長鎖アルキルモノアルコールが更に好ましい。炭素数6~20の長鎖アルキルモノアルコールとしては、例えば、オクタノールが挙げられる。 As the alcohol-based solvent, a long-chain alkyl alcohol is preferable, a long-chain alkyl mono-alcohol is more preferable, and a long-chain alkyl mono-alcohol having 6 to 20 carbon atoms is even more preferable, because it facilitates the capsule-forming reaction. Examples of long-chain alkyl monoalcohols having 6 to 20 carbon atoms include octanol.
 アミド系溶媒としては、例えば、N,N-ジエチルドデカンアミドが挙げられる。 Examples of amide-based solvents include N,N-diethyldodecanamide.
 非芳香族溶媒Xの沸点としては、100℃以上が好ましく、120℃以上がより好ましく、140℃以上が更に好ましい。上限としては特に制限されないが、500℃以下が好ましい。上記非芳香族溶媒Xの沸点が100℃以上である場合、マイクロカプセル化反応等の加熱工程において、特定マイクロカプセルから特定溶媒が除外されることなく残存しやすくなる。 The boiling point of the non-aromatic solvent X is preferably 100°C or higher, more preferably 120°C or higher, and even more preferably 140°C or higher. Although the upper limit is not particularly limited, 500° C. or less is preferable. When the boiling point of the non-aromatic solvent X is 100° C. or higher, the specific solvent tends to remain without being removed from the specific microcapsules in the heating process such as the microencapsulation reaction.
 非芳香族溶媒Xの分子量は特に制限されず、100以上の場合が多く、150以上が好ましい。上限は特に制限されないが、1000以下が好ましく、600以下がより好ましく、500以下が更に好ましい。 The molecular weight of the non-aromatic solvent X is not particularly limited, and is often 100 or more, preferably 150 or more. Although the upper limit is not particularly limited, it is preferably 1000 or less, more preferably 600 or less, and even more preferably 500 or less.
 非芳香族溶媒Xは、1種単独で又は2種以上を混合して用いてもよい。
 特定マイクロカプセル中、非芳香族溶媒Xの含有量としては、溶媒の総質量に対して、1~100質量%であるのが好ましく、10~100質量%であるのがより好ましく、15~100質量%であるのが更に好ましい。
 非芳香族溶媒Xは、紫外線感知層をアセトンで抽出し、得られたろ液を濃縮してGC-MS(Gas Chromatography Mass Spectrometry)分析することで種類、含有量及び組成比を分析できる。
The non-aromatic solvent X may be used alone or in combination of two or more.
The content of the non-aromatic solvent X in the specific microcapsules is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, more preferably 15 to 100% by mass, relative to the total mass of the solvent. % by mass is more preferred.
The type, content, and composition ratio of the non-aromatic solvent X can be analyzed by extracting the UV-sensitive layer with acetone, concentrating the obtained filtrate, and performing GC-MS (Gas Chromatography Mass Spectrometry) analysis.
・芳香族溶媒Y
 芳香族溶媒Yは、芳香環を有する芳香族溶媒である。
 芳香族溶媒Yは、ヘテロ原子を有していてもよい。つまり、芳香族溶媒Yは、ヘテロ原子を有する芳香族溶媒であってもよく、ヘテロ原子を有さない芳香族溶媒であってもよい。芳香族溶媒Yとしては、ヘテロ原子を有することが好ましい。
・Aromatic solvent Y
Aromatic solvent Y is an aromatic solvent having an aromatic ring.
The aromatic solvent Y may have heteroatoms. That is, the aromatic solvent Y may be an aromatic solvent having a heteroatom or may be an aromatic solvent having no heteroatoms. The aromatic solvent Y preferably has a heteroatom.
 芳香族溶媒Yが有する芳香環としては、例えば、芳香族炭化水素環及び芳香族複素環が挙げられ、芳香族炭化水素環が好ましく用いられる。
 上記芳香族炭化水素環としては、単環及び縮合多環のいずれであってもよいが、単環が好ましい。
 また、上記芳香族炭化水素環は、置換基を有していてもよい。なお、上記芳香族炭化水素環が置換基を複数有する場合、置換基同士が互いに結合して脂環を形成していてもよい。また、上記芳香族炭化水素環は、脂肪族構造を有していてもよい。
 上記芳香族炭化水素環の炭素数は特に制限されないが、6~30が好ましく、6~18がより好ましく、6~10が更に好ましい。
 単環の芳香族炭化水素環としては、例えば、ベンゼン環が挙げられる。
 多環の芳香族炭化水素環としては、例えば、ナフタレン環が挙げられる。
The aromatic ring of the aromatic solvent Y includes, for example, an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and the aromatic hydrocarbon ring is preferably used.
The aromatic hydrocarbon ring may be either a monocyclic ring or a condensed polycyclic ring, but is preferably a monocyclic ring.
Moreover, the aromatic hydrocarbon ring may have a substituent. When the aromatic hydrocarbon ring has a plurality of substituents, the substituents may bond together to form an alicyclic ring. Moreover, the aromatic hydrocarbon ring may have an aliphatic structure.
The number of carbon atoms in the aromatic hydrocarbon ring is not particularly limited, but is preferably 6-30, more preferably 6-18, and even more preferably 6-10.
Examples of the monocyclic aromatic hydrocarbon ring include a benzene ring.
Examples of polycyclic aromatic hydrocarbon rings include naphthalene rings.
 上記芳香族複素環としては、単環及び多環のいずれであってもよい。
 また、上記芳香族複素環は、置換基を有していてもよい。
 芳香族溶媒における芳香環の個数は特に制限されず、1個であっても、2個以上であってもよい。なお、芳香環を2個以上含む場合、上記2個の芳香環は、各芳香環上に存在し得る置換基が互いに結合することで多環構造(ただし、縮合多環構造を含まない)を形成していてもよい。
The aromatic heterocyclic ring may be either monocyclic or polycyclic.
Moreover, the aromatic heterocyclic ring may have a substituent.
The number of aromatic rings in the aromatic solvent is not particularly limited, and may be one or two or more. In the case of containing two or more aromatic rings, the two aromatic rings form a polycyclic structure (but not including a condensed polycyclic structure) by binding to each other substituents that may be present on each aromatic ring. may be formed.
 ヘテロ原子を有する芳香族溶媒Yとしては、例えば、分子内に芳香族複素環を有する芳香族溶媒、並びに、分子内にヘテロ原子及び芳香族炭化水素環を有する芳香族溶媒が挙げられる。
 ヘテロ原子を有する芳香族溶媒Y中のヘテロ原子としては、炭素原子及び水素原子以外の原子が挙げられ、窒素原子、酸素原子、硫黄原子、又は、リン原子が好ましく、酸素原子又はリン原子がより好ましい。波長222nmの透過率を確保しつつ、発色反応を促進し、波長222nmの感度により優れる点で、ヘテロ原子を有する芳香族溶媒Yは、カルボン酸エステル連結基、スルホン酸エステル連結基、リン酸エステル連結基、カルボニル連結基、及び、スルホン連結基からなる群から選択される1種以上の基を含むことが好ましい。
 ヘテロ原子を有する芳香族溶媒Yとしては、例えば、ベンゼンスルホン酸メチル、ベンゼンスルホン酸エチル、トルエンスルホン酸メチル、及び、トルエンスルホン酸エチル等の置換又は無置換のベンゼンスルホン酸エステル;フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジペンチル、フタル酸ジヘキシル、及び、フタル酸ジシクロヘキシル等の置換又は無置換のフタル酸ジエステル;トリフェニルホスフェート(TPP)、トリクレジルホスフェート(TCP)、トリキシレニルホスフェート(TXP)、クレジルジフェニルホスフェート(CDP)、2-エチルヘキシルジフェニルホスフェート(EHDP)、t-ブチルフェニルジフェニルホスフェート(t-BDP)、ビス-(t-ブチルフェニル)フェニルホスフェート(BBDP)、トリス-(t-ブチルフェニル)ホスフェート(TBDP)、イソプロピルフェニルジフェニルホスフェート(IPP)、ビス-(イソプロピルフェニル)ジフェニルホスフェート(BIPP)、及び、トリス-(イソプロピルフェニル)ホスフェート(TIPP)等の芳香族ホスフェートが挙げられる。
The heteroatom-containing aromatic solvent Y includes, for example, an aromatic solvent having an aromatic heterocycle in the molecule and an aromatic solvent having a heteroatom and an aromatic hydrocarbon ring in the molecule.
The heteroatom in the aromatic solvent Y having a heteroatom includes atoms other than carbon atoms and hydrogen atoms, preferably a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, more preferably an oxygen atom or a phosphorus atom. preferable. The heteroatom-containing aromatic solvent Y includes a carboxylate ester linking group, a sulfonate ester linking group, and a phosphate ester, in terms of ensuring the transmittance at a wavelength of 222 nm, promoting the color-developing reaction, and improving the sensitivity at a wavelength of 222 nm. It preferably contains one or more groups selected from the group consisting of a linking group, a carbonyl linking group, and a sulfone linking group.
Examples of heteroatom-containing aromatic solvents Y include substituted or unsubstituted benzenesulfonate esters such as methyl benzenesulfonate, ethyl benzenesulfonate, methyl toluenesulfonate, and ethyl toluenesulfonate; dimethyl phthalate; Substituted or unsubstituted phthalic acid diesters such as diethyl phthalate, dibutyl phthalate, dipentyl phthalate, dihexyl phthalate, and dicyclohexyl phthalate; triphenyl phosphate (TPP), tricresyl phosphate (TCP), trixylenyl phosphate (TXP), cresyl diphenyl phosphate (CDP), 2-ethylhexyl diphenyl phosphate (EHDP), t-butylphenyl diphenyl phosphate (t-BDP), bis-(t-butylphenyl) phenyl phosphate (BBDP), tris- aromatic phosphates such as (t-butylphenyl)phosphate (TBDP), isopropylphenyldiphenylphosphate (IPP), bis-(isopropylphenyl)diphenylphosphate (BIPP), and tris-(isopropylphenyl)phosphate (TIPP); be done.
 芳香族溶媒Yは、1種単独で又は2種以上を混合して用いてもよい。
 特定マイクロカプセル中、芳香族溶媒Yの含有量としては、溶媒の総質量に対して、0質量%超100質量%未満であるのが好ましく、10~99質量%であるのがより好ましく、20~95質量%であるのが更に好ましい。
 芳香族溶媒Yの沸点及び分子量は、それぞれ、上述した非芳香族溶媒Xと同じであり、好適態様も同じである。
 溶媒の種類、含有量及び組成比は、上述した非芳香族溶媒Xにおける分析方法と同様の方法で分析できる。
The aromatic solvent Y may be used alone or in combination of two or more.
In the specific microcapsules, the content of the aromatic solvent Y is preferably more than 0% by mass and less than 100% by mass, more preferably 10 to 99% by mass, with respect to the total mass of the solvent, 20 More preferably, it is up to 95% by mass.
The boiling point and molecular weight of the aromatic solvent Y are the same as those of the non-aromatic solvent X described above, and the preferred embodiments are also the same.
The type, content and composition ratio of the solvent can be analyzed by the same method as the analysis method for the non-aromatic solvent X described above.
・非芳香族溶媒Z
 非芳香族溶媒Zは、非芳香族溶媒である。
 非芳香族溶媒Zは、ヘテロ原子を有していてもよい。つまり、非芳香族溶媒Zは、ヘテロ原子を有する非芳香族溶媒であってもよく、ヘテロ原子を有さない非芳香族溶媒であってもよい。なお、ヘテロ原子を有する非芳香族溶媒Zは、上述したヘテロ原子を有する非芳香族溶媒Xと同じであり、好適態様も同じである。
 ヘテロ原子を有さない非芳香族溶媒Zとしては、例えば、脂肪族炭化水素が挙げられる。
 上記脂肪族炭化水素は、直鎖状、分岐鎖状、及び、環状のいずれであってもよい。
 上記脂肪族炭化水素の炭素数は、1~50が好ましく、8~50がより好ましく、10~30が更に好ましい。
 なかでも、上記脂肪族炭化水素としては、炭素数1~50の脂肪族炭化水素が好ましく、分岐状の炭素数8~50の脂肪族炭化水素がより好ましい。
 非芳香族溶媒Zは、脂肪族炭化水素、脂肪族カルボン酸、脂肪酸エステル、エーテル系溶媒、アルコール系溶媒、アミド系溶媒、及び、ケトン系溶媒からなる群から選択される1種以上の溶媒を含むことが好ましい。
・Non-aromatic solvent Z
Non-aromatic solvent Z is a non-aromatic solvent.
The non-aromatic solvent Z may have heteroatoms. That is, the non-aromatic solvent Z may be a non-aromatic solvent with heteroatoms or a non-aromatic solvent without heteroatoms. The heteroatom-containing non-aromatic solvent Z is the same as the heteroatom-containing non-aromatic solvent X described above, and the preferred embodiments thereof are also the same.
Non-aromatic solvents Z without heteroatoms include, for example, aliphatic hydrocarbons.
The aliphatic hydrocarbon may be linear, branched, or cyclic.
The number of carbon atoms in the aliphatic hydrocarbon is preferably 1-50, more preferably 8-50, even more preferably 10-30.
Among them, the aliphatic hydrocarbons are preferably aliphatic hydrocarbons having 1 to 50 carbon atoms, more preferably branched aliphatic hydrocarbons having 8 to 50 carbon atoms.
The non-aromatic solvent Z is one or more solvents selected from the group consisting of aliphatic hydrocarbons, aliphatic carboxylic acids, fatty acid esters, ether solvents, alcohol solvents, amide solvents, and ketone solvents. preferably included.
 非芳香族溶媒Zとしては、例えば、上述した非芳香族溶媒X、イソパラフィン(例えば、炭素数10~30のイソパラフィン)等の脂肪族炭化水素、及び、鉱物油等の天然物高沸点留分が挙げられる。 Examples of the non-aromatic solvent Z include the above-mentioned non-aromatic solvent X, aliphatic hydrocarbons such as isoparaffins (e.g., isoparaffins having 10 to 30 carbon atoms), and natural high-boiling fractions such as mineral oils. mentioned.
 非芳香族溶媒Zは、1種単独で又は2種以上を混合して用いてもよい。
 特定マイクロカプセル中、非芳香族溶媒Zの含有量としては、溶媒の総質量に対して、0質量%超100質量%未満であるのが好ましく、1~50質量%であるのがより好ましく、1~20質量%であるのが更に好ましい。
 非芳香族溶媒Zの沸点及び分子量は、それぞれ、上述した非芳香族溶媒Xと同じであり、好適態様も同じである。
 溶媒の種類、含有量及び組成比は、上述した非芳香族溶媒Xにおける分析方法と同様の方法で分析できる。
The non-aromatic solvent Z may be used singly or in combination of two or more.
The content of the non-aromatic solvent Z in the specific microcapsules is preferably more than 0% by mass and less than 100% by mass, more preferably 1 to 50% by mass, relative to the total mass of the solvent, More preferably, it is 1 to 20% by mass.
The boiling point and molecular weight of the non-aromatic solvent Z are the same as those of the non-aromatic solvent X described above, and the preferred embodiments are also the same.
The type, content and composition ratio of the solvent can be analyzed by the same method as the analysis method for the non-aromatic solvent X described above.
 特定溶媒は、沸点が100℃以上の溶媒を1種以上含んでいるのが好ましく、特定マイクロカプセル中に含まれる全ての特定溶媒は、沸点が100℃以上であるのがより好ましい。なお、特定溶媒の沸点の上限としては、500℃以下が好ましい。
 特定マイクロカプセル中に含まれる全ての溶媒は、沸点が100℃以上であるのが好ましい。なお、全ての溶媒の沸点の上限としては、500℃以下が好ましい。
The specific solvent preferably contains one or more solvents having a boiling point of 100° C. or higher, and more preferably all the specific solvents contained in the specific microcapsules have a boiling point of 100° C. or higher. In addition, as an upper limit of the boiling point of a specific solvent, 500 degrees C or less is preferable.
All solvents contained in the specific microcapsules preferably have a boiling point of 100° C. or higher. The upper limit of the boiling point of all solvents is preferably 500°C or less.
(発色剤)
 特定マイクロカプセルは、発色剤を内包する。
 ここで、「発色剤」とは、実質的に無色である状態(無色であるか又は弱い色を呈している状態)から、光活性剤から発生する酸及び/又はラジカル等によって発色する化合物を指す。後述する光活性剤から発生する酸及び/又はラジカルとの反応によって発色する化合物であることが好ましい。
 発色剤としては、酸化されて発色する化合物又は酸の作用によって発色する化合物であるのが好ましく、ロイコ色素であるのが好ましい。
 上記ロイコ色素としては、なかでも、実質的に無色である状態から酸化されて発色する化合物(以下「酸化発色性ロイコ色素」ともいう。)であるか、又は、実質的に無色である状態から酸の作用によって発色する化合物(以下「酸発色性ロイコ色素」ともいう。)であるのが好ましい。
 ロイコ色素としては、例えば、トリアリールメタンフタリド系化合物、フルオラン系化合物、フェノチアジン系化合物、インドリルフタリド系化合物、アザインドリルフタリド系化合物、ロイコオーラミン系化合物、ローダミンラクタム系化合物、トリアリールメタン系化合物、ジアリールメタン系化合物、トリアゼン系化合物、スピロピラン系化合物、チアジン化合物、及び、フルオレン系化合物が挙げられる。
 上記の化合物の詳細については、米国特許第3445234号、特開平5-257272号公報、及び、国際公開第2009/8248号の段落0029~0034の記載を参照できる。
 発色剤は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
(color former)
A specific microcapsule encloses a coloring agent.
Here, the term "color former" refers to a compound that develops color from a substantially colorless state (colorless or weakly colored state) by acid and/or radicals generated from a photoactive agent. Point. A compound that develops color by reaction with an acid and/or a radical generated from a photoactive agent, which will be described later, is preferred.
The coloring agent is preferably a compound that develops color by oxidation or a compound that develops color by the action of an acid, and is preferably a leuco dye.
As the leuco dye, among others, it is a compound that develops color by being oxidized from a substantially colorless state (hereinafter also referred to as "oxidative coloring leuco dye"), or a compound that develops color from a substantially colorless state. A compound that develops color under the action of acid (hereinafter also referred to as "acid-color-forming leuco dye") is preferred.
Examples of leuco dyes include triarylmethanephthalide-based compounds, fluoran-based compounds, phenothiazine-based compounds, indolylphthalide-based compounds, azaindolylphthalide-based compounds, leuco auramine-based compounds, rhodamine lactam-based compounds, triarylmethanephthalide-based compounds, Examples include arylmethane-based compounds, diarylmethane-based compounds, triazene-based compounds, spiropyran-based compounds, thiazine compounds, and fluorene-based compounds.
For details of the above compounds, reference can be made to US Pat.
The coloring agents may be used singly or in combination of two or more.
・酸化発色性ロイコ色素
 酸化発色性ロイコ色素の一態様としては、電子を除去することによって発色する、1個又は2個の水素原子を有している化合物であるのが好ましい。このような酸化発色性ロイコ色素としては、例えば、米国特許3445234号明細書に記載されているような、(a)アミノトリアリールメタン、(b)アミノキサンチン、(c)アミノチオキサンチン、(d)アミノ-9,10-ジヒドロアクリジン、(e)アミノフェノキサジン、(f)アミノフェノチアジン、(g)アミノジヒドロフェナジン、(h)アミノジフェニルメタン、(i)ロイコインダミン、(j)アミノヒドロシンナミック酸(シアンエタン、ロイコメチン)、(k)ヒドラジン、(l)ロイコインジゴイド染料、(m)アミノ-2,3-ジヒドロアントラキノン、(n)テトラハロ-p,p’-ビフェノール、(o)2-(p-ヒドロキシフェニル)-4,5-ジフェニルイミダゾール、及び、(p)フェネチルアニリン等が挙げられる。上述の(a)~(p)のうち、(a)~(i)は、1つの水素原子を失うことにより発色し、(j)~(p)のものは2つの水素原子を失うことにより発色する。
Oxidative Color-Forming Leuco Dye One embodiment of the oxidation color-forming leuco dye is preferably a compound having one or two hydrogen atoms that develops color by removing electrons. Such oxidative chromogenic leuco dyes include, for example, (a) aminotriarylmethane, (b) aminoxanthine, (c) aminothioxanthine, and (d) as described in US Pat. No. 3,445,234. ) amino-9,10-dihydroacridine, (e) aminophenoxazine, (f) aminophenothiazine, (g) aminodihydrophenazine, (h) aminodiphenylmethane, (i) leukindamine, (j) aminohydrocinnamic acid (cyanethane, leucometine), (k) hydrazine, (l) leucoin digoid dye, (m) amino-2,3-dihydroanthraquinone, (n) tetrahalo-p,p'-biphenol, (o) 2-( p-hydroxyphenyl)-4,5-diphenylimidazole and (p) phenethylaniline. Among the above (a) to (p), (a) to (i) are colored by losing one hydrogen atom, and (j) to (p) are colored by losing two hydrogen atoms. develop color.
 これらのうち、アミノアリールメタンが好ましく、アミノトリアリールメタンがより好ましい。
 アミノトリアリールメタンとしては、下記式(L)で表される化合物又はその酸塩が好ましい。
Among these, aminoarylmethanes are preferred, and aminotriarylmethanes are more preferred.
Aminotriarylmethane is preferably a compound represented by the following formula (L) or an acid salt thereof.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、Arは、(A1)式中に明示されるメタン炭素原子への結合に対してパラ位にあるRN-置換基を有するフェニル基を表す。Arは、(A1)式中に明示されるメタン炭素原子への結合に対してパラ位にあるRN-置換基を有するフェニル基、又は、(A2)式中に明示されるメタン炭素原子に対してオルト位に、アルキル基(好ましくは、炭素数1~4のアルキル基)、アルコキシ基(好ましくは、炭素数1~4のアルコキシ基)、フッ素原子、塩素原子、及び、臭素原子からなる群から選択される置換基を有するフェニル基を表す。R及びRは、各々独立に、水素原子、炭素数1~10のアルキル基、2-ヒドロキシエチル基、2-シアノエチル基、又は、ベンジル基を表す。
 Arは、Ar及びArのうち少なくとも一方と同一の基を表すか、又は、Ar及びArとは異なる基を表す。ArがAr及びArとは異なる基を表す場合、Arは、(B1)低級アルキル基(好ましくは、炭素数1~4のアルキル基)、低級アルコキシ基(好ましくは、炭素数1~4のアルコキシ基)、塩素原子、ジフェニルアミノ基、シアノ基、ニトロ基、ヒドロキシ基、フッ素原子、臭素原子、アルキルチオ基、アリールチオ基、チオエステル基、アルキルスルフォン酸基、アリールスルフォン酸基、スルフォン酸基、スルフォンアミド基、アルキルアミド基、及びアリールアミド基からなる群から選ばれる置換基で置換されていてもよいフェニル基、(B2)アミン基、ジ-低級アルキルアミノ基、及びアルキルアミノ基からなる群から選ばれる置換基で置換されていてもよいナフチル基、(B3)アルキル基で置換されていてもよいピリジル基、(B4)キノリル基、又は、(B5)アルキル基で置換されていてもよいインドリニリデン基を表す。
wherein Ar 1 represents a phenyl group with R 1 R 2 N-substituents para to the bond to the methane carbon atom specified in formula (A1). Ar 2 is a phenyl group having an R 1 R 2 N-substituent para to the bond to the methane carbon atom specified in formula (A1), or a phenyl group specified in formula (A2) ortho-position to the methane carbon atom, an alkyl group (preferably an alkyl group having 1 to 4 carbon atoms), an alkoxy group (preferably an alkoxy group having 1 to 4 carbon atoms), a fluorine atom, a chlorine atom, and, represents a phenyl group having a substituent selected from the group consisting of bromine atoms; R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a 2-hydroxyethyl group, a 2-cyanoethyl group or a benzyl group.
Ar 3 represents the same group as at least one of Ar 1 and Ar 2 , or represents a group different from Ar 1 and Ar 2 . When Ar 3 represents a group different from Ar 1 and Ar 2 , Ar 3 is (B1) a lower alkyl group (preferably an alkyl group having 1 to 4 carbon atoms), a lower alkoxy group (preferably 4 alkoxy groups), chlorine atom, diphenylamino group, cyano group, nitro group, hydroxy group, fluorine atom, bromine atom, alkylthio group, arylthio group, thioester group, alkylsulfonic acid group, arylsulfonic acid group, sulfonic acid a phenyl group optionally substituted with a substituent selected from the group consisting of a group consisting of a sulfonamide group, an alkylamide group, and an arylamide group; (B2) an amine group, a di-lower alkylamino group, and an alkylamino group; a naphthyl group optionally substituted with a substituent selected from the group consisting of (B3) a pyridyl group optionally substituted with an alkyl group, (B4) a quinolyl group, or (B5) substituted with an alkyl group represents an indolinylidene group.
 上記式(L)において、R及びRは、水素原子又は炭素数1~4のアルキルであるのが好ましい。
 また、上記式(L)において、Ar、Ar、及び、Arは、いずれも(A1)式中に明示されるメタン炭素原子への結合に対してパラ位にあるRN-置換基を有するフェニル基を表すのが好ましく、なかでも、同一の基であるのが好ましい。
In formula (L) above, R 1 and R 2 are preferably a hydrogen atom or alkyl having 1 to 4 carbon atoms.
In the above formula (L), Ar 1 , Ar 2 and Ar 3 are all R 1 R 2 N para to the bond to the methane carbon atom specified in formula (A1). It preferably represents a phenyl group having a -substituent, and more preferably the same group.
 酸化発色性ロイコ色素の具体例としては、トリス(4-ジメチルアミノフェニル)メタン、トリス(4-ジエチルアミノフェニル)メタン、ビス(4-ジエチルアミノフェニル)-(4-ジエチルアミノ-2-メチルフェニル)メタン、ビス(4-ジエチルアミノ-2-メチルフェニル)-(4-ジエチルアミノフェニル)メタン、ビス(1-エチル-2-メチルインドール-3-イル)-フェニルメタン、2-N-(3-トリフルオロメチルフェニル)-N-エチルアミノ-6-ジエチルアミノ-9-(2-メトキシカルボニルフェニル)キサンテン、2-(2-クロロフェニル)アミノ-6-ジブチルアミノ-9-(2-メトキシカルボニルフェニル)キサンテン、2-ジベンジルアミノ-6-ジエチルアミノ-9-(2-メトキシカルボニルフェニル)キサンテン、ベンゾ〔a〕-6-N,N-ジエチルアミノ-9-(2-メトキシカルボニルフェニル)キサンテン、2-(2-クロロフェニル)-アミノ-6-ジブチルアミノ-9-(2-メチルフェニルカルボキシアミドフェニル)キサンテン、3,6-ジメトキシ-9-(2-メトキシカルボニル)-フェニルキサンテン、ベンゾイルロイコメチレンブルー、及び、3,7-ビス-ジエチルアミノフェノキサジン等が挙げられる。 Specific examples of oxidation chromogenic leuco dyes include tris(4-dimethylaminophenyl)methane, tris(4-diethylaminophenyl)methane, bis(4-diethylaminophenyl)-(4-diethylamino-2-methylphenyl)methane, Bis(4-diethylamino-2-methylphenyl)-(4-diethylaminophenyl)methane, bis(1-ethyl-2-methylindol-3-yl)-phenylmethane, 2-N-(3-trifluoromethylphenyl )-N-ethylamino-6-diethylamino-9-(2-methoxycarbonylphenyl)xanthene, 2-(2-chlorophenyl)amino-6-dibutylamino-9-(2-methoxycarbonylphenyl)xanthene, 2-di benzylamino-6-diethylamino-9-(2-methoxycarbonylphenyl)xanthene, benzo[a]-6-N,N-diethylamino-9-(2-methoxycarbonylphenyl)xanthene, 2-(2-chlorophenyl)- amino-6-dibutylamino-9-(2-methylphenylcarboxamidophenyl)xanthene, 3,6-dimethoxy-9-(2-methoxycarbonyl)-phenylxanthene, benzoyl leucomethylene blue, and 3,7-bis- and diethylaminophenoxazine.
・酸発色性ロイコ色素
 酸発色性ロイコ色素の一態様としては、電子を供与して、又は酸等のプロトンを受容して発色する化合物であるのが好ましい。具体的には、ラクトン、ラクタム、サルトン、スピロピラン、エステル、及び、アミド等の部分骨格を有し、酸又はプロトンと接触してこれらの部分骨格が開環若しくは開裂する化合物が挙げられる。
 酸の作用により発色するロイコ色素(酸発色性ロイコ色素)としては、例えば、3,3-ビス(2-メチル-1-オクチル-3-インドリル)フタリド、6’-(ジブチルアミノ)-2’-ブロモ-3’-メチルスピロ[フタリド-3,9’-キサンテン]、3-(4-ジエチルアミノ-2-エトキシフェニル)-3-(1-エチル-2-メチルインドール-3-イル)-4-アザフタリド、3-(4-ジエチルアミノ-2-エトキシフェニル)-3-(1-n-オクチル-2-メチルインドール-3-イル)フタリド、3-[2,2-ビス(1-エチル-2-メチルインドール-3-イル)ビニル]-3-(4-ジエチルアミノフェニル)-フタリド、2-アニリノ-6-ジブチルアミノ-3-メチルフルオラン、6-ジエチルアミノ-3-メチル-2-(2,6-キシリジノ)-フルオラン、2-(2-クロロアニリノ)-6-ジブチルアミノフルオラン、3,3-ビス(4-ジメチルアミノフェニル)-6-ジメチルアミノフタリド、2-アニリノ-6-ジエチルアミノ-3-メチルフルオラン、9-[エチル(3-メチルブチル)アミノ]スピロ[12H-ベンゾ[a]キサンテン-12,1’(3’H)イソベンゾフラン]-3’-オン、2’-メチル-6’-(N-p-トリル-N-エチルアミノ)スピロ[イソベンゾフラン-1(3H),9’-[9H]キサンテン]-3-オン、3’,6’-ビス(ジエチルアミノ)-2-(4-ニトロフェニル)スピロ[イソインドール-1,9’-キサンテン]-3-オン、9-(N-エチル-N-イソペンチルアミノ)スピロ[ベンゾ[a]キサンテン-12,3’-フタリド]、2’-アニリノ-6’-(N-エチル-N-イソペンチルアミノ)-3’-メチルスピロ[フタリド-3,9’-[9H]キサンテン]、及び、6’-(ジエチルアミノ)-1’,3’-ジメチルフルオランが挙げられる。
• Acid-color-forming leuco dye As one aspect of the acid-color-forming leuco dye, it is preferably a compound that develops color by donating electrons or accepting protons such as acids. Specific examples include compounds having partial skeletons such as lactones, lactams, sultones, spiropyrans, esters, and amides, and these partial skeletons are ring-opened or cleaved upon contact with acids or protons.
Leuco dyes that develop color under the action of acid (acid-color-forming leuco dyes) include, for example, 3,3-bis(2-methyl-1-octyl-3-indolyl)phthalide and 6′-(dibutylamino)-2′. -bromo-3′-methylspiro[phthalido-3,9′-xanthene], 3-(4-diethylamino-2-ethoxyphenyl)-3-(1-ethyl-2-methylindol-3-yl)-4- Azaphthalide, 3-(4-diethylamino-2-ethoxyphenyl)-3-(1-n-octyl-2-methylindol-3-yl)phthalide, 3-[2,2-bis(1-ethyl-2- methylindol-3-yl)vinyl]-3-(4-diethylaminophenyl)-phthalide, 2-anilino-6-dibutylamino-3-methylfluorane, 6-diethylamino-3-methyl-2-(2,6 -xylidino)-fluorane, 2-(2-chloroanilino)-6-dibutylaminofluorane, 3,3-bis(4-dimethylaminophenyl)-6-dimethylaminophthalide, 2-anilino-6-diethylamino-3 -methylfluorane, 9-[ethyl(3-methylbutyl)amino]spiro[12H-benzo[a]xanthene-12,1′(3′H)isobenzofuran]-3′-one, 2′-methyl-6 '-(Np-tolyl-N-ethylamino)spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 3',6'-bis(diethylamino)-2- (4-Nitrophenyl)spiro[isoindole-1,9′-xanthene]-3-one, 9-(N-ethyl-N-isopentylamino)spiro[benzo[a]xanthene-12,3′-phthalide ], 2′-anilino-6′-(N-ethyl-N-isopentylamino)-3′-methylspiro[phthalide-3,9′-[9H]xanthene], and 6′-(diethylamino)-1 ',3'-dimethylfluorane can be mentioned.
(光活性剤)
 特定マイクロカプセルは、光活性剤を内包する。
 光活性剤は、光により活性化される化合物であれば特に制限されないが、光により活性化された光活性剤が、発色剤に作用して発色することが好ましく、紫外線により活性化される化合物であることが好ましい。光活性剤としては、光酸化剤及び光酸発生剤のいずれか1種以上であることが好ましい。特定マイクロカプセルが酸化されて発色する発色剤を含む場合には、光活性剤は光酸化剤を含むことが好ましく、特定マイクロカプセルが酸の作用により発色する発色剤を含む場合には、光活性剤は光酸発生剤を含むことが好ましい。
 特定マイクロカプセル中、発色剤に対する光活性剤の含有量比(光活性剤/発色剤(質量比))としては、感度がより優れる点で、0.1~30であるのが好ましく、0.3~20であるのがより好ましい。光活性剤が光酸化剤の場合は、発色剤に対する光活性剤の含有量比は0.4~3であるのが好ましく、光活性剤が光酸発生剤の場合は、発色剤に対する光活性剤の含有量比は3~20が好ましく、10~20がより好ましい。
 発色剤に対する光活性剤の含有量比は、紫外線感知層をメタノールで抽出し、メタノール/水の混合液を溶離液として、液体クロマトグラフィー分析し、各成分の最大吸収波長における比率を算出することで分析できる。
(photoactivator)
A specific microcapsule encloses a photoactive agent.
The photoactive agent is not particularly limited as long as it is a compound that is activated by light, but the photoactive agent that is activated by light preferably acts on a color former to develop color, and is a compound that is activated by ultraviolet light. is preferably The photoactive agent is preferably one or more of a photooxidizing agent and a photoacid generator. When the specific microcapsules contain a color former that develops color by oxidation, the photoactive agent preferably contains a photo-oxidizing agent. Preferably, the agent comprises a photoacid generator.
In the specific microcapsules, the content ratio of the photoactive agent to the color former (photoactive agent/color former (mass ratio)) is preferably 0.1 to 30, and 0.1 to 30 in terms of better sensitivity. 3 to 20 is more preferred. When the photoactive agent is a photooxidant, the content ratio of the photoactive agent to the color former is preferably 0.4-3. The content ratio of the agents is preferably 3-20, more preferably 10-20.
The content ratio of the photoactive agent to the color former is obtained by extracting the ultraviolet-sensitive layer with methanol, using a mixture of methanol and water as the eluent, performing liquid chromatography analysis, and calculating the ratio at the maximum absorption wavelength of each component. can be analyzed with
・光酸化剤
 光酸化剤としては、紫外線により活性化されて、ラジカルを発生する、及び/又は、発色剤の水素原子を引き抜く作用を示すことにより発色剤を呈色し得る化合物であるのが好ましい。
 光酸化剤としては、なかでも、ラジカル発生剤及び有機ハロゲン化合物の1種以上であるのが好ましい。光酸発生剤として、ラジカル発生剤及び有機ハロゲン化合物を併用する態様も好ましい。ラジカル発生剤及び有機ハロゲン化合物を併用する場合、有機ハロゲン化合物に対するラジカル発生剤の含有量比(ラジカル発生剤/有機ハロゲン化合物(質量比))としては、発色部の階調性がより優れる点で、0.1~10であるが好ましく、0.5~5であるのがより好ましい。
Photo-oxidizing agent The photo-oxidizing agent is a compound that can be activated by ultraviolet rays to generate radicals and/or extract the hydrogen atoms of the coloring agent to color the coloring agent. preferable.
Among them, the photo-oxidizing agent is preferably one or more of radical generators and organic halogen compounds. A mode in which a radical generator and an organic halogen compound are used in combination as the photoacid generator is also preferred. When a radical generator and an organic halogen compound are used in combination, the ratio of the content of the radical generator to the organic halogen compound (radical generator/organic halogen compound (mass ratio)) is such that the gradation of the color-developing portion is more excellent. , preferably 0.1 to 10, more preferably 0.5 to 5.
・・ラジカル発生剤
 ラジカル発生剤としては、紫外線により活性化されてラジカルを発生する化合物であれば特に制限されない。
 ラジカル発生剤としては、水素引抜型ラジカル発生剤が好ましい。水素引抜型ラジカル発生剤は、発色剤から水素原子を引き抜いて発色剤の酸化を促進する作用を示す。
 ラジカル発生剤としては、例えば、日本写真学会1968年春季研究発表会講演要旨55頁記載のアジドポリマー;米国特許第3,282,693号記載の2-アジドベンゾオキサゾール、ベンゾイルアジド、及び、2-アジドベンズイミダゾール等のアジド化合物;米国特許第3,615,568号記載の3’-エチル-1-メトキシ-2-ピリドチアシアニンパークロレート、及び、1-メトキシ-2-メチルピリジニウムp-トルエンスルホネート等;特公昭62-039728号記載の2,4,5-トリアリールイミダゾール二量体等のロフィンダイマー化合物;ベンゾフェノン;p-アミノフェニルケトン;多核キノン;チオキサンテノン;等が挙げられる。
 なかでも、ロフィンダイマー及びベンゾフェノンから選択される1種以上が好ましく、ロフィンダイマーがより好ましい。
 ロフィンダイマーとしては、例えば、ヘキサアリールビイミダゾール化合物が挙げられる。ヘキサアリールビイミダゾール系化合物としては、国際公開第2016/017701号の段落0047に記載された化合物を参酌でき、これらの内容は本明細書に組み込まれる。
 なかでも、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾールが好ましい。2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾールとしては、例えば、「B-IMD」(黒金化成社製)、及び、「B-CIM」(保土ヶ谷化学工業社製)を使用できる。
.. Radical generator The radical generator is not particularly limited as long as it is a compound that is activated by ultraviolet rays to generate radicals.
As the radical generator, a hydrogen abstraction type radical generator is preferred. The hydrogen abstraction type radical generator has the effect of abstracting hydrogen atoms from the color former to promote oxidation of the color former.
Radical generators include, for example, the azide polymer described on page 55 of the 1968 Spring Research Presentation Meeting of the Photographic Society of Japan; 2-azidobenzoxazole, benzoylazide, and 2- Azide compounds such as azidobenzimidazole; 3′-ethyl-1-methoxy-2-pyridothiacyanine perchlorate and 1-methoxy-2-methylpyridinium p-toluene as described in US Pat. No. 3,615,568 sulfonates, etc.; lophine dimer compounds such as 2,4,5-triarylimidazole dimers described in JP-B-62-039728; benzophenones; p-aminophenyl ketones; polynuclear quinones;
Among them, one or more selected from lophine dimers and benzophenones are preferable, and lophine dimers are more preferable.
Rophine dimers include, for example, hexaarylbiimidazole compounds. As the hexaarylbiimidazole-based compound, the compounds described in paragraph 0047 of International Publication No. 2016/017701 can be considered, and the contents thereof are incorporated herein.
Among them, 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole is preferred. Examples of 2,2′-bis(2-chlorophenyl)-4,4′,5,5′-tetraphenyl-1,2′-biimidazole include “B-IMD” (manufactured by Kurogane Kasei Co., Ltd.), And "B-CIM" (manufactured by Hodogaya Chemical Industry Co., Ltd.) can be used.
 ロフィンダイマーとしては、下記一般式(1)で表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000002
As lophine dimers, compounds represented by the following general formula (1) are also preferred.
Figure JPOXMLDOC01-appb-C000002
 式中、A、B、及びDは、各々独立に、無置換、又は、イミダゾリル基への二量体の解離若しくは発色剤の酸化を阻害しない置換基で置換された、炭素環又はヘテロアリール基を表す。
 B及びDは、各々独立に、無置換であるか、又は、1~3個の置換基を有するのが好ましく、Aは、無置換であるか、又は、1~4個の置換基を有するのが好ましい。
 一般式(1)で表される化合物及びそれらの製法は、ロフィンダイマー等として知られる知見を利用できる。例えば、米国特許第3552973号明細書の第4欄第22行及び第6欄第3行の記載が挙げられ、これらの内容は本明細書に組み込まれる。
wherein A, B, and D are each independently a carbocyclic or heteroaryl group that is unsubstituted or substituted with a substituent that does not inhibit the dissociation of the dimer to the imidazolyl group or the oxidation of the coloring agent. represents
B and D are each independently preferably unsubstituted or have 1 to 3 substituents, and A is unsubstituted or has 1 to 4 substituents is preferred.
Knowledge known as lophine dimers and the like can be used for the compounds represented by the general formula (1) and methods for producing them. See, for example, US Pat. No. 3,552,973 at column 4, line 22 and column 6, line 3, the contents of which are incorporated herein.
 ラジカル発生剤は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 One type of radical generator may be used alone, or two or more types may be mixed and used.
・・有機ハロゲン化合物
 有機ハロゲン化合物は、発色剤の酸化を促進し得る。
 有機ハロゲン化合物としては、発色部の階調性がより優れる点で、分子内のハロゲン原子の個数が3個以上である化合物が好ましい。ハロゲン原子の個数の上限値としては、9個以下であるのが好ましい。なお、有機ハロゲン化合物は、ロフィンダイマー及びベンゾフェノン以外の化合物である。
 有機ハロゲン化合物は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
 有機ハロゲン化合物としては、例えば、下記一般式(2)~(7)で表される化合物が挙げられる。
..Organic halogen compound The organic halogen compound can accelerate the oxidation of the coloring agent.
As the organic halogen compound, a compound in which the number of halogen atoms in the molecule is 3 or more is preferable because the gradation of the color-developing portion is more excellent. The upper limit of the number of halogen atoms is preferably 9 or less. The organic halogen compounds are compounds other than lophine dimers and benzophenones.
An organic halogen compound may be used individually by 1 type, and may be used in mixture of 2 or more types.
Examples of organic halogen compounds include compounds represented by the following general formulas (2) to (7).
 P-CX      (2)
 式中、Pは、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、又は、置換基を有していてもよいアリール基を表す。Xは、各々独立に、ハロゲン原子を表す。
 P及びXで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及び、ヨウ素原子が挙げられ、塩素原子又は臭素原子が好ましい。
 Pで表されるアルキル基及びアリール基が有し得る置換基としては、例えば、ヒドロキシ基、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、アセチル基、及び、炭素数1~6のアルコキシ基等が挙げられる。
P 0 -CX 3 (2)
In the formula, P 0 represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group, or an optionally substituted aryl group. Each X independently represents a halogen atom.
Halogen atoms represented by P 0 and X include fluorine, chlorine, bromine and iodine atoms, preferably chlorine or bromine.
Examples of substituents that the alkyl group and aryl group represented by P 0 may have include a hydroxy group, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an acetyl group, and , an alkoxy group having 1 to 6 carbon atoms, and the like.
 一般式(2)で表される化合物としては、例えば、トリクロロメタン、トリブロモメタン、四塩化炭素、四臭化炭素、p-ニトロベンゾトリブロマイド、ブロモトリクロロメタン、ペンシトリクロライド、ヘキサブロモエタン、ヨードホルム、1,1,1-トリブロモ-2-メチル-2-プロパノール、1,1,2,2-テトラブロモエタン、2,2,2-トリブロモエタノール、及び、1,1,1-トリクロロ-2-メチル-2-プロパノールが挙げられる。 Examples of compounds represented by the general formula (2) include trichloromethane, tribromomethane, carbon tetrachloride, carbon tetrabromide, p-nitrobenzotribromide, bromotrichloromethane, pensitrichloride, hexabromoethane, iodoform, 1,1,1-tribromo-2-methyl-2-propanol, 1,1,2,2-tetrabromoethane, 2,2,2-tribromoethanol, and 1,1,1-trichloro- 2-methyl-2-propanol can be mentioned.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式中、Rは、置換基を表す。xは、0~5の整数を表す。 In the formula, R represents a substituent. x represents an integer of 0 to 5;
 Rで表される置換基としては、例えば、ニトロ基、ハロゲン原子、炭素数1~3のアルキル基、炭素数1~3のハロアルキル基、アセチル基、ハロアセチル基、及び、炭素数1~3のアルコキシ基が挙げられる。
 なお、式中にRが複数個存在する場合、R同士は互いに同一であっても異なっていてもよい。
Examples of substituents represented by R include a nitro group, a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an acetyl group, a haloacetyl group, and a group having 1 to 3 carbon atoms. An alkoxy group is mentioned.
In addition, when two or more R exist in a formula, R may mutually be same or different.
 xとしては、0~3の整数が好ましい。 An integer of 0 to 3 is preferable for x.
 一般式(3)で表される化合物としては、例えば、o-ニトロ-α,α,α-トリブロモアセトフェノン、m-ニトロ-α,α,α-トリブロモアセトフェノン、p-ニトロ-α,α,α-トリブロモアセトフェノン、α,α,α-トリブロモアセトフェノン、及び、α,α,α-トリブロモ-3,4-シクロロアセトフェノンが挙げられる。 Examples of compounds represented by general formula (3) include o-nitro-α,α,α-tribromoacetophenone, m-nitro-α,α,α-tribromoacetophenone, p-nitro-α,α ,α-tribromoacetophenone, α,α,α-tribromoacetophenone, and α,α,α-tribromo-3,4-cycloacetophenone.
 R-SO-X      (4) R 1 -SO 2 -X 1 (4)
 式中、Rは、置換基を有していてもよいアルキル基、又は、置換基を有していてもよいアリール基を表す。Xは、ハロゲン原子を表す。 In the formula, R 1 represents an optionally substituted alkyl group or an optionally substituted aryl group. X 1 represents a halogen atom.
 Rで表されるアルキル基としては、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~6のアルキル基が更に好ましい。
 Rで表されるアリール基としては、炭素数6~20のアリール基が好ましく、炭素数6~14のアリール基がより好ましく、炭素数6~10のアリール基が更に好ましい。
 Rで表されるアルキル基及びアリール基が有し得る置換基としては、例えば、ニトロ基、ハロゲン原子、炭素数1~3のアルキル基、炭素数1~3のハロアルキル基、アセチル基、ハロアセチル基、及び、炭素数1~3のアルコキシ基が挙げられる。
 Xで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及び、ヨウ素原子が挙げられ、塩素原子、臭素原子、又は、ヨウ素原子が好ましく、塩素原子又は臭素原子がより好ましい。
The alkyl group represented by R 1 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and even more preferably an alkyl group having 1 to 6 carbon atoms.
The aryl group represented by R 1 is preferably an aryl group having 6 to 20 carbon atoms, more preferably an aryl group having 6 to 14 carbon atoms, and even more preferably an aryl group having 6 to 10 carbon atoms.
Examples of substituents that the alkyl group and aryl group represented by R 1 may have include a nitro group, a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an acetyl group, and a haloacetyl. and alkoxy groups having 1 to 3 carbon atoms.
The halogen atom represented by X 1 includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom, a bromine atom or an iodine atom, more preferably a chlorine atom or a bromine atom.
 一般式(4)で表される化合物としては、例えば、2,4-ジニトロベンゼンスルホニルクロライド、o-ニトロベンゼンスルホニルクロライド、m-ニトロベンゼンスルホニルクロライド、3,3’-ジフェニルスルホンジスルホニルクロライド、エタンスルホニルクロライド、p-ブロモベンゼンスルホニルクロライド、p-ニトロベンゼンスルホニルクロライド、p-3-ベンゼンスルホニルクロライド、p-アセトアミドベンゼンスルホニルクロライド、p-クロロベンゼンスルホニルクロライド、p-トルエンスルホニルクロライド、メタンスルホニルクロライド、及び、ヘンゼンスルホニルブロマイドが挙げられる。 Examples of compounds represented by general formula (4) include 2,4-dinitrobenzenesulfonyl chloride, o-nitrobenzenesulfonyl chloride, m-nitrobenzenesulfonyl chloride, 3,3′-diphenylsulfonedisulfonyl chloride, and ethanesulfonyl chloride. , p-bromobenzenesulfonyl chloride, p-nitrobenzenesulfonyl chloride, p-3-benzenesulfonyl chloride, p-acetamidobenzenesulfonyl chloride, p-chlorobenzenesulfonyl chloride, p-toluenesulfonyl chloride, methanesulfonyl chloride, and hensensulfonyl chloride. A bromide is mentioned.
 R-S-X      (5) R 2 -SX 2 (5)
 式中、Rは、置換基を有していてもよいアルキル基、又は、置換基を有していてもよいアリール基を表す。Xは、ハロゲン原子を表す。 In the formula, R 2 represents an optionally substituted alkyl group or an optionally substituted aryl group. X2 represents a halogen atom.
 Rで表される置換基を有していてもよいアルキル基及び置換基を有していてもよいアリール基としては、一般式(4)のRで表される置換基を有していてもよいアルキル基及び置換基を有していてもよいアリール基と同じであり、好適態様も同じである。
 Xで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及び、ヨウ素原子が挙げられ、塩素原子、臭素原子、又は、ヨウ素原子が好ましく、塩素原子又は臭素原子がより好ましい。
The alkyl group optionally having substituent(s) and the aryl group optionally having substituent(s) represented by R 2 have a substituent represented by R 1 of general formula (4). is the same as an optionally substituted alkyl group and an optionally substituted aryl group, and preferred embodiments are also the same.
The halogen atom represented by X2 includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom, a bromine atom or an iodine atom, more preferably a chlorine atom or a bromine atom.
 一般式(5)で表される化合物としては、例えば、2,4-ジニトロベンゼンスルフェニルクロライド、及び、o-ニトロベンゼンスルフェニルクロライドが挙げられる。 Examples of compounds represented by general formula (5) include 2,4-dinitrobenzenesulfenyl chloride and o-nitrobenzenesulfenyl chloride.
 R-L-CX      (6) R 3 -L 1 -CX 3 X 4 X 5 (6)
 式中、Rは、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を表す。Lは、-SO-又はSO-を表す。X、X、及び、Xは、各々独立に、水素原子又はハロゲン原子を表す。ただし、X、X、及び、Xの全てが水素原子であることはない。 In the formula, R 3 represents an optionally substituted aryl group or an optionally substituted heteroaryl group. L 1 represents -SO- or SO 2 -. X 3 , X 4 and X 5 each independently represent a hydrogen atom or a halogen atom. However, not all of X 3 , X 4 and X 5 are hydrogen atoms.
 Rで表されるアリール基としては、炭素数6~20のアリール基が好ましく、炭素数6~14のアリール基がより好ましく、炭素数6~10のアリール基が更に好ましい。
 Rで表されるヘテロアリール基としては、炭素数4~20のヘテロアリール基が好ましく、炭素数4~13のヘテロアリール基がより好ましく、炭素数4~9のヘテロアリール基が更に好ましい。
 Rで表されるアリール基及びヘテロアリール基が有し得る置換基としては、例えば、ニトロ基、ハロゲン原子、炭素数1~3のアルキル基、炭素数1~3のハロアルキル基、アセチル基、ハロアセチル基、及び、炭素数1~3のアルコキシ基が挙げられる。
The aryl group represented by R 3 is preferably an aryl group having 6 to 20 carbon atoms, more preferably an aryl group having 6 to 14 carbon atoms, and even more preferably an aryl group having 6 to 10 carbon atoms.
The heteroaryl group represented by R 3 is preferably a heteroaryl group having 4 to 20 carbon atoms, more preferably a heteroaryl group having 4 to 13 carbon atoms, and still more preferably a heteroaryl group having 4 to 9 carbon atoms.
Examples of substituents that the aryl group and heteroaryl group represented by R 3 may have include a nitro group, a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an acetyl group, A haloacetyl group and an alkoxy group having 1 to 3 carbon atoms are included.
 X、X、及び、Xで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、及び、ヨウ素原子が挙げられ、塩素原子、臭素原子、又は、ヨウ素原子が好ましく、塩素原子又は臭素原子がより好ましい。 The halogen atoms represented by X 3 , X 4 and X 5 include, for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom, a bromine atom or an iodine atom. , a chlorine atom or a bromine atom are more preferred.
 一般式(6)で表される化合物としては、例えば、ヘキサブロモジメチルスルホオキサイド、ペンタブロモジメチルスルホオキサイド、ヘキサブロモジメチルスルホン、トリクロロメチルフェニルスルホン、トリブロモメチルフェニルスルホン(BMPS)、トリクロロ-p-クロロフェニルスルホン、トリブロモメチル-p-ニトロフェニルスルホン、2ートリクロロメチルベンゾチアゾールスルホン、4,6-シメチルビリミジン-2-トリブロモメチルスルホン、テトラブロモジメチルスルホン、2,4-ジクロロフェニル-トリクロロメチルスルホン、2-メチル-4-クロロフェニルトリクロロメチルスルホン、2,5-ジメチル-4-クロロフェニルトリクロロメチルスルホン、2,4-ジクロロフェニルトリメチルスルホン、及び、トリ-p-トリルスルホニウムトリフルオロメタンスルホナートが挙げられ、トリクロロメチルフェニルスルホン、又は、トリブロモメチルフェニルスルホン(BMPS)が好ましい。 Examples of compounds represented by general formula (6) include hexabromodimethylsulfoxide, pentabromodimethylsulfoxide, hexabromodimethylsulfone, trichloromethylphenylsulfone, tribromomethylphenylsulfone (BMPS), trichloro-p- Chlorophenylsulfone, Tribromomethyl-p-nitrophenylsulfone, 2-Trichloromethylbenzothiazolesulfone, 4,6-Cymethylpyrimidine-2-tribromomethylsulfone, Tetrabromodimethylsulfone, 2,4-Dichlorophenyl-trichloromethylsulfone sulfone, 2-methyl-4-chlorophenyltrichloromethylsulfone, 2,5-dimethyl-4-chlorophenyltrichloromethylsulfone, 2,4-dichlorophenyltrimethylsulfone, and tri-p-tolylsulfonium trifluoromethanesulfonate; Trichloromethylphenylsulfone or tribromomethylphenylsulfone (BMPS) are preferred.
 RCX      (7) R 4 CX 6 X 7 X 8 (7)
 式中、Rは、置換基を有していてもよいヘテロアリール基を表す。X、X、及び、Xは、各々独立に、水素原子又はハロゲン原子を表す。ただし、X、X、及び、Xの全てが水素原子であることはない。 In the formula, R4 represents an optionally substituted heteroaryl group. X 6 , X 7 and X 8 each independently represent a hydrogen atom or a halogen atom. However, not all of X 6 , X 7 and X 8 are hydrogen atoms.
 Rで表されるヘテロアリール基としては、炭素数4~20のヘテロアリール基が好ましく、炭素数4~13のヘテロアリール基がより好ましく、炭素数4~9のヘテロアリール基が更に好ましい。
 Rで表されるヘテロアリール基が有し得る置換基としては、例えば、ニトロ基、ハロゲン原子、炭素数1~3のアルキル基、炭素数1~3のハロアルキル基、アセチル基、ハロアセチル基、炭素数1~3のアルコキシ基が挙げられる。
 X、X、及び、Xで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、及び、ヨウ素原子が挙げられ、塩素原子、臭素原子、又は、ヨウ素原子が好ましく、塩素原子又は臭素原子がより好ましい。
The heteroaryl group represented by R 4 is preferably a heteroaryl group having 4 to 20 carbon atoms, more preferably a heteroaryl group having 4 to 13 carbon atoms, and still more preferably a heteroaryl group having 4 to 9 carbon atoms.
Examples of substituents that the heteroaryl group represented by R 4 may have include a nitro group, a halogen atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an acetyl group, a haloacetyl group, An alkoxy group having 1 to 3 carbon atoms can be mentioned.
The halogen atoms represented by X 6 , X 7 and X 8 include, for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom, a bromine atom or an iodine atom. , a chlorine atom or a bromine atom are more preferred.
 一般式(7)で表される化合物としては、例えば、トリブロモキナルジン、2-トリブロモメチル-4-メチルキノリン、4-トリブロモメチルピリミジン、4-フェニル-6-トリブロモメチルピリミジン、2-トリクロロメチル-6-ニトロベンゾチアゾール、1-フェニル-3-トリクロロメチルピラゾール、2,5-ジトリブロモメチル-3,4-ジブロモチオフェン、2-トリクロロメチル-3-(p-ブトキシスチリル)-1,3,4-オキサジアゾール、2,6-ジドリクロロメチル-4-(p-メトキシフェニル)-トリアジン、及び、2-(4-メチルフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジンが挙げられる。 Examples of the compound represented by the general formula (7) include tribromoquinaldine, 2-tribromomethyl-4-methylquinoline, 4-tribromomethylpyrimidine, 4-phenyl-6-tribromomethylpyrimidine, 2 -trichloromethyl-6-nitrobenzothiazole, 1-phenyl-3-trichloromethylpyrazole, 2,5-ditribromomethyl-3,4-dibromothiophene, 2-trichloromethyl-3-(p-butoxystyryl)-1 ,3,4-oxadiazole, 2,6-didolychloromethyl-4-(p-methoxyphenyl)-triazine, and 2-(4-methylphenyl)-4,6-bis(trichloromethyl)-1 , 3,5-triazines.
 なかでも、有機ハロゲン化合物としては、一般式(3)で表される化合物、一般式(6)で表される化合物、又は、一般式(7)で表される化合物が好ましく、本発明の効果がより優れる点から、一般式(6)で表される化合物がより好ましい。本発明の効果がより優れる理由は定かでないが、上記一般式(6)で表される化合物は、特定溶媒及び波長222nmとの相性が良いためであると推測される。
 上記化合物が有するハロゲン原子としては、塩素原子、臭素原子、又は、ヨウ素原子が好ましく、塩素原子又は臭素原子がより好ましい。
Among them, as the organic halogen compound, the compound represented by the general formula (3), the compound represented by the general formula (6), or the compound represented by the general formula (7) is preferable, and the effect of the present invention is obtained. is more excellent, the compound represented by the general formula (6) is more preferable. Although the reason why the effect of the present invention is more excellent is not clear, it is presumed that the compound represented by the general formula (6) has good compatibility with the specific solvent and the wavelength of 222 nm.
The halogen atom contained in the above compound is preferably a chlorine atom, a bromine atom, or an iodine atom, and more preferably a chlorine atom or a bromine atom.
 有機ハロゲン化合物は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The organic halogen compounds may be used singly or in combination of two or more.
・光酸発生剤
 光酸発生剤としては、紫外線により開裂して酸を発生し、上記酸の作用によって発色剤を呈色し得る化合物であるのが好ましい。
 光酸発生剤としては、ノニオン性光酸発生剤及びイオン性光酸発生剤が挙げられ、本発明の効果がより優れる点で、ノニオン性光酸発生剤が好ましい。ノニオン性光酸発生剤としては、有機ハロゲン化合物及びオキシム化合物が挙げられ、なかでも、本発明の効果がより優れる点で、有機ハロゲン化合物が好ましく、上述した一般式(6)で表される化合物がより好ましい。
 有機ハロゲン化合物としては、発色部の階調性がより優れる点で、分子中のハロゲン原子の個数が3個以上である化合物が好ましい。ハロゲン原子の個数の上限値としては、9個以下であるのが好ましい。
 有機ハロゲン化合物は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
 有機ハロゲン化合物の具体例としては、上段部において光酸化剤として挙げた有機ハロゲン化合物と同じものが挙げられる。
Photo-acid generator The photo-acid generator is preferably a compound that is cleaved by ultraviolet rays to generate an acid, and that can color the color former by the action of the acid.
Examples of the photoacid generator include nonionic photoacid generators and ionic photoacid generators, and nonionic photoacid generators are preferred because the effects of the present invention are more excellent. Examples of nonionic photoacid generators include organic halogen compounds and oxime compounds. Among them, organic halogen compounds are preferred in that the effects of the present invention are more excellent, and compounds represented by the above-described general formula (6). is more preferred.
As the organic halogen compound, a compound having 3 or more halogen atoms in the molecule is preferable because the gradation of the color-developing portion is more excellent. The upper limit of the number of halogen atoms is preferably 9 or less.
An organic halogen compound may be used individually by 1 type, and may be used in mixture of 2 or more types.
Specific examples of the organic halogen compound include the same organic halogen compounds mentioned as the photo-oxidizing agent in the upper section.
 イオン性光酸発生剤としては、ジアゾニウム塩、ヨードニウム塩、及び、スルホニウム塩が挙げられ、ヨードニウム塩又はスルホニウム塩が好ましい。イオン性光酸発色剤としては、例えば、特開昭62-161860、特開昭61-67034号、及び、特開昭62-50382公報が挙げられ、これらの内容は本明細書に組み込まれる。
 また、光酸発生剤としては、光により酸を発生する化合物であれば、特に制限はなく、ハロゲン化水素(例えば塩酸)、硫酸、及び、硝酸等の無機酸を発生する光酸発生剤であってもよく、カルボン酸及びスルホン酸等の有機酸を発生する光酸発生剤であってもよい。本発明の効果がより優れる点では、なかでも、無機酸を発生する光酸発生剤であるのが好ましく、ハロゲン化水素を発生する光酸発生剤であるのがより好ましい。
Ionic photoacid generators include diazonium salts, iodonium salts, and sulfonium salts, with iodonium salts or sulfonium salts being preferred. Examples of ionic photoacid color couplers include JP-A-62-161860, JP-A-61-67034, and JP-A-62-50382, the contents of which are incorporated herein.
The photoacid generator is not particularly limited as long as it is a compound that generates an acid upon exposure to light. Photoacid generators that generate inorganic acids such as hydrogen halide (e.g., hydrochloric acid), sulfuric acid, and nitric acid can be used. It may be a photoacid generator that generates organic acids such as carboxylic acid and sulfonic acid. Among them, a photo-acid generator that generates an inorganic acid is preferable, and a photo-acid generator that generates a hydrogen halide is more preferable, from the viewpoint that the effect of the present invention is more excellent.
 光酸発生剤の具体例としては、トリアリールスルホニウムへキサフルオ口ホスフェート、トリアリールスルホニウムアーセネート、トリアリールスルホニウムアンチモネート、ジアリールヨードニウムへキサフルオロホスフェート、ジアリールヨードニウムアーセネート、ジアリールヨードニウムアンチモネート、ジアルキルフェナシルスルホニウムテトラフルオロボレート、ジアルキルフェナシルスルホニウムへキサフルオロホスフェート、ジアルキル-4-ヒドロキシフェニルスルホニウムテトラフルオロボレート、ジアルキル-4-ヒドロキシフェニルスルホニウムへキサフルオロホスフェート、N-プロモサクシンイミド、トリブロモメチルフェニルスルホン、ジフェニル沃素、2-トリクロロメチル-5-(p-ブトキシスチリル)-1.3.4-オキサジアゾール、及び、2.6-ジトリクロロメチル-4-(p-メトキシフエニル)-トリアジンが挙げられる。 Specific examples of photoacid generators include triarylsulfonium hexafluorophosphate, triarylsulfonium arsenate, triarylsulfonium antimonate, diaryliodonium hexafluorophosphate, diaryliodonium arsenate, diaryliodonium antimonate, and dialkylphenacyl. Sulfonium tetrafluoroborate, dialkylphenacylsulfonium hexafluorophosphate, dialkyl-4-hydroxyphenylsulfonium tetrafluoroborate, dialkyl-4-hydroxyphenylsulfonium hexafluorophosphate, N-bromosuccinimide, tribromomethylphenylsulfone, diphenyl iodine, 2-trichloromethyl-5-(p-butoxystyryl)-1.3.4-oxadiazole, and 2,6-ditrichloromethyl-4-(p-methoxyphenyl)-triazine .
(光安定剤)
 特定マイクロカプセルは、光安定剤を内包することが好ましい。
 光安定剤は、光により安定化する材料であれば、特に制限されないが、活性化された光活性剤の遊離基をトラップする、いわゆるフリーラジカル捕獲物質として作用するのが好ましい。
 光安定剤は、1種単独で使用してもよいし、2種以上を用いてもよい。
 光安定剤としては、例えば、2,5-ビス(1,1,3,3-テトラメチルブチル)ヒドロキノン、ハイドロキノン、カテコール、レゾルシノール、及び、ヒドロキシヒドロキノン等の多価フェノール類、並びに、o-アミノフェノール及びp-アミンフェノール等のアミノフェノール類が挙げられる。
 光活性剤に対する光安定剤の含有量比(光安定剤/光活性剤(モル比))としては、0.0001~100が好ましく、0.0001~10がより好ましく、0.0005~1が更に好ましい。
(light stabilizer)
The specific microcapsules preferably enclose a light stabilizer.
The light stabilizer is not particularly limited as long as it is a material that is stabilized by light, but it preferably acts as a so-called free radical trapping substance that traps free radicals of the activated photoactive agent.
A light stabilizer may be used individually by 1 type, and may use 2 or more types.
Light stabilizers include, for example, 2,5-bis(1,1,3,3-tetramethylbutyl)hydroquinone, hydroquinone, catechol, resorcinol, and polyhydric phenols such as hydroxyhydroquinone, and o-amino Aminophenols such as phenol and p-aminephenol can be mentioned.
The content ratio of the light stabilizer to the photoactive agent (light stabilizer/photoactive agent (molar ratio)) is preferably 0.0001 to 100, more preferably 0.0001 to 10, and 0.0005 to 1. More preferred.
(還元剤)
 特定マイクロカプセルは、還元剤を内包してもよい。
 還元剤は、光酸化剤を失活させる機能を有する。
 特定マイクロカプセルが還元剤を含む場合、紫外線照射による紫外線感知層の発色濃度の急激な変化を抑制でき、紫外線照射量に応じて発色濃度を変化させやすくなる。還元剤は、酸化防止剤として機能することもある。
 還元剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
 還元剤としては、環式フェニルヒドラジド化合物が挙げられる。具体的には、1-フェニルピラゾリジン-3-オン、1-フェニル-4-メチルビラゾリジン-3-オン、1-フェニル-4,4-ジメチルピラゾリジン-3-オン、3-メチル-1-p-スルホフェニル-2-ピラゾリン-5-オン、3-メチル-1-フェニル-2-ビラゾリン-5-オン、及び、4-ヒドロキシメチル-4-メチル-1-フェニル-3-ピラゾリジノン(ジメゾンS、大東化学(株)製)等が挙げられる。
 還元剤としては、国際公開第2016/017701号の段落0072~0075に記載された還元剤を参酌でき、これらの内容は本明細書に組み込まれる。
(reducing agent)
The specific microcapsules may enclose a reducing agent.
The reducing agent has the function of deactivating the photo-oxidizing agent.
When the specific microcapsules contain a reducing agent, a rapid change in the color density of the UV-sensitive layer due to UV irradiation can be suppressed, and the color density can be easily changed according to the amount of UV irradiation. A reducing agent may also function as an antioxidant.
One reducing agent may be used alone, or two or more reducing agents may be used in combination.
Examples of reducing agents include cyclic phenylhydrazide compounds. Specifically, 1-phenylpyrazolidin-3-one, 1-phenyl-4-methylpyrazolidin-3-one, 1-phenyl-4,4-dimethylpyrazolidin-3-one, 3- methyl-1-p-sulfophenyl-2-pyrazolin-5-one, 3-methyl-1-phenyl-2-pyrazolin-5-one, and 4-hydroxymethyl-4-methyl-1-phenyl-3- pyrazolidinone (Dimezone S, manufactured by Daito Kagaku Co., Ltd.) and the like.
As the reducing agent, the reducing agents described in paragraphs 0072 to 0075 of WO 2016/017701 can be considered, the contents of which are incorporated herein.
(紫外線吸収剤)
 特定マイクロカプセルは、紫外線吸収剤を内包していてもよい。
 紫外線吸収剤としては、ベンゾトリアゾール化合物(ベンゾトリアゾール構造を有する紫外線吸収剤)、ベンゾフェノン化合物、トリアジン化合物、及び、ベンゾジチオール化合物が挙げられる。
 なかでも、波長222nmの感度がより優れる点で、紫外線吸収剤は、波長222nmの吸収が小さい方が好ましく、具体的には、トリアジン化合物、ベンゾフェノン化合物、及び、ベンゾジチオール化合物が好ましく用いられる。
 また、特定マイクロカプセルは、波長222nmの吸収が大きいベンゾトリアゾール化合物を内包しないのが好ましい。特定マイクロカプセルがベンゾトリアゾール化合物を内包する場合、ベンゾトリアゾール化合物の含有量は、光活性剤の全質量に対して、1質量%以下が好ましく、0.5質量%以下がより好ましい。下限としては特に制限されないが、例えば、0.0001質量%以上である。
 また、ベンゾトリアゾール化合物の含有量は、発色剤の全質量に対して、1質量%以下が好ましく、0.5質量%以下がより好ましい。下限としては特に制限されないが、例えば、0.0001質量%以上である。
(Ultraviolet absorber)
The specific microcapsules may enclose an ultraviolet absorber.
Examples of ultraviolet absorbers include benzotriazole compounds (ultraviolet absorbers having a benzotriazole structure), benzophenone compounds, triazine compounds, and benzodithiol compounds.
Among them, it is preferable that the ultraviolet absorber has a small absorption at a wavelength of 222 nm because the sensitivity at a wavelength of 222 nm is more excellent. Specifically, triazine compounds, benzophenone compounds, and benzodithiol compounds are preferably used.
Moreover, it is preferable that the specific microcapsules do not enclose a benzotriazole compound having a large absorption at a wavelength of 222 nm. When the specific microcapsules encapsulate a benzotriazole compound, the content of the benzotriazole compound is preferably 1% by mass or less, more preferably 0.5% by mass or less, relative to the total mass of the photoactive agent. Although the lower limit is not particularly limited, it is, for example, 0.0001% by mass or more.
Moreover, the content of the benzotriazole compound is preferably 1% by mass or less, more preferably 0.5% by mass or less, relative to the total mass of the color former. Although the lower limit is not particularly limited, it is, for example, 0.0001% by mass or more.
 市販のトリアジン化合物としては、例えば、アデカスタブ LA-F70((株)アデカ製)、Tinuvin 1577 ED、Tinuvin 1600(BASF製)、2,4-Bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-n-octyloxyphenyl)-1,3,5-triazine、2-(2,4-Dihydroxyphenyl)-4,6-diphenyl-1,3,5-triazine、及び、Ethylhexyl Triazone(東京化成(株)製)が挙げられる。
 市販のベンゾフェノン化合物としては、例えば、Chimassorb 81、Chimassorb 81 FL(BASF製)が挙げられる。
 ベンゾジチオール化合物としては、例えば、国際公開第2019/159570号に記載の化合物が挙げられる。
Commercially available triazine compounds include, for example, Adekastab LA-F70 (manufactured by Adeka Co., Ltd.), Tinuvin 1577 ED, Tinuvin 1600 (manufactured by BASF), 2,4-Bis(2,4-dimethylphenyl)-6-(2- hydroxy-4-n-octyloxyphenyl)-1,3,5-triazine, 2-(2,4-Dihydroxyphenyl)-4,6-diphenyl-1,3,5-triazine, and Ethylhexyl Triazone (Tokyo Kasei Co., Ltd. ) made).
Examples of commercially available benzophenone compounds include Chimassorb 81 and Chimassorb 81 FL (manufactured by BASF).
Benzodithiol compounds include, for example, compounds described in International Publication No. 2019/159570.
(その他の成分)
 特定マイクロカプセルは、上述した成分以外に、必要に応じて、ワックス、特定溶媒以外の溶媒、及び、臭気抑制剤等の添加剤を1種以上内包していてもよい。
(other ingredients)
In addition to the components described above, the specific microcapsules may optionally contain one or more additives such as waxes, solvents other than the specific solvent, and odor inhibitors.
<特定マイクロカプセルの製造方法>
 特定マイクロカプセルの製造方法は特に制限されず、例えば、界面重合法、内部重合法、相分離法、外部重合法、及び、コアセルベーション法等の公知の方法が挙げられる。
<Method for producing specific microcapsules>
The method for producing the specific microcapsules is not particularly limited, and examples thereof include known methods such as an interfacial polymerization method, an internal polymerization method, a phase separation method, an external polymerization method, and a coacervation method.
 特定マイクロカプセルの製造方法としては、例えば、以下に示す乳化工程とカプセル化工程とを含む方法が一例として挙げられる。なお、カプセル化工程において、界面重合法により樹脂の壁(カプセル壁)を形成するのが好ましい。
 乳化工程:発色剤と、光活性剤と、特定溶媒と、乳化剤とを水中で混合して、乳化液を調製する工程
 カプセル化工程:乳化工程で得られた乳化液中の発色剤と、光活性剤と、特定溶媒とを含む油滴の周囲に樹脂の壁(カプセル壁)を形成してカプセル化する工程
As a method for producing the specific microcapsules, for example, a method including an emulsification step and an encapsulation step shown below can be given as an example. In addition, in the encapsulation step, it is preferable to form a resin wall (capsule wall) by an interfacial polymerization method.
Emulsification step: A step of mixing a color former, a photoactive agent, a specific solvent, and an emulsifier in water to prepare an emulsion Encapsulation step: A color former in the emulsion obtained in the emulsification step, and light A process of forming a resin wall (capsule wall) around an oil droplet containing an active agent and a specific solvent for encapsulation
 以下において、カプセル壁がポリウレア又はポリウレタンウレアである特定マイクロカプセルの製造方法を一例として、界面重合法について説明する。
 界面重合法としては、光活性剤、特定溶媒、沸点が100℃未満の脂肪族構造を含む溶媒(以下、「カプセル作製用溶媒」ともいう。)、発色剤、及び、カプセル壁材(例えば、ポリイソシアネート)とを含む油相を、乳化剤を含む水相に分散して乳化液を調製する工程(乳化工程)と、カプセル壁材を油相と水相との界面で重合させてカプセル壁を形成し、酸化剤及び光酸発生剤から選ばれる光活性剤、特定溶媒、及び発色剤を内包するマイクロカプセルを形成する工程(カプセル化工程)と、を含む界面重合法が好ましい。
The interfacial polymerization method will be described below, taking as an example a method for producing specific microcapsules having a capsule wall made of polyurea or polyurethaneurea.
As the interfacial polymerization method, a photoactive agent, a specific solvent, a solvent containing an aliphatic structure having a boiling point of less than 100° C. (hereinafter also referred to as a “capsule preparation solvent”), a color former, and a capsule wall material (for example, a step of dispersing an oil phase containing polyisocyanate) in an aqueous phase containing an emulsifier to prepare an emulsion (emulsification step); and forming microcapsules (encapsulation step) encapsulating a photoactive agent selected from an oxidizing agent and a photoacid generator, a specific solvent, and a color former.
 上記乳化工程において、カプセル作製用溶媒は、通常、コア材の溶媒への溶解性向上を目的として添加され得る成分である。なお、カプセル作製用溶媒は、分子内に芳香環を含まない。また、カプセル作製用溶媒は、後述する紫外線感知層の形成方法における乾燥処理によって除媒される。よって、紫外線感知部材におけるマイクロカプセルは、カプセル作製用溶媒を内包していないことが好ましい。
 カプセル作製用溶媒としては特に制限されず、例えば、酢酸エチル(沸点77℃)、酢酸イソプロピル(沸点89℃)、メチルエチルケトン(沸点80℃)、及び、メチレンクロライド(沸点40℃)が挙げられる。
 カプセル作製用溶媒は、1種単独で又は2種以上を混合して用いてもよい。
In the above emulsification step, the capsule-forming solvent is usually a component that can be added for the purpose of improving the solubility of the core material in the solvent. The capsule-forming solvent does not contain an aromatic ring in its molecule. In addition, the capsule-forming solvent is removed by a drying treatment in the method for forming an ultraviolet-sensitive layer, which will be described later. Therefore, it is preferable that the microcapsules in the ultraviolet sensing member do not contain a capsule-forming solvent.
The solvent for capsule preparation is not particularly limited, and examples thereof include ethyl acetate (boiling point 77°C), isopropyl acetate (boiling point 89°C), methyl ethyl ketone (boiling point 80°C), and methylene chloride (boiling point 40°C).
The capsule-forming solvent may be used alone or in combination of two or more.
 また、上記乳化工程で使用される乳化剤の種類は特に制限されず、例えば、分散剤、及び、界面活性剤が挙げられる。
 分散剤としては、例えば、公知のアニオン性高分子、ノニオン性高分子、両性高分子の中から選択された水溶性高分子を保護コロイドが挙げられ、具体的には、ポリビニルアルコール、ゼラチン、及び、セルロース誘導体が挙げられ、ポリビニルアルコールが好ましく用いられる。
 界面活性剤としては、アニオン性又はノニオン性の界面活性剤であるのが好ましく、例えばアルキルベンゼンスルホン酸塩(例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸アンモニウム)、アルキスルホン酸塩(例えば、ラウリル硫酸ナトリウム、スルホコハク酸ジオクチルナトリウム塩)、及び、ポリアルキレングリコール(例えば、ポリオキシエチレンノニルフェニルエーテル)が挙げられる。
Also, the type of emulsifier used in the emulsification step is not particularly limited, and examples thereof include dispersants and surfactants.
Dispersants include, for example, colloids that protect water-soluble polymers selected from known anionic polymers, nonionic polymers, and amphoteric polymers. Specifically, polyvinyl alcohol, gelatin, and , cellulose derivatives, and polyvinyl alcohol is preferably used.
The surfactant is preferably an anionic or nonionic surfactant such as alkylbenzenesulfonate (e.g. sodium dodecylbenzenesulfonate, ammonium dodecylbenzenesulfonate), alkylsulfonate (e.g. lauryl sodium sulfate, dioctyl sulfosuccinate sodium salt), and polyalkylene glycols (eg, polyoxyethylene nonylphenyl ether).
 また、特定マイクロカプセルの他の製造方法として、米国特許第3726804号、同3796696号の明細書に記載の方法も参酌できる。これらの内容は本明細書に組み込まれる。 Also, as other methods for producing specific microcapsules, the methods described in the specifications of US Pat. Nos. 3,726,804 and 3,796,696 can be considered. The contents of which are incorporated herein.
 紫外線感知層中における特定マイクロカプセルの含有量は特に制限されないが、紫外線感知層全質量に対して、50~99質量%が好ましく、60~90質量%がより好ましい。
 紫外線感知層中における特定マイクロカプセルの含有量(固形分塗布量)としては、0.1~30g/mであるのも好ましい。下限値としては、0.5g/m以上が好ましく、1g/m以上がより好ましい。上限値としては、25g/m以下が好ましく、20g/m以下がより好ましい。
The content of the specific microcapsules in the ultraviolet sensitive layer is not particularly limited, but is preferably 50 to 99% by weight, more preferably 60 to 90% by weight, based on the total weight of the ultraviolet sensitive layer.
The specific microcapsule content (solid content coating amount) in the ultraviolet sensitive layer is also preferably 0.1 to 30 g/m 2 . The lower limit is preferably 0.5 g/m 2 or more, more preferably 1 g/m 2 or more. The upper limit is preferably 25 g/m 2 or less, more preferably 20 g/m 2 or less.
 紫外線感知層は、上述した特定マイクロカプセル以外の他の成分を含んでいてもよい。
 他の成分としては、例えば、高分子バインダー、還元剤、光安定剤、架橋剤、増感剤、紫外線吸収剤、及び、界面活性剤が挙げられる。
The UV-sensitive layer may contain components other than the specific microcapsules described above.
Other ingredients include, for example, polymeric binders, reducing agents, light stabilizers, cross-linking agents, sensitizers, UV absorbers, and surfactants.
 高分子バインダーとしては、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、アラビアゴム、ゼラチン、ポリビニルピロリドン、カゼイン、スチレン-ブタジエンラテックス、アクリロニトリル-ブタジエンラテックス、ポリ酢酸ビニル、ポリアクリル酸エステル、及び、エチシン-酢酸ビニル共重合体等の各種エマルジョンが挙げられる。
 また、高分子バインダーとしては、特開2017-167155号公報の段落0078に記載された高分子バインダーを参酌でき、これらの内容は本明細書に組み込まれる。
 高分子バインダーは、架橋されていてもよい。換言すると、高分子バインダーは架橋バインダーであってもよい。
 架橋剤としては、特に制限はなく、例えば、グリオキサゾールが使用できる。また、特開2017-167155号公報の段落0079に記載された架橋剤を参酌することもできる。これらの内容は本明細書に組み込まれる。
Polymeric binders include polyvinyl alcohol, methylcellulose, ethylcellulose, carboxymethylcellulose, hydroxypropylcellulose, gum arabic, gelatin, polyvinylpyrrolidone, casein, styrene-butadiene latex, acrylonitrile-butadiene latex, polyvinyl acetate, polyacrylate, and , ethicine-vinyl acetate copolymer and the like.
Further, as the polymer binder, the polymer binder described in paragraph 0078 of JP-A-2017-167155 can be considered, and the contents thereof are incorporated herein.
The polymeric binder may be crosslinked. In other words, the polymeric binder may be a crosslinked binder.
The cross-linking agent is not particularly limited, and for example, glyoxazole can be used. Also, the cross-linking agent described in paragraph 0079 of JP-A-2017-167155 can be considered. The contents of which are incorporated herein.
 還元剤、増感剤、及び、界面活性剤等としては、特開平1-207741号公報の第9頁左下欄~第10頁左上欄、特開2004-233614号公報の段落0038~0039、及び、0048~0059の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 また、還元剤、光安定剤、紫外線吸収剤、及び、界面活性剤としては、特定マイクロカプセル中に含まれ得る還元剤、光安定剤、紫外線吸収剤、及び、界面活性剤も使用できる。
As reducing agents, sensitizers, surfactants, etc., JP-A-1-207741, page 9, lower left column to page 10, upper left column, paragraphs 0038 to 0039 of JP-A-2004-233614, and , 0048 to 0059, the contents of which are incorporated herein.
As the reducing agent, light stabilizer, UV absorber and surfactant, the reducing agent, light stabilizer, UV absorber and surfactant that can be contained in the specific microcapsules can also be used.
 紫外線感知層の単位面積当たりの質量(固形分塗布量)は特に制限されないが、例えば、0.1~30g/mが好ましく、0.5~25g/mがより好ましく、1~10g/mが更に好ましい。 The mass (solid content coating amount) per unit area of the ultraviolet sensitive layer is not particularly limited, but is preferably 0.1 to 30 g/m 2 , more preferably 0.5 to 25 g/m 2 , more preferably 1 to 10 g/m 2 . More preferred is m2 .
 紫外線感知層の厚さとしては、0.1~30μmが好ましく、0.5~25μmがより好ましく、1~10μmが更に好ましい。 The thickness of the ultraviolet sensitive layer is preferably 0.1-30 μm, more preferably 0.5-25 μm, and even more preferably 1-10 μm.
<紫外線感知層の形成方法>
 上記紫外線感知層の形成方法は特に制限されず、公知の方法が挙げられる。
 例えば、特定マイクロカプセルを含む紫外線感知層形成用分散液を支持体上に塗布して、必要に応じて、塗膜に対して乾燥処理を施す方法が挙げられる。
 紫外線感知層形成用分散液には、特定マイクロカプセルを含む。なお、上述した界面重合法によって得られるマイクロカプセル分散液を、紫外線感知層形成用分散液として用いてもよい。
 紫外線感知層形成用分散液には、上述した紫外線感知層に含まれていてもよい他の成分が含まれていてもよい。
<Method for Forming Ultraviolet Sensing Layer>
A method for forming the ultraviolet-sensitive layer is not particularly limited, and includes known methods.
For example, there is a method in which a support is coated with a dispersion for forming an ultraviolet sensitive layer containing specific microcapsules, and the coated film is subjected to a drying treatment, if necessary.
The ultraviolet-sensitive layer-forming dispersion contains specific microcapsules. The microcapsule dispersion obtained by the interfacial polymerization method described above may be used as the dispersion for forming the ultraviolet sensitive layer.
The ultraviolet-sensitive layer-forming dispersion may contain other components that may be contained in the ultraviolet-sensitive layer described above.
 紫外線感知層形成用分散液を塗布する方法としては特に制限されず、塗布の際に用いられる塗工機としては、例えば、エアーナイフコーター、ロッドコーター、バーコーター、カーテンコーター、グラビアコーター、エクストルージョンコーター、ダイコーター、スライドビードコーター、及び、ブレードコーターが挙げられる。 The method of applying the dispersion for forming the ultraviolet sensitive layer is not particularly limited, and examples of coating machines used for coating include air knife coaters, rod coaters, bar coaters, curtain coaters, gravure coaters, and extrusion. Coaters, die coaters, slide bead coaters and blade coaters are included.
 紫外線感知層形成用分散液を支持体上に塗布後、必要に応じて、塗膜に対して乾燥処理を施してもよい。乾燥処理としては、例えば、加熱処理が挙げられる。 After applying the ultraviolet-sensitive layer-forming dispersion onto the support, the coating film may be subjected to a drying treatment, if necessary. Examples of the drying treatment include heat treatment.
 なお、上記では支持体上に紫外線感知層を形成する方法について述べたが、上記態様に制限されず、例えば、仮支持体上に紫外線感知層を形成した後、仮支持体を剥離して、紫外線感知層からなる紫外線感知部材を形成してもよい。
 仮支持体としては、剥離性の支持体であれば特に制限されない。
In the above, the method of forming the UV-sensitive layer on the support is described, but it is not limited to the above-described mode. For example, after forming the UV-sensitive layer on the temporary support, peeling off the temporary support, A UV sensitive member may be formed comprising a UV sensitive layer.
The temporary support is not particularly limited as long as it is a peelable support.
<<他の層>>
 紫外線感知部材は上述した支持体及び紫外線感知層以外のその他の層を有していてもよい。
 その他の層としては、例えば、反射層、光沢層、フィルタ層、及び、感度調整層が挙げられる。
<<Other Layers>>
The UV sensitive member may have layers other than the support and UV sensitive layer described above.
Other layers include, for example, a reflective layer, a gloss layer, a filter layer, and a sensitivity adjustment layer.
<反射層>
 紫外線感知部材は、更に反射層を備えていてもよい。
 紫外線感知層が反射層を備える場合、紫外線感知部材に照射された紫外線を、紫外線反射性を有する層にて反射できるので、紫外線の紫外線感知部材内部における散乱を抑制でき、紫外線量の検出精度をより向上できる。
 反射層は、波長200~380nmの光に対する反射率は、10%以上が好ましく、50%以上がより好ましい。なお、反射率は、例えば、紫外可視分光光度計(UV-2700/島津製作所)を使用した拡散反射測定によって測定できる。
 なお、支持体を反射層に隣接して配置する場合、支持体と反射層の間に密着層を設けてもよい。
 反射層及び密着層並びにそれらの製造方法としては、国際公開第2016/017701号の段落0082~0091に記載された反射層及び密着層並びにそれらの製造方法を参酌できる。これらの内容は本明細書に組み込まれる。
<Reflective layer>
The UV sensitive member may further comprise a reflective layer.
When the ultraviolet sensitive layer has a reflective layer, the ultraviolet ray irradiated to the ultraviolet ray sensitive member can be reflected by the layer having ultraviolet reflective properties, so that scattering of the ultraviolet ray inside the ultraviolet ray sensitive member can be suppressed, and the detection accuracy of the amount of ultraviolet rays can be improved. can be improved.
The reflective layer preferably has a reflectance of 10% or more, more preferably 50% or more, for light with a wavelength of 200 to 380 nm. The reflectance can be measured, for example, by diffuse reflectance measurement using an ultraviolet-visible spectrophotometer (UV-2700/Shimadzu Corporation).
When the support is arranged adjacent to the reflective layer, an adhesion layer may be provided between the support and the reflective layer.
As the reflective layer, the adhesion layer, and the production method thereof, the reflective layer, the adhesion layer, and the production method thereof described in paragraphs 0082 to 0091 of WO 2016/017701 can be referred to. The contents of which are incorporated herein.
<光沢層>
 紫外線感知部材は、更に光沢層を備えていてもよい。
 紫外線感知層が光沢層を備える場合、表裏の視認性が向上し得る。
 光沢層及びその製造方法としては、国際公開第2016/017701号の段落0092~0094に記載された光沢層及びその製造方法を参酌でき、これらの内容は本明細書に組み込まれる。
<Gloss layer>
The UV sensitive member may further comprise a glossy layer.
When the UV-sensitive layer has a glossy layer, the front and back visibility can be improved.
As the glossy layer and its manufacturing method, the glossy layer and its manufacturing method described in paragraphs 0092 to 0094 of WO 2016/017701 can be referred to, and the contents thereof are incorporated herein.
<フィルタ層>
 紫外線感知部材は、更にフィルタ層を備えていることが好ましい。
 フィルタ層は、特定波長の光を選択的に透過する層である。ここで、「特定波長の光を選択的に透過」するとは、特定波長の光を透過させ、それ以外の光を遮光させることを意味する。透過させる波長の光の透過率は、例えば、70%以上が好ましく、80%以上がより好ましく、90%以上が更に好ましい。遮光させる波長の光の透過率は、例えば、30%以下が好ましく、20%以下がより好ましく、10%以下が更に好ましい。
 フィルタ層は、波長300nm以上の光を遮光するフィルタ層であることが好ましく、波長230nm超の光を遮光するフィルタ層であることも好ましい。紫外線バンドパスフィルタや誘電体を含むフィルタ等が好ましく用いられる。
 なお、フィルタ層及び後述する感度調整層の分光特性は、例えば、紫外可視分光光度計(UV-2700/島津製作所)を用いて、測定できる。
 フィルタ層は特定波長以外を遮光する点で、紫外線吸収剤を有することが好ましい。紫外線吸収剤としては、公知の紫外線吸収剤を使用できる。また、波長230nm超の光を遮光する点で、フィルタ層は、特定マイクロカプセル中に含まれ得る紫外線吸収剤を含むことが好ましい。
<Filter layer>
Preferably, the UV sensitive member further comprises a filter layer.
A filter layer is a layer that selectively transmits light of a specific wavelength. Here, "selectively transmit light of a specific wavelength" means to transmit light of a specific wavelength and block other light. The transmittance of light having a wavelength to be transmitted is, for example, preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more. For example, the transmittance of light having a wavelength to be blocked is preferably 30% or less, more preferably 20% or less, and even more preferably 10% or less.
The filter layer is preferably a filter layer that blocks light with a wavelength of 300 nm or more, and is also preferably a filter layer that blocks light with a wavelength of over 230 nm. An ultraviolet bandpass filter, a filter containing a dielectric, or the like is preferably used.
The spectral characteristics of the filter layer and the sensitivity adjustment layer described later can be measured using, for example, an ultraviolet-visible spectrophotometer (UV-2700/Shimadzu Corporation).
The filter layer preferably contains an ultraviolet absorber in order to block light of wavelengths other than the specific wavelength. A known ultraviolet absorber can be used as the ultraviolet absorber. In order to block light with a wavelength of more than 230 nm, the filter layer preferably contains an ultraviolet absorber that can be contained in the specific microcapsules.
 フィルタ層及びその製造方法としては、国際公開第2016/017701号の段落0016~0026に記載されたフィルタ層及びその製造方法を参酌でき、これらの内容は本明細書に組み込まれる。 As for the filter layer and its manufacturing method, the filter layer and its manufacturing method described in paragraphs 0016 to 0026 of International Publication No. 2016/017701 can be considered, and the contents thereof are incorporated herein.
<感度調整層>
 紫外線感知部材がフィルタ層を備える場合、フィルタ層の表面に、更に感度調整層を備えていてもよい。
 感度調整層及びその製造方法としては、国際公開第2016/017701号の段落0095~0109に記載された感度調整層及びその製造方法を参酌でき、これらの内容は本明細書に組み込まれる。
<Sensitivity adjustment layer>
When the ultraviolet sensing member has a filter layer, it may further have a sensitivity adjusting layer on the surface of the filter layer.
As the sensitivity adjustment layer and its manufacturing method, reference can be made to the sensitivity adjustment layer and its manufacturing method described in paragraphs 0095 to 0109 of WO 2016/017701, and the contents thereof are incorporated herein.
〔他の実施形態〕
 紫外線感知部材の実施形態としては、上述した実施形態に制限されない。
 上述した実施形態以外の他の実施形態としては、例えば、国際公開第2016/017701号の図1~5に記載された態様を参酌でき、これらの内容は本明細書に組み込まれる。また、他の実施形態としては、後述するキットの形態であってもよい。
 また、特定マイクロカプセルを樹脂に練り込んで成型体としてもよい。樹脂としては、支持体としての樹脂シートの材料として挙げられる樹脂が挙げられる。
[Other embodiments]
Embodiments of the ultraviolet sensing member are not limited to the embodiments described above.
As other embodiments other than the embodiments described above, for example, the aspects described in FIGS. 1 to 5 of WO 2016/017701 can be considered, and the contents thereof are incorporated herein. Moreover, as another embodiment, it may be in the form of a kit, which will be described later.
Alternatively, the specific microcapsules may be kneaded into a resin to form a molding. Examples of the resin include resins that can be used as a material for a resin sheet as a support.
〔紫外線感知部材の特性及び用途〕
 本発明の紫外線感知部材は、紫外線量に応じて発色させることが可能であり、発色部の色濃度差を目視にて確認できる。また、シート状とした場合、広い面積での紫外線量の測定も可能である。
[Characteristics and uses of ultraviolet sensing member]
The ultraviolet sensing member of the present invention can be colored according to the amount of ultraviolet rays, and the difference in color density of the colored portion can be visually confirmed. Moreover, when it is in a sheet form, it is possible to measure the amount of ultraviolet rays over a wide area.
 紫外線感知部材において、紫外線感知部材に照射した波長222nmの光の積算照度の対数を横軸、紫外線感知層の発色濃度を縦軸とするグラフにプロットして得られる直線の傾きは所望の用途に応じて適宜調整できる。例えば、傾きが緩やかな場合(換言すると階調が緩やかな場合)には広いエネルギー範囲に適用でき、一方、傾きが急峻な場合(換言すると階調が急峻な場合)には細かいエネルギー差を読み取ることができる。
 上記傾きγが上記範囲である場合、紫外線量の検出に適した発色の階調性を有し、発色部の色濃度差を目視にて容易に確認できる。
 なお、本明細書において、「積算照度」は、波長222nmで測定した時の積算照度であり、例えば、波長222nmUV照度計で測定した値が挙げられる。
 また、「発色濃度」は、反射濃度D=-log10ρ(ρは反射率)で定義される数値であり、例えば、反射濃度計(X-Rite310、X-Rite社製)で測定できる。
In the ultraviolet sensing member, the slope of the straight line obtained by plotting the logarithm of the integrated illuminance of the light with a wavelength of 222 nm applied to the ultraviolet sensing member on the horizontal axis and the color density of the ultraviolet sensitive layer on the vertical axis is suitable for the desired application. It can be adjusted accordingly. For example, when the slope is gradual (in other words, when the gradation is gradual), it can be applied to a wide energy range. be able to.
When the slope γ is within the above range, the color gradation suitable for detecting the amount of ultraviolet light is obtained, and the difference in color density of the colored portion can be easily confirmed visually.
In this specification, "integrated illuminance" is integrated illuminance measured at a wavelength of 222 nm, and includes, for example, a value measured with a 222 nm wavelength UV illuminometer.
The "color density" is a numerical value defined by reflection density D=-log 10 ρ (where ρ is reflectance), and can be measured, for example, with a reflection densitometer (X-Rite310, manufactured by X-Rite).
 また、発色部の色濃度差の測定方法としては、以下の方法であってもよい。
 紫外線感知部材に対して所定の紫外線を照射して発色させた後、得られたシートをスキャナー(例えば、GT-F740/GT-X830、エプソン社製)又はスマホ等の読みとり装置を用いて画像を読み取り、得られた画像をUV光量分布解析システム(FUD-7010J、富士フイルム社製)を用いて、発色部の濃度を解析する。なお、必要に応じて、補正処理及び校正処理を行ってもよい。
Moreover, the following method may be used as a method for measuring the difference in color density of the coloring portion.
After irradiating the UV-sensing member with a predetermined ultraviolet ray to develop a color, the obtained sheet is scanned with a scanner (eg, GT-F740/GT-X830, manufactured by Epson) or a reading device such as a smartphone. The image obtained by reading is analyzed for the density of the colored portion using a UV light quantity distribution analysis system (FUD-7010J, manufactured by Fuji Film Co., Ltd.). Note that correction processing and calibration processing may be performed as necessary.
 紫外線感知部材は、例えば、ロールトゥロールで紫外線硬化樹脂を紫外線硬化しながらシートを製造するに際して、紫外線照射装置から照射される紫外線量の測定等に使用可能である。また、例えば、人及び物の紫外線による日焼けの度合いを把握するために、日常的に日中の紫外線量を測定することも可能である。
 近年、紫外線を照射することで、有人環境下で空気中に浮遊する細菌及びウイルスを殺菌する室内殺菌装置、並びに、物体に付着した細菌及びウイルスを殺菌する殺菌装置が開発されている。上記殺菌装置は、波長200~280nmの紫外線(UV-C:ultraviolet-C)を照射することで殺菌処理を実施しており、なかでも、有人環境下では波長200~230nmの紫外線(特に、波長222nmの紫外線)が好ましく用いられている。このような装置の紫外線量を本発明の紫外線感知部材を用いて測定することも可能である。
The UV sensing member can be used, for example, to measure the amount of UV rays emitted from an UV irradiation device when manufacturing a sheet while UV-curable resin is UV-cured in a roll-to-roll manner. It is also possible to routinely measure the amount of ultraviolet rays during the day, for example, in order to grasp the degree of sunburn caused by ultraviolet rays on people and objects.
In recent years, an indoor sterilization device that sterilizes airborne bacteria and viruses in a manned environment and a sterilization device that sterilizes bacteria and viruses adhering to objects by irradiating ultraviolet rays have been developed. The sterilization device performs sterilization by irradiating ultraviolet rays (UV-C: ultraviolet-C) with a wavelength of 200 to 280 nm. Among them, in a manned environment, ultraviolet rays with a wavelength of 200 to 230 nm (in particular, 222 nm UV) is preferably used. It is also possible to measure the UV dose of such devices using the UV sensitive member of the present invention.
[紫外線感知層形成用分散液及びその製造方法]
 また、本発明は、上述した紫外線感知部材の紫外線感知層を形成し得る、紫外線感知層形成用分散液及びその製造方法にも関する。
 本発明の紫外線感知層形成用分散液は、光活性剤と、発色剤と、特定溶媒とを内包するマイクロカプセルを含む紫外線感知層形成用分散液である。つまり、本発明の紫外線感知層形成用分散液は、上述した特定マイクロカプセルを含む分散液が該当する。
 以下において、本発明の紫外線感知層形成用分散液の組成について詳述する。
[Dispersion for forming ultraviolet sensitive layer and method for producing the same]
The present invention also relates to a dispersion liquid for forming an ultraviolet sensitive layer capable of forming the ultraviolet sensitive layer of the ultraviolet sensitive member described above and a method for producing the same.
The dispersion for forming an ultraviolet sensitive layer of the present invention is a dispersion for forming an ultraviolet sensitive layer containing microcapsules encapsulating a photoactive agent, a coloring agent and a specific solvent. That is, the dispersion for forming an ultraviolet-sensitive layer of the present invention corresponds to a dispersion containing the specific microcapsules described above.
The composition of the dispersion for forming an ultraviolet sensitive layer of the present invention will be described in detail below.
 本発明の紫外線感知層形成用分散液は、特定マイクロカプセルを含む。特定マイクロカプセルとしては紫外線感知部材が含む特定マイクロカプセルと同じであり、好適態様も同じである。
 紫外線感知層形成用分散液中、特定マイクロカプセルの含有量としては、組成物中の全固形分に対して、50~99質量%であるのが好ましく、60~90質量%であるのがより好ましい。
The dispersion for forming an ultraviolet sensitive layer of the present invention contains specific microcapsules. The specific microcapsules are the same as the specific microcapsules contained in the ultraviolet sensing member, and the preferred embodiments are also the same.
The content of the specific microcapsules in the ultraviolet-sensitive layer-forming dispersion is preferably 50 to 99% by mass, more preferably 60 to 90% by mass, based on the total solid content in the composition. preferable.
 本発明の紫外線感知層形成用分散液は、紫外線感知層に含まれ得る特定マイクロカプセル以外の他の成分も含んでいてもよい。他の成分としては、例えば、高分子バインダー、架橋剤(架橋高分子バインダー形成のための架橋剤(例えば、グリオキサゾール等))、還元剤、増感剤、及び、界面活性剤が挙げられる。なお、その他の成分の具体例については既述のとおりである。
 紫外線感知層形成用分散液が高分子バインダーを含む場合、高分子バインダーの含有量としては、組成物中の全固形分に対して、1~50質量%であるのが好ましく、5~40質量%であるのがより好ましく、10~30質量%であるのが更に好ましい。
 紫外線感知層形成用分散液が界面活性剤を含む場合、界面活性剤の含有量としては、組成物中の全固形分に対して、0.01~10質量%であるのが好ましく、0.1~5質量%であるのがより好ましく、0.2~2質量%であるのが更に好ましい。
The dispersion for forming an ultraviolet sensitive layer of the present invention may contain other components than the specific microcapsules that can be contained in the ultraviolet sensitive layer. Other components include, for example, polymer binders, cross-linking agents (cross-linking agents for forming cross-linked polymer binders (eg, glyoxazole, etc.)), reducing agents, sensitizers, and surfactants. Specific examples of other components are as described above.
When the ultraviolet-sensitive layer-forming dispersion contains a polymeric binder, the content of the polymeric binder is preferably 1 to 50% by weight, preferably 5 to 40% by weight, based on the total solid content in the composition. %, more preferably 10 to 30% by mass.
When the ultraviolet-sensitive layer-forming dispersion contains a surfactant, the content of the surfactant is preferably 0.01 to 10% by mass, and 0.01 to 10% by mass, based on the total solid content in the composition. It is more preferably 1 to 5% by mass, even more preferably 0.2 to 2% by mass.
 紫外線感知層形成用分散液の製造方法としては特に制限されず、例えば、上述した特定マイクロカプセルの製造方法を含む方法が挙げられる。つまり、上述した乳化工程とカプセル化工程とを含む製造方法が挙げられる。なお、紫外線感知層形成用分散液は、上述した乳化工程とカプセル化工程とを含む製造方法により得られたマイクロカプセル分散液に、更に、紫外線感知層を形成するための任意成分を添加した組成物であるのが好ましい。 The method for producing the ultraviolet-sensitive layer-forming dispersion is not particularly limited, and includes, for example, the above-described method for producing the specific microcapsules. In other words, a manufacturing method including the above-described emulsification step and encapsulation step can be mentioned. The dispersion for forming the ultraviolet sensitive layer has a composition obtained by adding an optional component for forming the ultraviolet sensitive layer to the microcapsule dispersion obtained by the production method including the emulsification step and the encapsulation step described above. It is preferably an object.
[紫外線感知キット]
 また、本発明は、上述した紫外線感知部材を含む紫外線感知キットにも関する。
 紫外線感知キットは、上述した紫外線感知部材を少なくとも含む。
 紫外線感知キットの具体的な構成としては特に制限されず、例えば、紫外線感知部材と、特定波長の光を選択的に透過するフィルタ層を有する部材(好ましくは、波長300nm以上の光を遮光するフィルタシート、より好ましくは波長230nm超の光を遮光するフィルタシート)、遮光袋(紫外線カット袋)、判断見本、限度見本(キャリブレーションシート)、レンズ及び凹面鏡等の集光治具、並びに、紫外線感知部材を保持する保持部材からなる群から選ばれる他の要素と、を含む態様が挙げられる。
 なお、上記保持部材は、保持した紫外線感知部材に紫外線が照射されるための開口部を有していてもよいし、保持部材と判断見本が一体となっていてもよい。
[Ultraviolet Sensing Kit]
The present invention also relates to a UV sensing kit comprising the UV sensing member described above.
The ultraviolet sensing kit includes at least the ultraviolet sensing member described above.
The specific configuration of the UV sensing kit is not particularly limited. sheet, more preferably a filter sheet that blocks light with a wavelength of more than 230 nm), a light shielding bag (ultraviolet cut bag), a judgment sample, a limit sample (calibration sheet), a condensing jig such as a lens and a concave mirror, and an ultraviolet sensing member and another element selected from the group consisting of a holding member that holds a.
The holding member may have an opening for irradiating the ultraviolet sensing member held with ultraviolet rays, or the holding member and the judgment sample may be integrated.
 以下に実施例に基づいて本発明を更に詳細に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。なお、以下において、「部」及び「%」は、特段の断りがない限り、質量基準である。
The present invention will be described in more detail based on examples below.
The materials, amounts used, ratios, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed to be limited by the examples shown below. In the following, "parts" and "%" are based on mass unless otherwise specified.
[紫外線感知部材の作製]
〔実施例1〕
 下記の組成の混合液1をポリビニルアルコール5質量%水溶液(202部)に添加した後、20℃で乳化分散し、体積平均粒径1μmの乳化液を得た。更に、得られた乳化液を50℃にて4時間撹拌し続けた。その後室温に戻し、ろ過して水系のカプセル分散液を得た。
[Production of UV Sensing Member]
[Example 1]
Mixture 1 having the following composition was added to a 5% by mass polyvinyl alcohol aqueous solution (202 parts), and then emulsified and dispersed at 20° C. to obtain an emulsion having a volume average particle size of 1 μm. Furthermore, the obtained emulsion was kept stirring at 50° C. for 4 hours. After that, the mixture was returned to room temperature and filtered to obtain an aqueous capsule dispersion.
<混合液1の組成>
 発色剤:ロイコクリスタルバイオレット(商品名「LCV」、山田化学工業社製)、2.5部
 有機ハロゲン化合物:トリブロモメチルフェニルスルホン(BMPS、住友精化社製)、1.25部
 ラジカル発生剤:ロフェインダイマー(2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、商品名「B-IMD」、黒金化成社製)、2.5部
 非芳香族溶媒X及びZ:大豆油(富士フイルム和光純薬社製)、15部
 芳香族溶媒Y:トリクレジルホスフェート(TCP、大八化学工業(株)製)、15部
 カプセル作製用溶媒:酢酸エチル(昭和電工(株)製)、50部
 光安定剤:2,5-ビス(1,1,3,3-テトラメチルブチル)ヒドロキノン(BTHQ、東京化成工業(株)製)、0.03部
 カプセル壁材:ポリイソシアネート(商品名「タケネートD-110N」、三井化学(株)製)、31部
<Composition of mixed solution 1>
Color former: Leuco Crystal Violet (trade name “LCV”, manufactured by Yamada Chemical Co., Ltd.), 2.5 parts Organic halogen compound: Tribromomethylphenylsulfone (BMPS, manufactured by Sumitomo Seika Co., Ltd.), 1.25 parts Radical generator : Rofein dimer (2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, trade name "B-IMD", Kurogane Kaseisha ), 2.5 parts Non-aromatic solvent X and Z: soybean oil (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 15 parts Aromatic solvent Y: tricresyl phosphate (TCP, manufactured by Daihachi Chemical Co., Ltd.) , 15 parts Capsule preparation solvent: ethyl acetate (manufactured by Showa Denko Co., Ltd.), 50 parts light stabilizer: 2,5-bis (1,1,3,3-tetramethylbutyl) hydroquinone (BTHQ, Tokyo Chemical Industry Co., Ltd.), 0.03 parts Capsule wall material: polyisocyanate (trade name “Takenate D-110N”, manufactured by Mitsui Chemicals, Inc.), 31 parts
 得られたカプセル分散液(20部)、ポリビニルアルコール6質量%水溶液(商品名「デンカサイズEP-130」、デンカ(株)製)(5部)、グリオキザール(大東化学社製)0.05部、及び、ドデシルベンゼンスルホン酸ナトリウム50質量%水溶液(第一工業製薬(株)製)(0.09部)を混合し、紫外線感知層形成用分散液(紫外線感知層形成用塗布液)を作製した。 Obtained capsule dispersion (20 parts), polyvinyl alcohol 6 mass% aqueous solution (trade name “Denkasize EP-130”, manufactured by Denka Co., Ltd.) (5 parts), glyoxal (manufactured by Daito Kagaku Co., Ltd.) 0.05 part and a 50% by mass aqueous solution of sodium dodecylbenzenesulfonate (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) (0.09 parts) to prepare a dispersion for forming an ultraviolet sensitive layer (coating liquid for forming an ultraviolet sensitive layer). did.
 得られた紫外線感知層形成用塗布液を厚さ75μmの白色ポリエチレンテレフタレートフィルム(商品名「クリスパーK1212」、東洋紡社製)に固形分塗布量5g/mとなるように塗布し、105℃にて1分間加熱乾燥し、支持体と紫外線感知層とを備えた紫外線感知部材を作製した。紫外線感知層は約5μmであった。 The resulting coating solution for forming an ultraviolet sensitive layer was applied to a 75 μm thick white polyethylene terephthalate film (trade name “Crisper K1212” manufactured by Toyobo Co., Ltd.) so that the solid content coating amount was 5 g/m 2 , and heated to 105°C. It was dried by heating for 1 minute to prepare an ultraviolet sensitive member comprising a support and an ultraviolet sensitive layer. The UV sensitive layer was about 5 μm.
〔実施例2〕
 混合液1を下記組成の混合液2に変更した以外は実施例1と同様の方法により、紫外線感知部材を作製した。
<混合液2の組成>
 発色剤:3,3-ビス(2-メチル-1-オクチル-3-インドリル)フタリド(BASF社製)、2.5部
 有機ハロゲン化合物:トリブロモメチルフェニルスルホン(BMPS、住友精化(株)製)、1.25部
 非芳香族溶媒X及びZ:大豆油(富士フイルム和光純薬社製)、15部
 芳香族溶媒Y:トリクレジルホスフェート(TCP、大八化学工業(株)製)、15部
 カプセル作製用溶媒:酢酸エチル(昭和電工(株)製)、50部
 光安定剤:2,5-ビス(1,1,3,3-テトラメチルブチル)ヒドロキノン(BTHQ、東京化成工業(株)製)、0.03部
 ポリイソシアネート:(商品名「タケネートD-110N」、三井化学社製)、31部
[Example 2]
An ultraviolet sensing member was produced in the same manner as in Example 1, except that mixed solution 1 was changed to mixed solution 2 having the following composition.
<Composition of mixed solution 2>
Color former: 3,3-bis (2-methyl-1-octyl-3-indolyl) phthalide (manufactured by BASF), 2.5 parts Organic halogen compound: tribromomethylphenylsulfone (BMPS, Sumitomo Seika Co., Ltd.) ), 1.25 parts Non-aromatic solvents X and Z: soybean oil (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 15 parts Aromatic solvent Y: tricresyl phosphate (TCP, manufactured by Daihachi Chemical Co., Ltd.) , 15 parts Capsule preparation solvent: ethyl acetate (manufactured by Showa Denko Co., Ltd.), 50 parts light stabilizer: 2,5-bis (1,1,3,3-tetramethylbutyl) hydroquinone (BTHQ, Tokyo Chemical Industry Co., Ltd.), 0.03 parts Polyisocyanate: (trade name “Takenate D-110N”, manufactured by Mitsui Chemicals), 31 parts
〔実施例3、7、9、11、13、15、17〕
 表1に記載の成分及び配合に変更した以外は実施例1と同様の方法により、実施例3、7、9、11、13、15及び17の紫外線感知部材を作製した。
[Examples 3, 7, 9, 11, 13, 15, 17]
Ultraviolet sensing members of Examples 3, 7, 9, 11, 13, 15 and 17 were produced in the same manner as in Example 1 except that the components and formulations shown in Table 1 were changed.
〔実施例4、8、10、12、14、16、18〕
 表1に記載の成分及び配合に変更した以外は実施例2と同様の方法により、実施例4、8、10、12、14、16、及び、18の紫外線感知部材を作製した。
[Examples 4, 8, 10, 12, 14, 16, 18]
Ultraviolet sensing members of Examples 4, 8, 10, 12, 14, 16, and 18 were produced in the same manner as in Example 2, except that the components and formulations shown in Table 1 were changed.
〔実施例5〕
 表1に記載の成分及び配合に変更し、撹拌条件を50℃にて8時間に変更した以外は実施例1と同様の方法により、実施例5の紫外線感知部材を作製した。
[Example 5]
An ultraviolet sensing member of Example 5 was produced in the same manner as in Example 1, except that the components and formulations were changed to those shown in Table 1 and the stirring conditions were changed to 50° C. for 8 hours.
〔実施例6〕
 表1に記載の成分及び配合に変更し、撹拌条件を50℃にて8時間に変更した以外は実施例2と同様の方法により、実施例6の紫外線感知部材を作製した。
[Example 6]
An ultraviolet sensing member of Example 6 was produced in the same manner as in Example 2, except that the components and formulations were changed to those shown in Table 1 and the stirring conditions were changed to 50° C. for 8 hours.
〔実施例19〕
 表1に記載の成分及び配合に変更し、カプセル分散液に添加するポリビニルアルコール6質量%水溶液の量を7部に変更した以外は実施例2と同様の方法により、実施例19の紫外線感知部材を作製した。
[Example 19]
The ultraviolet sensing member of Example 19 was prepared in the same manner as in Example 2 except that the components and formulations were changed to those shown in Table 1 and the amount of the 6% by mass polyvinyl alcohol aqueous solution added to the capsule dispersion was changed to 7 parts. was made.
〔比較例1〕
 比較例1は、国際公開第2016/017701号の実施例1を参照して、表1に記載の成分及び配合に変更した以外は実施例1と同様の方法により、比較例1の紫外線感知部材を作製した。
[Comparative Example 1]
Comparative Example 1 refers to Example 1 of International Publication No. WO 2016/017701, and the ultraviolet sensing member of Comparative Example 1 is manufactured in the same manner as in Example 1 except that the components and formulations shown in Table 1 are changed. was made.
 以下に表1を示す。
 なお、表1中に示される各成分は以下のとおりである。
Table 1 is shown below.
In addition, each component shown in Table 1 is as follows.
<非芳香族溶媒Z及びX>
 ・大豆油(沸点300℃以上)
 ・オレイン酸(沸点360℃)
 ・コハク酸ジエチル(沸点217℃)
 ・ラウリン酸メチル(沸点141℃)
 ・菜種油(沸点300℃以上)
 ・リン酸トリエチルヘキシル(トリ(2-エチルヘキシエル)ホスフェート、沸点300℃以上)
<Non-Aromatic Solvents Z and X>
・Soybean oil (boiling point 300°C or higher)
・Oleic acid (boiling point 360°C)
・Diethyl succinate (boiling point 217°C)
・Methyl laurate (boiling point 141°C)
・Rapeseed oil (boiling point 300°C or higher)
・Triethylhexyl phosphate (tri(2-ethylhexyl)phosphate, boiling point 300°C or higher)
<非芳香族溶媒Z>
 ・イソパラフィン:合成イソパラフィン(出光興産(株)製、IPソルベント1620、沸点166~202℃)
<Non-aromatic solvent Z>
・ Isoparaffin: Synthetic isoparaffin (manufactured by Idemitsu Kosan Co., Ltd., IP Solvent 1620, boiling point 166 to 202 ° C.)
〔芳香族溶媒Y〕
 ・TCP(トリクレジルホスフェート、沸点231~255℃)
 ・フタル酸ジシクロヘキシル(沸点222~228℃)
[Aromatic solvent Y]
・TCP (tricresyl phosphate, boiling point 231-255°C)
・Dicyclohexyl phthalate (boiling point 222-228°C)
〔カプセル作製用溶媒〕
 ・酢酸エチル(沸点77℃)
[Capsule preparation solvent]
- Ethyl acetate (boiling point 77°C)
〔光活性剤〕
 ・BMPS:トリブロモメチルフェニルスルホン(住友精化社製)
 ・B-IMD:ロフェインダイマー(2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール(商品名「B-IMD」、黒金化成社製))
[Photoactivator]
・ BMPS: Tribromomethylphenylsulfone (manufactured by Sumitomo Seika Co., Ltd.)
- B-IMD: lofein dimer (2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole (trade name "B-IMD", Manufactured by Kurogane Kasei))
〔発色剤〕
 ・LCV:ロイコクリスタルバイオレット(商品名「LCV」、山田化学工業社製)
 ・発色剤A:3,3-ビス(2-メチル-1-オクチル-3-インドリル)フタリド(BASF社製)
[Color former]
・ LCV: Leuco Crystal Violet (trade name “LCV”, manufactured by Yamada Chemical Industry Co., Ltd.)
- Color former A: 3,3-bis (2-methyl-1-octyl-3-indolyl) phthalide (manufactured by BASF)
〔光安定剤〕
 ・BTHQ:2,5-ビス(1,1,3,3-テトラメチルブチル)ヒドロキノン(東京化成工業社製)
[Light stabilizer]
・ BTHQ: 2,5-bis (1,1,3,3-tetramethylbutyl) hydroquinone (manufactured by Tokyo Chemical Industry Co., Ltd.)
〔カプセル壁材〕
 ・D-110N:ポリイソシアネート(キシリレン-1,3-ジイソシアネートとトリメチロールプロパンとの付加物、商品名「タケネートD-110N」、三井化学社製、75質量%酢酸エチル溶液)
 ・D-120N:ポリイソシアネート(水素化キシリレン-1,3-ジイソシアネートとトリメチロールプロパンとの付加物、商品名「タケネートD-120N」、三井化学社製、75質量%酢酸エチル溶液)
[Capsule wall material]
D-110N: polyisocyanate (adduct of xylylene-1,3-diisocyanate and trimethylolpropane, trade name “Takenate D-110N”, manufactured by Mitsui Chemicals, 75% by mass ethyl acetate solution)
D-120N: polyisocyanate (an adduct of hydrogenated xylylene-1,3-diisocyanate and trimethylolpropane, trade name “Takenate D-120N”, manufactured by Mitsui Chemicals, Inc., 75% by mass ethyl acetate solution)
 また、表1中の各成分の欄において、成分名とともに記載される括弧内の数値は、含有量(質量部)を意図する。
 また、LCVは、酸化により発色する発色剤に該当し、酸化により青色を呈する。発色剤Aは、酸の作用により発色する発色剤に該当し、酸の作用により赤色を呈する。
 実施例及び比較例で使用されるカプセル作製用溶媒の酢酸エチルは、紫外線感知部材を作製した後は、マイクロカプセル内に残存していなかった。換言すると、本発明の紫外線感知部材におけるマイクロカプセルは、酢酸エチルを内包していなかった。
In addition, in the column of each component in Table 1, the numerical value in parentheses described together with the name of the component intends the content (parts by mass).
LCV corresponds to a coloring agent that develops color by oxidation, and exhibits blue color by oxidation. The coloring agent A corresponds to a coloring agent that develops color under the action of an acid, and exhibits a red color under the action of the acid.
Ethyl acetate, a solvent for preparing capsules used in Examples and Comparative Examples, did not remain in the microcapsules after preparation of the ultraviolet sensing member. In other words, the microcapsules in the ultraviolet sensing member of the present invention did not contain ethyl acetate.
[測定及び評価]
〔感度(波長222nm)〕
 各実施例及び比較例にて作製した紫外線感知部材の紫外線感知層に対して、Care222(登録商標、ウシオ社製)を用いて波長222nmの設定で、積算照度1mJ/cm又は3mJ/cmになるように距離と時間を調整して光を照射した。
 次いで、得られたシートをA4スキャナー(GT-F740/GT-X830、エプソン社製)を用いて画像を読み取り、得られた画像をUV光量分布解析システム(FUD-7010J、富士フイルム社製)を用いて、紫外線感知層に形成された各積算照度で発色した発色部の濃度(DA1)を解析した。そして、未発色部の濃度(DA0)と発色部の濃度(DA1)との差(DA1-DA0)を求め、感度(ΔDA)とした。下記評価基準に基づいて感度評価を実施した。なお、発色剤としてLCVを使用した場合は、OD-Cの数値を用い、発色剤として発色剤Aを使用した場合は、OD-Mの数値を用いて発色部の濃度(DA1)を求めた。
[Measurement and evaluation]
[Sensitivity (wavelength 222 nm)]
Care 222 (registered trademark, manufactured by Ushio Corporation) was used to set the wavelength to 222 nm for the ultraviolet sensitive layer of the ultraviolet sensitive member produced in each example and comparative example, and the integrated illuminance was 1 mJ/cm 2 or 3 mJ/cm 2 . The distance and time were adjusted to irradiate the light.
Next, an image of the obtained sheet is read using an A4 scanner (GT-F740/GT-X830, manufactured by Epson Corporation), and the obtained image is analyzed by a UV light amount distribution analysis system (FUD-7010J, manufactured by Fujifilm Corporation). was used to analyze the density (DA1) of the colored portion formed in the ultraviolet sensitive layer and colored at each integrated illuminance. Then, the difference (DA1-DA0) between the density of the uncolored portion (DA0) and the density of the colored portion (DA1) was obtained and defined as the sensitivity (ΔDA). Sensitivity evaluation was performed based on the following evaluation criteria. When LCV was used as the color former, the OD-C value was used. .
<評価基準>
 「A」:積算照度1mJ/cm時にΔDAが0.1以上であり、かつ、積算照度3mJ/cm時にΔDAが0.1以上である。
 「B」:積算照度1mJ/cm時にΔDAが0.1未満であり、かつ、積算照度3mJ/cm時にΔDAが0.1以上であるか、又は、積算照度1mJ/cm時にΔDAが0.1以上であり、かつ、積算照度3mJ/cm時にΔDAが0.1未満である。
 「C」:積算照度1mJ/cm時にΔDAが0.1未満であり、かつ、積算照度3mJ/cm時にΔDAが0.1未満である。
<Evaluation Criteria>
"A": ΔDA is 0.1 or more at an integrated illuminance of 1 mJ/cm 2 and ΔDA is 0.1 or more at an integrated illuminance of 3 mJ/cm 2 .
"B": ΔDA is less than 0.1 at an integrated illuminance of 1 mJ/cm 2 and ΔDA is 0.1 or more at an integrated illuminance of 3 mJ/cm 2 , or ΔDA is at an integrated illuminance of 1 mJ/cm 2 0.1 or more, and ΔDA is less than 0.1 when the integrated illuminance is 3 mJ/cm 2 .
"C": ΔDA is less than 0.1 at an integrated illuminance of 1 mJ/cm 2 and less than 0.1 at an integrated illuminance of 3 mJ/cm 2 .
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1の結果から、本発明の紫外線感知部材は、波長222nmの感度に優れることが確認された。
 光活性剤が、光酸発生剤であり、発色剤が、酸の作用により発色する発色剤である場合、本発明の効果がより優れることが確認された(実施例1及び2等の比較)。
 マイクロカプセルのカプセル壁が、脂環を有する、ポリウレア、ポリウレタンウレア、及び、ポリウレタンからなる群から選択される1種以上の樹脂を含む場合、本発明の効果がより優れることが確認された(実施例1及び5の比較)。
From the results in Table 1, it was confirmed that the ultraviolet sensing member of the present invention has excellent sensitivity at a wavelength of 222 nm.
It was confirmed that the effects of the present invention are more excellent when the photoactive agent is a photoacid generator and the color former is a color former that develops color under the action of acid (comparison with Examples 1 and 2, etc.). .
When the capsule wall of the microcapsule contains one or more resins selected from the group consisting of polyurea, polyurethaneurea, and polyurethane having an alicyclic ring, it was confirmed that the effects of the present invention are more excellent (implementation (compare Examples 1 and 5).
 10 紫外線感知部材
 12 支持体
 14 紫外線感知層
10 UV Sensing Member 12 Support 14 UV Sensing Layer

Claims (21)

  1.  光活性剤と、発色剤と、溶媒とを内包するマイクロカプセルを含む紫外線感知層を備えた紫外線感知部材であって、
     条件A及び条件Bの少なくとも一方を満たす、紫外線感知部材。
     条件A:前記溶媒が、ヘテロ原子を有する非芳香族溶媒Xを含む。
     条件B:前記溶媒が、芳香族溶媒Yと、非芳香族溶媒Zとを含む。
    An ultraviolet sensing member comprising an ultraviolet sensitive layer containing microcapsules encapsulating a photoactive agent, a coloring agent, and a solvent,
    An ultraviolet sensing member that satisfies at least one of condition A and condition B.
    Condition A: The solvent contains a non-aromatic solvent X having a heteroatom.
    Condition B: the solvent contains an aromatic solvent Y and a non-aromatic solvent Z;
  2.  前記溶媒が、沸点100℃以上である、請求項1に記載の紫外線感知部材。 The ultraviolet sensing member according to claim 1, wherein the solvent has a boiling point of 100°C or higher.
  3.  前記非芳香族溶媒Xが、脂肪族カルボン酸、脂肪酸エステル、エーテル系溶媒、アルコール系溶媒、アミド系溶媒、及び、ケトン系溶媒からなる群から選択される1種以上の溶媒を含む、請求項1又は2に記載の紫外線感知部材。 The non-aromatic solvent X contains one or more solvents selected from the group consisting of aliphatic carboxylic acids, fatty acid esters, ether solvents, alcohol solvents, amide solvents, and ketone solvents. 3. The ultraviolet sensing member according to 1 or 2.
  4.  前記非芳香族溶媒Zが、脂肪族炭化水素、脂肪族カルボン酸、脂肪酸エステル、エーテル系溶媒、アルコール系溶媒、アミド系溶媒、及び、ケトン系溶媒からなる群から選択される1種以上の溶媒を含む、請求項1~3のいずれか1項に記載の紫外線感知部材。 The non-aromatic solvent Z is one or more solvents selected from the group consisting of aliphatic hydrocarbons, aliphatic carboxylic acids, fatty acid esters, ether solvents, alcohol solvents, amide solvents, and ketone solvents. The ultraviolet sensing member according to any one of claims 1 to 3, comprising
  5.  前記芳香族溶媒Yが、ヘテロ原子を有する芳香族溶媒を含む、請求項1~4のいずれか1項に記載の紫外線感知部材。 The ultraviolet sensing member according to any one of claims 1 to 4, wherein the aromatic solvent Y contains an aromatic solvent having a heteroatom.
  6.  前記光活性剤が、光酸化剤であり、
     前記発色剤が、酸化されて発色する発色剤である、請求項1~5のいずれか1項に記載の紫外線感知部材。
    the photoactive agent is a photooxidant;
    The ultraviolet sensing member according to any one of claims 1 to 5, wherein the coloring agent is a coloring agent that develops color when oxidized.
  7.  前記光活性剤が、光酸発生剤であり、
     前記発色剤が、酸の作用により発色する発色剤である、請求項1~5のいずれか1項に記載の紫外線感知部材。
    the photoactive agent is a photoacid generator,
    The ultraviolet sensing member according to any one of claims 1 to 5, wherein the coloring agent is a coloring agent that develops color under the action of an acid.
  8.  前記光活性剤が、一般式(6)で表される化合物を含む、請求項1~7のいずれか1項に記載の紫外線感知部材。
     R-L-CX      (6)
     一般式(6)中、Rは、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を表す。Lは、-SO-又は-SO-を表す。X、X、及び、Xは、各々独立に、水素原子又はハロゲン原子を表す。ただし、X、X、及び、Xの全てが水素原子である場合を除く。
    The ultraviolet sensing member according to any one of claims 1 to 7, wherein the photoactive agent contains a compound represented by general formula (6).
    R 3 -L 1 -CX 3 X 4 X 5 (6)
    In general formula (6), R 3 represents an optionally substituted aryl group or an optionally substituted heteroaryl group. L 1 represents -SO- or -SO 2 -. X 3 , X 4 and X 5 each independently represent a hydrogen atom or a halogen atom. However, the case where all of X 3 , X 4 and X 5 are hydrogen atoms is excluded.
  9.  前記マイクロカプセルがベンゾトリアゾール構造を有する紫外線吸収剤を含まないか、又は、
     前記マイクロカプセルがベンゾトリアゾール構造を有する紫外線吸収剤を含む場合、前記ベンゾトリアゾール構造を有する紫外線吸収剤の含有量が、前記光活性剤全質量に対して、1質量%以下である、請求項1~8のいずれか1項に記載の紫外線感知部材。
    The microcapsules do not contain an ultraviolet absorber having a benzotriazole structure, or
    When the microcapsules contain an ultraviolet absorber having a benzotriazole structure, the content of the ultraviolet absorber having a benzotriazole structure is 1% by mass or less with respect to the total mass of the photoactive agent, claim 1 9. The ultraviolet sensing member according to any one of items 1 to 8.
  10.  波長200~230nmの紫外線を感知する、請求項1~9のいずれか1項に紫外線感知部材。 The ultraviolet sensing member according to any one of claims 1 to 9, which senses ultraviolet rays with a wavelength of 200 to 230 nm.
  11.  光活性剤と、発色剤と、溶媒とを内包するマイクロカプセルであって、
     条件A及び条件Bの少なくとも一方を満たす、マイクロカプセル。
     条件A:前記溶媒が、ヘテロ原子を有する非芳香族溶媒Xを含む。
     条件B:前記溶媒が、芳香族溶媒Yと、非芳香族溶媒Zとを含む。
    A microcapsule encapsulating a photoactive agent, a color former, and a solvent,
    A microcapsule that satisfies at least one of condition A and condition B.
    Condition A: The solvent contains a non-aromatic solvent X having a heteroatom.
    Condition B: the solvent contains an aromatic solvent Y and a non-aromatic solvent Z;
  12.  前記溶媒が、沸点100℃以上である、請求項11に記載のマイクロカプセル。 The microcapsules according to claim 11, wherein the solvent has a boiling point of 100°C or higher.
  13.  前記非芳香族溶媒Xが、脂肪族カルボン酸、脂肪酸エステル、エーテル系溶媒、アルコール系溶媒、アミド系溶媒、及び、ケトン系溶媒からなる群から選択される1種以上の溶媒を含む、請求項11又は12に記載のマイクロカプセル。 The non-aromatic solvent X contains one or more solvents selected from the group consisting of aliphatic carboxylic acids, fatty acid esters, ether solvents, alcohol solvents, amide solvents, and ketone solvents. 11. Microcapsules according to 11 or 12.
  14.  前記非芳香族溶媒Zが、脂肪族炭化水素、脂肪族カルボン酸、脂肪酸エステル、エーテル系溶媒、アルコール系溶媒、アミド系溶媒、及び、ケトン系溶媒からなる群から選択される1種以上の溶媒を含む、請求項11~13のいずれか1項に記載のマイクロカプセル。 The non-aromatic solvent Z is one or more solvents selected from the group consisting of aliphatic hydrocarbons, aliphatic carboxylic acids, fatty acid esters, ether solvents, alcohol solvents, amide solvents, and ketone solvents. Microcapsules according to any one of claims 11 to 13, comprising
  15.  前記芳香族溶媒Yが、ヘテロ原子を有する芳香族溶媒を含む、請求項11~14のいずれか1項に記載のマイクロカプセル。 The microcapsules according to any one of claims 11 to 14, wherein the aromatic solvent Y contains an aromatic solvent having a heteroatom.
  16.  前記光活性剤が、光酸化剤であり、
     前記発色剤が、酸化されて発色する発色剤である、請求項11~15のいずれか1項に記載のマイクロカプセル。
    the photoactive agent is a photooxidant;
    The microcapsules according to any one of claims 11 to 15, wherein the coloring agent is a coloring agent that develops color upon oxidation.
  17.  前記光活性剤が、光酸発生剤であり、
     前記発色剤が、酸の作用により発色する発色剤である、請求項11~15のいずれか1項に記載のマイクロカプセル。
    the photoactive agent is a photoacid generator,
    The microcapsules according to any one of claims 11 to 15, wherein the coloring agent is a coloring agent that develops color under the action of an acid.
  18.  前記光活性剤が、一般式(6)で表される化合物を含む、請求項11~17のいずれか1項に記載のマイクロカプセル。
     R-L-CX      (6)
     一般式(6)中、Rは、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を表す。Lは、-SO-又は-SO-を表す。X、X、及び、Xは、各々独立に、水素原子又はハロゲン原子を表す。ただし、X、X、及び、Xの全てが水素原子である場合を除く。
    The microcapsule according to any one of claims 11 to 17, wherein the photoactive agent comprises a compound represented by general formula (6).
    R 3 -L 1 -CX 3 X 4 X 5 (6)
    In general formula (6), R 3 represents an optionally substituted aryl group or an optionally substituted heteroaryl group. L 1 represents -SO- or -SO 2 -. X 3 , X 4 and X 5 each independently represent a hydrogen atom or a halogen atom. However, the case where all of X 3 , X 4 and X 5 are hydrogen atoms is excluded.
  19.  請求項11~18のいずれか1項に記載のマイクロカプセルの製造方法であって、
     前記発色剤と、前記光活性剤と、前記溶媒と、乳化剤とを水中で混合して、乳化液を調製する工程と、
     前記工程で得られた乳化液中の前記発色剤と前記光活性剤と前記溶媒とを含む油滴の周囲に樹脂の壁を形成してカプセル化し、前記マイクロカプセルを形成する工程と、を含む、マイクロカプセルの製造方法。
    A method for producing the microcapsules according to any one of claims 11 to 18,
    mixing the color former, the photoactive agent, the solvent, and the emulsifier in water to prepare an emulsion;
    forming a resin wall around the oil droplets containing the coloring agent, the photoactive agent and the solvent in the emulsified liquid obtained in the above step for encapsulation to form the microcapsules. , a method for producing microcapsules.
  20.  請求項11~18のいずれか1項に記載のマイクロカプセルを含む紫外線感知層形成用分散液。 A dispersion for forming an ultraviolet sensitive layer, containing the microcapsules according to any one of claims 11 to 18.
  21.  請求項1~10のいずれか1項に記載の紫外線感知部材を含む、紫外線感知キット。 An ultraviolet sensing kit comprising the ultraviolet sensing member according to any one of claims 1 to 10.
PCT/JP2022/005017 2021-02-26 2022-02-09 Uv radiation sensitive member, microcapsule, microcapsule production method, liquid dispersion for forming uv radiation sensitive layer, and uv radiation sensitive kit WO2022181321A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023502263A JPWO2022181321A1 (en) 2021-02-26 2022-02-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021030699 2021-02-26
JP2021-030699 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181321A1 true WO2022181321A1 (en) 2022-09-01

Family

ID=83048282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005017 WO2022181321A1 (en) 2021-02-26 2022-02-09 Uv radiation sensitive member, microcapsule, microcapsule production method, liquid dispersion for forming uv radiation sensitive layer, and uv radiation sensitive kit

Country Status (2)

Country Link
JP (1) JPWO2022181321A1 (en)
WO (1) WO2022181321A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089352A (en) * 1983-10-24 1985-05-20 三井東圧化学株式会社 Ultraviolet-ray color-changed sheet
JPS60242094A (en) * 1984-05-17 1985-12-02 Fuji Photo Film Co Ltd Thermal recording material
JP2010501655A (en) * 2006-08-24 2010-01-21 チバ ホールディング インコーポレーテッド UV dose indicator
WO2016017701A1 (en) * 2014-07-31 2016-02-04 富士フイルム株式会社 Uv-sensing sheet, uv-sensing kit, and uv-sensing method
JP2018517488A (en) * 2015-06-03 2018-07-05 ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク Apparatus, method and system for selectively affecting and / or killing a virus
JP2019187727A (en) * 2018-04-24 2019-10-31 ウシオ電機株式会社 Dehydration sterilization device and dehydration sterilization method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089352A (en) * 1983-10-24 1985-05-20 三井東圧化学株式会社 Ultraviolet-ray color-changed sheet
JPS60242094A (en) * 1984-05-17 1985-12-02 Fuji Photo Film Co Ltd Thermal recording material
JP2010501655A (en) * 2006-08-24 2010-01-21 チバ ホールディング インコーポレーテッド UV dose indicator
WO2016017701A1 (en) * 2014-07-31 2016-02-04 富士フイルム株式会社 Uv-sensing sheet, uv-sensing kit, and uv-sensing method
JP2018517488A (en) * 2015-06-03 2018-07-05 ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク Apparatus, method and system for selectively affecting and / or killing a virus
JP2019187727A (en) * 2018-04-24 2019-10-31 ウシオ電機株式会社 Dehydration sterilization device and dehydration sterilization method

Also Published As

Publication number Publication date
JPWO2022181321A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US6524763B1 (en) Microcapsules containing a radiation sensitive composition and their use
US10203245B2 (en) Ultraviolet-sensitive sheet, method for manufacturing ultraviolet-sensing sheet, and method for sensing ultraviolet
US20230392981A1 (en) Ultraviolet-sensing member and ultraviolet-sensing kit
US10247603B2 (en) Ultraviolet-sensitive sheet, ultraviolet-sensing kit, and method for sensing ultraviolet
US20230392983A1 (en) Ultraviolet inspection tool, ultraviolet inspection kit, and ultraviolet inspection method
JP6446088B2 (en) Ultraviolet sensing sheet, manufacturing method thereof, and ultraviolet sensing method
WO2022181321A1 (en) Uv radiation sensitive member, microcapsule, microcapsule production method, liquid dispersion for forming uv radiation sensitive layer, and uv radiation sensitive kit
US4929530A (en) Light image forming material and image-recording method using such
JP2625194B2 (en) Multicolor recording material
US6387584B1 (en) Photoimaging material
WO2022181285A1 (en) Uv radiation sensitive member, microcapsule, microcapsule production method, liquid dispersion for forming uv radiation sensitive layer, and uv radiation sensitive kit
WO2022181392A1 (en) Uv radiation sensitive member, microcapsule, microcapsule production method, liquid dispersion for forming uv radiation sensitive layer, and uv radiation sensitive kit
WO2022202362A1 (en) Test tool and testing method
CN116868033A (en) Ultraviolet ray sensing component and ultraviolet ray sensing kit
WO2023079992A1 (en) Inspection tool, and inspection method
JP2517329B2 (en) Photoimage forming material and image recording method using the same
CN117157509A (en) Ultraviolet inspection tool, ultraviolet inspection kit, and ultraviolet inspection method
WO2022209858A1 (en) Uv radiation sensing member and uv radiation sensing kit
CN116981917A (en) Inspection tool and inspection method
JP2005161608A (en) Microcapsule, thermal recording material and manufacturing method of microcapsule
JPH01227145A (en) Optical image forming material and image recording method using said material
JPH0976635A (en) Multi-color thermosensitive recording material
JPH0725162A (en) Thermal recording material
JPH0717145A (en) Thermal recording material
JPH09156219A (en) Multicolor thermal recording material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759360

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023502263

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759360

Country of ref document: EP

Kind code of ref document: A1