WO2022181180A1 - Inductor component - Google Patents

Inductor component Download PDF

Info

Publication number
WO2022181180A1
WO2022181180A1 PCT/JP2022/003066 JP2022003066W WO2022181180A1 WO 2022181180 A1 WO2022181180 A1 WO 2022181180A1 JP 2022003066 W JP2022003066 W JP 2022003066W WO 2022181180 A1 WO2022181180 A1 WO 2022181180A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
axis
along
direction along
ribbon
Prior art date
Application number
PCT/JP2022/003066
Other languages
French (fr)
Japanese (ja)
Inventor
敢 三宅
博美 辻
充 小田原
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2023502196A priority Critical patent/JPWO2022181180A1/ja
Publication of WO2022181180A1 publication Critical patent/WO2022181180A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons

Definitions

  • the present disclosure relates to inductor components.
  • the inductor component described in Patent Document 1 includes an element body and inductor wiring extending inside the element body.
  • the body is made of inorganic filler and resin.
  • the material of the inorganic filler is a magnetic material.
  • the average particle size of the inorganic filler is 5 ⁇ m or less.
  • the inductor component described in Patent Document 1 various characteristics of the inductor component are improved by increasing the filling rate of the inorganic filler in the element body.
  • the inductor component described in Patent Document 1 assumes a structure in which inorganic filler particles are randomly dispersed in the element, and no other structure of the magnetic material in the element is studied.
  • the present invention includes a plurality of flat magnetic ribbons made of a magnetic material, wherein the plurality of magnetic ribbons are laminated in a direction perpendicular to the main surface of the magnetic ribbons. and an inductor wiring extending along the main surface inside the base body, and the main body in a cross-sectional view orthogonal to the central axis, with the axis along which the inductor wiring extends as a central axis.
  • an axis along the surface is defined as a first axis and an axis perpendicular to the main surface in the cross-sectional view is defined as a second axis
  • the element is positioned between the magnetic ribbons adjacent to each other along the second axis.
  • the inductor component In the inductor component, the percentage of the thickness of the non-magnetic layer to the thickness of the magnetic ribbon is greater than 3%, where the average value of the dimension along the second axis is the thickness of the non-magnetic layer.
  • a magnetic field is generated when a current is passed through the inductor wiring.
  • the magnetic flux passes through the magnetic ribbon that constitutes the element body, and an eddy current is generated in the magnetic ribbon.
  • the larger the eddy current the larger the eddy current loss of the inductor component, which is the loss caused by the generation of the eddy current.
  • the element body includes a plurality of magnetic ribbons laminated along the second axis, a plurality of nonmagnetic layers made of a nonmagnetic material and positioned between adjacent magnetic ribbons, have. That is, the above inductor component has a regular structure of magnetic ribbons stacked along the second axis.
  • the thickness of the non-magnetic layer affects the eddy current loss that occurs.
  • the percentage of the thickness of the non-magnetic layer to the thickness of the magnetic ribbon is greater than 3%, the occurrence of eddy current loss can be suppressed.
  • first axis means not only those that are in direct contact with the first axis and along the first axis, but also those that are not in direct contact with the first axis and are along the first axis at a distance. Also includes Also, “along” means that they are substantially in parallel, and includes those that are slightly inclined due to manufacturing errors or the like.
  • FIG. 3 is an exploded perspective view of an inductor component;
  • FIG. 2 is a plan view of the first portion of the inductor component;
  • FIG. 3 is a cross-sectional view of the inductor component taken along line 3-3 in FIG. 2;
  • FIG. 4 is a partially enlarged view of FIG. 3;
  • Explanatory drawing of the manufacturing method of inductor components Explanatory drawing of the manufacturing method of inductor components.
  • Explanatory drawing of the manufacturing method of inductor components Explanatory drawing of the manufacturing method of inductor components.
  • Explanatory drawing of the manufacturing method of inductor components Explanatory drawing of the manufacturing method of inductor components.
  • Explanatory drawing of the manufacturing method of inductor components Explanatory drawing of the manufacturing method of inductor components.
  • Explanatory drawing of the manufacturing method of inductor components Explanatory drawing of the manufacturing method of inductor components.
  • Explanatory drawing of the manufacturing method of inductor components Explanatory drawing of the manufacturing method of inductor components. Explanatory drawing of the manufacturing method of inductor components. Explanatory drawing of the manufacturing method of inductor components. A graph showing the results of the simulation. Sectional drawing of the inductor component of a modification.
  • inductor component 10 includes element body 20 and inductor wiring 30 .
  • the element body 20 has a plurality of magnetic strips 40 , a plurality of nonmagnetic layers 50 , a plurality of nonmagnetic portions 60 , and a plurality of nonmagnetic films 70 .
  • the magnetic ribbon 40 is flat.
  • a plurality of magnetic ribbons 40 are laminated in a direction orthogonal to the main surface MF of the magnetic ribbons 40 .
  • the flat plate shape means a thin shape having the main surface MF, but it is not limited to a rectangular parallelepiped with a thin thickness. , there may be holes inside.
  • the inductor wiring 30 extends linearly along the main surface MF inside the element body 20 .
  • the axis along which inductor wiring 30 extends is defined as central axis CA.
  • the direction in which the central axis CA extends matches the direction in which one of the sides of the quadrangular main surface MF extends.
  • the axis along the main surface MF is defined as a first axis X
  • the axis perpendicular to the main surface MF is defined as a second axis Z.
  • One of the directions along the first axis X is defined as a first positive direction X1
  • the other direction along the first axis X is defined as a first negative direction X2.
  • One of the directions along the central axis CA is defined as a positive direction Y1, and the other direction along the central axis CA is defined as a negative direction Y2.
  • one of the directions along the second axis Z is defined as a second positive direction Z1, and the other direction along the second axis Z is defined as a second negative direction Z2.
  • the inductor component 10 is composed of a first portion P1, a second portion P2, and a third portion P3, which are sequentially laminated along the second axis Z.
  • the first portion P1 is located at the end of the second negative direction Z2 along the second axis Z.
  • the first portion P1 has a square shape when viewed from the direction along the second axis Z.
  • the first portion P ⁇ b>1 has a plurality of magnetic strips 40 , a plurality of nonmagnetic layers 50 , a plurality of nonmagnetic portions 60 , and a plurality of nonmagnetic films 70 .
  • each magnetic ribbon 40 of the first portion P1 is laminated in the direction along the second axis Z in a cross-sectional view perpendicular to the central axis CA.
  • each magnetic ribbon 40 of the first portion P1 has a square shape when viewed from the direction along the second axis Z.
  • each side of each magnetic ribbon 40 is parallel to the first axis X or the central axis CA.
  • two magnetic ribbons 40 are arranged side by side in the direction along the third axis perpendicular to the second axis Z with a gap therebetween.
  • two magnetic strips 40 are arranged at the same position along the second axis Z with a gap in the direction along the fourth axis perpendicular to the second axis Z and the third axis.
  • the third axis coincides with the central axis CA
  • the fourth axis coincides with the first axis X. Therefore, in this embodiment, the magnetic strips 40 are arranged not only in the direction along the second axis Z, but also in the directions along the first axis X and the central axis CA.
  • the magnetic ribbon 40 is made of a magnetic material.
  • the magnetic material is, for example, a metallic magnetic material containing Fe, Ni, Co, Cr, Cu, Al, Si, B, P and the like.
  • the magnetic material is a metallic magnetic material containing Fe and Si.
  • the non-magnetic layer 50 is located between the magnetic ribbons 40 adjacent to each other in the direction along the second axis Z. As shown in FIG. The non-magnetic layer 50 fills all the spaces between the adjacent magnetic strips 40 in the direction along the second Z axis.
  • the non-magnetic layer 50 is made of a non-magnetic material.
  • the non-magnetic material is, for example, acrylic resin, epoxy resin, or silicone resin.
  • the non-magnetic layer 50 is illustrated by lines.
  • the non-magnetic portion 60 is located between the magnetic ribbons 40 arranged at the same position along the second axis Z. As shown in FIG. The non-magnetic portion 60 fills the entire space between the magnetic strips 40 arranged at the same position in the direction along the second axis Z. As shown in FIG. As described above, at the same position along the second axis Z, there are a total of four magnetic ribbons 40, two along the central axis CA and two along the first axis X. There are four magnetic parts 60 .
  • the non-magnetic portion 60 is made of a non-magnetic material. In this embodiment, the material of the non-magnetic portion 60 is the same material as that of the non-magnetic layer 50 .
  • the non-magnetic film 70 is located at the end of the first positive direction X1 along the first axis X and the end of the first negative direction X2 opposite to the first positive direction X1 in the first portion P1. .
  • the non-magnetic film 70 covers the entire end surfaces of the magnetic ribbon 40 in the direction along the first axis X. As shown in FIG. In addition, the non-magnetic film 70 covers the entire end surfaces of the non-magnetic layer 50 in the direction along the first axis X. As shown in FIG. Furthermore, the non-magnetic film 70 covers the entire end surfaces of the non-magnetic portion 60 in the direction along the first axis X. As shown in FIG.
  • the end faces of the first portion P1 in the first positive direction X1 along the first axis X are all composed of the non-magnetic film 70 .
  • the end face of the first portion P1 along the first axis X in the first negative direction X2 is entirely composed of the non-magnetic film 70 .
  • the non-magnetic film 70 is made of a non-magnetic material. In this embodiment, the material of the non-magnetic film 70 is the same as that of the non-magnetic layer 50 .
  • the second portion P2 is located in the second positive direction Z1 that is opposite to the second negative direction Z2 along the second axis Z when viewed from the first portion P1.
  • the second portion P2 has the same square shape as the first portion P1 when viewed from the direction along the second axis Z. As shown in FIG.
  • the second portion P2 is composed of an inductor wiring 30, a plurality of magnetic strips 40, a plurality of non-magnetic layers 50, a plurality of non-magnetic portions 60, and a plurality of non-magnetic films .
  • the inductor wiring 30 has a rectangular shape when viewed from the direction along the second axis Z, and extends linearly along the central axis CA.
  • the end face of the inductor wiring 30 in the positive direction Y1 along the central axis CA constitutes part of the outer surface of the second portion P2 and is exposed from the element body 20. As shown in FIG.
  • the end face of the inductor wiring 30 in the negative direction Y2 which is the opposite direction to the positive direction Y1 along the central axis CA, constitutes part of the outer surface of the second portion P2 and is exposed from the element body 20.
  • the end face of the inductor wiring 30 in the positive direction Y1 and the end face in the negative direction Y2 are parallel to the first axis X.
  • the central axis CA of the inductor wiring 30 is positioned at the center of the second portion P2 in the direction along the first axis X. As shown in FIG. Therefore, the central axis CA, which is the axis along which the inductor wiring 30 extends, passes through the center of the second portion P2 in the direction along the first axis X.
  • the dimension along the first axis X of the inductor wiring 30 is half the dimension along the first axis X of the second portion P2.
  • the material of the inductor wiring 30 is a conductive material.
  • Conductive materials are, for example, Cu, Ag, Au, Al, or alloys thereof.
  • the material of the inductor wiring 30 is Cu.
  • the inductor wiring 30 has a rectangular shape in a cross section perpendicular to the central axis CA.
  • a virtual rectangle VR with a minimum area is drawn that circumscribes the inductor wiring 30 and has a first side along the first axis X and a second side along the second axis Z.
  • the inductor wiring 30 is rectangular in the cross section perpendicular to the central axis CA.
  • the long side of the outer shape of the inductor wiring 30 is along the first axis X in the cross section perpendicular to the central axis CA.
  • the short side of the inductor wiring 30 is along the second axis Z in the cross section orthogonal to the central axis CA. Therefore, the virtual rectangle VR matches the contour of the inductor wiring 30 .
  • a first side of the virtual rectangle VR is longer than a second side of the virtual rectangle VR.
  • portions other than the inductor wiring 30 are composed of a plurality of magnetic strips 40, a plurality of nonmagnetic layers 50, a plurality of nonmagnetic portions 60, a plurality of nonmagnetic films, as in the first portion P1. 70 and .
  • each magnetic ribbon 40 of the second portion P2 is laminated in a direction along the second axis Z in a cross-sectional view perpendicular to the central axis CA.
  • each magnetic strip 40 of the second portion P2 has a rectangular shape when viewed from the direction along the second axis Z.
  • the long side of each magnetic strip 40 is parallel to the central axis CA when viewed from the direction along the second axis Z.
  • the magnetic ribbon 40 is positioned on both sides of the first positive direction X1 and the first negative direction X2 along the first axis X when viewed from the inductor wiring 30. . That is, in the second portion P2, two magnetic ribbons 40 are arranged in a line along the first axis X with the inductor wiring 30 interposed therebetween. In addition, two magnetic strips 40 are arranged at the same position along the second axis Z and spaced apart in the direction along the central axis CA.
  • the non-magnetic layer 50 of the second portion P2 is positioned between the magnetic strips 40 adjacent to each other in the direction along the second axis Z, similarly to the first portion P1 described above. That is, as shown in FIG. 3, the magnetic ribbons 40 and the non-magnetic layers 50 are alternately laminated in the direction along the second axis Z, similar to the first portion P1.
  • the non-magnetic portion 60 of the second portion P2 is located between the magnetic strips 40 arranged at the same position along the second axis Z.
  • the non-magnetic portion 60 fills the entire space between the magnetic strips 40 arranged at the same position in the direction along the second axis Z.
  • the position of the non-magnetic portion 60 of the second portion P2 overlaps part of the non-magnetic portion 60 of the first portion P1 when viewed from the direction along the second axis Z.
  • the non-magnetic portion 60 of the second portion P2 is continuous with the non-magnetic portion 60 of the first portion P1.
  • the non-magnetic portion 60 does not exist between the inductor wiring 30 and the magnetic ribbon 40 in the second portion P2.
  • the nonmagnetic film 70 is located at the end of the first positive direction X1 along the first axis X and the end of the first negative direction X2, which is the opposite direction to the first positive direction X1, in the second portion P2. .
  • the non-magnetic film 70 of the second portion P2 is continuous with the non-magnetic film 70 of the first portion P1.
  • the third portion P3 is located in the second positive direction Z1 of the second portion P2. When viewed from the second axis Z, the third portion P3 has the same square shape as the first portion P1.
  • the third portion P3 is composed of a plurality of magnetic ribbons 40, a plurality of nonmagnetic layers 50, a plurality of nonmagnetic portions 60, and a plurality of nonmagnetic films .
  • the third portion P3 has a structure symmetrical with the first portion P1 with the second portion P2 interposed therebetween, and thus detailed description thereof will be omitted.
  • the element body 20 includes a plurality of magnetic ribbons 40 , a plurality of nonmagnetic layers 50 , a plurality of nonmagnetic portions 60 , and a plurality of nonmagnetic films 70 .
  • the dimensions of the magnetic ribbon 40 and the non-magnetic layer 50 in the direction along the second axis Z will be described in detail.
  • the dimensions of the magnetic strips 40 in the direction along the second axis Z vary by up to about 20% for each magnetic strip 40 due to manufacturing errors.
  • the dimensions of the non-magnetic layer 50 along the second axis Z vary by up to about 20% due to manufacturing errors.
  • the average value of the dimensions of the magnetic ribbon 40 in the direction along the second axis Z is defined as the magnetic ribbon thickness Tm
  • the average value of the dimensions in the direction along the second axis Z of the nonmagnetic layer 50 is defined as the nonmagnetic layer thickness Tm.
  • Tm the average value of the dimensions in the direction along the second axis Z of the nonmagnetic layer 50.
  • each magnetic ribbon 40 in the direction along the second axis Z is measured.
  • one image is taken with an electron microscope so that six magnetic ribbons 40 and five nonmagnetic layers 50 are contained in a cross section perpendicular to the central axis CA.
  • the magnetic ribbons 40 arranged in the second positive direction Z1 along the second axis Z are divided into magnetic ribbons 40A, 40B, 40C, 40D, and 40D. 40E and magnetic ribbon 40F.
  • the minimum dimension of the magnetic ribbon 40A in the direction along the second axis Z is measured as the first dimension Tm1.
  • the minimum dimension of the magnetic ribbon 40B in the direction along the second axis Z is measured as the second dimension Tm2.
  • the minimum dimension of the magnetic ribbon 40C in the direction along the second axis Z is measured as the third dimension Tm3.
  • the minimum dimension of the magnetic ribbon 40D in the direction along the second axis Z is measured as a fourth dimension Tm4.
  • the minimum dimension of the magnetic ribbon 40E in the direction along the second axis Z is measured as a fifth dimension Tm5.
  • the average value of these first dimension Tm1 to fifth dimension Tm5 is calculated as the magnetic ribbon thickness Tm.
  • the magnetic ribbon thickness Tm is 20 ⁇ m.
  • each of the first dimension Tm1 to the fifth dimension Tm5 is 80% or more and 120% or less of the magnetic ribbon thickness Tm.
  • the nonmagnetic layer 50 positioned between the magnetic ribbons 40A and 40B in the same image obtained by measuring the magnetic ribbon thickness Tm is referred to as the nonmagnetic layer 50A.
  • the nonmagnetic layer 50 positioned between the magnetic ribbon 40B and the magnetic ribbon 40C is referred to as a nonmagnetic layer 50B.
  • the nonmagnetic layer 50 located between the magnetic ribbon 40C and the magnetic ribbon 40D is referred to as a nonmagnetic layer 50C.
  • the non-magnetic layer 50 located between the magnetic ribbon 40D and the magnetic ribbon 40E is referred to as a non-magnetic layer 50D.
  • the non-magnetic layer 50 located between the magnetic ribbons 40E and 40F is referred to as a non-magnetic layer 50E.
  • the minimum dimension of the non-magnetic layer 50A in the direction along the second axis Z is measured as the first dimension Tnm1.
  • the minimum dimension of the non-magnetic layer 50B in the direction along the second axis Z is measured as a second dimension Tnm2.
  • the minimum dimension of the nonmagnetic layer 50C in the direction along the second axis Z is measured as a third dimension Tnm3.
  • the minimum dimension of the non-magnetic layer 50D in the direction along the second axis Z is measured as a fourth dimension Tnm4.
  • the minimum dimension of the nonmagnetic layer 50E in the direction along the second axis Z is measured as a fifth dimension Tnm5.
  • the average value of these first dimension Tnm1 to fifth dimension Tnm5 is calculated as the non-magnetic layer thickness Tnm.
  • the non-magnetic layer thickness Tnm is greater than 3 ⁇ m. Therefore, the percentage of the non-magnetic layer thickness Tnm to the magnetic ribbon thickness Tm is greater than 15%. That is, the nonmagnetic layer thickness Tnm is greater than 0.6 ⁇ m, and the percentage of the nonmagnetic layer thickness Tnm to the magnetic ribbon thickness Tm is greater than 3%.
  • each of the first dimension Tnm1 to the fifth dimension Tnm5 is 80% or more and 120% or less of the non-magnetic layer thickness Tnm.
  • the end of the inductor wiring 30 in the first positive direction X1 is defined as a first wiring end IP1.
  • the end of the inductor wiring 30 in the first negative direction X2 is defined as a second wiring end IP2.
  • the magnetic ribbon 40 having the shortest distance along the second axis Z from the first wiring end IP1 is selected as the first magnetic ribbon 40. 1 magnetic ribbon 41 .
  • the magnetic ribbon 40 which at least partially overlaps with the inductor wiring 30 when viewed from the direction along the second axis Z, is laminated in the direction along the second axis Z with respect to the inductor wiring 30. is 40. Therefore, in the present embodiment, the magnetic ribbon 40 in the first portion P1 and the magnetic ribbon 40 in the third portion P3 are laminated in the direction along the second axis Z with respect to the inductor wiring 30. be.
  • the magnetic ribbon 40 in the second portion P2 is not laminated in the direction along the second axis Z with respect to the inductor wiring 30 .
  • the first magnetic ribbon 41 is the magnetic ribbon 40 located most in the second negative direction Z2 among the magnetic ribbons 40 in the first portion P1, and the magnetic ribbon 40 most located in the second negative direction Z2 among the magnetic ribbons 40 in the third portion P3. and the magnetic ribbon 40 located in the positive direction Z1.
  • the end in the first positive direction X1 is the first end MP1, and the end in the first negative direction X2 is the second end MP2.
  • the range excluding both ends of one magnetic strip 40 in the direction along the first axis X is defined as a first range AR1.
  • the coordinates indicating the position of the second end MP2 in the direction along the first axis X are set to zero.
  • let 1 be the coordinate indicating the position of the first end MP1 in the first positive direction X1 along the first axis X in the direction along the first axis X.
  • the range in which the coordinates indicating the position in the direction along the first axis X are larger than 0 and smaller than 1 is the first range AR1.
  • a first imaginary straight line VL1 is drawn in a direction along the second axis Z while passing through the first wiring end IP1.
  • the first virtual straight line VL1 passes through the first range AR1 of the first magnetic ribbon 41 .
  • a plurality of magnetic ribbons 40 are continuously laminated in the second positive direction Z1 with respect to the inductor wiring 30 in the first portion P1.
  • the first imaginary straight line VL1 is the first magnetic strip 40 among the plurality of magnetic strips 40 continuously laminated in the second positive direction Z1 from the first magnetic strip 41. It passes through the first range AR1 of two or more magnetic ribbons 40 that are continuously laminated including the ribbon 41 .
  • the first imaginary straight line VL1 is the first straight line of all the magnetic ribbons 40 continuously stacked on the first magnetic ribbon 41 among the magnetic ribbons 40 included in the first portion P1. It passes through the range AR1.
  • a second imaginary straight line extending along the second axis Z passes through a second end MP2 in a first negative direction X2, which is the opposite direction of the first positive direction X1 along the first axis X of the first magnetic ribbon 41.
  • the second virtual straight line VL2 passes through the inductor wiring 30 .
  • it is positioned substantially at the center of the inductor wiring 30 in the direction along the first axis X. As shown in FIG.
  • the inductor component 10 has a line-symmetrical structure with the second axis Z passing through the center in the direction along the first axis X as the axis of symmetry.
  • a third imaginary straight line VL3 is drawn in a direction along the second axis Z while passing through the second wiring end IP2 of the inductor wiring 30 .
  • the magnetic ribbon 40 laminated in the direction along the second axis Z with respect to the inductor wiring 30 the magnetic ribbon 40 having the shortest distance along the second axis Z from the second wiring end IP2 is selected as the first magnetic ribbon 40. 2 magnetic ribbon 42 .
  • the third imaginary straight line VL3 passes through the first range AR1 of the second magnetic ribbon 42 in a cross-sectional view orthogonal to the central axis CA. More specifically, the third imaginary straight line VL3 passes through the center of the second magnetic ribbon 42 in the direction along the first axis X. As shown in FIG.
  • the third imaginary straight line VL3 is the first line of the two or more magnetic ribbons 40 including the second magnetic ribbon 42 that are continuously laminated. It passes through the range AR1.
  • the third imaginary straight line VL3 is the first straight line of all the magnetic ribbons 40 continuously stacked on the second magnetic ribbon 42 among the magnetic ribbons 40 included in the first portion P1. It passes through the range AR1.
  • the third imaginary straight line VL3 is continuously laminated including the second magnetic ribbon 42 among the magnetic ribbons 40 included in the third portion P3. It passes through the first range AR1 of two or more magnetic ribbons 40 .
  • the third imaginary straight line VL3 is the first straight line of all the magnetic ribbons 40 continuously stacked on the second magnetic ribbon 42 among the magnetic ribbons 40 included in the third portion P3. It passes through the range AR1. More specifically, the third imaginary straight line VL3 passes through the centers of all the magnetic ribbons 40 that are continuously stacked on the second magnetic ribbon 42 . In this manner, it is preferable that the third imaginary straight line VL3 passes through the first range AR1 with respect to the second magnetic ribbon 42 in a cross-sectional view perpendicular to the central axis CA.
  • a method for manufacturing inductor component 10 Next, a method for manufacturing inductor component 10 will be described. As shown in FIG. 5, first, a copper foil preparation step for preparing a copper foil 81 is performed. Since the copper foil 81 constitutes the inductor wiring 30 , the thickness of the copper foil 81 is prepared to have a thickness necessary for the inductor wiring 30 . In the following description, it is assumed that the copper foil 81 is arranged such that the two main surfaces of the copper foil 81 are orthogonal to the second axis Z, and a cross section orthogonal to the central axis CA is shown. do.
  • a first covering step is performed to cover areas other than the area occupied by 40 .
  • a first covering portion that covers the second portion P2 other than the range occupied by the plurality of magnetic strips 40. form 82;
  • the entire surface of the copper foil 81 along the second axis Z and facing the second negative direction Z2 is coated with a photosensitive dry film resist.
  • the dry film resist is cured by exposing the portion where the first covering portion 82 is to be formed.
  • a dry film resist is applied to the surface of the copper foil 81 facing the second positive direction Z1 along the second axis Z, and the portion where the first covering portion 82 is to be formed is exposed to light. Cure the dry film resist.
  • the uncured portion of the applied dry film resist is peeled off with a chemical solution.
  • the hardened portion of the applied dry film resist is formed as the first covering portion 82 . Note that photolithography in other steps described later is also the same step, and detailed description thereof will be omitted.
  • a copper foil etching step is performed to etch the copper foil 81 exposed from the first covering portion 82 .
  • the exposed copper foil 81 is removed.
  • a first covering portion removing step for removing the first covering portion 82 is performed. Specifically, the first covering portion 82 is peeled off by wet etching the first covering portion 82 with a chemical.
  • a second covering step is performed to cover the range occupied by the plurality of magnetic ribbons 40 when viewed from the direction along the second axis Z of both surfaces of the copper foil 81 orthogonal to the second axis Z.
  • the dry film resist R is applied to the entire surface of the copper foil 81 along the second axis Z and facing the second positive direction Z1.
  • the surface of the copper foil 81 facing the second positive direction Z1 along the second axis Z is formed into a magnetic thin film when viewed from the direction along the second axis Z.
  • a second covering portion 83 covering areas other than the area occupied by the band 40 and the non-magnetic layer 50 is formed.
  • the magnetic ribbon 40 and the non-magnetic ribbon 40 are formed by photolithography when viewed from the direction along the second axis Z of the surface facing the second negative direction Z2 along the second axis Z of the copper foil 81 .
  • a second covering portion 83 is formed to cover areas other than the area occupied by the layer 50 .
  • a layered body preparation step is performed to prepare a layered body 84 in which the magnetic ribbon 40 and the non-magnetic layer 50 are layered.
  • a ribbon is prepared as the magnetic ribbon 40 .
  • the ribbon is made of, for example, NANOMET (registered trademark) manufactured by Tohoku Magnet Institute, Metglas (registered trademark) or FINEMET (registered trademark) manufactured by Hitachi Metals, FeSiB, FeSiBCr, or the like.
  • This strip is cut into 10 mm squares.
  • a non-magnetic material such as an epoxy resin film is laminated on the cut strip.
  • the epoxy resin film has a predetermined thickness greater than 3% of the ribbon thickness.
  • the percentage of the thickness of the epoxy resin film to the thickness of the ribbon is greater than 15%, and the thickness of the epoxy resin film is greater than 3 ⁇ m.
  • the cut ribbon is laminated on the laminated epoxy resin film. After alternately laminating the thin strips and the non-magnetic material in this manner, the thin strips and the non-magnetic material are hardened and adhered by a vacuum heating and pressurizing device. Then, by dicing into a desired size, a laminate 84 in which a plurality of magnetic ribbons 40 and nonmagnetic layers 50 are laminated can be prepared.
  • the laminate 84 includes a first laminate 84A that forms the magnetic ribbon 40 and the non-magnetic layer 50 in the first portion P1 and the third portion P3, and a magnetic ribbon 40 and the non-magnetic layer 50 in the second portion P2.
  • Two types are prepared, namely, the second laminate 84B that constitutes the magnetic layer 50 .
  • a laminate arrangement step for arranging the laminate 84 is performed.
  • the first laminate 84A constituting the magnetic ribbon 40 and the non-magnetic layer 50 in the third portion P3 is placed in the second positive direction along the second axis Z of the copper foil 81.
  • the thermoplastic adhesive 85 is indicated by thick lines in FIGS. 11 to 16. FIG.
  • the whole is inverted in the direction along the second axis Z.
  • the second laminate 84B constituting the magnetic ribbon 40 and the non-magnetic layer 50 in the second portion P2 is aligned along the second axis Z of the first laminate 84A. It is arranged on a portion not in contact with the copper foil 81 of the surface facing the second positive direction Z1.
  • the second laminate 84B can be arranged by pressing the laminate 84 into the opening of the copper foil 81 by pressing or the like.
  • the first laminate 84A constituting the magnetic ribbon 40 and the non-magnetic layer 50 in the first portion P1 of the laminate 84 is moved along the second axis Z of the copper foil 81.
  • the thermoplastic adhesive 85 temporarily adheres to the surface facing the second positive direction Z1 and the surface facing the second positive direction Z1 along the second laminate 84B. Thereby, the laminated body 84 is arranged.
  • a press process is performed. Pressing is performed in a state in which the whole is covered with a resin material 86 that is a non-magnetic material. Thereby, each layer in the direction along the second axis Z is crimped.
  • a singulation process is performed. Specifically, for example, it is separated into pieces by dicing along the break lines DL. The portion between the first laminates 84A arranged in the direction along the first axis X in the second covering portion 83 described above becomes the non-magnetic portion 60. As shown in FIG.
  • thermoplastic adhesive 85 remains on both surfaces of the inductor wiring 30 in the direction along the second axis Z as part of the non-magnetic layer 50 .
  • the laminate 84 is cut along the end face in the first positive direction X1 and the end face in the first negative direction X2.
  • the non-magnetic film 70 made of a non-magnetic material is applied to the end faces of the laminate 84 in the first positive direction X1 and the end faces in the first negative direction X2.
  • the thermoplastic adhesive 85 also wraps around the side surfaces of the inductor wiring 30 facing the first positive direction X1 and the side surfaces facing the first negative direction X2. Insulation is ensured without contact.
  • the software used is Femtet 2019 manufactured by Murata Software.
  • the solver is magnetic field harmonic analysis.
  • the model is three dimensional.
  • a standard mesh size is 0.25 mm.
  • the magnetic material is an amorphous metal magnetic ribbon made of Fe, Si, Cr and B.
  • the relative magnetic permeability ⁇ r is 7000 and the saturation magnetic flux density Bs is 1.3T.
  • a magnetic material BH curve that satisfies B Bs ⁇ tanh ( ⁇ 0 ⁇ r ⁇ H/Bs) was used.
  • the BH curve of the magnetic material a portion where the relative permeability ⁇ r is 1 or more is used so as not to fall below the magnetic permeability of the vacuum, and the function of Femtet2019 is used to extrapolate the magnetic permeability of the vacuum.
  • the material of the inductor wiring 30 is copper.
  • the electrical conductivity of the magnetic material is 0.568181818MS/m.
  • the wiring applied current is a sine wave of 300 kHz with an amplitude of 2.25A.
  • the dimension of the inductor wiring 30 in the direction along the first axis X is 1000 ⁇ m.
  • the dimension of the inductor wiring 30 in the direction along the second axis Z is 100 ⁇ m.
  • the dimension of the inductor wiring 30 in the direction along the central axis CA is 2400 ⁇ mm.
  • the dimension of the magnetic ribbon 40 in the direction along the first axis X is 990 ⁇ m.
  • the dimension of the magnetic ribbon 40 in the direction along the second axis Z is 20 ⁇ m.
  • the dimension of the magnetic strip 40 in the direction along the central axis CA is 990 ⁇ m.
  • the non-magnetic layer 50 is a non-magnetic material and an insulator.
  • the dimension of the nonmagnetic layer 50 along the second axis Z is 0.06 to 10.00 ⁇ m.
  • the dimension of the nonmagnetic portion 60 along the first axis X is 20 ⁇ m.
  • the dimension of the non-magnetic portion 60 along the central axis CA is 20 ⁇ m.
  • the number of magnetic ribbons 40 laminated in the direction along the second axis Z is 41 pieces.
  • the number of magnetic ribbons 40 arranged in the direction along the first axis X is two.
  • the number of magnetic strips 40 arranged in the direction along the central axis CA is two.
  • the position of the inductor wiring 30 is arranged so that the center of gravity of the inductor wiring 30 coincides with the position of the center of gravity of the element body 20 .
  • the relative magnetic permeability ⁇ r of the nonmagnetic material of the nonmagnetic layer 50, the nonmagnetic portion 60, and the nonmagnetic film 70 is set to 1.
  • a non-magnetic and insulating gap of 100 nm was provided at the portion where the inductor wiring 30 and the magnetic ribbon 40 were in contact with each other.
  • the dimension of the inductor component 10 in the direction along the first axis X is 2020 ⁇ m.
  • the element body 20 has films of the same nonmagnetic material as the nonmagnetic film 70 at both ends in the direction along the central axis CA.
  • the dimension of the membrane in the direction along the central axis CA is 10 ⁇ m. Therefore, the dimension of the element body 20 in the direction along the central axis CA is 2020 ⁇ m. That is, in this simulation, the dimension of the inductor wiring 30 in the direction along the central axis CA is larger than the dimension in the direction along the central axis CA of the element body 20 by 380 ⁇ m.
  • the simulation is performed with the inductor wiring 30 protruding by 190 ⁇ m from the end face of the element body 20 in the positive direction Y1 and the inductor wiring 30 protruding by 190 ⁇ m from the end face of the element body 20 in the negative direction Y2.
  • the dimension of the inductor component 10 along the second axis Z changes depending on the dimension of the nonmagnetic layer 50 along the second axis Z.
  • the dimension of the non-magnetic layer 50 in the direction along the second axis Z is changed within the range of 0.06 to 10.00 ⁇ m, and the current applied to the wiring is a sine wave of 300 kHz with amplitude.
  • the eddy current loss ACloss obtained at 2.25 A was calculated by simulation.
  • the eddy current loss ACloss is calculated as Joule heat.
  • the thickness of the epoxy resin film in the manufacturing method described above may be changed.
  • the eddy current loss ACloss has a correlation with the non-magnetic layer thickness Tnm. As a whole, there was a tendency that the smaller the non-magnetic layer thickness Tnm, the smaller the eddy current loss ACloss.
  • the nonmagnetic layer thickness Tnm is 0.6 ⁇ m or less, that is, when the percentage of the nonmagnetic layer thickness Tnm to the magnetic ribbon thickness Tm is 3% or less, the eddy current loss ACloss hardly changes.
  • the nonmagnetic layer thickness Tnm is greater than 0.6 ⁇ m, that is, when the percentage of the nonmagnetic layer thickness Tnm to the magnetic ribbon thickness Tm is greater than 3%, the greater the nonmagnetic layer thickness Tnm, the more The eddy current loss ACloss was calculated to be small. Furthermore, when the nonmagnetic anti-thickness Tnm is greater than 3.0 ⁇ m, that is, when the percentage of the nonmagnetic layer thickness Tnm to the magnetic ribbon thickness Tm is greater than 15%, the nonmagnetic layer thickness Tnm is 0.6 ⁇ m or less. The eddy current loss ACloss was about two-thirds or less of the value of .
  • the eddy current loss ACloss is reduced by about one-third or more compared to when the nonmagnetic layer thickness Tnm is 0.6 ⁇ m or less. rice field.
  • the element body 20 has a plurality of magnetic ribbons 40 and a plurality of nonmagnetic layers 50 .
  • a plurality of magnetic ribbons 40 are stacked along the second axis Z, and each non-magnetic layer 50 is positioned between adjacent magnetic ribbons 40 along the second axis Z.
  • the inductor component 10 of the above embodiment has a regular structure of the magnetic thin strips 40 stacked along the second axis Z. As shown in FIG.
  • the percentage of the non-magnetic layer thickness Tnm to the magnetic ribbon thickness Tm is 3% or less, even if the non-magnetic layer thickness Tnm is changed, the eddy current The loss ACloss remains almost unchanged.
  • the percentage of the non-magnetic layer thickness Tnm to the magnetic ribbon thickness Tm is greater than 3%. Therefore, as shown in FIG. 17 as a simulation result, there is a correlation that the eddy current loss ACloss decreases as the nonmagnetic layer thickness Tnm increases. Therefore, according to the above embodiment, the generated eddy current loss ACloss can be suppressed as compared with the case where the percentage of the non-magnetic layer thickness Tnm to the magnetic ribbon thickness Tm is 3% or less.
  • the non-magnetic layer thickness Tnm is greater than 0.6 ⁇ m. If the non-magnetic layer thickness Tnm is sufficiently large in this way, it is possible to suppress the generated eddy current loss ACloss regardless of the magnetic ribbon thickness Tm.
  • the generated eddy current loss ACloss is approximately 3 ⁇ m compared to when the nonmagnetic layer thickness Tnm is 0.6 ⁇ m or less. 2/2 or less. That is, when the percentage of the nonmagnetic layer thickness Tnm to the magnetic ribbon thickness Tm is greater than 15%, compared to the case where the percentage of the nonmagnetic layer thickness Tnm to the magnetic ribbon thickness Tm is 3% or less. , the generated eddy current loss ACloss can be suppressed to about one-third or more.
  • the non-magnetic layer thickness Tnm is greater than 3 ⁇ m. If the non-magnetic layer thickness Tnm is sufficiently large in this way, the generated eddy current loss ACloss can be greatly suppressed regardless of the magnetic ribbon thickness Tm.
  • the magnetic flux generated when the current flows through the inductor wiring 30 in the direction along the central axis CA includes magnetic flux penetrating the magnetic ribbon 40 in the direction along the second axis Z. .
  • the magnetic flux entering in this way causes eddy currents in the magnetic ribbon 40 .
  • the larger the area of each magnetic ribbon 40 the larger the eddy current.
  • two magnetic strips 40 are arranged in the direction along the third axis and the direction along the fourth axis at the same position along the second axis Z. Therefore, the area of the magnetic ribbon 40 when viewed from the direction along the second axis Z is larger than when there is only one magnetic ribbon 40 at the same position along the second axis Z in the second portion P2. become smaller. Therefore, the eddy current generated in one magnetic strip 40 is reduced.
  • two magnetic strips 40 are arranged in the direction along the first axis X at the same position along the second axis Z. Therefore, a first magnetic thin strip 41 along which a first virtual straight line VL1 passing through the first wiring end IP1 of the inductor wiring 30 passes, and a second magnetic thin strip 41 along which a third virtual straight line VL3 passing through the second wiring end IP2 of the inductor wiring 30 passes.
  • the strip 42 is a different magnetic thin strip 40 . Therefore, the above-described positional relationship between the inductor wire 30 and the first magnetic ribbon 41 can be realized while ensuring a certain size as the dimension of the inductor wire 30 in the direction along the first axis X.
  • the dimensions of all the magnetic ribbons 40 in the direction along the second axis Z are 80% or more and 120% or less of the magnetic ribbon thickness Tm. That is, it can be said that all the magnetic strips 40 have substantially the same dimensions in the direction along the second axis Z.
  • FIG. As a result, the magnetic flux density in each magnetic strip 40 is made uniform, and the magnetic flux is hard to concentrate and saturate at a specific location. As a result, the magnetic flux density of the entire element body 20 is improved.
  • the dimensions of all the nonmagnetic layers 50 in the direction along the second axis Z are 80% or more and 120% or less of the nonmagnetic layer thickness Tnm. .
  • the dimensions in the direction along the second axis Z of all the nonmagnetic layers 50 are substantially equal. Therefore, the disturbance of the magnetic flux generated at the interface between the non-magnetic layer 50 and the magnetic ribbon 40 can be made uniform.
  • the first imaginary straight line VL1 passes through the first range AR1 of the first magnetic ribbon 41 . Therefore, of the magnetic flux generated when a current flows through the inductor wiring 30, most of the magnetic flux in the direction along the first imaginary straight line VL1 in the vicinity of the first wiring end IP1 of the inductor wiring 30 is the first magnetic ribbon 41 except for the end in the direction along the first axis X. That is, of the magnetic flux generated when the current flows through the inductor wiring 30, the magnetic flux passing through the ends in the direction along the first magnetic ribbon 41 is reduced. Therefore, it is possible to suppress the disturbance of the magnetic flux and the local concentration of the magnetic flux. According to such a positional relationship between the first magnetic ribbon 41 and the inductor wiring 30, the obtained inductance L is increased regardless of the filling rate of the magnetic material.
  • the shape of the element body 20 is not limited to the example of the above embodiment.
  • the shape of the base body 20 when viewed from the direction along the second axis Z, the shape of the base body 20 may be rectangular, or polygonal other than quadrangular. Further, for example, the shape of the base body 20 may be circular such as an ellipse when viewed from the direction along the second axis Z. Further, the shape of the base body 20 may be a rectangular parallelepiped, a cube, a polygonal prism, a cylinder, or the like having different dimensions in the direction along the third axis and in the direction along the fourth axis.
  • the shape of the inductor wiring 30 can be appropriately changed as long as the inductor wiring 30 can give inductance L to the inductor component 10 by generating magnetic flux in the magnetic ribbon 40 when current flows. .
  • the inductor wiring 130 has an elliptical shape in a cross section perpendicular to the central axis CA. Then, a hypothetical rectangle VR2 with a minimum area, which circumscribes the inductor wiring 130 and has a first side along the first axis X and a second side along the second axis Z, is drawn. At this time, the first side of the virtual rectangle VR2 is longer than the second side of the virtual rectangle VR2. As described above, when the long sides of the virtual rectangle VR2 are parallel to the first axis X, the opposite ends of the first magnetic ribbon 41 in the direction along the first axis X of the cross section of the wiring where the magnetic flux is more concentrated. It is more preferable because it corresponds to a region with a small magnetic field.
  • the shape of the inductor wiring 30 in the cross section orthogonal to the central axis CA may be such that the second side along the second axis Z is longer than the first side along the first axis X. Even in this case, the magnetic flux concentrates on the first wiring end IP1, which is the end of the inductor wiring 30 in the first positive direction X1. Therefore, the region of the first magnetic ribbon 41 having a small demagnetizing field corresponds to the first wiring end IP1 of the wiring cross section where the magnetic flux is more concentrated, which is more preferable.
  • the shape of the inductor wiring 30 may be a shape that does not have symmetry such as linear symmetry or rotational symmetry, such as when it includes one or more protruding portions. In this way, if the symmetry is broken in the cross section perpendicular to the central axis CA, there will be a place where the magnetic flux concentrates more than others. Further, it is preferable to determine the positional relationship of the first magnetic ribbon 41 so that the first wiring end IP1 is a portion such as a projecting portion where the magnetic flux concentrates more than others.
  • the shape of the inductor wiring 30 may be square or circular.
  • the virtual rectangle VR drawn in the cross section perpendicular to the central axis CA is a square, and the first side of the virtual rectangle VR does not have to be longer than the second side of the virtual rectangle VR.
  • the first magnetic strip 41 is determined in accordance with the shape of the inductor wiring 30 in the cross section perpendicular to the central axis CA.
  • the distance along the second axis Z from the first wiring end IP1 is the shortest among the magnetic ribbons 40 laminated in the direction along the second axis Z with respect to the inductor wiring 130.
  • the magnetic ribbon 40 is one of the magnetic ribbons 40 included in the second portion P2. Even in this case, the first imaginary straight line VL1 only needs to pass through the first range AR1 of the first magnetic ribbon 41 .
  • the position of the inductor wiring 30 in the direction along the first axis X is not limited to the example of the above embodiment.
  • the first imaginary straight line VL1 preferably passes through the first range AR1 of the five magnetic ribbons 40, including the first magnetic ribbons 41, arranged continuously in the direction along the second axis Z. More preferably, it passes within the first range AR1 of 40. Therefore, the first imaginary straight line VL1 does not have to pass through substantially the center of all the magnetic ribbons 40 in the direction along the first axis X. Also, the first virtual straight line VL1 may be outside the first range AR1 of the first magnetic ribbon 41 .
  • the shape of the inductor wiring 30 is not limited to a straight line. It only needs to extend along the main surface MF of the magnetic thin strip 40, and may have, for example, a curved shape as a whole or a meandering shape. For example, both ends of the inductor wiring 30 may protrude from the element body as in the simulation described above.
  • the inductor wiring 30 may be connected to a lead wiring extending in a direction intersecting the main surface MF, a via wiring extending in a direction along the second axis Z, or the like. Furthermore, a plurality of inductor wirings 30 may be connected to via wirings extending in the direction along the second axis Z, and may have a three-dimensional spiral shape such as a spiral shape or a helical shape as a whole. In this case, the inductor wiring 30 is the portion extending along the main surface MF of the magnetic ribbon 40 .
  • the material of the inductor wiring 30 is not limited to the example of the above-described embodiment as long as it is a conductive material.
  • the material of the inductor wiring 30 may be a conductive resin.
  • the central axis CA and the third axis may not coincide.
  • the fourth axis does not have to coincide with the first axis X.
  • the central axis CA extends in a meandering shape.
  • the third axis should be orthogonal to the second axis Z
  • the fourth axis should be orthogonal to the second axis Z and intersect the third axis.
  • the magnetic ribbons 40 are aligned along the second axis Z.
  • the area of the magnetic ribbon 40 when viewed from the direction along the second axis Z is smaller than when there is one at the same position along the second axis Z. Therefore, the eddy current generated in one magnetic strip 40 is reduced.
  • the positional relationship between the first virtual straight line VL1 passing through the first wiring end IP1 described in the above embodiment and the first range AR1 of the first magnetic ribbon 41 is , any one cross section. In other words, the positional relationship between the first imaginary straight line VL1 and the first range AR1 of the first magnetic ribbon 41 does not have to be satisfied in all the regions of the inductor wiring 30 . Note that there may be no cross section that satisfies the positional relationship between the first virtual straight line VL1 passing through the first wiring end IP1 and the first range AR1 of the first magnetic ribbon 41 . That is, the position of the first wiring end IP1 of the inductor wiring 30 in the direction along the first axis X does not have to be within the first range AR1 of the first magnetic ribbon 41. It may coincide with the end in the direction along the axis X.
  • an external electrode may be connected to the portion where the inductor wiring 30 is exposed from the element body 20 .
  • external electrodes may be formed on both end faces of the inductor wiring 30 along the central axis CA and both end faces of the base body 20 along the central axis CA by coating, printing, plating, or the like.
  • the direction in which the plurality of magnetic strips 40 and the plurality of non-magnetic layers 50 are laminated may not be perpendicular to the central axis CA and the first axis X due to manufacturing errors. .
  • the fact that the magnetic ribbons 40 and the like are "laminated in the direction along the second axis Z" allows for such manufacturing errors.
  • the number of magnetic strips 40 stacked in the direction along the second axis Z should be two or more.
  • the inductor wiring 30 and the non-magnetic layer 50 should be arranged between the two magnetic ribbons 40 .
  • the material of the magnetic ribbon 40 is not limited to the examples of the above embodiment as long as it is a magnetic material.
  • it may be Fe or Ni.
  • Metal magnetic materials other than Fe, Ni, Co, Cr, Cu, Al, Si, B, and P may also be used.
  • the material of the non-magnetic layer 50 is not limited to the examples of the above embodiments as long as it is a non-magnetic material.
  • the non-magnetic layer 50 may be made of a resin other than acrylic resin, epoxy resin, or silicon resin, or may be made of non-magnetic ceramics such as alumina, silica, or glass, or non-magnetic inorganic materials containing these. or a mixture thereof.
  • the materials of the non-magnetic layer 50, the non-magnetic portion 60 and the non-magnetic film 70 may be different from each other or may be partially different as long as they are non-magnetic materials.
  • the nonmagnetic layer 50, the nonmagnetic portion 60, and the nonmagnetic film 70 may be integrated or may be separate members.
  • the non-magnetic layer 50 may be hollow, or may be composed of an insulating oxide film obtained by oxidizing the surface of the magnetic ribbon 40 .
  • the non-magnetic portion 60 may be omitted.
  • the magnetic ribbons 40 aligned in the direction along the third axis or the fourth axis may be in direct contact with each other.
  • the nonmagnetic portion 60 may exist between the inductor wiring 30 and the magnetic ribbon 40 . In this case, the nonmagnetic portion 60 can ensure insulation between the inductor wiring 30 and the magnetic ribbon 40 .
  • a plurality of magnetic ribbons 40 are laminated and "a plurality of magnetic ribbons 40 are lined up” specifically mean that the adjacent magnetic ribbons 40 are completely or partially insulated from each other. It refers to the case where there is a physical boundary on a microscopic scale. For example, it does not include a state in which the magnetic ribbons 40 are sintered and completely integrated.
  • the structure of the element 20 can be changed as long as the element 20 has a plurality of magnetic ribbons 40 and a plurality of non-magnetic layers 50 .
  • the entire second portion P2 except for the inductor wiring 30 may be composed of the magnetic ribbon 40 or may be composed of the non-magnetic layer 50 .
  • the magnetic ribbon 40 may be a composite material of a powdery magnetic material and a non-magnetic material. good.
  • a composite material there is a metal composite material of amorphous metal particles made of Fe, Si, Cr, and B and a resin.
  • two magnetic ribbons 40 are arranged in the direction along the first axis X at the same position along the second axis Z, and are arranged in the direction along the central axis CA, that is, the third axis. 2 are lined up. That is, when “M” and “N” are positive integers, "M” magnetic ribbons 40 are arranged in the same position along the second axis Z in the direction along the third axis. "N" pieces are arranged in the direction along the first axis X, that is, the fourth axis, and both "M" and “N” are two.
  • M which is the number of first magnetic ribbons 41 arranged in the direction along the fourth axis
  • N which is the number of magnetic ribbons 40 arranged in the direction along the central axis CA
  • M and N are 2 or more, the area of each magnetic ribbon 40 as viewed from the second axis Z can be reduced, so loss due to eddy currents can be reduced. Easy to make small.
  • the magnitude relationship between the thickness Tm of the magnetic ribbon and the thickness Tnm of the non-magnetic layer described in the above embodiment is satisfied in any one of the cross sections of the inductor wiring 30 perpendicular to the central axis CA, good. In other words, the magnitude relationship between the magnetic ribbon thickness Tm and the non-magnetic layer thickness Tnm does not have to be satisfied in all regions of the inductor wiring 30 .
  • the dimensions of the plurality of magnetic ribbons 40 in the direction along the second axis Z may be the same, or may vary by more than 20% with respect to the thickness Tm of the magnetic ribbons.
  • the dimensions of the plurality of non-magnetic layers 50 in the direction along the second axis Z may be the same, or may vary by more than 20% from the average value.
  • the non-magnetic layer thickness Tnm should be larger than 3% of the magnetic ribbon thickness Tm. If the non-magnetic layer thickness Tnm is 100% or less of the magnetic ribbon thickness Tm, it is easy to avoid an increase in the size of the base body 20 in the direction along the second axis Z. Further, it is preferable to ensure the proportion of the magnetic ribbon 40 in the element body 20 when the nonmagnetic layer thickness Tnm is 50% or less of the magnetic ribbon thickness Tm.
  • the number and positions of the non-magnetic portions 60 are not limited to the examples in the above embodiment.
  • the number and positions of the non-magnetic portions 60 may be changed according to the number and positions of the magnetic strips 40 in the direction along the first axis X and in the direction along the central axis CA.
  • the size of the non-magnetic portion 60 may be appropriately changed according to the interval between the magnetic ribbons 40 at the same position in the direction along the second axis Z. FIG.
  • the non-magnetic film 70 may be omitted.
  • the gap in the direction along the first axis X and the central axis CA of the second covering portion 83 is The dimension in the direction along the first axis X and the central axis CA may be set small.
  • the non-magnetic film 70 can be formed by the resin material 86 entering the gap between the second covering portion 83 and the laminate 84 .
  • the method of manufacturing the inductor component 10 is not limited to the above embodiment.
  • the element body 20 may be laminated in the direction along the second axis Z to form a plurality of sheets, and the plurality of sheets may be laminated.
  • the base body 20 may be formed by

Abstract

A plurality of thin magnetic strips (40A to 40F) are layered in a direction orthogonal to a main surface of the thin magnetic strips (40A to 40F). In the cross section orthogonal to the central axis of an inductor wiring, the axis along the main surface is a first axis (X), and the axis orthogonal to the main surface in the cross section is a second axis (Z). An element assembly has the plurality of thin magnetic strips (40A to 40F) and a plurality of non-magnetic layers (50A to 50E). The plurality of thin magnetic strips (40A to 40F) are layered along the second axis (Z). Each of the non-magnetic layers (50A to 50E) is positioned between thin magnetic strips (40A to 40F) adjacent along the second axis (Z). The average value of the dimension of the thin magnetic strips (40A to 40F) in the direction along the second axis (Z) is the thin magnetic strip thickness, and the average value of the dimension of the non-magnetic layers (50A to 50E) in the direction along the second axis (Z) is the non-magnetic layer thickness. In this case, the percentage of the non-magnetic layer thickness with respect to the thin magnetic strip thickness is greater than 3%.

Description

インダクタ部品inductor components
 本開示は、インダクタ部品に関する。 The present disclosure relates to inductor components.
 特許文献1に記載のインダクタ部品は、素体と、素体の内部で延びているインダクタ配線と、を備えている。素体は、無機フィラー及び樹脂からなっている。例えば、磁性コンポジット体については、無機フィラーの材質は、磁性材である。また、無機フィラーの平均粒径は、5μm以下である。 The inductor component described in Patent Document 1 includes an element body and inductor wiring extending inside the element body. The body is made of inorganic filler and resin. For example, in the magnetic composite body, the material of the inorganic filler is a magnetic material. Moreover, the average particle size of the inorganic filler is 5 μm or less.
特開2019-192920号公報JP 2019-192920 A
 特許文献1に記載のインダクタ部品は、素体における無機フィラーの充填率を高めることによって、インダクタ部品の各種特性の向上が図られる。しかしながら、特許文献1に記載のインダクタ部品は、素体中において無機フィラーの粒子がランダムに分散した構造を前提としており、素体における磁性材の他の構造については何ら検討されていない。 In the inductor component described in Patent Document 1, various characteristics of the inductor component are improved by increasing the filling rate of the inorganic filler in the element body. However, the inductor component described in Patent Document 1 assumes a structure in which inorganic filler particles are randomly dispersed in the element, and no other structure of the magnetic material in the element is studied.
 上記課題を解決するため、本発明は、磁性材からなる平板状の複数の磁性薄帯を含み、複数の前記磁性薄帯が、前記磁性薄帯の主面に対して直交する方向に積層された素体と、前記素体の内部で、前記主面に沿って延びているインダクタ配線と、を備え、前記インダクタ配線の延びる軸を中心軸とし、前記中心軸に直交する断面視で前記主面に沿う軸を第1軸とし、前記断面視で前記主面に直交する軸を第2軸としたとき、前記素体は、前記第2軸に沿って隣り合う前記磁性薄帯の間に位置する非磁性材からなる複数の非磁性層を有し、複数の前記磁性薄帯の前記第2軸に沿う方向の寸法の平均値を磁性薄帯厚さとし、複数の前記非磁性層の前記第2軸に沿う方向の寸法の平均値を非磁性層厚さとしたとき、前記磁性薄帯厚さに対する前記非磁性層厚さの百分率は、3%より大きいインダクタ部品である。 In order to solve the above problems, the present invention includes a plurality of flat magnetic ribbons made of a magnetic material, wherein the plurality of magnetic ribbons are laminated in a direction perpendicular to the main surface of the magnetic ribbons. and an inductor wiring extending along the main surface inside the base body, and the main body in a cross-sectional view orthogonal to the central axis, with the axis along which the inductor wiring extends as a central axis. When an axis along the surface is defined as a first axis and an axis perpendicular to the main surface in the cross-sectional view is defined as a second axis, the element is positioned between the magnetic ribbons adjacent to each other along the second axis. a plurality of non-magnetic layers made of a non-magnetic material, wherein an average value of dimensions of the plurality of magnetic ribbons in a direction along the second axis is defined as a thickness of the magnetic ribbon; In the inductor component, the percentage of the thickness of the non-magnetic layer to the thickness of the magnetic ribbon is greater than 3%, where the average value of the dimension along the second axis is the thickness of the non-magnetic layer.
 インダクタ配線に電流を流すと、磁界が発生する。磁界が発生している場合、素体を構成する磁性薄帯内を磁束が通過するため、当該磁性薄帯では渦電流が発生する。渦電流が大きいほど、渦電流の発生に起因する損失であるインダクタ部品の渦電流損失が大きくなる。 A magnetic field is generated when a current is passed through the inductor wiring. When a magnetic field is generated, the magnetic flux passes through the magnetic ribbon that constitutes the element body, and an eddy current is generated in the magnetic ribbon. The larger the eddy current, the larger the eddy current loss of the inductor component, which is the loss caused by the generation of the eddy current.
 上記のインダクタ部品によれば、素体は、第2軸に沿って積層された複数の磁性薄帯と、非磁性材からなり隣り合う磁性薄帯の間に位置する複数の非磁性層と、を有している。すなわち、上記のインダクタ部品は、第2軸に沿って積層されるという磁性薄帯の規則的な構造を有する。 According to the above inductor component, the element body includes a plurality of magnetic ribbons laminated along the second axis, a plurality of nonmagnetic layers made of a nonmagnetic material and positioned between adjacent magnetic ribbons, have. That is, the above inductor component has a regular structure of magnetic ribbons stacked along the second axis.
 ここで、上記のインダクタ部品において、非磁性層厚さが、発生する渦電流損失に影響する。そして、磁性薄帯厚さに対する非磁性層厚さの百分率が、3%より大きいと、渦電流損失の発生を抑制できる。 Here, in the above inductor component, the thickness of the non-magnetic layer affects the eddy current loss that occurs. When the percentage of the thickness of the non-magnetic layer to the thickness of the magnetic ribbon is greater than 3%, the occurrence of eddy current loss can be suppressed.
 なお、「沿う」とは、直接接触しておらず、離れた位置にある場合も含む。例えば、「第1軸に沿う」とは、第1軸に直接接触して第1軸に沿うものだけでなく、第1軸に直接接触しておらず離れた位置で第1軸に沿うものも含む。また、「沿う」とは、実質的に平行関係にあればよく、製造誤差等によって、僅かに傾いているものも含む。 It should be noted that "along" includes cases in which there is no direct contact, but at a distance. For example, "along the first axis" means not only those that are in direct contact with the first axis and along the first axis, but also those that are not in direct contact with the first axis and are along the first axis at a distance. Also includes Also, "along" means that they are substantially in parallel, and includes those that are slightly inclined due to manufacturing errors or the like.
 磁性薄帯が複数積層されているインダクタ部品において、渦電流損失の発生を抑制できる。 It is possible to suppress the occurrence of eddy current loss in inductor parts in which multiple magnetic ribbons are laminated.
インダクタ部品の分解斜視図。3 is an exploded perspective view of an inductor component; FIG. インダクタ部品の第1部分の平面図。2 is a plan view of the first portion of the inductor component; FIG. 図2における3-3線に沿うインダクタ部品の断面図。FIG. 3 is a cross-sectional view of the inductor component taken along line 3-3 in FIG. 2; 図3の一部拡大図。FIG. 4 is a partially enlarged view of FIG. 3; インダクタ部品の製造方法の説明図。Explanatory drawing of the manufacturing method of inductor components. インダクタ部品の製造方法の説明図。Explanatory drawing of the manufacturing method of inductor components. インダクタ部品の製造方法の説明図。Explanatory drawing of the manufacturing method of inductor components. インダクタ部品の製造方法の説明図。Explanatory drawing of the manufacturing method of inductor components. インダクタ部品の製造方法の説明図。Explanatory drawing of the manufacturing method of inductor components. インダクタ部品の製造方法の説明図。Explanatory drawing of the manufacturing method of inductor components. インダクタ部品の製造方法の説明図。Explanatory drawing of the manufacturing method of inductor components. インダクタ部品の製造方法の説明図。Explanatory drawing of the manufacturing method of inductor components. インダクタ部品の製造方法の説明図。Explanatory drawing of the manufacturing method of inductor components. インダクタ部品の製造方法の説明図。Explanatory drawing of the manufacturing method of inductor components. インダクタ部品の製造方法の説明図。Explanatory drawing of the manufacturing method of inductor components. インダクタ部品の製造方法の説明図。Explanatory drawing of the manufacturing method of inductor components. シミュレーションの結果を示すグラフ。A graph showing the results of the simulation. 変更例のインダクタ部品の断面図。Sectional drawing of the inductor component of a modification.
 <インダクタ部品の一実施形態>
 以下、インダクタ部品の一実施形態について説明する。なお、図面は理解を容易にするため構成要素を拡大して示している場合がある。構成要素の寸法比率は実際のものと、又は別の図中のものと異なる場合がある。また、断面図ではハッチングを付しているが、理解を容易にするために一部の構成要素のハッチングを省略している場合がある。さらに、複数の部材のうち、一部の部材のみに符号を付している場合がある。
<One Embodiment of Inductor Component>
An embodiment of the inductor component will be described below. In addition, in order to facilitate understanding, the drawings may show constituent elements in an enlarged manner. The dimensional ratios of components may differ from those in reality or in other figures. In addition, although cross-sectional views are hatched, there are cases where the hatching of some components is omitted to facilitate understanding. Furthermore, there are cases where only some members among the plurality of members are given reference numerals.
 (全体構成)
 図1に示すように、インダクタ部品10は、素体20と、インダクタ配線30と、を備えている。素体20は、複数の磁性薄帯40と、複数の非磁性層50と、複数の非磁性部60と、複数の非磁性膜70を有している。
(overall structure)
As shown in FIG. 1 , inductor component 10 includes element body 20 and inductor wiring 30 . The element body 20 has a plurality of magnetic strips 40 , a plurality of nonmagnetic layers 50 , a plurality of nonmagnetic portions 60 , and a plurality of nonmagnetic films 70 .
 磁性薄帯40は、平板状である。複数の磁性薄帯40は、磁性薄帯40の主面MFと直交する方向に積層されている。なお、平板状とは、主面MFを有する薄い形状のことであるが、厚みの薄い直方体に限られず、稜線や角が曲面状であってもよく、主面MFに微小な凹凸があったり、内部に空孔があったりしてもよい。 The magnetic ribbon 40 is flat. A plurality of magnetic ribbons 40 are laminated in a direction orthogonal to the main surface MF of the magnetic ribbons 40 . The flat plate shape means a thin shape having the main surface MF, but it is not limited to a rectangular parallelepiped with a thin thickness. , there may be holes inside.
 インダクタ配線30は、素体20の内部で主面MFに沿って直線状に延びている。なお、インダクタ配線30の延びる軸を中心軸CAとする。本実施形態では、中心軸CAの延びる向きは、四角形状の主面MFのいずれかの辺の延びる向きと一致する。 The inductor wiring 30 extends linearly along the main surface MF inside the element body 20 . The axis along which inductor wiring 30 extends is defined as central axis CA. In this embodiment, the direction in which the central axis CA extends matches the direction in which one of the sides of the quadrangular main surface MF extends.
 図3に示すように、中心軸CAに直交する断面視で、主面MFに沿う軸を第1軸Xとし、主面MFに直交する軸を第2軸Zとする。なお、第1軸Xに沿う方向の一方を第1正方向X1とし、第1軸Xに沿う方向の他方を第1負方向X2とする。また、中心軸CAに沿う方向の一方を正方向Y1とし、中心軸CAに沿う方向の他方を負方向Y2とする。さらに、第2軸Zに沿う方向の一方を第2正方向Z1とし、第2軸Zに沿う方向の他方を第2負方向Z2とする。 As shown in FIG. 3, in a cross-sectional view perpendicular to the central axis CA, the axis along the main surface MF is defined as a first axis X, and the axis perpendicular to the main surface MF is defined as a second axis Z. One of the directions along the first axis X is defined as a first positive direction X1, and the other direction along the first axis X is defined as a first negative direction X2. One of the directions along the central axis CA is defined as a positive direction Y1, and the other direction along the central axis CA is defined as a negative direction Y2. Further, one of the directions along the second axis Z is defined as a second positive direction Z1, and the other direction along the second axis Z is defined as a second negative direction Z2.
 図1に示すように、インダクタ部品10は、第2軸Zに沿って順に積層された、第1部分P1と、第2部分P2と、第3部分P3と、で構成されている。3つの部分P1~P3のうち、第2軸Zに沿う第2負方向Z2の端には、第1部分P1が位置している。 As shown in FIG. 1, the inductor component 10 is composed of a first portion P1, a second portion P2, and a third portion P3, which are sequentially laminated along the second axis Z. Among the three portions P1 to P3, the first portion P1 is located at the end of the second negative direction Z2 along the second axis Z. As shown in FIG.
 図2に示すように、第1部分P1は、第2軸Zに沿う方向から視たときに正方形状である。第1部分P1は、複数の磁性薄帯40と、複数の非磁性層50と、複数の非磁性部60と、複数の非磁性膜70とを有する。 As shown in FIG. 2, the first portion P1 has a square shape when viewed from the direction along the second axis Z. The first portion P<b>1 has a plurality of magnetic strips 40 , a plurality of nonmagnetic layers 50 , a plurality of nonmagnetic portions 60 , and a plurality of nonmagnetic films 70 .
 図3に示すように、中心軸CAに直交する断面視で、第1部分P1の各磁性薄帯40は、第2軸Zに沿う方向に積層されている。図2に示すように、第1部分P1の各磁性薄帯40は、第2軸Zに沿う方向から視たときに正方形状である。第2軸Zに沿う方向から視たときに各磁性薄帯40の各辺は、第1軸X又は中心軸CAと平行である。 As shown in FIG. 3, each magnetic ribbon 40 of the first portion P1 is laminated in the direction along the second axis Z in a cross-sectional view perpendicular to the central axis CA. As shown in FIG. 2, each magnetic ribbon 40 of the first portion P1 has a square shape when viewed from the direction along the second axis Z. As shown in FIG. When viewed along the second axis Z, each side of each magnetic ribbon 40 is parallel to the first axis X or the central axis CA.
 磁性薄帯40は、第2軸Zに沿う同一の位置において、第2軸Zに直交する第3軸に沿う方向に、間隔をあけて2個並んでいる。また、磁性薄帯40は、第2軸Zに沿う同一の位置において、第2軸Z及び第3軸に直交する第4軸に沿う方向に、間隔をあけて2個並んでいる。なお、第3軸は中心軸CAと一致しており、且つ第4軸は第1軸Xと一致している。そのため、本実施形態では、磁性薄帯40は、第2軸Zに沿う方向のみならず、第1軸X及び中心軸CAに沿う方向にも配列している。 At the same position along the second axis Z, two magnetic ribbons 40 are arranged side by side in the direction along the third axis perpendicular to the second axis Z with a gap therebetween. Also, two magnetic strips 40 are arranged at the same position along the second axis Z with a gap in the direction along the fourth axis perpendicular to the second axis Z and the third axis. The third axis coincides with the central axis CA, and the fourth axis coincides with the first axis X. Therefore, in this embodiment, the magnetic strips 40 are arranged not only in the direction along the second axis Z, but also in the directions along the first axis X and the central axis CA.
 磁性薄帯40は、磁性材からなっている。磁性材は、例えば、Fe、Ni、Co、Cr、Cu、Al、Si、B、P等を含む金属磁性材である。本実施形態では、磁性材は、Fe及びSiを含んでいる金属磁性材である。 The magnetic ribbon 40 is made of a magnetic material. The magnetic material is, for example, a metallic magnetic material containing Fe, Ni, Co, Cr, Cu, Al, Si, B, P and the like. In this embodiment, the magnetic material is a metallic magnetic material containing Fe and Si.
 図3に示すように、非磁性層50は、第2軸Zに沿う方向に隣り合っている磁性薄帯40の間に位置している。非磁性層50は、第2軸Zに沿う方向に隣り合っている磁性薄帯40の空間を全て埋めている。非磁性層50は、非磁性材からなっている。非磁性材は、例えば、アクリル樹脂や、エポキシ樹脂、シリコン樹脂である。なお、図3では、非磁性層50を線で図示している。 As shown in FIG. 3, the non-magnetic layer 50 is located between the magnetic ribbons 40 adjacent to each other in the direction along the second axis Z. As shown in FIG. The non-magnetic layer 50 fills all the spaces between the adjacent magnetic strips 40 in the direction along the second Z axis. The non-magnetic layer 50 is made of a non-magnetic material. The non-magnetic material is, for example, acrylic resin, epoxy resin, or silicone resin. In addition, in FIG. 3, the non-magnetic layer 50 is illustrated by lines.
 図2に示すように、非磁性部60は、第2軸Zに沿う同一の位置において並ぶ磁性薄帯40の間に位置している。非磁性部60は、第2軸Zに沿う方向の同一の位置において並ぶ磁性薄帯40の間の空間を全て埋めている。上述したとおり、第2軸Zに沿う同一の位置において、磁性薄帯40は、中心軸CAに沿う方向に2つ、第1軸Xに沿う方向に2つ、合計4つ存在するので、非磁性部60は4つ存在している。非磁性部60は、非磁性材からなっている。本実施形態では、非磁性部60の材質は、非磁性層50と同一の材質である。 As shown in FIG. 2, the non-magnetic portion 60 is located between the magnetic ribbons 40 arranged at the same position along the second axis Z. As shown in FIG. The non-magnetic portion 60 fills the entire space between the magnetic strips 40 arranged at the same position in the direction along the second axis Z. As shown in FIG. As described above, at the same position along the second axis Z, there are a total of four magnetic ribbons 40, two along the central axis CA and two along the first axis X. There are four magnetic parts 60 . The non-magnetic portion 60 is made of a non-magnetic material. In this embodiment, the material of the non-magnetic portion 60 is the same material as that of the non-magnetic layer 50 .
 非磁性膜70は、第1部分P1において、第1軸Xに沿う第1正方向X1の端、及び第1正方向X1とは反対方向である第1負方向X2の端に位置している。非磁性膜70は、磁性薄帯40における第1軸Xに沿う方向の両端面の全域を覆っている。また、非磁性膜70は、非磁性層50における第1軸Xに沿う方向の両端面の全域を覆っている。さらに、非磁性膜70は、非磁性部60における第1軸Xに沿う方向の両端面の全域を覆っている。そのため、第1部分P1における第1軸Xに沿う第1正方向X1の端面は、すべて非磁性膜70で構成されている。同様に、第1部分P1における第1軸Xに沿う第1負方向X2の端面は、すべて非磁性膜70で構成されている。非磁性膜70は、非磁性材からなっている。本実施形態では、非磁性膜70の材質は、非磁性層50と同一の材質である。 The non-magnetic film 70 is located at the end of the first positive direction X1 along the first axis X and the end of the first negative direction X2 opposite to the first positive direction X1 in the first portion P1. . The non-magnetic film 70 covers the entire end surfaces of the magnetic ribbon 40 in the direction along the first axis X. As shown in FIG. In addition, the non-magnetic film 70 covers the entire end surfaces of the non-magnetic layer 50 in the direction along the first axis X. As shown in FIG. Furthermore, the non-magnetic film 70 covers the entire end surfaces of the non-magnetic portion 60 in the direction along the first axis X. As shown in FIG. Therefore, the end faces of the first portion P1 in the first positive direction X1 along the first axis X are all composed of the non-magnetic film 70 . Similarly, the end face of the first portion P1 along the first axis X in the first negative direction X2 is entirely composed of the non-magnetic film 70 . The non-magnetic film 70 is made of a non-magnetic material. In this embodiment, the material of the non-magnetic film 70 is the same as that of the non-magnetic layer 50 .
 図1に示すように、第1部分P1から視て、第2軸Zに沿う第2負方向Z2とは反対方向である第2正方向Z1には、第2部分P2が位置している。第2部分P2は、第2軸Zに沿う方向から視たときに、第1部分P1と同じ正方形状である。 As shown in FIG. 1, the second portion P2 is located in the second positive direction Z1 that is opposite to the second negative direction Z2 along the second axis Z when viewed from the first portion P1. The second portion P2 has the same square shape as the first portion P1 when viewed from the direction along the second axis Z. As shown in FIG.
 第2部分P2は、インダクタ配線30と、複数の磁性薄帯40と、複数の非磁性層50と、複数の非磁性部60と、複数の非磁性膜70と、で構成されている。
 インダクタ配線30は、第2軸Zに沿う方向から視て長方形状であり、中心軸CAに沿って直線状に延びている。インダクタ配線30の中心軸CAに沿う正方向Y1の端面は、第2部分P2の外面の一部を構成しており、素体20から露出している。同様に、インダクタ配線30の中心軸CAに沿う正方向Y1とは反対方向である負方向Y2の端面は、第2部分P2の外面の一部を構成しており、素体20から露出している。
The second portion P2 is composed of an inductor wiring 30, a plurality of magnetic strips 40, a plurality of non-magnetic layers 50, a plurality of non-magnetic portions 60, and a plurality of non-magnetic films .
The inductor wiring 30 has a rectangular shape when viewed from the direction along the second axis Z, and extends linearly along the central axis CA. The end face of the inductor wiring 30 in the positive direction Y1 along the central axis CA constitutes part of the outer surface of the second portion P2 and is exposed from the element body 20. As shown in FIG. Similarly, the end face of the inductor wiring 30 in the negative direction Y2, which is the opposite direction to the positive direction Y1 along the central axis CA, constitutes part of the outer surface of the second portion P2 and is exposed from the element body 20. there is
 第2軸Zから視たときに、インダクタ配線30の正方向Y1の端面及び負方向Y2の端面は、第1軸Xと平行になっている。また、インダクタ配線30の中心軸CAは、第1軸Xに沿う方向において、第2部分P2の中心に位置している。そのため、インダクタ配線30の延びる軸である中心軸CAは、第1軸Xに沿う方向における第2部分P2の中心を通っている。インダクタ配線30の第1軸Xに沿う方向の寸法は、第2部分P2の第1軸Xに沿う方向の寸法の半分である。 When viewed from the second axis Z, the end face of the inductor wiring 30 in the positive direction Y1 and the end face in the negative direction Y2 are parallel to the first axis X. In addition, the central axis CA of the inductor wiring 30 is positioned at the center of the second portion P2 in the direction along the first axis X. As shown in FIG. Therefore, the central axis CA, which is the axis along which the inductor wiring 30 extends, passes through the center of the second portion P2 in the direction along the first axis X. As shown in FIG. The dimension along the first axis X of the inductor wiring 30 is half the dimension along the first axis X of the second portion P2.
 インダクタ配線30の材質は、導電性材料である。導電性材料は、例えば、Cu、Ag、Au、Al、又はこれらの合金である。本実施形態では、インダクタ配線30の材質は、Cuである。 The material of the inductor wiring 30 is a conductive material. Conductive materials are, for example, Cu, Ag, Au, Al, or alloys thereof. In this embodiment, the material of the inductor wiring 30 is Cu.
 図3に示すように、中心軸CAに直交する断面において、インダクタ配線30は、長方形状である。ここで、中心軸CAに直交する断面において、インダクタ配線30に外接するとともに、第1軸Xに沿う第1辺及び第2軸Zに沿う第2辺を有する面積が最小の仮想長方形VRを描く。本実施形態では、中心軸CAに直交する断面において、インダクタ配線30が長方形である。また、中心軸CAに直交する断面において、インダクタ配線30の外形の長辺は第1軸Xに沿っている。さらに、中心軸CAに直交する断面において、インダクタ配線30の外形の短辺は第2軸Zに沿っている。そのため、仮想長方形VRは、インダクタ配線30の外形と一致する。そして、仮想長方形VRの第1辺は、仮想長方形VRの第2辺よりも長い。 As shown in FIG. 3, the inductor wiring 30 has a rectangular shape in a cross section perpendicular to the central axis CA. Here, in a cross section perpendicular to the central axis CA, a virtual rectangle VR with a minimum area is drawn that circumscribes the inductor wiring 30 and has a first side along the first axis X and a second side along the second axis Z. . In this embodiment, the inductor wiring 30 is rectangular in the cross section perpendicular to the central axis CA. Further, the long side of the outer shape of the inductor wiring 30 is along the first axis X in the cross section perpendicular to the central axis CA. Furthermore, the short side of the inductor wiring 30 is along the second axis Z in the cross section orthogonal to the central axis CA. Therefore, the virtual rectangle VR matches the contour of the inductor wiring 30 . A first side of the virtual rectangle VR is longer than a second side of the virtual rectangle VR.
 第2部分P2において、インダクタ配線30でない部分は、第1部分P1と同様に、複数の磁性薄帯40と、複数の非磁性層50と、複数の非磁性部60と、複数の非磁性膜70と、で構成されている。 In the second portion P2, portions other than the inductor wiring 30 are composed of a plurality of magnetic strips 40, a plurality of nonmagnetic layers 50, a plurality of nonmagnetic portions 60, a plurality of nonmagnetic films, as in the first portion P1. 70 and .
 図3に示すように、中心軸CAに直交する断面視で、第2部分P2の各磁性薄帯40は、第2軸Zに沿う方向に積層されている。図2に示すように、第2部分P2の各磁性薄帯40は、第2軸Zに沿う方向から視たときに長方形状である。第2軸Zに沿う方向から視たときに各磁性薄帯40の長辺は、中心軸CAと平行である。 As shown in FIG. 3, each magnetic ribbon 40 of the second portion P2 is laminated in a direction along the second axis Z in a cross-sectional view perpendicular to the central axis CA. As shown in FIG. 2, each magnetic strip 40 of the second portion P2 has a rectangular shape when viewed from the direction along the second axis Z. As shown in FIG. The long side of each magnetic strip 40 is parallel to the central axis CA when viewed from the direction along the second axis Z. As shown in FIG.
 図1に示すように、第2部分P2において、磁性薄帯40は、インダクタ配線30から視て、第1軸Xに沿う第1正方向X1及び第1負方向X2の両側に位置している。すなわち、第2部分P2において、磁性薄帯40は、第1軸Xに沿う方向に、インダクタ配線30を挟んで2個並んでいる。また、磁性薄帯40は、第2軸Zに沿う同一の位置において、中心軸CAに沿う方向に、間隔をあけて2個並んでいる。 As shown in FIG. 1, in the second portion P2, the magnetic ribbon 40 is positioned on both sides of the first positive direction X1 and the first negative direction X2 along the first axis X when viewed from the inductor wiring 30. . That is, in the second portion P2, two magnetic ribbons 40 are arranged in a line along the first axis X with the inductor wiring 30 interposed therebetween. In addition, two magnetic strips 40 are arranged at the same position along the second axis Z and spaced apart in the direction along the central axis CA.
 上述した第1部分P1と同様に、第2部分P2の非磁性層50は、第2軸Zに沿う方向に隣り合っている磁性薄帯40の間に位置している。すなわち、図3に示すように、磁性薄帯40及び非磁性層50は、第1部分P1と同様に、第2軸Zに沿う方向に交互に積層されている。 The non-magnetic layer 50 of the second portion P2 is positioned between the magnetic strips 40 adjacent to each other in the direction along the second axis Z, similarly to the first portion P1 described above. That is, as shown in FIG. 3, the magnetic ribbons 40 and the non-magnetic layers 50 are alternately laminated in the direction along the second axis Z, similar to the first portion P1.
 第2部分P2の非磁性部60は、第2軸Zに沿う同一の位置において並ぶ磁性薄帯40の間に位置している。非磁性部60は、第2軸Zに沿う方向の同一の位置において並ぶ磁性薄帯40の間の空間を全て埋めている。第2部分P2の非磁性部60の位置は、第2軸Zに沿う方向から視たときに、第1部分P1の非磁性部60の一部と重複している。第2部分P2の非磁性部60は、第1部分P1の非磁性部60と連続している。なお、第2部分P2において、インダクタ配線30と磁性薄帯40との間には非磁性部60は存在していない。 The non-magnetic portion 60 of the second portion P2 is located between the magnetic strips 40 arranged at the same position along the second axis Z. The non-magnetic portion 60 fills the entire space between the magnetic strips 40 arranged at the same position in the direction along the second axis Z. As shown in FIG. The position of the non-magnetic portion 60 of the second portion P2 overlaps part of the non-magnetic portion 60 of the first portion P1 when viewed from the direction along the second axis Z. As shown in FIG. The non-magnetic portion 60 of the second portion P2 is continuous with the non-magnetic portion 60 of the first portion P1. The non-magnetic portion 60 does not exist between the inductor wiring 30 and the magnetic ribbon 40 in the second portion P2.
 非磁性膜70は、第2部分P2において、第1軸Xに沿う第1正方向X1の端、及び第1正方向X1とは反対方向である第1負方向X2の端に位置している。第2部分P2の非磁性膜70は、第1部分P1の非磁性膜70と連続している。 The nonmagnetic film 70 is located at the end of the first positive direction X1 along the first axis X and the end of the first negative direction X2, which is the opposite direction to the first positive direction X1, in the second portion P2. . The non-magnetic film 70 of the second portion P2 is continuous with the non-magnetic film 70 of the first portion P1.
 第2部分P2の第2正方向Z1には、第3部分P3が位置している。第3部分P3は、第2軸Zから視たときに、第1部分P1と同じ正方形状である。第3部分P3は、複数の磁性薄帯40と、複数の非磁性層50と、複数の非磁性部60と、複数の非磁性膜70で構成されている。本実施形態では、第3部分P3は、第2部分P2を挟んで第1部分P1と対称的な構造であるため、詳細な説明は省略する。このようにして、素体20は、複数の磁性薄帯40と、複数の非磁性層50と、複数の非磁性部60と、複数の非磁性膜70と、を含んでいる。 The third portion P3 is located in the second positive direction Z1 of the second portion P2. When viewed from the second axis Z, the third portion P3 has the same square shape as the first portion P1. The third portion P3 is composed of a plurality of magnetic ribbons 40, a plurality of nonmagnetic layers 50, a plurality of nonmagnetic portions 60, and a plurality of nonmagnetic films . In the present embodiment, the third portion P3 has a structure symmetrical with the first portion P1 with the second portion P2 interposed therebetween, and thus detailed description thereof will be omitted. Thus, the element body 20 includes a plurality of magnetic ribbons 40 , a plurality of nonmagnetic layers 50 , a plurality of nonmagnetic portions 60 , and a plurality of nonmagnetic films 70 .
 (磁性薄帯厚さ及び非磁性層厚さについて)
 磁性薄帯40及び非磁性層50の第2軸Zに沿う方向の寸法について詳述する。磁性薄帯40の第2軸Zに沿う方向の寸法は、製造上の誤差により、磁性薄帯40毎に最大で20%程度ばらつく。また、非磁性層50の第2軸Zに沿う方向の寸法は、製造上の誤差により、最大で20%程度ばらついている。
(Regarding the thickness of the magnetic ribbon and the thickness of the non-magnetic layer)
The dimensions of the magnetic ribbon 40 and the non-magnetic layer 50 in the direction along the second axis Z will be described in detail. The dimensions of the magnetic strips 40 in the direction along the second axis Z vary by up to about 20% for each magnetic strip 40 due to manufacturing errors. Also, the dimensions of the non-magnetic layer 50 along the second axis Z vary by up to about 20% due to manufacturing errors.
 ここで、磁性薄帯40の第2軸Zに沿う方向の寸法の平均値を磁性薄帯厚さTmとし、非磁性層50の第2軸Zに沿う方向の寸法の平均値を非磁性層厚さTnmとする。各厚さの測定方法について説明する。 Here, the average value of the dimensions of the magnetic ribbon 40 in the direction along the second axis Z is defined as the magnetic ribbon thickness Tm, and the average value of the dimensions in the direction along the second axis Z of the nonmagnetic layer 50 is defined as the nonmagnetic layer thickness Tm. Let the thickness be Tnm. A method for measuring each thickness will be described.
 先ず、各磁性薄帯40の第2軸Zに沿う方向の寸法を測定する。図4に示すように、中心軸CAに直交する断面について、6つの磁性薄帯40及び5つの非磁性層50がおさまるように、電子顕微鏡にて1枚の画像を撮影する。そして、当該画像中において、第2軸Zに沿う第2正方向Z1へ並ぶ各磁性薄帯40を、磁性薄帯40A、磁性薄帯40B、磁性薄帯40C、磁性薄帯40D、磁性薄帯40E、磁性薄帯40Fとする。この場合に、当該画像において、磁性薄帯40Aの第2軸Zに沿う方向の最小の寸法を第1寸法Tm1として測定する。同様に、当該画像において、磁性薄帯40Bの第2軸Zに沿う方向の最小の寸法を第2寸法Tm2として測定する。同様に、当該画像において、磁性薄帯40Cの第2軸Zに沿う方向の最小の寸法を第3寸法Tm3として測定する。同様に、当該画像において、磁性薄帯40Dの第2軸Zに沿う方向の最小の寸法を第4寸法Tm4として測定する。同様に、当該画像において、磁性薄帯40Eの第2軸Zに沿う方向の最小の寸法を第5寸法Tm5として測定する。 First, the dimension of each magnetic ribbon 40 in the direction along the second axis Z is measured. As shown in FIG. 4, one image is taken with an electron microscope so that six magnetic ribbons 40 and five nonmagnetic layers 50 are contained in a cross section perpendicular to the central axis CA. In the image, the magnetic ribbons 40 arranged in the second positive direction Z1 along the second axis Z are divided into magnetic ribbons 40A, 40B, 40C, 40D, and 40D. 40E and magnetic ribbon 40F. In this case, in the image, the minimum dimension of the magnetic ribbon 40A in the direction along the second axis Z is measured as the first dimension Tm1. Similarly, in the image, the minimum dimension of the magnetic ribbon 40B in the direction along the second axis Z is measured as the second dimension Tm2. Similarly, in the image, the minimum dimension of the magnetic ribbon 40C in the direction along the second axis Z is measured as the third dimension Tm3. Similarly, in the image, the minimum dimension of the magnetic ribbon 40D in the direction along the second axis Z is measured as a fourth dimension Tm4. Similarly, in the image, the minimum dimension of the magnetic ribbon 40E in the direction along the second axis Z is measured as a fifth dimension Tm5.
 そして、これらの第1寸法Tm1~第5寸法Tm5の平均値を、磁性薄帯厚さTmとして算出する。上記実施形態においては、磁性薄帯厚さTmは、20μmである。さらに、第1寸法Tm1~第5寸法Tm5のそれぞれは、磁性薄帯厚さTmに対して、80%以上120%以下の寸法である。 Then, the average value of these first dimension Tm1 to fifth dimension Tm5 is calculated as the magnetic ribbon thickness Tm. In the above embodiment, the magnetic ribbon thickness Tm is 20 μm. Further, each of the first dimension Tm1 to the fifth dimension Tm5 is 80% or more and 120% or less of the magnetic ribbon thickness Tm.
 次に、非磁性層50の第2軸Zに沿う方向の寸法を測定する。図4に示すように、磁性薄帯厚さTmを測定した同じ画像中において、磁性薄帯40Aと磁性薄帯40Bとの間に位置する非磁性層50を非磁性層50Aとする。磁性薄帯40Bと磁性薄帯40Cとの間に位置する非磁性層50を非磁性層50Bとする。磁性薄帯40Cと磁性薄帯40Dとの間に位置する非磁性層50を非磁性層50Cとする。磁性薄帯40Dと磁性薄帯40Eとの間に位置する非磁性層50を非磁性層50Dとする。磁性薄帯40Eと磁性薄帯40Fとの間に位置する非磁性層50を非磁性層50Eとする。 Next, the dimension of the non-magnetic layer 50 in the direction along the second axis Z is measured. As shown in FIG. 4, the nonmagnetic layer 50 positioned between the magnetic ribbons 40A and 40B in the same image obtained by measuring the magnetic ribbon thickness Tm is referred to as the nonmagnetic layer 50A. The nonmagnetic layer 50 positioned between the magnetic ribbon 40B and the magnetic ribbon 40C is referred to as a nonmagnetic layer 50B. The nonmagnetic layer 50 located between the magnetic ribbon 40C and the magnetic ribbon 40D is referred to as a nonmagnetic layer 50C. The non-magnetic layer 50 located between the magnetic ribbon 40D and the magnetic ribbon 40E is referred to as a non-magnetic layer 50D. The non-magnetic layer 50 located between the magnetic ribbons 40E and 40F is referred to as a non-magnetic layer 50E.
 図4に示す画像中において、非磁性層50Aの第2軸Zに沿う方向の最小の寸法を第1寸法Tnm1として測定する。非磁性層50Bの第2軸Zに沿う方向の最小の寸法を第2寸法Tnm2として測定する。非磁性層50Cの第2軸Zに沿う方向の最小の寸法を第3寸法Tnm3として測定する。非磁性層50Dの第2軸Zに沿う方向の最小の寸法を第4寸法Tnm4として測定する。非磁性層50Eの第2軸Zに沿う方向の最小の寸法を第5寸法Tnm5として測定する。 In the image shown in FIG. 4, the minimum dimension of the non-magnetic layer 50A in the direction along the second axis Z is measured as the first dimension Tnm1. The minimum dimension of the non-magnetic layer 50B in the direction along the second axis Z is measured as a second dimension Tnm2. The minimum dimension of the nonmagnetic layer 50C in the direction along the second axis Z is measured as a third dimension Tnm3. The minimum dimension of the non-magnetic layer 50D in the direction along the second axis Z is measured as a fourth dimension Tnm4. The minimum dimension of the nonmagnetic layer 50E in the direction along the second axis Z is measured as a fifth dimension Tnm5.
 そして、これらの第1寸法Tnm1~第5寸法Tnm5の平均値を、非磁性層厚さTnmとして算出する。上記実施形態においては、非磁性層厚さTnmは、3μmより大きい。そのため、磁性薄帯厚さTmに対する非磁性層厚さTnmの百分率は、15%より大きい。すなわち、非磁性層厚さTnmは、0.6μmより大きく、磁性薄帯厚さTmに対する非磁性層厚さTnmの百分率は、3%より大きい。さらに、第1寸法Tnm1~第5寸法Tnm5のそれぞれは、非磁性層厚さTnmに対して、80%以上120%以下の寸法である。 Then, the average value of these first dimension Tnm1 to fifth dimension Tnm5 is calculated as the non-magnetic layer thickness Tnm. In the above embodiment, the non-magnetic layer thickness Tnm is greater than 3 μm. Therefore, the percentage of the non-magnetic layer thickness Tnm to the magnetic ribbon thickness Tm is greater than 15%. That is, the nonmagnetic layer thickness Tnm is greater than 0.6 μm, and the percentage of the nonmagnetic layer thickness Tnm to the magnetic ribbon thickness Tm is greater than 3%. Furthermore, each of the first dimension Tnm1 to the fifth dimension Tnm5 is 80% or more and 120% or less of the non-magnetic layer thickness Tnm.
 (第1磁性薄帯について)
 図3に示すように、中心軸CAに直交する断面視において、インダクタ配線30の第1正方向X1の端を第1配線端IP1とする。また、中心軸CAに直交する断面視において、インダクタ配線30の第1負方向X2の端を第2配線端IP2とする。
(Regarding the first magnetic ribbon)
As shown in FIG. 3, in a cross-sectional view orthogonal to the central axis CA, the end of the inductor wiring 30 in the first positive direction X1 is defined as a first wiring end IP1. Further, in a cross-sectional view orthogonal to the central axis CA, the end of the inductor wiring 30 in the first negative direction X2 is defined as a second wiring end IP2.
 そして、インダクタ配線30に対して、第2軸Zに沿う方向に積層された磁性薄帯40のうち、第1配線端IP1からの第2軸Zに沿う距離が最も短い磁性薄帯40を第1磁性薄帯41とする。なお、第2軸Zに沿う方向から視た場合に、少なくとも一部分がインダクタ配線30に重複する磁性薄帯40が、インダクタ配線30に対して第2軸Zに沿う方向に積層された磁性薄帯40である。したがって、本実施形態では、第1部分P1における磁性薄帯40及び第3部分P3における磁性薄帯40が、インダクタ配線30に対して第2軸Zに沿う方向に積層された磁性薄帯40である。一方で、第2部分P2における磁性薄帯40は、インダクタ配線30に対して第2軸Zに沿う方向に積層されていない。また、第1磁性薄帯41は、第1部分P1における磁性薄帯40のうち最も第2負方向Z2に位置する磁性薄帯40と、第3部分P3における磁性薄帯40のうち最も第2正方向Z1に位置する磁性薄帯40と、である。 Then, among the magnetic ribbons 40 laminated in the direction along the second axis Z with respect to the inductor wiring 30, the magnetic ribbon 40 having the shortest distance along the second axis Z from the first wiring end IP1 is selected as the first magnetic ribbon 40. 1 magnetic ribbon 41 . Note that the magnetic ribbon 40, which at least partially overlaps with the inductor wiring 30 when viewed from the direction along the second axis Z, is laminated in the direction along the second axis Z with respect to the inductor wiring 30. is 40. Therefore, in the present embodiment, the magnetic ribbon 40 in the first portion P1 and the magnetic ribbon 40 in the third portion P3 are laminated in the direction along the second axis Z with respect to the inductor wiring 30. be. On the other hand, the magnetic ribbon 40 in the second portion P2 is not laminated in the direction along the second axis Z with respect to the inductor wiring 30 . In addition, the first magnetic ribbon 41 is the magnetic ribbon 40 located most in the second negative direction Z2 among the magnetic ribbons 40 in the first portion P1, and the magnetic ribbon 40 most located in the second negative direction Z2 among the magnetic ribbons 40 in the third portion P3. and the magnetic ribbon 40 located in the positive direction Z1.
 図3に示すように、1つの磁性薄帯40において、第1正方向X1の端を第1端MP1とし、第1負方向X2の端を第2端MP2とする。このとき、1つの磁性薄帯40における第1軸Xに沿う方向の両端を除く範囲を、第1範囲AR1とする。換言すれば、1つの磁性薄帯40において、第2端MP2の第1軸Xに沿う方向の位置を示す座標を0とする。1つの磁性薄帯40において、第1軸Xに沿う第1正方向X1の第1端MP1の第1軸Xに沿う方向の位置を示す座標を1とする。このときに、第1軸Xに沿う方向の位置を示す座標が、0より大きく1より小さい範囲が第1範囲AR1である。そして、図3に示すように、第1配線端IP1を通過するとともに、第2軸Zに沿う方向に第1仮想直線VL1を引く。このとき、第1仮想直線VL1は、第1磁性薄帯41の第1範囲AR1内を通っている。 As shown in FIG. 3, in one magnetic strip 40, the end in the first positive direction X1 is the first end MP1, and the end in the first negative direction X2 is the second end MP2. At this time, the range excluding both ends of one magnetic strip 40 in the direction along the first axis X is defined as a first range AR1. In other words, in one magnetic strip 40, the coordinates indicating the position of the second end MP2 in the direction along the first axis X are set to zero. In one magnetic strip 40, let 1 be the coordinate indicating the position of the first end MP1 in the first positive direction X1 along the first axis X in the direction along the first axis X. As shown in FIG. At this time, the range in which the coordinates indicating the position in the direction along the first axis X are larger than 0 and smaller than 1 is the first range AR1. Then, as shown in FIG. 3, a first imaginary straight line VL1 is drawn in a direction along the second axis Z while passing through the first wiring end IP1. At this time, the first virtual straight line VL1 passes through the first range AR1 of the first magnetic ribbon 41 .
 また、本実施形態では、第1部分P1において、複数の磁性薄帯40が、インダクタ配線30に対して第2正方向Z1に連続して積層されている。そして、中心軸CAに直交する断面視において、第1仮想直線VL1は、第1磁性薄帯41から第2正方向Z1に連続して積層された複数の磁性薄帯40のうち、第1磁性薄帯41を含めて連続して積層された2つ以上の磁性薄帯40の第1範囲AR1内を通っている。具体的には、第1仮想直線VL1は、第1部分P1に含まれている磁性薄帯40のうち、第1磁性薄帯41に連続して積層されたすべての磁性薄帯40の第1範囲AR1内を通っている。 Further, in the present embodiment, a plurality of magnetic ribbons 40 are continuously laminated in the second positive direction Z1 with respect to the inductor wiring 30 in the first portion P1. In a cross-sectional view perpendicular to the central axis CA, the first imaginary straight line VL1 is the first magnetic strip 40 among the plurality of magnetic strips 40 continuously laminated in the second positive direction Z1 from the first magnetic strip 41. It passes through the first range AR1 of two or more magnetic ribbons 40 that are continuously laminated including the ribbon 41 . Specifically, the first imaginary straight line VL1 is the first straight line of all the magnetic ribbons 40 continuously stacked on the first magnetic ribbon 41 among the magnetic ribbons 40 included in the first portion P1. It passes through the range AR1.
 第1磁性薄帯41の第1軸Xに沿う第1正方向X1の反対方向である第1負方向X2の第2端MP2を通過するとともに、第2軸Zに沿う方向に第2仮想直線VL2を引く。このとき、第2仮想直線VL2は、インダクタ配線30を通っている。本実施形態では、インダクタ配線30の第1軸Xに沿う方向の概ね中央に位置している。 A second imaginary straight line extending along the second axis Z passes through a second end MP2 in a first negative direction X2, which is the opposite direction of the first positive direction X1 along the first axis X of the first magnetic ribbon 41. Subtract VL2. At this time, the second virtual straight line VL2 passes through the inductor wiring 30 . In this embodiment, it is positioned substantially at the center of the inductor wiring 30 in the direction along the first axis X. As shown in FIG.
 なお、本実施形態においては、インダクタ部品10は、第1軸Xに沿う方向における中心を通る第2軸Zを対称軸として、線対称の構造となっている。ここで、インダクタ配線30の第2配線端IP2を通過するとともに、第2軸Zに沿う方向に第3仮想直線VL3を引く。また、インダクタ配線30に対して、第2軸Zに沿う方向に積層された磁性薄帯40のうち、第2配線端IP2からの第2軸Zに沿う距離が最も短い磁性薄帯40を第2磁性薄帯42とする。この場合に、当該第3仮想直線VL3は、中心軸CAに直交する断面視において、第2磁性薄帯42の第1範囲AR1内を通っている。より具体的には、第3仮想直線VL3は、第2磁性薄帯42の第1軸Xに沿う方向の中央を通っている。 In addition, in the present embodiment, the inductor component 10 has a line-symmetrical structure with the second axis Z passing through the center in the direction along the first axis X as the axis of symmetry. Here, a third imaginary straight line VL3 is drawn in a direction along the second axis Z while passing through the second wiring end IP2 of the inductor wiring 30 . Among the magnetic ribbons 40 laminated in the direction along the second axis Z with respect to the inductor wiring 30, the magnetic ribbon 40 having the shortest distance along the second axis Z from the second wiring end IP2 is selected as the first magnetic ribbon 40. 2 magnetic ribbon 42 . In this case, the third imaginary straight line VL3 passes through the first range AR1 of the second magnetic ribbon 42 in a cross-sectional view orthogonal to the central axis CA. More specifically, the third imaginary straight line VL3 passes through the center of the second magnetic ribbon 42 in the direction along the first axis X. As shown in FIG.
 また、本実施形態では、中心軸CAに直交する断面視において、第3仮想直線VL3は、第2磁性薄帯42を含めて連続して積層された2つ以上の磁性薄帯40の第1範囲AR1内を通っている。具体的には、第3仮想直線VL3は、第1部分P1に含まれている磁性薄帯40のうち、第2磁性薄帯42に連続して積層されたすべての磁性薄帯40の第1範囲AR1内を通っている。 In addition, in the present embodiment, in a cross-sectional view perpendicular to the central axis CA, the third imaginary straight line VL3 is the first line of the two or more magnetic ribbons 40 including the second magnetic ribbon 42 that are continuously laminated. It passes through the range AR1. Specifically, the third imaginary straight line VL3 is the first straight line of all the magnetic ribbons 40 continuously stacked on the second magnetic ribbon 42 among the magnetic ribbons 40 included in the first portion P1. It passes through the range AR1.
 さらに、中心軸CAに直交する断面視において、第3仮想直線VL3は、第3部分P3に含まれている磁性薄帯40のうち、第2磁性薄帯42を含めて連続して積層された2つ以上の磁性薄帯40の第1範囲AR1内を通っている。具体的には、第3仮想直線VL3は、第3部分P3に含まれている磁性薄帯40のうち、第2磁性薄帯42に連続して積層されたすべての磁性薄帯40の第1範囲AR1内を通っている。より具体的には、第3仮想直線VL3は、第2磁性薄帯42に連続して積層されたすべての磁性薄帯40の中央を通っている。このように、中心軸CAに直交する断面視において、第3仮想直線VL3が、第2磁性薄帯42に対して、上記の第1範囲AR1を通ることが好ましい。 Furthermore, in a cross-sectional view orthogonal to the central axis CA, the third imaginary straight line VL3 is continuously laminated including the second magnetic ribbon 42 among the magnetic ribbons 40 included in the third portion P3. It passes through the first range AR1 of two or more magnetic ribbons 40 . Specifically, the third imaginary straight line VL3 is the first straight line of all the magnetic ribbons 40 continuously stacked on the second magnetic ribbon 42 among the magnetic ribbons 40 included in the third portion P3. It passes through the range AR1. More specifically, the third imaginary straight line VL3 passes through the centers of all the magnetic ribbons 40 that are continuously stacked on the second magnetic ribbon 42 . In this manner, it is preferable that the third imaginary straight line VL3 passes through the first range AR1 with respect to the second magnetic ribbon 42 in a cross-sectional view perpendicular to the central axis CA.
 (インダクタ部品の製造方法)
 次に、インダクタ部品10の製造方法を説明する。
 図5に示すように、先ず、銅箔81を準備する銅箔準備工程を行う。銅箔81は、インダクタ配線30を構成するため、銅箔81の厚さは、インダクタ配線30として必要な厚さのものを準備する。なお、以下の説明では、銅箔81は、当該銅箔81の2つの主面が第2軸Zに直交するように配置されているものとし、且つ中心軸CAに直交する断面を示して説明する。
(Manufacturing method of inductor component)
Next, a method for manufacturing inductor component 10 will be described.
As shown in FIG. 5, first, a copper foil preparation step for preparing a copper foil 81 is performed. Since the copper foil 81 constitutes the inductor wiring 30 , the thickness of the copper foil 81 is prepared to have a thickness necessary for the inductor wiring 30 . In the following description, it is assumed that the copper foil 81 is arranged such that the two main surfaces of the copper foil 81 are orthogonal to the second axis Z, and a cross section orthogonal to the central axis CA is shown. do.
 次に、図6に示すように、銅箔81の第2軸Zに直交する両主面のうち、第2軸Zに沿う方向から視たときに、第2部分P2における複数の磁性薄帯40が占める範囲以外を被覆する第1被覆工程を行う。具体的には、先ず、銅箔81の第2軸Zに沿う第2負方向Z2を向く面のうち、第2部分P2における複数の磁性薄帯40が占める範囲以外を被覆する第1被覆部82を形成する。第1被覆部82を形成するにあたっては、銅箔81の第2軸Zに沿う第2負方向Z2を向く面全体に、感光性のドライフィルムレジストを塗布する。次に、第1被覆部82を形成する部分について露光することで、ドライフィルムレジストを硬化させる。次に、同様に、銅箔81の第2軸Zに沿う第2正方向Z1を向く面にも、ドライフィルムレジストを塗布するとともに、第1被覆部82を形成する部分について露光することで、ドライフィルムレジストを硬化させる。その後、塗布したドライフィルムレジストのうち硬化していない部分を、薬液により剥離除去させる。これにより、塗布したドライフィルムレジストのうち、硬化している部分が、第1被覆部82として形成される。なお、後述する他の工程におけるフォトリソグラフィも、同様の工程であるので、詳細な説明は省略する。 Next, as shown in FIG. 6, when viewed from the direction along the second axis Z of both principal surfaces of the copper foil 81 perpendicular to the second axis Z, the plurality of magnetic ribbons in the second portion P2 A first covering step is performed to cover areas other than the area occupied by 40 . Specifically, first, of the surface of the copper foil 81 facing the second negative direction Z2 along the second axis Z, a first covering portion that covers the second portion P2 other than the range occupied by the plurality of magnetic strips 40. form 82; In forming the first covering portion 82, the entire surface of the copper foil 81 along the second axis Z and facing the second negative direction Z2 is coated with a photosensitive dry film resist. Next, the dry film resist is cured by exposing the portion where the first covering portion 82 is to be formed. Next, similarly, a dry film resist is applied to the surface of the copper foil 81 facing the second positive direction Z1 along the second axis Z, and the portion where the first covering portion 82 is to be formed is exposed to light. Cure the dry film resist. After that, the uncured portion of the applied dry film resist is peeled off with a chemical solution. As a result, the hardened portion of the applied dry film resist is formed as the first covering portion 82 . Note that photolithography in other steps described later is also the same step, and detailed description thereof will be omitted.
 次に、図7に示すように、第1被覆部82から露出している銅箔81をエッチングする銅箔エッチング工程を行う。部分的に第1被覆部82に被覆された銅箔81についてエッチングすることで、露出している銅箔81を除去する。 Next, as shown in FIG. 7, a copper foil etching step is performed to etch the copper foil 81 exposed from the first covering portion 82 . By etching the copper foil 81 partially covered with the first covering portion 82, the exposed copper foil 81 is removed.
 次に、図8に示すように、第1被覆部82を取り除く第1被覆部除去工程を行う。具体的には、薬品によって、第1被覆部82をウェットエッチングすることにより、第1被覆部82を剥離する。 Next, as shown in FIG. 8, a first covering portion removing step for removing the first covering portion 82 is performed. Specifically, the first covering portion 82 is peeled off by wet etching the first covering portion 82 with a chemical.
 次に、銅箔81の第2軸Zに直交する両面のうち、第2軸Zに沿う方向から視たときに、複数の磁性薄帯40が占める範囲を被覆する第2被覆工程を行う。具体的には、先ず、図9に示すように、銅箔81の第2軸Zに沿う第2正方向Z1を向く面全体に、ドライフィルムレジストRを塗布する。次に、図10に示すように、フォトリソグラフィによって、銅箔81の第2軸Zに沿う第2正方向Z1を向く面のうち、第2軸Zに沿う方向から視たときに、磁性薄帯40及び非磁性層50が占める範囲以外を被覆する第2被覆部83を形成する。その後、同様に、フォトリソグラフィによって、銅箔81の第2軸Zに沿う第2負方向Z2を向く面のうち、第2軸Zに沿う方向から視たときに、磁性薄帯40及び非磁性層50が占める範囲以外を被覆する第2被覆部83を形成する。 Next, a second covering step is performed to cover the range occupied by the plurality of magnetic ribbons 40 when viewed from the direction along the second axis Z of both surfaces of the copper foil 81 orthogonal to the second axis Z. Specifically, first, as shown in FIG. 9, the dry film resist R is applied to the entire surface of the copper foil 81 along the second axis Z and facing the second positive direction Z1. Next, as shown in FIG. 10, by photolithography, the surface of the copper foil 81 facing the second positive direction Z1 along the second axis Z is formed into a magnetic thin film when viewed from the direction along the second axis Z. A second covering portion 83 covering areas other than the area occupied by the band 40 and the non-magnetic layer 50 is formed. After that, similarly, by photolithography, the magnetic ribbon 40 and the non-magnetic ribbon 40 are formed by photolithography when viewed from the direction along the second axis Z of the surface facing the second negative direction Z2 along the second axis Z of the copper foil 81 . A second covering portion 83 is formed to cover areas other than the area occupied by the layer 50 .
 次に、磁性薄帯40及び非磁性層50が積層されている積層体84を準備する積層体準備工程を行う。
 先ず、例えば、磁性薄帯40として、薄帯を準備する。薄帯は、例えば、東北マグネットインスティテュート社製NANOMET(登録商標)、日立金属社製Metglas(登録商標)やFINEMET(登録商標)、FeSiB、FeSiBCr等からなるものである。この薄帯を10mm角に切断する。切断した薄帯に非磁性材からなる例えばエポキシ樹脂フィルムを積層する。エポキシ樹脂フィルムは、薄帯の厚さの3%より大きい予め定められた厚さとなっている。本実施形態では、薄帯の厚さに対するエポキシ樹脂フィルムの厚さの百分率は15%より大きく、エポキシ樹脂フィルムの厚さは、3μmより大きい。さらに、積層したエポキシ樹脂フィルムに、切断した薄帯を積層する。このように、薄帯と非磁性材とを交互に積層させた後、真空加熱加圧装置で薄帯と非磁性材とを硬化接着させる。そして、所望の大きさにダイシングすることにより複数の磁性薄帯40及び非磁性層50が積層された積層体84を準備できる。本実施形態では、積層体84は、第1部分P1及び第3部分P3における磁性薄帯40及び非磁性層50を構成する第1積層体84Aと、第2部分P2における磁性薄帯40及び非磁性層50を構成する第2積層体84Bとの2種類を準備する。
Next, a layered body preparation step is performed to prepare a layered body 84 in which the magnetic ribbon 40 and the non-magnetic layer 50 are layered.
First, for example, a ribbon is prepared as the magnetic ribbon 40 . The ribbon is made of, for example, NANOMET (registered trademark) manufactured by Tohoku Magnet Institute, Metglas (registered trademark) or FINEMET (registered trademark) manufactured by Hitachi Metals, FeSiB, FeSiBCr, or the like. This strip is cut into 10 mm squares. A non-magnetic material such as an epoxy resin film is laminated on the cut strip. The epoxy resin film has a predetermined thickness greater than 3% of the ribbon thickness. In this embodiment, the percentage of the thickness of the epoxy resin film to the thickness of the ribbon is greater than 15%, and the thickness of the epoxy resin film is greater than 3 μm. Furthermore, the cut ribbon is laminated on the laminated epoxy resin film. After alternately laminating the thin strips and the non-magnetic material in this manner, the thin strips and the non-magnetic material are hardened and adhered by a vacuum heating and pressurizing device. Then, by dicing into a desired size, a laminate 84 in which a plurality of magnetic ribbons 40 and nonmagnetic layers 50 are laminated can be prepared. In this embodiment, the laminate 84 includes a first laminate 84A that forms the magnetic ribbon 40 and the non-magnetic layer 50 in the first portion P1 and the third portion P3, and a magnetic ribbon 40 and the non-magnetic layer 50 in the second portion P2. Two types are prepared, namely, the second laminate 84B that constitutes the magnetic layer 50 .
 次に、積層体84を配置する積層体配置工程を行う。
 図11に示すように、積層体84のうち、第3部分P3における磁性薄帯40及び非磁性層50を構成する第1積層体84Aを、銅箔81の第2軸Zに沿う第2正方向Z1を向く面に、熱可塑性接着剤85によって仮接着させる。なお、熱可塑性接着剤85は、図11~図16では、太線で示す。
Next, a laminate arrangement step for arranging the laminate 84 is performed.
As shown in FIG. 11, of the laminate 84, the first laminate 84A constituting the magnetic ribbon 40 and the non-magnetic layer 50 in the third portion P3 is placed in the second positive direction along the second axis Z of the copper foil 81. Temporarily adhered to the surface facing the direction Z1 with a thermoplastic adhesive 85 . The thermoplastic adhesive 85 is indicated by thick lines in FIGS. 11 to 16. FIG.
 次に、図12に示すように、第2軸Zに沿う方向に全体を反転させる。そして、図13に示すように、積層体84のうち、第2部分P2における磁性薄帯40及び非磁性層50を構成する第2積層体84Bを、第1積層体84Aの第2軸Zに沿う第2正方向Z1を向く面のうち、銅箔81に接していない部分に配置させる。具体的には、プレス等により積層体84を銅箔81の開口部に押し込むことで、第2積層体84Bを配置させることができる。 Next, as shown in FIG. 12, the whole is inverted in the direction along the second axis Z. Then, as shown in FIG. 13, of the laminate 84, the second laminate 84B constituting the magnetic ribbon 40 and the non-magnetic layer 50 in the second portion P2 is aligned along the second axis Z of the first laminate 84A. It is arranged on a portion not in contact with the copper foil 81 of the surface facing the second positive direction Z1. Specifically, the second laminate 84B can be arranged by pressing the laminate 84 into the opening of the copper foil 81 by pressing or the like.
 次に、図14に示すように、積層体84のうち、第1部分P1における磁性薄帯40及び非磁性層50を構成する第1積層体84Aを、銅箔81の第2軸Zに沿う第2正方向Z1を向く面及び第2積層体84Bに沿う第2正方向Z1を向く面に、熱可塑性接着剤85によって仮接着させる。これにより、積層体84を配置させる。 Next, as shown in FIG. 14, the first laminate 84A constituting the magnetic ribbon 40 and the non-magnetic layer 50 in the first portion P1 of the laminate 84 is moved along the second axis Z of the copper foil 81. The thermoplastic adhesive 85 temporarily adheres to the surface facing the second positive direction Z1 and the surface facing the second positive direction Z1 along the second laminate 84B. Thereby, the laminated body 84 is arranged.
 次に、図15に示すように、プレス工程を行う。全体を非磁性材である樹脂材86で覆った状態で、プレス加工を行う。これにより、第2軸Zに沿う方向の各層が圧着される。
 次に、図16に示すように、個片化加工工程を行う。具体的には、例えば、破断線DLにてダイシングにより個片化する。上述した第2被覆部83のうち、第1軸Xに沿う方向に並ぶ第1積層体84Aの間の部分は、非磁性部60となる。また、第2被覆部83のうち、中心軸CAに沿う方向に並ぶ第1積層体84Aの間、第2積層体84Bの間の部分は、非磁性部60となる。さらに、熱可塑性接着剤85は、非磁性層50の一部として、インダクタ配線30の第2軸Zに沿う方向の両面に残存している。なお、図16に示す例では、積層体84の第1正方向X1における端面及び第1負方向X2における端面に沿って切断している。その後、積層体84の第1正方向X1における端面及び第1負方向X2における端面に、非磁性材からなる非磁性膜70を塗布する。これにより、インダクタ部品10を形成できる。なお、この方法により熱可塑性接着剤85がインダクタ配線30の第1正方向X1を向く側面側及び第1負方向X2を向く側面側にも回り込むため、磁性薄帯40とインダクタ配線30とは直接接触せず絶縁性が確保される。
Next, as shown in FIG. 15, a press process is performed. Pressing is performed in a state in which the whole is covered with a resin material 86 that is a non-magnetic material. Thereby, each layer in the direction along the second axis Z is crimped.
Next, as shown in FIG. 16, a singulation process is performed. Specifically, for example, it is separated into pieces by dicing along the break lines DL. The portion between the first laminates 84A arranged in the direction along the first axis X in the second covering portion 83 described above becomes the non-magnetic portion 60. As shown in FIG. In addition, portions of the second covering portion 83 between the first laminates 84A and between the second laminates 84B arranged in the direction along the central axis CA serve as the non-magnetic portions 60 . Furthermore, the thermoplastic adhesive 85 remains on both surfaces of the inductor wiring 30 in the direction along the second axis Z as part of the non-magnetic layer 50 . Note that in the example shown in FIG. 16, the laminate 84 is cut along the end face in the first positive direction X1 and the end face in the first negative direction X2. After that, the non-magnetic film 70 made of a non-magnetic material is applied to the end faces of the laminate 84 in the first positive direction X1 and the end faces in the first negative direction X2. Thus, the inductor component 10 can be formed. By this method, the thermoplastic adhesive 85 also wraps around the side surfaces of the inductor wiring 30 facing the first positive direction X1 and the side surfaces facing the first negative direction X2. Insulation is ensured without contact.
 (シミュレーションについて)
 次に、インダクタ部品10について得られる特性を、比較例のインダクタ部品と比較したシミュレーション結果について説明する。シミュレーションには、ムラタソフトウェア株式会社のFemtet(登録商標)を用いた。
(About simulation)
Next, simulation results comparing the characteristics obtained for the inductor component 10 with those of the inductor component of the comparative example will be described. Femtet (registered trademark) of Murata Software Co., Ltd. was used for the simulation.
 先ず、シミュレーションの条件について説明する。
 使用したソフトは、ムラタソフトウェア製のFemtet2019である。ソルバは、磁場調和解析である。モデルは、3次元である。標準メッシュサイズは、0.25mmである。磁性体は、Fe、Si、Cr及びBからなるアモルファス金属磁性薄帯である。比透磁率μrは、7000であり、飽和磁束密度Bsは、1.3Tである。磁性体BH曲線は、B=Bs×tanh(μ0×μr×H/Bs)を満たすものを使用した。なお、磁性体BH曲線は、真空の透磁率以下にならないように、比透磁率μrが1以上の部分を使用し、さらにFemtet2019の機能を使って、真空の透磁率へ外挿した。インダクタ配線30の材質は、銅である。また、磁性体の導電率は、0.568181818MS/mである。配線印加電流は、300kHzの正弦波で振幅は、2.25Aである。
First, the simulation conditions will be described.
The software used is Femtet 2019 manufactured by Murata Software. The solver is magnetic field harmonic analysis. The model is three dimensional. A standard mesh size is 0.25 mm. The magnetic material is an amorphous metal magnetic ribbon made of Fe, Si, Cr and B. The relative magnetic permeability μr is 7000 and the saturation magnetic flux density Bs is 1.3T. A magnetic material BH curve that satisfies B=Bs×tanh (μ0×μr×H/Bs) was used. For the BH curve of the magnetic material, a portion where the relative permeability μr is 1 or more is used so as not to fall below the magnetic permeability of the vacuum, and the function of Femtet2019 is used to extrapolate the magnetic permeability of the vacuum. The material of the inductor wiring 30 is copper. Moreover, the electrical conductivity of the magnetic material is 0.568181818MS/m. The wiring applied current is a sine wave of 300 kHz with an amplitude of 2.25A.
 次に、シミュレーションに使用するインダクタ部品のモデルの寸法や位置についての条件について説明する。
 インダクタ配線30の第1軸Xに沿う方向の寸法は、1000μmである。インダクタ配線30の第2軸Zに沿う方向の寸法は、100μmである。インダクタ配線30の中心軸CAに沿う方向の寸法は、2400μmmである。
Next, the conditions for the dimensions and position of the model of the inductor component used in the simulation will be described.
The dimension of the inductor wiring 30 in the direction along the first axis X is 1000 μm. The dimension of the inductor wiring 30 in the direction along the second axis Z is 100 μm. The dimension of the inductor wiring 30 in the direction along the central axis CA is 2400 μmm.
 磁性薄帯40の第1軸Xに沿う方向の寸法は、990μmである。磁性薄帯40の第2軸Zに沿う方向の寸法は、20μmである。磁性薄帯40の中心軸CAに沿う方向の寸法は、990μmである。 The dimension of the magnetic ribbon 40 in the direction along the first axis X is 990 μm. The dimension of the magnetic ribbon 40 in the direction along the second axis Z is 20 μm. The dimension of the magnetic strip 40 in the direction along the central axis CA is 990 μm.
 非磁性層50は、非磁性体且つ絶縁体である。非磁性層50の第2軸Zに沿う方向の寸法は、0.06~10.00μmである。非磁性部60の第1軸Xに沿う方向の寸法は、20μmである。非磁性部60の中心軸CAに沿う方向の寸法は、20μmである。磁性薄帯40の第2軸Zに沿う方向に積層する数は、41個である。磁性薄帯40の第1軸Xに沿う方向に並ぶ数は、2個である。磁性薄帯40の中心軸CAに沿う方向に並ぶ数は、2個である。 The non-magnetic layer 50 is a non-magnetic material and an insulator. The dimension of the nonmagnetic layer 50 along the second axis Z is 0.06 to 10.00 μm. The dimension of the nonmagnetic portion 60 along the first axis X is 20 μm. The dimension of the non-magnetic portion 60 along the central axis CA is 20 μm. The number of magnetic ribbons 40 laminated in the direction along the second axis Z is 41 pieces. The number of magnetic ribbons 40 arranged in the direction along the first axis X is two. The number of magnetic strips 40 arranged in the direction along the central axis CA is two.
 インダクタ配線30の位置は、インダクタ配線30の重心が、素体20の重心位置に一致するように配置した。非磁性層50、非磁性部60及び非磁性膜70の非磁性材の比透磁率μrは、1とした。なお、インダクタ配線30と磁性薄帯40とが接する部分には、100nmの非磁性且つ絶縁性のギャップを設けた。 The position of the inductor wiring 30 is arranged so that the center of gravity of the inductor wiring 30 coincides with the position of the center of gravity of the element body 20 . The relative magnetic permeability μr of the nonmagnetic material of the nonmagnetic layer 50, the nonmagnetic portion 60, and the nonmagnetic film 70 is set to 1. A non-magnetic and insulating gap of 100 nm was provided at the portion where the inductor wiring 30 and the magnetic ribbon 40 were in contact with each other.
 インダクタ部品10の第1軸Xに沿う方向の寸法は、2020μmである。シミュレーションにおいては、素体20は、非磁性膜70と同じ非磁性材の膜を、中心軸CAに沿う方向の両端に有している。当該膜の中心軸CAに沿う方向の寸法は、10μmである。そのため、素体20の中心軸CAに沿う方向の寸法は、2020μmである。すなわち、このシミュレーションにおいて、インダクタ配線30の中心軸CAに沿う方向の寸法は、素体20の中心軸CAに沿う方向の寸法よりも380μmだけ大きい。そのため、素体20の正方向Y1の端面からインダクタ配線30が190μmだけ突出し、素体20の負方向Y2の端面からインダクタ配線30が190μmだけ突出した状態で、シミュレーションが行われる。また、インダクタ部品10の第2軸Zに沿う方向の寸法は、非磁性層50の第2軸Zに沿う方向の寸法によって、変化する。 The dimension of the inductor component 10 in the direction along the first axis X is 2020 μm. In the simulation, the element body 20 has films of the same nonmagnetic material as the nonmagnetic film 70 at both ends in the direction along the central axis CA. The dimension of the membrane in the direction along the central axis CA is 10 μm. Therefore, the dimension of the element body 20 in the direction along the central axis CA is 2020 μm. That is, in this simulation, the dimension of the inductor wiring 30 in the direction along the central axis CA is larger than the dimension in the direction along the central axis CA of the element body 20 by 380 μm. Therefore, the simulation is performed with the inductor wiring 30 protruding by 190 μm from the end face of the element body 20 in the positive direction Y1 and the inductor wiring 30 protruding by 190 μm from the end face of the element body 20 in the negative direction Y2. In addition, the dimension of the inductor component 10 along the second axis Z changes depending on the dimension of the nonmagnetic layer 50 along the second axis Z. FIG.
 図17に示すように、非磁性層50の第2軸Zに沿う方向の寸法を、0.06~10.00μmの範囲内で変更して、配線印加電流を、300kHzの正弦波で振幅を2.25Aとした場合に得られる渦電流損失AClossをシミュレーションによって算出した。渦電流損失AClossは、ジュール熱として算出されている。なお、非磁性層厚さTnmを調整するためには、上述した製造方法における例えばエポキシ樹脂フィルムの厚さを変更すればよい。 As shown in FIG. 17, the dimension of the non-magnetic layer 50 in the direction along the second axis Z is changed within the range of 0.06 to 10.00 μm, and the current applied to the wiring is a sine wave of 300 kHz with amplitude. The eddy current loss ACloss obtained at 2.25 A was calculated by simulation. The eddy current loss ACloss is calculated as Joule heat. In order to adjust the non-magnetic layer thickness Tnm, for example, the thickness of the epoxy resin film in the manufacturing method described above may be changed.
 算出されたシミュレーション結果によれば、渦電流損失AClossは、非磁性層厚さTnmと相関があることが分かった。全体としては、非磁性層厚さTnmが小さいほど、渦電流損失AClossが小さい傾向であった。非磁性層厚さTnmが0.6μm以下、すなわち磁性薄帯厚さTmに対する非磁性層厚さTnmの百分率が3%以下である場合、渦電流損失AClossは、ほぼ変化しない。一方で、非磁性層厚さTnmが0.6μmより大きい場合、すなわち磁性薄帯厚さTmに対する非磁性層厚さTnmの百分率が3%より大きい場合、非磁性層厚さTnmが大きくなるほど、渦電流損失AClossは小さく算出された。さらに、非磁性反厚さTnmが3.0μmより大きい場合、すなわち磁性薄帯厚さTmに対する非磁性層厚さTnmの百分率が15%より大きい場合、非磁性層厚さTnmが0.6μm以下である場合と比べて、渦電流損失AClossは、約3分の2以下の値であった。すなわち、非磁性反厚さTnmが3.0μmより大きい場合、非磁性層厚さTnmが0.6μm以下である場合と比べて、渦電流損失AClossを約3分の1以上削減する効果があった。 According to the calculated simulation results, it was found that the eddy current loss ACloss has a correlation with the non-magnetic layer thickness Tnm. As a whole, there was a tendency that the smaller the non-magnetic layer thickness Tnm, the smaller the eddy current loss ACloss. When the nonmagnetic layer thickness Tnm is 0.6 μm or less, that is, when the percentage of the nonmagnetic layer thickness Tnm to the magnetic ribbon thickness Tm is 3% or less, the eddy current loss ACloss hardly changes. On the other hand, when the nonmagnetic layer thickness Tnm is greater than 0.6 μm, that is, when the percentage of the nonmagnetic layer thickness Tnm to the magnetic ribbon thickness Tm is greater than 3%, the greater the nonmagnetic layer thickness Tnm, the more The eddy current loss ACloss was calculated to be small. Furthermore, when the nonmagnetic anti-thickness Tnm is greater than 3.0 μm, that is, when the percentage of the nonmagnetic layer thickness Tnm to the magnetic ribbon thickness Tm is greater than 15%, the nonmagnetic layer thickness Tnm is 0.6 μm or less. The eddy current loss ACloss was about two-thirds or less of the value of . That is, when the nonmagnetic anti-thickness Tnm is greater than 3.0 μm, the eddy current loss ACloss is reduced by about one-third or more compared to when the nonmagnetic layer thickness Tnm is 0.6 μm or less. rice field.
 (本実施形態の効果について)
 次に、上記実施形態の効果について説明する。
 (1)上記実施形態によれば、素体20は、複数の磁性薄帯40と、複数の非磁性層50と、を有している。複数の磁性薄帯40は、第2軸Zに沿って積層されており、各非磁性層50は、第2軸Zに沿って隣り合う磁性薄帯40の間に位置している。すなわち、上記実施形態のインダクタ部品10は、第2軸Zに沿って積層されるという磁性薄帯40の規則的な構造を有する。
(About the effect of this embodiment)
Next, the effects of the above embodiment will be described.
(1) According to the above embodiment, the element body 20 has a plurality of magnetic ribbons 40 and a plurality of nonmagnetic layers 50 . A plurality of magnetic ribbons 40 are stacked along the second axis Z, and each non-magnetic layer 50 is positioned between adjacent magnetic ribbons 40 along the second axis Z. As shown in FIG. That is, the inductor component 10 of the above embodiment has a regular structure of the magnetic thin strips 40 stacked along the second axis Z. As shown in FIG.
 図17にシミュレーション結果として示しているように、磁性薄帯厚さTmに対する非磁性層厚さTnmの百分率が3%以下の場合には、非磁性層厚さTnmを変化させても、渦電流損失AClossは、ほぼ変化しない。上記実施形態によれば、磁性薄帯厚さTmに対する非磁性層厚さTnmの百分率が3%よりも大きい。そのため、図17にシミュレーション結果として示しているように、非磁性層厚さTnmが大きくなるほど、渦電流損失AClossが小さくなる相関がある。よって、上記実施形態によれば、磁性薄帯厚さTmに対する非磁性層厚さTnmの百分率が3%以下の場合と比べて、発生する渦電流損失AClossを抑制できる。 As shown in the simulation results of FIG. 17, when the percentage of the non-magnetic layer thickness Tnm to the magnetic ribbon thickness Tm is 3% or less, even if the non-magnetic layer thickness Tnm is changed, the eddy current The loss ACloss remains almost unchanged. According to the above embodiment, the percentage of the non-magnetic layer thickness Tnm to the magnetic ribbon thickness Tm is greater than 3%. Therefore, as shown in FIG. 17 as a simulation result, there is a correlation that the eddy current loss ACloss decreases as the nonmagnetic layer thickness Tnm increases. Therefore, according to the above embodiment, the generated eddy current loss ACloss can be suppressed as compared with the case where the percentage of the non-magnetic layer thickness Tnm to the magnetic ribbon thickness Tm is 3% or less.
 (2)上記実施形態によれば、非磁性層厚さTnmは0.6μmよりも大きい。このように非磁性層厚さTnmが十分に大きければ、磁性薄帯厚さTmによらず、発生する渦電流損失AClossを抑制できる。 (2) According to the above embodiment, the non-magnetic layer thickness Tnm is greater than 0.6 μm. If the non-magnetic layer thickness Tnm is sufficiently large in this way, it is possible to suppress the generated eddy current loss ACloss regardless of the magnetic ribbon thickness Tm.
 (3)図17に示すシミュレーション結果では、非磁性層厚さTnmが3μmより大きい場合、非磁性層厚さTnmが0.6μm以下の場合と比べて、発生する渦電流損失AClossが、約3分の2、又はそれ以下である。すなわち、磁性薄帯厚さTmに対する非磁性層厚さTnmの百分率が15%より大きい場合には、磁性薄帯厚さTmに対する非磁性層厚さTnmの百分率が3%以下の場合と比べて、発生する渦電流損失AClossを約3分の1以上抑制できる。 (3) According to the simulation results shown in FIG. 17, when the nonmagnetic layer thickness Tnm is greater than 3 μm, the generated eddy current loss ACloss is approximately 3 μm compared to when the nonmagnetic layer thickness Tnm is 0.6 μm or less. 2/2 or less. That is, when the percentage of the nonmagnetic layer thickness Tnm to the magnetic ribbon thickness Tm is greater than 15%, compared to the case where the percentage of the nonmagnetic layer thickness Tnm to the magnetic ribbon thickness Tm is 3% or less. , the generated eddy current loss ACloss can be suppressed to about one-third or more.
 (4)上記実施形態によれば、非磁性層厚さTnmは3μmよりも大きい。このように非磁性層厚さTnmが十分に大きければ、磁性薄帯厚さTmによらず、発生する渦電流損失AClossを大幅に抑制できる。 (4) According to the above embodiment, the non-magnetic layer thickness Tnm is greater than 3 μm. If the non-magnetic layer thickness Tnm is sufficiently large in this way, the generated eddy current loss ACloss can be greatly suppressed regardless of the magnetic ribbon thickness Tm.
 (5)インダクタ配線30に中心軸CAに沿う方向に電流が流れたときに発生する磁束の中には、磁性薄帯40に対して、第2軸Zに沿う方向に侵入する磁束が含まれる。このように侵入する磁束は、磁性薄帯40に渦電流を生じさせる。また、この渦電流は、第2軸Zに沿う方向から視たとき、1つ当たりの磁性薄帯40の面積が大きいほど、大きくなる。渦電流が生じると、磁束のエネルギーが熱エネルギーとして失われることになるので、損失が生じる。 (5) The magnetic flux generated when the current flows through the inductor wiring 30 in the direction along the central axis CA includes magnetic flux penetrating the magnetic ribbon 40 in the direction along the second axis Z. . The magnetic flux entering in this way causes eddy currents in the magnetic ribbon 40 . In addition, when viewed from the direction along the second axis Z, the larger the area of each magnetic ribbon 40, the larger the eddy current. When eddy currents occur, losses occur because magnetic flux energy is lost as heat energy.
 上記実施形態によれば、磁性薄帯40は、第2軸Zに沿う同一の位置において、第3軸に沿う方向に2個、第4軸に沿う方向に並んでいる。そのため、第2部分P2における磁性薄帯40が、第2軸Zに沿う同一の位置において1個である場合よりも、第2軸Zに沿う方向から視たときの磁性薄帯40の面積が小さくなる。よって、1つの磁性薄帯40で発生する渦電流が小さくなる。 According to the above embodiment, two magnetic strips 40 are arranged in the direction along the third axis and the direction along the fourth axis at the same position along the second axis Z. Therefore, the area of the magnetic ribbon 40 when viewed from the direction along the second axis Z is larger than when there is only one magnetic ribbon 40 at the same position along the second axis Z in the second portion P2. become smaller. Therefore, the eddy current generated in one magnetic strip 40 is reduced.
 (6)上記実施形態によれば、磁性薄帯40は、第2軸Zに沿う同一の位置において、第1軸Xに沿う方向に2個並んでいる。そのため、インダクタ配線30の第1配線端IP1を通る第1仮想直線VL1が通る第1磁性薄帯41と、インダクタ配線30の第2配線端IP2を通る第3仮想直線VL3が通る第2磁性薄帯42とは、異なる磁性薄帯40である。よって、インダクタ配線30の第1軸Xに沿う方向の寸法としてある程度の大きさを確保しつつ、インダクタ配線30と第1磁性薄帯41との位置関係として上述した位置関係を実現できる。 (6) According to the above embodiment, two magnetic strips 40 are arranged in the direction along the first axis X at the same position along the second axis Z. Therefore, a first magnetic thin strip 41 along which a first virtual straight line VL1 passing through the first wiring end IP1 of the inductor wiring 30 passes, and a second magnetic thin strip 41 along which a third virtual straight line VL3 passing through the second wiring end IP2 of the inductor wiring 30 passes. The strip 42 is a different magnetic thin strip 40 . Therefore, the above-described positional relationship between the inductor wire 30 and the first magnetic ribbon 41 can be realized while ensuring a certain size as the dimension of the inductor wire 30 in the direction along the first axis X.
 (7)上記実施形態によれば、すべての磁性薄帯40の第2軸Zに沿う方向の寸法は、磁性薄帯厚さTmに対して、80%以上120%以下の寸法である。すなわち、すべての磁性薄帯40の第2軸Zに沿う方向の寸法は、ほぼ等しいといえる。そのため、各磁性薄帯40内での磁束密度が均一化し、特定の箇所において磁束が集中して飽和しにくい。その結果、素体20全体で見た場合の磁束密度が向上する。 (7) According to the above embodiment, the dimensions of all the magnetic ribbons 40 in the direction along the second axis Z are 80% or more and 120% or less of the magnetic ribbon thickness Tm. That is, it can be said that all the magnetic strips 40 have substantially the same dimensions in the direction along the second axis Z. FIG. As a result, the magnetic flux density in each magnetic strip 40 is made uniform, and the magnetic flux is hard to concentrate and saturate at a specific location. As a result, the magnetic flux density of the entire element body 20 is improved.
 (8)上記第1実施形態によれば、すべての非磁性層50の第2軸Zに沿う方向の寸法は、非磁性層厚さTnmに対して、80%以上120%以下の寸法である。すなわち、すべての非磁性層50の第2軸Zに沿う方向の寸法は、ほぼ等しいといえる。そのため、非磁性層50と磁性薄帯40との界面で生じる磁束の乱れを均一化できる。 (8) According to the first embodiment, the dimensions of all the nonmagnetic layers 50 in the direction along the second axis Z are 80% or more and 120% or less of the nonmagnetic layer thickness Tnm. . In other words, it can be said that the dimensions in the direction along the second axis Z of all the nonmagnetic layers 50 are substantially equal. Therefore, the disturbance of the magnetic flux generated at the interface between the non-magnetic layer 50 and the magnetic ribbon 40 can be made uniform.
 (9)上記実施形態によれば、第1仮想直線VL1は、第1磁性薄帯41の第1範囲AR1内を通っている。そのため、インダクタ配線30に電流が流れたときに発生する磁束のうち、インダクタ配線30の第1配線端IP1の近傍において、第1仮想直線VL1に沿う向きの磁束の大半は、第1磁性薄帯41の第1軸Xに沿う方向の端を除く部分を通過する。すなわち、インダクタ配線30に電流が流れたときに発生する磁束のうち、第1磁性薄帯41に沿う方向の端を通過する磁束が少なくなる。そのため、磁束が乱れたり、磁束が局所に集中したりすることを抑制できる。こうした第1磁性薄帯41とインダクタ配線30との位置関係によれば、磁性材の充填率に拠らずとも、得られるインダクタンスLが大きくなる。 (9) According to the above embodiment, the first imaginary straight line VL1 passes through the first range AR1 of the first magnetic ribbon 41 . Therefore, of the magnetic flux generated when a current flows through the inductor wiring 30, most of the magnetic flux in the direction along the first imaginary straight line VL1 in the vicinity of the first wiring end IP1 of the inductor wiring 30 is the first magnetic ribbon 41 except for the end in the direction along the first axis X. That is, of the magnetic flux generated when the current flows through the inductor wiring 30, the magnetic flux passing through the ends in the direction along the first magnetic ribbon 41 is reduced. Therefore, it is possible to suppress the disturbance of the magnetic flux and the local concentration of the magnetic flux. According to such a positional relationship between the first magnetic ribbon 41 and the inductor wiring 30, the obtained inductance L is increased regardless of the filling rate of the magnetic material.
 <その他の実施形態>
 上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で組み合わせて実施することができる。
<Other embodiments>
The above embodiment can be implemented with the following modifications. The above embodiments and the following modifications can be implemented in combination within a technically consistent range.
 ・上記実施形態において、素体20の形状は、上記実施形態の例に限られない。例えば、第2軸Zに沿う方向から視たときに、素体20の形状は、長方形状であってもよいし、四角形以外の多角形であってもよい。さらに例えば、第2軸Zに沿う方向から視たときに、素体20の形状は、楕円等の円状であってもよい。また、素体20の形状は、第3軸に沿う方向における寸法と第4軸に沿う方向における寸法とが異なる直方体や、立方体、多角柱、円柱等であってもよい。 · In the above embodiment, the shape of the element body 20 is not limited to the example of the above embodiment. For example, when viewed from the direction along the second axis Z, the shape of the base body 20 may be rectangular, or polygonal other than quadrangular. Further, for example, the shape of the base body 20 may be circular such as an ellipse when viewed from the direction along the second axis Z. Further, the shape of the base body 20 may be a rectangular parallelepiped, a cube, a polygonal prism, a cylinder, or the like having different dimensions in the direction along the third axis and in the direction along the fourth axis.
 ・上記実施形態において、インダクタ配線30とは、電流が流れた場合に磁性薄帯40に磁束を発生させることによって、インダクタ部品10にインダクタンスLを付与できるものであれば、形状は適宜に変更できる。 In the above embodiment, the shape of the inductor wiring 30 can be appropriately changed as long as the inductor wiring 30 can give inductance L to the inductor component 10 by generating magnetic flux in the magnetic ribbon 40 when current flows. .
 例えば、図18に示す変更例のインダクタ部品110では、中心軸CAに直交する断面において、インダクタ配線130は、楕円状である。そして、インダクタ配線130に外接するとともに、第1軸Xに沿う第1辺及び第2軸Zに沿う第2辺を有する面積が最小の仮想長方形VR2を描く。このとき、仮想長方形VR2の第1辺は、仮想長方形VR2の第2辺よりも長い。このように、仮想長方形VR2の長辺が第1軸Xと平行であると、磁束のより集中する配線断面の第1軸Xに沿う方向の端部には、第1磁性薄帯41の反磁界の小さい領域が対応するため、より好ましい。 For example, in the modified inductor component 110 shown in FIG. 18, the inductor wiring 130 has an elliptical shape in a cross section perpendicular to the central axis CA. Then, a hypothetical rectangle VR2 with a minimum area, which circumscribes the inductor wiring 130 and has a first side along the first axis X and a second side along the second axis Z, is drawn. At this time, the first side of the virtual rectangle VR2 is longer than the second side of the virtual rectangle VR2. As described above, when the long sides of the virtual rectangle VR2 are parallel to the first axis X, the opposite ends of the first magnetic ribbon 41 in the direction along the first axis X of the cross section of the wiring where the magnetic flux is more concentrated. It is more preferable because it corresponds to a region with a small magnetic field.
 また、上記実施形態において、中心軸CAに直交する断面におけるインダクタ配線30の形状は、第2軸Zに沿う第2辺が、第1軸Xに沿う第1辺よりも長くてもよい。この場合であっても、インダクタ配線30の第1正方向X1の端である第1配線端IP1には、磁束が集中する。そのため、このように、磁束のより集中する配線断面の第1配線端IP1には、第1磁性薄帯41の反磁界の小さい領域が対応するため、より好ましい。 Further, in the above embodiment, the shape of the inductor wiring 30 in the cross section orthogonal to the central axis CA may be such that the second side along the second axis Z is longer than the first side along the first axis X. Even in this case, the magnetic flux concentrates on the first wiring end IP1, which is the end of the inductor wiring 30 in the first positive direction X1. Therefore, the region of the first magnetic ribbon 41 having a small demagnetizing field corresponds to the first wiring end IP1 of the wiring cross section where the magnetic flux is more concentrated, which is more preferable.
 さらに、中心軸CAに直交する断面において、インダクタ配線30の形状は、1つ以上の突出部分を含む場合等、線対称や回転対称等の対称性を有しない形状であってもよい。このように、中心軸CAに直交する断面において、対称性が崩れていると、磁束が他よりも集中する箇所が発生する。そして、突出部分等のように磁束が他よりも集中する箇所が第1配線端IP1となるように、第1磁性薄帯41の位置関係を定めることが好ましい。 Furthermore, in a cross section perpendicular to the central axis CA, the shape of the inductor wiring 30 may be a shape that does not have symmetry such as linear symmetry or rotational symmetry, such as when it includes one or more protruding portions. In this way, if the symmetry is broken in the cross section perpendicular to the central axis CA, there will be a place where the magnetic flux concentrates more than others. Further, it is preferable to determine the positional relationship of the first magnetic ribbon 41 so that the first wiring end IP1 is a portion such as a projecting portion where the magnetic flux concentrates more than others.
 また、例えば、中心軸CAに直交する断面において、インダクタ配線30の形状は、正方形状であってもよいし、真円状であってもよい。この場合、中心軸CAに直交する断面において描く仮想長方形VRは正方形となり、仮想長方形VRの第1辺は、仮想長方形VRの第2辺より長くなくてもよい。 Also, for example, in a cross section orthogonal to the central axis CA, the shape of the inductor wiring 30 may be square or circular. In this case, the virtual rectangle VR drawn in the cross section perpendicular to the central axis CA is a square, and the first side of the virtual rectangle VR does not have to be longer than the second side of the virtual rectangle VR.
 なお、第1磁性薄帯41は、中心軸CAに直交する断面におけるインダクタ配線30の形状に併せて定められる。図18に示す変更例では、インダクタ配線130に対して、第2軸Zに沿う方向に積層された磁性薄帯40のうち、第1配線端IP1からの第2軸Zに沿う距離が最も短い磁性薄帯40は、第2部分P2に含まれる磁性薄帯40の1つである。この場合であっても、第1仮想直線VL1が、第1磁性薄帯41の第1範囲AR1を通っていればよい。 The first magnetic strip 41 is determined in accordance with the shape of the inductor wiring 30 in the cross section perpendicular to the central axis CA. In the modification shown in FIG. 18, the distance along the second axis Z from the first wiring end IP1 is the shortest among the magnetic ribbons 40 laminated in the direction along the second axis Z with respect to the inductor wiring 130. The magnetic ribbon 40 is one of the magnetic ribbons 40 included in the second portion P2. Even in this case, the first imaginary straight line VL1 only needs to pass through the first range AR1 of the first magnetic ribbon 41 .
 ・上記実施形態において、インダクタ配線30の第1軸Xに沿う方向の位置は、上記実施形態の例に限られない。第1仮想直線VL1が、第1磁性薄帯41を含む第2軸Zに沿う方向に連続して並ぶ5つの磁性薄帯40の第1範囲AR1内を通ることが好ましく、すべての磁性薄帯40の第1範囲AR1内を通ることがより好ましい。そのため、第1仮想直線VL1が、すべての磁性薄帯40の第1軸Xに沿う方向における略中央を通っていなくてもよい。また、第1仮想直線VL1が、第1磁性薄帯41の第1範囲AR1外にあってもよい。 · In the above embodiment, the position of the inductor wiring 30 in the direction along the first axis X is not limited to the example of the above embodiment. The first imaginary straight line VL1 preferably passes through the first range AR1 of the five magnetic ribbons 40, including the first magnetic ribbons 41, arranged continuously in the direction along the second axis Z. More preferably, it passes within the first range AR1 of 40. Therefore, the first imaginary straight line VL1 does not have to pass through substantially the center of all the magnetic ribbons 40 in the direction along the first axis X. Also, the first virtual straight line VL1 may be outside the first range AR1 of the first magnetic ribbon 41 .
 ・上記実施形態において、インダクタ配線30の形状は、直線状に限られない。磁性薄帯40の主面MFに沿って延びていればよく、例えば、全体として湾曲している形状や、ミアンダ形状であってもよい。例えば、上述したシミュレーションのように、インダクタ配線30の両端が素体から突出していてもよい。 · In the above embodiment, the shape of the inductor wiring 30 is not limited to a straight line. It only needs to extend along the main surface MF of the magnetic thin strip 40, and may have, for example, a curved shape as a whole or a meandering shape. For example, both ends of the inductor wiring 30 may protrude from the element body as in the simulation described above.
 また、インダクタ配線30が、主面MFと交差する方向に延びる引出配線や、第2軸Zに沿う方向に延びるビア配線等に接続されていてもよい。さらに、複数のインダクタ配線30が第2軸Zに沿う方向に延びるビア配線に接続されて、全体として、弦巻形状やヘリカル状の三次元螺旋状であってもよい。この場合には、磁性薄帯40の主面MFに沿って延びている部分が、インダクタ配線30である。 Also, the inductor wiring 30 may be connected to a lead wiring extending in a direction intersecting the main surface MF, a via wiring extending in a direction along the second axis Z, or the like. Furthermore, a plurality of inductor wirings 30 may be connected to via wirings extending in the direction along the second axis Z, and may have a three-dimensional spiral shape such as a spiral shape or a helical shape as a whole. In this case, the inductor wiring 30 is the portion extending along the main surface MF of the magnetic ribbon 40 .
 ・上記実施形態において、インダクタ配線30の材質は、導電性材料であれば、上記実施形態の例に限られない。例えば、インダクタ配線30の材質は、導電性の樹脂であってもよい。 · In the above-described embodiment, the material of the inductor wiring 30 is not limited to the example of the above-described embodiment as long as it is a conductive material. For example, the material of the inductor wiring 30 may be a conductive resin.
 ・上記実施形態において、中心軸CAと、第3軸とは、一致していなくてもよい。また、第4軸は、第1軸Xと一致していなくてもよい。例えば、上述したようにインダクタ配線30の形状がミアンダ形状の場合、中心軸CAはミアンダ状に延びる。この場合、第3軸は第2軸Zに直交し、第4軸は、第2軸Zと直交し、第3軸に交差すればよい。この場合であっても、磁性薄帯40が第3軸に沿う方向に複数個並んでいたり、第4軸に沿う方向に複数個並んでいたりすれば、磁性薄帯40が第2軸Zに沿う同一の位置において1個である場合よりも、第2軸Zに沿う方向から視たときの磁性薄帯40の面積が小さくなる。そのため、1つの磁性薄帯40で発生する渦電流が小さくなる。 · In the above embodiment, the central axis CA and the third axis may not coincide. Also, the fourth axis does not have to coincide with the first axis X. For example, when the inductor wiring 30 has a meandering shape as described above, the central axis CA extends in a meandering shape. In this case, the third axis should be orthogonal to the second axis Z, and the fourth axis should be orthogonal to the second axis Z and intersect the third axis. Even in this case, if a plurality of magnetic ribbons 40 are aligned in the direction along the third axis or in a direction along the fourth axis, the magnetic ribbons 40 are aligned along the second axis Z. The area of the magnetic ribbon 40 when viewed from the direction along the second axis Z is smaller than when there is one at the same position along the second axis Z. Therefore, the eddy current generated in one magnetic strip 40 is reduced.
 ・上記実施形態で説明した第1配線端IP1を通る第1仮想直線VL1と第1磁性薄帯41の第1範囲AR1との位置関係は、中心軸CAに直交するインダクタ配線30の断面のうち、いずれか1つの断面において満たしていればよい。つまり、インダクタ配線30のすべての領域において、第1仮想直線VL1と第1磁性薄帯41の第1範囲AR1の位置関係が満たされていなくてもよい。なお、第1配線端IP1を通る第1仮想直線VL1と第1磁性薄帯41の第1範囲AR1との位置関係を満たす断面が1つも有していなくてもよい。すなわち、インダクタ配線30の第1配線端IP1の第1軸Xに沿う方向の位置が、第1磁性薄帯41の第1範囲AR1内でなくてもよく、第1磁性薄帯41の第1軸Xに沿う方向の端に一致していてもよい。 The positional relationship between the first virtual straight line VL1 passing through the first wiring end IP1 described in the above embodiment and the first range AR1 of the first magnetic ribbon 41 is , any one cross section. In other words, the positional relationship between the first imaginary straight line VL1 and the first range AR1 of the first magnetic ribbon 41 does not have to be satisfied in all the regions of the inductor wiring 30 . Note that there may be no cross section that satisfies the positional relationship between the first virtual straight line VL1 passing through the first wiring end IP1 and the first range AR1 of the first magnetic ribbon 41 . That is, the position of the first wiring end IP1 of the inductor wiring 30 in the direction along the first axis X does not have to be within the first range AR1 of the first magnetic ribbon 41. It may coincide with the end in the direction along the axis X.
 ・上記実施形態において、インダクタ配線30が素体20から露出している部分には、外部電極が接続されていてもよい。例えば、インダクタ配線30の中心軸CAに沿う方向の両端面、及び素体20の中心軸CAに沿う方向の両端面に、塗布、印刷、めっき等によって、外部電極を形成してもよい。 · In the above embodiment, an external electrode may be connected to the portion where the inductor wiring 30 is exposed from the element body 20 . For example, external electrodes may be formed on both end faces of the inductor wiring 30 along the central axis CA and both end faces of the base body 20 along the central axis CA by coating, printing, plating, or the like.
 ・上記実施形態において、複数の磁性薄帯40と複数の非磁性層50とが積層される方向は、製造上の誤差等により、中心軸CA及び第1軸Xに対して直交しないこともある。上記実施形態において、磁性薄帯40等が「第2軸Zに沿う方向に積層されている」というのは、このような製造上の誤差などを許容するものである。 ・In the above embodiment, the direction in which the plurality of magnetic strips 40 and the plurality of non-magnetic layers 50 are laminated may not be perpendicular to the central axis CA and the first axis X due to manufacturing errors. . In the above embodiment, the fact that the magnetic ribbons 40 and the like are "laminated in the direction along the second axis Z" allows for such manufacturing errors.
 ・上記実施形態において、第2軸Zに沿う方向に積層される磁性薄帯40の数は、2個以上であればよい。この場合、2つの磁性薄帯40の間に、インダクタ配線30及び非磁性層50が配置されていればよい。 · In the above embodiment, the number of magnetic strips 40 stacked in the direction along the second axis Z should be two or more. In this case, the inductor wiring 30 and the non-magnetic layer 50 should be arranged between the two magnetic ribbons 40 .
 ・上記実施形態において、磁性薄帯40の材質は、磁性材であれば、上記実施形態の例に限られない。例えば、Feであってもよいし、Niであってもよい。また、Fe、Ni、Co、Cr、Cu、Al、Si、B、P以外の金属磁性材であってもよい。 · In the above embodiment, the material of the magnetic ribbon 40 is not limited to the examples of the above embodiment as long as it is a magnetic material. For example, it may be Fe or Ni. Metal magnetic materials other than Fe, Ni, Co, Cr, Cu, Al, Si, B, and P may also be used.
 ・上記実施形態において、非磁性層50の材質は、非磁性材であれば、上記実施形態の例に限られない。非磁性層50は、アクリル樹脂や、エポキシ樹脂、シリコン樹脂以外の樹脂であってもよいし、アルミナ、シリカ、ガラス等の非磁性セラミックスやこれらを含む非磁性無機物であってもよいし、空隙であってもよく、さらにこれらの混合物であってもよい。この点、非磁性部60及び非磁性膜70についても同様である。また、非磁性層50、非磁性部60及び非磁性膜70の材質は、非磁性材であれば、互いに異なっていてもよいし、部分的に異なっていてもよい。 · In the above embodiments, the material of the non-magnetic layer 50 is not limited to the examples of the above embodiments as long as it is a non-magnetic material. The non-magnetic layer 50 may be made of a resin other than acrylic resin, epoxy resin, or silicon resin, or may be made of non-magnetic ceramics such as alumina, silica, or glass, or non-magnetic inorganic materials containing these. or a mixture thereof. In this regard, the same applies to the nonmagnetic portion 60 and the nonmagnetic film 70 . The materials of the non-magnetic layer 50, the non-magnetic portion 60 and the non-magnetic film 70 may be different from each other or may be partially different as long as they are non-magnetic materials.
 ・上記実施形態において、非磁性層50、非磁性部60、非磁性膜70は一体化していてもよいし、別の部材であってもよい。例えば、非磁性層50は、中空であってもよいし、磁性薄帯40の表面が酸化した酸化膜が絶縁体となって構成されていてもよい。 · In the above embodiment, the nonmagnetic layer 50, the nonmagnetic portion 60, and the nonmagnetic film 70 may be integrated or may be separate members. For example, the non-magnetic layer 50 may be hollow, or may be composed of an insulating oxide film obtained by oxidizing the surface of the magnetic ribbon 40 .
 ・上記実施形態において、非磁性部60を省いてもよい。この場合、第3軸又は第4軸に沿う方向に並ぶ磁性薄帯40同士が直接接触していてもよい。また、非磁性部60が、インダクタ配線30と磁性薄帯40との間に存在していてもよい。この場合、非磁性部60によって、インダクタ配線30と磁性薄帯40との間の絶縁性を確保できる。 · In the above embodiment, the non-magnetic portion 60 may be omitted. In this case, the magnetic ribbons 40 aligned in the direction along the third axis or the fourth axis may be in direct contact with each other. Also, the nonmagnetic portion 60 may exist between the inductor wiring 30 and the magnetic ribbon 40 . In this case, the nonmagnetic portion 60 can ensure insulation between the inductor wiring 30 and the magnetic ribbon 40 .
 なお、「複数の磁性薄帯40が積層された」及び「複数の磁性薄帯40が並ぶ」とは、具体的には、隣接する磁性薄帯40同士が完全に又は部分的に絶縁されている場合や微視的に物理的な境界が存在する場合を指す。例えば、磁性薄帯40同士が焼結されて完全に一体化されている状態等は含まない。 It should be noted that "a plurality of magnetic ribbons 40 are laminated" and "a plurality of magnetic ribbons 40 are lined up" specifically mean that the adjacent magnetic ribbons 40 are completely or partially insulated from each other. It refers to the case where there is a physical boundary on a microscopic scale. For example, it does not include a state in which the magnetic ribbons 40 are sintered and completely integrated.
 ・上記実施形態において、素体20は、複数の磁性薄帯40と、複数の非磁性層50と、を有していれば、素体20の構成は、変更できる。例えば、第2部分P2のうちのインダクタ配線30を除く部分全てを磁性薄帯40で構成してもよいし非磁性層50で構成してもよい。また、第2部分P2のうちのインダクタ配線30を除く部分全てを磁性薄帯40で構成する場合、その磁性薄帯40は粉体状の磁性材と非磁性材とのコンポジット材であってもよい。このようなコンポジット材としては、Fe、Si、Cr、Bからなるアモルファス金属粒子と樹脂とのメタルコンポジット材が挙げられる。 · In the above embodiment, the structure of the element 20 can be changed as long as the element 20 has a plurality of magnetic ribbons 40 and a plurality of non-magnetic layers 50 . For example, the entire second portion P2 except for the inductor wiring 30 may be composed of the magnetic ribbon 40 or may be composed of the non-magnetic layer 50 . Further, when all the portions of the second portion P2 excluding the inductor wiring 30 are composed of the magnetic ribbon 40, the magnetic ribbon 40 may be a composite material of a powdery magnetic material and a non-magnetic material. good. As such a composite material, there is a metal composite material of amorphous metal particles made of Fe, Si, Cr, and B and a resin.
 ・上記実施形態によれば、磁性薄帯40は、第2軸Zに沿う同一の位置において、第1軸Xに沿う方向に2個並んでおり、中心軸CAすなわち第3軸に沿う方向に2個並んでいる。すなわち、「M」及び「N」を正の整数とした場合、磁性薄帯40は、第2軸Zに沿う同一の位置において、第3軸に沿う方向に「M」個並んでおり、第1軸Xすなわち第4軸に沿う方向に「N」個並んでおり、「M」及び「N」のいずれも2である。上記実施形態において、第4軸に沿う方向に並ぶ第1磁性薄帯41の数である「M」は、1個であってもよいし、3個以上であってもよい。また、中心軸CAに沿う方向に並ぶ磁性薄帯40の数である「N」は、1個であってもよいし、3個以上であってもよい。なお、「M」及び「N」の少なくともいずれか一方が2以上であると、第2軸Zから視たときの1つ当たりの磁性薄帯40の面積を小さくできるので、渦電流による損失を小さくしやすい。 According to the above-described embodiment, two magnetic ribbons 40 are arranged in the direction along the first axis X at the same position along the second axis Z, and are arranged in the direction along the central axis CA, that is, the third axis. 2 are lined up. That is, when "M" and "N" are positive integers, "M" magnetic ribbons 40 are arranged in the same position along the second axis Z in the direction along the third axis. "N" pieces are arranged in the direction along the first axis X, that is, the fourth axis, and both "M" and "N" are two. In the above embodiment, "M", which is the number of first magnetic ribbons 41 arranged in the direction along the fourth axis, may be one, or may be three or more. Also, "N", which is the number of magnetic ribbons 40 arranged in the direction along the central axis CA, may be one, or may be three or more. Note that if at least one of "M" and "N" is 2 or more, the area of each magnetic ribbon 40 as viewed from the second axis Z can be reduced, so loss due to eddy currents can be reduced. Easy to make small.
 ・上記実施形態で説明した磁性薄帯厚さTmと非磁性層厚さTnmとの大小関係は、中心軸CAに直交するインダクタ配線30の断面のうち、いずれか1つの断面において満たしていればよい。つまり、インダクタ配線30の全ての領域において、磁性薄帯厚さTmと非磁性層厚さTnmとの大小関係が満たされていなくてもよい。 If the magnitude relationship between the thickness Tm of the magnetic ribbon and the thickness Tnm of the non-magnetic layer described in the above embodiment is satisfied in any one of the cross sections of the inductor wiring 30 perpendicular to the central axis CA, good. In other words, the magnitude relationship between the magnetic ribbon thickness Tm and the non-magnetic layer thickness Tnm does not have to be satisfied in all regions of the inductor wiring 30 .
 ・複数の磁性薄帯40の第2軸Zに沿う方向の寸法は、互いに同一であってもよいし、磁性薄帯厚さTmに対して、20%より大きくばらついていてもかまわない。
 ・複数の非磁性層50の第2軸Zに沿う方向の寸法は、互いに同一であってもよいし、平均値に対して、20%より大きくばらついていてもかまわない。少なくとも、非磁性層厚さTnmが、磁性薄帯厚さTmに対して3%より大きければよい。なお、非磁性層厚さTnmが、磁性薄帯厚さTmに対して100%以下であると、素体20の第2軸Zに沿う方向の寸法の大型化を回避しやすい。また、非磁性層厚さTnmが、磁性薄帯厚さTmに対して50%以下であると、素体20における磁性薄帯40の割合を担保するうえで好適である。
The dimensions of the plurality of magnetic ribbons 40 in the direction along the second axis Z may be the same, or may vary by more than 20% with respect to the thickness Tm of the magnetic ribbons.
- The dimensions of the plurality of non-magnetic layers 50 in the direction along the second axis Z may be the same, or may vary by more than 20% from the average value. At least, the non-magnetic layer thickness Tnm should be larger than 3% of the magnetic ribbon thickness Tm. If the non-magnetic layer thickness Tnm is 100% or less of the magnetic ribbon thickness Tm, it is easy to avoid an increase in the size of the base body 20 in the direction along the second axis Z. Further, it is preferable to ensure the proportion of the magnetic ribbon 40 in the element body 20 when the nonmagnetic layer thickness Tnm is 50% or less of the magnetic ribbon thickness Tm.
 ・上記実施形態において、非磁性部60の数や位置は、上記実施形態の例に限られない。第1軸Xに沿う方向や中心軸CAに沿う方向における磁性薄帯40の数や位置に併せて、非磁性部60の数や位置を変更すればよい。また、非磁性部60の大きさも、第2軸Zに沿う方向における同一の位置における磁性薄帯40の間隔に併せて、適宜変更すればよい。 · In the above embodiment, the number and positions of the non-magnetic portions 60 are not limited to the examples in the above embodiment. The number and positions of the non-magnetic portions 60 may be changed according to the number and positions of the magnetic strips 40 in the direction along the first axis X and in the direction along the central axis CA. Also, the size of the non-magnetic portion 60 may be appropriately changed according to the interval between the magnetic ribbons 40 at the same position in the direction along the second axis Z. FIG.
 ・上記実施形態において、非磁性膜70は省略してもよい。なお、非磁性膜70を形成する場合には、例えば、インダクタ部品10の製造方法において、第2被覆部83の第1軸X及び中心軸CAに沿う方向の隙間に対して、積層体84の第1軸X及び中心軸CAに沿う方向の寸法が小さく設定すればよい。この場合、第2被覆部83と積層体84との隙間に、樹脂材86が入り込むことで、非磁性膜70を形成できる。 · In the above embodiment, the non-magnetic film 70 may be omitted. In the case of forming the non-magnetic film 70, for example, in the method of manufacturing the inductor component 10, the gap in the direction along the first axis X and the central axis CA of the second covering portion 83 is The dimension in the direction along the first axis X and the central axis CA may be set small. In this case, the non-magnetic film 70 can be formed by the resin material 86 entering the gap between the second covering portion 83 and the laminate 84 .
 ・上記実施形態において、インダクタ部品10の製造方法は、上記実施形態の例に限られない。例えば、積層体84を、第2被覆部83に配置せずに、素体20を第2軸Zに沿う方向に積層される複数のシートを形成して、これらの複数のシートを積層させることによって、素体20を形成してもよい。 · In the above embodiment, the method of manufacturing the inductor component 10 is not limited to the above embodiment. For example, without arranging the laminated body 84 on the second covering portion 83, the element body 20 may be laminated in the direction along the second axis Z to form a plurality of sheets, and the plurality of sheets may be laminated. The base body 20 may be formed by
 10,110…インダクタ部品
 20…素体
 30,130…インダクタ配線
 40…磁性薄帯
 41…第1磁性薄帯
 42…第2磁性薄帯
 50…非磁性層
 60…非磁性部
 70…非磁性膜
 AR1…第1範囲
 CA…中心軸
 MF…主面
 MP1…第1端
 MP2…第2端
 Tm…磁性薄帯厚さ
 Tnm…非磁性層厚さ
 VL1…第1仮想直線
 VL2…第2仮想直線
 VR,VR2…仮想長方形
 X…第1軸
 Z…第2軸
DESCRIPTION OF SYMBOLS 10, 110... Inductor component 20... Element body 30, 130... Inductor wiring 40... Magnetic ribbon 41... First magnetic ribbon 42... Second magnetic ribbon 50... Non-magnetic layer 60... Non-magnetic part 70... Non-magnetic film AR1... First range CA... Central axis MF... Main surface MP1... First end MP2... Second end Tm... Magnetic ribbon thickness Tnm... Non-magnetic layer thickness VL1... First virtual straight line VL2... Second virtual straight line VR , VR2...virtual rectangle X...first axis Z...second axis

Claims (8)

  1.  磁性材からなる平板状の複数の磁性薄帯を含み、複数の前記磁性薄帯が、前記磁性薄帯の主面に対して直交する方向に積層された素体と、
     前記素体の内部で、前記主面に沿って延びているインダクタ配線と、を備え、
     前記インダクタ配線の延びる軸を中心軸とし、前記中心軸に直交する断面視で前記主面に沿う軸を第1軸とし、前記断面視で前記主面に直交する軸を第2軸としたとき、
     前記素体は、前記第2軸に沿って隣り合う前記磁性薄帯の間に位置する非磁性材からなる複数の非磁性層を有し、
     複数の前記磁性薄帯の前記第2軸に沿う方向の寸法の平均値を磁性薄帯厚さとし、複数の前記非磁性層の前記第2軸に沿う方向の寸法の平均値を非磁性層厚さとしたとき、前記磁性薄帯厚さに対する前記非磁性層厚さの百分率は、3%より大きい
     インダクタ部品。
    a base body including a plurality of tabular magnetic ribbons made of a magnetic material, wherein the plurality of magnetic ribbons are laminated in a direction perpendicular to the main surface of the magnetic ribbon;
    an inductor wiring extending along the main surface inside the base body,
    When the axis along which the inductor wiring extends is taken as a central axis, the axis along the main surface in a cross-sectional view perpendicular to the central axis is taken as a first axis, and the axis perpendicular to the main surface in a cross-sectional view is taken as a second axis ,
    the base body has a plurality of non-magnetic layers made of a non-magnetic material positioned between the magnetic ribbons adjacent to each other along the second axis;
    The average value of the dimensions of the plurality of magnetic ribbons in the direction along the second axis is defined as the magnetic ribbon thickness, and the average value of the dimensions of the plurality of nonmagnetic layers in the direction along the second axis is defined as the nonmagnetic layer thickness. , the percentage of the thickness of the non-magnetic layer to the thickness of the magnetic ribbon is greater than 3%.
  2.  前記磁性薄帯厚さに対する前記非磁性層厚さの百分率は、15%より大きい
     請求項1に記載のインダクタ部品。
    2. The inductor component according to claim 1, wherein the percentage of said non-magnetic layer thickness to said magnetic ribbon thickness is greater than 15%.
  3.  前記非磁性層厚さは、0.6μmより大きい
     請求項1又は請求項2に記載のインダクタ部品。
    3. The inductor component according to claim 1, wherein said non-magnetic layer thickness is greater than 0.6 [mu]m.
  4.  前記非磁性層厚さは、3μmより大きい
     請求項3に記載のインダクタ部品。
    4. The inductor component according to claim 3, wherein said non-magnetic layer thickness is greater than 3 [mu]m.
  5.  「M」及び「N」を正の整数とし、且つ「M」及び「N」の少なくともいずれか一方を「2」以上としたとき、
     前記磁性薄帯は、前記第2軸に沿う同一の位置において、前記第2軸に直交する第3軸に沿う方向に「M」個並んでおり、前記第2軸及び前記第3軸に直交する第4軸に沿う方向に「N」個並んでいる
     請求項1~請求項4のいずれか1項に記載のインダクタ部品。
    When "M" and "N" are positive integers and at least one of "M" and "N" is "2" or more,
    At the same position along the second axis, "M" magnetic ribbons are arranged in a direction along a third axis orthogonal to the second axis, and are orthogonal to the second axis and the third axis. The inductor component according to any one of claims 1 to 4, wherein "N" pieces are arranged in a direction along the fourth axis.
  6.  前記各磁性薄帯の前記第2軸に沿う方向の寸法は、前記磁性薄帯厚さに対して、80%以上120%以下の寸法である
     請求項1~5のいずれか1項に記載のインダクタ部品。
    The dimension of each of the magnetic ribbons in the direction along the second axis is 80% or more and 120% or less of the thickness of the magnetic ribbon, according to any one of claims 1 to 5. inductor components.
  7.  前記各非磁性層の前記第2軸に沿う方向の寸法は、前記非磁性層厚さに対して、80%以上120%以下の寸法である
     請求項1~6のいずれか1項に記載のインダクタ部品。
    7. The dimension according to any one of claims 1 to 6, wherein the dimension of each nonmagnetic layer along the second axis is 80% or more and 120% or less of the thickness of the nonmagnetic layer. inductor components.
  8.  前記第1軸に沿う2つの方向のうちのいずれか一方を第1正方向としたとき、
     前記断面視において、
      前記インダクタ配線の前記第1正方向の端を第1配線端とし、
      前記インダクタ配線に対して前記第2軸に沿う方向に積層された前記磁性薄帯のうち、前記第1配線端からの前記第2軸に沿う方向の距離が最も短い前記磁性薄帯を第1磁性薄帯とし、
     前記第1磁性薄帯における前記第1軸に沿う方向の両端を除く範囲を第1範囲としたとき、
     前記第1配線端を通り前記第2軸に沿う方向に延びる仮想直線を引いたときに、前記仮想直線は、前記第1磁性薄帯の前記第1範囲内を通る
     請求項1~請求項7のいずれか1項に記載のインダクタ部品。
    When one of the two directions along the first axis is defined as the first positive direction,
    In the cross-sectional view,
    The end of the inductor wiring in the first positive direction is defined as a first wiring end,
    Among the magnetic ribbons laminated in the direction along the second axis with respect to the inductor wiring, the magnetic ribbon having the shortest distance in the direction along the second axis from the end of the first wiring is selected as the first magnetic ribbon. as a magnetic strip,
    When the range excluding both ends of the first magnetic ribbon in the direction along the first axis is defined as the first range,
    Claims 1 to 7, wherein when an imaginary straight line passing through the first wiring end and extending in a direction along the second axis is drawn, the imaginary straight line passes through the first range of the first magnetic ribbon. The inductor component according to any one of Claims 1 to 3.
PCT/JP2022/003066 2021-02-26 2022-01-27 Inductor component WO2022181180A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023502196A JPWO2022181180A1 (en) 2021-02-26 2022-01-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-030982 2021-02-26
JP2021030982 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181180A1 true WO2022181180A1 (en) 2022-09-01

Family

ID=83049148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003066 WO2022181180A1 (en) 2021-02-26 2022-01-27 Inductor component

Country Status (2)

Country Link
JP (1) JPWO2022181180A1 (en)
WO (1) WO2022181180A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276509A (en) * 1985-09-30 1987-04-08 Toshiba Corp Thin type transformer
JPH0661084A (en) * 1992-08-07 1994-03-04 Murata Mfg Co Ltd Manufacture of multilayered beads inductor
JP2002084157A (en) * 2000-09-08 2002-03-22 Koa Corp Distributed constant common-mode filter
JP2014175349A (en) * 2013-03-06 2014-09-22 Murata Mfg Co Ltd Laminated inductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276509A (en) * 1985-09-30 1987-04-08 Toshiba Corp Thin type transformer
JPH0661084A (en) * 1992-08-07 1994-03-04 Murata Mfg Co Ltd Manufacture of multilayered beads inductor
JP2002084157A (en) * 2000-09-08 2002-03-22 Koa Corp Distributed constant common-mode filter
JP2014175349A (en) * 2013-03-06 2014-09-22 Murata Mfg Co Ltd Laminated inductor

Also Published As

Publication number Publication date
JPWO2022181180A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US8975997B2 (en) Planar coil element
JP3601619B2 (en) Common mode choke coil
JP5874199B2 (en) Coil component and manufacturing method thereof
US11791085B2 (en) Inductor component
CN112349482B (en) Inductance component and inductance component built-in substrate
CN110060836A (en) Multilayer conductive pattern inductor and its manufacturing method
JPWO2005031764A1 (en) Multilayer magnetic component and method for manufacturing the same
JP7240813B2 (en) coil parts
KR102052770B1 (en) Power inductor and method for manufacturing the same
JP2019106482A (en) Coil component
KR20180007897A (en) Coil component and method for manufactuing same
KR20170014790A (en) Magnetic powder and Coil electronic component
CN104078222A (en) Inductor and method for manufacturing the same
JP7150579B2 (en) Inductance element and electronic equipment
JP7145229B2 (en) Manufacturing method of planar coil assembly and sensor head provided with the same
JP5126338B2 (en) Transformer parts
WO2022181180A1 (en) Inductor component
WO2022181179A1 (en) Inductor component
JP6631722B2 (en) Inductor
JPWO2018235539A1 (en) Coil parts
WO2022181177A1 (en) Inductor component
JP2009032922A (en) Reactor core and reactor
WO2018235550A1 (en) Coil component
WO2022181187A1 (en) Inductor component
WO2022181178A1 (en) Inductor component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502196

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759222

Country of ref document: EP

Kind code of ref document: A1