WO2022181045A1 - Torque detection device and mechanism - Google Patents

Torque detection device and mechanism Download PDF

Info

Publication number
WO2022181045A1
WO2022181045A1 PCT/JP2021/048629 JP2021048629W WO2022181045A1 WO 2022181045 A1 WO2022181045 A1 WO 2022181045A1 JP 2021048629 W JP2021048629 W JP 2021048629W WO 2022181045 A1 WO2022181045 A1 WO 2022181045A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
coil
torque
crankshaft
detection device
Prior art date
Application number
PCT/JP2021/048629
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 丹治
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022181045A1 publication Critical patent/WO2022181045A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/411Torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating

Definitions

  • the present disclosure relates generally to torque sensing devices and instruments. More particularly, the present disclosure relates to torque sensing apparatus comprising quartz devices and instruments comprising torque sensing apparatus.
  • Patent Document 1 describes a torque sensor that includes a contactless power supply device and a strain gauge for torque measurement.
  • a torque sensor is provided in an electrically assisted bicycle.
  • a contactless power supply device includes a power transmission unit having a first antenna coil, and a power reception unit having a second antenna coil magnetically coupled to the first antenna coil.
  • the power transmission section is provided on the fixed side board.
  • the power receiving unit includes a rectifier circuit that rectifies an AC signal induced in the second antenna coil, a power supply circuit that receives the output of the rectifier circuit via a low-pass filter and outputs power of a predetermined voltage, the rectifier circuit and the low-pass filter. a load modulation circuit connected to a connection point with the power receiving side to change the impedance of the power receiving side to transmit data to the power transmitting section.
  • the strain gauge operates with power from the power supply circuit.
  • the power receiving unit is provided on the rotating substrate. The rotation-side substrate and the strain gauge are fixed to the crankshaft and rotate together with the crankshaft.
  • An object of the present disclosure is to provide a torque detection device capable of detecting torque applied to a rotating body and simplifying the configuration of the rotating body, and an instrument including the same.
  • a torque detection device includes a crystal device, a first coil, a second coil, a pair of input terminals, a current sensor, and a torque detection section.
  • the crystal device is attached to a rotating body.
  • the rotating body rotates around the rotation axis with respect to the non-rotating body.
  • the first coil is wound around the rotating body around the rotating shaft.
  • the first coil is electrically connected with the crystal device.
  • the second coil is held by the non-rotating body.
  • the second coil is wound around the outer peripheral surface of the first coil with a gap interposed therebetween.
  • the second coil is magnetically coupled with the first coil.
  • the pair of input terminals are connected to both ends of the second coil.
  • An AC voltage source is connected to the pair of input terminals.
  • the current sensor is held by the non-rotating body.
  • the current sensor detects current flowing through the second coil.
  • the torque detector is held by the non-rotating body.
  • the torque detector detects torque applied to the rotating body based on a phase difference between the phase of the output voltage from the voltage source and the phase of the current detected by the current sensor.
  • An instrument includes the torque detection device, the crankshaft as the rotating body, and a pedal that is connected to the crankshaft and rotates the crankshaft by receiving a pedaling force from the outside. Prepare.
  • FIG. 1 is a circuit diagram of a torque detection device according to one embodiment.
  • FIG. 2 is a perspective view of a rotating body to which the torque detection device is attached.
  • FIG. 3 is a cross-sectional view of a rotating body to which the torque detection device is attached.
  • FIG. 4 is a diagram showing an example of the relationship between the phase of the voltage applied to the torque detection device and the phase of the current flowing through the torque detection device.
  • FIG. 5 is a side view of a power-assisted bicycle provided with the torque detection device of the same.
  • FIG. 6 is a block diagram of the drive system for the electrically assisted bicycle same as the above.
  • FIG. 7 is a diagram for explaining the assist ratio of the above-mentioned electrically assisted bicycle.
  • FIG. 8 is a diagram for explaining the connection relationship between two crystal devices of the torque detection device.
  • FIG. 9 is a perspective view of a rotating body to which a modified torque detection device is attached.
  • the torque detection device 9 includes a crystal device 90, a first coil 91, a second coil 92, a pair of input ends 931 and 932, a current sensor 94, a torque A detection unit 95 is provided.
  • the crystal device 90 is attached to a rotating body 98 .
  • the rotating body 98 rotates around the rotating shaft 980 with respect to the non-rotating body 99 .
  • the first coil 91 is wound around the rotating body 98 around the rotating shaft 980 .
  • the first coil 91 is electrically connected with the crystal device 90 .
  • the second coil 92 is held by a non-rotating body 99 .
  • the second coil 92 is wound around the outer peripheral surface of the first coil 91 with a gap G1 interposed therebetween.
  • the second coil 92 is magnetically coupled with the first coil 91 .
  • a pair of input terminals 931 and 932 are connected to both ends of the second coil 92, respectively.
  • An AC voltage source 93 is connected to the pair of input terminals 931 and 932 .
  • a current sensor 94 is held by a non-rotating body 99 .
  • a current sensor 94 detects the current flowing through the second coil 92 .
  • the torque detector 95 is held by a non-rotating body 99 . Torque detector 95 detects the torque applied to rotating body 98 based on phase difference ⁇ between the phase of the output voltage from voltage source 93 and the phase of the current detected by current sensor 94 .
  • the rotating body 98 When torque is applied to the rotating body 98 from the outside, the rotating body 98 deforms according to the applied torque.
  • the crystal device 90 deforms (expands and contracts) according to the deformation of the rotor 98, and its series capacitance Cc (described later) changes according to the deformation.
  • the phase of the current (alternating current) flowing through the second coil 92 changes according to changes in the series capacitance Cc of the crystal device 90 .
  • FIG. 4 shows an example of the relationship between the voltage applied from the voltage source 93 to the second coil 92 and the current flowing through the second coil 92.
  • V0 is the waveform of the output voltage of the voltage source 93
  • I0 is the current flowing through the second coil 92 when no torque is applied to the rotor 98 (the crystal device 90 is not deformed).
  • a current waveform "I1” indicates the waveform of the current flowing through the second coil 92 when a predetermined torque is applied to the rotor 98 (the crystal device 90 is deformed).
  • the phase of the current flowing through the second coil 92 changes according to the change in the series capacitance Cc of the crystal device 90, as shown in FIG.
  • the current I1 flowing through the second coil 92 when torque is applied to the rotating body 98 is compared to the current I0 flowing through the second coil 92 when no torque is applied to the rotating body 98.
  • the phase with respect to the voltage V0 is advanced by ⁇ t1/T0.
  • T0 is the period of the output voltage from voltage source 93 .
  • the phase difference ⁇ between the phase of the output voltage from the voltage source 93 and the current detected by the current sensor 94 changes according to the deformation.
  • the torque detector 95 can detect the torque applied to the rotating body 98 by detecting the change in the phase difference ⁇ .
  • the torque detection device 9 of the present embodiment detects the torque applied to the rotating body 98 by detecting the change in the phase difference ⁇ .
  • the crystal device 90 is provided on the rotating body 98 , while the voltage source 93 , current sensor 94 and torque detection section 95 are provided on the non-rotating body 99 .
  • the crystal device 90, the voltage source 93, and the current sensor 94 are connected via a first coil 91 and a second coil 92 that are magnetically coupled (transformer coupled). Therefore, in the torque detection device 9 of the present embodiment, there is no need to provide circuit components such as a power supply circuit in the rotating body 98, and the configuration of the rotating body 98 can be simplified compared to the torque sensor of Patent Document 1. Become.
  • the torque detection device 9 is used to detect torque applied to the rotating body 98 provided in the instrument 10 .
  • the device 10 is a power-assisted bicycle 100 (see FIG. 5), and the rotating body 98 is the crankshaft 29 of the power-assisted bicycle 100 .
  • the power-assisted bicycle 100 as the device 10 includes pedals 26 in addition to the torque detection device 9 and the crankshaft 29 .
  • the pedal 26 is connected to a crankshaft 29 and rotates the crankshaft 29 upon receiving a pedaling force from the outside (user).
  • the electrically assisted bicycle 100 further includes wheels 20 that rotate according to the rotation of the crankshaft 29 .
  • the electrically assisted bicycle 100 of the present embodiment it is possible to detect the torque applied to the crankshaft 29 by the torque detection device 9 .
  • FIG. A motor-assisted bicycle 100 is a bicycle in which a user's stepping force (stepping force, human power driving force) is assisted by a motor 50 .
  • the “user” here means the rider of the electrically assisted bicycle 100, particularly the driver of the electrically assisted bicycle 100.
  • the “electrically assisted bicycle 100” may be simply referred to as the bicycle 100.
  • the bicycle 100 includes a drive system 1 and a main body 2.
  • the bicycle 100 runs on the running surface 101.
  • the running surface 101 of the bicycle 100 is assumed to be parallel to the horizontal plane H1 (see FIG. 5).
  • the running surface 101 does not have to be parallel to the horizontal plane H1, and may be inclined with respect to the horizontal plane H1, or may be a surface with irregularities.
  • the direction in which the bicycle 100 travels is defined as the "forward direction”
  • the opposite direction to the forward direction is defined as the "rearward direction”
  • the forward direction and the rearward direction are collectively defined as the "front-rear direction D1”.
  • these directional definitions are not intended to limit the manner in which the bicycle 100 is used.
  • the arrows indicating each direction in the drawings are only shown for explanation and are not substantial.
  • the main body 2 includes a frame 7, a plurality of (two in the illustrated example) wheels 20, a front fork 22, a handlebar 23, a saddle 24, and a pair of cranks. It has an arm 25 , a pair of pedals 26 , a power transmission body 27 and a crankshaft 29 .
  • a plurality of wheels 20 are members that support the frame 7 on the running surface 101 .
  • the main body 2 of this embodiment has one front wheel 201 and one rear wheel 202 as the plurality of wheels 20 .
  • the front wheel 201 has a hub 281 in the center and the rear wheel 202 has a hub 282 in the center.
  • a front wheel 201 and a rear wheel 202 are attached to the frame 7 .
  • the front wheel 201 is the front wheel of the two wheels 20 aligned in the front-rear direction D1. Front wheel 201 is supported by leg 221 so as to be rotatable around an axis extending in the left-right direction. The front wheels 201 are the wheels 20 that do not receive power transmission from the motor 50 in this embodiment.
  • the rear wheel 202 is the rear wheel of the two wheels 20 aligned in the front-rear direction D1.
  • the rear wheel 202 is rotatably supported by a plurality (here, a pair) of chain stays 77 around an axis extending in the left-right direction.
  • a rear sprocket 292 is attached to the rear wheel 202 .
  • the rear sprocket 292 is concentric with and integrally attached to the hub 282 of the rear wheel 202 .
  • the rear sprocket 292 is composed of, for example, a plurality of sprockets.
  • the front fork 22 supports the front wheel 201.
  • the front fork 22 has a pair of legs 221 , a crown 222 and a steering column 223 .
  • a crown 222 connects the upper ends of the pair of legs 221 .
  • a steering column 223 protrudes from the crown 222 .
  • a front wheel 201 is rotatably attached to the pair of legs 221 via a shaft passed through a hub 281 .
  • the rotation axis of front wheel 201 is parallel to running surface 101 .
  • a central axis (longitudinal axis) of the steering column 223 extends rearward as it goes upward from the crown 222 and is inclined with respect to the running surface 101 .
  • the handle 23 is attached to the upper end of the steering column 223 and fixed to the front fork 22 .
  • the steering column 223 is passed through the head pipe 71 of the frame 7 and is rotatably attached to the frame 7 .
  • the rotation axis of steering column 223 is substantially parallel to the longitudinal direction of steering column 223 . Therefore, the handle 23 can rotate the front wheel 201 with the axis along the longitudinal direction of the steering column 223 as the rotation axis.
  • the frame 7 is a framework to which a plurality of wheels 20, front forks 22, handle 23, saddle 24, battery unit 4 and control system 3 are attached.
  • the material of the frame 7 is, for example, an aluminum alloy containing aluminum as a main component.
  • the material of the frame 7 is not limited to aluminum alloy, and may be, for example, iron, chromium molybdenum steel, high-tensile steel, titanium, or magnesium.
  • the material of the frame 7 is not limited to metal, and may be carbon, wood, bamboo, or fiber-reinforced synthetic resin (eg, CFRP; Carbon Fiber Reinforced Plastics).
  • the frame 7 includes a head pipe 71, an upper pipe 72, a reinforcing pipe 73, a lower pipe 74, a standing pipe 75, a plurality of (only one shown in FIG. 5) seat stays 76, and a plurality of (in FIG. 5 chainstays 77 (only one shown) and brackets 78 .
  • "pipe” means an elongated hollow member.
  • the cross-sectional shape of pipes of the present disclosure may be, for example, circular (including perfect circles, ovals and ellipses), rectangular (including squares), hexagonal, or octagonal.
  • the head pipe 71 supports the front fork 22.
  • the central axis of the head pipe 71 is inclined with respect to the running surface 101 so as to go rearward as it goes upward.
  • a steering column 223 is passed through the head pipe 71 so that the central axis of the head pipe 71 and the central axis of the steering column 223 are aligned. This allows the head pipe 71 to rotatably support the steering column 223 .
  • the rotation axis of the steering column 223 is the same as the central axis of the head pipe 71 .
  • the upper pipe 72 connects the head pipe 71 and the standing pipe 75 .
  • a longitudinal front end of the upper pipe 72 is connected to the head pipe 71 .
  • a longitudinal rear end of the upper pipe 72 is connected to a standing pipe 75 .
  • the central axis of the upper pipe 72 is inclined with respect to the running surface 101 so as to go downward as it goes rearward. However, the upper pipe 72 does not have to be inclined with respect to the running surface 101 .
  • the upper pipe 72 may be omitted.
  • the reinforcement pipe 73 is a reinforcement member for reinforcing the connecting portion between the standing pipe 75 and the upper pipe 72 .
  • the reinforcing pipe 73 connects the standing pipe 75 and the upper pipe 72 .
  • the reinforcement pipe 73 may be omitted.
  • the standing pipe 75 holds the saddle 24.
  • a lower longitudinal end of the standing pipe 75 is connected to a bracket 78 .
  • the central axis of the standing pipe 75 is inclined with respect to the running surface 101 so as to go rearward as it goes upward from the lower end.
  • the longitudinal rear end of the upper pipe 72 is connected to the intermediate portion of the vertical pipe 75 .
  • intermediate portion as used herein means a portion of the standing pipe 75 in the longitudinal direction excluding the lower end and the upper end.
  • the upper pipe 72 may be connected to the upper end of the standing pipe 75 .
  • the lower pipe 74 connects the bracket 78 and the head pipe 71 .
  • a longitudinal front end of the lower pipe 74 is connected to the head pipe 71 .
  • a longitudinal rear end of the lower pipe 74 is connected to a bracket 78 .
  • the central axis of the lower pipe 74 is inclined with respect to the running surface 101 so as to go upward as it goes forward from the rear end in the longitudinal direction.
  • a battery 41 of the battery unit 4 is detachably attached to the lower pipe 74 .
  • a plurality of (here, one pair as an example) chain stays 77 support the shaft of the rear wheel 202 .
  • a longitudinal front end of each chain stay 77 is connected to a bracket 78 .
  • the longitudinal rear end of each chain stay 77 is connected to the rear end of the corresponding seat stay 76 .
  • the pair of chain stays 77 are separated in the left-right direction, and the rear wheel 202 is rotatably attached to the rear ends of the pair of chain stays 77 via a shaft passed through a hub 282 .
  • the rotation axis of the rear wheel 202 is substantially parallel to the running surface 101 and coincides with the center axis of the shaft supporting the rear wheel 202 .
  • a plurality of (here, one pair as an example) seat stays 76 connect the chain stay 77 and the standing pipe 75 .
  • the longitudinal rear end of each seat stay 76 is connected to the longitudinal rear end of the corresponding chain stay 77 .
  • a longitudinal front end of each seat stay 76 is connected to an intermediate portion of the standing pipe 75 .
  • a pair of seat stays 76 branch from the upper pipe 72 and are integrated with the upper pipe 72 .
  • the seat stay 76 and the upper pipe 72 may be separate bodies.
  • the control system 3 is attached to the bracket 78 .
  • the bracket 78 is formed in a substantially C shape when viewed from a direction orthogonal to both the up-down direction and the front-rear direction D1.
  • the bracket 78 is connected to the longitudinal rear end of the lower pipe 74 , the longitudinal lower end of the standing pipe 75 , and the longitudinal front end of the chain stay 77 .
  • the longitudinal rear end of the lower pipe 74, the longitudinal lower end of the standing pipe 75, and the longitudinal front end of the chain stay 77 are fixed to each other.
  • the saddle 24 has a seat pillar 241 and a seat 242 on which the user sits.
  • the seat pillar 241 is passed through the vertical pipe 75 along the central axis of the vertical pipe 75 .
  • the seat pillar 241 protrudes downward from the seat portion 242 of the saddle 24 .
  • the seat pillar 241 is inclined with respect to the running surface 101 so as to go forward as it goes downward.
  • the seat pillar 241 is attached to the vertical pipe 75 so as to be movable along the central axis of the vertical pipe 75 .
  • the crankshaft 29 is rotatably held in the housing 31 of the control system 3 via bearings or the like.
  • the crankshaft 29 is made of metal.
  • a pair of crank arms 25 are attached to the crank shaft 29 as shown in FIG.
  • the longitudinal direction of the crank arm 25 intersects (perpendicularly in the illustrated example) the rotation axis of the crankshaft 29 .
  • the pair of crank arms 25 are arranged in a straight line when viewed in the rotation axis direction of the crankshaft 29 .
  • Each of the pair of pedals 26 is attached to one end of the corresponding crank arm 25 in the longitudinal direction opposite to the crankshaft 29 side.
  • Each pedal 26 is rotatably attached to the corresponding crank arm 25 .
  • the axis of rotation of the pedals 26 is substantially parallel to the axis of rotation of the crankshaft 29 .
  • a crank sprocket 291 is attached to the crankshaft 29 .
  • the crank sprocket 291 is composed of a plurality of sprockets, for example, and constitutes a transmission together with the rear sprocket 292 .
  • the "shift position" here means the combination of the sprocket of the crank sprocket 291 and the sprocket of the rear sprocket 292, and corresponds to a so-called gear ratio.
  • the power transmission body 27 transmits the human power driving force (pedal force) from the user to at least one of the plurality of wheels 20 (here, the rear wheel 202). Also, the power transmission body 27 transmits the power output from the motor 50 to at least one of the plurality of wheels 20 (here, the rear wheel 202).
  • the power transmission body 27 connects the crank sprocket 291 and the rear sprocket 292 .
  • the power transmission body 27 is a chain that is spanned between the crank sprocket 291 and the rear sprocket 292 so as to be able to transmit power. Thereby, the power output from the motor 50 is transmitted to the rear wheel 202 via the power transmission body 27 .
  • the power transmission body 27 may be, for example, a belt, shaft, wire, or gear.
  • the drive system 1 includes a motor 50 , a control system 3 , a battery unit 4 , a detection device group 8 and an operation section 6 .
  • the drive system 1 is a system that outputs a drive auxiliary output.
  • the drive system 1 adds a drive assist output to the human power drive force (pedal force) and transmits the power to the rear wheels 202 via the power transmission body 27 .
  • the motor 50 gives power (drive auxiliary output) to the wheel 20 of the bicycle 100 .
  • Motor 50 is provided near crankshaft 29 of bicycle 100 and is driven by electric power from battery 41 .
  • the motor 50 is connected to the crank sprocket 291 via a speed reducer including, for example, planetary gears. Power of the motor 50 is transmitted to the crank sprocket 291 via a reduction gear or the like.
  • the battery unit 4 has a battery 41 and a battery control section 42, as shown in FIG.
  • the battery unit 4 is electrically connected with the control system 3 .
  • the battery 41 supplies power to the motor 50 via the control system 3 .
  • the battery 41 also supplies power to, for example, the headlight of the main body 2, the operation unit 6, and the like.
  • a secondary battery such as a lithium ion secondary battery that can be repeatedly charged and discharged is used.
  • the battery 41 is detachably attached to the lower pipe 74 . Note that the battery 41 may be arranged along the standing pipe 75 behind the standing pipe 75 .
  • the battery control unit 42 obtains the amount of power consumed by the battery 41 (battery power consumption) while the bicycle 100 is running (during use). Power consumption information representing battery power consumption is output from the battery control unit 42 to the control system 3 . Also, the battery control unit 42 manages the remaining amount of the battery 41 . Remaining amount information indicating the remaining amount of the battery 41 is output from the battery control section 42 to the control system 3 .
  • the operation unit 6 receives an operation for turning on/off the motor 50 from the user. That is, the operation unit 6 receives an operation for selecting on/off of the assist using the power from the motor 50 from the user.
  • the operation unit 6 may receive an operation for selecting the strength of the assist from the user.
  • the operation part 6 is attached to the handle 23, for example.
  • the operation unit 6 is electrically connected with the control system 3 .
  • Control system 3 is configured to perform assist control and regeneration control. Specifically, the control system 3 executes assist control for controlling the motor 50 based on the human power driving force (pedal force), the vehicle speed of the bicycle 100, the shift position (gear ratio) of the transmission, and the like.
  • the human power driving force (pedal force) is detected by a pedal force detector F2, which will be described later.
  • the vehicle speed is detected by a vehicle speed detector F1, which will be described later.
  • control system 3 executes processing related to regenerative control for charging the battery 41 with the electric power generated by the motor 50 during deceleration. For example, when the user operates the brake lever of the handlebar 23 while the bicycle 100 is traveling downhill, the control system 3 switches to the regenerative control mode and recovers the charge amount of the battery 41 by regenerative braking force. Note that the control system 3 may further perform lighting control related to the headlights.
  • the control system 3 has a processing unit 30, a storage unit 32, and a housing 31 that accommodates the processing unit 30, as shown in FIGS.
  • the housing 31 has a hollow, flat box shape. As shown in FIG. 5, housing 31 is secured to bracket 78 .
  • the processing unit 30 is mainly composed of a computer system having one or more processors and one or more memories.
  • the functions of each unit of the processing unit 30 are realized by one or more processors executing programs recorded in the memory.
  • the program may be prerecorded in a memory, may be provided through an electric communication line such as the Internet, or may be provided by being recorded in a non-temporary recording medium such as a memory card.
  • the processing unit 30 has a detection unit 301 and a drive control unit 302, as shown in FIG. In other words, the processing unit 30 has a function as the detection unit 301 and a function as the drive control unit 302 .
  • the processing unit 30 is configured to acquire various electrical signals from the outside (battery unit 4, detection device group 8, and operation unit 6). The processing unit 30 executes processing related to assist control, regenerative control, etc. according to the acquired electrical signal.
  • the processing unit 30 executes processing related to assist control for driving the motor based on the assist ratio.
  • the “assist ratio” in the present disclosure is the value of the ratio of electric power assistance (rotational power by the motor) to human power driving force (pedal force) (“electric power assistance”/“human power driving force”).
  • the Road Traffic Law stipulates the upper limit of the assist ratio of electric power assistance to human power driving power for electric power assisted bicycles for each vehicle speed range.
  • the maximum assist ratio between the human power driving force (see area R2) and the electric power assistance (see area R1) is 1:2.
  • the upper limit of the assist ratio of electric power assistance to manpower driving force is "2".
  • the maximum assist ratio is stipulated to be 1:0 (the assist ratio of electric power assistance to human driving force is "0").
  • the processing unit 30 adjusts the assist ratio within a range in which the assist ratio of the bicycle 100 satisfies the above regulation.
  • road traffic laws may differ in each country, it is not essential for the processing unit 30 to consider the upper limit of the assist ratio.
  • the detection unit 301 includes, for example, a vehicle speed detection unit F1 and a pedaling force detection unit F2, as shown in FIG.
  • the detection unit 301 receives sensor signals (electrical signals) from the detection device group 8 .
  • the detection device group 8 includes a vehicle speed detection device 81 and a pedaling force detection device 82, as shown in FIG.
  • the vehicle speed detection unit F1 detects the vehicle speed of the bicycle 100.
  • Vehicle speed detection unit F ⁇ b>1 detects the vehicle speed of bicycle 100 based on a sensor signal from vehicle speed detection device 81 .
  • the vehicle speed detection device 81 detects, for example, the rotational state of the wheel 20 (for example, the rear wheel 202) of the bicycle 100.
  • FIG. Vehicle speed detection device 81 includes, for example, a magnet and a speed sensor.
  • the magnets are located on the rear wheel 202 and rotate with the rear wheel 202 .
  • the speed sensor is a Hall IC that detects the magnetic force of a magnet.
  • the speed sensor is attached to the chain stay 77 of the frame 7, for example.
  • a speed sensor detects the magnetic force of a magnet using, for example, the Hall effect.
  • the speed sensor outputs a sensor signal based on the detection result to the control system 3 .
  • the vehicle speed detection unit F1 detects the rotation state of the rear wheel 202 once, for example, each time the rear wheel 202 rotates once, based on the sensor signal from the speed sensor.
  • Vehicle speed detection unit F1 detects the vehicle speed of bicycle 100 based on, for example, the number of rotations of rear wheel 202 per unit time and the diameter of rear wheel 202 .
  • the vehicle speed detection unit F1 may detect the rotational state of the front wheels 201 in addition to or instead of the rear wheels 202. In this case, the magnets are arranged on the front wheels 201 and rotate together with the front wheels 201.
  • Vehicle speed detector F1 calculates the current vehicle speed of bicycle 100 . The obtained calculation result is used for assist control and the like.
  • the pedaling force detection unit F2 detects the pedaling force as the human power driving force.
  • the pedaling force detection unit F2 detects the pedaling force based on the sensor signal from the pedaling force detection device 82 .
  • the pedaling force detection device 82 includes the torque detection device 9 . Details of the torque detection device 9 will be described in the next section.
  • the pedaling force detection device 82 outputs a sensor signal based on the detected pedaling force (torque) to the control system 3 .
  • the pedaling force detection unit F2 calculates a pedaling force (manpower driving force) from the detection result of the pedaling force detection device 82 or the like. The obtained calculation result is used for assist control and the like.
  • the drive control unit 302 determines the power (assist torque) to be output from the motor 50 based on the detection result of the vehicle speed detection unit F1 (current vehicle speed), the detection result of the pedaling force detection unit F2 (current pedaling force), and the like.
  • the drive control unit 302 controls the motor 50 by outputting a drive control signal so that the motor 50 rotates at a predetermined rotational speed.
  • the processing unit 30 controls the assist ratio of the power from the motor 50 to the pedaling force (manpower driving force) based on the pedaling force (torque) detected by the torque detection device 9 .
  • the storage unit 32 is composed of a readable and writable memory.
  • the storage unit 32 is, for example, a flash memory.
  • the storage unit 32 is provided outside the processing unit 30 , but may be provided inside the processing unit 30 . That is, the storage unit 32 may be a built-in memory of the processing unit 30 .
  • the storage unit 32 stores various data relating to assist control and the like.
  • the pedaling force detecting device 82 detects the pedaling force (manpower driving force) from the user.
  • the pedaling force detection device 82 includes a torque detection device 9 .
  • the torque detection device 9 detects torque applied to the crankshaft 29 as the rotating body 98 .
  • the torque detection device 9 includes the crystal device 90, the first coil 91, the second coil 92, the pair of input ends 931 and 932, the current sensor 94, and the torque detection section 95. ing.
  • the crystal device 90 is attached to the crankshaft 29 as the rotating body 98 .
  • crystal device 90 includes crystal oscillator 900 .
  • the size of the crystal oscillator 900 is on the order of millimeters. In FIG. 2, the size of the crystal device 90 (crystal resonator 900) is exaggerated.
  • the crystal oscillator 900 includes, for example, a base, a crystal piece held by the base, a pair of electrodes connected to the crystal piece, and a cover fixed to the base so as to cover the crystal piece.
  • the base is attached to the crankshaft 29 .
  • the base is attached to the outer peripheral surface of the crankshaft 29 (rotating body 98).
  • the base deforms (distorts) according to the deformation (distortion) of the outer peripheral surface of the crankshaft 29 .
  • the mounting location of the base is not limited to the outer peripheral surface of the crankshaft 29, and may be the inner peripheral surface of the crankshaft 29, for example.
  • the crystal blank is held by the base and deforms (stretches) according to the deformation (distortion) of the base. That is, the crystal piece deforms (expands and contracts) according to the deformation (distortion) of the crank shaft 29 .
  • FIG. 1 shows an equivalent circuit of the crystal oscillator 900.
  • An equivalent circuit of the crystal oscillator 900 is represented by a parallel circuit of a series circuit of an equivalent series resistance Rc, a series inductance Lc, and a series capacitance Cc, and a parallel capacitance C0 .
  • Rc equivalent series resistance
  • Lc series inductance
  • Cc series capacitance
  • the first coil 91 is wound around the crankshaft 29 as a rotating body 98 .
  • the first coil 91 is spirally wound.
  • the first coil 91 is wound around the crankshaft 29 around a resin bobbin, for example. Both ends of the first coil 91 are electrically connected to both ends of the crystal device 90 (a pair of electrodes of the crystal oscillator 900).
  • the second coil 92 is held by the housing 31 as the non-rotating body 99. As shown in FIG. The second coil 92 is wound around the outer peripheral surface of the first coil 91 . The second coil 92 is spirally wound. The second coil 92 is wound around a resin bobbin, for example. As shown in FIG. 3, there is a gap G1 between the second coil 92 and the first coil 91. As shown in FIG. Therefore, even if the first coil 91 rotates together with the rotating body 98 (crankshaft 29), the second coil 92 does not rotate. The second coil 92 is magnetically coupled (transformed) to the first coil 91 . The first coil 91 and the second coil 92 constitute a transformer Tr1.
  • an AC voltage source 93 is connected between a pair of input terminals 931 and 932 .
  • Voltage source 93 is held in housing 31 as non-rotating body 99 .
  • Voltage source 93 may be a high frequency power supply.
  • the frequency of the AC voltage from the voltage source 93 is preferably, for example, the same or on the same order as the resonant frequency of the crystal device 900 .
  • the current sensor 94 is held by the housing 31 as the non-rotating body 99 .
  • a current sensor 94 detects alternating current flowing through the second coil 92 .
  • the torque detector 95 is held by the housing 31 as the non-rotating body 99 .
  • the torque detector 95 is connected to the voltage source 93 .
  • the torque detector 95 receives a signal indicating information on the output voltage from the voltage source 93 .
  • Information on the output voltage from the voltage source 93 includes information on the phase of the output voltage.
  • the torque detector 95 is connected to the current sensor 94 .
  • the torque detector 95 receives a signal indicating information on the alternating current detected by the current sensor 94 .
  • Information on the alternating current detected by the current sensor 94 includes information on the phase of the alternating current.
  • the torque detector 95 detects a phase difference ⁇ between the phase of the output voltage from the voltage source 93 and the phase of the current detected by the current sensor 94 .
  • the value of the series capacitance Cc of the crystal oscillator 900 changes.
  • the phase difference ⁇ between the phase of the output voltage from the voltage source 93 and the phase of the current flowing through the second coil 92 depends on the reactance (series capacitance Cc) of the crystal oscillator 900 . Therefore, when the value of the series capacitance Cc of the crystal oscillator 900 changes according to the torque applied to the crankshaft 29 (rotating body 98), the phase difference ⁇ changes (see FIG. 4).
  • a change (amount of change) in the value of the series capacitance Cc of the crystal oscillator 900 can be detected from a change (amount of change) in the phase difference ⁇ .
  • the relationship between the change in the phase difference ⁇ and the torque applied to the crankshaft 29 is recorded in memory, for example, in the form of a data table, relational expression, or the like.
  • the torque detection unit 95 detects the rotation of the rotating body 98 based on the phase difference ⁇ between the phase of the output voltage from the voltage source 93 and the phase of the current detected by the current sensor 94 (amount of change in the phase difference ⁇ ). Detects torque applied to (crankshaft 29).
  • the torque detection device 9 includes two crystal devices 90 (crystal oscillators 900), as shown in FIG.
  • Two crystal devices 90 (crystal oscillators 900 ) are attached to the peripheral surface of the crankshaft 29 .
  • the two crystal oscillators 900 are arranged side by side along the axial direction of the crankshaft 29 .
  • FIG. 1 only one of the two crystal devices 90 (crystal oscillators 900) is illustrated, and the illustration of the other is omitted.
  • the two crystal oscillators 900 are also referred to as a first crystal oscillator 901 and a second crystal oscillator 902 when they are distinguished from each other.
  • the series capacitance Cc of the first crystal oscillator 901 changes mainly according to deformation (expansion and contraction) in the first direction A1.
  • the first direction A1 is a direction that intersects the rotation axis of the crankshaft 29 at an angle of 45 degrees when viewed from the radial direction of the crankshaft 29 .
  • a first crystal oscillator 901 attached to the rotating body 98 so that its longitudinal direction (first direction A1) intersects the rotating shaft 980 at an angle of 45 degrees is mainly applied to the rotating body 98. is deformed (stretched) according to torque in the clockwise direction when viewed from the right side of the .
  • the first crystal oscillator 901 detects deformation (distortion) of the crankshaft 29 in the first direction A1.
  • the first crystal oscillator 901 is, for example, shaped like a rectangular plate elongated in the first direction A1.
  • the series capacitance Cc of the second crystal oscillator 902 changes mainly according to deformation (expansion and contraction) in the second direction A2.
  • the second direction A2 is a direction that intersects the rotation axis of the crankshaft 29 at an angle of 135 degrees ( ⁇ 45 degrees) when viewed from the radial direction of the crankshaft 29 .
  • a second crystal oscillator 902 attached to the rotating body 98 so that its longitudinal direction (second direction A2) intersects the rotating shaft 980 at an angle of 135 degrees is mainly applied to the rotating body 98. is deformed (stretched) according to torque in the counterclockwise direction when viewed from the right side of the .
  • the second crystal oscillator 902 detects deformation (distortion) of the crankshaft 29 in the second direction A2.
  • the second crystal oscillator 902 is, for example, shaped like a rectangular plate elongated in the second direction A2.
  • the two crystal oscillators 900 intersect the rotation axis of the crankshaft 29 (the rotation axis 980 of the rotating body 98) at different angles.
  • the crankshaft 29 is attached to the crankshaft 29.
  • the two crystal oscillators 900 are attached to the crankshaft 29 so that their longitudinal directions intersect each other at an angle of 90 degrees.
  • the two crystal vibrators 900 have the same crystal piece shape.
  • the two crystal oscillators 900 have the same crystal axis of the crystal piece with respect to the longitudinal direction.
  • both of the two crystal oscillators 900 are AT cut oscillators.
  • the two crystal oscillators 900, each of which is an AT-cut oscillator, are configured so that, for example, when viewed from the radial direction of the rotating body 98, the thickness-shear vibration direction of the crystal oscillators 900 is 45 degrees from the rotation axis 980 of the rotating body 98 and It is attached to the rotor 98 so as to intersect at an angle of 135 degrees.
  • two crystal devices 90 (a first crystal oscillator 901 and a second crystal oscillator 902) are electrically connected in parallel to the first coil 91.
  • An equivalent circuit of the two crystal oscillators 900 connected in parallel is represented by, for example, the same circuit as the equivalent circuit of the crystal oscillator 900 shown in FIG.
  • the equivalent circuit of two crystal oscillators 900 differs from the equivalent circuit of one crystal oscillator 900 in circuit constants (series capacitance Cc value, series inductance Lc value, etc.).
  • the series capacitance Cc of the equivalent circuit of the two crystal oscillators 900 changes according to the deformation (expansion and contraction) of the first crystal oscillator 901 .
  • the series capacitance Cc of the equivalent circuit of the two crystal oscillators 900 changes according to the deformation (expansion and contraction) of the second crystal oscillator 902 .
  • Two crystal devices 90 (crystal resonators 900) attached to a rotating body 98 so as to intersect the rotation axis 980 at different angles are connected in parallel to each other with respect to the voltage source 93 (here, the first coil 91). By connecting them, it becomes possible to detect different directions of torque applied to the rotating body 98 using one voltage source 93 .
  • the pedaling force detection device 82 detects the pedaling force from the user based on the torque detected by the torque detection device 9 .
  • the torque detection device 9 of the present embodiment can detect the torque applied to the rotating body 98 by detecting the change in the phase difference ⁇ with the torque detection section 95 . Further, in the torque detection device 9 of the present embodiment, by connecting the crystal device 90 and the voltage source 93 via the transformer Tr1, the configuration of the rotating body 98 is simplified as compared with the torque sensor of Patent Document 1. becomes possible.
  • the torque detection section 95, the control system 3, etc. include a computer system.
  • a computer system is mainly composed of a processor and a memory as hardware.
  • the function of the drive system 1 in the present disclosure is realized by the processor executing a program recorded in the memory of the computer system.
  • the program may be recorded in advance in the memory of the computer system, may be provided through an electric communication line, or may be recorded in a non-temporary recording medium such as a computer system-readable memory card, optical disk, or hard disk drive. may be provided.
  • a processor in a computer system consists of one or more electronic circuits, including semiconductor integrated circuits (ICs) or large scale integrated circuits (LSIs).
  • Integrated circuits such as ICs or LSIs are called differently depending on the degree of integration, and include integrated circuits called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • FPGAs Field-Programmable Gate Arrays
  • a plurality of electronic circuits may be integrated into one chip, or may be distributed over a plurality of chips.
  • a plurality of chips may be integrated in one device, or may be distributed in a plurality of devices.
  • a computer system includes a microcontroller having one or more processors and one or more memories. Accordingly, the microcontroller also consists of one or more electronic circuits including semiconductor integrated circuits or large scale integrated circuits.
  • control system 3 it is not an essential configuration that the multiple functions of the control system 3 are integrated in one housing.
  • the components of the control system 3 may be distributed over multiple housings.
  • multiple functions in control system 3 may be combined in one housing.
  • at least part of the functions of the control system 3 may be realized by a cloud (cloud computing) or the like.
  • the crystal device 90 is not limited to the crystal resonator 900.
  • the crystal device 90 may be a SAW (Surface Acoustic Wave) filter.
  • a SAW filter comprises a piezoelectric substrate made of quartz and two interdigitated electrodes (IDTs) formed on the piezoelectric substrate.
  • the SAW filter excites a surface acoustic wave only when an electrical signal of a selected frequency determined by the characteristics of the piezoelectric substrate and the cycle of the IDT is input.
  • the selected frequency changes according to the deformation of the piezoelectric substrate of the SAW filter.
  • the torque detector 95 detects deformation of the piezoelectric substrate of the SAW filter and, in turn, torque applied to the rotating body 98 (crankshaft 29) based on the change in the selected frequency.
  • the first coil 91 may be attached to the rotating body 98 so as to cover the crystal device 90, as shown in FIG.
  • the torque detection device 9 can be made compact.
  • the second coil 92 also covers the crystal device 90, as shown in FIG. The entire crystal device 90 may not be covered with the first coil 91 , and for example, only a portion of the crystal device 90 may be covered with the first coil 91 .
  • the angle between the first direction A1 and the rotation axis of the crankshaft 29 is not limited to 45 degrees.
  • the angle formed by the second direction A2 and the crankshaft 29 is not limited to 135 degrees.
  • the angle between the first direction A1 and the rotation axis of the crankshaft 29 may be in the range of 30 to 60 degrees, or in the range of 40 to 50 degrees.
  • the angle between the second direction A2 and the rotation axis of the crankshaft 29 may be in the range of 120 to 150 degrees, or may be in the range of 130 to 140 degrees.
  • the angle between the first direction A1 and the rotation axis of the crankshaft 29 may be 90 degrees, and the angle between the second direction A2 and the rotation axis of the crankshaft 29 may be 0 degrees.
  • the torque detection device 9 may include one or more than three crystal devices 90 .
  • an additional crystal device 90 may be attached to the back side of the two crystal devices 90 on the outer peripheral surface of the rotating body 98 .
  • the torque detector 95 may be part of the processor 30 .
  • the second coil 92, the voltage source 93, the current sensor 94, and the torque detector 95 may be held by a non-rotating body 99 other than the housing 31, such as the lower pipe 74.
  • the second coil 92, the voltage source 93, the current sensor 94, and the torque detector 95 may be held by non-rotating bodies 99 different from each other.
  • the device 10 is not limited to the bicycle (electrically assisted bicycle) 100.
  • the device 10 may be a vehicle with an electric power assist (a unicycle, a tricycle, etc.) other than the electric power assist bicycle 100, or may be an electric bicycle that can be moved only by the power from the motor 50. However, it may be a vehicle (two-wheeled vehicle, three-wheeled vehicle, etc.) that does not have a power mechanism such as a motor.
  • device 10 may be a fitness device, specifically an ergometer.
  • the fitness equipment further comprises a body resting on the ground. The body rotatably holds the crankshaft 29 .
  • the torque detector (9) of the first aspect includes a crystal device (90), a first coil (91), a second coil (92), and a pair of input terminals. (931, 932), a current sensor (94), and a torque detector (95).
  • a crystal device (90) is mounted on a rotating body (98).
  • the rotating body (98) rotates about the rotation axis (980) with respect to the non-rotating body (99).
  • a first coil (91) is wound around a rotating body (98) around a rotating shaft (980).
  • the first coil (91) is electrically connected with the crystal device (90).
  • the second coil (92) is held by a non-rotating body (99).
  • the second coil (92) is wound around the outer peripheral surface of the first coil (91) with a gap (G1) interposed therebetween.
  • the second coil (92) is magnetically coupled with the first coil (91).
  • a pair of input terminals (931, 932) are connected to both ends of the second coil (92).
  • An AC voltage source (93) is connected to the pair of input terminals (931, 932).
  • a current sensor (94) is held on a non-rotating body (99).
  • a current sensor (94) detects the current flowing through the second coil (92).
  • a torque detector (95) is held by a non-rotating body (99).
  • a torque detector (95) detects a rotor (98) based on a phase difference ( ⁇ ) between the phase of the output voltage from the voltage source (93) and the phase of the current detected by the current sensor (94). Detects the torque applied to
  • the torque applied to the rotating body (98) can be detected.
  • the torque detection device (9) of the second aspect includes two crystal devices (90) in the first aspect. Two crystal devices (90) are attached to the peripheral surface of the rotating body (98). The two crystal devices (90) are attached to the rotating body (98) so as to intersect the rotating shaft (980) at different angles.
  • the two crystal devices (90) are electrically connected in parallel to the first coil (91).
  • the first coil (91) is attached to the rotating body (98) so as to cover the crystal device (90) be done.
  • a fifth aspect of the instrument (10) comprises the torque detection device (9) of any one of the first to fourth aspects, a crankshaft (29) as a rotating body (98), and a crankshaft (29) and a pedal (26) connected to the crankshaft (26) for rotating the crankshaft (29) by receiving a pedaling force from the outside.
  • the instrument of the sixth aspect in the fifth aspect, further comprises a wheel (20) that rotates according to the rotation of the crankshaft (29).
  • the torque detection device (9) makes it possible to detect the torque applied to the crankshaft (29) of the instrument (10) with wheels (20).
  • the assist ratio of the power to the pedaling force is determined. and a controlling processor (3).
  • the instrument of the eighth aspect in the fifth aspect, further comprises a body that rotatably holds the crankshaft (29) and rests on the ground.

Abstract

The present invention addresses the problem of enabling torque applied to a rotating body to be detected. This torque detection device (9) comprises: a crystal device (90) attached to a rotating body that rotates about a rotation axis with respect to a non-rotating body; a first coil (91) wound around the rotating body about the rotation axis and electrically connected to the crystal device (90); a second coil (92) held by the non-rotating body, wound around the outer peripheral surface of the first coil (91) with a gap therebetween, and magnetically coupled to the first coil (91); a pair of input ends (931, 932) which are respectively connected to both ends of the second coil (92) and to which an AC voltage source (93) is connected; a current sensor (94) that is held by the non-rotating body and detects current flowing through the second coil (92); and a torque detection unit (95) that is held by the non-rotating body and detects torque applied to the rotating body, on the basis of the phase difference between the phase of the output voltage from the voltage source (93) and the phase of the current detected by the current sensor (94).

Description

トルク検出装置、及び器具Torque detection device and instrument
 本開示は、一般に、トルク検出装置、及び器具に関する。より詳細には、本開示は、水晶デバイスを備えるトルク検出装置、及びトルク検出装置を備える器具に関する。 The present disclosure relates generally to torque sensing devices and instruments. More particularly, the present disclosure relates to torque sensing apparatus comprising quartz devices and instruments comprising torque sensing apparatus.
 特許文献1には、非接触給電装置とトルク計測用の歪みゲージとを備えたトルクセンサが記載されている。トルクセンサは、電動アシスト自転車に備えられている。 Patent Document 1 describes a torque sensor that includes a contactless power supply device and a strain gauge for torque measurement. A torque sensor is provided in an electrically assisted bicycle.
 非接触給電装置は、第1アンテナコイルを有する送電部と、第1アンテナコイルと磁気的に結合する第2アンテナコイルを有する受電部と、を備える。 A contactless power supply device includes a power transmission unit having a first antenna coil, and a power reception unit having a second antenna coil magnetically coupled to the first antenna coil.
 送電部は、固定側基板に設けられている。 The power transmission section is provided on the fixed side board.
 受電部は、第2アンテナコイルに誘起される交流信号を整流する整流回路と、整流回路の出力がローパスフィルタを介して入力され、所定電圧の電力を出力する電源回路と、整流回路とローパスフィルタとの接続点に接続され、受電側のインピーダンスを変化させてデータを送電部へ伝送させる負荷変調回路と、を備える。歪みゲージは、上記電源回路からの電力で動作する。受電部は回転側基板に設けられている。回転側基板及び歪みゲージは、クランク軸に固定されて、クランク軸と一体に回転する。 The power receiving unit includes a rectifier circuit that rectifies an AC signal induced in the second antenna coil, a power supply circuit that receives the output of the rectifier circuit via a low-pass filter and outputs power of a predetermined voltage, the rectifier circuit and the low-pass filter. a load modulation circuit connected to a connection point with the power receiving side to change the impedance of the power receiving side to transmit data to the power transmitting section. The strain gauge operates with power from the power supply circuit. The power receiving unit is provided on the rotating substrate. The rotation-side substrate and the strain gauge are fixed to the crankshaft and rotate together with the crankshaft.
 特許文献1のトルクセンサでは、クランク軸のような回転体に、歪みゲージへ電力を供給するための電源回路等の回路部品を設ける必要がある。 In the torque sensor of Patent Document 1, it is necessary to provide a rotating body such as a crankshaft with a circuit component such as a power supply circuit for supplying power to the strain gauge.
国際公開第2015/108153号WO2015/108153
 本開示は、回転体に加えられるトルクを検出可能であって回転体の構成を簡略化可能なトルク検出装置及びそれを備えた器具を提供することを目的とする。 An object of the present disclosure is to provide a torque detection device capable of detecting torque applied to a rotating body and simplifying the configuration of the rotating body, and an instrument including the same.
 本開示の一態様のトルク検出装置は、水晶デバイスと、第1コイルと、第2コイルと、一対の入力端と、電流センサと、トルク検出部と、を備える。前記水晶デバイスは、回転体に取り付けられる。前記回転体は、非回転体に対して回転軸を中心として回転する。前記第1コイルは、前記回転軸の周りで前記回転体に巻き回されている。前記第1コイルは、前記水晶デバイスと電気的に接続されている。前記第2コイルは、前記非回転体に保持されている。前記第2コイルは、前記第1コイルの外周面に空隙を挟んで巻き回されている。前記第2コイルは、前記第1コイルと磁気結合されている。前記一対の入力端は、前記第2コイルの両端にそれぞれ接続されている。前記一対の入力端には、交流の電圧源が接続される。前記電流センサは、前記非回転体に保持されている。前記電流センサは、前記第2コイルに流れる電流を検出する。前記トルク検出部は、前記非回転体に保持されている。前記トルク検出部は、前記電圧源からの出力電圧の位相と前記電流センサで検出される前記電流の位相との間の位相差に基づいて、前記回転体に加えられるトルクを検出する。 A torque detection device according to one aspect of the present disclosure includes a crystal device, a first coil, a second coil, a pair of input terminals, a current sensor, and a torque detection section. The crystal device is attached to a rotating body. The rotating body rotates around the rotation axis with respect to the non-rotating body. The first coil is wound around the rotating body around the rotating shaft. The first coil is electrically connected with the crystal device. The second coil is held by the non-rotating body. The second coil is wound around the outer peripheral surface of the first coil with a gap interposed therebetween. The second coil is magnetically coupled with the first coil. The pair of input terminals are connected to both ends of the second coil. An AC voltage source is connected to the pair of input terminals. The current sensor is held by the non-rotating body. The current sensor detects current flowing through the second coil. The torque detector is held by the non-rotating body. The torque detector detects torque applied to the rotating body based on a phase difference between the phase of the output voltage from the voltage source and the phase of the current detected by the current sensor.
 本開示の一態様の器具は、前記トルク検出装置と、前記回転体としてのクランク軸と、前記クランク軸に連結されており、外部からの踏力を受けて前記クランク軸を回転させるペダルと、を備える。 An instrument according to one aspect of the present disclosure includes the torque detection device, the crankshaft as the rotating body, and a pedal that is connected to the crankshaft and rotates the crankshaft by receiving a pedaling force from the outside. Prepare.
図1は、一実施形態に係るトルク検出装置の回路図である。FIG. 1 is a circuit diagram of a torque detection device according to one embodiment. 図2は、同上のトルク検出装置が取り付けられた回転体の斜視図である。FIG. 2 is a perspective view of a rotating body to which the torque detection device is attached. 図3は、同上のトルク検出装置が取り付けられた回転体の断面図である。FIG. 3 is a cross-sectional view of a rotating body to which the torque detection device is attached. 図4は、同上のトルク検出装置に印加される電圧の位相とトルク検出装置に流れる電流の位相との間の関係の一例を示す図である。FIG. 4 is a diagram showing an example of the relationship between the phase of the voltage applied to the torque detection device and the phase of the current flowing through the torque detection device. 図5は、同上のトルク検出装置を備えた電動アシスト付き自転車の側面図である。FIG. 5 is a side view of a power-assisted bicycle provided with the torque detection device of the same. 図6は、同上の電動アシスト付き自転車の駆動システムのブロック図である。FIG. 6 is a block diagram of the drive system for the electrically assisted bicycle same as the above. 図7は、同上の電動アシスト付き自転車のアシスト比を説明するための図である。FIG. 7 is a diagram for explaining the assist ratio of the above-mentioned electrically assisted bicycle. 図8は、同上のトルク検出装置の2個の水晶デバイスの接続関係を説明するための図である。FIG. 8 is a diagram for explaining the connection relationship between two crystal devices of the torque detection device. 図9は、一変形例のトルク検出装置が取り付けられた回転体の斜視図である。FIG. 9 is a perspective view of a rotating body to which a modified torque detection device is attached.
 (1)概要
 以下の実施形態において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
(1) Overview Each drawing described in the following embodiments is a schematic drawing, and the ratio of the size and thickness of each component in each drawing does not necessarily reflect the actual dimensional ratio. Not necessarily.
 図1に示すように、本実施形態に係るトルク検出装置9は、水晶デバイス90と、第1コイル91と、第2コイル92と、一対の入力端931,932と、電流センサ94と、トルク検出部95と、を備えている。図2、図3に示すように、水晶デバイス90は、回転体98に取り付けられる。回転体98は、非回転体99に対して回転軸980を中心として回転する。第1コイル91は、回転軸980の周りで回転体98に巻き回されている。第1コイル91は、水晶デバイス90と電気的に接続されている。第2コイル92は、非回転体99に保持されている。第2コイル92は、第1コイル91の外周面に空隙G1を挟んで巻き回されている。第2コイル92は、第1コイル91と磁気結合されている。一対の入力端931,932は、第2コイル92の両端にそれぞれ接続されている。一対の入力端931,932には、交流の電圧源93が接続される。電流センサ94は、非回転体99に保持されている。電流センサ94は、第2コイル92に流れる電流を検出する。トルク検出部95は、非回転体99に保持されている。トルク検出部95は、電圧源93からの出力電圧の位相と電流センサ94で検出される電流の位相との間の位相差Δθに基づいて、回転体98に加えられるトルクを検出する。 As shown in FIG. 1, the torque detection device 9 according to this embodiment includes a crystal device 90, a first coil 91, a second coil 92, a pair of input ends 931 and 932, a current sensor 94, a torque A detection unit 95 is provided. As shown in FIGS. 2 and 3, the crystal device 90 is attached to a rotating body 98 . The rotating body 98 rotates around the rotating shaft 980 with respect to the non-rotating body 99 . The first coil 91 is wound around the rotating body 98 around the rotating shaft 980 . The first coil 91 is electrically connected with the crystal device 90 . The second coil 92 is held by a non-rotating body 99 . The second coil 92 is wound around the outer peripheral surface of the first coil 91 with a gap G1 interposed therebetween. The second coil 92 is magnetically coupled with the first coil 91 . A pair of input terminals 931 and 932 are connected to both ends of the second coil 92, respectively. An AC voltage source 93 is connected to the pair of input terminals 931 and 932 . A current sensor 94 is held by a non-rotating body 99 . A current sensor 94 detects the current flowing through the second coil 92 . The torque detector 95 is held by a non-rotating body 99 . Torque detector 95 detects the torque applied to rotating body 98 based on phase difference Δθ between the phase of the output voltage from voltage source 93 and the phase of the current detected by current sensor 94 .
 外部から回転体98にトルクが加えられると、加えられたトルクに応じて回転体98が変形する。水晶デバイス90は、回転体98の変形に応じて変形(伸縮)し、変形に応じてその直列容量Cc(後述する)が変化する。第2コイル92に流れる電流(交流電流)の位相は、水晶デバイス90の直列容量Ccの変化に応じて変化する。 When torque is applied to the rotating body 98 from the outside, the rotating body 98 deforms according to the applied torque. The crystal device 90 deforms (expands and contracts) according to the deformation of the rotor 98, and its series capacitance Cc (described later) changes according to the deformation. The phase of the current (alternating current) flowing through the second coil 92 changes according to changes in the series capacitance Cc of the crystal device 90 .
 図4に、電圧源93から第2コイル92に印加される電圧と第2コイル92に流れる電流との間の関係の一例を示す。図4において、「V0」は電圧源93の出力電圧の波形、「I0」は回転体98にトルクが加えられていない状態(水晶デバイス90が変形していない状態)で第2コイル92に流れる電流の波形、「I1」は回転体98に所定のトルクが加えられた状態(水晶デバイス90が変形した状態)で第2コイル92に流れる電流の波形を示す。図4では、便宜上、電流I0の位相が出力電圧V0の位相と等しい(回転体98にトルクが加えられていない状態での位相差ΔθをΔθとすると、Δθ=0)として図示している。 FIG. 4 shows an example of the relationship between the voltage applied from the voltage source 93 to the second coil 92 and the current flowing through the second coil 92. As shown in FIG. In FIG. 4, "V0" is the waveform of the output voltage of the voltage source 93, and "I0" is the current flowing through the second coil 92 when no torque is applied to the rotor 98 (the crystal device 90 is not deformed). A current waveform "I1" indicates the waveform of the current flowing through the second coil 92 when a predetermined torque is applied to the rotor 98 (the crystal device 90 is deformed). In FIG. 4, for the sake of convenience, the phase of the current I0 is shown to be equal to the phase of the output voltage V0 (where Δθ 0 is the phase difference Δθ when no torque is applied to the rotor 98, Δθ 0 =0). there is
 回転体98にトルクが加えられると、第2コイル92に流れる電流の位相は、図4に示すように、水晶デバイス90の直列容量Ccの変化に応じて変化する。図4の例では、回転体98にトルクが加えられた場合に第2コイル92に流れる電流I1は、回転体98にトルクが加えられていない場合に第2コイル92に流れる電流I0と比べて、電圧V0に対する位相がΔt1/T0だけ進んでいる。ここで、「T0」は電圧源93からの出力電圧の周期である。回転体98にトルクが加えられた状態での位相差ΔθをΔθとすると、|Δθ-Δθ|=Δt1/T0の関係が成立する。 When torque is applied to the rotor 98, the phase of the current flowing through the second coil 92 changes according to the change in the series capacitance Cc of the crystal device 90, as shown in FIG. In the example of FIG. 4, the current I1 flowing through the second coil 92 when torque is applied to the rotating body 98 is compared to the current I0 flowing through the second coil 92 when no torque is applied to the rotating body 98. , the phase with respect to the voltage V0 is advanced by Δt1/T0. Here, “T0” is the period of the output voltage from voltage source 93 . Assuming that the phase difference Δθ in the state where the torque is applied to the rotor 98 is Δθ 1 , the relationship |Δθ 1 -Δθ 0 |=Δt1/T0 is established.
 このように、回転体98が変形すると、その変形に応じて、電圧源93からの出力電圧の位相に対する電流センサ94で検出される電流の位相の位相差Δθが変化する。トルク検出部95は、位相差Δθの変化を検出することで、回転体98に加えられているトルクを検出することができる。このように、本実施形態のトルク検出装置9は、位相差Δθの変化を検出することで、回転体98に加えられたトルクを検出する。 Thus, when the rotating body 98 deforms, the phase difference Δθ between the phase of the output voltage from the voltage source 93 and the current detected by the current sensor 94 changes according to the deformation. The torque detector 95 can detect the torque applied to the rotating body 98 by detecting the change in the phase difference Δθ. Thus, the torque detection device 9 of the present embodiment detects the torque applied to the rotating body 98 by detecting the change in the phase difference Δθ.
 また、本実施形態のトルク検出装置9では、水晶デバイス90が回転体98に設けられている一方、電圧源93、電流センサ94、及びトルク検出部95は非回転体99に設けられている。そして、水晶デバイス90と電圧源93及び電流センサ94とは、磁気結合(トランス結合)された第1コイル91及び第2コイル92を介して接続されている。そのため、本実施形態のトルク検出装置9は、回転体98に電源回路の回路部品等を設ける必要がなく、特許文献1のトルクセンサに比べて回転体98の構成を簡略化することが可能となる。 Further, in the torque detection device 9 of this embodiment, the crystal device 90 is provided on the rotating body 98 , while the voltage source 93 , current sensor 94 and torque detection section 95 are provided on the non-rotating body 99 . The crystal device 90, the voltage source 93, and the current sensor 94 are connected via a first coil 91 and a second coil 92 that are magnetically coupled (transformer coupled). Therefore, in the torque detection device 9 of the present embodiment, there is no need to provide circuit components such as a power supply circuit in the rotating body 98, and the configuration of the rotating body 98 can be simplified compared to the torque sensor of Patent Document 1. Become.
 トルク検出装置9は、器具10が備える回転体98に加えられるトルクの検出に用いられる。本実施形態では、器具10は電動アシスト付き自転車100(図5参照)であり、回転体98は、電動アシスト付き自転車100のクランク軸29である。図5、図6に示すように、器具10としての電動アシスト付き自転車100は、トルク検出装置9及びクランク軸29に加えて、ペダル26を備えている。ペダル26は、クランク軸29に連結されており、外部(ユーザ)からの踏力を受けてクランク軸29を回転させる。また、電動アシスト付き自転車100は、クランク軸29の回転に応じて回転する車輪20を更に備えている。 The torque detection device 9 is used to detect torque applied to the rotating body 98 provided in the instrument 10 . In this embodiment, the device 10 is a power-assisted bicycle 100 (see FIG. 5), and the rotating body 98 is the crankshaft 29 of the power-assisted bicycle 100 . As shown in FIGS. 5 and 6 , the power-assisted bicycle 100 as the device 10 includes pedals 26 in addition to the torque detection device 9 and the crankshaft 29 . The pedal 26 is connected to a crankshaft 29 and rotates the crankshaft 29 upon receiving a pedaling force from the outside (user). The electrically assisted bicycle 100 further includes wheels 20 that rotate according to the rotation of the crankshaft 29 .
 本実施形態の電動アシスト付き自転車100によれば、トルク検出装置9によって、クランク軸29に加えられるトルクを検出することが可能となる。 According to the electrically assisted bicycle 100 of the present embodiment, it is possible to detect the torque applied to the crankshaft 29 by the torque detection device 9 .
 (2)詳細
 以下、本実施形態のトルク検出装置9、及びトルク検出装置9を備える電動アシスト付き自転車100について、図1~図8を参照しながら説明する。
(2) Details Hereinafter, the torque detection device 9 of the present embodiment and a power-assisted bicycle 100 including the torque detection device 9 will be described with reference to FIGS. 1 to 8. FIG.
 (2.1)電動アシスト付き自転車の全体構成
 まず、本実施形態の電動アシスト付き自転車100の全体構成について、図5、図6を参照して説明する。電動アシスト付き自転車100は、ユーザの踏力(踏む力、人力駆動力)を、モータ50によって補助(アシスト)する自転車である。ここでいう「ユーザ」は、電動アシスト付き自転車100の搭乗者、特に電動アシスト付き自転車100の運転者を意味する。以下では「電動アシスト付き自転車100」を単に自転車100と呼ぶことがある。
(2.1) Overall Configuration of Electric-Assisted Bicycle First, the overall configuration of the electrically-assisted bicycle 100 of the present embodiment will be described with reference to FIGS. 5 and 6. FIG. A motor-assisted bicycle 100 is a bicycle in which a user's stepping force (stepping force, human power driving force) is assisted by a motor 50 . The “user” here means the rider of the electrically assisted bicycle 100, particularly the driver of the electrically assisted bicycle 100. Hereinafter, the “electrically assisted bicycle 100” may be simply referred to as the bicycle 100.
 図5、図6に示すように、自転車100は、駆動システム1と、本体2とを備えている。 As shown in FIGS. 5 and 6, the bicycle 100 includes a drive system 1 and a main body 2.
 図5に示すように、自転車100は走行面101上を走行する。以下では特に断りのない限り、自転車100の走行面101は、水平面H1(図5参照)と平行であるとして説明する。ただし、実際は、走行面101は水平面H1と平行である必要はなく、水平面H1に対して傾斜していてもよいし、凹凸のある面であってもよい。また、以下では、自転車100が進む方向を「前方向」とし、前方向の反対方向を「後方向」とし、前方向及び後方向を併せて「前後方向D1」として定義する。ただし、これらの方向の定義は、自転車100の使用態様を限定する趣旨ではない。また、図面中の各方向を示す矢印は、説明のために表記しているにすぎず、実体を伴わない。 As shown in FIG. 5, the bicycle 100 runs on the running surface 101. Hereinafter, unless otherwise specified, the running surface 101 of the bicycle 100 is assumed to be parallel to the horizontal plane H1 (see FIG. 5). However, in practice, the running surface 101 does not have to be parallel to the horizontal plane H1, and may be inclined with respect to the horizontal plane H1, or may be a surface with irregularities. Also, hereinafter, the direction in which the bicycle 100 travels is defined as the "forward direction", the opposite direction to the forward direction is defined as the "rearward direction", and the forward direction and the rearward direction are collectively defined as the "front-rear direction D1". However, these directional definitions are not intended to limit the manner in which the bicycle 100 is used. In addition, the arrows indicating each direction in the drawings are only shown for explanation and are not substantial.
 (2.2)本体
 本体2は、図5に示すように、フレーム7と、複数(図示例では2つ)の車輪20と、フロントフォーク22と、ハンドル23と、サドル24と、一対のクランクアーム25と、一対のペダル26と、動力伝達体27と、クランク軸29とを備えている。
(2.2) Main Body As shown in FIG. 5, the main body 2 includes a frame 7, a plurality of (two in the illustrated example) wheels 20, a front fork 22, a handlebar 23, a saddle 24, and a pair of cranks. It has an arm 25 , a pair of pedals 26 , a power transmission body 27 and a crankshaft 29 .
 複数の車輪20は、フレーム7を走行面101の上に支える部材である。本実施形態の本体2は、複数の車輪20として、1つの前輪201と、1つの後輪202とを有している。前輪201は、中心にハブ281を有し、後輪202は、中心にハブ282を有している。前輪201及び後輪202は、フレーム7に取り付けられている。 A plurality of wheels 20 are members that support the frame 7 on the running surface 101 . The main body 2 of this embodiment has one front wheel 201 and one rear wheel 202 as the plurality of wheels 20 . The front wheel 201 has a hub 281 in the center and the rear wheel 202 has a hub 282 in the center. A front wheel 201 and a rear wheel 202 are attached to the frame 7 .
 前輪201は、前後方向D1に並ぶ2つの車輪20のうちの前側の車輪である。前輪201は、レッグ221によって、左右方向に沿った軸回りに回転し得るように支持される。前輪201は、本実施形態では、モータ50から動力の伝達を受けない車輪20である。 The front wheel 201 is the front wheel of the two wheels 20 aligned in the front-rear direction D1. Front wheel 201 is supported by leg 221 so as to be rotatable around an axis extending in the left-right direction. The front wheels 201 are the wheels 20 that do not receive power transmission from the motor 50 in this embodiment.
 後輪202は、前後方向D1に並ぶ2つの車輪20のうちの後側の車輪である。後輪202は、複数(ここでは一対)のチェーンステー77によって、左右方向に沿った軸回りに回転可能に支持される。 The rear wheel 202 is the rear wheel of the two wheels 20 aligned in the front-rear direction D1. The rear wheel 202 is rotatably supported by a plurality (here, a pair) of chain stays 77 around an axis extending in the left-right direction.
 後輪202には、リアスプロケット292が取り付けられている。リアスプロケット292は、後輪202のハブ282と同心状で、かつハブ282に対して一体的に取り付けられている。リアスプロケット292は、例えば、複数のスプロケットで構成されている。 A rear sprocket 292 is attached to the rear wheel 202 . The rear sprocket 292 is concentric with and integrally attached to the hub 282 of the rear wheel 202 . The rear sprocket 292 is composed of, for example, a plurality of sprockets.
 フロントフォーク22は、前輪201を支える。フロントフォーク22は、一対のレッグ221と、クラウン222と、ステアリングコラム223とを有している。クラウン222は、一対のレッグ221の上端をつなぐ。ステアリングコラム223は、クラウン222から突出する。一対のレッグ221には、ハブ281に通されたシャフトを介して、前輪201が回転可能に取り付けられている。前輪201の回転軸は、走行面101に対して平行である。ステアリングコラム223の中心軸(長手軸)は、クラウン222から、上方向に行くに従って後方向に行くように延びており、走行面101に対して傾いている。 The front fork 22 supports the front wheel 201. The front fork 22 has a pair of legs 221 , a crown 222 and a steering column 223 . A crown 222 connects the upper ends of the pair of legs 221 . A steering column 223 protrudes from the crown 222 . A front wheel 201 is rotatably attached to the pair of legs 221 via a shaft passed through a hub 281 . The rotation axis of front wheel 201 is parallel to running surface 101 . A central axis (longitudinal axis) of the steering column 223 extends rearward as it goes upward from the crown 222 and is inclined with respect to the running surface 101 .
 ハンドル23は、ステアリングコラム223の上端に取り付けられており、フロントフォーク22に対して固定されている。ステアリングコラム223は、フレーム7のヘッドパイプ71に通されており、フレーム7に回転可能に取り付けられている。ステアリングコラム223の回転軸は、ステアリングコラム223の長手方向に略平行である。したがって、ハンドル23は、ステアリングコラム223の長手方向に沿う軸を回転軸として、前輪201を回転させることができる。 The handle 23 is attached to the upper end of the steering column 223 and fixed to the front fork 22 . The steering column 223 is passed through the head pipe 71 of the frame 7 and is rotatably attached to the frame 7 . The rotation axis of steering column 223 is substantially parallel to the longitudinal direction of steering column 223 . Therefore, the handle 23 can rotate the front wheel 201 with the axis along the longitudinal direction of the steering column 223 as the rotation axis.
 フレーム7は、複数の車輪20、フロントフォーク22、ハンドル23、サドル24、バッテリユニット4及び制御システム3が取り付けられる骨組みである。フレーム7の材料は、例えば、アルミニウムを主成分とするアルミニウム合金である。ただし、フレーム7の材料は、アルミニウム合金に限らず、例えば、鉄、クロムモリブデン鋼、ハイテンスチール、チタン、又はマグネシウムであってもよい。また、フレーム7の材料は、金属に限らず、例えば、カーボン、木材、竹、又は繊維強化合成樹脂(例えば、CFRP;Carbon Fiber Reinforced Plastics)であってもよい。 The frame 7 is a framework to which a plurality of wheels 20, front forks 22, handle 23, saddle 24, battery unit 4 and control system 3 are attached. The material of the frame 7 is, for example, an aluminum alloy containing aluminum as a main component. However, the material of the frame 7 is not limited to aluminum alloy, and may be, for example, iron, chromium molybdenum steel, high-tensile steel, titanium, or magnesium. Further, the material of the frame 7 is not limited to metal, and may be carbon, wood, bamboo, or fiber-reinforced synthetic resin (eg, CFRP; Carbon Fiber Reinforced Plastics).
 フレーム7は、ヘッドパイプ71と、上パイプ72と、補強パイプ73と、下パイプ74と、立パイプ75と、複数(図5では1つのみ図示)のシートステー76と、複数(図5では1つのみ図示)のチェーンステー77と、ブラケット78とを有している。本開示でいう「パイプ」とは、細長くて中空な部材を意味する。本開示のパイプの断面形状は、例えば、円形状(正円、長円及び楕円を含む)、長方形状(正方形を含む)、六角形状、又は八角形状であってもよい。 The frame 7 includes a head pipe 71, an upper pipe 72, a reinforcing pipe 73, a lower pipe 74, a standing pipe 75, a plurality of (only one shown in FIG. 5) seat stays 76, and a plurality of (in FIG. 5 chainstays 77 (only one shown) and brackets 78 . As used in this disclosure, "pipe" means an elongated hollow member. The cross-sectional shape of pipes of the present disclosure may be, for example, circular (including perfect circles, ovals and ellipses), rectangular (including squares), hexagonal, or octagonal.
 ヘッドパイプ71は、フロントフォーク22を支える。ヘッドパイプ71の中心軸は、上方向に行くに従って後方向に行くように、走行面101に対して傾いている。ヘッドパイプ71には、ヘッドパイプ71の中心軸とステアリングコラム223の中心軸とが沿うように、ステアリングコラム223が通されている。これによって、ヘッドパイプ71は、ステアリングコラム223を回転可能に支える。ステアリングコラム223の回転軸は、ヘッドパイプ71の中心軸と同じである。 The head pipe 71 supports the front fork 22. The central axis of the head pipe 71 is inclined with respect to the running surface 101 so as to go rearward as it goes upward. A steering column 223 is passed through the head pipe 71 so that the central axis of the head pipe 71 and the central axis of the steering column 223 are aligned. This allows the head pipe 71 to rotatably support the steering column 223 . The rotation axis of the steering column 223 is the same as the central axis of the head pipe 71 .
 上パイプ72は、ヘッドパイプ71と立パイプ75とをつなぐ。上パイプ72の長手方向の前端は、ヘッドパイプ71に接続されている。上パイプ72の長手方向の後端は、立パイプ75に接続されている。上パイプ72の中心軸は、後方向に行くに従って下方向に行くように、走行面101に対して傾いている。ただし、上パイプ72は走行面101に対して傾いていなくてもよい。上パイプ72は、省略されてもよい。 The upper pipe 72 connects the head pipe 71 and the standing pipe 75 . A longitudinal front end of the upper pipe 72 is connected to the head pipe 71 . A longitudinal rear end of the upper pipe 72 is connected to a standing pipe 75 . The central axis of the upper pipe 72 is inclined with respect to the running surface 101 so as to go downward as it goes rearward. However, the upper pipe 72 does not have to be inclined with respect to the running surface 101 . The upper pipe 72 may be omitted.
 補強パイプ73は、立パイプ75と上パイプ72との接続部分を補強するための補強部材である。補強パイプ73は、立パイプ75と上パイプ72とをつなぐ。補強パイプ73は、省略されてもよい。 The reinforcement pipe 73 is a reinforcement member for reinforcing the connecting portion between the standing pipe 75 and the upper pipe 72 . The reinforcing pipe 73 connects the standing pipe 75 and the upper pipe 72 . The reinforcement pipe 73 may be omitted.
 立パイプ75は、サドル24を保持する。立パイプ75の長手方向の下端は、ブラケット78に接続されている。立パイプ75の中心軸は、下端から上方向に行くに従って後方向に行くように、走行面101に対して傾いている。立パイプ75の中間部分には、上パイプ72の長手方向の後端が接続されている。ここでいう「中間部分」とは、立パイプ75の長手方向のうちの下端と上端とを除く部分を意味する。上パイプ72は、立パイプ75の上端に接続されてもよい。 The standing pipe 75 holds the saddle 24. A lower longitudinal end of the standing pipe 75 is connected to a bracket 78 . The central axis of the standing pipe 75 is inclined with respect to the running surface 101 so as to go rearward as it goes upward from the lower end. The longitudinal rear end of the upper pipe 72 is connected to the intermediate portion of the vertical pipe 75 . The term “intermediate portion” as used herein means a portion of the standing pipe 75 in the longitudinal direction excluding the lower end and the upper end. The upper pipe 72 may be connected to the upper end of the standing pipe 75 .
 下パイプ74は、ブラケット78とヘッドパイプ71とをつなぐ。下パイプ74の長手方向の前端は、ヘッドパイプ71に接続されている。下パイプ74の長手方向の後端は、ブラケット78に接続されている。下パイプ74の中心軸は、長手方向の後端から前方向に行くに従って上方向に行くように走行面101に対して傾いている。下パイプ74には、バッテリユニット4のバッテリ41が取外し可能に取り付けられている。 The lower pipe 74 connects the bracket 78 and the head pipe 71 . A longitudinal front end of the lower pipe 74 is connected to the head pipe 71 . A longitudinal rear end of the lower pipe 74 is connected to a bracket 78 . The central axis of the lower pipe 74 is inclined with respect to the running surface 101 so as to go upward as it goes forward from the rear end in the longitudinal direction. A battery 41 of the battery unit 4 is detachably attached to the lower pipe 74 .
 複数(ここでは一例として一対)のチェーンステー77は、後輪202のシャフトを支える。各チェーンステー77の長手方向の前端は、ブラケット78に接続されている。各チェーンステー77の長手方向の後端は、対応するシートステー76の後端に接続されている。一対のチェーンステー77は、左右方向に離れており、一対のチェーンステー77の後端部には、ハブ282に通されたシャフトを介して、後輪202が回転可能に取り付けられている。後輪202の回転軸は、走行面101に対して略平行であり、後輪202を支えるシャフトの中心軸と同じである。 A plurality of (here, one pair as an example) chain stays 77 support the shaft of the rear wheel 202 . A longitudinal front end of each chain stay 77 is connected to a bracket 78 . The longitudinal rear end of each chain stay 77 is connected to the rear end of the corresponding seat stay 76 . The pair of chain stays 77 are separated in the left-right direction, and the rear wheel 202 is rotatably attached to the rear ends of the pair of chain stays 77 via a shaft passed through a hub 282 . The rotation axis of the rear wheel 202 is substantially parallel to the running surface 101 and coincides with the center axis of the shaft supporting the rear wheel 202 .
 複数(ここでは一例として一対)のシートステー76は、チェーンステー77と立パイプ75とをつなぐ。各シートステー76の長手方向の後端は、対応するチェーンステー77の長手方向の後端に接続されている。各シートステー76の長手方向の前端は、立パイプ75の中間部分に接続されている。一対のシートステー76は、上パイプ72から分岐しており、上パイプ72と一体である。ただし、シートステー76と上パイプ72とは別体であってもよい。 A plurality of (here, one pair as an example) seat stays 76 connect the chain stay 77 and the standing pipe 75 . The longitudinal rear end of each seat stay 76 is connected to the longitudinal rear end of the corresponding chain stay 77 . A longitudinal front end of each seat stay 76 is connected to an intermediate portion of the standing pipe 75 . A pair of seat stays 76 branch from the upper pipe 72 and are integrated with the upper pipe 72 . However, the seat stay 76 and the upper pipe 72 may be separate bodies.
 ブラケット78には、制御システム3が取り付けられる。ブラケット78は、上下方向及び前後方向D1の両方と直交する方向から見て略C字状に形成されている。ブラケット78には、下パイプ74の長手方向の後端、立パイプ75の長手方向の下端及びチェーンステー77の長手方向の前端が接続されている。これによって、下パイプ74の長手方向の後端、立パイプ75の長手方向の下端及びチェーンステー77の長手方向の前端は、互いに固定されている。 The control system 3 is attached to the bracket 78 . The bracket 78 is formed in a substantially C shape when viewed from a direction orthogonal to both the up-down direction and the front-rear direction D1. The bracket 78 is connected to the longitudinal rear end of the lower pipe 74 , the longitudinal lower end of the standing pipe 75 , and the longitudinal front end of the chain stay 77 . Thereby, the longitudinal rear end of the lower pipe 74, the longitudinal lower end of the standing pipe 75, and the longitudinal front end of the chain stay 77 are fixed to each other.
 サドル24は、シートピラー241と、ユーザが座る座部242とを有する。シートピラー241は、立パイプ75の中心軸に沿うようにして、立パイプ75に通されている。シートピラー241は、サドル24において座部242から下側に突出している。シートピラー241は、下方向に行くに従って前方向に行くように、走行面101に対して傾斜している。シートピラー241は、立パイプ75に対し、立パイプ75の中心軸に沿って移動可能に取り付けられている。 The saddle 24 has a seat pillar 241 and a seat 242 on which the user sits. The seat pillar 241 is passed through the vertical pipe 75 along the central axis of the vertical pipe 75 . The seat pillar 241 protrudes downward from the seat portion 242 of the saddle 24 . The seat pillar 241 is inclined with respect to the running surface 101 so as to go forward as it goes downward. The seat pillar 241 is attached to the vertical pipe 75 so as to be movable along the central axis of the vertical pipe 75 .
 クランク軸29は、制御システム3のハウジング31に、ベアリング等を介して回転可能に保持されている。クランク軸29は、金属製である。クランク軸29には、図5に示すように、一対のクランクアーム25が取り付けられている。クランクアーム25の長手方向は、クランク軸29の回転軸に対して交差する(図示例では、直交する)。一対のクランクアーム25は、クランク軸29の回転軸方向に見て一直線上に並ぶ。 The crankshaft 29 is rotatably held in the housing 31 of the control system 3 via bearings or the like. The crankshaft 29 is made of metal. A pair of crank arms 25 are attached to the crank shaft 29 as shown in FIG. The longitudinal direction of the crank arm 25 intersects (perpendicularly in the illustrated example) the rotation axis of the crankshaft 29 . The pair of crank arms 25 are arranged in a straight line when viewed in the rotation axis direction of the crankshaft 29 .
 一対のペダル26の各々は、対応するクランクアーム25の長手方向の端部のうち、クランク軸29側とは反対側の端部に取り付けられている。各ペダル26は、対応するクランクアーム25に対して、回転可能に取り付けられている。ペダル26の回転軸は、クランク軸29の回転軸に対して略平行である。ユーザは、ペダル26を漕ぐことにより、クランク軸29に人力の回転力(踏力)を与えることができる。 Each of the pair of pedals 26 is attached to one end of the corresponding crank arm 25 in the longitudinal direction opposite to the crankshaft 29 side. Each pedal 26 is rotatably attached to the corresponding crank arm 25 . The axis of rotation of the pedals 26 is substantially parallel to the axis of rotation of the crankshaft 29 . By pedaling the pedal 26 , the user can apply a human-powered rotational force (pedal force) to the crankshaft 29 .
 また、クランク軸29には、クランクスプロケット291が取り付けられている。クランクスプロケット291は、例えば複数のスプロケットで構成されており、リアスプロケット292とともに変速機を構成する。変速機の変速位置を変えることにより、自転車100の変速が可能となる。ここでいう「変速位置」は、クランクスプロケット291のスプロケットとリアスプロケット292のスプロケットとの組み合わせを意味し、いわゆるギア比に相当する。 A crank sprocket 291 is attached to the crankshaft 29 . The crank sprocket 291 is composed of a plurality of sprockets, for example, and constitutes a transmission together with the rear sprocket 292 . By changing the shift position of the transmission, the bicycle 100 can be shifted. The "shift position" here means the combination of the sprocket of the crank sprocket 291 and the sprocket of the rear sprocket 292, and corresponds to a so-called gear ratio.
 動力伝達体27は、ユーザからの人力駆動力(踏力)を、複数の車輪20のうちの少なくとも一つ(ここでは後輪202)に伝達する。また、動力伝達体27は、モータ50から出力された動力を、複数の車輪20のうちの少なくとも一つ(ここでは後輪202)に伝達する。動力伝達体27は、クランクスプロケット291とリアスプロケット292とを連結する。動力伝達体27は、ここでは、クランクスプロケット291とリアスプロケット292との間で動力伝達可能に架けられるチェーンである。これにより、モータ50から出力された動力は、動力伝達体27を介して、後輪202に伝達される。動力伝達体27は、例えば、ベルト、シャフト、ワイヤ、又はギアであってもよい。 The power transmission body 27 transmits the human power driving force (pedal force) from the user to at least one of the plurality of wheels 20 (here, the rear wheel 202). Also, the power transmission body 27 transmits the power output from the motor 50 to at least one of the plurality of wheels 20 (here, the rear wheel 202). The power transmission body 27 connects the crank sprocket 291 and the rear sprocket 292 . The power transmission body 27 is a chain that is spanned between the crank sprocket 291 and the rear sprocket 292 so as to be able to transmit power. Thereby, the power output from the motor 50 is transmitted to the rear wheel 202 via the power transmission body 27 . The power transmission body 27 may be, for example, a belt, shaft, wire, or gear.
 (2.3)駆動システム
 図6に示すように、駆動システム1は、モータ50と、制御システム3と、バッテリユニット4と、検出装置群8と、操作部6と、を備えている。駆動システム1は、駆動補助出力を出力するシステムである。駆動システム1は、人力駆動力(踏力)に駆動補助出力を加えて、動力伝達体27を介して後輪202に伝達する。
(2.3) Drive System As shown in FIG. 6 , the drive system 1 includes a motor 50 , a control system 3 , a battery unit 4 , a detection device group 8 and an operation section 6 . The drive system 1 is a system that outputs a drive auxiliary output. The drive system 1 adds a drive assist output to the human power drive force (pedal force) and transmits the power to the rear wheels 202 via the power transmission body 27 .
 (2.3.1)モータ
 モータ50は、自転車100の車輪20に動力(駆動補助出力)を与える。モータ50は、自転車100のクランク軸29の近傍に設けられており、バッテリ41からの電力によって駆動される。モータ50は、例えば遊星ギア等を含む減速機を介して、クランクスプロケット291に連結されている。モータ50の動力は、減速機等を介してクランクスプロケット291に伝達される。
(2.3.1) Motor The motor 50 gives power (drive auxiliary output) to the wheel 20 of the bicycle 100 . Motor 50 is provided near crankshaft 29 of bicycle 100 and is driven by electric power from battery 41 . The motor 50 is connected to the crank sprocket 291 via a speed reducer including, for example, planetary gears. Power of the motor 50 is transmitted to the crank sprocket 291 via a reduction gear or the like.
 (2.3.2)バッテリユニット
 バッテリユニット4は、図6に示すように、バッテリ41と、バッテリ制御部42とを有している。バッテリユニット4は、制御システム3と電気的に接続されている。
(2.3.2) Battery Unit The battery unit 4 has a battery 41 and a battery control section 42, as shown in FIG. The battery unit 4 is electrically connected with the control system 3 .
 バッテリ41は、制御システム3を介して、モータ50に電力を供給する。またバッテリ41は、モータ50に加えて、例えば、本体2のヘッドライト、及び操作部6等に電力を供給する。バッテリ41としては、例えばリチウムイオン二次電池のような充放電が繰り返し可能な二次電池が用いられる。バッテリ41は、下パイプ74に対して取外し可能に取り付けられている。なお、バッテリ41は、立パイプ75の後方において、立パイプ75に沿って配置されてもよい。 The battery 41 supplies power to the motor 50 via the control system 3 . In addition to the motor 50, the battery 41 also supplies power to, for example, the headlight of the main body 2, the operation unit 6, and the like. As the battery 41, a secondary battery such as a lithium ion secondary battery that can be repeatedly charged and discharged is used. The battery 41 is detachably attached to the lower pipe 74 . Note that the battery 41 may be arranged along the standing pipe 75 behind the standing pipe 75 .
 バッテリ制御部42は、自転車100が使用されるごとに、自転車100の走行時(使用時)にバッテリ41で消費された電力量(バッテリ消費電力量)を求める。バッテリ消費電力量を表す消費電力量情報は、バッテリ制御部42から制御システム3に出力される。また、バッテリ制御部42は、バッテリ41の残量を管理する。バッテリ41の残量を表す残量情報は、バッテリ制御部42から制御システム3に出力される。 Each time the bicycle 100 is used, the battery control unit 42 obtains the amount of power consumed by the battery 41 (battery power consumption) while the bicycle 100 is running (during use). Power consumption information representing battery power consumption is output from the battery control unit 42 to the control system 3 . Also, the battery control unit 42 manages the remaining amount of the battery 41 . Remaining amount information indicating the remaining amount of the battery 41 is output from the battery control section 42 to the control system 3 .
 (2.3.3)操作部
 操作部6は、ユーザから、モータ50をオンオフするための操作を受け付ける。つまり、操作部6は、ユーザから、モータ50からの動力を用いたアシストのオンオフを選択するための操作を受け付ける。操作部6は、ユーザから、アシストの強度を選択する為の操作を受け付けてもよい。操作部6は、例えば、ハンドル23に取り付けられる。操作部6は、制御システム3と電気的に接続される。
(2.3.3) Operation Unit The operation unit 6 receives an operation for turning on/off the motor 50 from the user. That is, the operation unit 6 receives an operation for selecting on/off of the assist using the power from the motor 50 from the user. The operation unit 6 may receive an operation for selecting the strength of the assist from the user. The operation part 6 is attached to the handle 23, for example. The operation unit 6 is electrically connected with the control system 3 .
 (2.3.4)制御システム
 制御システム3は、アシスト制御、及び回生制御を行うように構成される。具体的には、制御システム3は、人力駆動力(踏力)、自転車100の車速、及び変速機の変速位置(ギア比)等に基づいて、モータ50を制御するアシスト制御を実行する。人力駆動力(踏力)は、後述する踏力検出部F2で検出される。車速は、後述する車速検出部F1で検出される。
(2.3.4) Control system The control system 3 is configured to perform assist control and regeneration control. Specifically, the control system 3 executes assist control for controlling the motor 50 based on the human power driving force (pedal force), the vehicle speed of the bicycle 100, the shift position (gear ratio) of the transmission, and the like. The human power driving force (pedal force) is detected by a pedal force detector F2, which will be described later. The vehicle speed is detected by a vehicle speed detector F1, which will be described later.
 また制御システム3は、減速時において、モータ50で発電した電力で、バッテリ41を充電する回生制御に関する処理を実行する。例えば、自転車100が下り坂を走行中において、ユーザがハンドル23のブレーキレバーを操作すると、制御システム3は、回生制御のモードに切り替えて、回生ブレーキ力によりバッテリ41の充電量を回復させる。なお、制御システム3は、ヘッドライトに関する点灯制御を更に行なってもよい。 Also, the control system 3 executes processing related to regenerative control for charging the battery 41 with the electric power generated by the motor 50 during deceleration. For example, when the user operates the brake lever of the handlebar 23 while the bicycle 100 is traveling downhill, the control system 3 switches to the regenerative control mode and recovers the charge amount of the battery 41 by regenerative braking force. Note that the control system 3 may further perform lighting control related to the headlights.
 制御システム3は、図5、図6に示すように、処理部30と、記憶部32と、処理部30を収容するハウジング31とを有している。 The control system 3 has a processing unit 30, a storage unit 32, and a housing 31 that accommodates the processing unit 30, as shown in FIGS.
 ハウジング31は、中空の扁平な箱状である。図5に示すように、ハウジング31は、ブラケット78に固定されている。 The housing 31 has a hollow, flat box shape. As shown in FIG. 5, housing 31 is secured to bracket 78 .
 処理部30は、1以上のプロセッサ及び1以上のメモリを有するコンピュータシステムを主構成とする。処理部30では、1以上のプロセッサがメモリに記録されているプログラムを実行することにより、処理部30の各部の機能が実現される。プログラムはメモリに予め記録されていてもよいし、インターネット等の電気通信回線を通して提供されてもよく、メモリカード等の非一時的記録媒体に記録されて提供されてもよい。 The processing unit 30 is mainly composed of a computer system having one or more processors and one or more memories. In the processing unit 30, the functions of each unit of the processing unit 30 are realized by one or more processors executing programs recorded in the memory. The program may be prerecorded in a memory, may be provided through an electric communication line such as the Internet, or may be provided by being recorded in a non-temporary recording medium such as a memory card.
 処理部30は、図6に示すように、検出部301と、駆動制御部302と、を有している。言い換えると、処理部30は、検出部301としての機能、及び、駆動制御部302としての機能を有している。 The processing unit 30 has a detection unit 301 and a drive control unit 302, as shown in FIG. In other words, the processing unit 30 has a function as the detection unit 301 and a function as the drive control unit 302 .
 処理部30は、外部(バッテリユニット4、検出装置群8、及び操作部6)から各種の電気信号を取得するように構成される。処理部30は、取得した電気信号に応じて、アシスト制御及び回生制御等に関する処理を実行する。 The processing unit 30 is configured to acquire various electrical signals from the outside (battery unit 4, detection device group 8, and operation unit 6). The processing unit 30 executes processing related to assist control, regenerative control, etc. according to the acquired electrical signal.
 特に処理部30は、アシスト比に基づいてモータを駆動するアシスト制御に関する処理を実行する。本開示における「アシスト比」とは、人力駆動力(踏力)に対する電力補助(モータによる回転動力)の比率の値(「電力補助」/「人力駆動力」)である。 In particular, the processing unit 30 executes processing related to assist control for driving the motor based on the assist ratio. The “assist ratio” in the present disclosure is the value of the ratio of electric power assistance (rotational power by the motor) to human power driving force (pedal force) (“electric power assistance”/“human power driving force”).
 なお、例えば日本国では、道路交通法により、電動アシスト付き自転車における、人力駆動力に対する電力補助のアシスト比の上限が、車速の範囲毎に定められている。具体的には、日本国では、図7に示すように、例えば車速が10km/h未満では、人力駆動力(領域R2参照)と電力補助(領域R1参照)との最大アシスト比率が1対2(人力駆動力に対する電力補助のアシスト比の上限が、「2」)に規定されている。また、車速が24km/h以上では、最大アシスト比率が1対0(人力駆動力に対する電力補助のアシスト比が、「0」)に規定されている。したがって、本実施形態では、処理部30は、自転車100のアシスト比が上記規定を満たす範囲内で、アシスト比を調整する。ただし、道路交通法は各国で異なり得るため、処理部30がアシスト比の上限を考慮することは必須ではない。 It should be noted that, for example, in Japan, the Road Traffic Law stipulates the upper limit of the assist ratio of electric power assistance to human power driving power for electric power assisted bicycles for each vehicle speed range. Specifically, in Japan, as shown in FIG. 7, for example, when the vehicle speed is less than 10 km/h, the maximum assist ratio between the human power driving force (see area R2) and the electric power assistance (see area R1) is 1:2. (The upper limit of the assist ratio of electric power assistance to manpower driving force is "2"). Further, when the vehicle speed is 24 km/h or more, the maximum assist ratio is stipulated to be 1:0 (the assist ratio of electric power assistance to human driving force is "0"). Therefore, in this embodiment, the processing unit 30 adjusts the assist ratio within a range in which the assist ratio of the bicycle 100 satisfies the above regulation. However, since road traffic laws may differ in each country, it is not essential for the processing unit 30 to consider the upper limit of the assist ratio.
 検出部301は、図6に示すように、例えば、車速検出部F1と、踏力検出部F2と、を含む。検出部301は、検出装置群8からセンサ信号(電気信号)を受信する。 The detection unit 301 includes, for example, a vehicle speed detection unit F1 and a pedaling force detection unit F2, as shown in FIG. The detection unit 301 receives sensor signals (electrical signals) from the detection device group 8 .
 検出装置群8は、図6に示すように、車速検出装置81と、踏力検出装置82と、を含む。 The detection device group 8 includes a vehicle speed detection device 81 and a pedaling force detection device 82, as shown in FIG.
 車速検出部F1は、自転車100の車速を検出する。車速検出部F1は、車速検出装置81からのセンサ信号に基づいて、自転車100の車速を検出する。車速検出装置81は、例えば、自転車100の車輪20(例えば後輪202)の回転状態を検出する。車速検出装置81は、例えば磁石とスピードセンサとを含む。磁石は、後輪202に配置され、後輪202と共に回転する。スピードセンサは、磁石の磁力を検知するホールICである。スピードセンサは、例えばフレーム7のチェーンステー77に装着される。スピードセンサは、例えばホール効果を用いて、磁石の磁力を検知する。スピードセンサは、検出結果に基づくセンサ信号を制御システム3に出力する。車速検出部F1は、スピードセンサからのセンサ信号に基づき、例えば後輪202が1回転するごとに後輪202の回転状態を1回検出する。車速検出部F1は、例えば、単位時間当たりの後輪202の回転数と、後輪202の径と、に基づいて、自転車100の車速を検出する。車速検出部F1は、後輪202に加えて又は代わりに、前輪201の回転状態を検出してもよく、この場合、磁石は、前輪201に配置され、前輪201と共に回転する。車速検出部F1は、自転車100の現在の車速を演算する。得られた演算結果は、アシスト制御等に用いられる。 The vehicle speed detection unit F1 detects the vehicle speed of the bicycle 100. Vehicle speed detection unit F<b>1 detects the vehicle speed of bicycle 100 based on a sensor signal from vehicle speed detection device 81 . The vehicle speed detection device 81 detects, for example, the rotational state of the wheel 20 (for example, the rear wheel 202) of the bicycle 100. FIG. Vehicle speed detection device 81 includes, for example, a magnet and a speed sensor. The magnets are located on the rear wheel 202 and rotate with the rear wheel 202 . The speed sensor is a Hall IC that detects the magnetic force of a magnet. The speed sensor is attached to the chain stay 77 of the frame 7, for example. A speed sensor detects the magnetic force of a magnet using, for example, the Hall effect. The speed sensor outputs a sensor signal based on the detection result to the control system 3 . The vehicle speed detection unit F1 detects the rotation state of the rear wheel 202 once, for example, each time the rear wheel 202 rotates once, based on the sensor signal from the speed sensor. Vehicle speed detection unit F1 detects the vehicle speed of bicycle 100 based on, for example, the number of rotations of rear wheel 202 per unit time and the diameter of rear wheel 202 . The vehicle speed detection unit F1 may detect the rotational state of the front wheels 201 in addition to or instead of the rear wheels 202. In this case, the magnets are arranged on the front wheels 201 and rotate together with the front wheels 201. Vehicle speed detector F1 calculates the current vehicle speed of bicycle 100 . The obtained calculation result is used for assist control and the like.
 踏力検出部F2は、人力駆動力としての踏力を検出する。踏力検出部F2は、踏力検出装置82からのセンサ信号に基づいて、踏力を検出する。踏力検出装置82は、トルク検出装置9を含む。トルク検出装置9の詳細については、次の欄で説明する。踏力検出装置82は、検出した踏力(トルク)に基づくセンサ信号を制御システム3に出力する。踏力検出部F2は、踏力検出装置82の検出結果等から踏力(人力駆動力)を演算する。得られた演算結果は、アシスト制御等に用いられる。 The pedaling force detection unit F2 detects the pedaling force as the human power driving force. The pedaling force detection unit F2 detects the pedaling force based on the sensor signal from the pedaling force detection device 82 . The pedaling force detection device 82 includes the torque detection device 9 . Details of the torque detection device 9 will be described in the next section. The pedaling force detection device 82 outputs a sensor signal based on the detected pedaling force (torque) to the control system 3 . The pedaling force detection unit F2 calculates a pedaling force (manpower driving force) from the detection result of the pedaling force detection device 82 or the like. The obtained calculation result is used for assist control and the like.
 駆動制御部302は、車速検出部F1の検出結果(現在の車速)、踏力検出部F2の検出結果(現在の踏力)等に基づき、モータ50から出力すべき動力(アシストトルク)を決定する。駆動制御部302は、所定の回転速度でモータ50が回転するように駆動制御信号を出力して、モータ50を制御する。要するに、処理部30は、トルク検出装置9で検出された踏力(トルク)に基づいて、踏力(人力駆動力)に対するモータ50からの動力に関するアシスト比を制御する。 The drive control unit 302 determines the power (assist torque) to be output from the motor 50 based on the detection result of the vehicle speed detection unit F1 (current vehicle speed), the detection result of the pedaling force detection unit F2 (current pedaling force), and the like. The drive control unit 302 controls the motor 50 by outputting a drive control signal so that the motor 50 rotates at a predetermined rotational speed. In short, the processing unit 30 controls the assist ratio of the power from the motor 50 to the pedaling force (manpower driving force) based on the pedaling force (torque) detected by the torque detection device 9 .
 記憶部32は、読み書き可能なメモリで構成されている。記憶部32は、例えばフラッシュメモリである。記憶部32は、処理部30の外部に設けられているが、処理部30の内部に設けられていてもよい。すなわち、記憶部32は、処理部30の内蔵メモリであってもよい。記憶部32は、アシスト制御等に関する種々のデータを記憶する。 The storage unit 32 is composed of a readable and writable memory. The storage unit 32 is, for example, a flash memory. The storage unit 32 is provided outside the processing unit 30 , but may be provided inside the processing unit 30 . That is, the storage unit 32 may be a built-in memory of the processing unit 30 . The storage unit 32 stores various data relating to assist control and the like.
 (2.4)踏力検出装置
 踏力検出装置82は、ユーザからの踏力(人力駆動力)を検出する。踏力検出装置82は、トルク検出装置9を備える。トルク検出装置9は、回転体98としてのクランク軸29に加えられるトルクを検出する。
(2.4) Pedal Force Detecting Device The pedaling force detecting device 82 detects the pedaling force (manpower driving force) from the user. The pedaling force detection device 82 includes a torque detection device 9 . The torque detection device 9 detects torque applied to the crankshaft 29 as the rotating body 98 .
 上述のように、トルク検出装置9は、水晶デバイス90と、第1コイル91と、第2コイル92と、一対の入力端931,932と、電流センサ94と、トルク検出部95と、を備えている。 As described above, the torque detection device 9 includes the crystal device 90, the first coil 91, the second coil 92, the pair of input ends 931 and 932, the current sensor 94, and the torque detection section 95. ing.
 図2に示すように、水晶デバイス90は、回転体98としてのクランク軸29に取り付けられる。本実施形態では、水晶デバイス90は、水晶振動子900を含む。なお、水晶振動子900のサイズは、mmのオーダー程度である。図2では、水晶デバイス90(水晶振動子900)の大きさを誇張して図示している。 As shown in FIG. 2 , the crystal device 90 is attached to the crankshaft 29 as the rotating body 98 . In this embodiment, crystal device 90 includes crystal oscillator 900 . Note that the size of the crystal oscillator 900 is on the order of millimeters. In FIG. 2, the size of the crystal device 90 (crystal resonator 900) is exaggerated.
 水晶振動子900は、例えば、ベースと、ベースに保持された水晶片と、水晶片に接続された一対の電極と、水晶片を覆うようにベースに固定されたカバーと、を備える。ベースは、クランク軸29に取り付けられる。本実施形態では、ベースは、クランク軸29(回転体98)の外周面に取り付けられる。ベースは、クランク軸29の外周面の変形(歪み)に応じて変形する(歪む)。ベースの取付場所は、クランク軸29の外周面に限られず、例えばクランク軸29の内周面等であってもよい。水晶片は、ベースに保持されており、ベースの変形(歪み)に応じて変形(伸縮)する。すなわち水晶片は、クランク軸29の変形(歪み)に応じて変形(伸縮)する。 The crystal oscillator 900 includes, for example, a base, a crystal piece held by the base, a pair of electrodes connected to the crystal piece, and a cover fixed to the base so as to cover the crystal piece. The base is attached to the crankshaft 29 . In this embodiment, the base is attached to the outer peripheral surface of the crankshaft 29 (rotating body 98). The base deforms (distorts) according to the deformation (distortion) of the outer peripheral surface of the crankshaft 29 . The mounting location of the base is not limited to the outer peripheral surface of the crankshaft 29, and may be the inner peripheral surface of the crankshaft 29, for example. The crystal blank is held by the base and deforms (stretches) according to the deformation (distortion) of the base. That is, the crystal piece deforms (expands and contracts) according to the deformation (distortion) of the crank shaft 29 .
 図1に、水晶振動子900の等価回路を示す。水晶振動子900の等価回路は、等価直列抵抗Rc、直列インダクタンスLc、及び直列容量Ccの直列回路と、並列容量Cと、の並列回路で表される。水晶片が変形(伸縮)すると、水晶振動子900の直列容量Ccの値が変化する。 FIG. 1 shows an equivalent circuit of the crystal oscillator 900. As shown in FIG. An equivalent circuit of the crystal oscillator 900 is represented by a parallel circuit of a series circuit of an equivalent series resistance Rc, a series inductance Lc, and a series capacitance Cc, and a parallel capacitance C0 . When the crystal blank deforms (expands and contracts), the value of the series capacitance Cc of the crystal resonator 900 changes.
 図2に示すように、第1コイル91は、回転体98としてのクランク軸29に巻き回されている。第1コイル91は、螺旋状に巻き回されている。第1コイル91は、例えば樹脂製のボビンの周りで、クランク軸29に巻き回されている。第1コイル91の両端は、水晶デバイス90の両端(水晶振動子900の一対の電極)とそれぞれ電気的に接続されている。 As shown in FIG. 2 , the first coil 91 is wound around the crankshaft 29 as a rotating body 98 . The first coil 91 is spirally wound. The first coil 91 is wound around the crankshaft 29 around a resin bobbin, for example. Both ends of the first coil 91 are electrically connected to both ends of the crystal device 90 (a pair of electrodes of the crystal oscillator 900).
 図2、図3に示すように、第2コイル92は、非回転体99としてのハウジング31に保持されている。第2コイル92は、第1コイル91の外周面に巻き回されている。第2コイル92は、螺旋状に巻き回されている。第2コイル92は、例えば樹脂製のボビンの周りに巻き回されている。図3に示すように、第2コイル92と第1コイル91との間には、空隙G1がある。そのため、第1コイル91が回転体98(クランク軸29)と一緒に回転しても、第2コイル92は回転しない。第2コイル92は、第1コイル91と磁気結合(トランス結合)されている。第1コイル91と第2コイル92とで、トランスTr1が構成される。 As shown in FIGS. 2 and 3, the second coil 92 is held by the housing 31 as the non-rotating body 99. As shown in FIG. The second coil 92 is wound around the outer peripheral surface of the first coil 91 . The second coil 92 is spirally wound. The second coil 92 is wound around a resin bobbin, for example. As shown in FIG. 3, there is a gap G1 between the second coil 92 and the first coil 91. As shown in FIG. Therefore, even if the first coil 91 rotates together with the rotating body 98 (crankshaft 29), the second coil 92 does not rotate. The second coil 92 is magnetically coupled (transformed) to the first coil 91 . The first coil 91 and the second coil 92 constitute a transformer Tr1.
 図1に示すように、一対の入力端931,932の間には、交流の電圧源93が接続される。電圧源93は、非回転体99としてのハウジング31に保持される。電圧源93は、高周波電源であり得る。電圧源93からの交流電圧の周波数は、例えば、水晶デバイス900の共振周波数と同程度或いは同程度のオーダーであることが好ましい。 As shown in FIG. 1, an AC voltage source 93 is connected between a pair of input terminals 931 and 932 . Voltage source 93 is held in housing 31 as non-rotating body 99 . Voltage source 93 may be a high frequency power supply. The frequency of the AC voltage from the voltage source 93 is preferably, for example, the same or on the same order as the resonant frequency of the crystal device 900 .
 電流センサ94は、非回転体99としてのハウジング31に保持される。電流センサ94は、第2コイル92に流れる交流電流を検出する。 The current sensor 94 is held by the housing 31 as the non-rotating body 99 . A current sensor 94 detects alternating current flowing through the second coil 92 .
 トルク検出部95は、非回転体99としてのハウジング31に保持される。トルク検出部95は、電圧源93に接続されている。トルク検出部95は、電圧源93からの出力電圧の情報を示す信号を受け取る。電圧源93からの出力電圧の情報は、出力電圧の位相の情報を含む。トルク検出部95は、電流センサ94に接続されている。トルク検出部95は、電流センサ94で検出される交流電流の情報を示す信号を受け取る。電流センサ94で検出される交流電流の情報は、交流電流の位相の情報を含む。トルク検出部95は、電圧源93からの出力電圧の位相と電流センサ94で検出される電流の位相との間の位相差Δθを検出する。 The torque detector 95 is held by the housing 31 as the non-rotating body 99 . The torque detector 95 is connected to the voltage source 93 . The torque detector 95 receives a signal indicating information on the output voltage from the voltage source 93 . Information on the output voltage from the voltage source 93 includes information on the phase of the output voltage. The torque detector 95 is connected to the current sensor 94 . The torque detector 95 receives a signal indicating information on the alternating current detected by the current sensor 94 . Information on the alternating current detected by the current sensor 94 includes information on the phase of the alternating current. The torque detector 95 detects a phase difference Δθ between the phase of the output voltage from the voltage source 93 and the phase of the current detected by the current sensor 94 .
 上述のように、クランク軸29(回転体98)が変形することで水晶片が変形(伸縮)すると、水晶振動子900の直列容量Ccの値が変化する。電圧源93からの出力電圧の位相に対する第2コイル92を流れる電流の位相の位相差Δθは、水晶振動子900のリアクタンス(直列容量Cc)に依存する。そのため、クランク軸29(回転体98)に加えられるトルクに応じて水晶振動子900の直列容量Ccの値が変化すると、位相差Δθが変化する(図4参照)。逆に、位相差Δθの変化(変化量)から、水晶振動子900の直列容量Ccの値の変化(変化量)を検出することができ、クランク軸29(回転体98)に加えられたトルクを検出することができる。位相差Δθの変化とクランク軸29に加えられたトルクとの間の関係は、例えばデータテーブル、関係式等の形で、メモリに記録されている。要するに、トルク検出部95は、電圧源93からの出力電圧の位相と電流センサ94で検出される電流の位相との間の位相差Δθ(位相差Δθの変化量)に基づいて、回転体98(クランク軸29)に加えられるトルクを検出する。 As described above, when the crystal blank deforms (expands and contracts) due to deformation of the crankshaft 29 (rotating body 98), the value of the series capacitance Cc of the crystal oscillator 900 changes. The phase difference Δθ between the phase of the output voltage from the voltage source 93 and the phase of the current flowing through the second coil 92 depends on the reactance (series capacitance Cc) of the crystal oscillator 900 . Therefore, when the value of the series capacitance Cc of the crystal oscillator 900 changes according to the torque applied to the crankshaft 29 (rotating body 98), the phase difference Δθ changes (see FIG. 4). Conversely, a change (amount of change) in the value of the series capacitance Cc of the crystal oscillator 900 can be detected from a change (amount of change) in the phase difference Δθ. can be detected. The relationship between the change in the phase difference Δθ and the torque applied to the crankshaft 29 is recorded in memory, for example, in the form of a data table, relational expression, or the like. In short, the torque detection unit 95 detects the rotation of the rotating body 98 based on the phase difference Δθ between the phase of the output voltage from the voltage source 93 and the phase of the current detected by the current sensor 94 (amount of change in the phase difference Δθ). Detects torque applied to (crankshaft 29).
 本実施形態では、トルク検出装置9は、図2に示すように、水晶デバイス90(水晶振動子900)を2個備えている。2個の水晶デバイス90(水晶振動子900)は、クランク軸29の周面に取り付けられる。本実施形態では、2個の水晶振動子900は、クランク軸29の軸方向に沿って並ぶように配置されている。なお、図1では、2個の水晶デバイス90(水晶振動子900)のうちの一方のみを図示し、他方の図示を省略している。以下では、2個の水晶振動子900を区別する場合、第1水晶振動子901、第2水晶振動子902ともいう。 In this embodiment, the torque detection device 9 includes two crystal devices 90 (crystal oscillators 900), as shown in FIG. Two crystal devices 90 (crystal oscillators 900 ) are attached to the peripheral surface of the crankshaft 29 . In this embodiment, the two crystal oscillators 900 are arranged side by side along the axial direction of the crankshaft 29 . In FIG. 1, only one of the two crystal devices 90 (crystal oscillators 900) is illustrated, and the illustration of the other is omitted. Hereinafter, the two crystal oscillators 900 are also referred to as a first crystal oscillator 901 and a second crystal oscillator 902 when they are distinguished from each other.
 第1水晶振動子901は、主として第1方向A1での変形(伸縮)に応じて、その直列容量Ccが変化する。第1方向A1は、クランク軸29の径方向から見て、クランク軸29の回転軸と45度の角度で交差する方向である。長手方向(第1方向A1)が回転軸980に対して45度の角度で交差するように回転体98に取り付けられている第1水晶振動子901は、主として、回転体98に加えられる図2の右側から見て時計回り方向のトルクに応じて変形する(伸びる)。第1水晶振動子901は、第1方向A1におけるクランク軸29の変形(歪み)を検出する。第1水晶振動子901は、例えば、第1方向A1に長い矩形板状に形成されている。 The series capacitance Cc of the first crystal oscillator 901 changes mainly according to deformation (expansion and contraction) in the first direction A1. The first direction A1 is a direction that intersects the rotation axis of the crankshaft 29 at an angle of 45 degrees when viewed from the radial direction of the crankshaft 29 . A first crystal oscillator 901 attached to the rotating body 98 so that its longitudinal direction (first direction A1) intersects the rotating shaft 980 at an angle of 45 degrees is mainly applied to the rotating body 98. is deformed (stretched) according to torque in the clockwise direction when viewed from the right side of the . The first crystal oscillator 901 detects deformation (distortion) of the crankshaft 29 in the first direction A1. The first crystal oscillator 901 is, for example, shaped like a rectangular plate elongated in the first direction A1.
 第2水晶振動子902は、主として第2方向A2での変形(伸縮)に応じて、その直列容量Ccが変化する。第2方向A2は、クランク軸29の径方向から見て、クランク軸29の回転軸と135度(-45度)の角度で交差する方向である。長手方向(第2方向A2)が回転軸980に対して135度の角度で交差するように回転体98に取り付けられている第2水晶振動子902は、主として、回転体98に加えられる図2の右側から見て反時計回り方向のトルクに応じて変形する(伸びる)。第2水晶振動子902は、第2方向A2におけるクランク軸29の変形(歪み)を検出する。第2水晶振動子902は、例えば、第2方向A2に長い矩形板状に形成されている。 The series capacitance Cc of the second crystal oscillator 902 changes mainly according to deformation (expansion and contraction) in the second direction A2. The second direction A2 is a direction that intersects the rotation axis of the crankshaft 29 at an angle of 135 degrees (−45 degrees) when viewed from the radial direction of the crankshaft 29 . A second crystal oscillator 902 attached to the rotating body 98 so that its longitudinal direction (second direction A2) intersects the rotating shaft 980 at an angle of 135 degrees is mainly applied to the rotating body 98. is deformed (stretched) according to torque in the counterclockwise direction when viewed from the right side of the . The second crystal oscillator 902 detects deformation (distortion) of the crankshaft 29 in the second direction A2. The second crystal oscillator 902 is, for example, shaped like a rectangular plate elongated in the second direction A2.
 このように、2個の水晶振動子900(第1水晶振動子901及び第2水晶振動子902)は、互いに異なる角度でクランク軸29の回転軸(回転体98の回転軸980)と交差するように、クランク軸29に取り付けられる。2個の水晶デバイス90(水晶振動子900)を、互いに異なる角度で回転軸980と交差するように回転体98に取り付けることで、回転体98に加えられる異なる向きのトルクを検出することが可能となる。本実施形態では、2個の水晶振動子900は、互いの長手方向が90度の角度で交差するように、クランク軸29に取り付けられる。2個の水晶振動子900では、水晶片の形状が互いに同じである。2個の水晶振動子900では、その長手方向に対する水晶片の結晶軸が、互いに同じである。例えば、2個の水晶振動子900は、いずれもATカット振動子である。それぞれがATカット振動子である2個の水晶振動子900は、例えば、回転体98の径方向から見て、水晶振動子900の厚みすべり振動方向が回転体98の回転軸980と45度及び135度の角度で交差するように、回転体98に取り付けられている。 Thus, the two crystal oscillators 900 (the first crystal oscillator 901 and the second crystal oscillator 902) intersect the rotation axis of the crankshaft 29 (the rotation axis 980 of the rotating body 98) at different angles. , is attached to the crankshaft 29. As shown in FIG. By attaching two crystal devices 90 (crystal oscillators 900) to the rotating body 98 so that they intersect the rotating shaft 980 at different angles, it is possible to detect torques applied to the rotating body 98 in different directions. becomes. In this embodiment, the two crystal oscillators 900 are attached to the crankshaft 29 so that their longitudinal directions intersect each other at an angle of 90 degrees. The two crystal vibrators 900 have the same crystal piece shape. The two crystal oscillators 900 have the same crystal axis of the crystal piece with respect to the longitudinal direction. For example, both of the two crystal oscillators 900 are AT cut oscillators. The two crystal oscillators 900, each of which is an AT-cut oscillator, are configured so that, for example, when viewed from the radial direction of the rotating body 98, the thickness-shear vibration direction of the crystal oscillators 900 is 45 degrees from the rotation axis 980 of the rotating body 98 and It is attached to the rotor 98 so as to intersect at an angle of 135 degrees.
 図8に示すように、2個の水晶デバイス90(第1水晶振動子901及び第2水晶振動子902)は、第1コイル91に対して、電気的に並列に接続されている。並列接続された2個の水晶振動子900の等価回路は、例えば図1に示す水晶振動子900の等価回路と同じ回路で表される。ただし、2個の水晶振動子900の等価回路は、1個の水晶振動子900の等価回路と、回路定数(直列容量Ccの値、直列インダクタンスLcの値等)が異なる。2個の水晶振動子900の等価回路の直列容量Ccは、第1水晶振動子901の変形(伸縮)に応じて変化する。また、2個の水晶振動子900の等価回路の直列容量Ccは、第2水晶振動子902の変形(伸縮)に応じて変化する。互いに異なる角度で回転軸980と交差するように回転体98に取り付けられた2個の水晶デバイス90(水晶振動子900)を、電圧源93(ここでは第1コイル91)に対して互いに並列に接続することで、回転体98に加えられる異なる向きのトルクを1つの電圧源93を用いて検出することが可能となる。 As shown in FIG. 8, two crystal devices 90 (a first crystal oscillator 901 and a second crystal oscillator 902) are electrically connected in parallel to the first coil 91. An equivalent circuit of the two crystal oscillators 900 connected in parallel is represented by, for example, the same circuit as the equivalent circuit of the crystal oscillator 900 shown in FIG. However, the equivalent circuit of two crystal oscillators 900 differs from the equivalent circuit of one crystal oscillator 900 in circuit constants (series capacitance Cc value, series inductance Lc value, etc.). The series capacitance Cc of the equivalent circuit of the two crystal oscillators 900 changes according to the deformation (expansion and contraction) of the first crystal oscillator 901 . Also, the series capacitance Cc of the equivalent circuit of the two crystal oscillators 900 changes according to the deformation (expansion and contraction) of the second crystal oscillator 902 . Two crystal devices 90 (crystal resonators 900) attached to a rotating body 98 so as to intersect the rotation axis 980 at different angles are connected in parallel to each other with respect to the voltage source 93 (here, the first coil 91). By connecting them, it becomes possible to detect different directions of torque applied to the rotating body 98 using one voltage source 93 .
 踏力検出装置82は、トルク検出装置9で検出したトルクに基づいて、ユーザからの踏力を検出する。 The pedaling force detection device 82 detects the pedaling force from the user based on the torque detected by the torque detection device 9 .
 このように、本実施形態のトルク検出装置9は、位相差Δθの変化をトルク検出部95によって検出することで、回転体98に加えられたトルクを検出することが可能となる。また、本実施形態のトルク検出装置9は、トランスTr1を介して水晶デバイス90と電圧源93とを接続することで、特許文献1のトルクセンサに比べて回転体98の構成を簡略化することが可能となる。 Thus, the torque detection device 9 of the present embodiment can detect the torque applied to the rotating body 98 by detecting the change in the phase difference Δθ with the torque detection section 95 . Further, in the torque detection device 9 of the present embodiment, by connecting the crystal device 90 and the voltage source 93 via the transformer Tr1, the configuration of the rotating body 98 is simplified as compared with the torque sensor of Patent Document 1. becomes possible.
 (3)変形例
 上記実施形態は、本開示の様々な実施形態の一つに過ぎない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。
(3) Modifications The embodiment described above is merely one of various embodiments of the present disclosure. The above-described embodiment can be modified in various ways according to design and the like, as long as the object of the present disclosure can be achieved.
 以下、上記実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。 Modifications of the above embodiment are listed below. Modifications described below can be applied in combination as appropriate.
 本開示におけるトルク検出装置9を備えた器具10では、トルク検出部95、制御システム3等に、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における駆動システム1としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1ないし複数の電子回路で構成される。 In the instrument 10 provided with the torque detection device 9 according to the present disclosure, the torque detection section 95, the control system 3, etc. include a computer system. A computer system is mainly composed of a processor and a memory as hardware. The function of the drive system 1 in the present disclosure is realized by the processor executing a program recorded in the memory of the computer system. The program may be recorded in advance in the memory of the computer system, may be provided through an electric communication line, or may be recorded in a non-temporary recording medium such as a computer system-readable memory card, optical disk, or hard disk drive. may be provided. A processor in a computer system consists of one or more electronic circuits, including semiconductor integrated circuits (ICs) or large scale integrated circuits (LSIs). Integrated circuits such as ICs or LSIs are called differently depending on the degree of integration, and include integrated circuits called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). In addition, FPGAs (Field-Programmable Gate Arrays), which are programmed after the LSI is manufactured, or logic devices capable of reconfiguring the connection relationships inside the LSI or reconfiguring the circuit partitions inside the LSI, shall also be adopted as processors. can be done. A plurality of electronic circuits may be integrated into one chip, or may be distributed over a plurality of chips. A plurality of chips may be integrated in one device, or may be distributed in a plurality of devices. A computer system, as used herein, includes a microcontroller having one or more processors and one or more memories. Accordingly, the microcontroller also consists of one or more electronic circuits including semiconductor integrated circuits or large scale integrated circuits.
 また、制御システム3における複数の機能が、1つのハウジング内に集約されていることは必須の構成ではない。制御システム3の構成要素は、複数のハウジングに分散して設けられていてもよい。反対に、制御システム3における複数の機能が、1つのハウジング内に集約されてもよい。さらに、制御システム3の少なくとも一部の機能がクラウド(クラウドコンピューティング)等によって実現されてもよい。 Also, it is not an essential configuration that the multiple functions of the control system 3 are integrated in one housing. The components of the control system 3 may be distributed over multiple housings. Conversely, multiple functions in control system 3 may be combined in one housing. Furthermore, at least part of the functions of the control system 3 may be realized by a cloud (cloud computing) or the like.
 水晶デバイス90は、水晶振動子900に限られない。一変形例において、水晶デバイス90は、SAW(Surface Acoustic Wave)フィルタであってもよい。SAWフィルタは、水晶から形成される圧電基板と、圧電基板上に形成された2つのくし型電極(IDT)と、を備える。SAWフィルタは、圧電基板の特性及びIDTの周期で決まる選択周波数の電気信号が入力されたときにのみ弾性表面波が励起される。選択周波数は、SAWフィルタの圧電基板の変形に応じて変化する。トルク検出部95は、選択周波数の変化に基づいて、SAWフィルタの圧電基板の変形、ひいては回転体98(クランク軸29)に加えられるトルクを検出する。 The crystal device 90 is not limited to the crystal resonator 900. In one modification, the crystal device 90 may be a SAW (Surface Acoustic Wave) filter. A SAW filter comprises a piezoelectric substrate made of quartz and two interdigitated electrodes (IDTs) formed on the piezoelectric substrate. The SAW filter excites a surface acoustic wave only when an electrical signal of a selected frequency determined by the characteristics of the piezoelectric substrate and the cycle of the IDT is input. The selected frequency changes according to the deformation of the piezoelectric substrate of the SAW filter. The torque detector 95 detects deformation of the piezoelectric substrate of the SAW filter and, in turn, torque applied to the rotating body 98 (crankshaft 29) based on the change in the selected frequency.
 一変形例において、図9に示すように、第1コイル91は、水晶デバイス90を覆うように回転体98に取り付けられてもよい。これにより、トルク検出装置9のコンパクト化を図ることが可能となる。本変形例では、図9に示すように、第2コイル92も、水晶デバイス90を覆っている。なお、水晶デバイス90の全体が第1コイル91に覆われていなくてもよく、例えば水晶デバイス90の一部のみが第1コイル91に覆われていてもよい。 In one modification, the first coil 91 may be attached to the rotating body 98 so as to cover the crystal device 90, as shown in FIG. As a result, the torque detection device 9 can be made compact. In this modification, the second coil 92 also covers the crystal device 90, as shown in FIG. The entire crystal device 90 may not be covered with the first coil 91 , and for example, only a portion of the crystal device 90 may be covered with the first coil 91 .
 第1方向A1とクランク軸29の回転軸とのなす角度は、45度に限られない。第2方向A2とクランク軸29とのなす角度は、135度に限られない。一変形例において、第1方向A1とクランク軸29の回転軸とのなす角度は、30~60度の範囲であってもよく、40~50度の範囲であってもよい。第2方向A2とクランク軸29の回転軸とのなす角度は、120~150度の範囲であってもよく、130~140度の範囲であってもよい。一変形例において、第1方向A1とクランク軸29の回転軸とのなす角度が90度、第2方向A2とクランク軸29の回転軸とのなす角度が0度であってもよい。 The angle between the first direction A1 and the rotation axis of the crankshaft 29 is not limited to 45 degrees. The angle formed by the second direction A2 and the crankshaft 29 is not limited to 135 degrees. In one modification, the angle between the first direction A1 and the rotation axis of the crankshaft 29 may be in the range of 30 to 60 degrees, or in the range of 40 to 50 degrees. The angle between the second direction A2 and the rotation axis of the crankshaft 29 may be in the range of 120 to 150 degrees, or may be in the range of 130 to 140 degrees. In a modified example, the angle between the first direction A1 and the rotation axis of the crankshaft 29 may be 90 degrees, and the angle between the second direction A2 and the rotation axis of the crankshaft 29 may be 0 degrees.
 一変形例において、トルク検出装置9は、1個又は3個以上の水晶デバイス90を備えていてもよい。例えば、回転体98の外周面において、2個の水晶デバイス90の裏側となる部分に、追加の水晶デバイス90が取り付けられていてもよい。 In one modification, the torque detection device 9 may include one or more than three crystal devices 90 . For example, an additional crystal device 90 may be attached to the back side of the two crystal devices 90 on the outer peripheral surface of the rotating body 98 .
 一変形例において、トルク検出部95は、処理部30の一部であってもよい。 In one modification, the torque detector 95 may be part of the processor 30 .
 一変形例において、第2コイル92、電圧源93、電流センサ94、及びトルク検出部95は、ハウジング31以外の非回転体99、例えば下パイプ74に保持されていてもよい。第2コイル92、電圧源93、電流センサ94、及びトルク検出部95は、互いに異なる非回転体99に保持されていてもよい。 In one modification, the second coil 92, the voltage source 93, the current sensor 94, and the torque detector 95 may be held by a non-rotating body 99 other than the housing 31, such as the lower pipe 74. The second coil 92, the voltage source 93, the current sensor 94, and the torque detector 95 may be held by non-rotating bodies 99 different from each other.
 器具10は、自転車(電動アシスト付き自転車)100に限られない。一変形例において、器具10は、電動アシスト付き自転車100以外の電動アシスト付き車両(一輪車、三輪車等)であってもよいし、モータ50からの動力のみで移動可能な電動自転車であってもよいし、モータ等の動力機構を備えていない車両(二輪車、三輪車等)であってもよい。一変形例において、器具10は、健康器具、具体的にはエルゴメータであってもよい。健康器具は、地面に載置される本体を更に備える。本体は、クランク軸29を回転可能に保持する。 The device 10 is not limited to the bicycle (electrically assisted bicycle) 100. In a modified example, the device 10 may be a vehicle with an electric power assist (a unicycle, a tricycle, etc.) other than the electric power assist bicycle 100, or may be an electric bicycle that can be moved only by the power from the motor 50. However, it may be a vehicle (two-wheeled vehicle, three-wheeled vehicle, etc.) that does not have a power mechanism such as a motor. In one variation, device 10 may be a fitness device, specifically an ergometer. The fitness equipment further comprises a body resting on the ground. The body rotatably holds the crankshaft 29 .
 (4)まとめ
 以上説明したように、第1の態様のトルク検出装置(9)は、水晶デバイス(90)と、第1コイル(91)と、第2コイル(92)と、一対の入力端(931,932)と、電流センサ(94)と、トルク検出部(95)と、を備える。水晶デバイス(90)は、回転体(98)に取り付けられる。回転体(98)は、非回転体(99)に対して回転軸(980)を中心として回転する。第1コイル(91)は、回転軸(980)の周りで回転体(98)に巻き回されている。第1コイル(91)は、水晶デバイス(90)と電気的に接続されている。第2コイル(92)は、非回転体(99)に保持されている。第2コイル(92)は、第1コイル(91)の外周面に空隙(G1)を挟んで巻き回されている。第2コイル(92)は、第1コイル(91)と磁気結合されている。一対の入力端(931,932)は、第2コイル(92)の両端にそれぞれ接続されている。一対の入力端(931,932)には、交流の電圧源(93)が接続される。電流センサ(94)は、非回転体(99)に保持されている。電流センサ(94)は、第2コイル(92)に流れる電流を検出する。トルク検出部(95)は、非回転体(99)に保持されている。トルク検出部(95)は、電圧源(93)からの出力電圧の位相と電流センサ(94)で検出される電流の位相との間の位相差(Δθ)に基づいて、回転体(98)に加えられるトルクを検出する。
(4) Summary As described above, the torque detector (9) of the first aspect includes a crystal device (90), a first coil (91), a second coil (92), and a pair of input terminals. (931, 932), a current sensor (94), and a torque detector (95). A crystal device (90) is mounted on a rotating body (98). The rotating body (98) rotates about the rotation axis (980) with respect to the non-rotating body (99). A first coil (91) is wound around a rotating body (98) around a rotating shaft (980). The first coil (91) is electrically connected with the crystal device (90). The second coil (92) is held by a non-rotating body (99). The second coil (92) is wound around the outer peripheral surface of the first coil (91) with a gap (G1) interposed therebetween. The second coil (92) is magnetically coupled with the first coil (91). A pair of input terminals (931, 932) are connected to both ends of the second coil (92). An AC voltage source (93) is connected to the pair of input terminals (931, 932). A current sensor (94) is held on a non-rotating body (99). A current sensor (94) detects the current flowing through the second coil (92). A torque detector (95) is held by a non-rotating body (99). A torque detector (95) detects a rotor (98) based on a phase difference (Δθ) between the phase of the output voltage from the voltage source (93) and the phase of the current detected by the current sensor (94). Detects the torque applied to
 この態様によれば、回転体(98)に加えられたトルクを検出することができる。また、特許文献1のトルクセンサに比べて回転体(98)の構成の簡略化が可能となる。 According to this aspect, the torque applied to the rotating body (98) can be detected. In addition, compared to the torque sensor of Patent Document 1, it is possible to simplify the configuration of the rotating body (98).
 第2の態様のトルク検出装置(9)は、第1の態様において、水晶デバイス(90)を2個備える。2個の水晶デバイス(90)は、回転体(98)の周面に取り付けられる。2個の水晶デバイス(90)は、回転軸(980)と互いに異なる角度で交差するように回転体(98)に取り付けられる。 The torque detection device (9) of the second aspect includes two crystal devices (90) in the first aspect. Two crystal devices (90) are attached to the peripheral surface of the rotating body (98). The two crystal devices (90) are attached to the rotating body (98) so as to intersect the rotating shaft (980) at different angles.
 この態様によれば、回転体(98)に加えられる異なる向きのトルクを検出することが可能となる。 According to this aspect, it is possible to detect different directions of torque applied to the rotating body (98).
 第3の態様のトルク検出装置(9)では、第2の態様において、2個の水晶デバイス(90)は、第1コイル(91)に対して、電気的に互いに並列に接続されている。 In the torque detection device (9) of the third aspect, in the second aspect, the two crystal devices (90) are electrically connected in parallel to the first coil (91).
 この態様によれば、回転体(98)に加えられる異なる向きのトルクを検出することが可能となる。 According to this aspect, it is possible to detect different directions of torque applied to the rotating body (98).
 第4の態様のトルク検出装置(9)では、第1~第3のいずれか1つの態様において、第1コイル(91)は、水晶デバイス(90)を覆うように回転体(98)に取り付けられる。 In the torque detection device (9) of the fourth aspect, in any one of the first to third aspects, the first coil (91) is attached to the rotating body (98) so as to cover the crystal device (90) be done.
 この態様によれば、トルク検出装置(9)のコンパクト化を図ることが可能となる。 According to this aspect, it is possible to make the torque detection device (9) compact.
 第5の態様の器具(10)は、第1~第4のいずれか1つの態様のトルク検出装置(9)と、回転体(98)としてのクランク軸(29)と、クランク軸(29)に連結されており、外部からの踏力を受けてクランク軸(29)を回転させるペダル(26)と、を備える。 A fifth aspect of the instrument (10) comprises the torque detection device (9) of any one of the first to fourth aspects, a crankshaft (29) as a rotating body (98), and a crankshaft (29) and a pedal (26) connected to the crankshaft (26) for rotating the crankshaft (29) by receiving a pedaling force from the outside.
 この態様によれば、トルク検出装置(9)によって、器具(10)のクランク軸(29)に加えられるトルクを検出することが可能となる。 According to this aspect, it is possible to detect the torque applied to the crankshaft (29) of the instrument (10) by the torque detection device (9).
 第6の態様の器具は、第5の態様において、クランク軸(29)の回転に応じて回転する車輪(20)を更に備える。 The instrument of the sixth aspect, in the fifth aspect, further comprises a wheel (20) that rotates according to the rotation of the crankshaft (29).
 この態様によれば、トルク検出装置(9)によって、車輪(20)を備えた器具(10)のクランク軸(29)に加えられるトルクを検出することが可能となる。 According to this aspect, the torque detection device (9) makes it possible to detect the torque applied to the crankshaft (29) of the instrument (10) with wheels (20).
 第7の態様の器具は、第6の態様において、車輪(20)に動力を与えるモータ(50)と、トルク検出装置(9)で検出されたトルクに基づいて、踏力に対する動力に関するアシスト比を制御する処理部(3)と、を更に備える。 In the instrument of the seventh aspect, in the sixth aspect, based on the torque detected by the motor (50) that powers the wheel (20) and the torque detection device (9), the assist ratio of the power to the pedaling force is determined. and a controlling processor (3).
 この態様によれば、トルク検出装置(9)で検出されたトルクに基づいて、アシスト比を調整することが可能となる。 According to this aspect, it is possible to adjust the assist ratio based on the torque detected by the torque detection device (9).
 第8の態様の器具は、第5の態様において、クランク軸(29)を回転可能に保持し地面に載置される本体を、更に備える。 The instrument of the eighth aspect, in the fifth aspect, further comprises a body that rotatably holds the crankshaft (29) and rests on the ground.
 この態様によれば、トルク検出装置(9)によって、器具(10)のクランク軸(29)に加えられるトルクを検出することが可能となる。 According to this aspect, it is possible to detect the torque applied to the crankshaft (29) of the instrument (10) by the torque detection device (9).
 9 トルク検出装置
 90 水晶デバイス
 91 第1コイル
 92 第2コイル
 931,932 入力端
 93 電圧源
 94 電流センサ
 95 トルク検出部
 98 回転体
 980 回転軸
 99 非回転体
 10 器具
 20 車輪
 26 ペダル
 29 クランク軸
 G1 空隙
 Δθ 位相差
9 torque detector 90 crystal device 91 first coil 92 second coil 931, 932 input end 93 voltage source 94 current sensor 95 torque detector 98 rotating body 980 rotating shaft 99 non-rotating body 10 instrument 20 wheel 26 pedal 29 crankshaft G1 Air gap Δθ Phase difference

Claims (8)

  1.  非回転体に対して回転軸を中心として回転する回転体に取り付けられる、水晶デバイスと、
     前記回転軸の周りで前記回転体に巻き回されており、前記水晶デバイスと電気的に接続されている第1コイルと、
     前記非回転体に保持されており、前記第1コイルの外周面に空隙を挟んで巻き回されており、前記第1コイルと磁気結合されている第2コイルと、
     前記第2コイルの両端にそれぞれ接続されており、交流の電圧源が接続される一対の入力端と、
     前記非回転体に保持されており、前記第2コイルに流れる電流を検出する電流センサと、
     前記非回転体に保持されており、前記電圧源からの出力電圧の位相と前記電流センサで検出される前記電流の位相との間の位相差に基づいて、前記回転体に加えられるトルクを検出するトルク検出部と、
    を備える、
     トルク検出装置。
    a quartz crystal device mounted on a rotating body that rotates about an axis of rotation relative to a non-rotating body;
    a first coil wound around the rotating body around the rotating shaft and electrically connected to the crystal device;
    a second coil held by the non-rotating body, wound around the outer peripheral surface of the first coil with a gap therebetween, and magnetically coupled to the first coil;
    a pair of input terminals connected to both ends of the second coil and connected to an AC voltage source;
    a current sensor held by the non-rotating body and detecting a current flowing through the second coil;
    It is held by the non-rotating body and detects the torque applied to the rotating body based on the phase difference between the phase of the output voltage from the voltage source and the phase of the current detected by the current sensor. a torque detection unit for
    comprising
    Torque detector.
  2.  前記水晶デバイスを2個備え、
     前記2個の水晶デバイスは、前記回転体の周面に取り付けられ、
     前記2個の水晶デバイスは、前記回転軸と互いに異なる角度で交差するように前記回転体に取り付けられる、
     請求項1に記載のトルク検出装置。
    Equipped with two crystal devices,
    The two crystal devices are attached to the peripheral surface of the rotating body,
    The two crystal devices are attached to the rotating body so as to intersect the rotating shaft at different angles.
    The torque detection device according to claim 1.
  3.  前記2個の水晶デバイスは、前記第1コイルに対して、電気的に互いに並列に接続されている、
     請求項2に記載のトルク検出装置。
    The two crystal devices are electrically connected in parallel with each other with respect to the first coil.
    The torque detection device according to claim 2.
  4.  前記第1コイルは、前記水晶デバイスを覆うように前記回転体に取り付けられる、
     請求項1~3のいずれか1項に記載のトルク検出装置。
    The first coil is attached to the rotating body so as to cover the crystal device,
    A torque detection device according to any one of claims 1 to 3.
  5.  請求項1~4のいずれか1項に記載のトルク検出装置と、
     前記回転体としてのクランク軸と、
     前記クランク軸に連結されており、外部からの踏力を受けて前記クランク軸を回転させるペダルと、
    を備える、
     器具。
    A torque detection device according to any one of claims 1 to 4;
    a crankshaft as the rotating body;
    a pedal that is connected to the crankshaft and rotates the crankshaft by receiving a pedaling force from the outside;
    comprising
    instrument.
  6.  前記クランク軸の回転に応じて回転する車輪を更に備える、
     請求項5に記載の器具。
    Further comprising a wheel that rotates according to the rotation of the crankshaft,
    6. A device according to claim 5.
  7.  前記車輪に動力を与えるモータと、
     前記トルク検出装置で検出された前記トルクに基づいて、前記踏力に対する前記動力に関するアシスト比を制御する処理部と、
    を更に備える、
     請求項6に記載の器具。
    a motor that powers the wheels;
    a processing unit that controls an assist ratio related to the power with respect to the pedaling force based on the torque detected by the torque detection device;
    further comprising
    7. A device according to claim 6.
  8.  前記クランク軸を回転可能に保持し、地面に載置される本体を、更に備える、
     請求項5に記載の器具。
    a body that rotatably holds the crankshaft and rests on the ground;
    6. A device according to claim 5.
PCT/JP2021/048629 2021-02-25 2021-12-27 Torque detection device and mechanism WO2022181045A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021029255 2021-02-25
JP2021-029255 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022181045A1 true WO2022181045A1 (en) 2022-09-01

Family

ID=83048812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048629 WO2022181045A1 (en) 2021-02-25 2021-12-27 Torque detection device and mechanism

Country Status (1)

Country Link
WO (1) WO2022181045A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872781A (en) * 1994-09-07 1996-03-19 Honda Motor Co Ltd Pedaling force detector in bicycle with assist motor
JPH11132878A (en) * 1997-08-29 1999-05-21 Toyota Autom Loom Works Ltd Torque sensor
JP2001153737A (en) * 1999-09-13 2001-06-08 Tokin Corp Capacitance type torque sensor and torque detection method
JP2001272289A (en) * 2000-03-02 2001-10-05 Eaton Corp Manufacturing method for torque transducer, detection method for torque, and torque sensor
US20160185419A1 (en) * 2013-05-17 2016-06-30 Robert Bosch Gmbh A vehicle which is operable by a motor and by muscular energy and has an improved torque sensor
JP2020067282A (en) * 2018-10-22 2020-04-30 国立大学法人豊橋技術科学大学 Chemical and physical phenomenon detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872781A (en) * 1994-09-07 1996-03-19 Honda Motor Co Ltd Pedaling force detector in bicycle with assist motor
JPH11132878A (en) * 1997-08-29 1999-05-21 Toyota Autom Loom Works Ltd Torque sensor
JP2001153737A (en) * 1999-09-13 2001-06-08 Tokin Corp Capacitance type torque sensor and torque detection method
JP2001272289A (en) * 2000-03-02 2001-10-05 Eaton Corp Manufacturing method for torque transducer, detection method for torque, and torque sensor
US20160185419A1 (en) * 2013-05-17 2016-06-30 Robert Bosch Gmbh A vehicle which is operable by a motor and by muscular energy and has an improved torque sensor
JP2020067282A (en) * 2018-10-22 2020-04-30 国立大学法人豊橋技術科学大学 Chemical and physical phenomenon detector

Similar Documents

Publication Publication Date Title
TWI488768B (en) Self-balancing single-wheel transportation device
WO2014184826A1 (en) Electrically assisted bicycle
JP6679404B2 (en) Drive unit and electric bicycle
JP5453550B2 (en) Saddle-type electric vehicle power unit and saddle-type electric vehicle
JP2024028573A (en) Drive unit and electric assist bicycle
JP2006347427A (en) Hybrid type straddling type vehicle
WO2022181045A1 (en) Torque detection device and mechanism
JP6226120B2 (en) Electric assist bicycle
WO2022181044A1 (en) Torque detection apparatus and instrument
JP6391034B2 (en) Motor drive unit and electrically assisted bicycle
WO2001036257A1 (en) Swing type tricycle
JP6188189B2 (en) Wheel equipment
WO2022071228A1 (en) Vehicle body state detection system, electric bicycle, vehicle body state detection method, and program
TW202220900A (en) Hub for human-powered vehicle
WO2020153350A1 (en) Bicycle control device, motor unit, drive unit, electric bicycle, and program
TWM529654U (en) Bicycle
JP2000142545A (en) Motor-assisted vehicle
WO2022168318A1 (en) Drive system and power assisted bicycle
JP7345110B2 (en) Drive systems and electrically assisted bicycles
JP2022130201A (en) Control system, powered vehicle, control method and program
JP2023092208A (en) System for controlling equipment in use, electric bicycle, method for controlling equipment in use, and program
JP6754955B2 (en) Motor drive unit and electrically power assisted bicycle
JP2024036845A (en) Cycling supports and bicycles
JP6548103B2 (en) Motor drive unit and electrically assisted bicycle
JP7171953B2 (en) Electric assist systems and electric assist vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928138

Country of ref document: EP

Kind code of ref document: A1