WO2022181022A1 - Image processing device and method, radiography system, and program - Google Patents

Image processing device and method, radiography system, and program Download PDF

Info

Publication number
WO2022181022A1
WO2022181022A1 PCT/JP2021/047539 JP2021047539W WO2022181022A1 WO 2022181022 A1 WO2022181022 A1 WO 2022181022A1 JP 2021047539 W JP2021047539 W JP 2021047539W WO 2022181022 A1 WO2022181022 A1 WO 2022181022A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
images
moving
frame
energy
Prior art date
Application number
PCT/JP2021/047539
Other languages
French (fr)
Japanese (ja)
Inventor
竜一 藤本
貴司 岩下
晃介 照井
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2022181022A1 publication Critical patent/WO2022181022A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment

Definitions

  • the present invention relates to an image processing apparatus and method, a radiation imaging system, and a program.
  • radiographic imaging devices that use flat panel detectors (Flat Panel Detectors, hereinafter abbreviated as FPDs) made of semiconductor materials are widely used as imaging devices for X-ray medical image diagnosis and non-destructive inspection.
  • FPDs Flat Panel detectors
  • Such radiation imaging apparatuses are used, for example, in medical image diagnosis as digital imaging apparatuses for still image capturing such as general radiography and moving image capturing such as fluoroscopic imaging.
  • One of imaging methods using an FPD is energy subtraction (Patent Document 1).
  • a plurality of images corresponding to X-rays of different energies are acquired, and an image of a specific material (for example, a bone image and a soft tissue image) is obtained from the plurality of images by utilizing the difference in the X-ray attenuation rate of the material. tissue images) are separated.
  • a specific material for example, a bone image and a soft tissue image
  • Patent Document 2 describes a system that performs dynamic dual-energy imaging by applying energy subtraction processing to moving images.
  • the tube voltage of the X-ray source is changed to the first kV value and then to the second kV value.
  • the first signal corresponding to the first sub-image is integrated when the tube voltage is at the first kV value, and the integration is reset after the integrated signal is transferred to the sample and hold node.
  • a second signal corresponding to a second sub-image is then integrated when the tube voltage is at a second kV value.
  • readout of the integrated first signal and integration of the second signal are performed in parallel.
  • an energy subtraction moving image can be captured.
  • the above-described conventional technology has a problem that flickering occurs in the moving image because the pixel values of the energy subtraction moving image vary between frames due to temporal output fluctuations between sub-image frames. Energy-subtracted movies with flickering may lead to inaccurate diagnostic imaging.
  • the present invention provides a technique for reducing flickering in energy subtraction moving images.
  • An image processing apparatus has the following configuration. i.e. generating means for generating moving images of separated images by performing energy subtraction processing using a plurality of moving images corresponding to a plurality of different radiation energies; and correction means for correcting the moving images of the plurality of moving images or the moving images of the separated images so as to reduce variations in signal values between frames in the moving images of the plurality of moving images or the moving images of the separated images.
  • FIG. 1 is a diagram showing a configuration example of a radiation imaging system according to an embodiment
  • FIG. FIG. 2 is an equivalent circuit diagram of pixels included in a two-dimensional detector of the X-ray imaging apparatus
  • 4 is a timing chart showing operations for acquiring an X-ray image
  • 4 is a timing chart showing operations for acquiring an X-ray image
  • FIG. 4 is a block diagram of correction processing in energy subtraction processing
  • FIG. 3 is a block diagram of image processing related to energy subtraction processing;
  • FIG. 2 is a block diagram showing a hardware configuration example of a control computer
  • FIG. 4 is a diagram showing an example of accumulated images and bone images
  • FIG. 4 is a diagram showing signal value fluctuations between frames of a moving image before and after energy subtraction processing
  • 4 is a block diagram of signal processing including blink reduction processing according to the first embodiment
  • FIG. 4 is a flowchart of flickering reduction processing according to the embodiment
  • FIG. 4 is a diagram showing signal value fluctuations between frames of a moving image subjected to flickering reduction processing
  • 4A and 4B are diagrams for explaining a process of acquiring an accumulated image A
  • FIG. FIG. 11 is a block diagram of signal processing including flicker reduction processing and noise reduction processing according to the second embodiment
  • Radiation in the present invention includes alpha rays, beta rays, and gamma rays, which are beams produced by particles (including photons) emitted by radioactive decay, as well as beams having radiation energy at the same level or higher, such as particle beams. , cosmic rays, etc. are also included.
  • FIG. 1 is a block diagram showing a configuration example of a radiation imaging system according to the first embodiment.
  • the radiation imaging system of the first embodiment includes an X-ray generation device 101 , an X-ray control device 102 , a control computer 103 and an X-ray imaging device 104 .
  • the X-ray generator 101 emits X-rays.
  • the X-ray controller 102 controls X-ray irradiation by the X-ray generator 101 .
  • the control computer 103 controls the X-ray imaging device 104 to acquire a radiographic image (hereinafter referred to as an X-ray image (image information)) captured by the X-ray imaging device 104 .
  • the control computer 103 functions as an image processing device that performs image processing including flickering reduction processing, which will be described later, on an X-ray image acquired from the X-ray imaging device 104 .
  • the X-ray imaging apparatus 104 may be provided with a function of executing image processing including flickering reduction processing (and noise reduction processing described in the second embodiment).
  • the X-ray imaging device 104 is composed of a phosphor 105 that converts X-rays into visible light and a two-dimensional detector 106 that detects visible light.
  • the two-dimensional detector 106 is a sensor in which pixels 20 for detecting X-ray quanta are arranged in an array of X columns ⁇ Y rows, and outputs image information.
  • FIG. 5 is a block diagram showing a hardware configuration example of the control computer 103.
  • the CPU 141 controls various operations of the control computer 103 by executing programs stored in the ROM 142 or RAM 143 .
  • the CPU 141 controls X-ray irradiation by the X-ray control device 102 (X-ray generator 101 ) and X-ray image capturing operation by the X-ray imaging device 104 .
  • the CPU 141 also implements various signal processing and image processing, which will be described later. It should be noted that the operation of signal processing and image processing, which will be described later, may be partially or wholly realized by dedicated hardware.
  • the ROM 142 stores programs executed by the CPU 141 and various data.
  • the RAM 143 provides a work area for storing intermediate data generated when the CPU 141 executes processing.
  • the secondary storage device 144 stores radiation images (X-ray images) to be processed.
  • the secondary storage device 144 also stores control programs.
  • the programs stored in the secondary storage device 144 are developed in the RAM 143 as necessary and executed by the CPU 141 .
  • the display 145 performs various displays under the control of the CPU 141.
  • the operating unit 146 includes, for example, a keyboard and a pointing device, and receives various user inputs.
  • the interface 147 connects external devices such as the X-ray control device 102 and the X-ray imaging device 104 to the control computer 103 .
  • a bus 148 communicably connects the units described above.
  • FIG. 2 is an equivalent circuit diagram of the pixel 20 included in the two-dimensional detector 106.
  • the pixel 20 includes a photoelectric conversion element 201 and an output circuit section 202 .
  • Photoelectric conversion element 201 can typically be a photodiode.
  • the output circuit section 202 includes an amplifier circuit section 204 , a clamp circuit section 206 , a sample hold circuit section 207 and a selection circuit section 208 .
  • the photoelectric conversion element 201 includes a charge storage section, and the charge storage section is connected to the gate of the MOS transistor 204 a of the amplifier circuit section 204 .
  • the source of MOS transistor 204a is connected to current source 204c through MOS transistor 204b.
  • a source follower circuit is formed by the MOS transistor 204a and the current source 204c.
  • the MOS transistor 204b is an enable switch that turns on when the enable signal EN supplied to its gate becomes active level to put the source follower circuit into operation.
  • the charge-voltage converter is connected to reset potential Vres through reset switch 203 . When the reset signal PRES becomes active level, the reset switch 203 is turned on, and the potential of the charge-voltage converter is reset to the reset potential Vres.
  • the clamp circuit section 206 clamps the noise output by the amplifier circuit section 204 according to the reset potential of the charge-voltage conversion section with the clamp capacitor 206a.
  • the clamp circuit unit 206 is a circuit for canceling this noise from the signal output from the source follower circuit according to the charge generated by photoelectric conversion in the photoelectric conversion element 201 .
  • This noise includes kTC noise at reset. Clamping is performed by setting the clamp signal PCL to the active level to turn on the MOS transistor 206b and then setting the clamp signal PCL to the inactive level to turn off the MOS transistor 206b.
  • the output side of the clamp capacitor 206a is connected to the gate of the MOS transistor 206c.
  • MOS transistor 206c The source of MOS transistor 206c is connected to current source 206e through MOS transistor 206d.
  • a source follower circuit is formed by the MOS transistor 206c and the current source 206e.
  • the MOS transistor 206d is an enable switch that turns on when the enable signal EN0 supplied to its gate becomes active level to put the source follower circuit into operation.
  • a signal output from the clamp circuit unit 206 according to the charge generated by photoelectric conversion in the photoelectric conversion element 201 is written as a light signal into the capacitor 207Sb via the switch 207Sa when the light signal sampling signal TS becomes active level.
  • the signal output from the clamp circuit section 206 when the MOS transistor 206b is turned on immediately after resetting the potential of the charge-voltage conversion section is the clamp voltage.
  • This noise signal is written into the capacitor 207Nb through the switch 207Na when the noise sampling signal TN becomes active level.
  • This noise signal contains the offset component of the clamp circuit section 206 .
  • a switch 207Sa and a capacitor 207Sb constitute a signal sample and hold circuit 207S
  • a switch 207Na and a capacitor 207Nb constitute a noise sample and hold circuit 207N.
  • the sample and hold circuit section 207 includes a signal sample and hold circuit 207S and a noise sample and hold circuit 207N.
  • the drive circuit drives the row selection signal to the active level
  • the signal (light signal) held in the capacitor 207Sb is output to the signal line 21S via the MOS transistor 208Sa and the row selection switch 208Sb.
  • the signal (noise) held in capacitor 207Nb is output to signal line 21N via MOS transistor 208Na and row select switch 208Nb.
  • the MOS transistor 208Sa forms a source follower circuit with a constant current source (not shown) provided on the signal line 21S.
  • the MOS transistor 208Na forms a source follower circuit with a constant current source (not shown) provided on the signal line 21N.
  • a signal selection circuit portion 208S is composed of the MOS transistor 208Sa and the row selection switch 208Sb
  • a noise selection circuit portion 208N is composed of the MOS transistor 208Na and the row selection switch 208Nb.
  • the selection circuit section 208 includes a signal selection circuit section 208S and a noise selection circuit section 208N.
  • the pixel 20 may have an addition switch 209S that adds the optical signals of a plurality of adjacent pixels 20.
  • the addition mode signal ADD becomes active level and the addition switch 209S is turned on.
  • the capacitors 207Sb of adjacent pixels 20 are connected to each other by the addition switch 209S, and the optical signals are averaged.
  • pixel 20 may have a summing switch 209N that sums the noise of adjacent pixels 20 .
  • Addition section 209 includes an addition switch 209S and an addition switch 209N.
  • the pixel 20 may have a sensitivity changing section 205 for changing sensitivity.
  • the pixel 20 can include, for example, a first sensitivity change switch 205a and a second sensitivity change switch 205'a and their associated circuit elements.
  • the first change signal WIDE becomes active level
  • the first sensitivity change switch 205a is turned on, and the capacitance value of the first additional capacitor 205b is added to the capacitance value of the charge-voltage converter. This reduces the sensitivity of the pixel 20 .
  • the second change signal WIDE2 becomes active level
  • the second sensitivity change switch 205'a is turned on, and the capacitance value of the second additional capacitor 205'b is added to the capacitance value of the charge-voltage converter.
  • the enable signal ENw may be made the active level to cause the MOS transistor 204'a to perform the source follower operation instead of the MOS transistor 204a.
  • the X-ray imaging apparatus 104 reads the output of the pixel circuit as described above, converts it into a digital value with an AD converter (not shown), and then transfers the image to the control computer 103 .
  • 3A and 3B are diagrams showing drive timings of the X-ray imaging apparatus 104 according to the first embodiment.
  • the horizontal axis represents time, and the timings of X-ray irradiation, synchronization signals, resetting of the photoelectric conversion element 201 , sample hold circuit 207 and image reading from the signal line 21 are shown.
  • the photoelectric conversion element 201 is reset, and then X-rays are emitted.
  • the X-ray tube voltage ideally becomes a rectangular wave, it takes a finite amount of time for the tube voltage to rise and fall.
  • the tube voltage can no longer be regarded as a rectangular wave, and has a waveform as shown in FIG. 3A. That is, the radiation energy (energy of X-rays) differs in the rising period, the stable period, and the falling period of X-rays.
  • sampling is performed by the noise sample-and-hold circuit 207N after the X-ray 301 in the rising period is emitted, and sampling is performed by the signal sample-and-hold circuit 207S after the X-ray 302 in the stable period is emitted.
  • the difference between the signal lines 21N and 21S is read out as an image.
  • the noise sample-and-hold circuit 207N holds the signal (R 1 ) of the X-rays 301 in the rising period
  • the signal sample-and-hold circuit 207S holds the signal of the X-rays 301 in the rising period and the signal of the X-rays 302 in the stable period. (R 1 +B) is retained. Therefore, an image 304 corresponding to the signal (B) of the X-rays 302 in the stable period is read out from the X-ray imaging apparatus 104 .
  • sampling is performed again by the signal sample-and-hold circuit 207S.
  • the photoelectric conversion element 201 is reset, sampling is performed again by the noise sample hold circuit 207N, and the difference between the signal lines 21N and 21S is read out as an image.
  • the noise sample-and-hold circuit 207N holds the signal in the state where the X-ray is not irradiated.
  • the signal sample-and-hold circuit 207S holds the sum (R 1 +B+R 2 ) of the signal of the X-ray 301 in the rising period, the X-ray 302 in the stable period, and the signal of the X-ray 303 in the falling period. Therefore, from the X-ray imaging apparatus 104, an image 306 corresponding to the signal of the X-rays 301 in the rise period, the signal of the X-rays 302 in the stable period, and the signal of the X-rays 303 in the fall period is read.
  • the timing for resetting the sample-and-hold circuit 207 and the photoelectric conversion element 201 is determined using the synchronization signal 307 indicating that the X-ray generator 101 has started to emit X-rays.
  • a configuration that measures the tube current of the X-ray generator 101 and determines whether or not the current value exceeds a preset threshold value is preferably used.
  • the photoelectric conversion element 201 is completely reset, the pixel 20 is repeatedly read out, and a configuration in which it is determined whether or not the pixel value exceeds a preset threshold value is preferably used.
  • a configuration in which an X-ray detector different from the two-dimensional detector 106 is incorporated in the X-ray imaging apparatus 104 and whether or not the measured value exceeds a preset threshold is preferably used.
  • sampling of the signal sample and hold circuit 207S, sampling of the noise sample and hold circuit 207N, and resetting of the photoelectric conversion element 201 are performed.
  • an image 304 corresponding to the stable period of the pulse X-ray and an image 305 corresponding to the sum of the rising period and the falling period are obtained. Since the energies of the X-rays irradiated when forming the two images are different, energy subtraction processing can be performed by performing calculations between the images.
  • FIG. 3B shows drive timing when energy subtraction is performed in the radiation imaging system according to the first embodiment. This differs from FIG. 3A in that the X-ray tube voltage is actively switched.
  • the photoelectric conversion element 201 is reset, and then low-energy X-rays 401 are irradiated. After that, sampling is performed by the noise sample-and-hold circuit 207N, and after the tube voltage is switched and the high-energy X-ray 402 is emitted, sampling is performed by the signal sample-and-hold circuit 207S. Thereafter, the tube voltage is switched to irradiate low-energy X-rays 403 . Furthermore, the difference between the signal lines 21N and 21S is read out as an image.
  • the noise sample-and-hold circuit 207N holds the signal (R 1 ) of the low-energy X-rays 401
  • the signal sample-and-hold circuit 207S holds the signal of the low-energy X-rays 401 and the signal of the high-energy X-rays 402. (R 1 +B) is retained. Therefore, an image 404 corresponding to the signal (B) of high-energy X-rays 402 is read out from the X-ray imaging apparatus 104 .
  • sampling is performed again by the signal sample-and-hold circuit 207S.
  • the photoelectric conversion element 201 is reset, sampling is performed again by the noise sample hold circuit 207N, and the difference between the signal lines 21N and 21S is read out as an image.
  • the noise sample-and-hold circuit 207N holds the signal in the state where the X-ray is not irradiated.
  • the sync signal 407 is the same as in FIG. 3A.
  • the energy subtraction processing in this embodiment is divided into three stages of correction processing, signal processing, and image processing. Processing at each stage will be described below.
  • FIG. 4A is a block diagram of correction processing in the energy subtraction processing according to this embodiment.
  • imaging is performed without exposing the X-ray imaging device 104 to X-rays, and an image is acquired by the driving shown in FIG. 3A or 3B.
  • two images are read, the first image being F_ODD and the second image being F_EVEN.
  • F_ODD and F_EVEN are images corresponding to fixed pattern noise (FPN) of the X-ray imaging device 104 .
  • FPN fixed pattern noise
  • W_ODD and W_EVEN are images corresponding to the sum of signals from the FPN of the X-ray imaging device 104 and X-rays. Therefore, by subtracting F_ODD from W_ODD and F_EVEN from W_EVEN, the FPN-removed images WF_ODD and WF_EVEN of the X-ray imaging apparatus 104 are obtained. This is called offset correction.
  • WF_ODD is an image corresponding to X-rays 302 (or high-energy X-rays 402) in the stable period.
  • WF_EVEN is the sum of rising phase X-ray 301, stable phase X-ray 302, and falling phase X-ray 303 (or the sum of low energy X-rays 401 and 403 and high energy X-ray 402). is an image corresponding to Therefore, by subtracting WF_ODD from WF_EVEN, an image corresponding to the sum of the X-rays 301 in the rising period and the X-rays 303 in the falling period is obtained.
  • the energies of the X-rays 301 in the rising period and the X-rays 303 in the falling period are lower than the energy of the X-rays 302 in the stable period. Therefore, by subtracting WF_ODD from WF_EVEN, a low energy image W_Low without a subject is obtained. Also, from WF_ODD, a high-energy image W_High with no subject is obtained. This is called color correction.
  • an X-ray is emitted to the X-ray imaging device 104 in a state where an object is present to perform imaging, and an image is acquired by the driving shown in FIG. 3A or 3B.
  • two images are read, the first image being X_ODD and the second image being X_EVEN.
  • d be the thickness of the subject
  • be the linear attenuation coefficient of the subject
  • I 0 be the output of the pixel 20 when there is no subject
  • I be the output of the pixel 20 when there is the subject. holds.
  • Equation (2) By transforming the formula (1), the following formula (2) is obtained.
  • the right side of Equation (2) indicates the attenuation rate of the object.
  • the attenuation rate of the subject is a real number between 0 and 1.
  • FIG. 4B shows a block diagram of signal processing in energy subtraction processing.
  • separated images are obtained from the attenuation rate image L at low energy and the attenuation rate image H at high energy obtained by the correction processing shown in FIG. 4A.
  • a case of obtaining a bone thickness image B (also referred to as a bone image B) and a soft tissue thickness image S (also referred to as a soft tissue image S) will be described.
  • E the energy of X-ray photons
  • N(E) the number of photons at energy E
  • B the thickness of bone
  • S the thickness of soft tissue.
  • the number of photons N(E) at energy E is the X-ray spectrum.
  • the X-ray spectrum is obtained by simulation or actual measurement.
  • the linear attenuation coefficient ⁇ B (E) of bone at energy E and the linear attenuation coefficient ⁇ S (E) of soft tissue at energy E can be obtained from databases such as NIST. That is, it is possible to calculate the attenuation rate I/I 0 for any bone thickness B, soft tissue thickness S, X-ray spectrum N(E).
  • the thickness B of the bone and the thickness S of the soft tissue can be obtained.
  • a case of using the Newton-Raphson method as a representative method for solving nonlinear simultaneous equations will be described.
  • m be the number of iterations of the Newton-Raphson method
  • Bm be the thickness of the bone after the mth iteration
  • Sm be the thickness of the soft tissue after the mth iteration.
  • the attenuation rate is H m
  • the low-energy attenuation rate L m after the m-th iteration is represented by the following equation (5).
  • the change rate of the attenuation rate when the thickness changes minutely is expressed by the following formula (6).
  • the bone thickness B m+1 and the soft tissue thickness S m+1 after the m+1th iteration are represented by the following equation (7) using the high-energy attenuation rate H m and the low-energy attenuation rate L m . .
  • the inverse matrix of a 2 ⁇ 2 matrix is represented by the following formula (8) from Cramer's formula, where det is the determinant.
  • the difference between the high-energy attenuation rate Hm after the m -th iteration and the actually measured high-energy attenuation rate H approaches zero limitlessly.
  • the same is true for the attenuation rate L of low energy.
  • the bone thickness Bm after the mth iteration converges to the bone thickness B
  • the soft tissue thickness Sm converges to the soft tissue thickness S after the mth iteration.
  • the nonlinear simultaneous equations shown in Equation (4) can be solved. Therefore, by calculating Equation (4) for all pixels, the bone thickness image B and the soft tissue thickness image B are obtained from the attenuation rate image L at low energy and the attenuation rate image H at high energy. S can be obtained.
  • the embodiment is not limited to such a form.
  • the thickness W of water and the thickness I of the contrast agent may be calculated as separate images. That is, it may be decomposed into thicknesses of any two types of materials.
  • an image of the effective atomic number Z and an image of the surface density D may be obtained as separate images from the image L of the attenuation rate at low energy and the image H of the attenuation rate at high energy obtained by the correction process of FIG. .
  • the effective atomic number Z is the equivalent atomic number of a mixture
  • the areal density D is the product of the object density [g/cm 3 ] and the object thickness [cm].
  • the signal processing of the present invention can be said to be processing for generating an energy subtraction image by computing a low energy image and a high energy image (energy subtraction processing).
  • energy subtraction image and separation image are synonymous.
  • an example of solving the nonlinear simultaneous equations using the Newton-Raphson method is shown, but the method is not limited to such a form.
  • an iterative solution method such as the least squares method or the bisection method may be used.
  • the nonlinear simultaneous equations are solved by the iterative solution method, but the present invention is not limited to such a form.
  • Bone thickness B and soft tissue thickness S for various combinations of high energy attenuation rate H and low energy attenuation rate L are obtained in advance to generate a table, and by referring to this table, bone thickness B and A configuration for obtaining the thickness S of the soft tissue at high speed may be used.
  • FIG. 4C shows a block diagram of image processing related to energy subtraction processing.
  • an image for display is generated using the separated images obtained by the signal processing described above.
  • a display image is generated by post-processing the bone image B obtained by the signal processing shown in FIG. 4B.
  • the generated display image is displayed on the display 145, for example.
  • Such post-processing may include logarithmic transformation, dynamic range compression, and the like.
  • the content of processing may be switched by inputting the type and strength of post-processing as parameters.
  • FIG. 6 schematically shows an example of an accumulated image 601 and a bone image 602.
  • the stored image 601 is an image before energy subtraction processing, that is, an image captured by an existing radiation imaging system without energy resolution or an image corresponding thereto.
  • image 306, image 406 in FIGS. 3A and 3B, high energy image H, and low energy image L described above correspond to accumulated images.
  • Bone image 602 is a separated image obtained by the energy subtraction process described above.
  • the normal human body consists only of soft tissue and bone.
  • Interventional Radiology hereinafter referred to as IVR
  • a contrast agent is injected into the blood vessel.
  • Treatments such as inserting a catheter or guide wire into a blood vessel and placing a stent or coil are also performed.
  • IVR IVR
  • treatment is performed while confirming the positions and shapes of contrast agents and medical devices. Therefore, it is desired to improve the visibility by isolating only the contrast agent and medical device or by removing the background such as soft tissue and bone.
  • the soft tissue is visible, whereas in the bone image 602 obtained by the energy subtraction processing, the contrast of the soft tissue can be removed.
  • the main component of contrast media is iodine
  • the main component of medical devices is metal such as stainless steel. Since both have atomic numbers greater than calcium, which is the main component of bone, the bone image 602 displays the bone, the contrast medium, and the medical device.
  • the same effect can be obtained by changing the tube voltage and filter for low-energy X-rays and high-energy X-rays. In either case, it was confirmed that the bone image 602 displayed the bone, the contrast agent, and the medical device.
  • contrast enhancement It may improve the visibility of drugs and medical devices.
  • the bone image 602 has a larger frame-to-frame variation than the accumulated image 601, and there is a problem that the screen flickers when a moving image is displayed.
  • the pixel value of the accumulated image 601 varies for each shooting (frame). Possible causes include X-ray source-related factors such as variations in exposure dose and radiation quality between frames, and sensor-related factors such as sample-and-hold timing changes between frames. Variations in pixel values in an accumulated image are amplified by performing energy subtraction processing.
  • FIG. 7 shows inter-frame variation with respect to the average image of frames before and after the energy subtraction process when radiographic moving images of porcine organs are captured.
  • a graph 701 shows inter-frame variation in a moving image (bone image) after energy subtraction processing.
  • a graph 702 represents inter-frame variation in the moving image (high energy image H) before the energy subtraction process. However, the image before the energy subtraction process adjusts the pixel value to [cm] by the following deformation.
  • each pixel I/ I0 of the image before energy subtraction can be expressed by equation (2) .
  • is the attenuation rate at the average energy E of X-rays.
  • equation (2) can be transformed into equation (10) below.
  • each pixel I/ I0 of the image before the energy subtraction process as shown in Equation (10), it can be made to have the dimension of thickness [cm].
  • the bone attenuation rate is used as the attenuation rate ⁇ .
  • FIG. 8 shows a block diagram of signal processing including processing for reducing fluctuations (blinking) in signal values between frames (hereinafter, flickering reduction processing).
  • the block diagram of FIG. 8 shows in more detail the signal processing blocks described above with reference to FIG. 4B.
  • separated images bone image B′ and soft tissue A moving image of the tissue image S'
  • flickering between frames is reduced by flickering reduction processing, which will be described later.
  • FIG. 8 shows the minimum required configuration for the sake of explanation.
  • block R1, block MD1, and block R2 can be realized by executing a program stored in ROM 142 by CPU 141, for example.
  • any one or all of the blocks may be implemented by dedicated hardware, or may be implemented by cooperation between the CPU and dedicated hardware.
  • Block R1 performs flicker reduction processing on the high energy image H and the low energy image L. Details of the flickering reduction process will be described later.
  • Block MD1 then applies the signal processing described with reference to FIG. to generate Block R2 then performs a blink reduction process on bone image B and soft tissue image S to generate bone image B' and soft tissue image S'.
  • moving images B′ and S′ which are energy subtraction processed moving images subjected to flickering reduction processing, are obtained.
  • FIG. 9 is a flowchart showing the flickering reduction process performed by block R1 shown in FIG.
  • block R1 calculates representative signal values from high energy image H and low energy image L, respectively.
  • the representative signal value is unaffected by subject motion.
  • a representative signal value may be obtained from the entire image, or may be obtained from a set ROI.
  • the ROI may be a predetermined fixed region, may be set manually by the user when calculating the representative signal value, or may be set automatically.
  • a method of automatically setting the ROI for example, a method of analyzing a moving image to specify an area where there is no signal value variation due to the object, and setting the specified area as the ROI can be used.
  • a statistic such as the median value, the average value, or the N% value of the cumulative histogram can be used as the representative value signal.
  • the block R1 obtains a reference representative signal value (hereinafter referred to as reference value) from the moving image data to be subjected to flickering reduction processing.
  • the reference value can be, for example, the median value of the first frame image of the moving image data. More specifically, the median value of the image of the first frame of the moving image data composed of the series of high energy images H is used as the reference value for the high energy image, and the median value of the image of the first frame of the moving image data composed of the series of low energy images L The median value of the image is determined as the reference value for the low energy image.
  • the block R1 calculates the correction amount for each of the high energy image H and the low energy image L.
  • the correction amount ⁇ of the high-energy image H and the correction of the high-energy image H using the correction amount ⁇ will be described below, but the low-energy image can also be corrected by similar processing.
  • the correction amount ⁇ is obtained by calculating how many times the reference value obtained from the moving image data of the high energy image in S902 is the median value obtained for the high energy image H in S901.
  • block R1 multiplies the high energy image H by the correction amount ⁇ obtained at S903 to obtain a high energy image H′. In this way, the frame-to-frame variation of the signal in the moving image composed of the high-energy images H is reduced.
  • Equation (11) is an example of blinking reduction processing using multiplication of a coefficient (correction amount ⁇ ).
  • the reference value was obtained from the first frame image, but it is not limited to this.
  • the reference value may be calculated using all or part of the frames captured at the time the frame to be corrected was obtained (that is, the frames prior to the frame to be corrected).
  • the reference value may be calculated from the latest average image of a predetermined number of frames at the time when the frame to be corrected is acquired.
  • the correction amount is calculated independently for the high energy image and the low energy image, but the present invention is not limited to this. You can do it.
  • the high-energy image H and the low energy image L may be corrected.
  • the correction amount is obtained by division, and the correction is performed by multiplication, but the present invention is not limited to this.
  • the correction amount may be derived and corrected by addition/subtraction.
  • Equation (14) shows the case of obtaining a high energy image H′ subjected to blink reduction processing from the high energy image H by addition/subtraction.
  • Equation (14) is an example of blink reduction processing using addition and subtraction of a coefficient (correction amount ⁇ ).
  • the flickering reduction processing for correcting the images before the energy subtraction processing has been described above.
  • the flickering reduction processing performed by the block R1 on images (high energy image H and low energy image L) corresponding to radiography with a plurality of energies before separation of correction targets has been described above.
  • a block R2 performs flickering reduction processing with the separated image as the target of correction.
  • a method similar to the above-described flickering reduction processing for example, the method represented by Equation (11) or Equation (14) can be used for the flickering reduction processing.
  • FIG. 10 shows the frame-to-frame variation of the image average value in the moving image obtained by the energy subtraction processing with and without the above-described flickering reduction processing.
  • a graph 701 like FIG. 7, shows the variation of the image average value in the bone image when the flicker reduction processing is not performed.
  • a graph 1001 shows the variation of the image average value in the bone image when the flicker reduction processing is performed.
  • the flickering reduction process used for block R1 and block R2 may be either a method of multiplying coefficients or a method of adding or subtracting coefficients.
  • blinking can be suppressed most effectively when multiplication correction is performed in blinking reduction processing for the high energy image H and the low energy image L.
  • flickering can be suppressed most effectively when the bone image B and the soft tissue image S are corrected by addition and subtraction in the flickering reduction process. Therefore, it is preferable to apply correction by multiplication of coefficients to the blink reduction processing of block R1 and correction by addition and subtraction of coefficients to the blink reduction processing of block R2.
  • the flicker reduction process is performed on both the image before the energy subtraction process and the image after the energy subtraction process, but the present invention is not limited to this.
  • At least one of block R1 and block R2 may perform the blink reduction process.
  • the inventors of the present application examined the block R1 and the block R2, it was found that blinking could be reduced more satisfactorily by using both the block R1 and the block R2.
  • the noise reduction processing of this embodiment effectively reduces noise using stored images that are compatible with images acquired by general radiography.
  • an accumulated image used for noise reduction processing according to this embodiment will be described.
  • high-resolution images are obtained from a plurality of radiographic images acquired by sample-holding at a plurality of timings including timings during X-ray irradiation and after the end of X-ray irradiation.
  • An energy image and a low energy image are generated.
  • an X-ray image (image 306 in FIG. 3A) acquired at the timing after the end of X-ray irradiation can be used as the accumulated image.
  • FIG. 11 is a block diagram showing an example of a configuration for implementing correction processing for acquiring an accumulated image according to the second embodiment.
  • the accumulated image A is generated, for example, by dividing the image XF_EVEN by the image WF_EVEN.
  • Image XF_EVEN and image WF_EVEN are as described in FIG. 4A. That is, the image XF_EVEN is an image corresponding to the sum of the X-rays 301 in the rising period, the X-rays 302 in the stable period, and the X-rays 303 in the falling period when there is an object.
  • the image WF_EVEN is an image corresponding to the sum of the X-rays 301 in the rising period, the X-rays 302 in the stable period, and the X-rays 303 in the falling period when there is no subject.
  • the stored image A may be generated by multiplying an image H with an attenuation rate in high energy (high energy image H) and an image L with an attenuation rate in low energy (low energy image L) and adding them together.
  • accumulated image A may be generated using equation (15). Note that in calculating the accumulated image A, one coefficient may be set to 0 and the other coefficient may be set to 1. In this case, the high energy image H or the low energy image L itself is used as the accumulated image A. That is, an image captured at substantially the same timing as the image to be subjected to energy subtraction processing and to which energy subtraction processing has not been applied can be used as accumulated image A for noise reduction processing.
  • FIG. 12 is a block diagram showing an example of a configuration for performing signal processing in energy subtraction processing according to the second embodiment.
  • the block diagram of FIG. 12 shows a more detailed configuration of the signal processing described with reference to FIG. 4B. Note that FIG. 12 shows the minimum required configuration for the sake of explanation.
  • Blocks R1-R3, blocks MD1-MD2, block ADD, and blocks F1-F3 can be implemented by the CPU 141 executing a program stored in the ROM 142, for example. However, any one or all of the blocks shown in FIG. 12 may be implemented by dedicated hardware, or may be implemented by cooperation between the CPU and dedicated hardware.
  • Block F2 and block F3 perform filtering for the purpose of noise reduction on the low energy image L and the high energy image H, respectively.
  • Generate image H' For filtering, for example, spatial filters such as Gaussian filters and median filters, structure-preserving spatial filters such as epsilon filters and Laplacian filters, and time filters such as recursive filters can be used.
  • Quantum noise of the X-rays is reduced by a noise reduction process that applies a filter before the block MD1 that performs two-material separation.
  • Block R1 performs a blink reduction process on the noise reduced low energy image L' and the noise reduced high energy image H' to produce a high energy image H'' and a low energy image L''.
  • a moving image composed of the high-energy image H'' and the low-energy image L'' is a moving image in which inter-frame fluctuations of signals are suppressed, both of which are obtained from the block R1.
  • a block MD1 generates a bone image B' and a soft tissue image S' from the high energy H'' and low energy image L'' that have undergone noise reduction processing and are corrected for inter-frame variation.
  • the operation of material separation by block MD1 is the same as in the first embodiment (block MD1 in FIG. 8).
  • a block R2 performs flicker reduction processing on the bone image B' and the soft tissue image S' generated in the block MD1, and outputs a bone image B'' and a soft tissue image S''.
  • the processing by block R2 is the same as in the first embodiment (block RD2 in FIG. 8).
  • a block ADD generates an image of the sum of the bone image B'' and the soft tissue image S'', and outputs it as a thickness image T'.
  • the thickness image T' which is the sum of the bone image B'' and the soft tissue image S'', has undergone noise reduction and blink reduction.
  • a block F1 applies filter processing for the purpose of noise reduction to the thickness image T' to generate a thickness image T'' after the filter processing.
  • the thickness image T'' is a thickness image to which flicker reduction and noise reduction have been applied in a double manner.
  • Spatial filters such as Gaussian filters and median filters, structure-preserving spatial filters such as epsilon filters and Laplacian filters, and temporal filters such as recursive filters can be used for the filtering process of block F1.
  • a block H1 generates an accumulated image A'' using, for example, equation (15) from the high energy image H'' and the low energy image L'' subjected to the blink reduction process, which are output from the block R1.
  • a block MD2 performs material separation processing from the thickness image T'' output from the block F1 and the accumulated image A'' output from the block H1, and performs flickering reduction processing and noise reduction processing to obtain a bone image. B''' is generated. The material separation processing by block MD2 will be described later.
  • a block R3 performs further flickering reduction processing on the bone image B''' obtained by the block MD2 to generate a flickering-reduced bone image B''''. According to the noise reduction processing using the block F1 and the block MD2 as described above, noise accompanying the energy subtraction processing (substance separation) is reduced.
  • Equation (17) By substituting the pixel value A and the thickness T of the accumulated image at a certain pixel into Equation (17) and solving the nonlinear equation, it is possible to obtain the thickness B of the bone at a certain pixel. That is, if the thickness image T′ subjected to noise reduction processing and flickering reduction processing is used as the thickness T, and the accumulated image A′′ output from the block H1 is used as the pixel value A of the accumulated image, Equation (17) is solved. , the bone thickness B representing the bone image B''' is obtained. Since the thickness image has higher continuity than the accumulated image, it does not contain high frequency components. Therefore, even if noise is removed by filtering the thickness image T' using the block F1, the signal component is less likely to be lost.
  • the noise-reduced bone image B''' can be obtained by the block MD2 using the noise-reduced thickness image T'' and the accumulated image A'', which originally has little noise.
  • block MD2 obtains a noise-reduced soft tissue image S''' from the thickness image T'' and the accumulated image A''. It is also possible to
  • the image T'' synthesized with the block MD2 is used, but it is not limited to this.
  • the block MD2 performs noise reduction and blink reduction.
  • a bone image B''' obtained by performing the above may be obtained.
  • the block MD2 is subjected to noise reduction and blink reduction.
  • a soft tissue image S''' may be obtained.
  • the noise reduction processing by the filters of block F2 and block F3 may be omitted.
  • the noise reduction processing by the filter in block F1 may be omitted.
  • the flickering reduction processing used for block R1, block R2, and block R3 may be either a method of multiplying coefficients or a method of adding or subtracting coefficients.
  • blinking can be suppressed most effectively when multiplication correction is performed in blinking reduction processing for the high energy image H and the low energy image L.
  • flickering could be suppressed most effectively when addition and subtraction were performed in flickering reduction processing for the bone image B' and the soft tissue image S'. Therefore, it is preferable to apply correction by multiplication to the blink reduction processing of block R1, and correction by addition and subtraction to the blink reduction processing of blocks R2 and R3.
  • the flickering reduction process is performed in blocks R1 to R3, but the present invention is not limited to this. At least one of block R1, block R2, and block R3 may be subjected to the blink reduction process. However, according to the study of the present inventors, it is preferable from the viewpoint of blinking reduction to perform the blinking reduction processing by the block R1 and the block R2.
  • filter blocks F2 and F3 applied before block MD1 for two-substance separation, and filter block F1 applied after block MD1 It is necessary to optimize the type and strength at the same time. This is because the result of optimizing the two filters independently is not always optimal. For example, if a temporal direction filter or a spatial direction filter is applied twice, the increase rate of the quantum noise of X-rays and the noise accompanying the separation of two substances will not be independent, and the two noise reduction effects may not be integrated.
  • blocks F2 and F3 which are filters applied before block MD1 for two-substance separation apply filters in the temporal direction
  • filters applied after MD1, block F1 apply filters in the spatial direction.
  • a configuration can be used.
  • the filter in the spatial direction or the filter in the temporal direction is doubled, and in that case, it is preferable to make the size of the kernel and the size of the filter coefficients different for both.
  • the filter kernel of block F1 when filtering in the spatial direction twice, it is preferable to configure the filter kernel of block F1 to be larger than the kernels of blocks F2 and F3. This is because the thickness image T has higher spatial continuity than the accumulated image A, the high energy image H, and the low energy image L, for example.
  • the filter coefficient of the block F1 when applying filters in the time direction twice, it is preferable to configure the filter coefficient of the block F1 to be larger than the filter coefficients of the filters of the blocks F2 and F3. This is because, for example, the thickness image T changes less over time than the accumulated image A, the high energy image H, and the low energy image L.
  • block F1 may be configured to apply both temporal and spatial filters
  • blocks F2 and F3 may be configured to simultaneously apply both temporal and spatial filters.
  • a spatial or temporal filter is doubly applied before and after the two-matter separation block MD1
  • a configuration with larger filter coefficients or kernels in the filter block F1 after MD1. can be preferably used.
  • the X-ray imaging device 104 is an indirect radiation sensor using a phosphor, but is not limited to such a form.
  • a direct radiation sensor using a direct conversion material such as CdTe may be used.
  • the passive tube voltage change of the X-ray generator 101 is used (FIG. 3A), or the tube voltage is actively switched (FIG. 3B). is not limited to any form.
  • the energy of the radiation irradiated to the X-ray imaging device 104 may be changed by switching the filter of the X-ray generation device 101 over time.
  • the present invention is not limited to such a form, and the above-described embodiment can be applied even when the X-ray (radiation) has three or more energies.
  • energy subtraction processing using n images corresponding to n energies (n is a natural number of 2 or more), n material separation images are obtained.
  • blink reduction processing By applying the above-described blink reduction processing to n images (moving images) before energy subtraction processing and/or to n separated images (moving images) after energy subtraction processing, separated images with reduced blinking are obtained. .
  • energy subtraction was performed by changing the energy of the radiation irradiated to the X-ray imaging device 104, but the present invention is not limited to such a form.
  • a method of changing the spectrum of radiation detected by the front sensor and the rear sensor may be used.
  • a plurality of images with different energies may be obtained by using a photon counting sensor that counts the number of radiation quanta for each energy.
  • energy subtraction processing was performed using the control computer 103 of the radiation imaging system, but the present invention is not limited to such a form.
  • the control computer 103 may be incorporated into the X-ray imaging device 104 .
  • the image acquired by the control computer 103 may be transferred to another computer to perform energy subtraction processing.
  • a configuration in which an acquired image is transferred to another personal computer (image viewer) via a medical PACS and displayed after energy subtraction processing is preferably used. That is, in each of the above embodiments, it is sufficient to provide radiation images with different energies to the energy subtraction process, and the method for acquiring radiation images with different energies is not limited to the above embodiments.
  • control computer 103 directly acquires an image from the X-ray imaging apparatus 104 and performs energy subtraction processing, but the present invention is not limited to this.
  • a moving image captured by the X-ray imaging apparatus 104 may be stored in an external storage device, and the control computer 103 may read out the moving image from the storage device and perform energy subtraction processing.
  • the present invention supplies a program that implements one or more functions of the above-described embodiments to a system or device via a network or a storage medium, and one or more processors in the computer of the system or device reads and executes the program. It can also be realized by processing to It can also be implemented by a circuit (for example, ASIC) that implements one or more functions.
  • a circuit for example, ASIC
  • 101 X-ray generator
  • 102 X-ray controller
  • 103 Control computer
  • 104 X-ray generator

Abstract

This image processing device uses a plurality of moving images corresponding to a plurality of different types of energy to perform energy subtraction processing and thereby generate moving images of separated images, and corrects the plurality of moving images or the moving images of the separated images so as to reduce fluctuations in the signal value between frames in the plurality of moving images or the moving images of the separated images.

Description

画像処理装置及び方法、放射線撮像システム、プログラムIMAGE PROCESSING APPARATUS AND METHOD, RADIATION IMAGING SYSTEM, PROGRAM
 本発明は、画像処理装置及び方法、放射線撮像システム、プログラムに関する。 The present invention relates to an image processing apparatus and method, a radiation imaging system, and a program.
 現在、X線による医療画像診断や非破壊検査に用いる撮影装置として、半導体材料によって形成された平面検出器(Flat Panel Detector、以下FPDと略す)を用いた放射線撮像装置が普及している。このような放射線撮像装置は、例えば医療画像診断においては、一般撮影のような静止画撮影や、透視撮影のような動画撮影のデジタル撮像装置として用いられている。FPDを用いた撮影方法のひとつに、エネルギーサブトラクションがある(特許文献1)。エネルギーサブトラクションでは、異なる複数のエネルギーのX線に対応する複数の画像が取得され、物質のX線減弱率の違いを利用することによりそれら複数の画像から特定の物質の画像(例えば骨画像と軟部組織画像)が分離される。 Currently, radiographic imaging devices that use flat panel detectors (Flat Panel Detectors, hereinafter abbreviated as FPDs) made of semiconductor materials are widely used as imaging devices for X-ray medical image diagnosis and non-destructive inspection. Such radiation imaging apparatuses are used, for example, in medical image diagnosis as digital imaging apparatuses for still image capturing such as general radiography and moving image capturing such as fluoroscopic imaging. One of imaging methods using an FPD is energy subtraction (Patent Document 1). In energy subtraction, a plurality of images corresponding to X-rays of different energies are acquired, and an image of a specific material (for example, a bone image and a soft tissue image) is obtained from the plurality of images by utilizing the difference in the X-ray attenuation rate of the material. tissue images) are separated.
 特許文献2には、エネルギーサブトラクション処理を動画へ適用した、動的なデュアルエネルギー撮影を行うシステムが記載されている。このシステムでは、撮影の際にX線源の管電圧を第1のkV値にした後に第2のkV値に変更する。そして、管電圧が第1のkV値であるときに第1副画像に対応する第1信号が積分され、積分された信号がサンプル・ホールドノードに転送された後に、積分がリセットされる。その後、管電圧が第2のkV値であるときに第2副画像に対応する第2信号が積分される。これにより、積分された第1信号の読み出しと第2信号の積分が並行して行われる。特許文献2のシステムによれば、エネルギーサブトラクション動画を撮影することができる。 Patent Document 2 describes a system that performs dynamic dual-energy imaging by applying energy subtraction processing to moving images. In this system, during imaging, the tube voltage of the X-ray source is changed to the first kV value and then to the second kV value. Then, the first signal corresponding to the first sub-image is integrated when the tube voltage is at the first kV value, and the integration is reset after the integrated signal is transferred to the sample and hold node. A second signal corresponding to a second sub-image is then integrated when the tube voltage is at a second kV value. As a result, readout of the integrated first signal and integration of the second signal are performed in parallel. According to the system of Patent Literature 2, an energy subtraction moving image can be captured.
特開2019-162358号公報JP 2019-162358 A 特表2009-504221公報Special Table 2009-504221
 しかしながら、上記従来技術では、副画像のフレーム間の経時的な出力変動によりエネルギーサブトラクション動画の画素値がフレーム間でばらつくために、動画に明滅が生じてしまうという課題がある。明滅が生じたエネルギーサブトラクション動画からは、画像診断が正確にできなくなる可能性がある。 However, the above-described conventional technology has a problem that flickering occurs in the moving image because the pixel values of the energy subtraction moving image vary between frames due to temporal output fluctuations between sub-image frames. Energy-subtracted movies with flickering may lead to inaccurate diagnostic imaging.
 本発明は、エネルギーサブトラクション動画の明滅を低減する技術を提供する。 The present invention provides a technique for reducing flickering in energy subtraction moving images.
 本発明の一態様による画像処理装置は以下の構成を備える。すなわち、
 複数の異なる放射線エネルギーに対応する複数の動画を用いてエネルギーサブトラクション処理を行うことにより、分離画像の動画を生成する生成手段と、
 前記複数の動画または前記分離画像の動画におけるフレーム間の信号値の変動が低減されるように、前記複数の動画または前記分離画像の動画の補正を行う補正手段と、を備える。
An image processing apparatus according to one aspect of the present invention has the following configuration. i.e.
generating means for generating moving images of separated images by performing energy subtraction processing using a plurality of moving images corresponding to a plurality of different radiation energies;
and correction means for correcting the moving images of the plurality of moving images or the moving images of the separated images so as to reduce variations in signal values between frames in the moving images of the plurality of moving images or the moving images of the separated images.
 本発明によれば、エネルギーサブトラクション動画における明滅が低減する。 According to the present invention, flickering in energy subtraction moving images is reduced.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar configurations are given the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
実施形態による放射線撮像システムの構成例を示す図。 X線撮像装置の二次元検出器が備える画素の等価回路図。 X線画像を取得するための動作を示すタイミングチャート。 X線画像を取得するための動作を示すタイミングチャート。 エネルギーサブトラクション処理における補正処理のブロック図。 エネルギーサブトラクション処理における信号処理のブロック図。 エネルギーサブトラクション処理に係る画像処理のブロック図。 制御用コンピュータのハードウエア構成例を示すブロック図。 蓄積画像と骨画像の例を示す図。 エネルギーサブトラクション処理の前後における動画のフレーム間の信号値変動を示す図。 第1実施形態による、明滅低減処理を含む信号処理のブロック図。 実施形態による明滅低減処理のフローチャート。 明滅低減処理が施された動画のフレーム間の信号値変動を示す図。 蓄積画像Aを取得する処理を説明する図。 第2実施形態による、明滅低減処理とのノイズ低減処理を含む信号処理のブロック図。
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
1 is a diagram showing a configuration example of a radiation imaging system according to an embodiment; FIG. FIG. 2 is an equivalent circuit diagram of pixels included in a two-dimensional detector of the X-ray imaging apparatus; 4 is a timing chart showing operations for acquiring an X-ray image; 4 is a timing chart showing operations for acquiring an X-ray image; FIG. 4 is a block diagram of correction processing in energy subtraction processing; A block diagram of signal processing in energy subtraction processing. FIG. 3 is a block diagram of image processing related to energy subtraction processing; FIG. 2 is a block diagram showing a hardware configuration example of a control computer; FIG. 4 is a diagram showing an example of accumulated images and bone images; FIG. 4 is a diagram showing signal value fluctuations between frames of a moving image before and after energy subtraction processing; 4 is a block diagram of signal processing including blink reduction processing according to the first embodiment; FIG. 4 is a flowchart of flickering reduction processing according to the embodiment; FIG. 4 is a diagram showing signal value fluctuations between frames of a moving image subjected to flickering reduction processing; 4A and 4B are diagrams for explaining a process of acquiring an accumulated image A; FIG. FIG. 11 is a block diagram of signal processing including flicker reduction processing and noise reduction processing according to the second embodiment;
 以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. In addition, the following embodiments do not limit the invention according to the scope of claims. Although multiple features are described in the embodiments, not all of these multiple features are essential to the invention, and multiple features may be combined arbitrarily. Furthermore, in the accompanying drawings, the same or similar configurations are denoted by the same reference numerals, and redundant description is omitted.
 なお、以下では、放射線としてX線を用いた放射線撮像システムについて説明するが、これに限られるものではない。本発明における放射線には、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上の放射線エネルギーを有するビーム、例えば粒子線、宇宙線なども、含まれるものとする。 Although a radiation imaging system using X-rays as radiation will be described below, it is not limited to this. Radiation in the present invention includes alpha rays, beta rays, and gamma rays, which are beams produced by particles (including photons) emitted by radioactive decay, as well as beams having radiation energy at the same level or higher, such as particle beams. , cosmic rays, etc. are also included.
 (第1実施形態)
 図1は、第1実施形態に係る放射線撮像システムの構成例を示すブロック図である。第1実施形態の放射線撮像システムは、X線発生装置101、X線制御装置102、制御用コンピュータ103、X線撮像装置104を備える。
(First embodiment)
FIG. 1 is a block diagram showing a configuration example of a radiation imaging system according to the first embodiment. The radiation imaging system of the first embodiment includes an X-ray generation device 101 , an X-ray control device 102 , a control computer 103 and an X-ray imaging device 104 .
 X線発生装置101はX線を曝射する。X線制御装置102は、X線発生装置101によるX線の曝射を制御する。制御用コンピュータ103は、X線撮像装置104を制御して、X線撮像装置104により撮像された放射線画像(以下、X線画像(画像情報))を取得する。制御用コンピュータ103は、X線撮像装置104から取得したX線画像に対して後述する明滅低減処理を含む画像処理を施す画像処理装置として機能する。なお、明滅低減処理(および第2実施形態で説明されるノイズ低減処理)を含む画像処理を実行する機能がX線撮像装置104に設けられていてもよい。X線撮像装置104は、X線を可視光に変換する蛍光体105と、可視光を検出する二次元検出器106で構成される。二次元検出器106は、X線量子を検出する画素20をX列×Y行のアレイ状に配置したセンサであり、画像情報を出力する。 The X-ray generator 101 emits X-rays. The X-ray controller 102 controls X-ray irradiation by the X-ray generator 101 . The control computer 103 controls the X-ray imaging device 104 to acquire a radiographic image (hereinafter referred to as an X-ray image (image information)) captured by the X-ray imaging device 104 . The control computer 103 functions as an image processing device that performs image processing including flickering reduction processing, which will be described later, on an X-ray image acquired from the X-ray imaging device 104 . Note that the X-ray imaging apparatus 104 may be provided with a function of executing image processing including flickering reduction processing (and noise reduction processing described in the second embodiment). The X-ray imaging device 104 is composed of a phosphor 105 that converts X-rays into visible light and a two-dimensional detector 106 that detects visible light. The two-dimensional detector 106 is a sensor in which pixels 20 for detecting X-ray quanta are arranged in an array of X columns×Y rows, and outputs image information.
 図5は、制御用コンピュータ103のハードウエア構成例を示すブロック図である。CPU141は、ROM142またはRAM143に格納されたプログラムを実行することにより制御用コンピュータ103の各種動作を制御する。例えば、CPU141は、X線制御装置102(X線発生装置101)によるX線の照射およびX線撮像装置104によるX線画像の撮像動作を制御する。また、CPU141は、後述する種々の信号処理および画像処理を実現する。なお、後述される信号処理および画像処理の動作は、その一部あるいは全体が専用のハードウエアにより実現されてもよい。ROM142は、CPU141により実行されるプログラムや各種データを格納する。RAM143は、CPU141が処理を実行する際に発生する中間データなどを記憶する作業エリアを提供する。二次記憶装置144は、処理対象の放射線画像(X線画像)を格納する。また、二次記憶装置144は制御プログラムを格納する。二次記憶装置144に格納されているプログラムは必要に応じてRAM143に展開され、CPU141により実行される。 FIG. 5 is a block diagram showing a hardware configuration example of the control computer 103. As shown in FIG. The CPU 141 controls various operations of the control computer 103 by executing programs stored in the ROM 142 or RAM 143 . For example, the CPU 141 controls X-ray irradiation by the X-ray control device 102 (X-ray generator 101 ) and X-ray image capturing operation by the X-ray imaging device 104 . The CPU 141 also implements various signal processing and image processing, which will be described later. It should be noted that the operation of signal processing and image processing, which will be described later, may be partially or wholly realized by dedicated hardware. The ROM 142 stores programs executed by the CPU 141 and various data. The RAM 143 provides a work area for storing intermediate data generated when the CPU 141 executes processing. The secondary storage device 144 stores radiation images (X-ray images) to be processed. The secondary storage device 144 also stores control programs. The programs stored in the secondary storage device 144 are developed in the RAM 143 as necessary and executed by the CPU 141 .
 ディスプレイ145は、CPU141の制御下で各種表示を行う。操作部146は、例えばキーボード、ポインティングデバイスを含み、ユーザによる各種入力を受け付ける。インターフェース147は、X線制御装置102、X線撮像装置104などの外部機器と制御用コンピュータ103を接続する。バス148は、上述した各部を通信可能に接続する。 The display 145 performs various displays under the control of the CPU 141. The operating unit 146 includes, for example, a keyboard and a pointing device, and receives various user inputs. The interface 147 connects external devices such as the X-ray control device 102 and the X-ray imaging device 104 to the control computer 103 . A bus 148 communicably connects the units described above.
 図2は、二次元検出器106が備える画素20の等価回路図である。画素20は、光電変換素子201と、出力回路部202とを含む。光電変換素子201は、典型的にはフォトダイオードでありうる。出力回路部202は、増幅回路部204、クランプ回路部206、サンプルホールド回路部207、選択回路部208を含む。 FIG. 2 is an equivalent circuit diagram of the pixel 20 included in the two-dimensional detector 106. FIG. The pixel 20 includes a photoelectric conversion element 201 and an output circuit section 202 . Photoelectric conversion element 201 can typically be a photodiode. The output circuit section 202 includes an amplifier circuit section 204 , a clamp circuit section 206 , a sample hold circuit section 207 and a selection circuit section 208 .
 光電変換素子201は、電荷蓄積部を含み、該電荷蓄積部は、増幅回路部204のMOSトランジスタ204aのゲートに接続されている。MOSトランジスタ204aのソースは、MOSトランジスタ204bを介して電流源204cに接続されている。MOSトランジスタ204aと電流源204cとによってソースフォロア回路が構成されている。MOSトランジスタ204bは、そのゲートに供給されるイネーブル信号ENがアクティブレベルになるとオンしてソースフォロア回路を動作状態にするイネーブルスイッチである。 The photoelectric conversion element 201 includes a charge storage section, and the charge storage section is connected to the gate of the MOS transistor 204 a of the amplifier circuit section 204 . The source of MOS transistor 204a is connected to current source 204c through MOS transistor 204b. A source follower circuit is formed by the MOS transistor 204a and the current source 204c. The MOS transistor 204b is an enable switch that turns on when the enable signal EN supplied to its gate becomes active level to put the source follower circuit into operation.
 図2に示す例では、光電変換素子201の電荷蓄積部およびMOSトランジスタ204aのゲートが共通のノードを構成していて、このノードは、該電荷蓄積部に蓄積された電荷を電圧に変換する電荷電圧変換部として機能する。即ち、電荷電圧変換部には、該電荷蓄積部に蓄積された電荷Qと電荷電圧変換部が有する容量値Cとによって定まる電圧V(=Q/C)が現れる。電荷電圧変換部は、リセットスイッチ203を介してリセット電位Vresに接続されている。リセット信号PRESがアクティブレベルになると、リセットスイッチ203がオンして、電荷電圧変換部の電位がリセット電位Vresにリセットされる。 In the example shown in FIG. 2, the charge accumulating portion of the photoelectric conversion element 201 and the gate of the MOS transistor 204a constitute a common node, and this node converts the charge accumulated in the charge accumulating portion into a voltage. It functions as a voltage converter. That is, a voltage V (=Q/C) appears in the charge-voltage converter, which is determined by the charge Q accumulated in the charge storage and the capacitance value C of the charge-voltage converter. The charge-voltage converter is connected to reset potential Vres through reset switch 203 . When the reset signal PRES becomes active level, the reset switch 203 is turned on, and the potential of the charge-voltage converter is reset to the reset potential Vres.
 クランプ回路部206は、リセットした電荷電圧変換部の電位に応じて増幅回路部204によって出力されるノイズをクランプ容量206aによってクランプする。つまり、クランプ回路部206は、光電変換素子201で光電変換により発生した電荷に応じてソースフォロア回路から出力された信号から、このノイズをキャンセルするための回路である。このノイズはリセット時のkTCノイズを含む。クランプは、クランプ信号PCLをアクティブレベルにしてMOSトランジスタ206bをオン状態にした後に、クランプ信号PCLを非アクティブレベルにしてMOSトランジスタ206bをオフ状態にすることによってなされる。クランプ容量206aの出力側は、MOSトランジスタ206cのゲートに接続されている。MOSトランジスタ206cのソースは、MOSトランジスタ206dを介して電流源206eに接続されている。MOSトランジスタ206cと電流源206eとによってソースフォロア回路が構成されている。MOSトランジスタ206dは、そのゲートに供給されるイネーブル信号EN0がアクティブレベルになるとオンしてソースフォロア回路を動作状態にするイネーブルスイッチである。 The clamp circuit section 206 clamps the noise output by the amplifier circuit section 204 according to the reset potential of the charge-voltage conversion section with the clamp capacitor 206a. In other words, the clamp circuit unit 206 is a circuit for canceling this noise from the signal output from the source follower circuit according to the charge generated by photoelectric conversion in the photoelectric conversion element 201 . This noise includes kTC noise at reset. Clamping is performed by setting the clamp signal PCL to the active level to turn on the MOS transistor 206b and then setting the clamp signal PCL to the inactive level to turn off the MOS transistor 206b. The output side of the clamp capacitor 206a is connected to the gate of the MOS transistor 206c. The source of MOS transistor 206c is connected to current source 206e through MOS transistor 206d. A source follower circuit is formed by the MOS transistor 206c and the current source 206e. The MOS transistor 206d is an enable switch that turns on when the enable signal EN0 supplied to its gate becomes active level to put the source follower circuit into operation.
 光電変換素子201で光電変換により発生した電荷に応じてクランプ回路部206から出力される信号は、光信号として、光信号サンプリング信号TSがアクティブレベルになることによってスイッチ207Saを介して容量207Sbに書き込まれる。電荷電圧変換部の電位をリセットした直後にMOSトランジスタ206bをオン状態とした際にクランプ回路部206から出力される信号は、クランプ電圧である。このノイズ信号は、ノイズサンプリング信号TNがアクティブレベルになることによってスイッチ207Naを介して容量207Nbに書き込まれる。このノイズ信号には、クランプ回路部206のオフセット成分が含まれる。スイッチ207Saと容量207Sbによって信号サンプルホールド回路207Sが構成され、スイッチ207Naと容量207Nbによってノイズサンプルホールド回路207Nが構成される。サンプルホールド回路部207は、信号サンプルホールド回路207Sとノイズサンプルホールド回路207Nとを含む。 A signal output from the clamp circuit unit 206 according to the charge generated by photoelectric conversion in the photoelectric conversion element 201 is written as a light signal into the capacitor 207Sb via the switch 207Sa when the light signal sampling signal TS becomes active level. be The signal output from the clamp circuit section 206 when the MOS transistor 206b is turned on immediately after resetting the potential of the charge-voltage conversion section is the clamp voltage. This noise signal is written into the capacitor 207Nb through the switch 207Na when the noise sampling signal TN becomes active level. This noise signal contains the offset component of the clamp circuit section 206 . A switch 207Sa and a capacitor 207Sb constitute a signal sample and hold circuit 207S, and a switch 207Na and a capacitor 207Nb constitute a noise sample and hold circuit 207N. The sample and hold circuit section 207 includes a signal sample and hold circuit 207S and a noise sample and hold circuit 207N.
 駆動回路部が行選択信号をアクティブレベルに駆動すると、容量207Sbに保持された信号(光信号)がMOSトランジスタ208Saおよび行選択スイッチ208Sbを介して信号線21Sに出力される。また、同時に、容量207Nbに保持された信号(ノイズ)がMOSトランジスタ208Naおよび行選択スイッチ208Nbを介して信号線21Nに出力される。MOSトランジスタ208Saは、信号線21Sに設けられた不図示の定電流源とソースフォロア回路を構成する。同様に、MOSトランジスタ208Naは、信号線21Nに設けられた不図示の定電流源とソースフォロア回路を構成する。MOSトランジスタ208Saと行選択スイッチ208Sbによって信号用選択回路部208Sが構成され、MOSトランジスタ208Naと行選択スイッチ208Nbによってノイズ用選択回路部208Nが構成される。選択回路部208は、信号用選択回路部208Sとノイズ用選択回路部208Nとを含む。 When the drive circuit drives the row selection signal to the active level, the signal (light signal) held in the capacitor 207Sb is output to the signal line 21S via the MOS transistor 208Sa and the row selection switch 208Sb. At the same time, the signal (noise) held in capacitor 207Nb is output to signal line 21N via MOS transistor 208Na and row select switch 208Nb. The MOS transistor 208Sa forms a source follower circuit with a constant current source (not shown) provided on the signal line 21S. Similarly, the MOS transistor 208Na forms a source follower circuit with a constant current source (not shown) provided on the signal line 21N. A signal selection circuit portion 208S is composed of the MOS transistor 208Sa and the row selection switch 208Sb, and a noise selection circuit portion 208N is composed of the MOS transistor 208Na and the row selection switch 208Nb. The selection circuit section 208 includes a signal selection circuit section 208S and a noise selection circuit section 208N.
 画素20は、隣接する複数の画素20の光信号を加算する加算スイッチ209Sを有してもよい。加算モード時には、加算モード信号ADDがアクティブレベルになり、加算スイッチ209Sがオン状態になる。これにより、隣接する画素20の容量207Sbが加算スイッチ209Sによって相互に接続されて、光信号が平均化される。同様に、画素20は、隣接する複数の画素20のノイズを加算する加算スイッチ209Nを有してもよい。加算スイッチ209Nがオン状態になると、隣接する画素20の容量207Nbが加算スイッチ209Nによって相互に接続されて、ノイズが平均化される。加算部209は、加算スイッチ209Sと加算スイッチ209Nを含む。 The pixel 20 may have an addition switch 209S that adds the optical signals of a plurality of adjacent pixels 20. In the addition mode, the addition mode signal ADD becomes active level and the addition switch 209S is turned on. As a result, the capacitors 207Sb of adjacent pixels 20 are connected to each other by the addition switch 209S, and the optical signals are averaged. Similarly, pixel 20 may have a summing switch 209N that sums the noise of adjacent pixels 20 . When the adder switch 209N is turned on, the capacitors 207Nb of the adjacent pixels 20 are interconnected by the adder switch 209N to average noise. Addition section 209 includes an addition switch 209S and an addition switch 209N.
 画素20は、感度を変更するための感度変更部205を有してもよい。画素20は、例えば、第1感度変更スイッチ205aおよび第2感度変更スイッチ205'a、並びにそれらに付随する回路素子を含みうる。第1変更信号WIDEがアクティブレベルになると、第1感度変更スイッチ205aがオンして、電荷電圧変換部の容量値に第1付加容量205bの容量値が追加される。これによって画素20の感度が低下する。第2変更信号WIDE2がアクティブレベルになると、第2感度変更スイッチ205'aがオンして、電荷電圧変換部の容量値に第2付加容量205'bの容量値が追加される。これによって画素20の感度が更に低下する。このように画素20の感度を低下させる機能を追加することによって、より大きな光量を受光することが可能となり、ダイナミックレンジを広げることができる。第1変更信号WIDEがアクティブレベルになる場合には、イネーブル信号ENwをアクティブレベルにして、MOSトランジスタ204aに変えてMOSトランジスタ204'aをソースフォロア動作させてもよい。 The pixel 20 may have a sensitivity changing section 205 for changing sensitivity. The pixel 20 can include, for example, a first sensitivity change switch 205a and a second sensitivity change switch 205'a and their associated circuit elements. When the first change signal WIDE becomes active level, the first sensitivity change switch 205a is turned on, and the capacitance value of the first additional capacitor 205b is added to the capacitance value of the charge-voltage converter. This reduces the sensitivity of the pixel 20 . When the second change signal WIDE2 becomes active level, the second sensitivity change switch 205'a is turned on, and the capacitance value of the second additional capacitor 205'b is added to the capacitance value of the charge-voltage converter. This further reduces the sensitivity of the pixel 20 . By adding the function of lowering the sensitivity of the pixel 20 in this way, it becomes possible to receive a larger amount of light, and the dynamic range can be widened. When the first change signal WIDE becomes the active level, the enable signal ENw may be made the active level to cause the MOS transistor 204'a to perform the source follower operation instead of the MOS transistor 204a.
 X線撮像装置104は、以上のような画素回路の出力を読み出し、不図示のAD変換器でデジタル値に変換した後、制御用コンピュータ103に画像を転送する。 The X-ray imaging apparatus 104 reads the output of the pixel circuit as described above, converts it into a digital value with an AD converter (not shown), and then transfers the image to the control computer 103 .
 次に本実施形態の放射線撮像システムの動作(X線撮像装置104の駆動)について説明する。図3A、3Bは、第1実施形態に係るX線撮像装置104の駆動タイミングを示す図である。図3Aでは、横軸を時間として、X線の曝射、同期信号、光電変換素子201のリセット、サンプルホールド回路207および信号線21からの画像の読み出しのタイミングを示している。 Next, the operation of the radiation imaging system of this embodiment (driving of the X-ray imaging device 104) will be described. 3A and 3B are diagrams showing drive timings of the X-ray imaging apparatus 104 according to the first embodiment. In FIG. 3A , the horizontal axis represents time, and the timings of X-ray irradiation, synchronization signals, resetting of the photoelectric conversion element 201 , sample hold circuit 207 and image reading from the signal line 21 are shown.
 まず、光電変換素子201のリセットを行ってから、X線を曝射する。X線の管電圧は理想的には矩形波となるが、管電圧の立ち上がりと立下りには有限の時間がかかる。特に、パルスX線で曝射時間が短い場合は、管電圧はもはや矩形波とはみなせず、図3Aに示すような波形となる。すなわち、X線の立ち上がり期、安定期、立下り期で放射線エネルギー(X線のエネルギー)が異なる。 First, the photoelectric conversion element 201 is reset, and then X-rays are emitted. Although the X-ray tube voltage ideally becomes a rectangular wave, it takes a finite amount of time for the tube voltage to rise and fall. In particular, when the exposure time is short with pulsed X-rays, the tube voltage can no longer be regarded as a rectangular wave, and has a waveform as shown in FIG. 3A. That is, the radiation energy (energy of X-rays) differs in the rising period, the stable period, and the falling period of X-rays.
 そこで、立ち上がり期のX線301が曝射された後に、ノイズサンプルホールド回路207Nでサンプリングを行い、さらに安定期のX線302が曝射された後に信号サンプルホールド回路207Sでサンプリングを行う。その後、信号線21Nと信号線21Sの差分を画像として読み出す。このとき、ノイズサンプルホールド回路207Nには立ち上がり期のX線301の信号(R)が保持され、信号サンプルホールド回路207Sには立ち上がり期のX線301の信号と安定期のX線302の信号の和(R+B)が保持されている。従って、X線撮像装置104からは安定期のX線302の信号(B)に対応した画像304が読み出される。 Therefore, sampling is performed by the noise sample-and-hold circuit 207N after the X-ray 301 in the rising period is emitted, and sampling is performed by the signal sample-and-hold circuit 207S after the X-ray 302 in the stable period is emitted. After that, the difference between the signal lines 21N and 21S is read out as an image. At this time, the noise sample-and-hold circuit 207N holds the signal (R 1 ) of the X-rays 301 in the rising period, and the signal sample-and-hold circuit 207S holds the signal of the X-rays 301 in the rising period and the signal of the X-rays 302 in the stable period. (R 1 +B) is retained. Therefore, an image 304 corresponding to the signal (B) of the X-rays 302 in the stable period is read out from the X-ray imaging apparatus 104 .
 次に、立下り期のX線303の曝射と、画像304の読み出しとが完了してから、再び信号サンプルホールド回路207Sでサンプリングを行う。その後、光電変換素子201のリセットを行い、再びノイズサンプルホールド回路207Nでサンプリングを行い、信号線21Nと信号線21Sの差分を画像として読み出す。このとき、ノイズサンプルホールド回路207NにはX線が曝射されていない状態の信号が保持される。また、信号サンプルホールド回路207Sには立ち上がり期のX線301の信号と安定期のX線302と立下り期のX線303の信号の和(R+B+R)が保持されている。従って、X線撮像装置104からは、立ち上がり期のX線301の信号と安定期のX線302の信号と立下り期のX線303の信号に対応した画像306が読み出される。その後、画像306と画像304の差分を計算することで、立ち上がり期のX線301と立下り期のX線303の和(R+R)に対応した画像305が得られる。 Next, after the exposure of the X-rays 303 in the fall period and the reading of the image 304 are completed, sampling is performed again by the signal sample-and-hold circuit 207S. Thereafter, the photoelectric conversion element 201 is reset, sampling is performed again by the noise sample hold circuit 207N, and the difference between the signal lines 21N and 21S is read out as an image. At this time, the noise sample-and-hold circuit 207N holds the signal in the state where the X-ray is not irradiated. The signal sample-and-hold circuit 207S holds the sum (R 1 +B+R 2 ) of the signal of the X-ray 301 in the rising period, the X-ray 302 in the stable period, and the signal of the X-ray 303 in the falling period. Therefore, from the X-ray imaging apparatus 104, an image 306 corresponding to the signal of the X-rays 301 in the rise period, the signal of the X-rays 302 in the stable period, and the signal of the X-rays 303 in the fall period is read. After that, by calculating the difference between the image 306 and the image 304, an image 305 corresponding to the sum (R 1 +R 2 ) of the X-rays 301 in the rising period and the X-rays 303 in the falling period is obtained.
 サンプルホールド回路207及び光電変換素子201のリセットを行うタイミングは、X線発生装置101からX線の曝射が開始されたことを示す同期信号307を用いて決定される。X線の曝射開始を検出する方法としては、X線発生装置101の管電流を測定し、電流値が予め設定された閾値を上回るか否かを判定する構成が好適に用いられる。また、光電変換素子201のリセットが完了した後、画素20を繰り返して読み出し、画素値が予め設定された閾値を上回るか否かを判定する構成も好適に用いられる。さらには、X線撮像装置104に二次元検出器106とは異なるX線検出器を内蔵し、その測定値が予め設定された閾値を上回るか否かを判定する構成も好適に用いられる。いずれの方式の場合も、同期信号307の入力から予め指定した時間が経過した後に、信号サンプルホールド回路207Sのサンプリング、ノイズサンプルホールド回路207Nのサンプリング、光電変換素子201のリセットを行う。 The timing for resetting the sample-and-hold circuit 207 and the photoelectric conversion element 201 is determined using the synchronization signal 307 indicating that the X-ray generator 101 has started to emit X-rays. As a method for detecting the start of X-ray irradiation, a configuration that measures the tube current of the X-ray generator 101 and determines whether or not the current value exceeds a preset threshold value is preferably used. Also, after the photoelectric conversion element 201 is completely reset, the pixel 20 is repeatedly read out, and a configuration in which it is determined whether or not the pixel value exceeds a preset threshold value is preferably used. Furthermore, a configuration in which an X-ray detector different from the two-dimensional detector 106 is incorporated in the X-ray imaging apparatus 104 and whether or not the measured value exceeds a preset threshold is preferably used. In either method, after a predetermined time has passed from the input of the synchronous signal 307, sampling of the signal sample and hold circuit 207S, sampling of the noise sample and hold circuit 207N, and resetting of the photoelectric conversion element 201 are performed.
 以上のようにして、パルスX線の安定期に対応した画像304と、立ち上がり期と立下り期の和に対応した画像305を得る。二枚の画像を形成する際に曝射されたX線のエネルギーが異なるため、画像間で演算を行うことでエネルギーサブトラクション処理を行うことができる。 As described above, an image 304 corresponding to the stable period of the pulse X-ray and an image 305 corresponding to the sum of the rising period and the falling period are obtained. Since the energies of the X-rays irradiated when forming the two images are different, energy subtraction processing can be performed by performing calculations between the images.
 図3Bに、第1実施形態に係る放射線撮像システムにおいてエネルギーサブトラクションを行った場合の駆動タイミングを示す。図3Aとは、X線の管電圧を能動的に切り替えている点が異なる。 FIG. 3B shows drive timing when energy subtraction is performed in the radiation imaging system according to the first embodiment. This differs from FIG. 3A in that the X-ray tube voltage is actively switched.
 まず、光電変換素子201のリセットを行ってから、低エネルギーのX線401を曝射する。その後、ノイズサンプルホールド回路207Nでサンプリングを行ってから、管電圧を切り替えて高エネルギーのX線402が曝射された後に、信号サンプルホールド回路207Sでサンプリングを行う。その後、管電圧を切り替えて低エネルギーのX線403の曝射を行う。さらに、信号線21Nと信号線21Sの差分を画像として読み出す。このとき、ノイズサンプルホールド回路207Nには低エネルギーのX線401の信号(R)が保持され、信号サンプルホールド回路207Sには低エネルギーのX線401の信号と高エネルギーのX線402の信号の和(R+B)が保持されている。従って、X線撮像装置104からは、高エネルギーのX線402の信号(B)に対応した画像404が読み出される。 First, the photoelectric conversion element 201 is reset, and then low-energy X-rays 401 are irradiated. After that, sampling is performed by the noise sample-and-hold circuit 207N, and after the tube voltage is switched and the high-energy X-ray 402 is emitted, sampling is performed by the signal sample-and-hold circuit 207S. Thereafter, the tube voltage is switched to irradiate low-energy X-rays 403 . Furthermore, the difference between the signal lines 21N and 21S is read out as an image. At this time, the noise sample-and-hold circuit 207N holds the signal (R 1 ) of the low-energy X-rays 401, and the signal sample-and-hold circuit 207S holds the signal of the low-energy X-rays 401 and the signal of the high-energy X-rays 402. (R 1 +B) is retained. Therefore, an image 404 corresponding to the signal (B) of high-energy X-rays 402 is read out from the X-ray imaging apparatus 104 .
 次に、低エネルギーのX線403の曝射と、画像404の読み出しとが完了してから、再び信号サンプルホールド回路207Sでサンプリングを行う。その後、光電変換素子201のリセットを行い、再びノイズサンプルホールド回路207Nでサンプリングを行い、信号線21Nと信号線21Sの差分を画像として読み出す。このとき、ノイズサンプルホールド回路207NにはX線が曝射されていない状態の信号が保持される。また、このとき、信号サンプルホールド回路207Sには低エネルギーのX線401の信号と高エネルギーのX線402と低エネルギーのX線403の信号の和(R+B+R)が保持されている。従って、X線撮像装置104からは低エネルギーのX線401の信号と高エネルギーのX線402の信号と低エネルギーのX線403の信号に対応した画像406が読み出される。その後、画像406と画像404の差分を計算することで、低エネルギーのX線401と低エネルギーのX線403の和(R+R)に対応した画像405が得られる。同期信号407については、図3Aと同様である。このように、管電圧を能動的に切り替えながら画像を取得することで、図3Aの方法に比べて低エネルギーと高エネルギーの画像の間のエネルギー差をより大きくすることが出来る。 Next, after the irradiation of the low-energy X-rays 403 and the reading of the image 404 are completed, sampling is performed again by the signal sample-and-hold circuit 207S. Thereafter, the photoelectric conversion element 201 is reset, sampling is performed again by the noise sample hold circuit 207N, and the difference between the signal lines 21N and 21S is read out as an image. At this time, the noise sample-and-hold circuit 207N holds the signal in the state where the X-ray is not irradiated. At this time, the sum of the signals of the low-energy X-ray 401, the high-energy X-ray 402, and the low-energy X-ray 403 (R 1 +B+R 2 ) is held in the signal sample-and-hold circuit 207S. Therefore, an image 406 corresponding to the low-energy X-ray 401 signal, the high-energy X-ray 402 signal, and the low-energy X-ray 403 signal is read out from the X-ray imaging apparatus 104 . After that, by calculating the difference between the image 406 and the image 404, an image 405 corresponding to the sum (R 1 +R 2 ) of the low energy X-ray 401 and the low energy X-ray 403 is obtained. The sync signal 407 is the same as in FIG. 3A. By acquiring images while actively switching the tube voltage in this way, the energy difference between the low-energy and high-energy images can be made larger than in the method of FIG. 3A.
 次に、図4A~4Cを参照して、本実施形態のエネルギーサブトラクション処理について説明する。本実施形態におけるエネルギーサブトラクション処理は、補正処理、信号処理、画像処理の3段階に分かれている。以下、各段階の処理を説明する。 Next, the energy subtraction processing of this embodiment will be described with reference to FIGS. 4A to 4C. The energy subtraction processing in this embodiment is divided into three stages of correction processing, signal processing, and image processing. Processing at each stage will be described below.
 ・補正処理の説明
 図4Aは、本実施形態に係るエネルギーサブトラクション処理における補正処理のブロック図を示す。まず、X線撮像装置104にX線を曝射せずに撮像を行い、図3Aまたは図3Bに示した駆動で画像を取得する。このとき2枚の画像が読み出されるが、1枚目の画像をF_ODD、2枚目の画像をF_EVENとする。F_ODDとF_EVENは、X線撮像装置104の固定パターンノイズ(FPN)に対応する画像である。次に、被写体がない状態でX線撮像装置104にX線を曝射して撮像を行い、図3Aまたは図3Bに示した駆動で画像を取得する。このとき2枚の画像が読み出されるが、1枚目の画像をW_ODD、2枚目の画像をW_EVENとする。W_ODDとW_EVENは、X線撮像装置104のFPNとX線による信号の和に対応する画像である。従って、W_ODDからF_ODDを、W_EVENからF_EVENを減算することで、X線撮像装置104のFPNが除去された画像WF_ODDとWF_EVENが得られる。これをオフセット補正と呼ぶ。
Description of Correction Processing FIG. 4A is a block diagram of correction processing in the energy subtraction processing according to this embodiment. First, imaging is performed without exposing the X-ray imaging device 104 to X-rays, and an image is acquired by the driving shown in FIG. 3A or 3B. At this time, two images are read, the first image being F_ODD and the second image being F_EVEN. F_ODD and F_EVEN are images corresponding to fixed pattern noise (FPN) of the X-ray imaging device 104 . Next, X-rays are emitted to the X-ray imaging device 104 in the absence of a subject to perform imaging, and an image is acquired by the driving shown in FIG. 3A or 3B. At this time, two images are read, the first image being W_ODD and the second image being W_EVEN. W_ODD and W_EVEN are images corresponding to the sum of signals from the FPN of the X-ray imaging device 104 and X-rays. Therefore, by subtracting F_ODD from W_ODD and F_EVEN from W_EVEN, the FPN-removed images WF_ODD and WF_EVEN of the X-ray imaging apparatus 104 are obtained. This is called offset correction.
 WF_ODDは安定期のX線302(または高エネルギーのX線402)に対応する画像である。また、WF_EVENは、立ち上がり期のX線301、安定期のX線302、立下り期のX線303の和(または、低エネルギーのX線401と403、および高エネルギーのX線402の和)に対応する画像である。従って、WF_EVENからWF_ODDを減算することで、立ち上がり期のX線301と立下り期のX線303の和に対応する画像が得られる。立ち上がり期のX線301と立下り期のX線303のエネルギーは、安定期のX線302のエネルギーに比べて低い。従って、WF_EVENからWF_ODDを減算することで、被写体がない場合の低エネルギー画像W_Lowが得られる。また、WF_ODDから、被写体がない場合の高エネルギー画像W_Highが得られる。これを色補正と呼ぶ。 WF_ODD is an image corresponding to X-rays 302 (or high-energy X-rays 402) in the stable period. WF_EVEN is the sum of rising phase X-ray 301, stable phase X-ray 302, and falling phase X-ray 303 (or the sum of low energy X-rays 401 and 403 and high energy X-ray 402). is an image corresponding to Therefore, by subtracting WF_ODD from WF_EVEN, an image corresponding to the sum of the X-rays 301 in the rising period and the X-rays 303 in the falling period is obtained. The energies of the X-rays 301 in the rising period and the X-rays 303 in the falling period are lower than the energy of the X-rays 302 in the stable period. Therefore, by subtracting WF_ODD from WF_EVEN, a low energy image W_Low without a subject is obtained. Also, from WF_ODD, a high-energy image W_High with no subject is obtained. This is called color correction.
 次に、被写体がある状態でX線撮像装置104にX線を曝射して撮像を行い、図3Aまたは図3Bに示した駆動で画像を取得する。このとき2枚の画像が読み出されるが、1枚目の画像をX_ODD、2枚目の画像をX_EVENとする。被写体がない場合と同様の減算を行うことで、被写体がある場合の低エネルギー画像X_Lowと、被写体がある場合の高エネルギー画像X_Highが得られる。 Next, an X-ray is emitted to the X-ray imaging device 104 in a state where an object is present to perform imaging, and an image is acquired by the driving shown in FIG. 3A or 3B. At this time, two images are read, the first image being X_ODD and the second image being X_EVEN. By performing the same subtraction as when there is no subject, a low energy image X_Low when there is a subject and a high energy image X_High when there is a subject are obtained.
 ここで、被写体の厚みをd、被写体の線減弱係数をμ、被写体がない場合の画素20の出力をI、被写体がある場合の画素20の出力をIとすると、以下の式(1)が成り立つ。 Here, let d be the thickness of the subject, μ be the linear attenuation coefficient of the subject, I 0 be the output of the pixel 20 when there is no subject, and I be the output of the pixel 20 when there is the subject. holds.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 (1)式を変形すると、以下の式(2)が得られる。式(2)の右辺は被写体の減弱率を示す。被写体の減弱率は0~1の間の実数である。 By transforming the formula (1), the following formula (2) is obtained. The right side of Equation (2) indicates the attenuation rate of the object. The attenuation rate of the subject is a real number between 0 and 1.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 従って、被写体がある場合の低エネルギー画像X_Lowを、被写体がない場合の低エネルギー画像W_Lowで除算することで、低エネルギーにおける減弱率の画像Lが得られる。同様に、被写体がある場合の高エネルギー画像X_Highを、被写体がない場合の高エネルギー画像W_Highで除算することで、高エネルギーにおける減弱率の画像Hが得られる。これをゲイン補正と呼ぶ。 Therefore, by dividing the low-energy image X_Low with a subject by the low-energy image W_Low with no subject, an image L with an attenuation rate at low energy is obtained. Similarly, by dividing the high-energy image X_High with a subject by the high-energy image W_High with no subject, the image H of the attenuation rate at high energy is obtained. This is called gain correction.
 ・信号処理の説明
 図4Bに、エネルギーサブトラクション処理における信号処理のブロック図を示す。信号処理では、図4Aに示した補正処理によって得られた低エネルギーにおける減弱率の画像Lと高エネルギーにおける減弱率の画像Hから、分離画像を求める。ここでは、分離画像の一例として、骨の厚さの画像B(骨画像Bともいう)と軟部組織の厚さの画像S(軟部組織画像Sともいう)を求める場合を説明する。
Description of Signal Processing FIG. 4B shows a block diagram of signal processing in energy subtraction processing. In the signal processing, separated images are obtained from the attenuation rate image L at low energy and the attenuation rate image H at high energy obtained by the correction processing shown in FIG. 4A. Here, as an example of separated images, a case of obtaining a bone thickness image B (also referred to as a bone image B) and a soft tissue thickness image S (also referred to as a soft tissue image S) will be described.
 X線フォトンのエネルギーをE、エネルギーEにおけるフォトン数をN(E)、骨の厚さをB、軟部組織の厚さをSとする。また、エネルギーEにおける骨の線減弱係数をμ(E)、エネルギーEにおける軟部組織の線減弱係数をμ(E)、減弱率をI/Iとすると、以下の式(3)が成り立つ。 Let E be the energy of X-ray photons, N(E) be the number of photons at energy E, B be the thickness of bone, and S be the thickness of soft tissue. Further, when the linear attenuation coefficient of bone at energy E is μ B (E), the linear attenuation coefficient of soft tissue at energy E is μ S (E), and the attenuation rate is I/I 0 , the following equation (3) is It holds.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 エネルギーEにおけるフォトン数N(E)は、X線のスペクトルである。X線のスペクトルは、シミュレーション又は実測により得られる。また、エネルギーEおける骨の線減弱係数μ(E)とエネルギーEおける軟部組織の線減弱係数μ(E)は、NISTなどのデータベースから得られる。すなわち、任意の骨の厚さB、軟部組織の厚さS、X線のスペクトルN(E)における減弱率I/Iを計算することが可能である。 The number of photons N(E) at energy E is the X-ray spectrum. The X-ray spectrum is obtained by simulation or actual measurement. Also, the linear attenuation coefficient μ B (E) of bone at energy E and the linear attenuation coefficient μ S (E) of soft tissue at energy E can be obtained from databases such as NIST. That is, it is possible to calculate the attenuation rate I/I 0 for any bone thickness B, soft tissue thickness S, X-ray spectrum N(E).
 ここで、低エネルギーのX線におけるスペクトルをN(E)、高エネルギーのX線におけるスペクトルをN(E)とすると、以下の式(4)が成り立つ。 Here, assuming that the spectrum of low-energy X-rays is N L (E) and the spectrum of high-energy X-rays is N H (E), the following equation (4) holds.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)の非線形連立方程式を解くことで、骨の厚みBと軟部組織の厚みSを求めることができる。非線形連立方程式を解く代表的な方法として、ニュートンラフソン法を用いた場合について説明する。まず、ニュートンラフソン法の反復回数をm、m回目の反復後の骨の厚みをB、m回目の反復後の軟部組織の厚みをSとしたとき、m回目の反復後の高エネルギーの減弱率をH、m回目の反復後の低エネルギーの減弱率Lを、以下の式(5)で表す。 By solving the nonlinear simultaneous equations of Equation (4), the thickness B of the bone and the thickness S of the soft tissue can be obtained. A case of using the Newton-Raphson method as a representative method for solving nonlinear simultaneous equations will be described. First, let m be the number of iterations of the Newton-Raphson method, Bm be the thickness of the bone after the mth iteration, and Sm be the thickness of the soft tissue after the mth iteration. The attenuation rate is H m , and the low-energy attenuation rate L m after the m-th iteration is represented by the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、厚みが微小に変化したときの減弱率の変化率を、以下の式(6)で表す。 Also, the change rate of the attenuation rate when the thickness changes minutely is expressed by the following formula (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 このとき、m+1回目の反復後の骨の厚みBm+1と軟部組織の厚みSm+1を、高エネルギーの減弱率Hと低エネルギーの減弱率Lを用いて、以下の式(7)で表す。 At this time, the bone thickness B m+1 and the soft tissue thickness S m+1 after the m+1th iteration are represented by the following equation (7) using the high-energy attenuation rate H m and the low-energy attenuation rate L m . .
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 2×2の行列の逆行列は、行列式をdetとすると、クラメルの公式より以下の式(8)で表される。 The inverse matrix of a 2×2 matrix is represented by the following formula (8) from Cramer's formula, where det is the determinant.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 従って、式(7)に式(8)を代入すると、以下の式(9)が求まる。 Therefore, by substituting formula (8) into formula (7), the following formula (9) is obtained.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 このような計算を繰り返すことで、m回目の反復後の高エネルギーの減弱率Hと実測した高エネルギーの減弱率Hの差分が限りなく0に近づいていく。低エネルギーの減弱率Lについても同様である。これによって、m回目の反復後の骨の厚みBが骨の厚みBに収束し、m回目の軟部組織の厚みSが軟部組織の厚みSに収束する。以上のようにして、式(4)に示した非線形連立方程式を解くことができる。従って、全ての画素について式(4)を計算することで、低エネルギーにおける減弱率の画像Lと高エネルギーにおける減弱率の画像Hから、骨の厚さの画像B、軟部組織の厚さの画像Sを得ることができる。 By repeating such calculations, the difference between the high-energy attenuation rate Hm after the m -th iteration and the actually measured high-energy attenuation rate H approaches zero limitlessly. The same is true for the attenuation rate L of low energy. As a result, the bone thickness Bm after the mth iteration converges to the bone thickness B, and the soft tissue thickness Sm converges to the soft tissue thickness S after the mth iteration. As described above, the nonlinear simultaneous equations shown in Equation (4) can be solved. Therefore, by calculating Equation (4) for all pixels, the bone thickness image B and the soft tissue thickness image B are obtained from the attenuation rate image L at low energy and the attenuation rate image H at high energy. S can be obtained.
 なお、本実施形態では分離画像の例として、骨の厚さBと軟部組織の厚さSの画像を算出する例を示したが、本実施形態はこのような形態に限定されない。例えば、分離画像として水の厚さWと造影剤の厚さIを算出してもよい。すなわち、任意の二種類の物質の厚さに分解してもよい。また、図4Aの補正処理によって得られた低エネルギーにおける減弱率の画像Lと高エネルギーにおける減弱率の画像Hから、実効原子番号Zの画像と面密度Dの画像を分離画像として求めてもよい。実効原子番号Zとは混合物の等価的な原子番号のことであり、面密度Dとは被写体の密度[g/cm]と被写体の厚み[cm]の積である。当然のことながら、低エネルギー画像と高エネルギー画像に対して、これ以外の演算を行って分離画像を生成してもよい。すなわち、本発明の信号処理は、低エネルギー画像と高エネルギー画像を演算すること(エネルギーサブトラクション処理)で、エネルギーサブトラクション画像を生成する処理であるといえる。本明細書では、エネルギーサブトラクション画像と分離画像は同義であるとする。 In this embodiment, as an example of the separated image, an example of calculating the image of the thickness B of the bone and the thickness S of the soft tissue is shown, but the embodiment is not limited to such a form. For example, the thickness W of water and the thickness I of the contrast agent may be calculated as separate images. That is, it may be decomposed into thicknesses of any two types of materials. Further, an image of the effective atomic number Z and an image of the surface density D may be obtained as separate images from the image L of the attenuation rate at low energy and the image H of the attenuation rate at high energy obtained by the correction process of FIG. . The effective atomic number Z is the equivalent atomic number of a mixture, and the areal density D is the product of the object density [g/cm 3 ] and the object thickness [cm]. Of course, other operations may be performed on the low energy image and the high energy image to generate separated images. In other words, the signal processing of the present invention can be said to be processing for generating an energy subtraction image by computing a low energy image and a high energy image (energy subtraction processing). In this specification, the terms energy subtraction image and separation image are synonymous.
 また、本実施形態では、ニュートンラフソン法を用いて非線形連立方程式を解く例を示したが、このような形態に限定されるものではない。例えば、最小二乗法や二分法などの反復解法を用いてもよい。また、本実施形態では非線形連立方程式を反復解法で解いていたが、このような形態に限定されるものではない。様々な組み合わせの高エネルギーの減弱率Hと低エネルギーの減弱率Lに対する骨の厚みBや軟部組織の厚みSを事前に求めてテーブルを生成し、このテーブルを参照することで骨の厚みBや軟部組織の厚みSを高速に求める構成を用いても良い。 Also, in this embodiment, an example of solving the nonlinear simultaneous equations using the Newton-Raphson method is shown, but the method is not limited to such a form. For example, an iterative solution method such as the least squares method or the bisection method may be used. Also, in the present embodiment, the nonlinear simultaneous equations are solved by the iterative solution method, but the present invention is not limited to such a form. Bone thickness B and soft tissue thickness S for various combinations of high energy attenuation rate H and low energy attenuation rate L are obtained in advance to generate a table, and by referring to this table, bone thickness B and A configuration for obtaining the thickness S of the soft tissue at high speed may be used.
 ・画像処理の説明
 図4Cに、エネルギーサブトラクション処理に係る画像処理のブロック図を示す。画像処理では、上述した信号処理によって得られた分離画像を用いて表示用の画像を生成する。例えば図4Bに示した信号処理によって得られた骨画像Bに対して後処理を行うなどして、表示用画像を生成する。生成された表示用画像は、例えば、ディスプレイ145に表示される。そのような後処理としては、対数変換やダイナミックレンジ圧縮などが用いられ得る。なお、後処理の種類や強度をパラメータとして入力することで、処理の内容を切り替えてもよい。
Description of Image Processing FIG. 4C shows a block diagram of image processing related to energy subtraction processing. In the image processing, an image for display is generated using the separated images obtained by the signal processing described above. For example, a display image is generated by post-processing the bone image B obtained by the signal processing shown in FIG. 4B. The generated display image is displayed on the display 145, for example. Such post-processing may include logarithmic transformation, dynamic range compression, and the like. The content of processing may be switched by inputting the type and strength of post-processing as parameters.
 以上、本実施形態によるエネルギーサブトラクション処理について説明した。図6に、蓄積画像601と骨画像602の例を模式的に示す。蓄積画像601とは、エネルギーサブトラクション処理前の画像、すなわち、エネルギー分解能を持たない、既存の放射線撮像システムで撮影された画像もしくはそれに相当する画像である。例えば、図3Aと3Bにおける画像306、画像406、上述した高エネルギー画像H、低エネルギー画像Lが蓄積画像に相当する。骨画像602は、上述のエネルギーサブトラクション処理により得られた分離画像である。通常の人体は、軟部組織と骨のみで構成されている。しかしながら、図1に示した放射線撮像システムを用いてInterventional Radiology(以下、IVR)を行うときは、血管に造影剤が注入される。また、カテーテルやガイドワイヤーを血管内に挿入し、ステントやコイルを留置するなどの処置が行われる。IVRでは、造影剤や医療用デバイスの位置と形状を確認しながら処置が行われる。従って、造影剤や医療用デバイスのみを分離する、又は、軟部組織や骨などの背景を除去することで、視認性を向上させることが望まれる。 The energy subtraction processing according to this embodiment has been described above. FIG. 6 schematically shows an example of an accumulated image 601 and a bone image 602. As shown in FIG. The stored image 601 is an image before energy subtraction processing, that is, an image captured by an existing radiation imaging system without energy resolution or an image corresponding thereto. For example, image 306, image 406 in FIGS. 3A and 3B, high energy image H, and low energy image L described above correspond to accumulated images. Bone image 602 is a separated image obtained by the energy subtraction process described above. The normal human body consists only of soft tissue and bone. However, when Interventional Radiology (hereinafter referred to as IVR) is performed using the radiation imaging system shown in FIG. 1, a contrast agent is injected into the blood vessel. Treatments such as inserting a catheter or guide wire into a blood vessel and placing a stent or coil are also performed. In IVR, treatment is performed while confirming the positions and shapes of contrast agents and medical devices. Therefore, it is desired to improve the visibility by isolating only the contrast agent and medical device or by removing the background such as soft tissue and bone.
 図6に示すように、蓄積画像601では軟部組織が見えてしまうのに対して、エネルギーサブトラクション処理により得られた骨画像602では、軟部組織のコントラストを除去することができる。また、造影剤の主成分はヨウ素であり、医療用デバイスの主成分はステンレス等の金属である。いずれも、骨の主成分であるカルシウムよりも原子番号が大きいため、骨画像602には、骨と造影剤と医療用デバイスが表示される。本願の発明者が検討を行ったところ、高エネルギー画像Hと低エネルギー画像Lを水画像Wと造影剤画像Iに分離するなどしても、造影剤画像Iに骨と造影剤と医療用デバイスが表示されることが確認された。他の二物質の組み合わせであっても同様である。また、低エネルギーのX線と高エネルギーのX線の管電圧やフィルタを変えても同様である。いずれの場合にも、骨画像602には、骨と造影剤と医療用デバイスが表示されることが確認された。 As shown in FIG. 6, in the accumulated image 601, the soft tissue is visible, whereas in the bone image 602 obtained by the energy subtraction processing, the contrast of the soft tissue can be removed. The main component of contrast media is iodine, and the main component of medical devices is metal such as stainless steel. Since both have atomic numbers greater than calcium, which is the main component of bone, the bone image 602 displays the bone, the contrast medium, and the medical device. As a result of studies conducted by the inventors of the present application, even if the high-energy image H and the low-energy image L are separated into a water image W and a contrast agent image I, bones, a contrast agent, and a medical device are included in the contrast agent image I. was confirmed to be displayed. The same is true for combinations of other two substances. The same effect can be obtained by changing the tube voltage and filter for low-energy X-rays and high-energy X-rays. In either case, it was confirmed that the bone image 602 displayed the bone, the contrast agent, and the medical device.
 胸部のIVRを行うときの肺野部分などのように、軟部組織のコントラストが視認性を低下させている場合は、第1実施形態に係る放射線撮像システムにおける骨画像602を表示することで、造影剤や医療用デバイスの視認性が向上する可能性がある。しかしながら、骨画像602は蓄積画像601よりもフレーム間変動が大きくなり、動画を表示した際に画面が明滅するという課題がある。 When the contrast of the soft tissue reduces the visibility, such as in the lung field when performing IVR of the chest, by displaying the bone image 602 in the radiation imaging system according to the first embodiment, contrast enhancement It may improve the visibility of drugs and medical devices. However, the bone image 602 has a larger frame-to-frame variation than the accumulated image 601, and there is a problem that the screen flickers when a moving image is displayed.
 蓄積画像601の画素値は撮影(フレーム)ごとに変動する。原因としては、照射線量、線質がフレーム間で変動するといったX線源起因のものや、サンプルホールドのタイミングがフレーム間で変化するといったセンサ起因のものなどが考えられる。蓄積画像での画素値の変動はエネルギーサブトラクション処理を行うことで増幅される。図7に豚の臓器の放射線動画を撮影した場合の、エネルギーサブトラクション処理前後におけるフレームの平均画像に対するフレーム間変動を示す。グラフ701は、エネルギーサブトラクション処理後の動画(骨画像)におけるフレーム間変動を示す。また、グラフ702は、エネルギーサブトラクション処理前の動画(高エネルギー画像H)におけるフレーム間変動を表している。ただし、エネルギーサブトラクション処理前の画像は以下の変形により画素値を[cm]に合わせている。 The pixel value of the accumulated image 601 varies for each shooting (frame). Possible causes include X-ray source-related factors such as variations in exposure dose and radiation quality between frames, and sensor-related factors such as sample-and-hold timing changes between frames. Variations in pixel values in an accumulated image are amplified by performing energy subtraction processing. FIG. 7 shows inter-frame variation with respect to the average image of frames before and after the energy subtraction process when radiographic moving images of porcine organs are captured. A graph 701 shows inter-frame variation in a moving image (bone image) after energy subtraction processing. A graph 702 represents inter-frame variation in the moving image (high energy image H) before the energy subtraction process. However, the image before the energy subtraction process adjusts the pixel value to [cm] by the following deformation.
 X線が単色であり、被写体の材質が同じである(減弱率が同じである)と仮定すると、エネルギーサブトラクション処理前の画像の各画素I/Iは、式(2)で表すことができる。ただし、μはX線の平均エネルギーEにおける減弱率である。ここで、式(2)は以下の式(10)ように変形することができる。エネルギーサブトラクション処理前の画像の各画素I/Iを式(10)のように変形することで、厚み[cm]の次元にすることができる。なお、減弱率μには骨の減弱率が使用される。 Assuming that the X-rays are monochromatic and the material of the object is the same (the attenuation rate is the same), each pixel I/ I0 of the image before energy subtraction can be expressed by equation (2) . However, μ is the attenuation rate at the average energy E of X-rays. Here, equation (2) can be transformed into equation (10) below. By transforming each pixel I/ I0 of the image before the energy subtraction process as shown in Equation (10), it can be made to have the dimension of thickness [cm]. The bone attenuation rate is used as the attenuation rate μ.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 図7からわかるように、エネルギーサブトラクション処理前の動画では目立たないフレーム間の信号値の変動(グラフ702)が、エネルギーサブトラクション処理後の動画においては大きくなる(グラフ701)。このようなフレーム間の信号値の変動により、動画を目視した際に画像が明滅する。このように、エネルギーサブトラクション処理前の動画では明滅が目視できなくても、エネルギーサブトラクション処理後の動画が明滅する場合がある。以下、エネルギーサブトラクション処理後の動画における明滅を低減するための処理について説明する。 As can be seen from FIG. 7, fluctuations in signal values between frames (graph 702), which are inconspicuous in the video before energy subtraction processing, become large in the video after energy subtraction processing (graph 701). Due to such a change in signal value between frames, an image blinks when a moving image is viewed. In this way, blinking may occur in the moving image after the energy subtraction processing, even if blinking is not visible in the moving image before the energy subtraction processing. Processing for reducing blinking in moving images after energy subtraction processing will be described below.
 図8に、フレーム間の信号値の変動(明滅)を低減させる処理(以下、明滅低減処理)を含む信号処理のブロック図を示す。図8のブロック図は、図4Bにより上述した信号処理のブロックをより詳細に示した図である。信号処理は、高エネルギーの放射線撮影に対応する動画を構成する高エネルギー画像Hと、低エネルギーの放射線撮影に対応する動画を構成する低エネルギー画像Lとから、分離画像(骨画像B'と軟部組織画像S')の動画を出力する。分離画像の動画は、後述の明滅低減処理によりフレーム間の明滅が低減されている。なお、図8では、説明のため、必要最小限の構成が示されている。また、ブロックR1、ブロックMD1、ブロックR2は、例えば、CPU141がROM142に格納されたプログラムを実行することにより実現され得る。また、各ブロックのいずれか、あるいはすべてが専用のハードウエアにより実現されてもよいし、CPUと専用のハードウエアとの協働により実現されてもよい。 FIG. 8 shows a block diagram of signal processing including processing for reducing fluctuations (blinking) in signal values between frames (hereinafter, flickering reduction processing). The block diagram of FIG. 8 shows in more detail the signal processing blocks described above with reference to FIG. 4B. In the signal processing, separated images (bone image B′ and soft tissue A moving image of the tissue image S') is output. In the moving image of the separated image, flickering between frames is reduced by flickering reduction processing, which will be described later. Note that FIG. 8 shows the minimum required configuration for the sake of explanation. Also, block R1, block MD1, and block R2 can be realized by executing a program stored in ROM 142 by CPU 141, for example. Also, any one or all of the blocks may be implemented by dedicated hardware, or may be implemented by cooperation between the CPU and dedicated hardware.
 まず、ブロックR1が、高エネルギー画像Hと低エネルギー画像Lに対して明滅低減処理を行う。明滅低減処理の詳細については後述する。次に、ブロックMD1は、ブロックR1により明滅が低減された高エネルギー画像H'と低エネルギー画像L'に、図4Bを参照して説明した信号処理を適用し、骨画像Bと軟部組織画像Sを生成する。次に、ブロックR2は、骨画像Bと軟部組織画像Sに対して明滅低減処理を行い、骨画像B'と軟部組織画像S'を生成する。以上により、ブロックR2から、明滅低減処理がなされたエネルギーサブトラクション処理動画である動画B'、動画S'が得られる。 First, the block R1 performs flicker reduction processing on the high energy image H and the low energy image L. Details of the flickering reduction process will be described later. Block MD1 then applies the signal processing described with reference to FIG. to generate Block R2 then performs a blink reduction process on bone image B and soft tissue image S to generate bone image B' and soft tissue image S'. As described above, from block R2, moving images B′ and S′, which are energy subtraction processed moving images subjected to flickering reduction processing, are obtained.
 図9は、図8に示したブロックR1が行う明滅低減処理を示すフローチャートである。S901において、ブロックR1は、高エネルギー画像Hと低エネルギー画像Lからそれぞれの代表信号値を算出する。代表信号値は被写体の動きによる影響を受けないことが好ましい。代表信号値は画像全体から求めても良いし、設定したROIから求めても良い。ROIを設定する場合、ROIはあらかじめ決められた固定の領域でも良いし、代表信号値を算出する際にユーザにより手動で設定されても良いし、自動的に設定されても良い。ROIを自動的に設定する方法としては、例えば、動画像を解析して被写体起因の信号値変動がない領域を特定し、特定した領域をROIとして設定する方法が用いられ得る。また、代表信号値としては、中央値、平均値、累積ヒストグラムのN%値などの統計量を用いることができる。以下では、中央値を代表値信号として用いて説明する。 FIG. 9 is a flowchart showing the flickering reduction process performed by block R1 shown in FIG. In S901, block R1 calculates representative signal values from high energy image H and low energy image L, respectively. Preferably, the representative signal value is unaffected by subject motion. A representative signal value may be obtained from the entire image, or may be obtained from a set ROI. When setting the ROI, the ROI may be a predetermined fixed region, may be set manually by the user when calculating the representative signal value, or may be set automatically. As a method of automatically setting the ROI, for example, a method of analyzing a moving image to specify an area where there is no signal value variation due to the object, and setting the specified area as the ROI can be used. Also, as the representative signal value, a statistic such as the median value, the average value, or the N% value of the cumulative histogram can be used. In the following description, the median value is used as the representative value signal.
 S902において、ブロックR1は、明滅低減処理の対象となっている動画データから基準となる代表信号値(以下、基準値という)を求める。基準値は、例えば、動画データの1フレーム目の画像の中央値とすることができる。より具体的には、一連の高エネルギー画像Hからなる動画データの1フレーム目の画像の中央値が高エネルギー画像用の基準値に、一連の低エネルギー画像Lからなる動画データの1フレーム目の画像の中央値が低エネルギー画像用の基準値に決定される。 In S902, the block R1 obtains a reference representative signal value (hereinafter referred to as reference value) from the moving image data to be subjected to flickering reduction processing. The reference value can be, for example, the median value of the first frame image of the moving image data. More specifically, the median value of the image of the first frame of the moving image data composed of the series of high energy images H is used as the reference value for the high energy image, and the median value of the image of the first frame of the moving image data composed of the series of low energy images L The median value of the image is determined as the reference value for the low energy image.
 次に、S903において、ブロックR1は、高エネルギー画像Hと低エネルギー画像Lのそれぞれについて補正量を算出する。以下、高エネルギー画像Hの補正量αと、補正量αを用いた高エネルギー画像Hの補正について説明するが、低エネルギー画像も同様の処理で補正され得る。補正量αは、S902において高エネルギー画像の動画データから得られた基準値が、S901において高エネルギー画像Hについて求めた中央値に対して何倍になるかを計算することで得られる。S904において、ブロックR1は、S903で得られた補正量αを高エネルギー画像Hに乗算し、高エネルギー画像H'を得る。こうして、高エネルギー画像Hからなる動画における信号のフレーム間変動を低減させる。フレーム間変動を低減させる処理の例として、高エネルギー画像Hから明滅低減処理された高エネルギー画像H'を求める計算を式(11)に示す。但し、式(11)においてH[N]は高エネルギー画像Hからなる動画のN枚目のフレームを示し、MED(H[N])は当該動画のN枚目のフレームの中央値を示す。式(11)は、係数(補正量α)の乗算を用いた明滅低減処理の一例である。 Next, in S903, the block R1 calculates the correction amount for each of the high energy image H and the low energy image L. The correction amount α of the high-energy image H and the correction of the high-energy image H using the correction amount α will be described below, but the low-energy image can also be corrected by similar processing. The correction amount α is obtained by calculating how many times the reference value obtained from the moving image data of the high energy image in S902 is the median value obtained for the high energy image H in S901. At S904, block R1 multiplies the high energy image H by the correction amount α obtained at S903 to obtain a high energy image H′. In this way, the frame-to-frame variation of the signal in the moving image composed of the high-energy images H is reduced. As an example of processing for reducing inter-frame variation, a calculation for obtaining a high-energy image H′ subjected to blink reduction processing from a high-energy image H is shown in Equation (11). However, in Equation (11), H[N] indicates the Nth frame of the moving image made up of the high-energy image H, and MED(H[N]) indicates the median value of the Nth frame of the moving image. Equation (11) is an example of blinking reduction processing using multiplication of a coefficient (correction amount α).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 以上の処理が、撮影終了まで繰り返される(S905)ことにより、信号のフレーム間変動が低減された(明滅が低減された)高エネルギー画像H'の動画データが得られる。また、同様の処理により、信号のフレーム間変動が低減された(明滅が低減された)低エネルギー画像L'の動画が得られる。 By repeating the above processing until the end of shooting (S905), moving image data of the high-energy image H' with reduced inter-frame variation of the signal (reduced blinking) is obtained. Also, by similar processing, a moving image of the low-energy image L′ with reduced inter-frame variation of the signal (reduced blinking) is obtained.
 なお、上記の例では1フレーム目の画像から基準値を求めたが、これに限定されない。例えば、補正対象のフレームを取得した時点で撮影されているフレーム(すなわち補正対象のフレームよりも過去のフレーム)の全て或いは一部を用いて基準値が算出されてもよい。例えば、補正対象のフレームを取得した時点で最新の所定数のフレームの平均画像から基準値を算出するようにしてもよい。 In the above example, the reference value was obtained from the first frame image, but it is not limited to this. For example, the reference value may be calculated using all or part of the frames captured at the time the frame to be corrected was obtained (that is, the frames prior to the frame to be corrected). For example, the reference value may be calculated from the latest average image of a predetermined number of frames at the time when the frame to be corrected is acquired.
 また、上記では、高エネルギー画像と低エネルギー画像で独立に補正量を計算したが、これに限られるものではなく、例えば、高エネルギー画像と低エネルギー画像の関係を用いて補正量を算出するようにしても良い。例えば、以下の式(12)で示される、Nフレーム目の画像における代表信号値と基準値との誤差であるΔH[N]とΔL[N]が同じ値になるように、高エネルギー画像Hと低エネルギー画像Lが補正されても良い。 Also, in the above description, the correction amount is calculated independently for the high energy image and the low energy image, but the present invention is not limited to this. You can do it. For example, the high-energy image H and the low energy image L may be corrected.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 例えば、式(12)のΔHとΔLについて、ΔH=ΔL=(ΔH+ΔL)/2となるように補正量を算出する場合について式(13)に示す。 For example, for ΔH and ΔL in equation (12), equation (13) shows a case where the correction amount is calculated so that ΔH=ΔL=(ΔH+ΔL)/2.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 また、前述の例では、補正量を除算で求め、補正を乗算によって行っているが、これに限定されない。例えば、加算/減算によって補正量の導出と補正を行っても良い。加算/減算によって高エネルギー画像Hから明滅低減処理を行った高エネルギー画像H'を求める場合を式(14)に示す。式(14)は、係数(補正量α)の加減算を用いた明滅低減処理の一例である。 Also, in the above example, the correction amount is obtained by division, and the correction is performed by multiplication, but the present invention is not limited to this. For example, the correction amount may be derived and corrected by addition/subtraction. Equation (14) shows the case of obtaining a high energy image H′ subjected to blink reduction processing from the high energy image H by addition/subtraction. Equation (14) is an example of blink reduction processing using addition and subtraction of a coefficient (correction amount α).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 以上、エネルギーサブトラクション処理の前の画像(高エネルギー画像Hと低エネルギー画像L)を補正の対象とする明滅低減処理について説明した。以上、ブロックR1による、補正の対象を分離前の複数のエネルギーの放射線撮影に対応する画像(高エネルギー画像Hと低エネルギー画像L)に対する明滅低減処理を説明した。ブロックR2は、補正の対象を分離画像として明滅低減処理を行う。明滅低減処理には、上述した明滅低減処理と同様の方法(例えば、式(11)または式(14)により示された方法)を用いることができる。 The flickering reduction processing for correcting the images before the energy subtraction processing (the high energy image H and the low energy image L) has been described above. The flickering reduction processing performed by the block R1 on images (high energy image H and low energy image L) corresponding to radiography with a plurality of energies before separation of correction targets has been described above. A block R2 performs flickering reduction processing with the separated image as the target of correction. A method similar to the above-described flickering reduction processing (for example, the method represented by Equation (11) or Equation (14)) can be used for the flickering reduction processing.
 図10に、上述の明滅低減処理を行った場合と行わない場合の、エネルギーサブトラクション処理により得られた動画における画像平均値のフレーム間の変動を示す。グラフ701は、図7と同様、明滅低減処理が行われない場合の骨画像における画像平均値の変動を示す。グラフ1001は、明滅低減処理が行われた場合の骨画像における画像平均値の変動を示している。図10から明らかなように、明滅低減処理によって平均値のフレーム間変動が抑えられており、動画における明滅が低減している。 FIG. 10 shows the frame-to-frame variation of the image average value in the moving image obtained by the energy subtraction processing with and without the above-described flickering reduction processing. A graph 701, like FIG. 7, shows the variation of the image average value in the bone image when the flicker reduction processing is not performed. A graph 1001 shows the variation of the image average value in the bone image when the flicker reduction processing is performed. As is clear from FIG. 10, the inter-frame variation of the average value is suppressed by the flickering reduction processing, and the flickering in the moving image is reduced.
 以上説明したように、第1実施形態によれば、エネルギーサブトラクション処理により得られた動画における明滅が低減され、観察しやすい画像が得られる。 As described above, according to the first embodiment, flickering in a moving image obtained by energy subtraction processing is reduced, and an easy-to-observe image is obtained.
 なお、ブロックR1およびブロックR2に用いる明滅低減処理は、係数の乗算による方法、係数の加減算による方法のいずれが用いられてもよい。但し、本願発明者が検討を行ったところ、高エネルギー画像Hと低エネルギー画像Lに対する明滅の低減処理において乗算による補正を行った場合に、最も明滅が抑えることができた。また、骨画像Bと軟部組織画像Sに対する明滅の低減処理において加減算による補正を行った場合に最も明滅が抑えることができた。したがって、ブロックR1の明滅低減処理には係数の乗算による補正を、ブロックR2の明滅低減処理には係数の加減算による補正を適用することが好ましい例として挙げられ得る。また、上記実施形態では、エネルギーサブトラクション処理前の画像とエネルギーサブトラクション処理後の画像の両方に明滅低減処理を行ったがこれに限られるものではない。ブロックR1とブロックR2の少なくともどちらかにより明滅低減処理が実行されればよい。但し、ブロックR1とブロックR2に関して本願発明者が検討を行ったところ、ブロックR1とブロックR2の両方を用いることでより良好に明滅を低減することができた。 It should be noted that the flickering reduction process used for block R1 and block R2 may be either a method of multiplying coefficients or a method of adding or subtracting coefficients. However, as a result of investigation by the inventor of the present application, blinking can be suppressed most effectively when multiplication correction is performed in blinking reduction processing for the high energy image H and the low energy image L. FIG. In addition, flickering can be suppressed most effectively when the bone image B and the soft tissue image S are corrected by addition and subtraction in the flickering reduction process. Therefore, it is preferable to apply correction by multiplication of coefficients to the blink reduction processing of block R1 and correction by addition and subtraction of coefficients to the blink reduction processing of block R2. Further, in the above embodiment, the flicker reduction process is performed on both the image before the energy subtraction process and the image after the energy subtraction process, but the present invention is not limited to this. At least one of block R1 and block R2 may perform the blink reduction process. However, when the inventors of the present application examined the block R1 and the block R2, it was found that blinking could be reduced more satisfactorily by using both the block R1 and the block R2.
 (第2実施形態)
 第2実施形態では、第1実施形態で説明した骨画像の明滅低減処理に加えて、骨画像におけるノイズを低減するためのノイズ低減処理を行う構成を説明する。
(Second embodiment)
In the second embodiment, in addition to the bone image flickering reduction processing described in the first embodiment, a configuration for performing noise reduction processing for reducing noise in the bone image will be described.
 本実施形態のノイズ低減処理は、一般的な放射線撮影により取得される画像と互換性を有する蓄積画像を用いてノイズを効果的に低減する。まず、本実施形態のノイズ低減処理に用いられる蓄積画像について説明する。第1実施形態で説明したように、1回のX線の照射に対して、X線の照射中と照射終了後のタイミングを含む複数のタイミングのサンプルホールドにより取得された複数の放射線画像から高エネルギー画像と低エネルギー画像が生成される。ここで、例えば、X線の照射終了後のタイミングで取得されるX線画像(図3Aの画像306)が蓄積画像として用いられ得る。 The noise reduction processing of this embodiment effectively reduces noise using stored images that are compatible with images acquired by general radiography. First, an accumulated image used for noise reduction processing according to this embodiment will be described. As described in the first embodiment, for one X-ray irradiation, high-resolution images are obtained from a plurality of radiographic images acquired by sample-holding at a plurality of timings including timings during X-ray irradiation and after the end of X-ray irradiation. An energy image and a low energy image are generated. Here, for example, an X-ray image (image 306 in FIG. 3A) acquired at the timing after the end of X-ray irradiation can be used as the accumulated image.
 図11は、第2実施形態に係る、蓄積画像を取得するための補正処理を実現する構成の一例を示すブロック図である。蓄積画像Aは、例えば、画像XF_EVENを画像WF_EVENで除算することにより生成される。画像XF_EVENおよび画像WF_EVENは図4Aで説明したとおりである。すなわち、画像XF_EVENは、被写体がある場合の立ち上がり期のX線301、安定期のX線302、立下り期のX線303の和に対応する画像である。また、画像WF_EVENは、被写体がない場合の立ち上がり期のX線301、安定期のX線302、立下り期のX線303の和に対応する画像である。 FIG. 11 is a block diagram showing an example of a configuration for implementing correction processing for acquiring an accumulated image according to the second embodiment. The accumulated image A is generated, for example, by dividing the image XF_EVEN by the image WF_EVEN. Image XF_EVEN and image WF_EVEN are as described in FIG. 4A. That is, the image XF_EVEN is an image corresponding to the sum of the X-rays 301 in the rising period, the X-rays 302 in the stable period, and the X-rays 303 in the falling period when there is an object. The image WF_EVEN is an image corresponding to the sum of the X-rays 301 in the rising period, the X-rays 302 in the stable period, and the X-rays 303 in the falling period when there is no subject.
 なお、蓄積画像Aは、高エネルギーにおける減弱率の画像H(高エネルギー画像H)と低エネルギーのおける減弱率の画像L(低エネルギー画像L)に係数をかけて加算することにより生成されてもよい。例えば、蓄積画像Aは、式(15)を用いて生成されてもよい。なお、蓄積画像Aの算出において、一方の係数を0、他方の係数を1としてもよく、この場合、高エネルギー画像Hまたは低エネルギー画像Lそのものが蓄積画像Aとして用いられることになる。すなわち、エネルギーサブトラクション処理の対象となる画像と撮影タイミングが実質的に同じであって、エネルギーサブトラクション処理が適用されていない画像が、ノイズ低減処理のための蓄積画像Aとして用いられ得る。 Note that the stored image A may be generated by multiplying an image H with an attenuation rate in high energy (high energy image H) and an image L with an attenuation rate in low energy (low energy image L) and adding them together. good. For example, accumulated image A may be generated using equation (15). Note that in calculating the accumulated image A, one coefficient may be set to 0 and the other coefficient may be set to 1. In this case, the high energy image H or the low energy image L itself is used as the accumulated image A. That is, an image captured at substantially the same timing as the image to be subjected to energy subtraction processing and to which energy subtraction processing has not been applied can be used as accumulated image A for noise reduction processing.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 図12は、第2実施形態に係るエネルギーサブトラクション処理における信号処理を行う構成の例を示すブロック図である。図12のブロック図は、図4Bにより説明した信号処理のより詳細な構成を示す。なお、図12では、説明のため、必要最小限の構成が示されている。ブロックR1~R3、ブロックMD1~MD2、ブロックADD、ブロックF1~F3は、例えば、CPU141がROM142に格納されたプログラムを実行することにより実現され得る。但し、図12に示される各ブロックのいずれか、あるいはすべてが専用のハードウエアにより実現されてもよいし、CPUと専用のハードウエアとの協働により実現されてもよい。 FIG. 12 is a block diagram showing an example of a configuration for performing signal processing in energy subtraction processing according to the second embodiment. The block diagram of FIG. 12 shows a more detailed configuration of the signal processing described with reference to FIG. 4B. Note that FIG. 12 shows the minimum required configuration for the sake of explanation. Blocks R1-R3, blocks MD1-MD2, block ADD, and blocks F1-F3 can be implemented by the CPU 141 executing a program stored in the ROM 142, for example. However, any one or all of the blocks shown in FIG. 12 may be implemented by dedicated hardware, or may be implemented by cooperation between the CPU and dedicated hardware.
 ブロックF2とブロックF3は、それぞれ低エネルギー画像Lと高エネルギー画像Hに対して、それぞれノイズ低減を目的としたフィルタ処理を施し、ノイズ低減された低エネルギー画像L'と、ノイズ低減された高エネルギー画像H'を生成する。フィルタ処理には、例えば、ガウシアンフィルタやメディアンフィルタなどの空間方向のフィルタ、イプシロンフィルタやラプラシアンフィルタ等の構造保存型の空間方向のフィルタ、リカーシブフィルタ等の時間方向のフィルタなどが用いられ得る。二物質分離を行うブロックMD1の前にフィルタを適用するノイズ低減処理により、X線の量子ノイズが低減される。ブロックR1は、ノイズ低減された低エネルギー画像L'とノイズ低減された高エネルギー画像H'に対して明滅低減処理を行い、高エネルギー画像H''と低エネルギー画像L''を生成する。なお、ブロックR1による明滅低減処理は、第1実施形態(図8のブロックR1)による明滅低減処理と同様である。高エネルギー画像H''と低エネルギー画像L''により構成される動画は、ともにブロックR1から得られる、信号のフレーム間変動が抑制された動画である。 Block F2 and block F3 perform filtering for the purpose of noise reduction on the low energy image L and the high energy image H, respectively. Generate image H'. For filtering, for example, spatial filters such as Gaussian filters and median filters, structure-preserving spatial filters such as epsilon filters and Laplacian filters, and time filters such as recursive filters can be used. Quantum noise of the X-rays is reduced by a noise reduction process that applies a filter before the block MD1 that performs two-material separation. Block R1 performs a blink reduction process on the noise reduced low energy image L' and the noise reduced high energy image H' to produce a high energy image H'' and a low energy image L''. Note that the blink reduction processing by block R1 is the same as the blink reduction processing by the first embodiment (block R1 in FIG. 8). A moving image composed of the high-energy image H'' and the low-energy image L'' is a moving image in which inter-frame fluctuations of signals are suppressed, both of which are obtained from the block R1.
 次に、ブロックMD1は、ノイズ低減処理が施され、フレーム間変動が補正された高エネルギーH''および低エネルギー画像L''から骨画像B'と軟部組織画像S'を生成する。ブロックMD1による物質分離の動作は、第1実施形態(図8のブロックMD1)と同様である。次に、ブロックR2は、ブロックMD1で生成された骨画像B'と軟部組織画像S'に対して明滅低減処理を行い、骨画像B''、軟部組織画像S''として出力する。ブロックR2による処理は、第1実施形態(図8のブロックRD2)と同様である。 Next, a block MD1 generates a bone image B' and a soft tissue image S' from the high energy H'' and low energy image L'' that have undergone noise reduction processing and are corrected for inter-frame variation. The operation of material separation by block MD1 is the same as in the first embodiment (block MD1 in FIG. 8). Next, a block R2 performs flicker reduction processing on the bone image B' and the soft tissue image S' generated in the block MD1, and outputs a bone image B'' and a soft tissue image S''. The processing by block R2 is the same as in the first embodiment (block RD2 in FIG. 8).
 ブロックADDは、骨画像B''と軟部組織画像S''の和の画像を生成し、厚み画像T'として出力する。この段階で、骨画像B''と軟部組織画像S''の和である厚み画像T'は、ノイズ低減と明滅低減が行われた画像となっている。ブロックF1は、厚み画像T'に対してノイズ低減を目的としたフィルタ処理を施し、フィルタ処理後の厚み画像T''を生成する。厚み画像T''は、明滅低減とノイズ低減とが二重に施された厚み画像となる。ブロックF1のフィルタ処理には、ガウシアンフィルタやメディアンフィルタなどの空間方向のフィルタ、イプシロンフィルタやラプラシアンフィルタ等の構造保存型の空間方向のフィルタ、リカーシブフィルタ等の時間方向のフィルタなどが用いられ得る。 A block ADD generates an image of the sum of the bone image B'' and the soft tissue image S'', and outputs it as a thickness image T'. At this stage, the thickness image T', which is the sum of the bone image B'' and the soft tissue image S'', has undergone noise reduction and blink reduction. A block F1 applies filter processing for the purpose of noise reduction to the thickness image T' to generate a thickness image T'' after the filter processing. The thickness image T'' is a thickness image to which flicker reduction and noise reduction have been applied in a double manner. Spatial filters such as Gaussian filters and median filters, structure-preserving spatial filters such as epsilon filters and Laplacian filters, and temporal filters such as recursive filters can be used for the filtering process of block F1.
 ブロックH1は、ブロックR1から出力される、明滅低減処理が施された高エネルギー画像H''と低エネルギー画像L''から、例えば式(15)を用いて蓄積画像A''を生成する。ブロックMD2は、ブロックF1から出力される厚み画像T''と、ブロックH1から出力される蓄積画像A''とから、物質分離の処理を行い、明滅低減処理、ノイズ低減処理がなされた骨画像B'''を生成する。ブロックMD2による物質分離処理については後述する。ブロックR3は、ブロックMD2により得られた骨画像B'''に対してさらに明滅低減処理を行い、明滅低減処理がされた骨画像B''''を生成する。以上のようなブロックF1とブロックMD2を用いたノイズ低減処理によれば、エネルギーサブトラクション処理(物質分離)に伴うノイズが低減される。 A block H1 generates an accumulated image A'' using, for example, equation (15) from the high energy image H'' and the low energy image L'' subjected to the blink reduction process, which are output from the block R1. A block MD2 performs material separation processing from the thickness image T'' output from the block F1 and the accumulated image A'' output from the block H1, and performs flickering reduction processing and noise reduction processing to obtain a bone image. B''' is generated. The material separation processing by block MD2 will be described later. A block R3 performs further flickering reduction processing on the bone image B''' obtained by the block MD2 to generate a flickering-reduced bone image B''''. According to the noise reduction processing using the block F1 and the block MD2 as described above, noise accompanying the energy subtraction processing (substance separation) is reduced.
 次に、ブロックMD2による物質分離の処理について説明する。蓄積画像は、骨と軟部組織のみで構成されているという仮定(制約条件)の下、蓄積画像の画素値をA、蓄積画像におけるスペクトルをN(E)、軟部組織の厚みをS、骨の厚みをBとすると、以下の式(16)が成り立つ。 Next, the substance separation processing by block MD2 will be described. Under the assumption (constraint condition) that the accumulated image consists only of bone and soft tissue, let A be the pixel value of the accumulated image, NA (E) be the spectrum in the accumulated image, S be the thickness of the soft tissue, and S be the thickness of the bone. Assuming that the thickness of is B, the following equation (16) holds.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 ここで骨の厚みと軟部組織の厚みの和をTとすると、T=B+Sより、式(16)を変形して以下の式(17)が成り立つ。 Here, if the sum of the thickness of the bone and the thickness of the soft tissue is T, the following formula (17) holds by transforming the formula (16) from T=B+S.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 式(17)に、ある画素における蓄積画像の画素値Aと厚みTを代入して非線形方程式を解くことで、ある画素における骨の厚みBを求めることが可能である。すなわち、厚みTとしてノイズ低減処理および明滅低減処理が施された厚み画像T'を、蓄積画像の画素値AとしてブロックH1の出力である蓄積画像A''を用いて式(17)を解くと、骨画像B'''を表す骨の厚みBが得られる。厚み画像は蓄積画像と比較して連続性が高いため、高周波成分が含まれない。従って、厚み画像T'にブロックF1によるフィルタ処理を行ってノイズを除去しても信号成分が失われにくい。このようにしてノイズ低減された厚み画像T''と、元々ノイズが少ない蓄積画像A''をブロックMD2が用いることで、ノイズ低減された骨画像B'''を得ることができる。同様に、式(16)をB=T-Sを用いて変形することで、ブロックMD2が厚み画像T''と蓄積画像A''からノイズ低減された軟部組織画像S'''を得るようにすることも可能である。 By substituting the pixel value A and the thickness T of the accumulated image at a certain pixel into Equation (17) and solving the nonlinear equation, it is possible to obtain the thickness B of the bone at a certain pixel. That is, if the thickness image T′ subjected to noise reduction processing and flickering reduction processing is used as the thickness T, and the accumulated image A″ output from the block H1 is used as the pixel value A of the accumulated image, Equation (17) is solved. , the bone thickness B representing the bone image B''' is obtained. Since the thickness image has higher continuity than the accumulated image, it does not contain high frequency components. Therefore, even if noise is removed by filtering the thickness image T' using the block F1, the signal component is less likely to be lost. The noise-reduced bone image B''' can be obtained by the block MD2 using the noise-reduced thickness image T'' and the accumulated image A'', which originally has little noise. Similarly, by transforming equation (16) with B=TS, block MD2 obtains a noise-reduced soft tissue image S''' from the thickness image T'' and the accumulated image A''. It is also possible to
 さらに、上記では、ブロックMD2が合成された画像T''を用いるがこれに限られるものではない。例えば、ブロックR2の出力である軟部組織画像S''をブロックF1でノイズ低減して得られた軟部組織画像の画素値を式(16)に代入することで、ブロックMD2がノイズ低減および明滅低減がなされた骨画像B'''を得るようにしてもよい。或いは、ブロックR2の出力である骨画像B''をブロックF1でノイズ低減して得られた骨画像の画素値を式(16)に代入することで、ブロックMD2がノイズ低減および明滅低減がなされた軟部組織画像S'''を得るようにしてもよい。 Furthermore, in the above description, the image T'' synthesized with the block MD2 is used, but it is not limited to this. For example, by substituting the pixel values of the soft-tissue image obtained by noise-reducing the soft-tissue image S″, which is the output of the block R2, into the equation (16), the block MD2 performs noise reduction and blink reduction. A bone image B''' obtained by performing the above may be obtained. Alternatively, by substituting the pixel values of the bone image obtained by noise-reducing the bone image B'' output from the block R2 in the block F1 into the equation (16), the block MD2 is subjected to noise reduction and blink reduction. A soft tissue image S''' may be obtained.
 以上の処理により、第2実施形態によれば、信号のフレーム間変動(明滅)が低減され、且つノイズが低減されたエネルギーサブトラクション動画を生成することができる。 Through the above processing, according to the second embodiment, it is possible to generate an energy subtraction video in which inter-frame fluctuations (blinking) of signals are reduced and noise is reduced.
 なお、第2実施形態において、上述した全てのノイズ低減処理が実行されなくてもよい。例えば、ブロックF2とブロックF3のフィルタによるノイズ低減処理が省略されてもよい。或いは、例えば、ブロックF1のフィルタによるノイズ低減処理が省略されてもよい。 Note that in the second embodiment, not all of the noise reduction processes described above need to be executed. For example, the noise reduction processing by the filters of block F2 and block F3 may be omitted. Alternatively, for example, the noise reduction processing by the filter in block F1 may be omitted.
 なお、ブロックR1、ブロックR2およびブロックR3に用いる明滅低減処理は、係数の乗算による方法、係数の加減算による方法のいずれが用いられてもよい。但し、本願発明者が検討を行ったところ、高エネルギー画像Hと低エネルギー画像Lに対する明滅の低減処理において乗算による補正を行った場合に最も明滅が抑えることができた。また、骨画像B'と軟部組織画像S'に対する明滅の低減処理において加減算による補正を行った場合に最も明滅が抑えることができた。したがって、ブロックR1の明滅低減処理には乗算による補正を、ブロックR2とブロックR3の明滅低減処理には加減算による補正を適用することが好ましい。また、上記実施形態では、ブロックR1~ブロックR3において明滅低減処理を行ったがこれに限られるものではない。ブロックR1、ブロックR2、ブロックR3の少なくともいずれか1つにおいて明滅低減処理が実行されればよい。但し、本発明者らの検討によれば、ブロックR1とブロックR2による明滅低減処理を実行することが、明滅低減の観点から好ましい。 It should be noted that the flickering reduction processing used for block R1, block R2, and block R3 may be either a method of multiplying coefficients or a method of adding or subtracting coefficients. However, as a result of investigation by the inventor of the present application, blinking can be suppressed most effectively when multiplication correction is performed in blinking reduction processing for the high energy image H and the low energy image L. FIG. In addition, flickering could be suppressed most effectively when addition and subtraction were performed in flickering reduction processing for the bone image B' and the soft tissue image S'. Therefore, it is preferable to apply correction by multiplication to the blink reduction processing of block R1, and correction by addition and subtraction to the blink reduction processing of blocks R2 and R3. Further, in the above embodiment, the flickering reduction process is performed in blocks R1 to R3, but the present invention is not limited to this. At least one of block R1, block R2, and block R3 may be subjected to the blink reduction process. However, according to the study of the present inventors, it is preferable from the viewpoint of blinking reduction to perform the blinking reduction processing by the block R1 and the block R2.
 なお、図11のように二重にノイズ低減を行うときは、二物質分離を行うブロックMD1の前に適用するフィルタのブロックF2及びF3と、ブロックMD1の後に適用するフィルタのブロックF1との、種類や強度を同時に最適化する必要がある。二つのフィルタを単独に最適化した結果が最適とは限らないからである。例えば、時間方向のフィルタ又は空間方向のフィルタを二重にかけると、X線の量子ノイズと二物質分離に伴うノイズの増加率が独立ではなくなり、二つのノイズ低減の効果が積算されなくなる場合がある。従って、例えば、二物質分離を行うブロックMD1の前に適用されるフィルタであるブロックF2及びF3では、時間方向のフィルタを適用し、MD1の後に適用するフィルタのブロックF1では空間方向のフィルタを適用する構成を用いることができる。当然のことながら、ブロックF2及びF3において空間方向のフィルタを適用し、ブロックF1において時間方向のフィルタを適用するようにしてもよい。 When performing double noise reduction as shown in FIG. 11, filter blocks F2 and F3 applied before block MD1 for two-substance separation, and filter block F1 applied after block MD1, It is necessary to optimize the type and strength at the same time. This is because the result of optimizing the two filters independently is not always optimal. For example, if a temporal direction filter or a spatial direction filter is applied twice, the increase rate of the quantum noise of X-rays and the noise accompanying the separation of two substances will not be independent, and the two noise reduction effects may not be integrated. be. Thus, for example, blocks F2 and F3, which are filters applied before block MD1 for two-substance separation, apply filters in the temporal direction, and filters applied after MD1, block F1, apply filters in the spatial direction. A configuration can be used. Of course, it is also possible to apply a spatial filter in blocks F2 and F3 and a temporal filter in block F1.
 なお、空間方向のフィルタまたは時間方向のいずれかのフィルタを二重にかける構成も採用可能であり、その場合には両者のカーネルの大きさ、フィルタ係数の大きさを異ならせることが好ましい。例えば、空間方向のフィルタを二重にかける場合は、ブロックF1のフィルタのカーネルを、ブロックF2、F3のカーネルより大きくする構成が好ましい。例えば、厚み画像Tは、蓄積画像Aや高エネルギー画像H、低エネルギー画像Lに比べて空間における連続性が高いためである。また、時間方向のフィルタを二重にかける場合、ブロックF1のフィルタ係数を、ブロックF2,F3のフィルタのフィルタ係数より大きくする構成が好ましい。例えば、厚み画像Tは、蓄積画像Aや高エネルギー画像H、低エネルギー画像Lに比べて時間変化が小さいためである。 It should be noted that it is also possible to adopt a configuration in which either the filter in the spatial direction or the filter in the temporal direction is doubled, and in that case, it is preferable to make the size of the kernel and the size of the filter coefficients different for both. For example, when filtering in the spatial direction twice, it is preferable to configure the filter kernel of block F1 to be larger than the kernels of blocks F2 and F3. This is because the thickness image T has higher spatial continuity than the accumulated image A, the high energy image H, and the low energy image L, for example. Moreover, when applying filters in the time direction twice, it is preferable to configure the filter coefficient of the block F1 to be larger than the filter coefficients of the filters of the blocks F2 and F3. This is because, for example, the thickness image T changes less over time than the accumulated image A, the high energy image H, and the low energy image L.
 また、ブロックF1において、時間方向のフィルタと空間方向のフィルタの両方を適用する構成や、ブロックF2及びF3において時間方向のフィルタと空間方向のフィルタの両方を同時に適用する構成としてもよい。いずれの構成でも、空間方向または時間方向のフィルタが二物質分離のブロックMD1の前後で二重に適用される場合は、MD1の後のフィルタのブロックF1におけるフィルタの係数またはカーネルをより大きくする構成が好適に用いられ得る。 In addition, block F1 may be configured to apply both temporal and spatial filters, and blocks F2 and F3 may be configured to simultaneously apply both temporal and spatial filters. In any configuration, if a spatial or temporal filter is doubly applied before and after the two-matter separation block MD1, a configuration with larger filter coefficients or kernels in the filter block F1 after MD1. can be preferably used.
 なお、第1~第2実施形態では、X線撮像装置104は蛍光体を用いた間接型の放射線センサとしたが、このような形態に限定されない。例えばCdTe等の直接変換材料を用いた直接型の放射線センサを用いてもよい。また、第1~第2実施形態ではX線発生装置101の受動的な管電圧変化を利用するか(図3A)、能動的に管電圧を切り替える(図3B)などしていたが、このような形態に限定されない。X線発生装置101のフィルタを時間的に切り替えるなどして、X線撮像装置104に曝射される放射線のエネルギーを変化させてもよい。 In addition, in the first and second embodiments, the X-ray imaging device 104 is an indirect radiation sensor using a phosphor, but is not limited to such a form. For example, a direct radiation sensor using a direct conversion material such as CdTe may be used. In addition, in the first and second embodiments, the passive tube voltage change of the X-ray generator 101 is used (FIG. 3A), or the tube voltage is actively switched (FIG. 3B). is not limited to any form. The energy of the radiation irradiated to the X-ray imaging device 104 may be changed by switching the filter of the X-ray generation device 101 over time.
 また、第1~第2実施形態では、X線(放射線)のエネルギーが2つの場合を説明した。しかしながら、このような形態に限定されるものではなく、X線(放射線)のエネルギーが3つ以上の場合についても、上述の実施形態を適用可能である。n個(nは2以上の自然数)のエネルギーに対応するn個の画像を用いてエネルギーサブトラクション処理を行うことでn個の物質離画が得られる。エネルギーサブトラクション処理前のn個の画像(動画)および/またはエネルギーサブトラクション処理後のn個の分離画像(動画)に上述した明滅低減処理を適用することで、明滅が低減された分離画像が得られる。 Also, in the first and second embodiments, the case of two X-ray (radiation) energies has been described. However, the present invention is not limited to such a form, and the above-described embodiment can be applied even when the X-ray (radiation) has three or more energies. By performing energy subtraction processing using n images corresponding to n energies (n is a natural number of 2 or more), n material separation images are obtained. By applying the above-described blink reduction processing to n images (moving images) before energy subtraction processing and/or to n separated images (moving images) after energy subtraction processing, separated images with reduced blinking are obtained. .
 さらに、第1~第2実施形態ではX線撮像装置104に曝射される放射線のエネルギーを変化させることで、エネルギーサブトラクションを行っていたがこのような形態に限定されない。例えば、二次元検出器106(センサ)を2枚積層することで、前面のセンサと背面のセンサで検出する放射線のスペクトルを変化させる方式が用いられてもよい。また、放射線量子の個数をエネルギー別にカウントする、フォトンカウンティング方式のセンサを用いることで、互いにエネルギーが異なる複数の画像を取得するなどしてもよい。 Furthermore, in the first and second embodiments, energy subtraction was performed by changing the energy of the radiation irradiated to the X-ray imaging device 104, but the present invention is not limited to such a form. For example, by stacking two two-dimensional detectors 106 (sensors), a method of changing the spectrum of radiation detected by the front sensor and the rear sensor may be used. Alternatively, a plurality of images with different energies may be obtained by using a photon counting sensor that counts the number of radiation quanta for each energy.
 また、第1~第2実施形態では、放射線撮影システムの制御用コンピュータ103を用いてエネルギーサブトラクション処理を行っていたが、このような形態に限定されない。例えば、制御用コンピュータ103はX線撮像装置104に組み込まれていてもよい。また、制御用コンピュータ103で取得した画像を別のコンピュータに転送して、エネルギーサブトラクション処理を行ってもよい。例えば、取得した画像を医療用のPACSを介して別のパソコン(画像ビューア)に転送し、エネルギーサブトラクション処理を行ってから表示する構成が好適に用いられる。すなわち、上記各実施形態では、互いにエネルギーが異なる放射線画像をエネルギーサブトラクション処理に提供できればよく、互いにエネルギーが異なる放射線画像を取得するための方法は、上記実施形態に限定されるものではない。また、上記実施形態では、制御用コンピュータ103は、X線撮像装置104から直接に画像を取得してエネルギーサブトラクション処理を行ったが、これに限られるものではない。X線撮像装置104で撮影された動画を外部の記憶装置に格納し、制御用コンピュータ103が記憶装置から動画を読み出してエネルギーサブトラクション処理を行うようにしてもよい。 Also, in the first and second embodiments, energy subtraction processing was performed using the control computer 103 of the radiation imaging system, but the present invention is not limited to such a form. For example, the control computer 103 may be incorporated into the X-ray imaging device 104 . Alternatively, the image acquired by the control computer 103 may be transferred to another computer to perform energy subtraction processing. For example, a configuration in which an acquired image is transferred to another personal computer (image viewer) via a medical PACS and displayed after energy subtraction processing is preferably used. That is, in each of the above embodiments, it is sufficient to provide radiation images with different energies to the energy subtraction process, and the method for acquiring radiation images with different energies is not limited to the above embodiments. In the above embodiment, the control computer 103 directly acquires an image from the X-ray imaging apparatus 104 and performs energy subtraction processing, but the present invention is not limited to this. A moving image captured by the X-ray imaging apparatus 104 may be stored in an external storage device, and the control computer 103 may read out the moving image from the storage device and perform energy subtraction processing.
 以上説明したように、上述した各実施形態によれば、フレーム間のちらつきが抑制されたエネルギーサブトラクション動画を作成可能な画像処理装置或いは放射線撮像システムを提供できる。 As described above, according to each of the above-described embodiments, it is possible to provide an image processing apparatus or radiation imaging system capable of creating an energy subtraction moving image in which flicker between frames is suppressed.
 (その他の実施例)
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
(Other examples)
The present invention supplies a program that implements one or more functions of the above-described embodiments to a system or device via a network or a storage medium, and one or more processors in the computer of the system or device reads and executes the program. It can also be realized by processing to It can also be implemented by a circuit (for example, ASIC) that implements one or more functions.
 発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the above embodiments, and various changes and modifications are possible without departing from the spirit and scope of the invention. Accordingly, the claims are appended to make public the scope of the invention.
 本願は、2021年2月26日提出の日本国特許出願特願2021-030625を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority based on Japanese Patent Application No. 2021-030625 submitted on February 26, 2021, and the entire contents of the description are incorporated herein.
101:X線発生装置、102:X線制御装置、103:制御用コンピュータ、104:X線発生装置 101: X-ray generator, 102: X-ray controller, 103: Control computer, 104: X-ray generator

Claims (18)

  1.  複数の異なる放射線エネルギーに対応する複数の動画を用いてエネルギーサブトラクション処理を行うことにより、分離画像の動画を生成する生成手段と、
     前記複数の動画または前記分離画像の動画におけるフレーム間の信号値の変動が低減されるように、前記複数の動画または前記分離画像の動画の補正を行う補正手段と、
    を備える画像処理装置。
    generating means for generating moving images of separated images by performing energy subtraction processing using a plurality of moving images corresponding to a plurality of different radiation energies;
    correction means for correcting the plurality of moving images or the moving image of the separated images so as to reduce variation in signal values between frames in the moving images of the plurality of moving images or the moving image of the separated images;
    An image processing device comprising:
  2.  前記補正手段は、前記補正の対象の動画のフレームを、当該フレームよりも過去のフレームに基づいて算出される統計量に基づいて補正する請求項1に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the correcting means corrects the frame of the moving image to be corrected based on a statistic calculated based on frames previous to the frame.
  3.  前記補正手段は、各フレームの全ての領域または一部の領域の画素値から前記統計量を計算する請求項2に記載の画像処理装置。 The image processing apparatus according to claim 2, wherein the correcting means calculates the statistic from pixel values of all or part of each frame.
  4.  前記統計量は、画素値の中央値、平均値、累積ヒストグラムのN%値のいずれかである請求項3に記載の画像処理装置。 The image processing apparatus according to claim 3, wherein the statistic is any one of the median value, the average value, and the N% value of the cumulative histogram.
  5.  前記補正の対象の動画を解析することにより被写体に起因した信号値の変動がない領域を特定し、前記一部の領域として設定する設定手段をさらに備える請求項3または4に記載の画像処理装置。 5. The image processing apparatus according to claim 3, further comprising setting means for specifying an area in which there is no change in signal value due to an object by analyzing the moving image to be corrected, and setting the area as the partial area. .
  6.  前記補正手段は、
     前記補正の対象の動画における特定のフレームに基づいて算出された統計量を基準値として取得し、
     前記補正の対象の動画の各フレームから算出される統計量と、前記基準値とに基づいて、前記各フレームを補正する請求項2乃至5のいずれか1項に記載の画像処理装置。
    The correcting means is
    Obtaining a statistic calculated based on a specific frame in the moving image to be corrected as a reference value,
    6. The image processing apparatus according to any one of claims 2 to 5, wherein each frame is corrected based on the statistic calculated from each frame of the moving image to be corrected and the reference value.
  7.  前記補正手段は、前記補正の対象の動画の1フレーム目の画像から算出された統計量を前記基準値として取得する請求項6に記載の画像処理装置。 The image processing apparatus according to claim 6, wherein the correction means acquires, as the reference value, a statistic calculated from the first frame image of the moving image to be corrected.
  8.  前記補正手段は、前記補正の対象の動画のフレームごとに、当該フレームよりも過去のフレームのうちの最新の所定数のフレームから得られる平均画像から算出された統計量を前記基準値として取得する請求項6に記載の画像処理装置。 The correcting means acquires, as the reference value, a statistic calculated from an average image obtained from a predetermined number of latest frames among frames past the frame for each frame of the moving image to be corrected. The image processing apparatus according to claim 6.
  9.  前記補正手段は、前記複数の動画の補正または前記分離画像の動画の補正において、フレームから算出される統計量と前記基準値との比に基づく係数を当該フレームの画素値に乗算する請求項6乃至8のいずれか1項に記載の画像処理装置。 7. The correcting means multiplies the pixel value of the frame by a coefficient based on a ratio between the statistic calculated from the frame and the reference value in correcting the plurality of moving images or correcting the separated image moving image. 9. The image processing apparatus according to any one of items 1 to 8.
  10.  前記補正手段は、前記複数の動画の補正または前記分離画像の動画の補正において、フレームから算出される統計量と前記基準値との差に基づく係数を当該フレームの画素値に加算または減算する請求項6乃至9のいずれか1項に記載の画像処理装置。 wherein the correcting means adds or subtracts a coefficient based on a difference between a statistic calculated from a frame and the reference value to or from a pixel value of the frame in correcting the plurality of moving images or correcting the separated image moving image. Item 10. The image processing apparatus according to any one of Items 6 to 9.
  11.  前記補正手段は、
     前記複数の動画のそれぞれに対して、フレームから算出される統計量と前記基準値との比に基づく係数を当該フレームの画素値に乗算する補正を行い、
     前記分離画像の動画に対して、フレームから算出される統計量と前記基準値との差に基づく係数を当該フレームの画素値に加算または減算する補正を行う請求項6乃至8のいずれか1項に記載の画像処理装置。
    The correcting means is
    For each of the plurality of moving images, correction is performed by multiplying the pixel value of the frame by a coefficient based on the ratio of the statistic calculated from the frame and the reference value,
    9. The moving image of the separated image is corrected by adding or subtracting a coefficient based on the difference between the statistic calculated from the frame and the reference value to or from the pixel value of the frame. The image processing device according to .
  12.  前記補正手段は、前記複数の動画のそれぞれに対して、各フレームにおける前記統計量と前記基準値との差が同じになるように、前記各フレームを補正する請求項6乃至8のいずれか1項に記載の画像処理装置。 9. Any one of claims 6 to 8, wherein the correcting means corrects each frame for each of the plurality of moving images so that the difference between the statistic and the reference value in each frame is the same. 10. The image processing device according to claim 1.
  13.  前記複数の動画のノイズを低減する第1のノイズ低減手段をさらに備え、
     前記補正手段は、前記第1のノイズ低減手段によりノイズが低減された前記複数の動画を補正の対象とする請求項1乃至12のいずれか1項に記載の画像処理装置。
    Further comprising a first noise reduction means for reducing noise in the plurality of moving images,
    13. The image processing apparatus according to any one of claims 1 to 12, wherein the correction means corrects the plurality of moving images whose noise has been reduced by the first noise reduction means.
  14.  前記複数の動画のフレームの重みづけ加算により得られる蓄積画像に基づいて前記分離画像の動画におけるフレームのノイズを低減する第2のノイズ低減手段をさらに備え、
     前記補正手段は、前記第2のノイズ低減手段により処理される前の前記分離画像の動画、および、前記第2のノイズ低減手段により処理された後の前記分離画像の動画の少なとも何れかを補正の対象とする請求項1乃至13のいずれか1項に記載の画像処理装置。
    Further comprising second noise reduction means for reducing frame noise in the moving image of the separated image based on an accumulated image obtained by weighted addition of the frames of the plurality of moving images,
    The correcting means corrects at least one of the moving image of the separated image before being processed by the second noise reducing means and the moving image of the separated image after being processed by the second noise reducing means. 14. The image processing apparatus according to any one of claims 1 to 13, to be corrected.
  15.  前記第2のノイズ低減手段は、前記補正手段により補正された後の前記複数の動画のフレームを重みづけ加算することにより前記蓄積画像を得る請求項14に記載の画像処理装置。 15. The image processing apparatus according to claim 14, wherein the second noise reduction means obtains the accumulated image by performing weighted addition of the plurality of moving image frames corrected by the correction means.
  16.  複数の異なる放射線エネルギーに対応する複数の動画を撮影する撮像手段と、
     前記複数の動画を用いてエネルギーサブトラクション処理を行うことにより、分離画像の動画を生成する生成手段と、
     前記複数の動画または前記分離画像の動画におけるフレーム間の信号値の変動が低減されるように、前記複数の動画または前記分離画像の動画の補正を行う補正手段と、
    を備える放射線撮像システム。
    imaging means for capturing a plurality of moving images corresponding to a plurality of different radiation energies;
    generating means for generating a moving image of separated images by performing energy subtraction processing using the plurality of moving images;
    correction means for correcting the plurality of moving images or the moving image of the separated images so as to reduce variation in signal values between frames in the moving images of the plurality of moving images or the moving image of the separated images;
    A radiation imaging system comprising:
  17.  複数の異なる放射線エネルギーに対応する複数の動画を用いてエネルギーサブトラクション処理を行うことにより、分離画像の動画を生成する生成工程と、
     前記複数の動画または前記分離画像の動画におけるフレーム間の信号値の変動が低減されるように、前記複数の動画または前記分離画像の動画の補正を行う補正工程と、
    を含む画像処理方法。
    a generation step of generating a moving image of separated images by performing energy subtraction processing using a plurality of moving images corresponding to a plurality of different radiation energies;
    a correction step of correcting the moving images of the plurality of moving images or the moving images of the separated images so as to reduce variations in signal values between frames in the moving images of the plurality of moving images or the moving images of the separated images;
    An image processing method including
  18.  コンピュータを、請求項1乃至15のいずれか1項に記載された画像処理装置の各手段として機能させるプログラム。 A program that causes a computer to function as each means of the image processing apparatus according to any one of claims 1 to 15.
PCT/JP2021/047539 2021-02-26 2021-12-22 Image processing device and method, radiography system, and program WO2022181022A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-030625 2021-02-26
JP2021030625A JP2022131604A (en) 2021-02-26 2021-02-26 Image processing device and method, and radiation imaging system

Publications (1)

Publication Number Publication Date
WO2022181022A1 true WO2022181022A1 (en) 2022-09-01

Family

ID=83048043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047539 WO2022181022A1 (en) 2021-02-26 2021-12-22 Image processing device and method, radiography system, and program

Country Status (2)

Country Link
JP (1) JP2022131604A (en)
WO (1) WO2022181022A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224386A (en) * 1984-04-23 1985-11-08 Fuji Photo Film Co Ltd Method and device of density correction of subtraction picture
JP2007050052A (en) * 2005-08-16 2007-03-01 Canon Inc Radiation imaging apparatus and its control method
JP2019051322A (en) * 2018-10-02 2019-04-04 コニカミノルタ株式会社 Kinetics analysis system
WO2020241110A1 (en) * 2019-05-30 2020-12-03 キヤノン株式会社 Image processing device, image processing method, and program
JP2020203083A (en) * 2019-06-11 2020-12-24 キヤノン株式会社 Radiation imaging apparatus and radiation imaging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224386A (en) * 1984-04-23 1985-11-08 Fuji Photo Film Co Ltd Method and device of density correction of subtraction picture
JP2007050052A (en) * 2005-08-16 2007-03-01 Canon Inc Radiation imaging apparatus and its control method
JP2019051322A (en) * 2018-10-02 2019-04-04 コニカミノルタ株式会社 Kinetics analysis system
WO2020241110A1 (en) * 2019-05-30 2020-12-03 キヤノン株式会社 Image processing device, image processing method, and program
JP2020203083A (en) * 2019-06-11 2020-12-24 キヤノン株式会社 Radiation imaging apparatus and radiation imaging system

Also Published As

Publication number Publication date
JP2022131604A (en) 2022-09-07

Similar Documents

Publication Publication Date Title
JP7085043B2 (en) Image processing equipment, image processing methods and programs
JP7054329B2 (en) Image processing equipment, image processing methods and programs
JP7352687B2 (en) Radiography system, radiography control device and method
US20200408933A1 (en) Radiation imaging system, imaging control apparatus, and method
WO2022181022A1 (en) Image processing device and method, radiography system, and program
JP7425619B2 (en) Image processing device and image processing method
EP4014874B1 (en) Image processing device, radiographic imaging system, image processing method, and program
JP7431602B2 (en) Image processing device and image processing method
WO2022071024A1 (en) Image processing device, image processing method, and program
WO2021162026A1 (en) Image processing device and image processing method
WO2022185693A1 (en) Image processing device, radiographic imaging system, image processing method, and program
JP2020203083A (en) Radiation imaging apparatus and radiation imaging system
US20230401677A1 (en) Image processing apparatus, radiation imaging system, image processing method, and non-transitory computer-readable storage medium
EP3799788A1 (en) Image processing device and control method for same
WO2020250900A1 (en) Image processing device, image processing method, and program
JP2009219529A (en) Radiographic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928115

Country of ref document: EP

Kind code of ref document: A1