WO2022180925A1 - Method for molding wire material, device for molding wire material - Google Patents

Method for molding wire material, device for molding wire material Download PDF

Info

Publication number
WO2022180925A1
WO2022180925A1 PCT/JP2021/038485 JP2021038485W WO2022180925A1 WO 2022180925 A1 WO2022180925 A1 WO 2022180925A1 JP 2021038485 W JP2021038485 W JP 2021038485W WO 2022180925 A1 WO2022180925 A1 WO 2022180925A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
roller group
rollers
forming
forming apparatus
Prior art date
Application number
PCT/JP2021/038485
Other languages
French (fr)
Japanese (ja)
Inventor
佳子 高橋
明 鳥羽
奨太 川口
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2023502059A priority Critical patent/JP7567023B2/en
Priority to US18/547,531 priority patent/US20240299996A1/en
Priority to EP21928020.3A priority patent/EP4299206A1/en
Priority to CN202180092750.4A priority patent/CN116783015A/en
Publication of WO2022180925A1 publication Critical patent/WO2022180925A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F1/00Bending wire other than coiling; Straightening wire
    • B21F1/02Straightening
    • B21F1/026Straightening and cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F1/00Bending wire other than coiling; Straightening wire
    • B21F1/02Straightening

Definitions

  • the present invention relates to a wire forming method and a wire forming apparatus.
  • Patent Document 1 discloses a straightening machine for straightening a bar or wire that easily improves the straightness of the bar or wire, wherein the straightening machine performs straightening by passing a metal bar or wire through a plurality of rolls.
  • the straightening machine includes at least one unit group including two or more units adjacent to each other and forming an angle of ⁇ 15° between the two or more units in the direction in which the bar or wire is straightened.
  • the movable rolls are arranged in a staggered manner so as to sandwich the running rod or wire, and the movable roll closest to the entrance of the unit and the movable roll closest to the exit are pushed in.
  • a bar or wire straightening machine characterized in that the pushing amount of adjacent units can be set and that the pushing amounts of adjacent units satisfy a predetermined relationship.
  • a wire forming method is a method for forming a wire that moves from an upstream side to a downstream side, wherein the wire is pressed by a first roller group that is a plurality of rollers driven by a motor. and a second step of sending out the wire while pressing it with a second roller group, which is a plurality of rollers rotatably supported, wherein the first step is faster than the second step.
  • the pressing amount which is provided on the upstream side and is the difference between the outer dimensions of the wire rod and the gap between the rollers through which the wire rod passes, is greater in the first step than in the second step.
  • a wire rod forming apparatus comprises a feeding section for feeding a wire, a first roller group comprising a plurality of rollers driven by a motor and pressing the wire fed by the feeding section, and the first roller.
  • a second roller group that is rotatably supported and is a plurality of rollers that further press the wire pressed by the group, and is the difference between the outer dimensions of the wire and the gap between the rollers through which the wire passes.
  • the pressing amount of the first roller group is larger than that of the second roller group.
  • the warp of the wire can be stably reduced.
  • Schematic diagram of wire processing system including forming equipment
  • Schematic diagram of molding equipment Schematic diagram of pushing amount in molding equipment
  • a diagram showing an example of the configuration of the drive roller Conceptual diagram of test results for determining the arrangement angle ⁇ x
  • FIG. 1 An embodiment of a wire forming apparatus and a wire forming method according to the present invention will be described below with reference to FIGS. 1 to 5.
  • FIG. 1 An embodiment of a wire forming apparatus and a wire forming method according to the present invention will be described below with reference to FIGS. 1 to 5.
  • FIG. 1 An embodiment of a wire forming apparatus and a wire forming method according to the present invention will be described below with reference to FIGS. 1 to 5.
  • FIG. 1 is a schematic diagram of a wire processing system S including a forming apparatus 1.
  • XYZ axes orthogonal to each other are shown for explanation.
  • the X-axis is parallel to the left-right direction in FIG. 1, and the right side of the figure is the positive direction.
  • the Z-axis is parallel to the up-down direction in FIG. 1, and the upward direction in the drawing is the positive direction.
  • the positive direction of the Y-axis is the depth direction in FIG.
  • the wire processing system S includes a delivery device 700, a forming device 1, a peeling device 800, and a cutting device 900.
  • the wire moves from left to right in the drawing and is processed in order.
  • the left side of the drawing is also called “upstream”
  • the right side of the drawing is also called “downstream”.
  • a bobbin around which a wire rod is wound is installed in the delivery device 700 with its rotation axis parallel to the Y-axis.
  • the delivery device 700 delivers the wire wound around the bobbin to the molding device 1 .
  • the wire is warped in the Z direction in FIG. 1 by being wound around the bobbin.
  • the forming apparatus 1 corrects the warp in the Z direction of the wire rod sent from the sending device 700 and sends the wire to the peeling device 800 .
  • "Warp” is also called “curvature” or "habit”.
  • the peeling device 800 peels off the insulation coating of the wire by cutting, laser irradiation, or the like.
  • a cutting device 900 cuts a wire to a predetermined length. Below, the configuration and operation of the molding apparatus 1 will be described in detail. In FIG. 1, the wires are drawn in a straight line for convenience of drawing, and is not an essential component.
  • FIG. 2 is a schematic diagram of the molding apparatus 1.
  • the forming apparatus 1 includes a first roller group 11, a second roller group 12, and a third roller group 13.
  • the wire is formed first by the first roller group 11 , then by the second roller group 12 , and finally by the third roller group 13 .
  • the forming of the wire by the first roller group 11 is called “first process”
  • the forming of the wire by the second roller group 12 is called “second process”
  • the forming of the wire by the third roller group 13 is called “ 3rd step”. In both the first step and the second step, the wire is plastically deformed.
  • the difference between the outer dimensions of a predetermined wire rod and the gap between the rollers through which the wire rod passes is called “pressing amount”. For example, if the outer dimension of the predetermined wire rod is "1.000 mm" and the roller interval is “0.998 mm”, the pushing amount is "0.002 mm”.
  • each of the first roller group 11, the second roller group 12, and the third roller group 13 the rollers are arranged vertically in two rows, and the wire passes through approximately the center thereof.
  • Each of the first roller group 11, the second roller group 12, and the third roller group 13 includes at least three rollers. The number of rollers included in each of the first roller group 11, the second roller group 12, and the third roller group 13 may be different. In FIG. 2, all the lower row rollers of the first roller group 11, the second roller group 12, and the third roller group 13 are arranged in a straight line, but this is only an example of the configuration.
  • Each of the first roller group 11 is a driving roller whose outer periphery is molded with urethane rubber and which is driven by a motor as described later.
  • the direction in which the rollers are driven is along the movement of the wire. Specifically, the rollers on the upper side in the drawing are driven counterclockwise, and the rollers on the lower side in the drawing are driven clockwise.
  • the gap between the rollers through which the wire passes is set so that the amount of pushing is gradually decreased from the upstream side to the downstream side.
  • the clearance gap between the rollers through which a wire passes is also called “roller clearance.”
  • Each of the second roller group 12 and the third roller group 13 is made of metal and is not driven by external power.
  • the interval between the rollers in the second roller group 12 is set so that the amount of pushing gradually decreases from the upstream side to the downstream side, and the final amount of pushing in the second roller group 12 is set to zero. Further, the most upstream pushing amount of the second roller group 12 is smaller than the most downstream pushing amount of the first roller group 11 . All the push amounts in the third roller group 13 are set to zero.
  • the second roller group 12 is configured such that a plurality of rollers in the upper row are integrally fixed and rotatable about the last roller in the upper row.
  • the position of the last roller in the upper row is determined in advance so that the final pushing amount in the second roller group 12 is zero, and the position of this roller is not readjusted unless the wire is changed.
  • the angle formed by a straight line connecting the centers of the upper row rollers in the second roller group 12 and a straight line connecting the centers of the lower row rollers in the second roller group 12 is called an "arrangement angle ⁇ x".
  • the arrangement angle ⁇ x is zero degrees, the upper row and the lower row are parallel, and the pressing amount of the second roller group 12 is all zero, although this can occur only in the process of adjustment, which will be described later.
  • the arrangement angle ⁇ x of the second roller group 12 is set such that the pressing amount increases toward the upstream side when the adjustment is completed and the wire is formed.
  • FIG. 3 is a schematic diagram of the pushing amount in the molding device 1.
  • FIG. The vertical axis in FIG. 3 indicates the pushing amount, and the higher the figure, the larger the positive value, and the minimum value is zero.
  • the horizontal axis in FIG. 3 indicates the X-coordinate value of the position where the pressing of the molding apparatus 1 is performed, the left side in the drawing indicates the upstream side, and the right side in the drawing indicates the downstream side.
  • the pushing amount gradually decreases from the upstream side to the downstream side and reaches zero. All of the push amounts in the third roller group 13 are zero.
  • the ratio of the minimum pushing amount in the first roller group 11 and the maximum pushing amount in the second roller group 12 is several times, but it may be 10 times or more or 50 times or more.
  • FIG. 4 is a diagram showing an example of the configuration of each roller constituting the first roller group 11, that is, the drive roller.
  • the drive roller 22 is driven by obtaining power energy from a motor 31 shown in the lower right of FIG. Rotational energy generated by motor 31 is transmitted to shaft 27 via timing pulley 30 , timing belt 29 and timing pulley 28 .
  • the drive roller 22 is positionally adjustable as described above, and in FIG. A universal joint 26 is interposed between the shaft 27 and the drive roller 22 so as to be able to adjust the position.
  • roller position A procedure for determining the amount of pushing in the first roller group 11 and the second roller group 12, in other words, a procedure for determining the interval between the rollers, will be described. Since all the third roller group 13 have a pushing amount of zero as described above, the interval between the rollers is the same as the dimension of the wire, which is the regulation, and thus the description thereof is omitted here. As described below, the first roller group 11 is adjusted first, and then the second roller group 12 is adjusted. The adjustments described below may be performed, for example, by an operator or may be calculated by a computer.
  • the strain corresponding to the "tensile strength", which is the maximum stress in the wire rod, is specified from the composition of the wire rod.
  • a physical property table or database can be used.
  • the specified strain is multiplied by a predetermined ratio, such as "0.6”, and is named "target strain”.
  • the pressing amount of each roller in the first roller group 11 is determined so that the pressing amount decreases sequentially and the "target strain” is reached when the first step is completed.
  • the results of calculations using simulation software may be used, or the results of one or more experiments using the molding apparatus 1 may be used.
  • the position of the first roller group 11 can be determined according to a predetermined policy.
  • the predetermined policy is, for example, fixing the position of the lower roller in the first roller group 11 and adjusting the position of the upper roller to set the roller interval to a determined value.
  • the first roller group 11 is set at the determined position of the first roller group 11, and the process proceeds to the determination process of the pressing amount of the second roller group 12 next.
  • the pushing amount of the second roller group 12 is determined by the arrangement angle ⁇ x.
  • the optimum arrangement angle ⁇ x is determined, for example, by the operator changing xx in a plurality of ways and actually measuring the processing results of the second step. Specific examples will be described below.
  • FIG. 5 is a conceptual diagram of test results for determining the arrangement angle ⁇ x.
  • the vertical axis in FIG. 5 indicates the amount of warp, and the horizontal axis indicates the arrangement angle ⁇ x.
  • eight arrangement angles S1 to S8 are shown in FIG. 5, these eight are merely examples, and may be more or less than eight.
  • a plus amount of warp means warping to the plus side of the Z axis
  • a minus amount of warpage means warping to the minus side of the Z axis.
  • FIG. 5 shows two independent test results, the triangular plot indicates the case where the wire rod output from the first step is greatly biased to the positive side, and the square plot indicates the wire rod output from the first step. This figure shows the case where the wire rod was heavily biased to the negative side.
  • the warp correction in the second step does not work so much and the wire is still large positive. value.
  • the warp amount decreases as the arrangement angle ⁇ x increases, and in the example shown in FIG. 5, the warp amount is approximately zero when the arrangement angle ⁇ x is S4.
  • the arrangement angle ⁇ x is further increased from S4, the amount of warpage turns to increase and continues to increase.
  • the operator determines S4 with the smallest absolute value of the amount of warpage as the arrangement angle ⁇ x.
  • the forming apparatus 1 forms a wire moving from the upstream side, which is the left side in FIG. 2, to the downstream side, which is the right side in the drawing, as follows.
  • Forming of the wire by the forming apparatus 1 includes the following first step and second step.
  • the first step the wire is sent out while being pressed by a first roller group 11 that is a plurality of rollers driven by a motor 31 .
  • the second step the wire is sent out while being pressed by a second roller group 12, which is a plurality of rotatably supported rollers.
  • the first step is provided upstream of the second step, that is, on the left side of the drawing.
  • the pushing amount which is the difference between the outer dimensions of the wire and the gap between the rollers through which the wire passes, is greater in the first step than in the second step. Therefore, in the first step, the wire is sent out using the first roller group 11 that is driven, thereby reducing the tension generated in the wire and suppressing the elongation while reducing the warp.
  • the pushing amount it is possible to stably reduce the warpage of the wire. That is, the forming method by the forming apparatus 1 can stably reduce the warp of the wire.
  • the pushing amount decreases sequentially from the upstream side to the downstream side. Therefore, the warp of the wire can be reduced more stably.
  • the pushing amount is gradually decreased from the upstream side to the downstream side to zero. Therefore, the warp of the wire can be reduced more stably.
  • the minimum push in the first step is at least ten times the maximum push in the second step. Therefore, in the first step, a strong strain is imparted to the wire, and mechanical properties can be made uniform by work hardening.
  • the forming of the wire by the forming apparatus 1 includes, in addition to the first step and the second step, a third step of sending out the wire by the third roller group 13, which is a plurality of rotatably supported rollers.
  • This third step is provided downstream of the second step, that is, on the right side of the drawing.
  • the pushing amount in the third step is zero. Therefore, by using the third roller group 13 having a zero pressing amount, the warpage of the wire rod itself is corrected, and variations can be suppressed.
  • Each roller constituting the first roller group 11 has a surface made of urethane rubber. Therefore, the followability of the wire with respect to each drive roller is improved, and the warpage of the wire can be further reduced.
  • Modification 1 The above-described embodiment may be modified as in the following ⁇ 1> to ⁇ 5>, and these ⁇ 1> to ⁇ 5> may be combined arbitrarily. That is, all the modifications ⁇ 1> to ⁇ 4> may be added to the configuration of the embodiment, or any one or more modifications ⁇ 1> to ⁇ 5> may be added.
  • the forming apparatus 1 may not include the third roller group 13 and may not include the third step in forming the wire rod.
  • the ratio of the minimum pushing amount in the first step and the maximum pushing amount in the second step may be several times.
  • the pushing amount does not have to decrease sequentially from the upstream side to the downstream side.
  • the pushing amount does not have to decrease sequentially from the upstream side to the downstream side.
  • the rollers constituting the first roller group 11 may not be molded with urethane rubber on the outer periphery and may have a metal surface.
  • the roller position can be easily adjusted, although there are disadvantages such as insufficient reduction in warpage and lack of stability as compared with the above-described embodiment. Moreover, even if these disadvantages exist, it is sufficient if the required accuracy is satisfied.
  • the method of determining the pushing amount in the second roller group 12 described in the above embodiment is merely an example.
  • the positions of the upper rollers in the second roller group 12 can be individually adjusted, and by measuring the amount of warpage while gradually changing the position of each roller, the position of the roller that minimizes the amount of warpage. may be determined.
  • the number of times of roller position adjustment and the number of times of measuring the amount of warpage are significantly increased compared to the embodiment, but the absolute value of the amount of warp can be made smaller than in the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wire Processing (AREA)

Abstract

According to the present invention, a method for molding a wire material, carried out on a wire material moving from the upstream side to the downstream side, includes: a first step for feeding out the wire material while pressing the wire material by a first roller group, which is a plurality of rollers driven by a motor; and a second step for feeding out the wire material while pressing the wire material by a second roller group, which is a plurality of rotatably supported rollers. The first step is provided on the upstream side of the second step. The pressing-in amount, which is the difference between the outer dimensions of the wire material and the spacing between the rollers through which the wire material passes, is greater in the first step than in the second step.

Description

線材の成形方法、線材の成形装置Wire rod forming method, wire rod forming apparatus
 本発明は、線材の成形方法、および線材の成形装置に関する。 The present invention relates to a wire forming method and a wire forming apparatus.
 金属の線材は、製造工程においてボビンに巻き回されることが一般的である。この線材を加工する際には、巻き回されたことにより生じる反りを低減するための、「成形」や「矯正」と呼ばれる処理が必要となる。特許文献1には、容易に棒線材の真直性を向上する棒線材の矯正機であって、複数のロールの間に金属製の棒線材を通すことによって矯正を行う矯正機であって、上記矯正機は、隣り合う2つ以上のユニットを含み、上記2つ以上のユニットの上記棒線材を矯正する方向のなす角が±15°であるユニット群を少なくとも1組備え、上記ユニットは、2つ以上の固定ロールと、上記固定ロールよりも1つ少ない数の可動ロールを備え、上記固定ロール及び上記可動ロールは、走行する上記棒線材の一方の側に配置された固定ロールと、棒線材に対して固定ロールと反対側に配置された可動ロールで、走行する上記棒線材を挟むように各ロールが千鳥に配列され、ユニットの最も入口側の可動ロールと最も出口側の可動ロールの押し込み量を設定することができ、隣り合うユニットの押し込み量が所定の関係を満たすことを特徴とする棒線材の矯正機が開示されている。  Metal wires are generally wound around bobbins during the manufacturing process. When processing this wire, it is necessary to perform treatments called "forming" and "correction" in order to reduce warpage caused by winding. Patent Document 1 discloses a straightening machine for straightening a bar or wire that easily improves the straightness of the bar or wire, wherein the straightening machine performs straightening by passing a metal bar or wire through a plurality of rolls. The straightening machine includes at least one unit group including two or more units adjacent to each other and forming an angle of ±15° between the two or more units in the direction in which the bar or wire is straightened. At least one fixed roll and a movable roll that is one less in number than the fixed roll, and the fixed roll and the movable roll are arranged on one side of the running rod or wire and the rod or wire. The movable rolls are arranged in a staggered manner so as to sandwich the running rod or wire, and the movable roll closest to the entrance of the unit and the movable roll closest to the exit are pushed in. Disclosed is a bar or wire straightening machine characterized in that the pushing amount of adjacent units can be set and that the pushing amounts of adjacent units satisfy a predetermined relationship.
国際公開第2018/174272号WO2018/174272
 特許文献1に記載されている発明では、成形に改善の余地がある。 In the invention described in Patent Document 1, there is room for improvement in molding.
 本発明の第1の態様による線材の成形方法は、上流側から下流側に移動する線材の成形方法であって、モータにより駆動される複数のローラである第1ローラ群により前記線材を押圧しながら送り出す第1工程と、回転可能に支持される複数のローラである第2ローラ群により前記線材を押圧しながら送り出す第2工程と、を含み、前記第1工程は、前記第2工程よりも前記上流側に設けられ、前記線材の外形寸法と前記線材が通過するローラ同士の隙間との差である押込量は、前記第1工程の方が前記第2工程よりも大きい。
 本発明の第2の態様による線材の成形装置は、線材を送り出す送り出し部と、モータにより駆動され前記送り出し部が送り出す前記線材を押圧する複数のローラである第1ローラ群と、前記第1ローラ群が押圧した前記線材をさらに押圧する複数のローラであり回転可能に支持される第2ローラ群と、を備え、前記線材の外形寸法と前記線材が通過するローラ同士の隙間との差である押込量は、前記第1ローラ群の方が前記第2ローラ群よりも大きい。
A wire forming method according to a first aspect of the present invention is a method for forming a wire that moves from an upstream side to a downstream side, wherein the wire is pressed by a first roller group that is a plurality of rollers driven by a motor. and a second step of sending out the wire while pressing it with a second roller group, which is a plurality of rollers rotatably supported, wherein the first step is faster than the second step. The pressing amount, which is provided on the upstream side and is the difference between the outer dimensions of the wire rod and the gap between the rollers through which the wire rod passes, is greater in the first step than in the second step.
A wire rod forming apparatus according to a second aspect of the present invention comprises a feeding section for feeding a wire, a first roller group comprising a plurality of rollers driven by a motor and pressing the wire fed by the feeding section, and the first roller. a second roller group that is rotatably supported and is a plurality of rollers that further press the wire pressed by the group, and is the difference between the outer dimensions of the wire and the gap between the rollers through which the wire passes. The pressing amount of the first roller group is larger than that of the second roller group.
 本発明によれば、線材の反りを安定して低減できる。 According to the present invention, the warp of the wire can be stably reduced.
成形装置を含む線材加工システムの概略図Schematic diagram of wire processing system including forming equipment 成形装置の概略構成図Schematic diagram of molding equipment 成形装置における押込量の概略図Schematic diagram of pushing amount in molding equipment 駆動ローラの構成の一例を示す図A diagram showing an example of the configuration of the drive roller 配置角θxを決定するための試験結果の概念図Conceptual diagram of test results for determining the arrangement angle θx
―実施の形態―
 以下、図1~図5を参照して、本発明に係る線材の成形装置、および線材の成形方法の実施の形態を説明する。
-Embodiment-
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a wire forming apparatus and a wire forming method according to the present invention will be described below with reference to FIGS. 1 to 5. FIG.
(全体構成図)
 図1は、成形装置1を含む線材加工システムSの概略図である。図1には、説明のために互いに直行するXYZ軸を記載している。X軸は、図1の左右方向に平行であり図示右側を正方向とする。Z軸は、図1の上下方向に平行であり図示上方を正方向とする。Y軸は、図1の奥行き方向を正方向とする。
(Overall configuration diagram)
FIG. 1 is a schematic diagram of a wire processing system S including a forming apparatus 1. As shown in FIG. In FIG. 1, XYZ axes orthogonal to each other are shown for explanation. The X-axis is parallel to the left-right direction in FIG. 1, and the right side of the figure is the positive direction. The Z-axis is parallel to the up-down direction in FIG. 1, and the upward direction in the drawing is the positive direction. The positive direction of the Y-axis is the depth direction in FIG.
 線材加工システムSは、送り出し装置700と、成形装置1と、剥離装置800と、切断装置900とを含む。線材は図示左から右に向かって移動し、順番に加工される。以下では、図示左側を「上流」、図示右側を「下流」とも呼ぶ。 The wire processing system S includes a delivery device 700, a forming device 1, a peeling device 800, and a cutting device 900. The wire moves from left to right in the drawing and is processed in order. Hereinafter, the left side of the drawing is also called "upstream", and the right side of the drawing is also called "downstream".
 送り出し装置700には、線材が巻き回されたボビンが、回転軸がY軸と平行に設置される。送り出し装置700は、ボビンに巻き回されていた線材を成形装置1に送り出す。線材は、ボビンに巻き回されたことにより図1におけるZ方向に、反りが生じている。成形装置1は、送り出し装置700から送り出された線材を対象として、Z方向の反りを矯正して剥離装置800に送り出す。なお「反り」は、「曲がり」や「くせ」とも呼ばれる。 A bobbin around which a wire rod is wound is installed in the delivery device 700 with its rotation axis parallel to the Y-axis. The delivery device 700 delivers the wire wound around the bobbin to the molding device 1 . The wire is warped in the Z direction in FIG. 1 by being wound around the bobbin. The forming apparatus 1 corrects the warp in the Z direction of the wire rod sent from the sending device 700 and sends the wire to the peeling device 800 . "Warp" is also called "curvature" or "habit".
 剥離装置800は、切削加工やレーザ照射などにより線材の絶縁被覆を剥離する。切断装置900は、線材を所定の長さに切断する。以下では、成形装置1の構成および動作を詳しく説明する。なお図1において線材を一直線状に記載しているのは作図の都合であり、必須の構成要件ではない。 The peeling device 800 peels off the insulation coating of the wire by cutting, laser irradiation, or the like. A cutting device 900 cuts a wire to a predetermined length. Below, the configuration and operation of the molding apparatus 1 will be described in detail. In FIG. 1, the wires are drawn in a straight line for convenience of drawing, and is not an essential component.
(成形装置の構成)
 図2は、成形装置1の概略構成図である。成形装置1は、第1ローラ群11と、第2ローラ群12と、第3ローラ群13とを含む。線材は、まず第1ローラ群11により成形され、次に第2ローラ群12により成形され、最後に第3ローラ群13により成形される。以下では、第1ローラ群11による線材の成形を「第1工程」と呼び、第2ローラ群12による線材の成形を「第2工程」と呼び、第3ローラ群13による線材の成形を「第3工程」と呼ぶ。なお、第1工程および第2工程のいずれも、線材を塑性変形させる。
(Configuration of molding device)
FIG. 2 is a schematic diagram of the molding apparatus 1. As shown in FIG. The forming apparatus 1 includes a first roller group 11, a second roller group 12, and a third roller group 13. The wire is formed first by the first roller group 11 , then by the second roller group 12 , and finally by the third roller group 13 . Hereinafter, the forming of the wire by the first roller group 11 is called "first process", the forming of the wire by the second roller group 12 is called "second process", and the forming of the wire by the third roller group 13 is called " 3rd step”. In both the first step and the second step, the wire is plastically deformed.
 本実施の形態において、所定の線材の外形寸法と、線材が通過するローラ同士の隙間との差を「押込量」と呼ぶ。たとえば、所定の線材の外形寸法が「1.000mm」、ローラ間隔が「0.998mm」の場合は、押込量は「0.002mm」である。 In the present embodiment, the difference between the outer dimensions of a predetermined wire rod and the gap between the rollers through which the wire rod passes is called "pressing amount". For example, if the outer dimension of the predetermined wire rod is "1.000 mm" and the roller interval is "0.998 mm", the pushing amount is "0.002 mm".
 第1ローラ群11、第2ローラ群12、および第3ローラ群13のそれぞれは、ローラが上下2列に並んでおり、線材はその略中央を通過する。第1ローラ群11、第2ローラ群12、および第3ローラ群13のそれぞれは、少なくとも3つのローラを含む。第1ローラ群11、第2ローラ群12、および第3ローラ群13のそれぞれに含まれるローラの数は異なってもよい。なお図2では、第1ローラ群11、第2ローラ群12、および第3ローラ群13の全ての下列のローラが一直線状に並んでいるが、構成の一例にすぎない。 In each of the first roller group 11, the second roller group 12, and the third roller group 13, the rollers are arranged vertically in two rows, and the wire passes through approximately the center thereof. Each of the first roller group 11, the second roller group 12, and the third roller group 13 includes at least three rollers. The number of rollers included in each of the first roller group 11, the second roller group 12, and the third roller group 13 may be different. In FIG. 2, all the lower row rollers of the first roller group 11, the second roller group 12, and the third roller group 13 are arranged in a straight line, but this is only an example of the configuration.
 第1ローラ群11のそれぞれは、外周がウレタンゴムでモールドされ、後述するようにモータにより駆動される駆動ローラである。ローラが駆動される方向は線材の動きに沿う方向であり、具体的には、図示上側のローラは反時計回りに駆動され、図示下側のローラは時計回りに駆動される。第1ローラ群11における、線材が通過するローラ同士の隙間は、上流側から下流側にかけて押込量が順次減少するように設定される。なお以下では、線材が通過するローラ同士の隙間を「ローラ間隔」とも呼ぶ。 Each of the first roller group 11 is a driving roller whose outer periphery is molded with urethane rubber and which is driven by a motor as described later. The direction in which the rollers are driven is along the movement of the wire. Specifically, the rollers on the upper side in the drawing are driven counterclockwise, and the rollers on the lower side in the drawing are driven clockwise. In the first roller group 11, the gap between the rollers through which the wire passes is set so that the amount of pushing is gradually decreased from the upstream side to the downstream side. In addition, below, the clearance gap between the rollers through which a wire passes is also called "roller clearance."
 第2ローラ群12および第3ローラ群13のそれぞれは、金属製であり、外部からの動力による駆動は行われない。第2ローラ群12におけるローラの間隔は、上流側から下流側にかけて押込量が順次減少するように設定され、第2ローラ群12における最後の押込量はゼロに設定される。また第2ローラ群12における最上流の押込量は、第1ローラ群11における最下流の押込量よりも小さい。第3ローラ群13における押込量は、いずれもゼロに設定される。 Each of the second roller group 12 and the third roller group 13 is made of metal and is not driven by external power. The interval between the rollers in the second roller group 12 is set so that the amount of pushing gradually decreases from the upstream side to the downstream side, and the final amount of pushing in the second roller group 12 is set to zero. Further, the most upstream pushing amount of the second roller group 12 is smaller than the most downstream pushing amount of the first roller group 11 . All the push amounts in the third roller group 13 are set to zero.
 第2ローラ群12は、上列の複数のローラが一体に固定され、上列の最後尾のローラを軸として回転可能に構成される。第2ローラ群12における最後の押込量がゼロとなるように上列の最後尾のローラの位置があらかじめ決定され、このローラの位置は線材が変更されない限り再調整されない。本実施の形態では、第2ローラ群12における上列のローラの中心を結ぶ直線と第2ローラ群12における下列のローラの中心を結ぶ直線とがなす角を、「配置角θx」と呼ぶ。後述する調整の過程でしか起こりえないが、仮に配置角θxがゼロ度の場合は、上列と下列が並行であり第2ローラ群12における押込量は全てゼロとなる。調整が完了し線材を成形する状態における第2ローラ群12は、上流側ほど押込量が大きくなるように、配置角θxが設定される。 The second roller group 12 is configured such that a plurality of rollers in the upper row are integrally fixed and rotatable about the last roller in the upper row. The position of the last roller in the upper row is determined in advance so that the final pushing amount in the second roller group 12 is zero, and the position of this roller is not readjusted unless the wire is changed. In the present embodiment, the angle formed by a straight line connecting the centers of the upper row rollers in the second roller group 12 and a straight line connecting the centers of the lower row rollers in the second roller group 12 is called an "arrangement angle θx". If the arrangement angle θx is zero degrees, the upper row and the lower row are parallel, and the pressing amount of the second roller group 12 is all zero, although this can occur only in the process of adjustment, which will be described later. The arrangement angle θx of the second roller group 12 is set such that the pressing amount increases toward the upstream side when the adjustment is completed and the wire is formed.
 図3は、成形装置1における押込量の概略図である。図3における縦軸は押込量を示し、図示上部ほど大きい正の値を示し、最小値はゼロである。図3における横軸は成形装置1の押し込みが行われる位置のX座標値を示しており、図示左側が上流側、図示右側が下流側を示す。第1ローラ群11と第2ローラ群の全体において、上流側から下流側にかけて押込量は順次減少してゼロに至る。第3ローラ群13における押込量はいずれもゼロである。なお図3では、第1ローラ群11における最小の押込量と、第2ローラ群12における最大の押込量の比は数倍であるが、10倍以上や50倍以上でもよい。 FIG. 3 is a schematic diagram of the pushing amount in the molding device 1. FIG. The vertical axis in FIG. 3 indicates the pushing amount, and the higher the figure, the larger the positive value, and the minimum value is zero. The horizontal axis in FIG. 3 indicates the X-coordinate value of the position where the pressing of the molding apparatus 1 is performed, the left side in the drawing indicates the upstream side, and the right side in the drawing indicates the downstream side. In the entirety of the first roller group 11 and the second roller group, the pushing amount gradually decreases from the upstream side to the downstream side and reaches zero. All of the push amounts in the third roller group 13 are zero. In FIG. 3, the ratio of the minimum pushing amount in the first roller group 11 and the maximum pushing amount in the second roller group 12 is several times, but it may be 10 times or more or 50 times or more.
 図4は、第1ローラ群11を構成する各ローラ、すなわち駆動ローラの構成の一例を示す図である。駆動ローラ22は、図4の右下に示すモータ31から動力エネルギーを得て駆動する。モータ31が発生する回転エネルギーは、タイミングプーリー30、タイミングベルト29、およびタイミングプーリー28を経て、軸27に伝達される。駆動ローラ22は、前述のように位置調整が可能であり、図4では軸スライドネジ25および軸スライドボックス24によりZ方向に位置を調整できる。この位置調整に対応できるように、軸27と駆動ローラ22との間には、ユニバーサルジョイント26が介されている。 FIG. 4 is a diagram showing an example of the configuration of each roller constituting the first roller group 11, that is, the drive roller. The drive roller 22 is driven by obtaining power energy from a motor 31 shown in the lower right of FIG. Rotational energy generated by motor 31 is transmitted to shaft 27 via timing pulley 30 , timing belt 29 and timing pulley 28 . The drive roller 22 is positionally adjustable as described above, and in FIG. A universal joint 26 is interposed between the shaft 27 and the drive roller 22 so as to be able to adjust the position.
(ローラの位置)
 第1ローラ群11および第2ローラ群12における、押込量の決定手順、換言すると各ローラの間隔の決定手順を説明する。なお第3ローラ群13は、前述のように全て押込量がゼロなので、ローラ間隔は規定である線材の寸法と同一なのでここでは説明を省略する。以下に説明するように、先に第1ローラ群11の調整を行い、その後に第2ローラ群12の調整を行う。以下に説明する調整は、たとえばオペレータが実行してもよいし、コンピュータが演算してもよい。
(Roller position)
A procedure for determining the amount of pushing in the first roller group 11 and the second roller group 12, in other words, a procedure for determining the interval between the rollers, will be described. Since all the third roller group 13 have a pushing amount of zero as described above, the interval between the rollers is the same as the dimension of the wire, which is the regulation, and thus the description thereof is omitted here. As described below, the first roller group 11 is adjusted first, and then the second roller group 12 is adjusted. The adjustments described below may be performed, for example, by an operator or may be calculated by a computer.
 第1ローラ群11における押込量の決定は、まず、線材の組成からその線材における最大の応力となる「引張強さ」に対応するひずみを特定する。この特定にはたとえば、物性表やデータベースが利用できる。次に、特定したひずみと、所定の割合、たとえば「0.6」との積を算出し、これを「目標ひずみ」と名付ける。そして、押込量が順次減少し、かつ第1工程が完了した際に「目標ひずみ」となるように、第1ローラ群11における各ローラの押込量を決定する。この決定には、シミュレーションソフトウエアを用いた計算の結果を利用してもよいし、成形装置1を用いた1回または複数回の実験結果を利用してもよい。 To determine the amount of pushing in the first roller group 11, first, the strain corresponding to the "tensile strength", which is the maximum stress in the wire rod, is specified from the composition of the wire rod. For this identification, for example, a physical property table or database can be used. Next, the specified strain is multiplied by a predetermined ratio, such as "0.6", and is named "target strain". Then, the pressing amount of each roller in the first roller group 11 is determined so that the pressing amount decreases sequentially and the "target strain" is reached when the first step is completed. For this determination, the results of calculations using simulation software may be used, or the results of one or more experiments using the molding apparatus 1 may be used.
 以上の手順により第1ローラ群11における各ローラの押込量が決定できれば、所定の方針にしたがって第1ローラ群11の位置を決定できる。所定の方針とはたとえば、第1ローラ群11における下段のローラの位置を固定し、上段のローラの位置を調整することでローラ間隔を決定した値にすることである。決定した第1ローラ群11の位置に第1ローラ群11を設定し、次の第2ローラ群12の押込量の決定処理に進む。 If the pressing amount of each roller in the first roller group 11 can be determined by the above procedure, the position of the first roller group 11 can be determined according to a predetermined policy. The predetermined policy is, for example, fixing the position of the lower roller in the first roller group 11 and adjusting the position of the upper roller to set the roller interval to a determined value. The first roller group 11 is set at the determined position of the first roller group 11, and the process proceeds to the determination process of the pressing amount of the second roller group 12 next.
 第2ローラ群12における押込量は、配置角θxにより決定される。最適な配置角θxは、たとえばオペレータがxxを複数とおり変化させて第2工程の処理結果を実測することで決定される。以下に具体例を挙げて説明する。 The pushing amount of the second roller group 12 is determined by the arrangement angle θx. The optimum arrangement angle θx is determined, for example, by the operator changing xx in a plurality of ways and actually measuring the processing results of the second step. Specific examples will be described below.
 図5は、配置角θxを決定するための試験結果の概念図である。図5における縦軸は反り量を示し、横軸は配置角θxを示す。なお図5では配置角θxをS1~S8の8つで示しているが、この8つは例示にすぎず、8よりも多くてもよいし少なくてもよい。反り量のプラスはZ軸のプラス側に反ることを意味し、反り量のマイナスはZ軸のマイナス側に反ることを意味する。図5には独立する2通りの試験結果を示しており、三角のプロットは第1工程から出力された線材がプラス側に大きく偏っていた場合を示し、四角のプロットは第1工程から出力された線材がマイナス側に大きく偏っていた場合を示す。 FIG. 5 is a conceptual diagram of test results for determining the arrangement angle θx. The vertical axis in FIG. 5 indicates the amount of warp, and the horizontal axis indicates the arrangement angle θx. Although eight arrangement angles S1 to S8 are shown in FIG. 5, these eight are merely examples, and may be more or less than eight. A plus amount of warp means warping to the plus side of the Z axis, and a minus amount of warpage means warping to the minus side of the Z axis. FIG. 5 shows two independent test results, the triangular plot indicates the case where the wire rod output from the first step is greatly biased to the positive side, and the square plot indicates the wire rod output from the first step. This figure shows the case where the wire rod was heavily biased to the negative side.
 三角のプロットで示す、第1工程から出力された線材がプラス側に大きく偏っていた場合は、配置角θxが小さいS1の場合には第2工程における反りの矯正があまり働かず、依然として大きなプラスの値であることを示す。配置角θxを大きくするほど反り量は減少し、図5に示す例では配置角θxがS4の場合に反り量が概ねゼロとなる。配置角θxをS4からさらに大きくすると、反り量が増加に転じて増加を続ける。図5に示す三角のプロットの結果が得られた場合は、オペレータは反り量の絶対値が最も小さいS4を配置角θxに決定する。 When the wire rod output from the first step is greatly deviated to the positive side, as shown by the triangular plot, in the case of S1 where the arrangement angle θx is small, the warp correction in the second step does not work so much and the wire is still large positive. value. The warp amount decreases as the arrangement angle θx increases, and in the example shown in FIG. 5, the warp amount is approximately zero when the arrangement angle θx is S4. When the arrangement angle θx is further increased from S4, the amount of warpage turns to increase and continues to increase. When the triangular plotted result shown in FIG. 5 is obtained, the operator determines S4 with the smallest absolute value of the amount of warpage as the arrangement angle θx.
 四角のプロットで示す、第1工程から出力された線材がマイナス側に大きく偏っていた場合は、配置角θxが小さいS1の場合には第2工程における反りの矯正があまり働かず、依然として大きなマイナスの値であることを示す。配置角θxを大きくするほど反り量はゼロに近づき、図5に示す例では配置角θxがS5の場合に反り量が概ねゼロとなる。配置角θxをS5からさらに大きくすると、反り量が増加し続けてプラスの大きな値となる。図5に示す四角のプロットの結果が得られた場合は、オペレータは反り量の絶対値が最も小さいS5を配置角θxに決定する。 When the wire rod output from the first step is greatly biased to the negative side, as indicated by the plotted squares, in the case of S1 where the arrangement angle θx is small, the warp correction in the second step does not work so much, and the wire is still large negative. value. As the arrangement angle θx increases, the amount of warp approaches zero. In the example shown in FIG. 5, the amount of warp is approximately zero when the arrangement angle θx is S5. When the arrangement angle θx is further increased from S5, the amount of warpage continues to increase and becomes a large positive value. When the square plotted result shown in FIG. 5 is obtained, the operator determines S5 with the smallest absolute value of the amount of warpage as the arrangement angle θx.
 上述した実施の形態によれば、次の作用効果が得られる。
(1)成形装置1は、図2の図示左側である上流側から、図示右側である下流側に移動する線材を次のように成形する。成形装置1による線材の成形は、次の第1工程と第2工程を含む。第1工程は、モータ31により駆動される複数のローラである第1ローラ群11により線材を押圧しながら送り出す。第2工程は、回転可能に支持される複数のローラである第2ローラ群12により線材を押圧しながら送り出す。第1工程は、第2工程よりも上流側、すなわち図示左側に設けられる。線材の外形寸法と、線材が通過するローラ同士の隙間との差である押込量は、第1工程の方が第2工程よりも大きい。そのため、第1工程では駆動される第1ローラ群11を用いて線材を送り出すことで線材に生じる張力を軽減して伸びを抑制しつつ反りを低減し、第2工程では第1工程よりも低い押込量とすることで線材の反りを安定して低減できる。すなわち成形装置1による成形方法により、線材の反りを安定して低減できる。
According to the embodiment described above, the following effects are obtained.
(1) The forming apparatus 1 forms a wire moving from the upstream side, which is the left side in FIG. 2, to the downstream side, which is the right side in the drawing, as follows. Forming of the wire by the forming apparatus 1 includes the following first step and second step. In the first step, the wire is sent out while being pressed by a first roller group 11 that is a plurality of rollers driven by a motor 31 . In the second step, the wire is sent out while being pressed by a second roller group 12, which is a plurality of rotatably supported rollers. The first step is provided upstream of the second step, that is, on the left side of the drawing. The pushing amount, which is the difference between the outer dimensions of the wire and the gap between the rollers through which the wire passes, is greater in the first step than in the second step. Therefore, in the first step, the wire is sent out using the first roller group 11 that is driven, thereby reducing the tension generated in the wire and suppressing the elongation while reducing the warp. By adjusting the pushing amount, it is possible to stably reduce the warpage of the wire. That is, the forming method by the forming apparatus 1 can stably reduce the warp of the wire.
(2)第1工程において、押込み量は上流側から下流側にかけて順次減少する。そのため、線材の反りをより安定して低減できる。 (2) In the first step, the pushing amount decreases sequentially from the upstream side to the downstream side. Therefore, the warp of the wire can be reduced more stably.
(3)第2工程において、押込み量は上流側から下流側にかけてゼロまで順次減少する。そのため、線材の反りをより安定して低減できる。 (3) In the second step, the pushing amount is gradually decreased from the upstream side to the downstream side to zero. Therefore, the warp of the wire can be reduced more stably.
(4)第1工程における最小の押込量は、第2工程における最大の押込量の、少なくとも10倍である。そのため、第1工程では線材に強いひずみが付与され、加工硬化により機械的性質を揃えることができる。 (4) The minimum push in the first step is at least ten times the maximum push in the second step. Therefore, in the first step, a strong strain is imparted to the wire, and mechanical properties can be made uniform by work hardening.
(5)成形装置1による線材の成形は、第1工程および第2工程に加えて、回転可能に支持される複数のローラである第3ローラ群13により線材を送り出す第3工程も含む。この第3工程は、第2工程よりも下流、すなわち図示右側に設けられる。第3工程における押込量はゼロである。そのため、押込量がゼロの第3ローラ群13を用いて、線材自身の反りで矯正され、ばらつきを抑えることができる。 (5) The forming of the wire by the forming apparatus 1 includes, in addition to the first step and the second step, a third step of sending out the wire by the third roller group 13, which is a plurality of rotatably supported rollers. This third step is provided downstream of the second step, that is, on the right side of the drawing. The pushing amount in the third step is zero. Therefore, by using the third roller group 13 having a zero pressing amount, the warpage of the wire rod itself is corrected, and variations can be suppressed.
(6)第1ローラ群11を構成するそれぞれのローラは、表面がウレタンゴムである。そのため、それぞれの駆動ローラに対する線材の追従性が向上し、線材の反りをより低減できる。 (6) Each roller constituting the first roller group 11 has a surface made of urethane rubber. Therefore, the followability of the wire with respect to each drive roller is improved, and the warpage of the wire can be further reduced.
(変形例1)
 上述した実施の形態は、次の<1>~<5>のように変形してもよく、この<1>~<5>は任意に組み合わせてよい。すなわち、実施の形態の構成に対して<1>~<4>の全ての変形を加えてもよいし、<1>~<5>のいずれか1以上の変形を加えてもよい。
(Modification 1)
The above-described embodiment may be modified as in the following <1> to <5>, and these <1> to <5> may be combined arbitrarily. That is, all the modifications <1> to <4> may be added to the configuration of the embodiment, or any one or more modifications <1> to <5> may be added.
<1>成形装置1が第3ローラ群13を備えず、線材の成形において第3工程を備えなくてもよい。
<2>第1工程における最小の押込量と、第2工程における最大の押込量の比は、数倍でもよい。
<3>第1工程において、押込量は上流側から下流側にかけて順次減少しなくてもよい。
<4>第2工程において、押込量は上流側から下流側にかけて順次減少しなくてもよい。
<5>第1ローラ群11を構成するローラは、外周にウレタンゴムがモールドされず、表面が金属でもよい。
<1> The forming apparatus 1 may not include the third roller group 13 and may not include the third step in forming the wire rod.
<2> The ratio of the minimum pushing amount in the first step and the maximum pushing amount in the second step may be several times.
<3> In the first step, the pushing amount does not have to decrease sequentially from the upstream side to the downstream side.
<4> In the second step, the pushing amount does not have to decrease sequentially from the upstream side to the downstream side.
<5> The rollers constituting the first roller group 11 may not be molded with urethane rubber on the outer periphery and may have a metal surface.
 この変形例1によれば、上述した実施の形態よりも反りの低減が不十分となる不利益や安定性に欠ける不利益はあるが、ローラ位置の調整が容易となる。またこれらの不利益が存在しても、要求される精度が満たすものであればよい。 According to Modification 1, the roller position can be easily adjusted, although there are disadvantages such as insufficient reduction in warpage and lack of stability as compared with the above-described embodiment. Moreover, even if these disadvantages exist, it is sufficient if the required accuracy is satisfied.
(変形例2)
 上述した実施の形態において説明した第2ローラ群12における押込量の決定方法は一例にすぎない。たとえば、第2ローラ群12における上段のローラの位置を個別に調整可能な構成とし、それぞれのローラの位置を少しずつ変化させながら反り量を測定することで、反り量が最も小さくなるローラの位置を決定してもよい。この場合は、実施の形態に比べて、ローラの位置調整の回数、および反り量を測定する回数が大幅に増加するが、実施の形態よりも反り量の絶対値を小さくできる可能性がある。
(Modification 2)
The method of determining the pushing amount in the second roller group 12 described in the above embodiment is merely an example. For example, the positions of the upper rollers in the second roller group 12 can be individually adjusted, and by measuring the amount of warpage while gradually changing the position of each roller, the position of the roller that minimizes the amount of warpage. may be determined. In this case, the number of times of roller position adjustment and the number of times of measuring the amount of warpage are significantly increased compared to the embodiment, but the absolute value of the amount of warp can be made smaller than in the embodiment.
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other aspects conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
1…成形装置
11…第1ローラ群
12…第2ローラ群
13…第3ローラ群
31…モータ
DESCRIPTION OF SYMBOLS 1... Forming apparatus 11... 1st roller group 12... 2nd roller group 13... 3rd roller group 31... Motor

Claims (12)

  1.  上流側から下流側に移動する線材の成形方法であって、
     モータにより駆動される複数のローラである第1ローラ群により前記線材を押圧しながら送り出す第1工程と、
     回転可能に支持される複数のローラである第2ローラ群により前記線材を押圧しながら送り出す第2工程と、を含み、
     前記第1工程は、前記第2工程よりも前記上流側に設けられ、
     前記線材の外形寸法と前記線材が通過するローラ同士の隙間との差である押込量は、前記第1工程の方が前記第2工程よりも大きい、線材の成形方法。
    A method for forming a wire moving from the upstream side to the downstream side,
    a first step of sending out the wire while pressing it with a first roller group, which is a plurality of rollers driven by a motor;
    a second step of sending out the wire while pressing it with a second roller group, which is a plurality of rollers rotatably supported;
    The first step is provided upstream of the second step,
    The method of forming a wire, wherein a pushing amount, which is a difference between an outer dimension of the wire and a gap between rollers through which the wire passes, is larger in the first step than in the second step.
  2.  請求項1に記載の線材の成形方法において、
     前記第1工程において、前記押込量は前記上流側から前記下流側にかけて順次減少する、線材の成形方法。
    In the wire forming method according to claim 1,
    The method of forming a wire rod, wherein in the first step, the pushing amount is gradually decreased from the upstream side to the downstream side.
  3.  請求項1に記載の線材の成形方法において、
     前記第2工程において、前記押込量は前記上流側から前記下流側にかけてゼロまで順次減少する、線材の成形方法。
    In the wire forming method according to claim 1,
    The method of forming a wire rod, wherein in the second step, the pushing amount is gradually decreased from the upstream side to the downstream side to zero.
  4.  請求項1に記載の線材の成形方法において、
     前記第1工程における最小の押込量は、前記第2工程における最大の押込量の、少なくとも10倍である、線材の成形方法。
    In the wire forming method according to claim 1,
    A method of forming a wire, wherein the minimum pushing amount in the first step is at least ten times the maximum pushing amount in the second step.
  5.  請求項1に記載の線材の成形方法において、
     回転可能に支持される複数のローラである第3ローラ群により前記線材を送り出す第3工程をさらに含み、
     前記第3工程は、前記第2工程よりも下流に設けられ、
     前記第3工程における前記押込量はゼロである、線材の成形方法。
    In the wire forming method according to claim 1,
    further comprising a third step of sending out the wire by a third roller group, which is a plurality of rollers rotatably supported;
    The third step is provided downstream from the second step,
    The method of forming a wire, wherein the pushing amount in the third step is zero.
  6.  請求項1に記載の線材の成形方法において、
     前記第1ローラ群を構成するそれぞれのローラは、表面がウレタンゴムである、線材の成形方法。
    In the wire forming method according to claim 1,
    The method of forming a wire rod, wherein each roller constituting the first roller group has a surface made of urethane rubber.
  7.  線材を送り出す送り出し部と、モータにより駆動され前記送り出し部が送り出す前記線材を押圧する複数のローラである第1ローラ群と、前記第1ローラ群が押圧した前記線材をさらに押圧する複数のローラであり回転可能に支持される第2ローラ群と、を備え、
     前記線材の外形寸法と前記線材が通過するローラ同士の隙間との差である押込量は、前記第1ローラ群の方が前記第2ローラ群よりも大きい、線材の成形装置。
    a first roller group that is a plurality of rollers driven by a motor and presses the wire sent by the sending section; and a plurality of rollers that further press the wire pushed by the first roller group. and a second roller group rotatably supported,
    A wire forming apparatus according to claim 1, wherein the first roller group has a larger pressing amount, which is a difference between the outer dimensions of the wire and the gap between the rollers through which the wire passes, than the second roller group.
  8.  請求項7に記載の線材の成形装置において、
     前記第1ローラ群は、前記送り出し部と、前記第2ローラ群との間に配され、
     前記第1ローラ群における前記押込量は、前記送り出し部側から前記第2ローラ群側にかけて順次減少する、線材の成形装置。
    In the wire forming apparatus according to claim 7,
    The first roller group is arranged between the delivery unit and the second roller group,
    The wire rod forming apparatus, wherein the pushing amount of the first roller group gradually decreases from the delivery section side to the second roller group side.
  9.  請求項7に記載の線材の成形装置において、
     前記第2ローラ群における前記押込量は、前記第1ローラ群側から逆側にかけてゼロまで順次減少する、線材の成形装置。
    In the wire forming apparatus according to claim 7,
    The wire rod forming apparatus, wherein the pushing amount of the second roller group gradually decreases from the first roller group side to the opposite side to zero.
  10.  請求項7に記載の線材の成形装置において、
     前記第1ローラ群における最小の前記押込量は、前記第2ローラ群における最大の押込量の少なくとも10倍である、線材の成形装置。
    In the wire forming apparatus according to claim 7,
    The wire rod forming apparatus, wherein the minimum pushing amount of the first roller group is at least ten times the maximum pushing amount of the second roller group.
  11.  請求項7に記載の線材の成形装置において、
     前記第2ローラ群が押圧した前記線材をさらに押圧する複数のローラであり回転可能に支持される第3ローラ群をさらに備え、
     前記第3ローラ群における前記押込量はゼロである、線材の成形装置。
    In the wire forming apparatus according to claim 7,
    Further comprising a third roller group that is a plurality of rollers that further press the wire pressed by the second roller group and is rotatably supported,
    The wire forming apparatus, wherein the pushing amount of the third roller group is zero.
  12.  請求項7に記載の線材の成形装置において、
     前記第1ローラ群を構成するそれぞれのローラは、表面がウレタンゴムである、線材の成形装置。
     
    In the wire forming apparatus according to claim 7,
    The wire forming apparatus, wherein each roller constituting the first roller group has a surface made of urethane rubber.
PCT/JP2021/038485 2021-02-26 2021-10-18 Method for molding wire material, device for molding wire material WO2022180925A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023502059A JP7567023B2 (en) 2021-02-26 2021-10-18 Wire rod forming method and wire rod forming device
US18/547,531 US20240299996A1 (en) 2021-02-26 2021-10-18 Method for shaping wire material and wire material shaping device
EP21928020.3A EP4299206A1 (en) 2021-02-26 2021-10-18 Method for molding wire material, device for molding wire material
CN202180092750.4A CN116783015A (en) 2021-02-26 2021-10-18 Wire rod forming method and wire rod forming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-030265 2021-02-26
JP2021030265 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022180925A1 true WO2022180925A1 (en) 2022-09-01

Family

ID=83047938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038485 WO2022180925A1 (en) 2021-02-26 2021-10-18 Method for molding wire material, device for molding wire material

Country Status (5)

Country Link
US (1) US20240299996A1 (en)
EP (1) EP4299206A1 (en)
JP (1) JP7567023B2 (en)
CN (1) CN116783015A (en)
WO (1) WO2022180925A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494665A (en) * 1972-05-08 1974-01-16
JPS60151643U (en) * 1984-03-16 1985-10-08 株式会社明電舎 Electric wire leveler
JPS6146036U (en) * 1984-08-24 1986-03-27 電気興業株式会社 Line removing device
JPH05104181A (en) * 1991-10-16 1993-04-27 Bridgestone Bekaert Steel Code Kk Method for correcting residual stress and straightness in metal wire rod
JPH06246380A (en) * 1993-03-02 1994-09-06 Hitachi Ltd Method and device for correcting wire rope
JP2001353542A (en) * 2000-06-12 2001-12-25 Nittetsu Steel Pipe Co Ltd Method and device for drawing galvanized steel tube
JP2007044734A (en) * 2005-08-10 2007-02-22 Hitachi Cable Ltd Device for straightening wire rod and device for assembling and wiring solar cell
JP2016187821A (en) * 2015-03-30 2016-11-04 矢崎総業株式会社 Wire straightening apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494665A (en) * 1972-05-08 1974-01-16
JPS60151643U (en) * 1984-03-16 1985-10-08 株式会社明電舎 Electric wire leveler
JPS6146036U (en) * 1984-08-24 1986-03-27 電気興業株式会社 Line removing device
JPH05104181A (en) * 1991-10-16 1993-04-27 Bridgestone Bekaert Steel Code Kk Method for correcting residual stress and straightness in metal wire rod
JPH06246380A (en) * 1993-03-02 1994-09-06 Hitachi Ltd Method and device for correcting wire rope
JP2001353542A (en) * 2000-06-12 2001-12-25 Nittetsu Steel Pipe Co Ltd Method and device for drawing galvanized steel tube
JP2007044734A (en) * 2005-08-10 2007-02-22 Hitachi Cable Ltd Device for straightening wire rod and device for assembling and wiring solar cell
JP2016187821A (en) * 2015-03-30 2016-11-04 矢崎総業株式会社 Wire straightening apparatus

Also Published As

Publication number Publication date
JPWO2022180925A1 (en) 2022-09-01
US20240299996A1 (en) 2024-09-12
EP4299206A1 (en) 2024-01-03
JP7567023B2 (en) 2024-10-15
CN116783015A (en) 2023-09-19

Similar Documents

Publication Publication Date Title
KR101651313B1 (en) Method and device for continuously stretch-bend-leveling metal strips
KR101204497B1 (en) Magnesium alloy hot-rolling mill
US20080072415A1 (en) Iron Core and Method of Manufacturing the Same and Apparatus for Manufacturing the Same
KR20210011355A (en) Method and apparatus for stretch-leveling metal strip
CN110446569B (en) Multifunctional processing equipment
CN110958918A (en) System and method for controlling flatness of metal substrate by low-pressure rolling
KR20150137989A (en) Drawing unit and corresponding method
KR20110013406A (en) Method for producing deformed cross-section strip
WO2022180925A1 (en) Method for molding wire material, device for molding wire material
CN112912187A (en) Straightening device for a cable processing machine and method for operating a straightening mechanism
US11707774B2 (en) Bending method
WO2020110442A1 (en) Processing device, and method for controlling processing device
KR20200075253A (en) Apparatus for manufacturing steel coil outer edge protecting material
JP4059737B2 (en) Roll bending method and roll bending apparatus
KR20050059237A (en) Method and apparatus for rolling a tube
US10236753B2 (en) Method of manufacturing assembled conductor and electric motor
JP6760484B2 (en) Bar wire straightening machine and bar wire straightening method
JP6245492B2 (en) Long workpiece processing apparatus and processing method
US8459081B2 (en) Continuously smoothly adjustable and self-aligning variable width roll forming apparatus
KR19990028972A (en) How to wind electrical tape with a long coil
JP2016129893A (en) Correction device for shape steel and method of manufacturing shape steel
JP5551551B2 (en) Method for producing rubber-cord composite
KR101406446B1 (en) Apparatus for shear deforming
JP7364903B2 (en) Shaped steel straightening device and straightening method
TWI769727B (en) Shape control method and shape control device of calender

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502059

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180092750.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18547531

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021928020

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021928020

Country of ref document: EP

Effective date: 20230926