WO2022180901A1 - Simulation method and device - Google Patents

Simulation method and device Download PDF

Info

Publication number
WO2022180901A1
WO2022180901A1 PCT/JP2021/034336 JP2021034336W WO2022180901A1 WO 2022180901 A1 WO2022180901 A1 WO 2022180901A1 JP 2021034336 W JP2021034336 W JP 2021034336W WO 2022180901 A1 WO2022180901 A1 WO 2022180901A1
Authority
WO
WIPO (PCT)
Prior art keywords
scenario
vehicle
simulation
time
moving object
Prior art date
Application number
PCT/JP2021/034336
Other languages
French (fr)
Japanese (ja)
Inventor
啓明 中田
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to DE112021006082.1T priority Critical patent/DE112021006082T5/en
Priority to JP2023502045A priority patent/JPWO2022180901A1/ja
Publication of WO2022180901A1 publication Critical patent/WO2022180901A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/36Preventing errors by testing or debugging software
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design

Definitions

  • the present invention relates to a simulation method and apparatus used for vehicle evaluation.
  • Patent Document 1 discloses a method using a scenario description language as a means of instructing the behavior of the vehicle to be evaluated and the surrounding vehicles.
  • scenario description language it is possible to define a condition and have the execution of some action or some other conditional decision wait until the condition is met.
  • the present invention has been made in view of the above circumstances, and when reproducing an evaluation scenario on a simulation, the positions and behaviors of surrounding traffic participants at the start of the scenario can be easily reproduced from the parameters at the start of the scenario. To provide a simulation method and apparatus capable of making the behavior of each traffic participant in the surroundings leading to the start of a scenario look natural.
  • a simulation method for simulating vehicle behavior, comprising: position and speed of the target vehicle at the start of a scenario for verifying the behavior of the target vehicle; , specifying the position and speed of a moving object existing in the vicinity of the target vehicle, obtaining a predicted time at which the target vehicle will reach the scenario start position, which is the specified position at the start of the scenario, and determining the target vehicle; adjusts the movement of the moving object by limiting the speed change range per specified time so that the position and speed of the moving object become specified values at the predicted time when the will reach the scenario start position.
  • a simulation apparatus is a simulation apparatus for realizing a simulation method for simulating vehicle behavior, and includes the position and speed of the target vehicle at the start of a scenario for verifying the behavior of the target vehicle, and specifying the position and speed of a moving object existing around the target vehicle, obtaining a predicted time at which the target vehicle will reach the scenario start position, which is the specified position at the start of the scenario, and The movement of the moving object is adjusted by restricting a speed change range per specified time so that the position and speed of the moving object become specified values at the predicted time when the scenario start position is reached. do.
  • the positions and behaviors of the surrounding traffic participants at the start of the scenario can be easily reproduced from the parameters at the start of the scenario.
  • the behavior of traffic participants can also be made natural.
  • FIG. 4 is a flowchart showing an example of a simulation execution procedure; Schematic diagram showing an example of a road used for simulation execution. The figure which shows the example of a self-vehicle driving definition. Schematic diagram showing an example of definition of a scenario start condition.
  • FIG. 4 is a diagram showing an example of speed plans (movement plans) of other vehicles;
  • FIG. 5 is a diagram showing an example of updating speed plans (movement plans) of other vehicles;
  • FIG. 2 is a configuration diagram of an apparatus that executes an example of a method of generating an acceleration command for another vehicle;
  • FIG. 10 is a diagram showing an example of the relationship between each process of the simulation execution procedure in FIG. 1 and each part of the simulation apparatus in FIG. 9;
  • the evaluation target vehicle is expressed as the own vehicle.
  • a surrounding traffic participant moving object, moving object
  • may use more specific expressions such as other vehicles, bicycles, and pedestrians.
  • the own vehicle has a driving support function and an automatic driving function to be evaluated, and the driving support function and the automatic driving function are collectively referred to as a driving control function.
  • An evaluation method (simulation method) according to the present invention is a method for simulating vehicle behavior.
  • the own vehicle traveling to be evaluated is defined in own vehicle traveling definition creation S110.
  • own vehicle traveling definition creation S110 For example, when evaluating the road shown in FIG.
  • the definition of running the own vehicle is divided into one or more steps, and each step is specified with a period for executing the step, a target speed, and a target lateral position.
  • the period it is conceivable to specify the travel distance, the arrival at the specified travel position, the duration of the step, or the like. If a more complicated definition is desired, a specified condition, such as continuing up to a specified speed or higher, may be used. The contents of each step shown in FIG. 3 will be described later.
  • own vehicle traveling timing acquisition S120 In own vehicle traveling timing acquisition S120, the relationship between when and where the own vehicle 200 is traveling from the start of the simulation (that is, the relationship between the time and position or traveling distance of the own vehicle 200 of the vehicle to be evaluated) is acquired. .
  • the simulation is executed in a state where only the own vehicle 200 is defined as a moving body to be handled in the simulation (in other words, the simulation is executed by running the own vehicle 200 alone as the evaluation target vehicle), and the time and the own vehicle 200 The relationship between the position and travel distance of is obtained in advance.
  • the time is virtual time handled in the simulation world.
  • time refers to virtual time handled in the simulation world, and "time” is also time handled in the simulation world.
  • pre- and post-processing necessary for executing the simulation is also performed.
  • the simulation is performed under the same conditions as the evaluation scenario, including road conditions, except that moving bodies other than the own vehicle 200 are excluded from the simulation.
  • surrounding traffic participants are not included in the simulation even if they are stationary objects. For example, it is conceivable that parked vehicles that have little effect on the running of the own vehicle 200 are not included in the simulation.
  • the simulation time at which the own vehicle 200 passes the scenario start position Le (201) obtained in the own vehicle travel timing acquisition S120 (hereinafter referred to as the scenario start time for verifying the behavior of the own vehicle 200 of the evaluation target vehicle,
  • a movement plan is formulated so that each moving object has a value specified as the state (position, speed, etc.) at the start of the scenario at the estimated scenario start time.
  • the simulation time at which the vehicle 200 reaches the position Le (201) is calculated (determined).
  • the moving body adjusts the movement (also called running or behavior) of the moving body so that it becomes the value specified as the state of time (position, speed, etc.).
  • the specified values can be position, velocity, acceleration, direction, etc., but it is also possible to add other elements, such as adding an arm swing condition in the case of a pedestrian.
  • a simulation including the own vehicle 200 and each moving object is started using the movement plan formulated in S130 for the movement plan formulation of the surrounding traffic participants.
  • simulation execution initialization S140 to simulation result recording S180 a simulation of a scenario (vehicle evaluation scenario) to be actually evaluated is executed.
  • a simulation of a scenario vehicle evaluation scenario
  • the travel definition for the own vehicle 200 in this simulation the same travel definition as the travel definition used in the own vehicle travel timing acquisition S120 is used.
  • Simulation execution initialization S140 In simulation execution initialization S140, various initializations necessary for simulation are performed. This initialization also includes setting the initial states of the own vehicle 200 and surrounding traffic participants.
  • the range from simulation 1-step execution S150 to simulation end determination S170 is a portion that is repeatedly executed when executing the simulation.
  • the simulation 1-step execution S150 is a process of advancing the time by the increment time of the simulation.
  • a process of updating all the parameters representing the physical phenomenon to be simulated corresponding to the advanced time is performed.
  • the increment time is about 1 ms.
  • step S160 for updating the movement plan of the surrounding traffic participants the scenario start time is re-predicted (estimated) from the running position of the own vehicle 200 at the simulation time (scenario start time), and each surrounding traffic participant is updated at the predicted scenario start time. Review (update) the movement plan of each surrounding traffic participant so as to satisfy the behavior (specified position, speed, etc.) at the start of the scenario.
  • the estimated time at which the vehicle 200 will reach the scenario start position which is a specified position at the scenario start time, is calculated again.
  • Each peripheral traffic participant has a specified position and velocity at the predicted time when 200 reaches the scenario start position. Coordinate the movement of traffic participants. Furthermore, in other words, it is determined whether the predicted time has changed from the running position of the own vehicle 200 at the simulation time (scenario start point), and the predicted time has changed (the predicted time has changed). In this case, the movement plan of each peripheral traffic participant is updated according to the change in the predicted time, and the movement of each peripheral traffic participant is adjusted.
  • the vehicle 200 may change its behavior (position, speed, etc.) from the travel obtained in the vehicle travel timing acquisition S120 due to changes in the circumstances of surrounding traffic participants, so it is necessary to re-predict the scenario start time.
  • the behavior (position, speed, etc.) of surrounding traffic participants will become unnatural, and the behavior at the start of the scenario will not change. Since it may become impossible to satisfy the conditions, the movement plan is reviewed, and deviations from the movement plan are compensated for by feedback control.
  • Simulation end determination processing S170 determines the end of the simulation by detecting the elapse of a predetermined period of time after the start of the scenario or the arrival of the vehicle 200 at a predetermined position. If the simulation is not to be ended, the process returns to the simulation 1 step execution S150 to continue the execution of the simulation.
  • the vehicle 200 collides (contacts) with something such as a surrounding traffic participant, which is a moving object existing in the vicinity of the vehicle 200, or when there is a surrounding traffic participant. For example, a situation in which a collision (contact) occurs between surrounding traffic participants, or a situation in which the speed of the own vehicle 200 or surrounding traffic participants is outside the expected range (deviates from the predetermined speed range). It may also be determined that the simulation is finished when a case where the evaluation fails or the evaluation result is NG is detected, such as when the evaluation continues for a certain period of time or more.
  • the simulation may be determined to end.
  • Simulation result recording S180 In the simulation result record S180, it is recorded whether the evaluation result of the simulation is NG, whether there is an evaluation-unacceptable case, or whether the evaluation result is OK. At the time of recording, a log of parameters representing various states of the own vehicle 200 and surrounding traffic participants at the end of the simulation, and main parameters such as position and speed during the simulation execution period are also recorded, and used later. It can also be used for analysis.
  • Each step in FIG. 3 is normally executed sequentially according to the order of the step numbers. However, it is conceivable that when a specific condition specified in advance occurs, a direct transition to the specified step is made. In each step, execution continues for the period specified by "Period".
  • the “period” can be expressed using time, running distance, running position, and the like.
  • the vehicle 200 is instructed to aim for the values specified by the target speed and target lateral position as long as there is no problem.
  • the target lateral position is indicated using the travel lane and the deviation from the lane center within the travel lane. It is assumed that when an event occurs that takes priority over the target, such as the risk of collision or compliance with traffic rules, the own vehicle 200 will give priority to responding to those events.
  • the vehicle 200 is expected to run as follows.
  • step 1 corresponds to running on the merging road 460 from the position Le0 (211) at the start of the simulation. run.
  • the driving control function may judge that driving at 40 km/h is not appropriate due to a sharp curve, etc., and may decelerate.
  • step 3 is entered, and the host vehicle 200 moves to the lane of the main line 410 designated by the target lateral position and to the lateral position within the lane over five seconds.
  • Lane identification information and a lateral position offset within the lane are used to specify the lateral position.
  • the lanes are designated as Lane A and Lane B in order from the right side in the direction of travel, and the left side in the direction of travel is treated as the positive direction for the offset of the lateral position within the lane.
  • the vehicle 200 When adjusting the lateral position to the target, it is assumed that the vehicle 200 performs steering control so as to match the target in a specified period in principle. However, the host vehicle 200 may delay the start of the lane change by the operation control function according to the situation of the destination lane. It doesn't matter if it slows down or accelerates. Also, there may be a case where the lateral movement cannot be completed within the specified period due to the relationship with the surroundings. It is also possible to use a method of adding attributes to the target lateral position, specifying the maximum steering angle and required travel time as separate attributes, and performing steering control according to the values indicated by the attributes regardless of the period specified in this step. I do not care.
  • step 4 After completing the movement to the destination lane and the horizontal position within the lane, in step 4, travel within the lane to the acceleration/deceleration start position immediately before the evaluation scenario.
  • the vehicle may decelerate or accelerate from the target speed.
  • step 5 is entered and the host vehicle 200 attempts to accelerate to the target speed of 120 km/h toward the start of the scenario.
  • the host vehicle 200 is required to reach 120 km/h by the start of the scenario, but simply sets the target to 120 km/h. Therefore, it may not reach 120km/h when the scenario start position is reached, and in order to avoid contact with other vehicles, the driving control function may run at a speed of 120km/h or less. . If the speed has not reached 120 km/h when the vehicle 200 reaches the scenario start position, 120 km/h is also set as the target speed in step 6, so the vehicle 200 continues to accelerate. Scenarios during acceleration can also be evaluated. If the target speed in steps 5 and 6 specifies a speed lower than the speed in the final state in step 4, the scenario in which the host vehicle 200 is decelerating can be evaluated.
  • step 5 corresponds to the preparation run before the start of the evaluation scenario.
  • the position, speed, and acceleration corresponding to the conditions at the start of the scenario for verifying the behavior of the own vehicle 200 can be adjusted.
  • step 6 the target velocity continues to be specified in step 5, and the target lateral position is changed. That is, as long as there is no problem in running, the own vehicle 200 tries to move to a position 5 cm to the right from the center of lane A in 5 seconds.
  • step 7 specifies the same state as step 6. If the target lateral position is not changed from the previous step and the lateral movement of the vehicle 200 is not completed for some reason, the period specified in step 6 is not affected and the period specified in step 6 is applied. Continue the pace of lateral movement.
  • step 7 also has the meaning of a period for confirming whether stable driving can be performed even after scenario execution is completed. Even if the scenario itself ends normally, a dangerous situation such as a remarkably narrow gap between vehicles is possible at the end of the scenario, and there is a possibility of collisions with nearby traffic participants. Continue to check the status after completion of execution for a while.
  • FIG. 5 shows an example of a movement plan for other vehicles (other vehicles) as surrounding traffic participants.
  • the moving plan formulation example shown in FIG. 5 only the vertical direction (direction along the road) plan is shown as the speed plan, but if necessary, it is also possible to add a horizontal position plan or a direction plan with respect to the track. be done.
  • the target is up to the start of the scenario, and only the lane in which the other vehicle is traveling is considered without considering the lateral position offset.
  • the surrounding traffic participants will reproduce the behavior according to the acceleration, deceleration, lane change, etc. defined in the scenario.
  • a movement plan different from that of the vehicle may be used according to the behavior characteristics of each of the surrounding traffic participants. For example, it is conceivable to prepare a travel plan for pedestrians, a travel plan for bicycles, and the like.
  • a velocity plan as a movement plan, in other words, by formulating a movement plan based on velocity, the movement distance or position can be calculated by first-order integration, and the acceleration can be calculated by first-order differentiation. In other words, there is an advantage in that it is easy to plan considering the acceleration, and it is easy to guarantee the continuity of the speed.
  • the scenario starts when the vehicle 200 reaches the position Le (201), and the vehicle 200 at the start of the scenario has a velocity Ve (204) and an acceleration Ae (206).
  • a parked vehicle 360 is stopped on the road shoulder at position Lp (361) on the road (see also FIG. 2).
  • Specifying the position Le ( 201 ) of the vehicle 200 at the start of the scenario is necessary to define the positional relationship with the parked vehicle 360 . Also, when the curvature and gradient of the road are changing, where on the road the scenario starts is important for evaluation under desired road conditions.
  • vehicle X (310) and other vehicle Y (320) exist as surrounding traffic participants.
  • another vehicle X (310) travels in lane A behind host vehicle 200 by a distance Df1 (312) at speed Vf1 (314) and acceleration Af1 (316).
  • Another vehicle Y (320) travels in lane B ahead of host vehicle 200 by a distance Df2 (322) at speed Vf2 (324) and acceleration Af2 (326).
  • Fig. 5 shows an example of a speed plan for other vehicles to be formulated.
  • a speed plan needs to be formulated for each of the other vehicle X (310) and the other vehicle Y (320).
  • An example of formulating a speed plan will be described with reference to FIG.
  • the speed plan is determined in the order of constant speed (time Tp0 (530) to Tp1 (531)), acceleration change (time Tp1 (531) to Tp2 (532) period) and constant acceleration (time Tp2 (532) to Tssi (550) period).
  • Acceleration change is treated as the behavior of the period required for the vehicle to change the acceleration as a quadratic function, that is, assuming that the acceleration changes linearly.
  • the time Tssi (550) is the (predicted) time obtained as the time when the vehicle 200 reaches the scenario start position Le (201) in the vehicle travel timing acquisition S120, and is the estimated scenario start time at the beginning of the simulation. becomes.
  • Calculation of the velocities required to define the change in velocity 510 is performed in order from the initial scenario start prediction time Tssi (550) in the backward direction.
  • time Tp2 (532) is determined so as to be before time Tssi (550). do.
  • the time from time Tp2 (532) to time Tssi (550) may be fixed to 5 seconds, 10 seconds, or the like.
  • the acceleration Af (516) at time Tssi (550), that is, the amount of change in speed, is defined as the acceleration Af1 (316) (FIG. 4) from the scenario start conditions, so the speed Vfp2 (513 ) is found. If the speed Vfp2 (513) is out of the assumed range as the traveling speed of the other vehicle X (310) (deviates from the predetermined speed range), the time Tp2 (532) is brought closer to the time Tssi (550). to adjust the speed Vfp2 (513) to be within the expected range.
  • time Tp1 (531) and the speed Vfp1 (512) are calculated.
  • time Tp1 (531) the time from time Tp1 (531) to time Tp2 (532) is determined. This time is determined by proportional calculation, table reference, etc., based on the acceleration desired to be changed in the relevant period. Alternatively, it is conceivable to use a fixed value more simply. If the time from time Tp1 (531) to time Tp2 (532) is obtained, time Tp1 (531) can be calculated from time Tp2 (532).
  • a function indicating the relationship between the time and the speed during the period between the time Tp1 (531) and the time Tp2 (532) is obtained. Since the relationship between time and speed during the period from time Tp1 (531) to time Tp2 (532) is defined as a quadratic function, the function indicating the relationship can be determined by calculating the 0th to 2nd order coefficients. These coefficients are obtained under the condition that the velocity and acceleration are changed continuously at time Tp1 (531) and time Tp2 (532). Note that the acceleration is 0 at time Tp1 (531) and Af (516) at time Tp2 (532), and that time Tp1 (531) and time Tp2 (532) have already been calculated.
  • Equation 1 the velocity Vfp1 (512) can be calculated by Equation 1 below from the function showing the relationship between the time and the velocity during the period from time Tp1 (531) to time Tp2 (532).
  • the speed Vfp1 (512) is subject to restrictions in relation to the speed Vfp2 (513) depending on the acceleration Af (516). If Af (516) is 0, then Vfp1 (512) must equal velocity Vfp2 (513). When Af (516) is positive (acceleration), the speed Vfp1 (512) is always smaller than the speed Vfp2 (513). must be made larger. If the speed Vfp1 (512) is out of the assumed range as the traveling speed of the other vehicle X (310) (deviates from the predetermined speed range), the time Tp1 (531) is set to be within the assumed range. It is necessary to either approach Tp2 (532), or determine that such a scenario will not occur and treat it as non-evaluation.
  • the speed Vfp0 (511) is equal to the speed Vfp1 (512) because the period from time Tp0 (530) to time Tp1 (531) is constant speed.
  • the traveled distance up to time Tssi (550) calculated based on the speed plan is the traveled distance to the scenario start position Le (201) on the road used in the simulation, such as the road shown in FIG. Then, the traveling distance from the position (the position of the other vehicle at the start of the simulation) L0 (301) to the position (scenario start position) Le (201) is calculated to be equal.
  • time Tp0 (530) may be later than time Tp1 (531) or time Tp2 (532).
  • the traveling distance during the period from time Tp0 (530) to time Tssi (550), which can be calculated from the speed plan from time Tp1 (531) to time Tssi (550), is calculated from the position L0 (301) to the position Le ( 201), the time Tp0 (530) should be calculated so as to match the traveled distance.
  • the other vehicle corresponding to the speed plan is caused to start traveling from position L0 (301) at time Tp0 (530).
  • the speed of the other vehicle at the start of travel is set according to the speed plan, not in the stopped state.
  • the time Tp0 (530) may be negative, that is, the time before the start of the simulation.
  • the time Tp0 (530) is set to time 0, the traveled distance during the period from time 0 to time Tssi (550) is calculated from the speed plan, and from the scenario start position Le (201)
  • the other vehicle may start traveling from a position ahead of the travel distance to cope with the situation.
  • the own vehicle 200 can travel from a road different from the road on which the other vehicles (the other vehicle X (310) and the other vehicle Y (320)) existing around the own vehicle 200 exist.
  • the other vehicle By merging with the road (driving lane) on which other vehicles (other vehicle X (310) and other vehicle Y (320)) exist, the other vehicle may be caused to travel outside the external sensing range of own vehicle 200.
  • FIG. Also, by merging the own vehicle 200 and other vehicles from different roads, it is possible to reproduce a problem due to the speed difference between the own vehicle 200 and the other vehicles at the start of the simulation, or a scenario in which other vehicles are arranged in front of and behind the own vehicle 200. problem can be dealt with.
  • Fig. 6 shows the update of the movement plan at time Tc (565).
  • the estimated scenario start time is advanced by time dT (568) from the initial scenario estimated start time Tssi (550), estimated from the running condition of the vehicle 200, and the updated scenario estimated start time Tssu (555) is reached. It shows the situation that has become (changed). Note that the change in the predicted time is determined at arbitrary timing during execution of the simulation. In such a case, initial speed plan 551 is generally advanced by time dT (568) and updated to updated speed plan 556 in response to the aforementioned change in predicted time.
  • the speed plan Due to the update of the speed plan, the planned travel distance until the start of the scenario changes to the area indicated by the area 575, and a deviation occurs between the travel distance actually required before the start of the scenario, but the deviation is eliminated.
  • an area 570 is added as a compensating running distance.
  • the result of updating the movement plan of the other vehicle is a plan that is shifted in time (in the direction of the time axis) from the formulated movement plan, and based on the result of updating the movement plan of the other vehicle, The speed plan is updated by making adjustments to compensate for the excess or deficiency of the distance to the position of the other vehicle, and the behavior of the other vehicle is readjusted.
  • update scenario start predicted time Tssu may be delayed, so the area 570 may work negatively (in the direction of decreasing the speed).
  • speed plan is updated each time one step is executed, and the actual mileage required to start the scenario decreases as well. Relationships also change from time to time. Therefore, since the traveling distance for compensation (corresponding to the area 570) also changes sequentially, the feedback control amount also changes sequentially.
  • FIG. 7 shows a relationship 710 between the time acquired in the own vehicle traveling timing acquisition S120 and the traveling distance of the own vehicle 200. As shown in FIG. 7
  • Fig. 8 shows an example of how to generate acceleration commands for other vehicles.
  • a movement plan is formulated using a speed plan, but in order to make the behavior of the other vehicle realistic, the behavior of the other vehicle is instructed using the acceleration.
  • the acceleration range speed change range per specified time
  • the scenario start time prediction unit 650 calculates the predicted update scenario start time Tssu (555) by the method shown using FIG.
  • the time-shifted speed plan formulation unit 660 shifts the entire speed plan in the direction of the time axis in accordance with the update scenario start prediction time Tssu (555) as shown in FIG.
  • the planned acceleration calculation unit 680 calculates the acceleration at the current time with respect to the time-shifted speed plan. If the velocity plan is defined by a function, the acceleration can be calculated by analytically differentiating the velocity plan. If the speed plan is a list of speed values, it is necessary to calculate the differential value by numerical calculation based on the speed values around the current time. In this embodiment, since the velocity plan is handled in a form that can be expressed as a function, the acceleration can be calculated by analytical differentiation.
  • the planned acceleration calculator 680 calculates the acceleration based on the speed plan that matches the updated scenario start predicted time Tsu (555), and the speed plan matches the speed and acceleration that are the conditions at the start of the scenario. Therefore, basically, if the other vehicle is controlled so as to match the result of the planned acceleration calculation unit 680, the speed and acceleration of the other vehicle can satisfy the conditions at the start of the scenario.
  • the planned distance calculation unit 670 until the predicted scenario start time calculates the traveled distance from the current time to the updated scenario start predicted time Tsu (555) using the time-shifted speed plan. That is, the speed in the range from the current time to the update scenario start prediction time Tssu (555) is integrated. More specifically, the area corresponding to region 575 in FIG. 6 is obtained.
  • the actual remaining distance calculation unit 610 until the start of the scenario calculates the traveling distance (remaining distance) from the current position of the other vehicle corresponding to the speed plan to the position where the other vehicle should be at the start of the scenario.
  • a subtractor 620 calculates the difference between the result of the actual remaining distance calculator 610 up to the start of the scenario and the result of the planned distance calculator 670 up to the predicted scenario start time, and the output of the subtractor 620 is corrected by the correction acceleration calculator 630.
  • Calculate the acceleration for PID control or the like may be used to calculate the correction acceleration.
  • the input is the distance difference, it needs to be adjusted to output the value in the form of acceleration.
  • the input is the remaining distance to the target scenario start position, and since the pace of decrease in the remaining distance increases as the speed increases, it is necessary to pay attention to the sign.
  • the effect of the correction acceleration appears in the speed of the other vehicle corresponding to the speed plan in the form of area 570 in FIG.
  • area 570 is merely an example, and varies depending on the method of mounting the correction acceleration calculator 630 and the parameters used for calculation.
  • the output of the planned acceleration calculator 680 and the output of the correction acceleration calculator 630 are added by the adder 640 to obtain the target acceleration, and the acceleration limiter 690 limits the acceleration range.
  • the acceleration that is, the range of speed change per specified time, it is possible to prevent the absolute value of the correction acceleration calculation unit 630 from becoming too large and the acceleration or deceleration from becoming unrealistic.
  • the specified time may be a time corresponding to one step of the simulation.
  • the output of the acceleration limiter 690 becomes the acceleration command 695, which becomes the acceleration request for the model of the other vehicle corresponding to the speed plan.
  • the other vehicle model may not follow the acceleration command 695 depending on the surrounding conditions of the other vehicle. Feedback is applied so that the position that should exist at the start of the scenario (scenario start position) is gradually reached.
  • the prediction accuracy of the scenario start time increases, and the difference between the output of the actual remaining distance calculation unit 610 until the scenario start and the output of the planned distance calculation unit 670 until the predicted scenario start time becomes smaller.
  • the change in predicted update scenario start time Tssu (555) is also reduced. Therefore, the correction amount to be included in the speed plan and the output of the correction acceleration calculator 630 are both small, and the difference between the speed and acceleration relative to the speed plan is also small.
  • FIG. 9 shows an example of a simulation apparatus configured using the evaluation method (simulation method) described above.
  • FIG. 10 shows an example of the relationship between each process of the simulation execution procedure in FIG. 1 and each part of the simulation apparatus in FIG.
  • the simulation device 900 is configured as a computer including a processor such as a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), HDD (Hard Disk Drive) and other memories. Each function of the simulation device 900 is implemented by the processor executing a program stored in the ROM.
  • the RAM stores data including intermediate data for calculations by programs executed by the processor.
  • the simulation apparatus 900 of this embodiment implements the simulation method for simulating the vehicle behavior described above.
  • a surrounding moving object behavior model unit 830, a vehicle behavior comparison unit 840, a scenario condition setting unit 910, a vehicle driving plan formulation unit 920, a driver model unit 930, a vehicle driving control model unit 940, a vehicle behavior model unit 950 It includes an environment reproduction unit 960 , a peripheral sensor model unit 970 , an environment data provision unit 980 , a behavior recording unit 990 and a result confirmation unit 995 .
  • the peripheral moving object initial movement plan formulation unit 810, the peripheral moving object movement plan updating unit 820, the peripheral moving object behavior model unit 830, and the own vehicle behavior comparison unit 840 are related to the control of the peripheral moving object control unit 800. constitutes
  • the scenario condition setting unit 910 takes in the scenario starting conditions as shown in FIG. 4 and the behavior instructions of the own vehicle 200 and each surrounding traffic participant after the start of the scenario from an external source such as a file into the simulator.
  • Vehicle travel plan formulation unit 920 Based on the information taken in by the scenario condition setting unit 910, the own vehicle travel plan formulation unit 920 formulates a travel plan for the own vehicle 200 from the information about the own vehicle 200. Parked vehicles that do not move at all) are constructed by the environmental data providing unit 980 as environmental data including roads.
  • a surrounding moving object initial movement plan formulating unit 810 formulates a movement plan at the start of the simulation based on information about surrounding moving objects including other vehicles.
  • the estimated scenario start time provided by the behavior recording unit 990 (Predicted arrival time, which is the time acquired in own vehicle traveling timing acquisition S120 and stored in the behavior recording unit 990) is required. Since the operation is unnecessary in the simulation of the situation in which it is not performed, the operation is not performed when the simulation in the own vehicle travel timing acquisition S120 is performed.
  • a command corresponding to the travel plan corresponding to the time is supplied to the driver model unit 930 and the own vehicle driving control model unit 940 .
  • the contents that the driver of the own vehicle 200 should operate in terms of the travel plan are supplied to the own vehicle driving control model unit 940 via the driver model unit 930 .
  • the reason why there is a route directly connecting the own vehicle driving plan formulation unit 920 to the own vehicle driving control model unit 940 is that the evaluation of the own vehicle driving control model unit 940 corresponds to information that cannot be input by the driver. For example, this path makes it possible to deal with cases where the driver cannot directly input values such as the target speed, and cases where it is desired to set values for evaluation even if they cannot be set from the driver.
  • the host vehicle driving control model unit 940 is a model that controls driving support and automatic driving, and is a main evaluation target of the simulation device 900 .
  • the vehicle driving control model unit 940 controls the vehicle 200 according to the judgment based on the surrounding conditions of the vehicle 200 obtained from the surrounding sensor model unit 970 and the instructions output from the vehicle driving plan formulation unit 920 and the driver model unit 930. Instructions necessary for driving, such as acceleration, braking, and steering, are issued to the own vehicle behavior model section 950 .
  • the own vehicle behavior model unit 950 calculates the behavior of the own vehicle 200 based on the instructions from the own vehicle driving control model unit 940 and the road information (such as road surface conditions and gradients) from the environment reproduction unit 960 .
  • the environment reproduction unit 960 obtains information on the road, objects around the road, and parked vehicles obtained from the environment data providing unit 980, behavior information of the own vehicle 200 obtained from the own vehicle behavior model unit 950, and information from the surrounding moving object behavior model unit 830.
  • the virtual space in the simulator is reproduced based on the obtained information on the behavior of surrounding moving objects.
  • Peripheral sensor model unit 970 The information of the virtual space reproduced by the environment reproduction unit 960 is provided to the peripheral sensor model unit 970, and the peripheral sensor model unit 970 uses the peripheral sensors (camera, radar, lidar, Ultrasonic waves, GNSS, etc.) are simulated, and information corresponding to the outputs of these peripheral sensors is provided to the own vehicle driving control model unit 940 .
  • the peripheral sensor model unit 970 can be a main evaluation target by the simulation device 900, although it may be limited to a part.
  • Behavior recording unit 990 Information about the virtual space reproduced by the environment reproducing unit 960 is also provided to the behavior recording unit 990, and the behavior recording unit 990 stores information necessary for evaluation, such as position information and behavior information of the own vehicle 200 and surrounding moving objects. Record in series. At this time, it is conceivable to record more detailed information when some event such as collision (contact) occurs.
  • Results confirmation unit 995 The information recorded by the behavior recording unit 990 is provided to the result confirmation unit 995, and is used for extraction of evaluation result NG cases, evaluation failure cases, and the like.
  • the result confirmation unit 995 of this embodiment also has a function of confirming abnormal behavior, so this function is also used to determine abnormal termination.
  • the behavior recording unit 990 is also necessary for end determination in order to confirm that all the information for the required period has been acquired.
  • the behavior recording unit 990 performs the progress during the simulation, and the final confirmation result (whether the own vehicle has completed running normally, or whether the simulation is performed due to an abnormality such as contact with another vehicle or emergency braking) completed, etc.) is performed by the result confirmation unit 995 .
  • peripheral moving object initial movement plan formulation unit 810 performs processing corresponding to the contents of the aforementioned peripheral traffic participant movement plan formulating S130 (see also FIGS. 4 and 5).
  • Peripheral moving object movement plan update unit 820 own vehicle behavior comparison unit 840
  • the output of the surrounding moving object initial movement planning unit 810 and the position information acquired by the behavior recording unit 990 from the own vehicle 200 traveling alone obtained from the own vehicle behavior comparing unit 840 are simulated including surrounding moving objects.
  • the peripheral moving object movement plan update unit 820 updates the movement plan according to the change in the predicted time (updating scenario start predicted time). Issue behavior instructions (instructions to adjust behavior) to objects.
  • This update of the movement plan corresponds to the process of updating the movement plan of the surrounding traffic participant S160 described above, and has the contents described with reference to FIGS. 5, 6, 7 and 8.
  • the peripheral moving object behavior model unit 830 follows the behavior instruction from the peripheral moving object movement plan updating unit 820, and also considers the situation of the virtual space obtained from the environment reproduction unit 960. , to move. The result of the movement is provided to the environment reproducing section 960 and used to update the situation of the virtual space.
  • the own vehicle driving control model unit 940 may be actual software or an electronic control device that controls driving support and automatic driving to be evaluated.
  • the peripheral sensor model unit 970 may also be partial, but it is also conceivable to use actual software or an electronic control device that configures the peripheral sensor to be evaluated.
  • the situation leading to the evaluation scenario start state is automatically set from the initial conditions of the evaluation scenario.
  • moving objects such as surrounding vehicles can be caused to move realistically. Therefore, it is possible to easily perform an evaluation based on an evaluation scenario after setting the internal state of the own vehicle 200 to be evaluated to a state that can actually occur before the start of the evaluation scenario.
  • the method and apparatus shown in this embodiment are installed in an actual vehicle or the like to prevent the positional relationship between the own vehicle 200 and surrounding traffic participants from becoming a high-risk situation in an actual traffic environment. Utilization is also considered.
  • high-risk positions, speeds, and acceleration relationships are registered in advance in a system installed in the vehicle, and if such a situation can be predicted, the vehicle 200 can transmit the risk to surrounding traffic participants. It is conceivable that a change in the speed plan will be requested so that the speed is low, and that the surrounding traffic participants will judge whether the request is appropriate and then review the speed plan.
  • the simulation method of the present embodiment is a simulation method for simulating the behavior of the target vehicle (self-vehicle 200).
  • the position and speed, as well as the position and speed of a moving object existing around the target vehicle, are specified, and the predicted time at which the target vehicle reaches the scenario start position, which is the specified position at the start of the scenario ( (Predicted scenario start time) is obtained, and the position and speed of the moving object are set to the specified values at the predicted time when the target vehicle reaches the scenario start position. ), restricting the speed change range (acceleration range) per specified time to adjust the movement of the moving object (updating the movement plan of the moving object).
  • a movement plan of the moving object is formulated, and the planned movement plan is used to include the target vehicle and the moving object.
  • start the simulation determine whether the predicted time has changed at any timing during the execution of the simulation, and if the predicted time has changed (the predicted time has changed), the predicted time
  • the movement plan of the moving object is updated in accordance with the change of .
  • the simulation apparatus of the present embodiment is a simulation apparatus that realizes a simulation method for simulating vehicle behavior.
  • the position and speed of the target vehicle at the time point and the position and speed of a moving object existing around the target vehicle are specified, and the target vehicle is placed at the scenario start position, which is the specified position at the start time of the scenario. is predicted to arrive at the target vehicle (predicted scenario start time), and at the predicted time at which the target vehicle arrives at the scenario start position, the position and speed of the moving object are set to specified values (the moving object is the The movement of the moving object is adjusted by limiting the speed change range (acceleration range) per specified time (the moving plan of the moving object is updated).
  • a computer formulates a movement plan for the moving object based on the predicted time and the specified position and speed of the moving object, and uses the formulated movement plan to generate the target vehicle. and starting a simulation including the moving object, determining whether the predicted time has changed at any timing during execution of the simulation, and if the predicted time has changed (the predicted time has changed) Then, the movement plan of the moving object is updated according to the change in the predicted time.
  • the relationship between the time and the position of the evaluation target vehicle (self-vehicle 200) in the period from the start of simulation execution, which is a time somewhat before the start of the scenario, to the start of the scenario, is determined by driving the evaluation target vehicle alone in the simulation. It is acquired as a reference relationship by a method such as Then, in accordance with the timing when the vehicle to be evaluated passes the scenario start position, the behavior of each traffic participant in the surrounding area is planned so that the movement of each traffic participant, which is composed of surrounding vehicles, etc., will be in the desired state at the start of the scenario.
  • the behavior plan of each traffic participant in the vicinity is updated as appropriate based on the reference relationship between the time and position of the vehicle being evaluated and the actual position of the vehicle being evaluated, and the updated behavior is obtained.
  • Feedback control is performed on the behavior of each traffic participant so that each traffic participant reaches the respective position where the scenario should be at the start of the scenario when the vehicle to be evaluated passes the scenario start position according to the plan.
  • the parameter change range speed change range per specified time
  • the positions and behaviors of surrounding traffic participants at the start of the scenario can be easily reproduced from the parameters at the start of the scenario.
  • the behavior of each traffic participant can also be made natural.
  • a scenario for evaluating a vehicle that operates autonomously is reproduced in a simulation.
  • the state that satisfies the initial conditions of the scenario such as position, velocity, and acceleration, can be easily achieved in the form of natural behavior that can occur in an actual traffic environment.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • each of the above configurations, functions, processing units, processing means, etc. may be realized in hardware, for example, by designing a part or all of them with an integrated circuit.
  • each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function.
  • Information such as programs, tables, and files that implement each function can be stored in storage devices such as memory, hard disks, SSDs (Solid State Drives), or recording media such as IC cards, SD cards, and DVDs.
  • control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it may be considered that almost all configurations are interconnected.
  • S110 Create own vehicle travel definition, S120 Acquire own vehicle travel timing, S130 Formulate movement plan of surrounding traffic participants, S140 Initialize execution of simulation, S150 Execute one step of simulation, S160 Movement plan of surrounding traffic participants Update, S170...Simulation end determination process, S180...Simulation result recording, 200...Self-vehicle, 201...Scenario start position Le of own vehicle, 204...Self-vehicle speed Ve at scenario start, 206...Self-vehicle at scenario start Acceleration Ae 211 Position of own vehicle at simulation start Le0 301 Position of other vehicle at simulation start L0 (provided that it can be placed furthest from the scenario start position in terms of movement plan) 307 Present vehicle Vehicle position Lec, 310 Other vehicle X, 312 Relative distance of other vehicle X from own vehicle at scenario start Df1, 314 Velocity of other vehicle X at scenario start Vf1, 316 Other vehicle at scenario start Acceleration of X Af1, 320 Other vehicle Y,

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Quality & Reliability (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

Provided are a simulation method and device which, when reproducing on a simulation a scenario for evaluating a vehicle that operates autonomously, can easily enable, through natural behavior that could occur in an actual traffic environment, a state which satisfies initial conditions of the scenario such as position, speed, and acceleration at a start point of the scenario. A predicted time (predicted scenario start time) at which a given vehicle (host vehicle 200) arrives at a scenario start position, which is a position designated at the scenario start point, is established. On the basis of the predicted time and the position and speed of a designated moving object, a movement plan for the moving object is formulated. A simulation that includes the given vehicle and the moving object is started using the formulated movement plan. It is determined at a given timing during execution of the simulation whether there is a change in the predicted time. If the predicted time has changed (there is a change in the predicted time), the movement plan for the moving object is updated according to the change in the predicted time.

Description

シミュレーション方法及び装置Simulation method and apparatus
 本発明は、車両の評価に用いるシミュレーション方法及び装置に関する。 The present invention relates to a simulation method and apparatus used for vehicle evaluation.
 近年、運転支援技術や自動運転技術として、車両が自律的に走行する技術開発が行われている。これら技術は運行上発生し得る様々なシーンに対応する必要があり、安全性を確保する上で、非常に多くの評価が必要となっている。しかし、全ての評価を実車両による走行実験で行うことは困難となってきている。したがって、実車両による走行実験の代わりにシミュレーションによる評価を行うことが不可欠である。 In recent years, technology development for autonomous driving of vehicles has been carried out as driving support technology and autonomous driving technology. These technologies need to respond to various situations that may occur during operation, and a great many evaluations are required to ensure safety. However, it is becoming difficult to conduct all evaluations in running tests using actual vehicles. Therefore, it is essential to carry out evaluation by simulation instead of running tests using actual vehicles.
 車両が自律的に動作する際の評価手法として、評価の必要なシナリオを洗い出し、洗い出したシナリオでテストを実施する流れがある。シナリオによるテストの実施にはシナリオを具体的に定義するパラメータを決めた上で、当該条件を満たす実験を再現する必要がある。すなわち、シミュレーションを行う際にも、当該条件を満たすシナリオを再現するために、評価対象車両及びその周辺車両等の挙動を指示する手段が必要となる。 As an evaluation method when a vehicle operates autonomously, there is a flow of identifying scenarios that require evaluation and conducting tests using the identified scenarios. To conduct a test using a scenario, it is necessary to determine the parameters that specifically define the scenario, and then reproduce the experiment that satisfies the conditions. That is, even when performing a simulation, in order to reproduce a scenario that satisfies the conditions, means for instructing the behavior of the vehicle to be evaluated and its surrounding vehicles is required.
 評価対象車両及び周辺車両等の挙動を指示する手段として、特許文献1にはシナリオ記述言語を用いる手法が開示されている。シナリオ記述言語では条件を定義して、当該条件を満たすまで、何らかの動作の実行または他の何らかの条件判断の実行を待たせることが可能である。  Patent Document 1 discloses a method using a scenario description language as a means of instructing the behavior of the vehicle to be evaluated and the surrounding vehicles. In the scenario description language, it is possible to define a condition and have the execution of some action or some other conditional decision wait until the condition is met.
特表2020-502615号公報Japanese Patent Publication No. 2020-502615
 自律的に動作する車両を評価するためのシナリオをシミュレーション上で再現するには、評価対象車両に影響を与えると考えられる周辺の車両等で構成される交通参加者(以下、移動物や移動体と呼ぶ場合がある)が、当該シナリオの開始時点において、位置や速度、加速度など、シナリオの初期条件を満たす状態とする必要がある。さらに、評価対象車両はシナリオ開始前から周辺状況を継続的に確認しているので、周辺の交通参加者は実際の交通環境で発生し得る自然な振る舞いを経て、シナリオの初期条件を満たす状態にする必要がある。しかも、評価対象車両は自律的に動作するため、その振る舞い自体が周辺の交通参加者の状況で変化し得る。したがって、評価対象車両がシナリオを開始する位置に到達する時刻、すなわちシナリオ開始時刻も変化するので、周辺の交通参加者の動きをシナリオにあわせて予め固定的に指定することも困難である。 In order to reproduce a scenario for evaluating an autonomously operating vehicle on a simulation, traffic participants (hereafter referred to as moving objects and moving bodies However, at the start of the scenario, the initial conditions of the scenario, such as position, velocity, and acceleration, must be met. Furthermore, since the target vehicle continuously checks the surrounding conditions before the scenario starts, the surrounding traffic participants go through the natural behavior that can occur in the actual traffic environment and reach the initial condition of the scenario. There is a need to. Moreover, since the vehicle to be evaluated operates autonomously, its behavior itself can change depending on the situation of surrounding traffic participants. Therefore, the time at which the vehicle to be evaluated reaches the position where the scenario starts, that is, the scenario start time also changes, so it is difficult to predetermine the movement of surrounding traffic participants fixedly according to the scenario.
 シナリオ開始時刻の変化に対応させるために、何等かの条件を定義して、条件発生時に周辺車両の速度や加速度等を定義するパラメータを変化させて調整することは原理的には可能である。しかし、多数の移動物の関係を考慮した上で、各移動物に不自然な動きをさせずに、シナリオ開始位置で所望の状態を発生させる条件や条件発生時のパラメータ変更内容を定義するのは非常に難しく、調整が大変である。 In principle, it is possible to define some conditions and change and adjust the parameters that define the speed and acceleration of surrounding vehicles when the conditions occur in order to respond to changes in the scenario start time. However, considering the relationship between many moving objects, it is necessary to define the conditions for generating the desired state at the scenario start position and the parameter change contents when the conditions occur without making each moving object move unnaturally. is very difficult and difficult to adjust.
 本発明は、上記事情に鑑みてなされたもので、評価シナリオをシミュレーション上で再現する際、周辺の各交通参加者のシナリオ開始時の位置及び挙動を、シナリオ開始時のパラメータから容易に再現でき、シナリオ開始に至る周辺の各交通参加者の挙動も自然にすることができるシミュレーション方法及び装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and when reproducing an evaluation scenario on a simulation, the positions and behaviors of surrounding traffic participants at the start of the scenario can be easily reproduced from the parameters at the start of the scenario. To provide a simulation method and apparatus capable of making the behavior of each traffic participant in the surroundings leading to the start of a scenario look natural.
 上記課題を解決するために、本発明によるシミュレーション方法は、車両挙動のシミュレーションを行うシミュレーション方法であって、対象車両の挙動を検証するためのシナリオの開始時点における前記対象車両の位置及び速度、ならびに、前記対象車両の周辺に存在する移動物の位置及び速度を指定し、前記シナリオの開始時点における前記指定された位置であるシナリオ開始位置に前記対象車両が到達する予測時刻を求め、前記対象車両が前記シナリオ開始位置に到達する予測時刻において、前記移動物の位置及び速度が指定された値となるよう、指定時間当たりの速度変化範囲を制限して前記移動物の移動を調整することを特徴とする。 In order to solve the above problems, a simulation method according to the present invention is a simulation method for simulating vehicle behavior, comprising: position and speed of the target vehicle at the start of a scenario for verifying the behavior of the target vehicle; , specifying the position and speed of a moving object existing in the vicinity of the target vehicle, obtaining a predicted time at which the target vehicle will reach the scenario start position, which is the specified position at the start of the scenario, and determining the target vehicle; adjusts the movement of the moving object by limiting the speed change range per specified time so that the position and speed of the moving object become specified values at the predicted time when the will reach the scenario start position. and
 また、本発明によるシミュレーション装置は、車両挙動のシミュレーションを行うシミュレーション方法を実現するシミュレーション装置であって、対象車両の挙動を検証するためのシナリオの開始時点における前記対象車両の位置及び速度、ならびに、前記対象車両の周辺に存在する移動物の位置及び速度を指定し、前記シナリオの開始時点における前記指定された位置であるシナリオ開始位置に前記対象車両が到達する予測時刻を求め、前記対象車両が前記シナリオ開始位置に到達する予測時刻において、前記移動物の位置及び速度が指定された値となるよう、指定時間当たりの速度変化範囲を制限して前記移動物の移動を調整することを特徴とする。 Further, a simulation apparatus according to the present invention is a simulation apparatus for realizing a simulation method for simulating vehicle behavior, and includes the position and speed of the target vehicle at the start of a scenario for verifying the behavior of the target vehicle, and specifying the position and speed of a moving object existing around the target vehicle, obtaining a predicted time at which the target vehicle will reach the scenario start position, which is the specified position at the start of the scenario, and The movement of the moving object is adjusted by restricting a speed change range per specified time so that the position and speed of the moving object become specified values at the predicted time when the scenario start position is reached. do.
 本発明によれば、評価シナリオをシミュレーション上で再現する際、周辺の各交通参加者のシナリオ開始時の位置及び挙動を、シナリオ開始時のパラメータから容易に再現でき、シナリオ開始に至る周辺の各交通参加者の挙動も自然にすることができる。 According to the present invention, when reproducing an evaluation scenario on a simulation, the positions and behaviors of the surrounding traffic participants at the start of the scenario can be easily reproduced from the parameters at the start of the scenario. The behavior of traffic participants can also be made natural.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
シミュレーション実行手順の例を示すフローチャート。4 is a flowchart showing an example of a simulation execution procedure; シミュレーション実行に用いる道路の例を示す概略図。Schematic diagram showing an example of a road used for simulation execution. 自車走行定義の例を示す図。The figure which shows the example of a self-vehicle driving definition. シナリオ開始条件の定義の例を示す概略図。Schematic diagram showing an example of definition of a scenario start condition. 他車の速度計画(移動計画)の例を示す図。FIG. 4 is a diagram showing an example of speed plans (movement plans) of other vehicles; 他車の速度計画(移動計画)の更新例を示す図。FIG. 5 is a diagram showing an example of updating speed plans (movement plans) of other vehicles; 自車の時刻と走行距離の関係の例を示す図。The figure which shows the example of the relationship between the time of the own vehicle, and a mileage. 他車に対する加速度指令の生成方法の例を実行する装置構成図。FIG. 2 is a configuration diagram of an apparatus that executes an example of a method of generating an acceleration command for another vehicle; シミュレーション装置の構成例を示す図。The figure which shows the structural example of a simulation apparatus. 図1におけるシミュレーション実行手順の各処理と図9におけるシミュレーション装置の各部の関係の例を示す図。FIG. 10 is a diagram showing an example of the relationship between each process of the simulation execution procedure in FIG. 1 and each part of the simulation apparatus in FIG. 9;
 以下、本発明を実施するための形態について図面を参照して説明する。以降の説明では、評価対象車両を自車と表現する。周辺の交通参加者(移動物、移動体)は他車、自転車、及び歩行者など、より具体的な表現を用いる場合がある。また、自車は評価対象となる運転支援機能や自動運転機能を有することを前提とし、運転支援機能及び自動運転機能を纏めて運転制御機能と称する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the following description, the evaluation target vehicle is expressed as the own vehicle. A surrounding traffic participant (moving object, moving object) may use more specific expressions such as other vehicles, bicycles, and pedestrians. In addition, it is assumed that the own vehicle has a driving support function and an automatic driving function to be evaluated, and the driving support function and the automatic driving function are collectively referred to as a driving control function.
[シミュレーション方法]
 本発明によるシミュレーションによる評価方法(シミュレーション方法)を実施する手順に関し、図1を用いて説明する。本発明による評価方法(シミュレーション方法)は、車両挙動のシミュレーションを行う方法である。
[Simulation method]
A procedure for implementing an evaluation method (simulation method) by simulation according to the present invention will be described with reference to FIG. An evaluation method (simulation method) according to the present invention is a method for simulating vehicle behavior.
(自車走行定義作成S110)
 最初に、自車走行定義作成S110で評価対象とする自車走行を定義する。例えば、図2に示す道路にて評価を行う場合に、自車200と他車X(310)、他車Y(320)、及び路肩の駐車車両360による評価シナリオを考えたと仮定し、自車200がシナリオ開始位置Le(201)で発生する事象を評価する場合、図3に示すような方法で自車200の走行を定義する。
(Own vehicle travel definition creation S110)
First, the own vehicle traveling to be evaluated is defined in own vehicle traveling definition creation S110. For example, when evaluating the road shown in FIG. When the 200 evaluates an event occurring at the scenario start position Le (201), the travel of the own vehicle 200 is defined by the method shown in FIG.
 図3に示すように、自車走行の定義は1つ以上のステップに分けて定義し、各ステップには、ステップを実行する期間、目標速度及び目標横位置を指定する。期間としては、走行距離、指定走行位置への到達、当該ステップの継続時間などによる指定が考えられる。より複雑な定義を行いたい場合には、指定した条件、例えば指定速度以上まで継続するなどの指定方法を用いても良い。図3に示す各ステップの内容は後述する。 As shown in FIG. 3, the definition of running the own vehicle is divided into one or more steps, and each step is specified with a period for executing the step, a target speed, and a target lateral position. As the period, it is conceivable to specify the travel distance, the arrival at the specified travel position, the duration of the step, or the like. If a more complicated definition is desired, a specified condition, such as continuing up to a specified speed or higher, may be used. The contents of each step shown in FIG. 3 will be described later.
(自車走行タイミング取得S120)
 自車走行タイミング取得S120では、自車200がシミュレーション開始からいつの時点で、どこを走行しているかの関係(すなわち、評価対象車両の自車200の時刻と位置ないし走行距離の関係)を取得する。例えば、シミュレーションで取り扱う移動体として自車200だけを定義した状態でシミュレーションを実行し(換言すれば、評価対象車両の自車200を単独で走行させてシミュレーションを実行し)、時刻と自車200の位置ないし走行距離の関係を予め取得する。ここで時刻とは、シミュレーションの中の世界で取り扱う仮想的な時刻である。以降、特に明記しない限り、「時刻」とはシミュレーションの中の世界で取り扱う仮想的な時刻を指すものとし、「時間」もシミュレーションの中の世界で取り扱う時間とする。
(Own vehicle running timing acquisition S120)
In own vehicle traveling timing acquisition S120, the relationship between when and where the own vehicle 200 is traveling from the start of the simulation (that is, the relationship between the time and position or traveling distance of the own vehicle 200 of the vehicle to be evaluated) is acquired. . For example, the simulation is executed in a state where only the own vehicle 200 is defined as a moving body to be handled in the simulation (in other words, the simulation is executed by running the own vehicle 200 alone as the evaluation target vehicle), and the time and the own vehicle 200 The relationship between the position and travel distance of is obtained in advance. Here, the time is virtual time handled in the simulation world. Hereinafter, unless otherwise specified, "time" refers to virtual time handled in the simulation world, and "time" is also time handled in the simulation world.
 自車走行タイミング取得S120でシミュレーションを実行する際には、シミュレーションの初期化など、シミュレーション実行に必要な前後処理も行う。また、自車200以外の移動体をシミュレーションから除外する以外は、道路の条件などを含めて評価シナリオと同じ条件でシミュレーションを行う。但し、静止物であっても周辺交通参加者についてはシミュレーションに含めない場合も考えられる。例えば、自車200の走行に影響の少ない駐車車両はシミュレーションに含めない場合も考えられる。 When executing the simulation in the own vehicle travel timing acquisition S120, pre- and post-processing necessary for executing the simulation, such as initialization of the simulation, is also performed. The simulation is performed under the same conditions as the evaluation scenario, including road conditions, except that moving bodies other than the own vehicle 200 are excluded from the simulation. However, there may be a case where surrounding traffic participants are not included in the simulation even if they are stationary objects. For example, it is conceivable that parked vehicles that have little effect on the running of the own vehicle 200 are not included in the simulation.
(周辺交通参加者の移動計画策定S130)
 周辺交通参加者の移動計画策定S130では、シナリオに関係する自車200以外の各移動体それぞれの移動計画(以下、速度計画や走行計画と呼ぶ場合がある)、すなわちシミュレーション開始時の位置及び向き、シミュレーション実行時の時刻と速度及び向きの関係を策定する。この際、自車走行タイミング取得S120で得た自車200がシナリオ開始位置Le(201)を通過するシミュレーション時刻(以下、評価対象車両の自車200の挙動を検証するためのシナリオの開始時点、あるいは、シナリオ開始予測時刻とも呼ぶ)に、移動体それぞれがシナリオ開始時の状態(位置、速度など)として指定された値となるように移動計画の策定を行う。言い換えれば、自車走行タイミング取得S120で評価対象車両の自車200を単独で走行させてシミュレーションを実行して得られた自車200の時刻と位置の関係を参照し、自車200がシナリオ開始位置Le(201)に到達するシミュレーション時刻を算出し(求め)、自車走行タイミング取得S120で得た自車200がシナリオ開始位置Le(201)を通過するシミュレーション時刻に、移動体それぞれがシナリオ開始時の状態(位置、速度など)として指定された値となるように、移動体の移動(走行や挙動とも呼ぶ)を調整する。指定される値は、位置、速度、加速度、向きなどが考えられるが、歩行者の場合に腕の振り具合を追加するなど、他の要素を追加する場合も考えられる。
(Movement planning of surrounding traffic participants S130)
In S130, the movement plan of the surrounding traffic participants, movement plan (hereinafter sometimes referred to as speed plan or travel plan) of each moving body other than the own vehicle 200 related to the scenario, that is, the position and orientation at the start of the simulation. , formulate the relationship between the time, velocity and direction at the time of simulation execution. At this time, the simulation time at which the own vehicle 200 passes the scenario start position Le (201) obtained in the own vehicle travel timing acquisition S120 (hereinafter referred to as the scenario start time for verifying the behavior of the own vehicle 200 of the evaluation target vehicle, Alternatively, a movement plan is formulated so that each moving object has a value specified as the state (position, speed, etc.) at the start of the scenario at the estimated scenario start time. In other words, by referring to the relationship between the time and the position of the own vehicle 200 obtained by running the own vehicle 200 as the evaluation target vehicle alone in the own vehicle travel timing acquisition S120, the own vehicle 200 starts the scenario. The simulation time at which the vehicle 200 reaches the position Le (201) is calculated (determined). It adjusts the movement (also called running or behavior) of the moving body so that it becomes the value specified as the state of time (position, speed, etc.). The specified values can be position, velocity, acceleration, direction, etc., but it is also possible to add other elements, such as adding an arm swing condition in the case of a pedestrian.
 以下、前述の周辺交通参加者の移動計画策定S130で策定された移動計画を用いて、自車200及び各移動体を含めたシミュレーションを開始する。シミュレーション実行初期化S140からシミュレーション結果記録S180までは、実際に評価対象とするシナリオ(車両評価シナリオ)のシミュレーションを実行する部分である。このシミュレーションにおける自車200に対する走行定義は、自車走行タイミング取得S120で用いた走行定義と同一の走行定義を用いる。 Below, a simulation including the own vehicle 200 and each moving object is started using the movement plan formulated in S130 for the movement plan formulation of the surrounding traffic participants. From simulation execution initialization S140 to simulation result recording S180, a simulation of a scenario (vehicle evaluation scenario) to be actually evaluated is executed. As the travel definition for the own vehicle 200 in this simulation, the same travel definition as the travel definition used in the own vehicle travel timing acquisition S120 is used.
(シミュレーション実行初期化S140)
 シミュレーション実行初期化S140では、シミュレーションに必要な各種初期化を行う。この初期化には、自車200及び周辺交通参加者の初期状態の設定も含まれる。
(Simulation execution initialization S140)
In simulation execution initialization S140, various initializations necessary for simulation are performed. This initialization also includes setting the initial states of the own vehicle 200 and surrounding traffic participants.
 シミュレーション1ステップ実行S150からシミュレーション終了判定S170の範囲は、シミュレーション実行に際し繰返し実行する部分である。 The range from simulation 1-step execution S150 to simulation end determination S170 is a portion that is repeatedly executed when executing the simulation.
(シミュレーション1ステップ実行S150)
 シミュレーション1ステップ実行S150は、シミュレーションの刻み時間分時刻を進める処理である。ここでは、時刻を進めるとともに、進んだ時刻分に対応して、シミュレーションする物理現象を表す全てのパラメータを更新する処理を行う。車両の走行に関わる物理現象をある程度精度を保ってシミュレーションするため、刻み時間は1ms程度であることを想定する。但し、目的に応じて刻み時間を変更する場合も考えられる。
(Simulation 1 step execution S150)
The simulation 1-step execution S150 is a process of advancing the time by the increment time of the simulation. Here, as the time advances, a process of updating all the parameters representing the physical phenomenon to be simulated corresponding to the advanced time is performed. In order to simulate the physical phenomena related to vehicle running while maintaining a certain degree of accuracy, we assume that the increment time is about 1 ms. However, it is conceivable to change the increment time according to the purpose.
 各周辺交通参加者の物理現象を表すパラメータは、それぞれの移動計画になるべく従いながら、シナリオ開始時点においてそれぞれのシナリオ開始時点における位置と一致するようにフィードバック制御で補償する形で、次の値を決定する。但し、自車200や別の交通参加者への衝突回避を優先した調整を行ったうえで、優先すべき事象がないときに限り、移動計画に沿わせるような制御を行っても構わない。 The parameters that represent the physical phenomena of each surrounding traffic participant follow the respective movement plans as much as possible. decide. However, it is also possible to make adjustments prioritizing collision avoidance with the own vehicle 200 and other traffic participants, and then control so as to follow the movement plan only when there is no priority event.
(周辺交通参加者の移動計画更新S160)
 周辺交通参加者の移動計画更新S160では、前述のシミュレーション時刻(シナリオ開始時点)における自車200の走行位置からシナリオ開始時刻を予測(推定)し直し、予測したシナリオ開始時刻に各周辺交通参加者のシナリオ開始における挙動(指定された位置、速度など)を満たすよう、それぞれの周辺交通参加者の移動計画の見直し(更新)を行う。換言すれば、前述のシミュレーション時刻(シナリオ開始時点)における自車200の走行位置から、シナリオ開始時点における指定された位置であるシナリオ開始位置に自車200が到達する予測時刻を求め直し、自車200がシナリオ開始位置に到達する予測時刻において、各周辺交通参加者の位置及び速度が指定された値となるよう(各周辺交通参加者が指定された位置及び速度となるよう)、それぞれの周辺交通参加者の移動を調整する。さらに換言すれば、前述のシミュレーション時刻(シナリオ開始時点)における自車200の走行位置から、前記予測時刻に変化があるかを判断し、前記予測時刻が変化した(前記予測時刻に変化がある)場合には、当該予測時刻の変化に応じてそれぞれの周辺交通参加者の移動計画の更新を行い、それぞれの周辺交通参加者の移動を調整する。
(Movement plan update of surrounding traffic participants S160)
In step S160 for updating the movement plan of the surrounding traffic participants, the scenario start time is re-predicted (estimated) from the running position of the own vehicle 200 at the simulation time (scenario start time), and each surrounding traffic participant is updated at the predicted scenario start time. Review (update) the movement plan of each surrounding traffic participant so as to satisfy the behavior (specified position, speed, etc.) at the start of the scenario. In other words, based on the running position of the vehicle 200 at the simulation time (scenario start time), the estimated time at which the vehicle 200 will reach the scenario start position, which is a specified position at the scenario start time, is calculated again. Each peripheral traffic participant has a specified position and velocity at the predicted time when 200 reaches the scenario start position. Coordinate the movement of traffic participants. Furthermore, in other words, it is determined whether the predicted time has changed from the running position of the own vehicle 200 at the simulation time (scenario start point), and the predicted time has changed (the predicted time has changed). In this case, the movement plan of each peripheral traffic participant is updated according to the change in the predicted time, and the movement of each peripheral traffic participant is adjusted.
 自車200は、周辺交通参加者の状況変化により、自車走行タイミング取得S120で得た走行とは挙動(位置、速度など)が変化し得るので、シナリオ開始時刻を予測し直す必要がある。また、シナリオ開始時刻の変化に合わせて周辺交通参加者の速度に単純にフィードバック制御をかけると、周辺交通参加者の挙動(位置、速度など)が不自然になったり、シナリオ開始時の挙動に関する条件を満たすことができなくなり得たりするため、移動計画の見直しを行ったうえで、移動計画に対するずれをフィードバック制御で補償する。 The vehicle 200 may change its behavior (position, speed, etc.) from the travel obtained in the vehicle travel timing acquisition S120 due to changes in the circumstances of surrounding traffic participants, so it is necessary to re-predict the scenario start time. In addition, if feedback control is simply applied to the speed of surrounding traffic participants according to changes in the scenario start time, the behavior (position, speed, etc.) of surrounding traffic participants will become unnatural, and the behavior at the start of the scenario will not change. Since it may become impossible to satisfy the conditions, the movement plan is reviewed, and deviations from the movement plan are compensated for by feedback control.
(シミュレーション終了判定処理S170)
 シミュレーション終了判定処理S170は、シナリオ開始後、決められた時間の経過や、自車200が決まった位置に到達したことを検出するなどの方法で、シミュレーションの終了判定を行う。シミュレーションを終了しない場合は、シミュレーション1ステップ実行S150に戻り、シミュレーションの実行を継続する。
(Simulation end determination processing S170)
The simulation end determination process S170 determines the end of the simulation by detecting the elapse of a predetermined period of time after the start of the scenario or the arrival of the vehicle 200 at a predetermined position. If the simulation is not to be ended, the process returns to the simulation 1 step execution S150 to continue the execution of the simulation.
 シミュレーション実行の終了判定では、シナリオの開始前後にかかわらず、自車200が自車200の周辺に存在する移動物である周辺交通参加者などの何かに衝突(接触)したり、周辺交通参加者に評価上許容されない状況、例えば周辺交通参加者間で衝突(接触)が発生したり、自車200や周辺交通参加者の速度が想定範囲外となる(所定の速度範囲を逸脱した)状況が一定時間以上継続するなど、評価失敗や評価結果NGとなるケースを検出した場合にも、シミュレーション終了と判断しても良い。シナリオ開始時にシナリオ開始時の条件を満たしていない場合も評価失敗と考え、シミュレーション終了と判断しても良い。但し、シナリオ開始時の位置、速度、加速度などの条件は様々な要因で完全一致は難しいので、ある程度許容幅をもって、許容幅を逸脱した場合に評価失敗とみなす対応が必要である。すなわち、自車200がシナリオ開始時点における前記指定された位置であるシナリオ開始位置を通過した際に、自車200や周辺交通参加者の状態を確認し、シナリオ開始時点における条件から所定の範囲以上逸脱した場合も評価失敗と考え、シミュレーション終了と判断しても良い。 In determining the end of simulation execution, whether before or after the start of the scenario, the vehicle 200 collides (contacts) with something such as a surrounding traffic participant, which is a moving object existing in the vicinity of the vehicle 200, or when there is a surrounding traffic participant. For example, a situation in which a collision (contact) occurs between surrounding traffic participants, or a situation in which the speed of the own vehicle 200 or surrounding traffic participants is outside the expected range (deviates from the predetermined speed range). It may also be determined that the simulation is finished when a case where the evaluation fails or the evaluation result is NG is detected, such as when the evaluation continues for a certain period of time or more. Even if the conditions at the start of the scenario are not satisfied at the start of the scenario, it may be considered as an evaluation failure, and the simulation may be determined to end. However, it is difficult to completely match conditions such as position, speed, and acceleration at the start of the scenario due to various factors. That is, when the own vehicle 200 passes the scenario start position, which is the position specified at the start of the scenario, the state of the own vehicle 200 and surrounding traffic participants is checked, and the conditions at the start of the scenario are determined to be within a predetermined range or more. Even when deviation occurs, the evaluation may be considered to have failed, and the simulation may be determined to end.
 シミュレーション終了判定処理S170にこのような判断を加えることで、評価結果NG確定後の無駄なシミュレーション実行時間を削減でき、また自車200が衝突回避などの事情で停車してしまい、シミュレーションが終了しない問題を回避できる。このような機能は、大量のシミュレーションを自動で連続実行する上で重要となる。 By adding such a judgment to the simulation end judgment processing S170, it is possible to reduce the useless simulation execution time after the evaluation result NG is determined, and the own vehicle 200 stops due to circumstances such as collision avoidance, and the simulation does not end. can avoid the problem. Such functions are important for automatic and continuous execution of a large number of simulations.
(シミュレーション結果記録S180)
 シミュレーション結果記録S180では、シミュレーションによる評価結果NGが発生したか、評価上許容されないケースが発生したか、あるいは評価結果OKとなったかを記録する。記録の際、自車200や周辺交通参加者それぞれのシミュレーション終了時の様々な状態を表すパラメータや、シミュレーション実行期間中の位置や速度などの主要なパラメータのログも合わせて記録して、後の分析に利用することも考えられる。
(Simulation result recording S180)
In the simulation result record S180, it is recorded whether the evaluation result of the simulation is NG, whether there is an evaluation-unacceptable case, or whether the evaluation result is OK. At the time of recording, a log of parameters representing various states of the own vehicle 200 and surrounding traffic participants at the end of the simulation, and main parameters such as position and speed during the simulation execution period are also recorded, and used later. It can also be used for analysis.
(自車走行定義作成S110の具体例)
 自車200の走行定義方法の例について、図2に示す道路を走行することを想定して、図3を用いて説明する。なお、図3の各ステップの内容、値等は一例であって、これに限られない。
(Specific example of self-vehicle travel definition creation S110)
An example of the travel definition method of the own vehicle 200 will be described with reference to FIG. 3, assuming that the vehicle 200 travels on the road shown in FIG. Note that the contents, values, etc. of each step in FIG. 3 are an example, and the present invention is not limited to this.
 図3の各ステップは、通常ステップ番号の順に従って順次実行する。但し、予め指定する特定の条件が発生した場合に、指定したステップへ直接移行する場合も考えられる。各ステップでは、「期間」で指定された期間、実行を継続する。「期間」は、時間、走行距離、走行位置などを用いて表現することが可能である。 Each step in FIG. 3 is normally executed sequentially according to the order of the step numbers. However, it is conceivable that when a specific condition specified in advance occurs, a direct transition to the specified step is made. In each step, execution continues for the period specified by "Period". The “period” can be expressed using time, running distance, running position, and the like.
 各ステップでは、支障がない限り、目標速度及び目標横位置で指定される値を目指すよう、自車200に対して指示する。目標横位置は、走行レーン及び走行レーン内でのレーン中央からのズレを用いて示す。衝突の危険性や交通ルール順守など、目標より優先すべき事象が発生した場合には、自車200はそれらの事象への対応を優先して行うことを想定する。 At each step, the vehicle 200 is instructed to aim for the values specified by the target speed and target lateral position as long as there is no problem. The target lateral position is indicated using the travel lane and the deviation from the lane center within the travel lane. It is assumed that when an event occurs that takes priority over the target, such as the risk of collision or compliance with traffic rules, the own vehicle 200 will give priority to responding to those events.
 図3に示す例では、以下に示すような自車200の走行を期待する。 In the example shown in FIG. 3, the vehicle 200 is expected to run as follows.
 まずステップ1は、シミュレーション開始時の位置Le0(211)から合流路460を走行中に対応し、自車200は走行開始後、時速40km/hまで加速し、なるべく40km/hを維持するように走行する。但し、道路のカーブがきつい等、運転制御機能が40km/hでの走行が適切でないと判断して減速しても構わない。 First, step 1 corresponds to running on the merging road 460 from the position Le0 (211) at the start of the simulation. run. However, the driving control function may judge that driving at 40 km/h is not appropriate due to a sharp curve, etc., and may decelerate.
 合流路460の走行を終了し加速車線470に入ると、ステップ2の指示に従い、100km/hまで加速する。この際、本線走行車両等の影響で本線410への合流に支障があるなど、運転制御機能が止むを得ないと判断した結果、100km/h以外の速度で走行する状況が発生しても構わない。 After completing the confluence 460 and entering the acceleration lane 470, accelerate to 100 km/h according to the instructions in step 2. At this time, as a result of judging that the operation control function is unavoidable, such as hindrance to merging with the main line 410 due to the influence of vehicles running on the main line, etc., it is possible to run at a speed other than 100km / h. do not have.
 ステップ2で加速走行距離走行後、ステップ3に入り、自車200は5秒間かけて目標横位置で指定された本線410のレーン及びレーン内の横位置に移動する。横位置の指定には、レーン識別情報とレーン内の横位置オフセットを用いる。ここでは、進行方向右側のレーンから順にレーンA、レーンBとし、レーン内の横位置のオフセットは進行方向左側を正の方向として取り扱うものとする。 After traveling the acceleration travel distance in step 2, step 3 is entered, and the host vehicle 200 moves to the lane of the main line 410 designated by the target lateral position and to the lateral position within the lane over five seconds. Lane identification information and a lateral position offset within the lane are used to specify the lateral position. Here, the lanes are designated as Lane A and Lane B in order from the right side in the direction of travel, and the left side in the direction of travel is treated as the positive direction for the offset of the lateral position within the lane.
 横位置を目標に合わせる際には、原則として指定された期間で目標に合わせるように自車200が操舵制御することを想定する。しかし、自車200は、移動先のレーンの状況に応じて、運転制御機能がレーン変更開始を遅延させても構わないし、運転制御機能が止むを得ないと判断した場合には、目標速度より減速あるいは加速しても構わない。また、周辺との関係などにより、指定された期間で横移動が完了できないケースがあっても構わない。なお、目標横位置に属性を付加し、最大操舵角や移動所要時間を別途属性として指定し、当該ステップで指定する期間にかかわらず、属性で指示される値に従って操舵制御する方法を用いても構わない。 When adjusting the lateral position to the target, it is assumed that the vehicle 200 performs steering control so as to match the target in a specified period in principle. However, the host vehicle 200 may delay the start of the lane change by the operation control function according to the situation of the destination lane. It doesn't matter if it slows down or accelerates. Also, there may be a case where the lateral movement cannot be completed within the specified period due to the relationship with the surroundings. It is also possible to use a method of adding attributes to the target lateral position, specifying the maximum steering angle and required travel time as separate attributes, and performing steering control according to the values indicated by the attributes regardless of the period specified in this step. I do not care.
 移動先のレーン及びレーン内の横位置に移動完了後、ステップ4で、評価シナリオ直前の加減速開始位置までレーン内を走行する。レーン内走行中に他の車両との関係で運転制御機能が止むを得ないと判断した場合には、目標速度より減速あるいは加速しても構わない。 After completing the movement to the destination lane and the horizontal position within the lane, in step 4, travel within the lane to the acceleration/deceleration start position immediately before the evaluation scenario. When it is determined that the operation control function is unavoidably stopped due to the relationship with other vehicles while traveling in the lane, the vehicle may decelerate or accelerate from the target speed.
 ステップ4が終了すると、ステップ5に入り、自車200は、シナリオ開始に向け目標速度である120km/hまで加速しようとする。これは、シナリオ開始までに120km/hに達することを自車200に要求することを意味せず、あくまで目標を120km/hにするということである。したがって、シナリオ開始位置の到達時点で120km/hに達しないこともあるし、他の車両との接触を回避するために、運転制御機能により120km/h以下の速度での走行を行う場合もある。シナリオ開始位置に自車200が到達した時点で120km/hに達していない場合には、後段のステップ6でも120km/hを目標速度とするので、自車200は加速を継続することになり、加速中のシナリオも評価できる。ステップ5及びステップ6の目標速度がステップ4の最終状態の速度より遅い速度を指定すれば、自車200が減速中のシナリオを評価できる。 When step 4 ends, step 5 is entered and the host vehicle 200 attempts to accelerate to the target speed of 120 km/h toward the start of the scenario. This does not mean that the host vehicle 200 is required to reach 120 km/h by the start of the scenario, but simply sets the target to 120 km/h. Therefore, it may not reach 120km/h when the scenario start position is reached, and in order to avoid contact with other vehicles, the driving control function may run at a speed of 120km/h or less. . If the speed has not reached 120 km/h when the vehicle 200 reaches the scenario start position, 120 km/h is also set as the target speed in step 6, so the vehicle 200 continues to accelerate. Scenarios during acceleration can also be evaluated. If the target speed in steps 5 and 6 specifies a speed lower than the speed in the final state in step 4, the scenario in which the host vehicle 200 is decelerating can be evaluated.
 ステップ5までは評価シナリオ開始前の準備走行に対応する。ステップ5までの準備走行により、自車200の挙動を検証するためのシナリオ開始時点の条件に対応した位置、速度、加速度を調整することができる。 Up to step 5 corresponds to the preparation run before the start of the evaluation scenario. By the preparatory running up to step 5, the position, speed, and acceleration corresponding to the conditions at the start of the scenario for verifying the behavior of the own vehicle 200 can be adjusted.
 自車200がステップ5の期間で指定したシナリオ開始位置Le(201)に到達すると、ステップ6に移行し、シナリオに対応した走行が開始される。ステップ6では、目標速度はステップ5の指定を継続し、目標横位置を変更する。すなわち、走行上支障がない限り、自車200は、5秒間でレーンA中央から右に5cmの位置へ移動を行おうとする。 When the own vehicle 200 reaches the scenario start position Le (201) specified in the period of step 5, the process proceeds to step 6, and running corresponding to the scenario is started. In step 6, the target velocity continues to be specified in step 5, and the target lateral position is changed. That is, as long as there is no problem in running, the own vehicle 200 tries to move to a position 5 cm to the right from the center of lane A in 5 seconds.
 ステップ6が完了すると、ステップ7で、ステップ6と同じ状態を指定する。目標横位置を直前のステップから変更しない場合において、自車200の横移動がなにかしらの事情で未完了な場合、ステップ7で指定した期間に影響されず、ステップ6で指定した期間に対応した横移動のペースを継続する。 When step 6 is completed, step 7 specifies the same state as step 6. If the target lateral position is not changed from the previous step and the lateral movement of the vehicle 200 is not completed for some reason, the period specified in step 6 is not affected and the period specified in step 6 is applied. Continue the pace of lateral movement.
 ステップ7は、未完了の横移動の継続期間として時間を確保する意味に加えて、シナリオ実行完了後にも安定した走行が行われるかを確認する期間の意味もある。シナリオ自体は正常に終了したとしても、シナリオ終了時において著しく車間が狭いなどの危険な状況が考えられ、その後、周辺交通参加者などと衝突が発生する可能性もあるので、ステップ7で、シナリオ実行完了後の状況を暫く継続して確認する。 In addition to securing time as a continuation period for unfinished lateral movement, step 7 also has the meaning of a period for confirming whether stable driving can be performed even after scenario execution is completed. Even if the scenario itself ends normally, a dangerous situation such as a remarkably narrow gap between vehicles is possible at the end of the scenario, and there is a possibility of collisions with nearby traffic participants. Continue to check the status after completion of execution for a while.
(周辺交通参加者の移動計画策定S130の具体例)
 周辺交通参加者の移動計画策定の例について説明する。図4に示すシナリオ開始条件を想定し、周辺交通参加者として他の自動車(他車)を対象にした移動計画の策定例を図5に示す。図5に示す移動計画の策定例では縦方向(道に沿う方向)の計画のみを速度計画として示すが、必要に応じ、横位置の計画、あるいは走路に対する向きの計画などを付加することも考えられる。この例ではシナリオ開始までを対象とし、他車については横位置オフセットを考慮せず、走行するレーンのみを考慮する。シナリオ開始後、周辺交通参加者は、それぞれシナリオで定義された加減速や車線変更などに従い挙動を再現することになる。移動計画は、周辺交通参加者それぞれの挙動特性に合わせて、車両とは異なる計画を用いて構わない。例えば、歩行者用移動計画、自転車用移動計画などを用意することも考えられる。
(Concrete example of movement plan formulation S130 for surrounding traffic participants)
An example of formulating a movement plan for surrounding traffic participants will be described. Assuming the scenario start conditions shown in FIG. 4, FIG. 5 shows an example of a movement plan for other vehicles (other vehicles) as surrounding traffic participants. In the moving plan formulation example shown in FIG. 5, only the vertical direction (direction along the road) plan is shown as the speed plan, but if necessary, it is also possible to add a horizontal position plan or a direction plan with respect to the track. be done. In this example, the target is up to the start of the scenario, and only the lane in which the other vehicle is traveling is considered without considering the lateral position offset. After the scenario starts, the surrounding traffic participants will reproduce the behavior according to the acceleration, deceleration, lane change, etc. defined in the scenario. A movement plan different from that of the vehicle may be used according to the behavior characteristics of each of the surrounding traffic participants. For example, it is conceivable to prepare a travel plan for pedestrians, a travel plan for bicycles, and the like.
 移動計画として速度計画を用いる、換言すれば、移動計画の策定は速度により行うことで、1次の積分で移動距離ないし位置が算出でき、1次の微分で加速度を算出できるため、位置、速度、加速度を考慮した計画が容易になり、速度の連続性も保証し易い、換言すれば、速度が連続的に変化するように計画し易い利点がある。 By using a velocity plan as a movement plan, in other words, by formulating a movement plan based on velocity, the movement distance or position can be calculated by first-order integration, and the acceleration can be calculated by first-order differentiation. In other words, there is an advantage in that it is easy to plan considering the acceleration, and it is easy to guarantee the continuity of the speed.
 図4に示すシナリオでは、自車200が位置Le(201)に到達した際にシナリオ開始となり、シナリオ開始時の自車200は速度Ve(204)及び加速度Ae(206)となる。道路上の位置Lp(361)には駐車車両360が路肩に止まっている(図2も併せて参照)。シナリオ開始時の自車200の位置Le(201)を指定することは、駐車車両360との位置関係を規定する上で必要である。また、道路の曲率や勾配が変化している場合、所望の道路条件下で評価を行う上でも、道路上のどこでシナリオを開始するかは重要となる。 In the scenario shown in FIG. 4, the scenario starts when the vehicle 200 reaches the position Le (201), and the vehicle 200 at the start of the scenario has a velocity Ve (204) and an acceleration Ae (206). A parked vehicle 360 is stopped on the road shoulder at position Lp (361) on the road (see also FIG. 2). Specifying the position Le ( 201 ) of the vehicle 200 at the start of the scenario is necessary to define the positional relationship with the parked vehicle 360 . Also, when the curvature and gradient of the road are changing, where on the road the scenario starts is important for evaluation under desired road conditions.
 周辺交通参加者として、他車X(310)と他車Y(320)が存在する。シナリオ開始時点で、他車X(310)は、自車200の距離Df1(312)後方のレーンAに、速度Vf1(314)、加速度Af1(316)で走行する。他車Y(320)は、自車200の距離Df2(322)前方のレーンBに、速度Vf2(324)、加速度Af2(326)で走行する。 Other vehicle X (310) and other vehicle Y (320) exist as surrounding traffic participants. At the start of the scenario, another vehicle X (310) travels in lane A behind host vehicle 200 by a distance Df1 (312) at speed Vf1 (314) and acceleration Af1 (316). Another vehicle Y (320) travels in lane B ahead of host vehicle 200 by a distance Df2 (322) at speed Vf2 (324) and acceleration Af2 (326).
 策定する他車の速度計画の例を図5に示す。速度計画は、他車X(310)、他車Y(320)それぞれに対して策定する必要があるが、同じ考え方で策定できるので、便宜的に一部の他車X(310)に関する値を参照して、速度計画の策定例を説明する。 Fig. 5 shows an example of a speed plan for other vehicles to be formulated. A speed plan needs to be formulated for each of the other vehicle X (310) and the other vehicle Y (320). An example of formulating a speed plan will be described with reference to FIG.
 ここでの速度計画の策定は、図5に示すように時刻の経過に応じて順次、等速(時刻Tp0(530)~Tp1(531)の期間)、加速度変更(時刻Tp1(531)~Tp2(532)の期間)、等加速度(時刻Tp2(532)~Tssi(550)の期間)となるように策定する。加速度変更は、車両が加速度を変更するのに要する期間の挙動として、簡易的に2次関数、すなわち加速度が直線的に変化するとして取り扱う。 As shown in FIG. 5, the speed plan is determined in the order of constant speed (time Tp0 (530) to Tp1 (531)), acceleration change (time Tp1 (531) to Tp2 (532) period) and constant acceleration (time Tp2 (532) to Tssi (550) period). Acceleration change is treated as the behavior of the period required for the vehicle to change the acceleration as a quadratic function, that is, assuming that the acceleration changes linearly.
 時刻Tssi(550)は、自車走行タイミング取得S120で自車200がシナリオ開始位置Le(201)に到達する時刻として得られた(予測された)時刻であり、シミュレーション開始初期のシナリオ開始予測時刻となる。 The time Tssi (550) is the (predicted) time obtained as the time when the vehicle 200 reaches the scenario start position Le (201) in the vehicle travel timing acquisition S120, and is the estimated scenario start time at the beginning of the simulation. becomes.
 他車X(310)の速度510の変化を規定するために、速度Vfp0(511)、Vfp1(512)、Vfp2(513)及び時刻Tp0(530)、Tp1(531)、Tp2(532)の算出が必要となる。速度Vf(515)はシナリオ開始時の速度であるため、他車X(310)の速度計画では速度Vf1(314)(図4)に等しい。 Calculation of velocities Vfp0 (511), Vfp1 (512), Vfp2 (513) and times Tp0 (530), Tp1 (531), and Tp2 (532) to define changes in velocity 510 of other vehicle X (310) Is required. Since the speed Vf (515) is the speed at the start of the scenario, it is equal to the speed Vf1 (314) (FIG. 4) in the speed plan of the other vehicle X (310).
 速度510の変化の規定に必要な速度の算出は、初期シナリオ開始予測時刻Tssi(550)から時刻を戻る方向で順に行う。  Calculation of the velocities required to define the change in velocity 510 is performed in order from the initial scenario start prediction time Tssi (550) in the backward direction.
 まず自車200の評価のために十分と考えられる他車X(310)の加速あるいは減速走行時間を考慮して、時刻Tssi(550)からその時間前になるように時刻Tp2(532)を決定する。時刻Tp2(532)から時刻Tssi(550)の時間は、5秒や10秒などに固定して取り扱っても良い。 First, considering the acceleration or deceleration travel time of the other vehicle X (310) which is considered sufficient for evaluating own vehicle 200, time Tp2 (532) is determined so as to be before time Tssi (550). do. The time from time Tp2 (532) to time Tssi (550) may be fixed to 5 seconds, 10 seconds, or the like.
 時刻Tp2(532)が決まれば時刻Tssi(550)における加速度Af(516)、すなわち速度の変化量は、シナリオ開始条件から加速度Af1(316)(図4)と規定されるので、速度Vfp2(513)が求まる。もし、速度Vfp2(513)が他車X(310)の走行速度として想定範囲外となる(所定の速度範囲を逸脱する)ようであれば、時刻Tp2(532)を時刻Tssi(550)に近づけて速度Vfp2(513)が想定範囲内になるよう調整する。 Once the time Tp2 (532) is determined, the acceleration Af (516) at time Tssi (550), that is, the amount of change in speed, is defined as the acceleration Af1 (316) (FIG. 4) from the scenario start conditions, so the speed Vfp2 (513 ) is found. If the speed Vfp2 (513) is out of the assumed range as the traveling speed of the other vehicle X (310) (deviates from the predetermined speed range), the time Tp2 (532) is brought closer to the time Tssi (550). to adjust the speed Vfp2 (513) to be within the expected range.
 時刻Tp2(532)及び速度Vfp2(513)を算出した後に、時刻Tp1(531)と速度Vfp1(512)の算出を行う。まず時刻Tp1(531)を算出するために、時刻Tp1(531)から時刻Tp2(532)までの時間を決定する。この時間は、当該期間で変化させたい加速度から、比例計算や表参照などにより行う。あるいはより簡易的に固定値を用いることも考えられる。時刻Tp1(531)から時刻Tp2(532)までの時間が求まれば、時刻Tp2(532)から時刻Tp1(531)を算出できる。 After calculating the time Tp2 (532) and the speed Vfp2 (513), the time Tp1 (531) and the speed Vfp1 (512) are calculated. First, in order to calculate time Tp1 (531), the time from time Tp1 (531) to time Tp2 (532) is determined. This time is determined by proportional calculation, table reference, etc., based on the acceleration desired to be changed in the relevant period. Alternatively, it is conceivable to use a fixed value more simply. If the time from time Tp1 (531) to time Tp2 (532) is obtained, time Tp1 (531) can be calculated from time Tp2 (532).
 速度Vfp1(512)を算出するためには、時刻Tp1(531)と時刻Tp2(532)の期間の時刻と速度の関係を示す関数を求める。時刻Tp1(531)から時刻Tp2(532)の期間の時刻と速度の関係は2次関数として定義することにしたので、その関係を示す関数は0次~2次の係数を求めれば決定できる。これらの係数は、時刻Tp1(531)及び時刻Tp2(532)で速度及び加速度を連続的に変化させることを条件とすれば求まる。この際、時刻Tp1(531)では加速度が0、時刻Tp2(532)では加速度がAf(516)となること、時刻Tp1(531)及び時刻Tp2(532)が算出済みであることに注意する。  In order to calculate the speed Vfp1 (512), a function indicating the relationship between the time and the speed during the period between the time Tp1 (531) and the time Tp2 (532) is obtained. Since the relationship between time and speed during the period from time Tp1 (531) to time Tp2 (532) is defined as a quadratic function, the function indicating the relationship can be determined by calculating the 0th to 2nd order coefficients. These coefficients are obtained under the condition that the velocity and acceleration are changed continuously at time Tp1 (531) and time Tp2 (532). Note that the acceleration is 0 at time Tp1 (531) and Af (516) at time Tp2 (532), and that time Tp1 (531) and time Tp2 (532) have already been calculated.
 時刻Tp1(531)から時刻Tp2(532)の期間の時刻と速度の関係を示す関数より、速度Vfp1(512)は以下の数式1で算出できることが分かる。
Figure JPOXMLDOC01-appb-M000001
It can be seen that the velocity Vfp1 (512) can be calculated by Equation 1 below from the function showing the relationship between the time and the velocity during the period from time Tp1 (531) to time Tp2 (532).
Figure JPOXMLDOC01-appb-M000001
 数式1が示すように、速度Vfp1(512)は、加速度Af(516)に依存して速度Vfp2(513)との関係に制約を受ける。Af(516)が0の場合には、Vfp1(512)は速度Vfp2(513)と等しい必要がある。Af(516)が正(加速)の場合、速度Vfp1(512)は速度Vfp2(513)より必ず小さく、Af(516)が負(減速)の場合、速度Vfp1(512)は速度Vfp2(513)より必ず大きくする必要がある。速度Vfp1(512)が他車X(310)の走行速度として想定範囲外となる(所定の速度範囲を逸脱する)ようであれば、想定範囲内となるように、時刻Tp1(531)を時刻Tp2(532)に近づけて対応するか、そのようなシナリオは発生しないとして判断して評価対象外として取り扱う対応をする必要がある。 As shown in Equation 1, the speed Vfp1 (512) is subject to restrictions in relation to the speed Vfp2 (513) depending on the acceleration Af (516). If Af (516) is 0, then Vfp1 (512) must equal velocity Vfp2 (513). When Af (516) is positive (acceleration), the speed Vfp1 (512) is always smaller than the speed Vfp2 (513). must be made larger. If the speed Vfp1 (512) is out of the assumed range as the traveling speed of the other vehicle X (310) (deviates from the predetermined speed range), the time Tp1 (531) is set to be within the assumed range. It is necessary to either approach Tp2 (532), or determine that such a scenario will not occur and treat it as non-evaluation.
 速度Vfp0(511)については、時刻Tp0(530)から時刻Tp1(531)の期間を等速走行としているので、速度Vfp1(512)と等しくなる。 The speed Vfp0 (511) is equal to the speed Vfp1 (512) because the period from time Tp0 (530) to time Tp1 (531) is constant speed.
 時刻Tp0(530)については、速度計画を基に計算した時刻Tssi(550)までの走行距離が、シミュレーションで用いる道路でのシナリオ開始位置Le(201)までの走行距離、例えば図2に示す道路では位置(シミュレーション開始時の他車の位置)L0(301)から位置(シナリオ開始位置)Le(201)の走行距離と等しくなるように求める。 For time Tp0 (530), the traveled distance up to time Tssi (550) calculated based on the speed plan is the traveled distance to the scenario start position Le (201) on the road used in the simulation, such as the road shown in FIG. Then, the traveling distance from the position (the position of the other vehicle at the start of the simulation) L0 (301) to the position (scenario start position) Le (201) is calculated to be equal.
 シナリオ開始条件によっては、時刻Tp0(530)が時刻Tp1(531)や時刻Tp2(532)より後の時刻になる場合もあり得る。そのような場合、時刻Tp1(531)から時刻Tssi(550)までの速度計画より算出できる時刻Tp0(530)から時刻Tssi(550)の期間の走行距離が、位置L0(301)から位置Le(201)の走行距離に一致するよう時刻Tp0(530)を算出すればよい。 Depending on the scenario start conditions, time Tp0 (530) may be later than time Tp1 (531) or time Tp2 (532). In such a case, the traveling distance during the period from time Tp0 (530) to time Tssi (550), which can be calculated from the speed plan from time Tp1 (531) to time Tssi (550), is calculated from the position L0 (301) to the position Le ( 201), the time Tp0 (530) should be calculated so as to match the traveled distance.
 シミュレーション実行時には、当該速度計画に対応する他車を、位置L0(301)より時刻Tp0(530)に走行開始させる。走行開始時の他車の速度は、停止状態ではなく、速度計画に合わせた速度とする。 When executing the simulation, the other vehicle corresponding to the speed plan is caused to start traveling from position L0 (301) at time Tp0 (530). The speed of the other vehicle at the start of travel is set according to the speed plan, not in the stopped state.
 シナリオ開始条件によっては、時刻Tp0(530)が負、すなわちシミュレーション開始前の時刻となる場合がある。そのような場合には、時刻Tp0(530)は時刻0に設定して、速度計画から時刻0から時刻Tssi(550)の期間に走行する走行距離を算出し、シナリオ開始位置Le(201)から当該走行距離分前の位置から他車を走行開始して対応すればよい。 Depending on the scenario start conditions, the time Tp0 (530) may be negative, that is, the time before the start of the simulation. In such a case, the time Tp0 (530) is set to time 0, the traveled distance during the period from time 0 to time Tssi (550) is calculated from the speed plan, and from the scenario start position Le (201) The other vehicle may start traveling from a position ahead of the travel distance to cope with the situation.
 シミュレーション開始時に他車が最初から速度を有すると、シミュレーション開始時点で自車200が突然走行中の他車を検出し、自車200の運転制御機能にとって想定外の状況となる場合には、自車200の正しい評価が困難になる可能性がある。このような状況を避けるためには、図2に示したような道路を用い、自車200を合流路460から、他車(他車X(310)や他車Y(320))を本線410から走行させることで、換言すれば、自車200は、自車200の周辺に存在する他車(他車X(310)や他車Y(320))が存在する道路とは異なる道路から当該他車(他車X(310)や他車Y(320))が存在する道路(走行レーン)に合流させることで、自車200の外界センシング範囲外から他車を走行させれば良い。また、自車200と他車を異なる道路から合流させることで、シミュレーション開始時の自車200と他車の速度差による問題や、自車200の前後に他車を配置するシナリオを再現する際の問題にも対処可能となる。 If the other vehicle has a speed from the beginning at the start of the simulation, the own vehicle 200 suddenly detects the other vehicle that is running at the start of the simulation, and if the operation control function of the own vehicle 200 is in an unexpected situation, the own vehicle 200 A correct evaluation of the car 200 can be difficult. In order to avoid such a situation, a road such as that shown in FIG. In other words, the own vehicle 200 can travel from a road different from the road on which the other vehicles (the other vehicle X (310) and the other vehicle Y (320)) existing around the own vehicle 200 exist. By merging with the road (driving lane) on which other vehicles (other vehicle X (310) and other vehicle Y (320)) exist, the other vehicle may be caused to travel outside the external sensing range of own vehicle 200. FIG. Also, by merging the own vehicle 200 and other vehicles from different roads, it is possible to reproduce a problem due to the speed difference between the own vehicle 200 and the other vehicles at the start of the simulation, or a scenario in which other vehicles are arranged in front of and behind the own vehicle 200. problem can be dealt with.
(周辺交通参加者の移動計画更新S160の具体例)
 周辺交通参加者の移動計画更新S160で行う移動計画更新方法の例について、図5に示した速度計画(移動計画)に対応付けて図6を用いて説明する。
(Concrete example of update S160 of movement plan of surrounding traffic participants)
An example of the movement plan update method performed in the movement plan update S160 of the peripheral traffic participants will be described with reference to FIG. 6 in association with the speed plan (movement plan) shown in FIG.
 図6では、時刻Tc(565)における移動計画の更新を示している。時刻Tc(565)において、自車200の走行状況から推定して、シナリオ開始予測時刻が初期シナリオ開始予測時刻Tssi(550)から時間dT(568)早まって、更新シナリオ開始予測時刻Tssu(555)になった(変化した)状況を示している。なお、この予測時間の変化は、シミュレーションの実行中の任意のタイミングで判断する。このような場合、前述の予測時間の変化に対応して、初期速度計画551を全体的に時間dT(568)早め、更新速度計画556に更新する。  Fig. 6 shows the update of the movement plan at time Tc (565). At time Tc (565), the estimated scenario start time is advanced by time dT (568) from the initial scenario estimated start time Tssi (550), estimated from the running condition of the vehicle 200, and the updated scenario estimated start time Tssu (555) is reached. It shows the situation that has become (changed). Note that the change in the predicted time is determined at arbitrary timing during execution of the simulation. In such a case, initial speed plan 551 is generally advanced by time dT (568) and updated to updated speed plan 556 in response to the aforementioned change in predicted time.
 速度計画の更新により、シナリオ開始までの計画上の走行距離は面積575で示される領域に変化し、実際にシナリオ開始までに必要な走行距離との間に乖離が発生するが、その乖離を無くすように別途フィードバック制御を行い走行速度にオフセットを与えることで、補償用の走行距離として面積570を付加する。すなわち、他車の移動計画の更新の結果は、策定された移動計画を時間的に(時間軸方向に)ずらした計画であり、他車の移動計画の更新の結果に基づくとシナリオ開始時点における他車の位置までの距離に対して過不足する移動距離を補償する調整を加えて速度計画の更新を行い、他車の挙動を調整し直す。なお、更新シナリオ開始予測時刻Tssu(555)が遅くなる場合もあるので、面積570は、負(速度を減少させる方向)にはたらく場合もある。また、シミュレーション実行中は1ステップ実行毎に速度計画を更新し、実際にシナリオ開始までに必要な走行距離も逐次減少するので、計画上の走行距離と実際にシナリオ開始までに必要な走行距離の関係も逐次変化する。したがって、補償用の走行距離(面積570に対応)も逐次変化するため、フィードバック制御量も逐次変化することになる。 Due to the update of the speed plan, the planned travel distance until the start of the scenario changes to the area indicated by the area 575, and a deviation occurs between the travel distance actually required before the start of the scenario, but the deviation is eliminated. By performing separate feedback control and giving an offset to the running speed, an area 570 is added as a compensating running distance. In other words, the result of updating the movement plan of the other vehicle is a plan that is shifted in time (in the direction of the time axis) from the formulated movement plan, and based on the result of updating the movement plan of the other vehicle, The speed plan is updated by making adjustments to compensate for the excess or deficiency of the distance to the position of the other vehicle, and the behavior of the other vehicle is readjusted. Note that the update scenario start predicted time Tssu (555) may be delayed, so the area 570 may work negatively (in the direction of decreasing the speed). Also, during the simulation, the speed plan is updated each time one step is executed, and the actual mileage required to start the scenario decreases as well. Relationships also change from time to time. Therefore, since the traveling distance for compensation (corresponding to the area 570) also changes sequentially, the feedback control amount also changes sequentially.
 シナリオ開始予測時刻の更新方法の例を、図6に対応させながら、図7を用いて説明する。図7は、自車走行タイミング取得S120で取得した時刻と自車200の走行距離の関係710を示している。 An example of a method for updating the predicted scenario start time will be explained using FIG. 7 while corresponding to FIG. FIG. 7 shows a relationship 710 between the time acquired in the own vehicle traveling timing acquisition S120 and the traveling distance of the own vehicle 200. As shown in FIG.
 時刻Tc(565)(図6)において、自車200の走行距離がLec(307)である場合、図7に示す関係から、自車200は時刻Tcp(567)相当の状態にあると推定する。この場合、更新シナリオ開始予測時刻Tssu(555)(図6)の初期シナリオ開始予測時刻Tssi(550)に対する早まり時間dT(568)(図6)は、時刻Tcp(567)から時刻Tc(565)を引いた値であると推定する。 At time Tc (565) (FIG. 6), if the travel distance of own vehicle 200 is Lec (307), it is estimated from the relationship shown in FIG. 7 that own vehicle 200 is in a state corresponding to time Tcp (567). . In this case, the advance time dT (568) (FIG. 6) of the updated scenario predicted start time Tssu (555) (FIG. 6) with respect to the initial scenario predicted start time Tssi (550) is from time Tcp (567) to time Tc (565). is estimated to be the value after subtracting
 他車に対する加速度指令の生成方法の例を図8に示す。移動計画の策定は速度計画を用いて行ったが、他車の挙動を現実的にするために、他車の挙動に対する指示は加速度を用いて行う。別途、他車の想定性能に応じた速度制限を行った上で、加速度の範囲(指定時間当たりの速度変化範囲)を制限することで、極端な速度変化を抑制することができ、他車に現実的な挙動を行わせることができる。これは他車以外の周辺交通参加者(自転車、歩行者など)でも、制限の範囲は異なるが同様である。他車を含む周辺交通参加者の向きも、必要に応じて角速度だけでなく角加速度を制限して、挙動を現実的な範囲とすることが考えられる。また、同じ種類の周辺交通参加者であっても、必要に応じて制限の範囲を変えても構わない。 Fig. 8 shows an example of how to generate acceleration commands for other vehicles. A movement plan is formulated using a speed plan, but in order to make the behavior of the other vehicle realistic, the behavior of the other vehicle is instructed using the acceleration. Separately, after limiting the speed according to the assumed performance of other vehicles, by limiting the acceleration range (speed change range per specified time), it is possible to suppress extreme speed changes, It can be made to behave realistically. This is the same for surrounding traffic participants (bicyclists, pedestrians, etc.) other than other vehicles, although the range of restrictions is different. It is conceivable to limit not only the angular velocity but also the angular acceleration of the directions of surrounding traffic participants, including other vehicles, as necessary to keep the behavior within a realistic range. Also, even for the same type of peripheral traffic participants, the range of restrictions may be changed as needed.
 シナリオ開始時刻予測部650では、図7を用いて示した方法などで、更新シナリオ開始予測時刻Tssu(555)を算出する。時刻シフトした速度計画策定部660では、図6で示したように更新シナリオ開始予測時刻Tssu(555)に合わせて速度計画全体を時間軸方向にずらす。 The scenario start time prediction unit 650 calculates the predicted update scenario start time Tssu (555) by the method shown using FIG. The time-shifted speed plan formulation unit 660 shifts the entire speed plan in the direction of the time axis in accordance with the update scenario start prediction time Tssu (555) as shown in FIG.
 計画加速度計算部680では、時刻シフトした速度計画に対する現在時刻の加速度を計算する。速度計画が関数で定義されるのであれば、速度計画を解析的に微分して加速度を算出すればよい。速度計画が速度値のリストであれば、現在時刻周辺の速度値を基に数値計算で微分値を算出する必要がある。本実施例では速度計画を関数として表現可能な形で扱っているので、解析的に微分して加速度を算出できる。 The planned acceleration calculation unit 680 calculates the acceleration at the current time with respect to the time-shifted speed plan. If the velocity plan is defined by a function, the acceleration can be calculated by analytically differentiating the velocity plan. If the speed plan is a list of speed values, it is necessary to calculate the differential value by numerical calculation based on the speed values around the current time. In this embodiment, since the velocity plan is handled in a form that can be expressed as a function, the acceleration can be calculated by analytical differentiation.
 計画加速度計算部680は、更新シナリオ開始予測時刻Tssu(555)に合わせた速度計画を基に加速度を計算しており、速度計画はシナリオ開始時の条件である速度及び加速度に合わせたものであるので、基本的には計画加速度計算部680の結果に合わせるように他車を制御すれば、当該他車の速度及び加速度はシナリオ開始時の条件を満たすことができる。 The planned acceleration calculator 680 calculates the acceleration based on the speed plan that matches the updated scenario start predicted time Tsu (555), and the speed plan matches the speed and acceleration that are the conditions at the start of the scenario. Therefore, basically, if the other vehicle is controlled so as to match the result of the planned acceleration calculation unit 680, the speed and acceleration of the other vehicle can satisfy the conditions at the start of the scenario.
 予測シナリオ開始時刻までの計画距離計算部670では、時刻シフトした速度計画を用いて現在時刻から更新シナリオ開始予測時刻Tssu(555)までに走行する走行距離を計算する。すなわち、現在時刻から更新シナリオ開始予測時刻Tssu(555)までの範囲の速度を積分する。より具体的には、図6の領域575に相当する面積を求める。 The planned distance calculation unit 670 until the predicted scenario start time calculates the traveled distance from the current time to the updated scenario start predicted time Tsu (555) using the time-shifted speed plan. That is, the speed in the range from the current time to the update scenario start prediction time Tssu (555) is integrated. More specifically, the area corresponding to region 575 in FIG. 6 is obtained.
 現在時刻から更新シナリオ開始予測時刻Tssu(555)までに走行する走行距離を求めるために速度計画を示す関数の積分が必要であるが、この際、解析的に定積分をしても構わないし、数値的に近似計算をしても構わない。 In order to obtain the traveled distance from the current time to the update scenario start predicted time Tssu (555), it is necessary to integrate the function indicating the speed plan. Numerical approximation may be performed.
 シナリオ開始までの実残距離計算部610では、速度計画の対応する他車の現在位置から当該他車がシナリオ開始時点で存在すべき位置までの走行距離(残距離)を計算する。 The actual remaining distance calculation unit 610 until the start of the scenario calculates the traveling distance (remaining distance) from the current position of the other vehicle corresponding to the speed plan to the position where the other vehicle should be at the start of the scenario.
 シナリオ開始までの実残距離計算部610の結果と予測シナリオ開始時刻までの計画距離計算部670の結果の差を減算器620で算出し、減算器620の出力から補正用加速度計算部630で補正用加速度を計算する。補正用加速度の計算にはPID制御などを用いれば良い。但し、入力が距離の差であるので、加速度の形で値を出力するよう調整する必要がある。また、入力は目標とするシナリオ開始位置までの残距離であり、速度が上がるほど残距離の減少ペースが速まる方向であるので、符号に注意する必要がある。 A subtractor 620 calculates the difference between the result of the actual remaining distance calculator 610 up to the start of the scenario and the result of the planned distance calculator 670 up to the predicted scenario start time, and the output of the subtractor 620 is corrected by the correction acceleration calculator 630. Calculate the acceleration for PID control or the like may be used to calculate the correction acceleration. However, since the input is the distance difference, it needs to be adjusted to output the value in the form of acceleration. Also, the input is the remaining distance to the target scenario start position, and since the pace of decrease in the remaining distance increases as the speed increases, it is necessary to pay attention to the sign.
 補正用加速度の効果は、図6の領域570のような形で、速度計画の対応した他車の速度に現れ、シナリオ開始時刻において、当該他車をシナリオ開始条件で指定された位置に合わせる効果がある。なお、領域570の形状はあくまで例であり、補正用加速度計算部630の実装方法や計算に用いるパラメータにより変化する。 The effect of the correction acceleration appears in the speed of the other vehicle corresponding to the speed plan in the form of area 570 in FIG. There is Note that the shape of the area 570 is merely an example, and varies depending on the method of mounting the correction acceleration calculator 630 and the parameters used for calculation.
 計画加速度計算部680の出力と補正用加速度計算部630の出力を加算器640で加算して目標とする加速度を求め、加速度制限部690で加速度の範囲に制限を加える。加速度、すなわち、ある指定時間あたりの速度変化の範囲に制限を加えることで、補正用加速度計算部630の絶対値が大きくなりすぎ、加速や減速が非現実的になることを防止できる。ここで、ある指定時間とは、シミュレーションの1ステップに相当する時間などが考えられる。 The output of the planned acceleration calculator 680 and the output of the correction acceleration calculator 630 are added by the adder 640 to obtain the target acceleration, and the acceleration limiter 690 limits the acceleration range. By limiting the acceleration, that is, the range of speed change per specified time, it is possible to prevent the absolute value of the correction acceleration calculation unit 630 from becoming too large and the acceleration or deceleration from becoming unrealistic. Here, the specified time may be a time corresponding to one step of the simulation.
 加速度制限部690の出力が加速度指令695となり、速度計画に対応する他車のモデルに対する加速度要求となる。 The output of the acceleration limiter 690 becomes the acceleration command 695, which becomes the acceleration request for the model of the other vehicle corresponding to the speed plan.
 他車モデルは、衝突を避けるために、当該他車の周辺状況により加速度指令695に従わないケースも考えられるが、補正用加速度計算部630の効果により、当該他車の周辺状況による障害がなくなり次第、シナリオ開始時に存在すべき位置(シナリオ開始位置)に到達するようにフィードバックがかかる。 In order to avoid a collision, the other vehicle model may not follow the acceleration command 695 depending on the surrounding conditions of the other vehicle. Feedback is applied so that the position that should exist at the start of the scenario (scenario start position) is gradually reached.
 通常、シナリオ開始時刻に近づくにつれて、シナリオ開始時刻の予測精度は高まり、シナリオ開始までの実残距離計算部610の出力と予測シナリオ開始時刻までの計画距離計算部670の出力の差も小さくなり、更新シナリオ開始予測時刻Tssu(555)の変化も小さくなる。したがって、速度計画に載せる補正量も補正用加速度計算部630の出力も小さくなり、速度及び加速度の速度計画に対する差も小さくなり、シナリオ開始時点でシナリオ開始条件に近い状況を作り出すことができる。 Normally, as the scenario start time approaches, the prediction accuracy of the scenario start time increases, and the difference between the output of the actual remaining distance calculation unit 610 until the scenario start and the output of the planned distance calculation unit 670 until the predicted scenario start time becomes smaller. The change in predicted update scenario start time Tssu (555) is also reduced. Therefore, the correction amount to be included in the speed plan and the output of the correction acceleration calculator 630 are both small, and the difference between the speed and acceleration relative to the speed plan is also small.
[シミュレーション装置]
 以上説明した評価方法(シミュレーション方法)を用いてシミュレーション装置を構成した例を図9に示す。また、図1におけるシミュレーション実行手順の各処理と図9におけるシミュレーション装置の各部の関係の例を図10に示す。
[Simulation device]
FIG. 9 shows an example of a simulation apparatus configured using the evaluation method (simulation method) described above. FIG. 10 shows an example of the relationship between each process of the simulation execution procedure in FIG. 1 and each part of the simulation apparatus in FIG.
 シミュレーション装置900は、CPU(Central Processing Unit)等のプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)等のメモリ等を備えるコンピュータとして構成されている。シミュレーション装置900の各機能は、ROMに記憶されたプログラムをプロセッサが実行することによって実現される。RAMは、プロセッサが実行するプログラムによる演算の中間データ等を含むデータを格納する。 The simulation device 900 is configured as a computer including a processor such as a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), HDD (Hard Disk Drive) and other memories. Each function of the simulation device 900 is implemented by the processor executing a program stored in the ROM. The RAM stores data including intermediate data for calculations by programs executed by the processor.
 本実施例のシミュレーション装置900は、前述した車両挙動のシミュレーションを行うシミュレーション方法を実現するもので、図9に示すように、周辺移動物初期移動計画策定部810、周辺移動物移動計画更新部820、周辺移動物挙動モデル部830、自車挙動比較部840、シナリオ条件設定部910、自車走行計画策定部920、ドライバモデル部930、自車運転制御モデル部940、自車挙動モデル部950、環境再現部960、周辺センサモデル部970、環境データ提供部980、挙動記録部990、結果確認部995を含んで構成される。また、周辺移動物初期移動計画策定部810、周辺移動物移動計画更新部820、周辺移動物挙動モデル部830、自車挙動比較部840は、周辺移動物の制御に関わる周辺移動物制御部800を構成している。 The simulation apparatus 900 of this embodiment implements the simulation method for simulating the vehicle behavior described above. As shown in FIG. , a surrounding moving object behavior model unit 830, a vehicle behavior comparison unit 840, a scenario condition setting unit 910, a vehicle driving plan formulation unit 920, a driver model unit 930, a vehicle driving control model unit 940, a vehicle behavior model unit 950, It includes an environment reproduction unit 960 , a peripheral sensor model unit 970 , an environment data provision unit 980 , a behavior recording unit 990 and a result confirmation unit 995 . The peripheral moving object initial movement plan formulation unit 810, the peripheral moving object movement plan updating unit 820, the peripheral moving object behavior model unit 830, and the own vehicle behavior comparison unit 840 are related to the control of the peripheral moving object control unit 800. constitutes
(シナリオ条件設定部910)
 シナリオ条件設定部910は、図4に示したようなシナリオ開始条件の他、シナリオ開始後の自車200及び各周辺交通参加者の挙動指示を外部、例えばファイル等からシミュレータに取り込む。
(Scenario condition setting unit 910)
The scenario condition setting unit 910 takes in the scenario starting conditions as shown in FIG. 4 and the behavior instructions of the own vehicle 200 and each surrounding traffic participant after the start of the scenario from an external source such as a file into the simulator.
(自車走行計画策定部920、環境データ提供部980)
 シナリオ条件設定部910で取り込んだ情報を基に、自車200に関する情報から、自車走行計画策定部920で自車200の走行計画が策定され、周辺交通参加者以外や静止物(シミュレーション中に全く動かない駐車車両など)に関する情報から、環境データ提供部980で道路を含む環境データとして構築される。
(Vehicle travel plan formulation unit 920, environmental data provision unit 980)
Based on the information taken in by the scenario condition setting unit 910, the own vehicle travel plan formulation unit 920 formulates a travel plan for the own vehicle 200 from the information about the own vehicle 200. Parked vehicles that do not move at all) are constructed by the environmental data providing unit 980 as environmental data including roads.
(周辺移動物初期移動計画策定部810)
 他車を含む周辺移動物に関する情報から、周辺移動物初期移動計画策定部810でシミュレーション開始時点での移動計画が策定される。但し、周辺移動物初期移動計画策定部810が移動計画を策定するためには挙動記録部990より提供されるシナリオ開始予測時刻(シナリオ開始時点における指定された位置であるシナリオ開始位置に自車が到達する予測時刻であって、自車走行タイミング取得S120で取得されて挙動記録部990に保存された時刻)が必要となる上、周辺移動物制御部800に含まれる部分は周辺移動物が存在しない状況のシミュレーションでは動作不要なため、自車走行タイミング取得S120におけるシミュレーションを実施する場合には動作しない。
(Peripheral moving object initial movement plan formulation unit 810)
A surrounding moving object initial movement plan formulating unit 810 formulates a movement plan at the start of the simulation based on information about surrounding moving objects including other vehicles. However, in order for the surrounding moving object initial movement plan formulation unit 810 to formulate a movement plan, the estimated scenario start time provided by the behavior recording unit 990 (Predicted arrival time, which is the time acquired in own vehicle traveling timing acquisition S120 and stored in the behavior recording unit 990) is required. Since the operation is unnecessary in the simulation of the situation in which it is not performed, the operation is not performed when the simulation in the own vehicle travel timing acquisition S120 is performed.
(ドライバモデル部930)
 自車走行計画策定部920で策定された走行計画を基に、時刻に応じた走行計画に対応する指令がドライバモデル部930及び自車運転制御モデル部940に供給される。走行計画上、自車200の運転者が操作すべき内容はドライバモデル部930を介して自車運転制御モデル部940に供給される。自車走行計画策定部920から自車運転制御モデル部940に直接接続する経路があるのは、自車運転制御モデル部940の評価上、ドライバからは入力できない情報に対応するためである。例えば、この経路により、目標速度などドライバからは直接的に値を入力できないケースや、ドライバからは設定できない範囲であっても評価上設定したいケースに対応することが可能になる。
(Driver model section 930)
Based on the travel plan formulated by the own vehicle travel plan formulation unit 920 , a command corresponding to the travel plan corresponding to the time is supplied to the driver model unit 930 and the own vehicle driving control model unit 940 . The contents that the driver of the own vehicle 200 should operate in terms of the travel plan are supplied to the own vehicle driving control model unit 940 via the driver model unit 930 . The reason why there is a route directly connecting the own vehicle driving plan formulation unit 920 to the own vehicle driving control model unit 940 is that the evaluation of the own vehicle driving control model unit 940 corresponds to information that cannot be input by the driver. For example, this path makes it possible to deal with cases where the driver cannot directly input values such as the target speed, and cases where it is desired to set values for evaluation even if they cannot be set from the driver.
(自車運転制御モデル部940)
 自車運転制御モデル部940は、運転支援や自動運転の制御を行うモデルであり、本シミュレーション装置900による主要な評価対象である。自車運転制御モデル部940は、周辺センサモデル部970から得た自車200の周辺状況に基づく判断と自車走行計画策定部920やドライバモデル部930から出力される指示に従って、自車200のアクセル、ブレーキ、操舵などの走行に必要な指示を自車挙動モデル部950へ出す。
(Own vehicle driving control model unit 940)
The host vehicle driving control model unit 940 is a model that controls driving support and automatic driving, and is a main evaluation target of the simulation device 900 . The vehicle driving control model unit 940 controls the vehicle 200 according to the judgment based on the surrounding conditions of the vehicle 200 obtained from the surrounding sensor model unit 970 and the instructions output from the vehicle driving plan formulation unit 920 and the driver model unit 930. Instructions necessary for driving, such as acceleration, braking, and steering, are issued to the own vehicle behavior model section 950 .
(自車挙動モデル部950)
 自車挙動モデル部950は、自車運転制御モデル部940からの指示、及び環境再現部960からの道路に関する情報(路面の状態や勾配など)を基に、自車200の挙動計算を行う。
(Self-vehicle behavior model unit 950)
The own vehicle behavior model unit 950 calculates the behavior of the own vehicle 200 based on the instructions from the own vehicle driving control model unit 940 and the road information (such as road surface conditions and gradients) from the environment reproduction unit 960 .
(環境再現部960)
 環境再現部960は、環境データ提供部980から得られる道路及び道路周辺物や駐車車両の情報、自車挙動モデル部950から得られる自車200の挙動情報、及び周辺移動物挙動モデル部830から得られる周辺移動物の挙動情報を基に、シミュレータ内の仮想空間を再現する。
(Environment reproduction unit 960)
The environment reproduction unit 960 obtains information on the road, objects around the road, and parked vehicles obtained from the environment data providing unit 980, behavior information of the own vehicle 200 obtained from the own vehicle behavior model unit 950, and information from the surrounding moving object behavior model unit 830. The virtual space in the simulator is reproduced based on the obtained information on the behavior of surrounding moving objects.
(周辺センサモデル部970)
 環境再現部960で再現した仮想空間の情報は、周辺センサモデル部970に提供され、周辺センサモデル部970は、提供された情報を基に、自車200の周辺センサ(カメラ、レーダ、Lidar、超音波、GNSSなど)を模擬し、それら周辺センサの出力に相当する情報を自車運転制御モデル部940に提供する。周辺センサモデル部970は、一部に限定される場合もあるが、本シミュレーション装置900による主要な評価対象になり得る。
(Peripheral sensor model unit 970)
The information of the virtual space reproduced by the environment reproduction unit 960 is provided to the peripheral sensor model unit 970, and the peripheral sensor model unit 970 uses the peripheral sensors (camera, radar, lidar, Ultrasonic waves, GNSS, etc.) are simulated, and information corresponding to the outputs of these peripheral sensors is provided to the own vehicle driving control model unit 940 . The peripheral sensor model unit 970 can be a main evaluation target by the simulation device 900, although it may be limited to a part.
(挙動記録部990)
 環境再現部960で再現した仮想空間に関する情報は挙動記録部990にも提供され、挙動記録部990は、自車200や周辺移動物の位置情報や挙動情報など、評価に必要となる情報を時系列で記録する。この際、衝突(接触)など何かイベントが発生した際に、より詳細な情報を記録することも考えられる。
(Behavior recording unit 990)
Information about the virtual space reproduced by the environment reproducing unit 960 is also provided to the behavior recording unit 990, and the behavior recording unit 990 stores information necessary for evaluation, such as position information and behavior information of the own vehicle 200 and surrounding moving objects. Record in series. At this time, it is conceivable to record more detailed information when some event such as collision (contact) occurs.
(結果確認部995)
 挙動記録部990で記録した情報は結果確認部995に提供され、評価結果NGケースや評価に失敗したケースなどの抽出などに用いられる。
(Result confirmation unit 995)
The information recorded by the behavior recording unit 990 is provided to the result confirmation unit 995, and is used for extraction of evaluation result NG cases, evaluation failure cases, and the like.
 なお、本実施例の結果確認部995には異常挙動を確認する機能も有するため、この機能を用いて異常終了判定も行う。必要な期間の情報を全て取得したことを確認する上で挙動記録部990も終了判定には必要である。 Note that the result confirmation unit 995 of this embodiment also has a function of confirming abnormal behavior, so this function is also used to determine abnormal termination. The behavior recording unit 990 is also necessary for end determination in order to confirm that all the information for the required period has been acquired.
 また、本実施例では、シミュレーション実行中の途中経過は挙動記録部990で行い、最終的な確認結果(自車が正常に走行完了したか、他車への接触や緊急ブレーキなどの異常によりシミュレーション終了したか等)は結果確認部995により行う。 In this embodiment, the behavior recording unit 990 performs the progress during the simulation, and the final confirmation result (whether the own vehicle has completed running normally, or whether the simulation is performed due to an abnormality such as contact with another vehicle or emergency braking) completed, etc.) is performed by the result confirmation unit 995 .
(周辺移動物初期移動計画策定部810)
 周辺移動物初期移動計画策定部810では、前述の周辺交通参加者の移動計画策定S130で行う内容に相当する処理を行う(図4及び図5を併せて参照)。
(Peripheral moving object initial movement plan formulation unit 810)
The peripheral moving object initial movement plan formulating unit 810 performs processing corresponding to the contents of the aforementioned peripheral traffic participant movement plan formulating S130 (see also FIGS. 4 and 5).
(周辺移動物移動計画更新部820、自車挙動比較部840)
 周辺移動物初期移動計画策定部810の出力と、自車挙動比較部840から得られる自車200の単独走行により挙動記録部990で取得した位置情報に対する周辺移動物も含めてシミュレーションを行っている状況での自車200の位置情報の比較結果を基に、周辺移動物移動計画更新部820は、予測時間の変化(更新シナリオ開始予測時刻)に応じた移動計画の更新を行い、各周辺移動物に対して挙動の指示(挙動を調整する指示)を出す。この移動計画の更新は、前述の周辺交通参加者の移動計画更新S160の処理に相当し、図5、図6、図7及び図8を用いて説明した内容である。
(Peripheral moving object movement plan update unit 820, own vehicle behavior comparison unit 840)
The output of the surrounding moving object initial movement planning unit 810 and the position information acquired by the behavior recording unit 990 from the own vehicle 200 traveling alone obtained from the own vehicle behavior comparing unit 840 are simulated including surrounding moving objects. Based on the comparison result of the position information of the own vehicle 200 in the situation, the peripheral moving object movement plan update unit 820 updates the movement plan according to the change in the predicted time (updating scenario start predicted time). Issue behavior instructions (instructions to adjust behavior) to objects. This update of the movement plan corresponds to the process of updating the movement plan of the surrounding traffic participant S160 described above, and has the contents described with reference to FIGS. 5, 6, 7 and 8.
(周辺移動物挙動モデル部830)
 周辺移動物挙動モデル部830は、周辺移動物移動計画更新部820からの挙動指示に従い、環境再現部960から得られる仮想空間の状況も考慮した上で、各周辺移動物をそれぞれの挙動モデルに従い、移動させる。移動させた結果は環境再現部960に提供され、仮想空間の状況の更新に用いられる。
(Peripheral moving object behavior model unit 830)
The peripheral moving object behavior model unit 830 follows the behavior instruction from the peripheral moving object movement plan updating unit 820, and also considers the situation of the virtual space obtained from the environment reproduction unit 960. , to move. The result of the movement is provided to the environment reproducing section 960 and used to update the situation of the virtual space.
 なお、自車運転制御モデル部940は、評価対象となる運転支援や自動運転の制御を行う実際のソフトウェアや電子制御装置である場合も考えられる。周辺センサモデル部970も部分的な場合もあるが、評価対象となる周辺センサを構成する実際のソフトウェアや電子制御装置を用いる場合も考えられる。 It should be noted that the own vehicle driving control model unit 940 may be actual software or an electronic control device that controls driving support and automatic driving to be evaluated. The peripheral sensor model unit 970 may also be partial, but it is also conceivable to use actual software or an electronic control device that configures the peripheral sensor to be evaluated.
 本実施例に示す方法及び装置を用いることで、自動運転機能や運転支援機能を、評価シナリオに沿う形でシミュレーションする場合、評価シナリオ開始状態に至る状況を評価シナリオの初期条件から自動的に、かつ、周辺車両等の移動物に現実的な動きをさせて発生させることができる。したがって、評価対象である自車200の内部状態を評価シナリオ開始前から現実に発生し得る状態にした上での評価シナリオによる評価を容易に実施可能となる。 By using the method and apparatus shown in the present embodiment, when simulating the automatic driving function and the driving support function in accordance with the evaluation scenario, the situation leading to the evaluation scenario start state is automatically set from the initial conditions of the evaluation scenario. In addition, moving objects such as surrounding vehicles can be caused to move realistically. Therefore, it is possible to easily perform an evaluation based on an evaluation scenario after setting the internal state of the own vehicle 200 to be evaluated to a state that can actually occur before the start of the evaluation scenario.
[実車両への搭載例]
 本実施例に示す方法及び装置は、実際の車両等に搭載することで、実際の交通環境において、自車200と周辺交通参加者の位置関係がリスクの高い状況になることを防止するために活用することも考えられる。すなわち、予めリスクの高い位置、速度、加速度関係を車両に搭載するシステムに登録しておき、そのような状況になりそうと予測できる場合には、自車200から周辺交通参加者に対してリスクの低い状態となるよう速度計画の変更を要求し、周辺交通参加者はその要求が適切かを判断した上で、速度計画を見直すことが考えられる。
[Installation example on actual vehicle]
The method and apparatus shown in this embodiment are installed in an actual vehicle or the like to prevent the positional relationship between the own vehicle 200 and surrounding traffic participants from becoming a high-risk situation in an actual traffic environment. Utilization is also considered. In other words, high-risk positions, speeds, and acceleration relationships are registered in advance in a system installed in the vehicle, and if such a situation can be predicted, the vehicle 200 can transmit the risk to surrounding traffic participants. It is conceivable that a change in the speed plan will be requested so that the speed is low, and that the surrounding traffic participants will judge whether the request is appropriate and then review the speed plan.
[作用効果]
 以上で説明したように、本実施例のシミュレーション方法は、車両挙動のシミュレーションを行うシミュレーション方法であって、対象車両(自車200)の挙動を検証するためのシナリオの開始時点における前記対象車両の位置及び速度、ならびに、前記対象車両の周辺に存在する移動物の位置及び速度を指定し、前記シナリオの開始時点における前記指定された位置であるシナリオ開始位置に前記対象車両が到達する予測時刻(シナリオ開始予測時刻)を求め、前記対象車両が前記シナリオ開始位置に到達する予測時刻において、前記移動物の位置及び速度が指定された値となるよう(前記移動物が前記指定された位置及び速度となるよう)、指定時間当たりの速度変化範囲(加速度範囲)を制限して前記移動物の移動を調整する(前記移動物の移動計画の更新を行う)。
[Effect]
As described above, the simulation method of the present embodiment is a simulation method for simulating the behavior of the target vehicle (self-vehicle 200). The position and speed, as well as the position and speed of a moving object existing around the target vehicle, are specified, and the predicted time at which the target vehicle reaches the scenario start position, which is the specified position at the start of the scenario ( (Predicted scenario start time) is obtained, and the position and speed of the moving object are set to the specified values at the predicted time when the target vehicle reaches the scenario start position. ), restricting the speed change range (acceleration range) per specified time to adjust the movement of the moving object (updating the movement plan of the moving object).
 また、前記予測時刻ならびに前記指定された前記移動物の位置及び速度に基づいて、前記移動物の移動計画を策定し、前記策定された移動計画を用いて、前記対象車両及び前記移動物を含めたシミュレーションを開始し、前記シミュレーションの実行中の任意のタイミングで前記予測時刻に変化があるかを判断し、前記予測時刻が変化した(前記予測時刻に変化がある)場合には、当該予測時刻の変化に応じて前記移動物の移動計画の更新を行う。 Also, based on the predicted time and the specified position and speed of the moving object, a movement plan of the moving object is formulated, and the planned movement plan is used to include the target vehicle and the moving object. start the simulation, determine whether the predicted time has changed at any timing during the execution of the simulation, and if the predicted time has changed (the predicted time has changed), the predicted time The movement plan of the moving object is updated in accordance with the change of .
 また、本実施例のシミュレーション装置は、車両挙動のシミュレーションを行うシミュレーション方法を実現するシミュレーション装置であって、コンピュータ(プロセッサ)が、対象車両(自車200)の挙動を検証するためのシナリオの開始時点における前記対象車両の位置及び速度、ならびに、前記対象車両の周辺に存在する移動物の位置及び速度を指定し、前記シナリオの開始時点における前記指定された位置であるシナリオ開始位置に前記対象車両が到達する予測時刻(シナリオ開始予測時刻)を求め、前記対象車両が前記シナリオ開始位置に到達する予測時刻において、前記移動物の位置及び速度が指定された値となるよう(前記移動物が前記指定された位置及び速度となるよう)、指定時間当たりの速度変化範囲(加速度範囲)を制限して前記移動物の移動を調整する(前記移動物の移動計画の更新を行う)。 Further, the simulation apparatus of the present embodiment is a simulation apparatus that realizes a simulation method for simulating vehicle behavior. The position and speed of the target vehicle at the time point and the position and speed of a moving object existing around the target vehicle are specified, and the target vehicle is placed at the scenario start position, which is the specified position at the start time of the scenario. is predicted to arrive at the target vehicle (predicted scenario start time), and at the predicted time at which the target vehicle arrives at the scenario start position, the position and speed of the moving object are set to specified values (the moving object is the The movement of the moving object is adjusted by limiting the speed change range (acceleration range) per specified time (the moving plan of the moving object is updated).
 また、コンピュータ(プロセッサ)が、前記予測時刻ならびに前記指定された前記移動物の位置及び速度に基づいて、前記移動物の移動計画を策定し、前記策定された移動計画を用いて、前記対象車両及び前記移動物を含めたシミュレーションを開始し、前記シミュレーションの実行中の任意のタイミングで前記予測時刻に変化があるかを判断し、前記予測時刻が変化した(前記予測時刻に変化がある)場合には、当該予測時刻の変化に応じて前記移動物の移動計画の更新を行う。 Further, a computer (processor) formulates a movement plan for the moving object based on the predicted time and the specified position and speed of the moving object, and uses the formulated movement plan to generate the target vehicle. and starting a simulation including the moving object, determining whether the predicted time has changed at any timing during execution of the simulation, and if the predicted time has changed (the predicted time has changed) Then, the movement plan of the moving object is updated according to the change in the predicted time.
 言い換えれば、まず、シナリオ開始からある程度手前の時刻となるシミュレーション実行開始時からシナリオ開始までの期間の評価対象車両(自車200)の時刻と位置の関係を、シミュレーション上で評価対象車両を単独走行させるなどの方法で、基準となる関係として取得する。そして、評価対象車両がシナリオ開始位置を通過するタイミングに合わせ、周辺の車両等で構成される各交通参加者の動きがシナリオ開始時に所望の状態となるよう、周辺の交通参加者ごとに挙動計画を策定する。シナリオによる評価をシミュレーション上で実行する際、評価対象車両の時刻と位置の基準となる関係と実際の評価対象車両の位置から、周辺の各交通参加者の挙動計画を適宜更新し、更新した挙動計画に合わせつつ評価対象車両がシナリオ開始位置を通過する際にシナリオの開始に存在すべきそれぞれの位置に各交通参加者が到達するように、各交通参加者の挙動に対しフィードバック制御を行う。フィードバック制御を行う際に、各交通参加者の挙動が不自然とならないように、パラメータの変化範囲(指定時間当たりの速度変化範囲)に制約を与える。 In other words, first, the relationship between the time and the position of the evaluation target vehicle (self-vehicle 200) in the period from the start of simulation execution, which is a time somewhat before the start of the scenario, to the start of the scenario, is determined by driving the evaluation target vehicle alone in the simulation. It is acquired as a reference relationship by a method such as Then, in accordance with the timing when the vehicle to be evaluated passes the scenario start position, the behavior of each traffic participant in the surrounding area is planned so that the movement of each traffic participant, which is composed of surrounding vehicles, etc., will be in the desired state at the start of the scenario. formulate When evaluating a scenario on a simulation, the behavior plan of each traffic participant in the vicinity is updated as appropriate based on the reference relationship between the time and position of the vehicle being evaluated and the actual position of the vehicle being evaluated, and the updated behavior is obtained. Feedback control is performed on the behavior of each traffic participant so that each traffic participant reaches the respective position where the scenario should be at the start of the scenario when the vehicle to be evaluated passes the scenario start position according to the plan. When feedback control is performed, the parameter change range (speed change range per specified time) is restricted so that the behavior of each traffic participant does not become unnatural.
 本実施例によれば、評価シナリオをシミュレーション上で再現する際、周辺の各交通参加者のシナリオ開始時の位置及び挙動を、シナリオ開始時のパラメータから容易に再現でき、シナリオ開始に至る周辺の各交通参加者の挙動も自然にすることができる。 According to this embodiment, when reproducing an evaluation scenario on a simulation, the positions and behaviors of surrounding traffic participants at the start of the scenario can be easily reproduced from the parameters at the start of the scenario. The behavior of each traffic participant can also be made natural.
 言い換えれば、自律的に動作する車両を評価するためのシナリオをシミュレーション上で再現する(自動運転/運転支援機能の評価シナリオに基づき車両のシミュレーションを行う際に、シナリオ開始状態を自動的に再現する)際に、当該シナリオの開始時点において、位置や速度、加速度など、シナリオの初期条件を満たす状態を、実際の交通環境で発生し得る自然な振る舞いを経る形で、容易にできるようになる。 In other words, a scenario for evaluating a vehicle that operates autonomously is reproduced in a simulation. ), at the start of the scenario, the state that satisfies the initial conditions of the scenario, such as position, velocity, and acceleration, can be easily achieved in the form of natural behavior that can occur in an actual traffic environment.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above configurations, functions, processing units, processing means, etc. may be realized in hardware, for example, by designing a part or all of them with an integrated circuit. Moreover, each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function. Information such as programs, tables, and files that implement each function can be stored in storage devices such as memory, hard disks, SSDs (Solid State Drives), or recording media such as IC cards, SD cards, and DVDs.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 In addition, control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it may be considered that almost all configurations are interconnected.
S110…自車走行定義作成、S120…自車走行タイミング取得、S130…周辺交通参加者の移動計画策定、S140…シミュレーション実行初期化、S150…シミュレーション1ステップ実行、S160…周辺交通参加者の移動計画更新、S170…シミュレーション終了判定処理、S180…シミュレーション結果記録、200…自車、201…自車のシナリオ開始位置Le、204…シナリオ開始時の自車の速度Ve、206…シナリオ開始時の自車の加速度Ae、211…シミュレーション開始時の自車の位置Le0、301…シミュレーション開始時の他車の位置L0(但し、移動計画上シナリオ開始位置から最も遠くに配置できる場合)、307…現在の自車の位置Lec、310…他車X、312…シナリオ開始時の他車Xの自車からの相対距離Df1、314…シナリオ開始時の他車Xの速度Vf1、316…シナリオ開始時の他車Xの加速度Af1、320…他車Y、322…シナリオ開始時の他車Yの自車からの相対距離Df2、324…シナリオ開始時の他車Yの速度Vf2、326…シナリオ開始時の他車Yの加速度Af2、360…駐車車両、361…駐車車両の位置Lp、410…本線、460…合流路、470…加速車線、510…他車の速度計画、511…他車の走行開始速度Vfp0、512…他車の加速度変更期間に入る際の速度Vfp1、513…他車の等加速度期間に入る際の速度Vfp2、515…他車のシナリオ開始時の速度Vf、516…他車のシナリオ開始時の加速度Af、530…他車の走行開始時刻Tp0、531…他車の加速度変更期間に入る時刻Tp1、532…他車の等加速度期間に入る時刻Tp2、550…他車の初期シナリオ開始予測時刻Tssi、551…他車の初期速度計画(移動計画)、555…他車の更新シナリオ開始予測時刻Tssu、556…他車の更新した速度計画(移動計画)、565…現在のシミュレーション時刻Tc、567…予め取得した自車と走行距離の関係から求めた位置に相当する時刻Tcp、568…初期シナリオ開始予測時刻に対する早まり時間dT、570…補正した走行距離を表す領域、575…更新した速度計画(移動計画)における現在からシナリオ開始予測時刻までの走行距離を表す領域、610…シナリオ開始までの実残距離計算部、620…減算器、630…補正用加速度計算部、640…加算器、650…シナリオ開始時刻予測部、660…時刻シフトした速度計画策定部、670…予測シナリオ開始時刻までの計画距離計算部、680…計画加速度計算部、690…加速度制限部、695…加速度指令、710…予め取得した自車と走行距離の関係、800…周辺移動物制御部、810…周辺移動物初期移動計画策定部、820…周辺移動物移動計画更新部、830…周辺移動物挙動モデル部、840…自車挙動比較部、900…シミュレーション装置、910…シナリオ条件設定部、920…自車走行計画策定部、930…ドライバモデル部、940…自車運転制御モデル部、950…自車挙動モデル部、960…環境再現部、970…周辺センサモデル部、980…環境データ提供部、990…挙動記録部、995…結果確認部 S110 Create own vehicle travel definition, S120 Acquire own vehicle travel timing, S130 Formulate movement plan of surrounding traffic participants, S140 Initialize execution of simulation, S150 Execute one step of simulation, S160 Movement plan of surrounding traffic participants Update, S170...Simulation end determination process, S180...Simulation result recording, 200...Self-vehicle, 201...Scenario start position Le of own vehicle, 204...Self-vehicle speed Ve at scenario start, 206...Self-vehicle at scenario start Acceleration Ae 211 Position of own vehicle at simulation start Le0 301 Position of other vehicle at simulation start L0 (provided that it can be placed furthest from the scenario start position in terms of movement plan) 307 Present vehicle Vehicle position Lec, 310 Other vehicle X, 312 Relative distance of other vehicle X from own vehicle at scenario start Df1, 314 Velocity of other vehicle X at scenario start Vf1, 316 Other vehicle at scenario start Acceleration of X Af1, 320 Other vehicle Y, 322 Relative distance of other vehicle Y from own vehicle at scenario start Df2, 324 Velocity of other vehicle Y at scenario start Vf2, 326 Other vehicle at scenario start Acceleration Af2 of Y, 360 Parked vehicle 361 Parked vehicle position Lp 410 Main line 460 Merging road 470 Acceleration lane 510 Other vehicle speed plan 511 Other vehicle running start speed Vfp0 512... Speed Vfp1 when the other vehicle enters the acceleration change period, 513... Speed Vfp2 when the other vehicle enters the constant acceleration period, 515... Speed Vf when the scenario of the other vehicle starts, 516... When the scenario of the other vehicle starts Acceleration Af, 530... Time when the other vehicle starts running Tp0, 531... Time when the other vehicle enters the acceleration change period Tp1, 532... Time when the other vehicle enters the constant acceleration period Tp2, 550... Predicted initial scenario start time of the other vehicle Tssi, 551... Initial speed plan (movement plan) of other vehicle, 555... Predicted update scenario start time Tssu of other vehicle, 556... Updated speed plan (movement plan) of other vehicle, 565... Current simulation time Tc, 567 ... Time Tcp corresponding to the position obtained from the relationship between the own vehicle and the travel distance obtained in advance, 568 ... Advance time dT with respect to the initial scenario start prediction time, 570 ... Area representing the corrected travel distance, 575 ... Updated speed plan ( 610 ... Actual remaining distance calculation unit until scenario start time 620 ... Subtractor 630 ... Correction acceleration calculation unit 640 ... Adder , 650... Scenario start time prediction unit 660... Time-shifted speed plan formulation unit 670... Planned distance calculation unit to predicted scenario start time 680... Planned acceleration calculation unit 690... Acceleration limit unit 695... Acceleration command, 710 -- Pre-obtained relationship between own vehicle and traveling distance 800 -- Peripheral moving object control unit 810 -- Peripheral moving object initial movement plan formulating unit 820 -- Peripheral moving object movement plan updating unit 830 -- Peripheral moving object behavior model unit , 840 Own vehicle behavior comparison unit 900 Simulation device 910 Scenario condition setting unit 920 Own vehicle driving plan formulation unit 930 Driver model unit 940 Own vehicle driving control model unit 950 Own vehicle behavior Model part 960... Environment reproduction part 970... Peripheral sensor model part 980... Environment data provision part 990... Behavior recording part 995... Result confirmation part

Claims (12)

  1.  車両挙動のシミュレーションを行うシミュレーション方法であって、
     対象車両の挙動を検証するためのシナリオの開始時点における前記対象車両の位置及び速度、ならびに、前記対象車両の周辺に存在する移動物の位置及び速度を指定し、
     前記シナリオの開始時点における前記指定された位置であるシナリオ開始位置に前記対象車両が到達する予測時刻を求め、
     前記対象車両が前記シナリオ開始位置に到達する予測時刻において、前記移動物の位置及び速度が指定された値となるよう、指定時間当たりの速度変化範囲を制限して前記移動物の移動を調整することを特徴とする、シミュレーション方法。
    A simulation method for simulating vehicle behavior, comprising:
    Designating the position and speed of the target vehicle at the start of a scenario for verifying the behavior of the target vehicle, and the position and speed of moving objects existing around the target vehicle;
    obtaining a predicted time at which the target vehicle will reach the scenario start position, which is the specified position at the start of the scenario;
    Adjusting the movement of the moving object by restricting a speed change range per specified time so that the position and speed of the moving object become specified values at the predicted time when the target vehicle reaches the scenario start position. A simulation method characterized by:
  2.  請求項1に記載のシミュレーション方法において、
     前記予測時刻ならびに前記指定された前記移動物の位置及び速度に基づいて、前記移動物の移動計画を策定し、前記策定された移動計画を用いて、前記対象車両及び前記移動物を含めたシミュレーションを開始し、
     前記シミュレーションの実行中の任意のタイミングで前記予測時刻に変化があるかを判断し、前記予測時刻が変化した場合には、当該予測時刻の変化に応じて前記移動物の移動計画の更新を行うことを特徴とする、シミュレーション方法。
    In the simulation method according to claim 1,
    formulating a movement plan of the moving object based on the predicted time and the specified position and speed of the moving object, and using the formulated movement plan, performing a simulation including the target vehicle and the moving object; and start
    It is determined at any timing during execution of the simulation whether or not the predicted time has changed, and if the predicted time has changed, the movement plan of the moving object is updated according to the change in the predicted time. A simulation method characterized by:
  3.  請求項1に記載のシミュレーション方法において、
     前記対象車両が前記シナリオ開始位置に到達する前記予測時刻を算出するために、前記対象車両を単独で走行させてシミュレーションを実行し、当該シミュレーションを実行して得られた前記対象車両の時刻と位置の関係を参照することを特徴とする、シミュレーション方法。
    In the simulation method according to claim 1,
    In order to calculate the predicted time at which the target vehicle reaches the scenario start position, the target vehicle is run alone and a simulation is executed, and the time and position of the target vehicle obtained by executing the simulation. A simulation method, characterized by referring to the relationship of
  4.  請求項2に記載のシミュレーション方法において、
     前記移動物の移動計画の策定は速度により行い、前記速度が連続的に変化するように前記移動物の移動計画を計画することを特徴とする、シミュレーション方法。
    In the simulation method according to claim 2,
    A simulation method, wherein the movement plan of the moving object is determined based on speed, and the movement plan of the moving object is planned so that the speed changes continuously.
  5.  請求項2に記載のシミュレーション方法において、
     前記移動物の移動計画の更新の結果は、前記策定された移動計画を時間的にずらした計画であり、
     前記移動物の移動計画の更新の結果に基づくと前記シナリオの開始時点における前記移動物の位置までの距離に対して過不足する移動距離を補償する調整を加えて前記移動物の挙動を調整することを特徴とする、シミュレーション方法。
    In the simulation method according to claim 2,
    a result of updating the moving plan of the moving object is a plan obtained by shifting the determined moving plan in terms of time;
    Adjusting the behavior of the moving object by adding an adjustment that compensates for a movement distance that is excessive or insufficient with respect to the distance to the position of the moving object at the start of the scenario based on the update result of the movement plan of the moving object. A simulation method characterized by:
  6.  請求項1に記載のシミュレーション方法において、
     前記対象車両は、前記対象車両の周辺に存在する移動物が存在する道路とは異なる道路から前記移動物が存在する道路に合流させることを特徴とする、シミュレーション方法。
    In the simulation method according to claim 1,
    The simulation method, wherein the target vehicle is made to join the road on which the moving object exists from a road different from the road on which the moving object exists around the target vehicle.
  7.  請求項1に記載のシミュレーション方法において、
     前記対象車両及び前記対象車両の周辺に存在する移動物の少なくとも1つが所定の速度範囲を逸脱した際にシミュレーションを終了することを特徴とする、シミュレーション方法。
    In the simulation method according to claim 1,
    A simulation method, wherein the simulation is terminated when at least one of the target vehicle and moving objects existing around the target vehicle deviates from a predetermined speed range.
  8.  請求項1に記載のシミュレーション方法において、
     前記対象車両が前記対象車両の周辺に存在する移動物と接触した際にシミュレーションを終了することを特徴とする、シミュレーション方法。
    In the simulation method according to claim 1,
    A simulation method, wherein the simulation is terminated when the target vehicle comes into contact with a moving object existing in the vicinity of the target vehicle.
  9.  請求項1に記載のシミュレーション方法において、
     前記対象車両の周辺に存在する移動物が他の前記対象車両の周辺に存在する移動物と接触した際にシミュレーションを終了することを特徴とする、シミュレーション方法。
    In the simulation method according to claim 1,
    A simulation method, wherein the simulation is terminated when a moving object existing around the target vehicle comes into contact with another moving object existing around the target vehicle.
  10.  請求項1に記載のシミュレーション方法において、
     前記対象車両が前記シナリオの開始時点における前記指定された位置であるシナリオ開始位置を通過した際に、前記対象車両及び前記対象車両の周辺に存在する移動物の状態を確認し、前記シナリオの開始時点における条件から所定の範囲以上逸脱した場合にシミュレーションを終了することを特徴とする、シミュレーション方法。
    In the simulation method according to claim 1,
    When the target vehicle passes the scenario start position, which is the specified position at the start of the scenario, the states of the target vehicle and moving objects existing around the target vehicle are confirmed, and the scenario is started. A simulation method, comprising the step of terminating the simulation when the conditions at the point in time deviate from the conditions by a predetermined range or more.
  11.  車両挙動のシミュレーションを行うシミュレーション方法を実現するシミュレーション装置であって、
     対象車両の挙動を検証するためのシナリオの開始時点における前記対象車両の位置及び速度、ならびに、前記対象車両の周辺に存在する移動物の位置及び速度を指定し、
     前記シナリオの開始時点における前記指定された位置であるシナリオ開始位置に前記対象車両が到達する予測時刻を求め、
     前記対象車両が前記シナリオ開始位置に到達する予測時刻において、前記移動物の位置及び速度が指定された値となるよう、指定時間当たりの速度変化範囲を制限して前記移動物の移動を調整することを特徴とする、シミュレーション装置。
    A simulation device for realizing a simulation method for simulating vehicle behavior,
    Designating the position and speed of the target vehicle at the start of a scenario for verifying the behavior of the target vehicle, and the position and speed of moving objects existing around the target vehicle;
    obtaining a predicted time at which the target vehicle will reach the scenario start position, which is the specified position at the start of the scenario;
    Adjusting the movement of the moving object by restricting a speed change range per specified time so that the position and speed of the moving object become specified values at the predicted time when the target vehicle reaches the scenario start position. A simulation device characterized by:
  12.  請求項11に記載のシミュレーション装置において、
     前記予測時刻ならびに前記指定された前記移動物の位置及び速度に基づいて、前記移動物の移動計画を策定し、前記策定された移動計画を用いて、前記対象車両及び前記移動物を含めたシミュレーションを開始し、
     前記シミュレーションの実行中の任意のタイミングで前記予測時刻に変化があるかを判断し、前記予測時刻が変化した場合には、当該予測時刻の変化に応じて前記移動物の移動計画の更新を行うことを特徴とする、シミュレーション装置。
    In the simulation device according to claim 11,
    formulating a movement plan of the moving object based on the predicted time and the specified position and speed of the moving object, and using the formulated movement plan, performing a simulation including the target vehicle and the moving object; and start
    It is determined at any timing during execution of the simulation whether or not the predicted time has changed, and if the predicted time has changed, the movement plan of the moving object is updated according to the change in the predicted time. A simulation device characterized by:
PCT/JP2021/034336 2021-02-24 2021-09-17 Simulation method and device WO2022180901A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112021006082.1T DE112021006082T5 (en) 2021-02-24 2021-09-17 SIMULATION METHOD AND APPARATUS
JP2023502045A JPWO2022180901A1 (en) 2021-02-24 2021-09-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-027502 2021-02-24
JP2021027502 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022180901A1 true WO2022180901A1 (en) 2022-09-01

Family

ID=83048738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034336 WO2022180901A1 (en) 2021-02-24 2021-09-17 Simulation method and device

Country Status (3)

Country Link
JP (1) JPWO2022180901A1 (en)
DE (1) DE112021006082T5 (en)
WO (1) WO2022180901A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140195093A1 (en) * 2013-01-04 2014-07-10 Carnegie Mellon University Autonomous Driving Merge Management System
WO2015132863A1 (en) * 2014-03-03 2015-09-11 三菱電機株式会社 Simulation system, simulation setting device, and simulation method
JP2016206879A (en) * 2015-04-21 2016-12-08 本田技研工業株式会社 Parameter classification device, and movable body simulated motion generating device and movable body motion generating device based on parameter classification device
JP2019073271A (en) * 2017-10-12 2019-05-16 本田技研工業株式会社 Autonomous travel vehicle policy creation
JP2019117329A (en) * 2017-12-27 2019-07-18 日立オートモティブシステムズ株式会社 Traffic flow control device and data structure of travel scenario
JP2020502615A (en) * 2016-10-14 2020-01-23 ズークス インコーポレイテッド Scenario description language for autonomous vehicle simulation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140195093A1 (en) * 2013-01-04 2014-07-10 Carnegie Mellon University Autonomous Driving Merge Management System
WO2015132863A1 (en) * 2014-03-03 2015-09-11 三菱電機株式会社 Simulation system, simulation setting device, and simulation method
JP2016206879A (en) * 2015-04-21 2016-12-08 本田技研工業株式会社 Parameter classification device, and movable body simulated motion generating device and movable body motion generating device based on parameter classification device
JP2020502615A (en) * 2016-10-14 2020-01-23 ズークス インコーポレイテッド Scenario description language for autonomous vehicle simulation
JP2019073271A (en) * 2017-10-12 2019-05-16 本田技研工業株式会社 Autonomous travel vehicle policy creation
JP2019117329A (en) * 2017-12-27 2019-07-18 日立オートモティブシステムズ株式会社 Traffic flow control device and data structure of travel scenario

Also Published As

Publication number Publication date
DE112021006082T5 (en) 2023-10-12
JPWO2022180901A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
CN108692734B (en) Path planning method and device
CN113032285B (en) High-precision map testing method and device, electronic equipment and storage medium
CN110209146B (en) Test method, device and equipment for automatic driving vehicle and readable storage medium
CN110333730A (en) Verification method, platform and the storage medium of automatic Pilot algorithm expectation function safety
US10474150B2 (en) Method for automatic movement controlling of a vehicle
JP2009018623A (en) Travel controller
US20210253118A1 (en) Autonomous vehicle actuation dynamics and latency identification
US11492008B2 (en) Model reference adaptive control algorithm to address the vehicle actuation dynamics
KR20200094593A (en) Failure safety test evaluation system and the method for autonomous vehicle
JP2016186683A (en) Driving support device
Yu et al. Space-based collision avoidance framework for autonomous vehicles
WO2022100835A1 (en) Computing system and method for trajectory planning in a simulation road driving environment
WO2023056227A1 (en) Autonomous lateral control of vehicle using direct yaw moment control and path tracking control for self-driving of vehicle with yaw moment distribution
CN110705061B (en) Tramcar signal system performance simulation method
US20230394896A1 (en) Method and a system for testing a driver assistance system for a vehicle
CN114537441A (en) Vehicle driving intention prediction method, device and system and vehicle
WO2022180901A1 (en) Simulation method and device
US11650600B2 (en) Apparatus and method for controlling driving of vehicle
CN110083158B (en) Method and equipment for determining local planning path
WO2023145490A1 (en) Method for designing driving system and driving system
CN115718437A (en) Simulation method and device for networking automatic driving
CN118043250A (en) Trajectory planning method for motor vehicle driving maneuver, computer program product, computer readable storage medium and vehicle
CN115938106A (en) Automatic driving decision online verification method based on traffic participant accessibility analysis
CN114740752A (en) Simulation system for automatically driving vehicle
JP7364111B2 (en) Processing method, processing system, processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502045

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112021006082

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927997

Country of ref document: EP

Kind code of ref document: A1