WO2022180740A1 - Carbon dioxide gas recovery type hydrogen production system utilizing lng - Google Patents

Carbon dioxide gas recovery type hydrogen production system utilizing lng Download PDF

Info

Publication number
WO2022180740A1
WO2022180740A1 PCT/JP2021/007085 JP2021007085W WO2022180740A1 WO 2022180740 A1 WO2022180740 A1 WO 2022180740A1 JP 2021007085 W JP2021007085 W JP 2021007085W WO 2022180740 A1 WO2022180740 A1 WO 2022180740A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
lng
carbon dioxide
supplied
hydrogen
Prior art date
Application number
PCT/JP2021/007085
Other languages
French (fr)
Japanese (ja)
Inventor
信三 伊藤
Original Assignee
株式会社 ユーリカ エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ユーリカ エンジニアリング filed Critical 株式会社 ユーリカ エンジニアリング
Priority to JP2021525619A priority Critical patent/JP6951613B1/en
Priority to PCT/JP2021/007085 priority patent/WO2022180740A1/en
Publication of WO2022180740A1 publication Critical patent/WO2022180740A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry

Definitions

  • the present invention relates to a hydrogen production system, and more particularly to a hydrogen production system that utilizes LNG and can efficiently recover carbon dioxide gas.
  • COP24 adopted an implementation policy to operate a framework for global warming countermeasures, and an international framework in which almost all countries that emit greenhouse gases participate has begun to move.
  • the greatest target for global warming countermeasures is fossil fuel-derived thermal power generation, but society's interest in the power source of automobiles is increasing from the viewpoint of global warming and environmental pollution of exhaust gas, and fossil fuel-derived internal combustion locomotives are being developed. There is a movement to ban its manufacture and sale in the future. Therefore, storage batteries, hydrogen, and CCUS are attracting attention as global warming countermeasure technologies.
  • CCUS is the reuse or underground storage of carbon dioxide generated when fossil fuels are used.
  • Patent Document 1 discloses a reforming unit 1 that steam-reforms a raw material gas to reform it into a reformed gas containing hydrogen and carbon dioxide, and separates the obtained reformed gas into hydrogen gas and off-gas.
  • a hydrogen separation unit 2 that sends out hydrogen gas, a carbon dioxide recovery unit 3 that separates and recovers carbon dioxide gas from off-gas, and a combustion device 12b that is provided in the reforming unit 1 from the recovery unit 3 to recover the off-gas from which the carbon dioxide gas is recovered.
  • a combustion device 12b that is provided in the reforming unit 1 from the recovery unit 3 to recover the off-gas from which the carbon dioxide gas is recovered.
  • an off-gas supply line L4 for feeding the off-gas as fuel gas to the combustion device 12b together with the fuel gas.
  • the object of the present invention is to combine all carbon dioxide gas generated in hydrogen production into flue gas generated by fuel combustion for generating the heat required for steam reforming of natural gas and steam, and precool the flue gas.
  • LNG cold heat By exchanging LNG cold heat with LNG in the LNG vaporizer, LNG is vaporized into natural gas, and all the carbon dioxide generated in hydrogen production is recovered at a low temperature, reducing the liquefaction power of carbon dioxide.
  • the present invention includes a natural gas supply device that vaporizes LNG supplied from the LNG supply device into natural gas and supplies it, and a combustion reaction between fuel and oxygen supplied from the oxygen supply device in a combustion furnace, and reforming with combustion heat.
  • a steam reformer for generating a reformed gas by heating a vessel and causing a steam reforming reaction between the natural gas and steam supplied to the reformer in the presence of a reforming catalyst;
  • a reformed gas cooling device that is connected and cools the supplied reformed gas; and a carbon monoxide gas that is supplied with the reformed gas cooled from the reformed gas cooling device and contained in the reformed gas.
  • a shift reactor for generating a mixed gas containing hydrogen gas and carbon dioxide by causing a shift reaction with water vapor in the presence of a CO conversion catalyst; and a mixed gas cooling device connected to the shift reactor for cooling the supplied mixed gas.
  • a carbon dioxide gas recovery system utilizing LNG, provided with an LNG vaporizer for cooling to a low temperature and discharging the recovered carbon dioxide gas, and a carbon dioxide gas delivery device for delivering the recovered carbon dioxide gas discharged from the LNG vaporizer. It is a hydrogen production system.
  • the carbon dioxide recovery type hydrogen production system utilizing LNG of the present invention heats natural gas obtained by vaporizing LNG and steam in the presence of a reforming catalyst to steam reform, and shift reaction of the reformed gas with steam.
  • a mixed gas containing hydrogen and carbon dioxide is produced by the hydrogen separator, and the mixed gas is separated into hydrogen gas and off-gas by a hydrogen separator, and the hydrogen gas is sent out.
  • the off-gas, along with natural gas, is sent as fuel to the combustion furnace of the steam reformer and undergoes a combustion reaction with oxygen for the heating required for steam reforming.
  • the flue gas is precooled in the flue gas cooling device and then cooled to a low temperature by exchanging LNG cold heat with LNG in the LNG vaporizer.
  • FIG. 1 is a block diagram showing the overall configuration of a carbon dioxide recovery type hydrogen production system utilizing LNG according to a first embodiment
  • FIG. It is a figure which shows the structure of the LNG vaporization apparatus of 1st Embodiment.
  • FIG. 2 is a block diagram showing the overall configuration of a carbon dioxide recovery type hydrogen production system utilizing LNG according to a second embodiment;
  • a carbon dioxide gas recovery type hydrogen production system 1a utilizing LNG according to the first embodiment as shown in FIG. , a steam reforming device 20, an oxygen supply device 24, a reformed gas cooling device 25, a shift reaction device 30, a mixed gas cooling device 35, a hydrogen separation device 40, a fuel supply circuit 50, and a combustion exhaust gas.
  • a cooling device 60 , a carbon dioxide delivery device 65 and a carbon dioxide liquefaction device 66 are provided.
  • the natural gas supply device 10 includes a LNG tank that stores LNG (liquefied natural gas) transported from a port by an LNG tank truck, and an LNG vaporizer 12 that vaporizes the liquefied natural gas supplied from the LNG tank to produce natural gas.
  • the LNG tank constitutes an LNG feeder 11 that feeds LNG to an LNG vaporizer 12 .
  • the natural gas supply device 10 vaporizes the LNG supplied from the LNG supply device 11 into natural gas in the LNG vaporizer 12 and supplies the natural gas to the steam reformer 20 through the pipeline 19 .
  • the steam reformer 20 includes a reformer 21 filled with a reforming catalyst, a water supply device 22 that supplies water to the reformer 21, and a combustion furnace 23 that heats the reformer 21 by burning fuel.
  • the reformer 21 is supplied with natural gas as a raw material from the natural gas supply device 10 through the pipeline 19 and is supplied with water or steam from the water supply device 22 .
  • the combustion furnace 23 is supplied with natural gas as fuel from the natural gas supply device 10 through a pipeline 19 and a pipeline 51 branched from the pipeline 19, and offgas from the hydrogen separator 40 through a pipeline 52 as fuel. supplied.
  • Oxygen is supplied from an oxygen supply device 24 to the combustion furnace 23 through a pipeline 26 , and the fuel and oxygen undergo a combustion reaction to generate combustion heat and heat the reformer 21 .
  • the water supplied to the reformer 21 becomes high-temperature steam, and methane gas contained in natural gas, for example, becomes steam as shown in chemical formulas (1) and (2) in the presence of high-temperature steam and a reforming catalyst.
  • a reforming reaction results in a reformed gas containing hydrogen, carbon dioxide and carbon monoxide.
  • CH 4 +2H 2 O ⁇ 4H 2 +CO 2 endothermic
  • CH 4 +H 2 O ⁇ 3H 2 +CO endothermic
  • a reformed gas cooling device 25 is connected to the steam reforming device 20 .
  • the reformed gas cooling device 25 is a known cooling device, in which the reformed gas passes through the high temperature side of the heat exchanger and the heat medium passes through the low temperature side of the heat exchanger. The temperature of the gas drops and the temperature of the heat transfer medium rises. The heat medium circulates between the low-temperature side of the heat exchanger and a radiator such as a radiator, and the heat is dissipated by the radiator to lower the temperature.
  • the reformed gas cooler 25 cools the hot reformed gas sent from the steam reformer 20 to a temperature suitable for the CO shift reaction in the CO shift reactor 30 .
  • the CO shift reactor 30 is supplied with the reformed gas cooled from the reformed gas cooling device 25, and the carbon monoxide gas and water vapor contained in the reformed gas are represented by the chemical formula (3) in the presence of the CO conversion catalyst. , the reformed gas is transformed into a mixed gas containing hydrogen gas and carbon dioxide gas. CO + H2O ⁇ H2+ CO2 (exothermic) (3)
  • a mixed gas cooling device 35 is connected to the CO shift reactor 30 .
  • the mixed gas cooling device 35 is a known cooling device, and is configured such that a heat medium passes through a heat exchange coil and a mixed gas passes through a cooling chamber housing the heat exchange coil, and the mixed gas exchanges heat with the heat medium. is cooled to below the dew temperature and dehumidified.
  • the heat medium whose temperature rises by cooling the mixed gas is cooled by circulating, for example, a condensing unit.
  • the dehumidified mixed gas is supplied to a hydrogen separator (PSA) 40 .
  • PSA hydrogen separator
  • a known pressure swing adsorption (PSA) type hydrogen separator is used for the hydrogen separator 40.
  • a PSA type hydrogen separator has at least three adsorption towers, and each adsorption tower is filled with a combination of zeolitic adsorbent, activated carbon, silica gel, etc., as an adsorbent.
  • the hydrogen separation device 40 is provided with a pressure equalizing control valve on the hydrogen gas outflow side of each adsorption tower and a three-way switching valve on the offgas outflow side, and the switching of the flow direction is controlled by each three-way switching valve and the pressure equalizing control valve.
  • each adsorption tower repeats a series of treatment steps consisting of adsorption, equalizing pressure discharge, pressure reduction, washing, pressure equalization pressure injection, and pressure increase so as to perform a process that is shifted by one step from the adjacent adsorption tower, and the mixed gas is hydrogen gas and offgas and separate continuously.
  • Hydrogen gas separated from the mixed gas is sent to the hydrogen utilization device 45 .
  • hydrogen gas is utilized for power generation, iron manufacturing, ammonia production, smart cities, and the like.
  • the off-gas includes carbon dioxide contained in the mixed gas, hydrogen gas that could not be separated by the hydrogen separator 40, hydrogen gas for purging, and unreformed methane gas. It is delivered to the combustion furnace 23 of the quality device 20 .
  • the fuel supply circuit 50 has pipelines 19 and 51 connecting the natural gas supply device 10 and the combustion furnace 23, and a pipeline 52 connecting the hydrogen separator 40 and the combustion furnace 23.
  • the pipeline 52 is connected to the hydrogen separator.
  • An off-gas holder 53 is provided between the hydrogen separator 40 and the combustion furnace 23 to reduce the pulsation of the off-gas delivered from the hydrogen separator 40 .
  • the natural gas and the off-gas undergo a combustion reaction with oxygen supplied from the oxygen supply device in the combustion furnace 23 as shown in chemical formulas (4) and (5) to generate combustion heat and heat the reformer 21. and generate hot flue gas.
  • the high-temperature flue gas (mixed gas of carbon dioxide gas and water vapor) discharged from the combustion furnace 23 is heat-exchanged with LNG in the LNG vaporizer 12 provided in the natural gas supply device 10, and the LNG is vaporized into natural gas.
  • the high-temperature flue gas has a much larger amount of heat (sensible heat and latent heat) than the amount of heat required to vaporize LNG, and contains a large amount of water vapor. Therefore, in order to cool the carbon dioxide contained in the flue gas to the low temperature T1 in the LNG vaporizer 12 and vaporize the LNG into natural gas at the desired temperature T2, the flue gas is supplied to the LNG vaporizer 12. It must be precooled and dehumidified to a precooling temperature T3 corresponding to the temperatures T1 and T2.
  • the flue gas discharged from the combustion furnace 23 is supplied to the flue gas precooling device 60 to be precooled and dehumidified.
  • the flue gas precooling device 60 is a known cooling device, and cools the flue gas to a precooling temperature T3 below the dew point temperature while the cooling water passes through the heat exchange coils and the flue gas passes through the cooling chamber housing the heat exchange coils. After cooling, the water vapor contained in the flue gas is condensed, and the flue gas becomes pre-cooled flue gas containing carbon dioxide gas and saturated water vapor.
  • the cooling water heat-transferred from the flue gas is cooled by circulating, for example, a cooling tower.
  • the pre-cooled flue gas is supplied to the LNG vaporizer 12 and the condensed water is reused or discharged.
  • the LNG vaporizer 12 includes a vaporizer 15 that vaporizes the LNG supplied from the LNG supply device 11 into natural gas and sends it to the steam reformer 20, and a precooled flue gas precooled to a temperature T3 in the flue gas precooler 60. is converted into dry carbon dioxide containing almost no saturated water vapor, and then converted into recovered carbon dioxide and discharged. That is, the exhaust gas cooling device 70 cools the pre-cooled combustion exhaust gas to near the freezing temperature of water to condense the saturated water vapor into dry carbon dioxide, and then cools it to a low temperature T1 suitable for producing liquefied carbon dioxide to recover carbon dioxide. turn to gas.
  • the vaporizer 15 has a low temperature side 15b where LNG is vaporized into natural gas while flowing, and a high temperature side 15a where the non-freezing heat medium heated by the exhaust gas cooling device 70 flows.
  • the antifreeze heat medium flowing on the high temperature side 15a receives LNG cold heat transferred from the LNG flowing on the low temperature side 15b.
  • the exhaust gas cooling device 70 has a housing 74 formed with a gas passage 74c through which pre-cooled combustion exhaust gas flows in from an inlet 74a, becomes recovered carbon dioxide gas, and flows out from an outlet 74b.
  • 72 and second cooling coils 73 are sequentially housed in series from one side (inflow port 74a side) toward the other side (outflow port 74b side).
  • the first cooling coil 71 is provided with an outlet for the antifreezing heat medium on one side of the gas passage 74c and an inlet on the other side.
  • the second cooling coil 73 has an outlet for the non-freezing heat medium on one side of the gas passage 74c and an inlet on the other side.
  • a drain pan 75 is formed on the bottom surface of the gas passage 74c so as to face the lower surfaces of the first cooling coil 71 and the eliminator 72 .
  • a drain port 75a is provided on the bottom surface of the drain pan 75 .
  • the drain pan 75, the water flow port 75a, and the water seal 79 collect the condensed water captured by the first cooling coil 71 and the eliminator 72 from the saturated water vapor contained in the precooled combustion exhaust gas, and the condensed water flows out of the gas passage 74c. Construct an outflow part.
  • the exhaust gas cooling device 70 includes a first heat medium circulation circuit 76, a second heat medium circulation circuit 77, a non-freezing heat medium circulating through the first heat medium circulation circuit 76, and a non-freezing heat medium circulating through the second heat medium circulation circuit 77.
  • a heat exchanger 78 is provided to exchange heat with the freezing medium.
  • the non-freezing heat medium is circulated through the first cooling coil 71 and the high temperature side 78a of the heat exchanger 78 by a pump (not shown).
  • the antifreeze heat medium is circulated through the second cooling coil 73, the low temperature side 78b of the heat exchanger 78, and the high temperature side 15a of the vaporizer 15 by a pump (not shown).
  • the recovered carbon dioxide at the low temperature T1 that has flowed out of the exhaust gas cooling device 70 of the LNG vaporizer 12 is delivered to the carbon dioxide delivery device 65 .
  • the carbon dioxide gas delivery device 65 is composed of a pipe line 64 and a carbon dioxide gas liquefaction device 66, liquefies the recovered carbon dioxide gas into liquefied carbon dioxide gas, and supplies the carbon dioxide gas to the carbon dioxide utilization device 67 with high transportation efficiency.
  • the recovered carbon dioxide is used for hydrocarbon production, biofuel, greenhouse cultivation, civil engineering materials, carbon dioxide recovery and storage (CCS), enhanced oil development (EOR), and the like.
  • the liquefied carbon dioxide gas can be supplied to the carbon dioxide utilization device 67 at low cost and with high transportation efficiency by a tank truck, tanker, or the like.
  • the carbon dioxide liquefaction device 66 may not be provided in the carbon dioxide gas delivery device 65, and the recovered carbon dioxide cooled to a low temperature by the LNG vaporization device 12 may be supplied to the carbon dioxide utilization device 67 without being liquefied.
  • natural gas is supplied as fuel to the combustion furnace 23 of the steam reforming device 20, but if the off-gas sent from the hydrogen separation device 40 contains a large amount of combustible substances such as hydrogen, the natural gas is used in the combustion furnace. 23 need not be supplied.
  • the low temperature side 15b of the vaporizer 15 is supplied with LNG from the LNG supply device 11, and the high temperature side 15a is supplied with the antifreeze circulating through the second heat medium circulation circuit 77.
  • a heat carrier is supplied.
  • the LNG and the antifreezing heat medium exchange heat with the LNG cold heat in the vaporizer 15, the LNG is vaporized into natural gas and sent to the steam reformer 20, and the LNG cold heat is transferred to the antifreezing heat medium. It is cooled to a temperature lower than the low temperature T1 of the recovered carbon dioxide gas and returned to the second cooling coil 73 .
  • the cooled antifreeze heat medium cools the dry carbon dioxide gas flowing through the gas passage 74c to the low temperature T1, thereby raising the temperature.
  • the antifreezing heat medium whose temperature has risen flows through the second heat medium circulation circuit 77, the low temperature side 78b of the heat exchanger 78, the first heat medium circulation circuit 76, and the high temperature side 78a of the heat exchanger 78. It exchanges heat with the flowing antifreeze heat medium.
  • the non-freezing heat medium circulating in the second heat medium circulation circuit 77 is heated to a temperature equal to or higher than the freezing temperature of water and supplied to the high temperature side 15 a of the vaporizer 15 .
  • the non-freezing heat medium circulating in the first heat medium circulation circuit 76 is cooled to near the freezing temperature of water and supplied to the first cooling coil 71 .
  • the precooled flue gas precooled to the precooling temperature T3 by the flue gas precooling device 60 flows into the gas passage 74c from the inlet 74a and circulates through the first heat medium circulation circuit 76 while traversing the first cooling coil 71. Heat is exchanged with the heat medium and cooled to near the freezing temperature of water, and most of the saturated steam is condensed into dry carbon dioxide gas. Large water droplets condensed with saturated steam fall on the drain pan 75, and small water droplets floating in the dry carbon dioxide gas are caught by the eliminator 72, fall on the drain pan 75, and are collected. flow out.
  • the carbon dioxide contained in the precooled flue gas can be cooled to a low temperature T1 that is lower than the freezing temperature of water without freezing the saturated steam contained in the precooled flue gas. .
  • the reformer 21 of the steam reformer 20 is supplied with natural gas from the LNG vaporizer 12 and water or steam from the water supply device 22 .
  • the offgas supplied from the offgas holder 53 through the pipeline 52 and the natural gas supplied from the LNG vaporizer 10 through the pipelines 19 and 51 are combined with the oxygen supplied from the oxygen supply device 24.
  • Combustion reaction heats the reformer 21 .
  • the natural gas and steam are indirectly heated and undergo a steam reforming reaction under the reforming catalyst to produce a reformed gas containing hydrogen, carbon dioxide gas and carbon monoxide.
  • the reformed gas is cooled by the reformed gas cooling device 25 and supplied to the CO shift device 30 .
  • the CO shift device 30 causes a shift reaction of carbon monoxide and water vapor contained in the reformed gas in the presence of a CO conversion catalyst, converts the reformed gas into a mixed gas containing hydrogen and carbon dioxide gas, and sends the mixed gas to a mixed gas cooling device 35 .
  • the hydrogen separator 40 separates the mixed gas cooled and dehumidified by the mixed gas cooling device 35 into hydrogen gas and off-gas, and supplies the hydrogen gas to the hydrogen utilization device 45 .
  • the offgas is supplied to the combustion furnace 23 of the steam reformer 20 via the offgas holder 53 .
  • the off-gas delivered from the hydrogen separation device 40 accompanies pulsation, but the off-gas holder 53 stores the off-gas to dampen the pulsation, so that it can stably undergo a combustion reaction with oxygen in the combustion furnace 23 .
  • natural gas obtained by vaporizing LNG and steam are steam-reformed in the steam reformer 20 to generate a reformed gas, and the reformed gas undergoes a shift reaction to produce hydrogen gas and carbon dioxide gas.
  • a mixed gas is formed, the mixed gas is separated into hydrogen gas and off-gas by the hydrogen separator 40 , and the hydrogen gas is used by the hydrogen utilization device 45 .
  • the off-gas and natural gas are supplied to the combustion furnace 23 and burned with oxygen supplied from the oxygen supply device 24 to generate the amount of heat required for steam reforming.
  • the carbon dioxide contained in the off-gas and the carbon dioxide generated by the combustion of the hydrogen gas, unreformed methane gas, and natural gas contained in the off-gas can be combined into the flue gas discharged from the combustion furnace 23, Efficient recovery of carbon dioxide becomes possible.
  • the LNG is vaporized into natural gas and all the carbon dioxide generated in hydrogen production is removed. It can be cooled with LNG cold and recovered.
  • the combustion exhaust gas discharged from the combustion furnace 23 consists only of carbon dioxide gas and water vapor. It is possible to easily collect carbon dioxide gas. In addition, since the carbon dioxide gas is recovered at a low temperature, the liquefying power of the carbon dioxide gas can be reduced.
  • a carbon dioxide recovery type hydrogen production system 1b that utilizes LNG according to the second embodiment is provided with a water electrolysis device 70 that electrolyzes water, and steam reforms the generated oxygen. Since it is the same as the first embodiment except that it is supplied to the combustion furnace 23 of the device 20, the differences will be explained, and the same reference numerals will be given to the same components as the first embodiment. omitted.
  • a water electrolysis device 70 is installed to generate oxygen and hydrogen by electrolyzing water with power derived from renewable energy such as solar power generation and wind power generation.
  • the water electrolysis device 70 supplies the generated oxygen as the oxygen supply device 24 to the combustion furnace 23 of the steam reforming device 20 to burn the natural gas and off-gas supplied to the combustion furnace 23 .
  • the second embodiment has the same effects as the first embodiment, and the hydrogen and oxygen that are sent from the water electrolysis device 80 that electrolyzes water with the power 71 derived from renewable energy to the hydrogen utilization device 45 Both can be effectively utilized.
  • 1a, 1b carbon dioxide recovery type hydrogen production system utilizing LNG
  • 10 natural gas supply device
  • 11 LNG supply device
  • 12 LNG vaporization device
  • 19 pipeline
  • 20 steam reformer
  • 21 reform Qualityr
  • 22 Water supply device
  • 23 Combustion furnace
  • 24 Oxygen supply device
  • 25 Reformed gas cooling device
  • 30 CO shift device
  • 35 Mixed gas cooling device
  • 40 Hydrogen separation device
  • 45 Hydrogen Utilization device
  • 50 Fuel supply circuit 51, 52: Pipe line 53: Off gas holder
  • Carbon dioxide gas delivery device 66 Carbon dioxide gas liquefaction device
  • Carbon dioxide gas utilization device 70 Exhaust gas cooling device, 71: first cooling coil, 72: eliminator, 73: second cooling coil, 76: first heat medium circulation circuit, 77: second heat medium circulation circuit, 78: heat exchanger.

Abstract

In the present invention, water vapor and natural gas, which is produced by vaporizing LNG, are subjected to a water vapor reforming reaction and a shift reaction in the presence of a catalyst, and such reactant becomes a mixed gas that includes hydrogen and carbon dioxide gas. The mixed gas is separated by a hydrogen separation device into hydrogen gas and an off gas, and the hydrogen gas is fed to a hydrogen-using device. The off gas is sent to a combustion furnace as fuel for the heating required for water vapor reforming and is subjected, with oxygen supplied from an oxygen supply device, to a combustion reaction. A combustion exhaust gas that includes carbon dioxide gas and water vapor, after being pre-cooled by a combustion exhaust gas pre-cooling device, is subjected to heat exchange of LNG cold energy with LNG in an LNG vaporization device, the LNG is vaporized into natural gas, the combustion exhaust gas is cooled, the water vapor is condensed and the water content thereof is discharged, resulting in a low-temperature recovered carbon dioxide gas. Due to this configuration, all of the carbon dioxide gas generated during hydrogen production is collected in the combustion exhaust gas arising from combustion of fuel in the combustion furnace of a water vapor reforming device, and the carbon dioxide gas is brought to a low temperature and collected, thus making it possible to reduce liquefaction power for the carbon dioxide gas.

Description

LNGを活用する炭酸ガス回収式水素製造システムCarbon dioxide recovery type hydrogen production system using LNG
 本発明は、水素を製造するシステムに関し、特に、LNGを活用し、炭酸ガスを効率的に回収可能な水素製造システムに関する。 The present invention relates to a hydrogen production system, and more particularly to a hydrogen production system that utilizes LNG and can efficiently recover carbon dioxide gas.
 地球温暖化問題はますます深刻化を増しており、COP24で地球温暖化対策の枠組みを運用する実施方針が採択され、温暖化ガスを排出するほぼすべての国が参加する国際的枠組みが動きだした。地球温暖化対策の最大のターゲットは化石燃料由来の火力発電であるが、自動車の動力源に対しても地球温暖化と排ガスの環境汚染の観点から社会の関心が高まり、化石燃料由来内燃機関車は、将来その製造・販売を禁止する動きがある。
 そこで、地球温暖化対策技術として、蓄電池、水素およびCCUSが注目されている。CCUSは化石燃料利用時に発生する炭酸ガスを再利用または地下貯留することである。
 また、二酸化炭素(CO)排出係数が大きい石炭や石油から排出係数が小さい天然ガスへの燃料シフトが始まっており、多くの液化天然ガス(LNG)サテライト基地が建設されている。LNGサテライト基地では大量に発生するLNG冷熱は極めて有用であるにも拘わらず、その有効活用はほとんど行われておらず、海水や温水で気化されて捨てられている。
 特許文献1には、原料ガスを水蒸気改質して水素と二酸化炭素とを含む改質ガスに改質する改質部1と、得られた改質ガスを水素ガスとオフガスとに分離して水素ガスを送出する水素分離部2と、オフガスから炭酸ガスを分離して回収する炭酸ガス回収部3と、炭酸ガスを回収されたオフガスを回収部3から改質部1に備えられる燃焼装置12bに燃料ガスとして送るオフガス供給路L4を備え、オフガスを燃料ガスとともに燃焼装置12bに供給する水素製造装置が開示されている。
The problem of global warming is becoming more and more serious, and COP24 adopted an implementation policy to operate a framework for global warming countermeasures, and an international framework in which almost all countries that emit greenhouse gases participate has begun to move. . The greatest target for global warming countermeasures is fossil fuel-derived thermal power generation, but society's interest in the power source of automobiles is increasing from the viewpoint of global warming and environmental pollution of exhaust gas, and fossil fuel-derived internal combustion locomotives are being developed. There is a movement to ban its manufacture and sale in the future.
Therefore, storage batteries, hydrogen, and CCUS are attracting attention as global warming countermeasure technologies. CCUS is the reuse or underground storage of carbon dioxide generated when fossil fuels are used.
In addition, a fuel shift from coal and oil, which have high carbon dioxide (CO 2 ) emission factors, to natural gas, which has low emission factors, has begun, and many liquefied natural gas (LNG) satellite stations are being built. Although LNG cold energy, which is generated in large quantities at LNG satellite terminals, is extremely useful, its effective utilization is hardly performed, and it is vaporized with seawater or hot water and discarded.
Patent Document 1 discloses a reforming unit 1 that steam-reforms a raw material gas to reform it into a reformed gas containing hydrogen and carbon dioxide, and separates the obtained reformed gas into hydrogen gas and off-gas. A hydrogen separation unit 2 that sends out hydrogen gas, a carbon dioxide recovery unit 3 that separates and recovers carbon dioxide gas from off-gas, and a combustion device 12b that is provided in the reforming unit 1 from the recovery unit 3 to recover the off-gas from which the carbon dioxide gas is recovered. is provided with an off-gas supply line L4 for feeding the off-gas as fuel gas to the combustion device 12b together with the fuel gas.
特開2014-47085号公報JP 2014-47085 A
 特許文献1に記載された水素製造装置では、改質部1から送出される改質ガスから水素を分離したオフガスに含まれる炭酸ガスは回収される。しかし、改質部1の燃焼装置12bから排出される燃焼排ガスから炭酸ガスは回収されず、地球温暖化対策が不十分である。 In the hydrogen production apparatus described in Patent Document 1, the carbon dioxide contained in the off-gas obtained by separating the hydrogen from the reformed gas sent from the reforming section 1 is recovered. However, the carbon dioxide gas is not recovered from the combustion exhaust gas discharged from the combustion device 12b of the reformer 1, and the measures against global warming are insufficient.
 本発明の目的は、水素製造において発生する全ての炭酸ガスを、天然ガスと水蒸気との水蒸気改質に必要な熱量を生成するための燃料燃焼で生じる燃焼排ガスに取り纏め、燃焼排ガスを予冷した後にLNG気化装置においてLNGとの間でLNG冷熱を熱交換させることによって、LNGを天然ガスに気化させるとともに、水素製造で発生する全炭酸ガスを低温度にして回収し、炭酸ガスの液化動力を低減することを可能とした地球温暖化の防止に有効なLNGを活用する炭酸ガス回収式水素製造システムを提供することである。 The object of the present invention is to combine all carbon dioxide gas generated in hydrogen production into flue gas generated by fuel combustion for generating the heat required for steam reforming of natural gas and steam, and precool the flue gas. By exchanging LNG cold heat with LNG in the LNG vaporizer, LNG is vaporized into natural gas, and all the carbon dioxide generated in hydrogen production is recovered at a low temperature, reducing the liquefaction power of carbon dioxide. It is an object of the present invention to provide a carbon dioxide gas recovery type hydrogen production system that utilizes LNG and is effective in preventing global warming.
 本発明は、LNG供給装置から供給されたLNGを天然ガスに気化させて供給する天然ガス供給装置と、燃焼炉で燃料と酸素供給装置から供給された酸素とが燃焼反応し燃焼熱で改質器を加熱し、前記改質器に供給された前記天然ガスと水蒸気とを改質触媒存在下で水蒸気改質反応させて改質ガスを生成する水蒸気改質装置と、前記水蒸気改質装置に接続され、供給される前記改質ガスを冷却する改質ガス冷却装置と、前記改質ガス冷却装置から冷却された前記改質ガスが供給され、前記改質ガスに含まれる一酸化炭素ガスと水蒸気とをCO変成触媒存在下でシフト反応させて水素ガスと炭酸ガスを含む混合ガスを生成するシフト反応装置と、前記シフト反応装置に接続され、供給される前記混合ガスを冷却する混合ガス冷却装置と、前記混合ガス冷却装置に接続されて供給される前記混合ガスから水素ガスを分離し、分離した前記水素ガスを送出するとともに、オフガスを送出する水素分離装置と、前記水素分離装置と前記燃焼炉とを接続し、前記オフガスを前記燃焼炉に前記燃料として供給する燃料供給回路と、前記燃料の燃焼により生じた燃焼排ガスが前記燃焼炉から供給され、前記燃焼排ガスを予冷して炭酸ガスと飽和水蒸気を含む予冷燃焼排ガスにする燃焼排ガス予冷装置と、前記天然ガス供給装置に設けられ、前記LNGが前記LNG供給装置から供給され、前記予冷燃焼排ガスが前記燃焼排ガス予冷装置から供給され、前記LNGが気化するときに生じるLNG冷熱を前記予冷燃焼排ガスとの間で熱交換することによって、前記LNGを天然ガスに気化させるとともに、前記予冷燃焼排ガスを冷却して前記飽和水蒸気を凝縮させた後に低温度に冷却し回収炭酸ガスにして流出させるLNG気化装置と、前記LNG気化装置から流出された前記回収炭酸ガスを送出する炭酸ガス送出装置と、を備えたLNGを活用する炭酸ガス回収式水素製造システムである。 The present invention includes a natural gas supply device that vaporizes LNG supplied from the LNG supply device into natural gas and supplies it, and a combustion reaction between fuel and oxygen supplied from the oxygen supply device in a combustion furnace, and reforming with combustion heat. a steam reformer for generating a reformed gas by heating a vessel and causing a steam reforming reaction between the natural gas and steam supplied to the reformer in the presence of a reforming catalyst; a reformed gas cooling device that is connected and cools the supplied reformed gas; and a carbon monoxide gas that is supplied with the reformed gas cooled from the reformed gas cooling device and contained in the reformed gas. a shift reactor for generating a mixed gas containing hydrogen gas and carbon dioxide by causing a shift reaction with water vapor in the presence of a CO conversion catalyst; and a mixed gas cooling device connected to the shift reactor for cooling the supplied mixed gas. a device, a hydrogen separation device for separating hydrogen gas from the mixed gas supplied by being connected to the mixed gas cooling device, delivering the separated hydrogen gas, and delivering off-gas, the hydrogen separation device and the a fuel supply circuit connected to a combustion furnace and supplying the off-gas as the fuel to the combustion furnace; and a flue gas generated by combustion of the fuel is supplied from the combustion furnace to pre-cool the flue gas to produce carbon dioxide gas. and a flue gas precooling device for precooling flue gas containing saturated steam and a flue gas precooling device provided in the natural gas supply device, the LNG is supplied from the LNG feeder, and the precooled flue gas is supplied from the flue gas precooling device, The LNG cold generated when the LNG is vaporized is heat-exchanged with the pre-cooled flue gas to vaporize the LNG into natural gas and cool the pre-cooled flue gas to condense the saturated water vapor. A carbon dioxide gas recovery system utilizing LNG, provided with an LNG vaporizer for cooling to a low temperature and discharging the recovered carbon dioxide gas, and a carbon dioxide gas delivery device for delivering the recovered carbon dioxide gas discharged from the LNG vaporizer. It is a hydrogen production system.
 本発明のLNGを活用する炭酸ガス回収式水素製造システムは、LNGを気化させた天然ガスと水蒸気とを改質触媒存在下で加熱して水蒸気改質し、改質ガスを水蒸気とシフト反応させて水素と炭酸ガスを含む混合ガスを生成し、混合ガスを水素分離装置で水素ガスとオフガスとに分離して水素ガスを送出する。オフガスは、水蒸気改質に必要な加熱のために、天然ガスとともに燃料として水蒸気改質装置の燃焼炉に送られ酸素と燃焼反応する。燃焼排ガスは、燃焼排ガス冷却装置で予冷された後にLNG気化装置においてLNGとの間でLNG冷熱を熱交換し低温度に冷却される。
 これにより、水素製造において発生する全ての炭酸ガス、即ちオフガスに含まれる炭酸ガスと、オフガスに含まれる水素および天然ガスの燃焼によって生じる炭酸ガスとを燃焼炉から排出される燃焼排ガスに取り纏めることができる。この燃焼排ガスを予冷し、LNG気化装置においてLNGとの間でLNG冷熱を熱交換させることによって、LNGを天然ガスに気化させるとともに、水素製造において発生する全炭酸ガスを低温度にして回収することができる。さらに、オフガスに含まれる水素ガスおよび天然ガスを燃焼炉で酸素と燃焼反応させるので、排出される燃焼排ガスの成分が炭酸ガスと水蒸気だけになり、炭酸ガスの回収が容易になる。
The carbon dioxide recovery type hydrogen production system utilizing LNG of the present invention heats natural gas obtained by vaporizing LNG and steam in the presence of a reforming catalyst to steam reform, and shift reaction of the reformed gas with steam. A mixed gas containing hydrogen and carbon dioxide is produced by the hydrogen separator, and the mixed gas is separated into hydrogen gas and off-gas by a hydrogen separator, and the hydrogen gas is sent out. The off-gas, along with natural gas, is sent as fuel to the combustion furnace of the steam reformer and undergoes a combustion reaction with oxygen for the heating required for steam reforming. The flue gas is precooled in the flue gas cooling device and then cooled to a low temperature by exchanging LNG cold heat with LNG in the LNG vaporizer.
As a result, all the carbon dioxide generated in the hydrogen production, that is, the carbon dioxide contained in the off-gas and the carbon dioxide generated by the combustion of the hydrogen contained in the off-gas and the natural gas are combined into the flue gas discharged from the combustion furnace. can be done. By pre-cooling this flue gas and exchanging the cold heat of LNG with LNG in an LNG vaporizer, LNG is vaporized into natural gas, and all the carbon dioxide generated in hydrogen production is recovered at a low temperature. can be done. Furthermore, since the hydrogen gas and natural gas contained in the off-gas are subjected to a combustion reaction with oxygen in the combustion furnace, the components of the discharged flue gas are carbon dioxide and water vapor only, facilitating the recovery of carbon dioxide.
第1実施形態に係るLNGを活用する炭酸ガス回収式水素製造システムの全体構成を示すブロック図である。1 is a block diagram showing the overall configuration of a carbon dioxide recovery type hydrogen production system utilizing LNG according to a first embodiment; FIG. 第1実施形態のLNG気化装置の構成を示す図である。It is a figure which shows the structure of the LNG vaporization apparatus of 1st Embodiment. 第2実施形態に係るLNGを活用する炭酸ガス回収式水素製造システムの全体構成を示すブロック図である。FIG. 2 is a block diagram showing the overall configuration of a carbon dioxide recovery type hydrogen production system utilizing LNG according to a second embodiment;
1.第1実施形態の構成
 第1実施形態に係るLNGを活用する炭酸ガス回収式水素製造システム1aは、図1に示すように、天然ガス供給装置10と、LNG供給装置11と、LNG気化装置12と、水蒸気改質装置20と、酸素供給装置24と、改質ガス冷却装置25と、シフト反応装置30と、混合ガス冷却装置35と、水素分離装置40と、燃料供給回路50と、燃焼排ガス冷却装置60と、炭酸ガス送出装置65と、炭酸ガス液化装置66を備える。
1. Configuration of the First Embodiment A carbon dioxide gas recovery type hydrogen production system 1a utilizing LNG according to the first embodiment, as shown in FIG. , a steam reforming device 20, an oxygen supply device 24, a reformed gas cooling device 25, a shift reaction device 30, a mixed gas cooling device 35, a hydrogen separation device 40, a fuel supply circuit 50, and a combustion exhaust gas. A cooling device 60 , a carbon dioxide delivery device 65 and a carbon dioxide liquefaction device 66 are provided.
 天然ガス供給装置10は、港湾からLNGタンクローリーで運搬されたLNG(液化天然ガス)を貯留するLNGタンクと、LNGタンクから供給された液化天然ガスを気化させて天然ガスとするLNG気化装置12を備える。LNGタンクはLNGをLNG気化装置12に供給するLNG供給装置11を構成する。天然ガス供給装置10は、LNG供給装置11から供給されたLNGをLNG気化装置12で天然ガスに気化させ管路19で水蒸気改質装置20に供給する。 The natural gas supply device 10 includes a LNG tank that stores LNG (liquefied natural gas) transported from a port by an LNG tank truck, and an LNG vaporizer 12 that vaporizes the liquefied natural gas supplied from the LNG tank to produce natural gas. Prepare. The LNG tank constitutes an LNG feeder 11 that feeds LNG to an LNG vaporizer 12 . The natural gas supply device 10 vaporizes the LNG supplied from the LNG supply device 11 into natural gas in the LNG vaporizer 12 and supplies the natural gas to the steam reformer 20 through the pipeline 19 .
 水蒸気改質装置20は、改質触媒が充填された改質器21と、改質器21に水を供給する水供給装置22と、燃料を燃焼させて改質器21を加熱する燃焼炉23を備える。改質器21は、天然ガス供給装置10から天然ガスが管路19を通って原料として供給され、水供給装置22から水または水蒸気が供給される。燃焼炉23は、天然ガス供給装置10から天然ガスが管路19および管路19から分岐した管路51を通って燃料として供給され、水素分離装置40からオフガスが管路52を通って燃料として供給される。燃焼炉23には酸素供給装置24から酸素が管路26を通って供給され、燃料と酸素が燃焼反応して燃焼熱を生成し改質器21を加熱する。 The steam reformer 20 includes a reformer 21 filled with a reforming catalyst, a water supply device 22 that supplies water to the reformer 21, and a combustion furnace 23 that heats the reformer 21 by burning fuel. Prepare. The reformer 21 is supplied with natural gas as a raw material from the natural gas supply device 10 through the pipeline 19 and is supplied with water or steam from the water supply device 22 . The combustion furnace 23 is supplied with natural gas as fuel from the natural gas supply device 10 through a pipeline 19 and a pipeline 51 branched from the pipeline 19, and offgas from the hydrogen separator 40 through a pipeline 52 as fuel. supplied. Oxygen is supplied from an oxygen supply device 24 to the combustion furnace 23 through a pipeline 26 , and the fuel and oxygen undergo a combustion reaction to generate combustion heat and heat the reformer 21 .
 これにより、改質器21に供給された水は高温の水蒸気となり、天然ガスに含まれる、例えばメタンガスは高温の水蒸気と改質触媒存在下で化学式(1)、(2)に示すように水蒸気改質反応して水素と炭酸ガスと一酸化炭素を含む改質ガスになる。
 CH+2HO→4H+CO2  (吸熱)     (1)
 CH+HO→3H+CO   (吸熱)       (2)
水蒸気改質反応は全体として吸熱反応であり、反応熱は燃焼炉23で生成される燃焼熱から供給される。
As a result, the water supplied to the reformer 21 becomes high-temperature steam, and methane gas contained in natural gas, for example, becomes steam as shown in chemical formulas (1) and (2) in the presence of high-temperature steam and a reforming catalyst. A reforming reaction results in a reformed gas containing hydrogen, carbon dioxide and carbon monoxide.
CH 4 +2H 2 O→4H 2 +CO 2 (endothermic) (1)
CH 4 +H 2 O→3H 2 +CO (endothermic) (2)
The steam reforming reaction is an endothermic reaction as a whole, and the heat of reaction is supplied from the combustion heat generated in the combustion furnace 23 .
 水蒸気改質装置20には改質ガス冷却装置25が接続されている。改質ガス冷却装置25は公知の冷却装置で、熱交換器の高温側を改質ガスが通過し、低温側を熱媒体が通過する間に改質ガスから熱媒体に熱移動し、改質ガスの温度が低下し、熱媒体の温度が上昇する。熱媒体は、熱交換器の低温側とラジエータ等の放熱装置との間で循環し、放熱装置で放熱して温度が低下する。改質ガス冷却装置25は、水蒸気改質装置20から送出される高温の改質ガスをCOシフト反応装置30でCOシフト反応させるのに適した温度まで冷却する。 A reformed gas cooling device 25 is connected to the steam reforming device 20 . The reformed gas cooling device 25 is a known cooling device, in which the reformed gas passes through the high temperature side of the heat exchanger and the heat medium passes through the low temperature side of the heat exchanger. The temperature of the gas drops and the temperature of the heat transfer medium rises. The heat medium circulates between the low-temperature side of the heat exchanger and a radiator such as a radiator, and the heat is dissipated by the radiator to lower the temperature. The reformed gas cooler 25 cools the hot reformed gas sent from the steam reformer 20 to a temperature suitable for the CO shift reaction in the CO shift reactor 30 .
 COシフト反応装置30は、改質ガス冷却装置25から冷却された改質ガスが供給され、改質ガスに含まれる一酸化炭素ガスと水蒸気とをCO変成触媒存在下で化学式(3)に示すようにシフト反応させ、改質ガスを水素ガスと炭酸ガスを含む混合ガスに変成する。
 CO+HO→H+CO2  (発熱)      (3)
The CO shift reactor 30 is supplied with the reformed gas cooled from the reformed gas cooling device 25, and the carbon monoxide gas and water vapor contained in the reformed gas are represented by the chemical formula (3) in the presence of the CO conversion catalyst. , the reformed gas is transformed into a mixed gas containing hydrogen gas and carbon dioxide gas.
CO + H2O →H2+ CO2 (exothermic) (3)
 COシフト反応装置30には混合ガス冷却装置35が接続されている。混合ガス冷却装置35は公知の冷却装置で、熱交換コイルを熱媒体が通過し、熱交換コイルを収納する冷却室を混合ガスが通過するように構成され、混合ガスは熱媒体と熱交換して露天温度以下に冷却、除湿される。混合ガスを冷却して温度上昇した熱媒体は、例えばコンデンシングユニットを循環して冷却される。除湿された混合ガスは、水素分離装置(PSA)40に供給される。 A mixed gas cooling device 35 is connected to the CO shift reactor 30 . The mixed gas cooling device 35 is a known cooling device, and is configured such that a heat medium passes through a heat exchange coil and a mixed gas passes through a cooling chamber housing the heat exchange coil, and the mixed gas exchanges heat with the heat medium. is cooled to below the dew temperature and dehumidified. The heat medium whose temperature rises by cooling the mixed gas is cooled by circulating, for example, a condensing unit. The dehumidified mixed gas is supplied to a hydrogen separator (PSA) 40 .
 水素分離装置40は、例えば公知の圧力スイング吸着(PSA:Pressure Swing Adsorption)方式の水素分離装置を用いる。 PSA方式の水素分離装置は少なくとも3個の吸着塔を備えており、各吸着塔には吸着材としてゼオライト系吸着材、活性炭、シリカゲルなどを組み合わせたものが充填されている。水素分離装置40は、各吸着塔の水素ガス流出側に均圧制御弁、オフガス流出側に三方切換弁がそれぞれ設けられ、各三方切換弁および均圧制御弁により流通方向の切換を制御することにより、各吸着塔が吸着、均圧出、減圧、洗浄、均圧入、昇圧からなる一連の処理ステップを隣接する吸着塔と一ステップずれた処理を行うように繰り返し、混合ガスを水素ガスとオフガスとに連続的に分離する。混合ガスから分離された水素ガスは水素利用装置45に送出される。水素利用装置45では、水素ガスは発電、製鉄、アンモニア製造、スマートシティなどに利用される。オフガスは、混合ガスに含まれる炭酸ガス、水素分離装置40で分離できなかった水素ガス、パージ用水素ガスおよび未改質のメタンガスを含み、水素分離装置40から燃料供給回路50を介して水蒸気改質装置20の燃焼炉23に送出される。 For the hydrogen separator 40, for example, a known pressure swing adsorption (PSA) type hydrogen separator is used. A PSA type hydrogen separator has at least three adsorption towers, and each adsorption tower is filled with a combination of zeolitic adsorbent, activated carbon, silica gel, etc., as an adsorbent. The hydrogen separation device 40 is provided with a pressure equalizing control valve on the hydrogen gas outflow side of each adsorption tower and a three-way switching valve on the offgas outflow side, and the switching of the flow direction is controlled by each three-way switching valve and the pressure equalizing control valve. , each adsorption tower repeats a series of treatment steps consisting of adsorption, equalizing pressure discharge, pressure reduction, washing, pressure equalization pressure injection, and pressure increase so as to perform a process that is shifted by one step from the adjacent adsorption tower, and the mixed gas is hydrogen gas and offgas and separate continuously. Hydrogen gas separated from the mixed gas is sent to the hydrogen utilization device 45 . In the hydrogen utilization device 45, hydrogen gas is utilized for power generation, iron manufacturing, ammonia production, smart cities, and the like. The off-gas includes carbon dioxide contained in the mixed gas, hydrogen gas that could not be separated by the hydrogen separator 40, hydrogen gas for purging, and unreformed methane gas. It is delivered to the combustion furnace 23 of the quality device 20 .
 燃料供給回路50は、天然ガス供給装置10と燃焼炉23を接続する管路19、51および水素分離装置40と燃焼炉23を接続する管路52を有し、管路52には水素分離装置40から送出されるオフガスの脈動を緩和するためのオフガスホルダー53が水素分離装置40と燃焼炉23との間に設けられている。これにより、天然ガスおよびオフガスは、燃焼炉23で酸素供給装置から供給される酸素と化学式(4)、(5)に示すように燃焼反応し燃焼熱を生成して改質器21を加熱するとともに高温の燃焼排ガスを生成する。
 CH+2O→CO+2HO(天然ガスの主成分メタンガス) (4)
 2H+O+nCO→2HO+nCO(オフガス)      (5)
The fuel supply circuit 50 has pipelines 19 and 51 connecting the natural gas supply device 10 and the combustion furnace 23, and a pipeline 52 connecting the hydrogen separator 40 and the combustion furnace 23. The pipeline 52 is connected to the hydrogen separator. An off-gas holder 53 is provided between the hydrogen separator 40 and the combustion furnace 23 to reduce the pulsation of the off-gas delivered from the hydrogen separator 40 . As a result, the natural gas and the off-gas undergo a combustion reaction with oxygen supplied from the oxygen supply device in the combustion furnace 23 as shown in chemical formulas (4) and (5) to generate combustion heat and heat the reformer 21. and generate hot flue gas.
CH 4 +2O 2 →CO 2 +2H 2 O (methane gas, main component of natural gas) (4)
2H 2 +O 2 +nCO 2 →2H 2 O+nCO 2 (off gas) (5)
 燃焼炉23から排出される高温の燃焼排ガス(炭酸ガスと水蒸気の混合ガス)は、天然ガス供給装置10に設けられたLNG気化装置12でLNGと熱交換し、LNGを天然ガスに気化する。しかし、高温の燃焼排ガスは、保有熱量(顕熱および潜熱)がLNGの気化に必要な熱量に較べて極めて大きく、かつ水蒸気を多く含んでいる。したがって、LNG気化装置12において、燃焼排ガスに含まれる炭酸ガスを低温度T1に冷却し、LNGを所望温度T2の天然ガスに気化させるためには、燃焼排ガスは、LNG気化装置12に供給される前に温度T1,T2に応じた予冷温度T3に予冷、除湿される必要がある。 The high-temperature flue gas (mixed gas of carbon dioxide gas and water vapor) discharged from the combustion furnace 23 is heat-exchanged with LNG in the LNG vaporizer 12 provided in the natural gas supply device 10, and the LNG is vaporized into natural gas. However, the high-temperature flue gas has a much larger amount of heat (sensible heat and latent heat) than the amount of heat required to vaporize LNG, and contains a large amount of water vapor. Therefore, in order to cool the carbon dioxide contained in the flue gas to the low temperature T1 in the LNG vaporizer 12 and vaporize the LNG into natural gas at the desired temperature T2, the flue gas is supplied to the LNG vaporizer 12. It must be precooled and dehumidified to a precooling temperature T3 corresponding to the temperatures T1 and T2.
 このため、燃焼炉23から排出された燃焼排ガスは、燃焼排ガス予冷装置60に供給されて予冷、除湿される。燃焼排ガス予冷装置60は公知の冷却装置で、熱交換コイルを冷却水が通過し、熱交換コイルを収納する冷却室を燃焼排ガスが通過する間に、燃焼排ガスが露点温度以下の予冷温度T3に冷却され、燃焼排ガスに含まれる水蒸気が凝縮し、燃焼排ガスは炭酸ガスと飽和水蒸気を含む予冷燃焼排ガスになる。燃焼排ガスから熱移動された冷却水は、例えば冷却塔を循環して冷却される。予冷燃焼排ガスはLNG気化装置12に供給され、凝縮水は再利用または放流される。 Therefore, the flue gas discharged from the combustion furnace 23 is supplied to the flue gas precooling device 60 to be precooled and dehumidified. The flue gas precooling device 60 is a known cooling device, and cools the flue gas to a precooling temperature T3 below the dew point temperature while the cooling water passes through the heat exchange coils and the flue gas passes through the cooling chamber housing the heat exchange coils. After cooling, the water vapor contained in the flue gas is condensed, and the flue gas becomes pre-cooled flue gas containing carbon dioxide gas and saturated water vapor. The cooling water heat-transferred from the flue gas is cooled by circulating, for example, a cooling tower. The pre-cooled flue gas is supplied to the LNG vaporizer 12 and the condensed water is reused or discharged.
 LNG気化装置12は、LNG供給装置11から供給されるLNGを天然ガスに気化させて水蒸気改質装置20に送出する気化器15と、燃焼排ガス予冷装置60において温度T3に予冷された予冷燃焼排ガスを飽和水蒸気を殆ど含まない乾燥炭酸ガスにした後に回収炭酸ガスにして流出する排ガス冷却装置70を備える。即ち、排ガス冷却装置70は、予冷燃焼排ガスを水の凍結温度近傍に冷却し飽和水蒸気を凝縮させて乾燥炭酸ガスにした後に、液化炭酸ガスの製造に適した低温度T1に冷却して回収炭酸ガスにする。気化器15は、LNGが流動中に天然ガスに気化される低温側15bと、排ガス冷却装置70で加熱された不凍熱媒体が流動する高温側15aを備える。高温側15aを流動する不凍熱媒体は低温側15bを流動するLNGからLNG冷熱を熱移動される。 The LNG vaporizer 12 includes a vaporizer 15 that vaporizes the LNG supplied from the LNG supply device 11 into natural gas and sends it to the steam reformer 20, and a precooled flue gas precooled to a temperature T3 in the flue gas precooler 60. is converted into dry carbon dioxide containing almost no saturated water vapor, and then converted into recovered carbon dioxide and discharged. That is, the exhaust gas cooling device 70 cools the pre-cooled combustion exhaust gas to near the freezing temperature of water to condense the saturated water vapor into dry carbon dioxide, and then cools it to a low temperature T1 suitable for producing liquefied carbon dioxide to recover carbon dioxide. turn to gas. The vaporizer 15 has a low temperature side 15b where LNG is vaporized into natural gas while flowing, and a high temperature side 15a where the non-freezing heat medium heated by the exhaust gas cooling device 70 flows. The antifreeze heat medium flowing on the high temperature side 15a receives LNG cold heat transferred from the LNG flowing on the low temperature side 15b.
 排ガス冷却装置70は、予冷燃焼排ガスが流入口74aから流入し、回収炭酸ガスとなって流出口74bから流出するガス通路74cがハウジング74に形成され、ガス通路74cに第1冷却コイル71、エリミネーター72、第2冷却コイル73が一方側(流入口74a側)から他方側(流出口74b側)に向かって順次直列に収納されている。第1冷却コイル71は、ガス通路74cの一方側に不凍熱媒体の出口が設けられ、他方側に入口が設けられている。第2冷却コイル73は、ガス通路74cの一方側に不凍熱媒体の出口が設けられ、他方側に入口が設けられている。ガス通路74cの底面には、第1冷却コイル71およびエリミネーター72の下面と対向してドレンパン75が形成されている。ドレンパン75の底面には流水口75aが設けられている。第1冷却コイル71で予冷燃焼排ガスが水の凍結温度近傍に低下されることにより飽和水蒸気が殆ど凝縮して落下した凝縮水およびエリミネーター72で捕捉された凝縮水の水滴はドレンパン75上に収集され、流水口75aから水封79を介して流出し、再利用または放流される。ドレンパン75、流水口75a、水封79は、第1冷却コイル71およびエリミネーター72によって予冷燃焼排ガスに含まれる飽和水蒸気が凝縮、捕捉された凝縮水を収集してガス通路74c外に流出させる凝縮水流出部を構成する。 The exhaust gas cooling device 70 has a housing 74 formed with a gas passage 74c through which pre-cooled combustion exhaust gas flows in from an inlet 74a, becomes recovered carbon dioxide gas, and flows out from an outlet 74b. 72 and second cooling coils 73 are sequentially housed in series from one side (inflow port 74a side) toward the other side (outflow port 74b side). The first cooling coil 71 is provided with an outlet for the antifreezing heat medium on one side of the gas passage 74c and an inlet on the other side. The second cooling coil 73 has an outlet for the non-freezing heat medium on one side of the gas passage 74c and an inlet on the other side. A drain pan 75 is formed on the bottom surface of the gas passage 74c so as to face the lower surfaces of the first cooling coil 71 and the eliminator 72 . A drain port 75a is provided on the bottom surface of the drain pan 75 . As the pre-cooled combustion exhaust gas is lowered to the vicinity of the freezing temperature of water by the first cooling coil 71 , most of the saturated steam is condensed and dropped, and condensed water and water droplets of the condensed water captured by the eliminator 72 are collected on the drain pan 75 . , flows out through the water seal 79 from the water flow port 75a and is reused or discharged. The drain pan 75, the water flow port 75a, and the water seal 79 collect the condensed water captured by the first cooling coil 71 and the eliminator 72 from the saturated water vapor contained in the precooled combustion exhaust gas, and the condensed water flows out of the gas passage 74c. Construct an outflow part.
 排ガス冷却装置70は、第1熱媒体循環回路76と、第2熱媒体循環回路77と、第1熱媒体循環回路76を循環する不凍熱媒体と第2熱媒体循環回路77を循環する不凍熱媒体との間で熱交換させる熱交換器78を備える。第1熱媒体循環回路76は、不凍熱媒体が第1冷却コイル71と熱交換器78の高温側78aを図略のポンプで循環される。第2熱媒体循環回路77は、不凍熱媒体が第2冷却コイル73、熱交換器78の低温側78bおよび気化器15の高温側15aを図略のポンプで循環される。 The exhaust gas cooling device 70 includes a first heat medium circulation circuit 76, a second heat medium circulation circuit 77, a non-freezing heat medium circulating through the first heat medium circulation circuit 76, and a non-freezing heat medium circulating through the second heat medium circulation circuit 77. A heat exchanger 78 is provided to exchange heat with the freezing medium. In the first heat medium circulation circuit 76, the non-freezing heat medium is circulated through the first cooling coil 71 and the high temperature side 78a of the heat exchanger 78 by a pump (not shown). In the second heat medium circulation circuit 77, the antifreeze heat medium is circulated through the second cooling coil 73, the low temperature side 78b of the heat exchanger 78, and the high temperature side 15a of the vaporizer 15 by a pump (not shown).
 LNG気化装置12の排ガス冷却装置70から流出した低温度T1の回収炭酸ガスは、炭酸ガス送出装置65に送出される。炭酸ガス送出装置65は、管路64と炭酸ガス液化装置66で構成され、回収炭酸ガスを液化炭酸ガスに液化し、高い輸送効率で炭酸ガス利用装置67に供給する。炭酸ガス利用装置67では、回収炭酸ガスは、炭化水素製造、バイオ燃料、施設栽培、土木資材、炭酸ガス回収・貯留(CCS)、石油増進開発(EOR)などに使用される。
 第1の実施形態では、低温度の回収炭酸ガスを炭酸ガス液化装置66で液化するので、液化炭酸ガスをタンクローリー、タンカーなどによって安価に高い輸送効率で炭酸ガス利用装置67に供給することができる。しかし、炭酸ガス送出装置65に炭酸ガス液化装置66を設けず、LNG気化装置12で低温度に冷却された回収炭酸ガスを液化することなく炭酸ガス利用装置67に供給してもよい。
 また、天然ガスを水蒸気改質装置20の燃焼炉23に燃料として供給しているが、水素分離装置40から送出されるオフガスに含まれる水素等の可燃物が多い場合は、天然ガスを燃焼炉23に供給する必要はない。
The recovered carbon dioxide at the low temperature T1 that has flowed out of the exhaust gas cooling device 70 of the LNG vaporizer 12 is delivered to the carbon dioxide delivery device 65 . The carbon dioxide gas delivery device 65 is composed of a pipe line 64 and a carbon dioxide gas liquefaction device 66, liquefies the recovered carbon dioxide gas into liquefied carbon dioxide gas, and supplies the carbon dioxide gas to the carbon dioxide utilization device 67 with high transportation efficiency. In the carbon dioxide utilization device 67, the recovered carbon dioxide is used for hydrocarbon production, biofuel, greenhouse cultivation, civil engineering materials, carbon dioxide recovery and storage (CCS), enhanced oil development (EOR), and the like.
In the first embodiment, since the low-temperature recovered carbon dioxide gas is liquefied by the carbon dioxide gas liquefaction device 66, the liquefied carbon dioxide gas can be supplied to the carbon dioxide utilization device 67 at low cost and with high transportation efficiency by a tank truck, tanker, or the like. . However, the carbon dioxide liquefaction device 66 may not be provided in the carbon dioxide gas delivery device 65, and the recovered carbon dioxide cooled to a low temperature by the LNG vaporization device 12 may be supplied to the carbon dioxide utilization device 67 without being liquefied.
In addition, natural gas is supplied as fuel to the combustion furnace 23 of the steam reforming device 20, but if the off-gas sent from the hydrogen separation device 40 contains a large amount of combustible substances such as hydrogen, the natural gas is used in the combustion furnace. 23 need not be supplied.
2.第1実施形態の作動および効果
 LNG気化装置12において、気化器15の低温側15bにはLNG供給装置11からLNGが供給され、高温側15aには第2熱媒体循環回路77を循環する不凍熱媒体が供給される。これにより、LNGと不凍熱媒体とは気化器15においてLNG冷熱を熱交換し、LNGは天然ガスに気化されて水蒸気改質装置20に送出され、不凍熱媒体はLNG冷熱を伝達されて回収炭酸ガスの低温度T1より低い温度に冷却されて第2冷却コイル73に返流される。冷却された不凍熱媒体は、第2冷却コイル73を流動する間に、ガス通路74cを流れる乾燥炭酸ガスを低温度T1に冷却して温度上昇する。温度上昇した不凍熱媒体は、第2熱媒体循環回路77を通って熱交換器78の低温側78bを流動し、第1熱媒体循環回路76を通って熱交換器78の高温側78aを流動する不凍熱媒体と熱交換する。これにより、第2熱媒体循環回路77を循環する不凍熱媒体は水の凍結温度以上の温度に加熱されて気化器15の高温側15aに供給される。第1熱媒体循環回路76を循環する不凍熱媒体は水の凍結温度近傍に冷却されて第1冷却コイル71に供給される。
2. Operation and Effect of First Embodiment In the LNG vaporizer 12, the low temperature side 15b of the vaporizer 15 is supplied with LNG from the LNG supply device 11, and the high temperature side 15a is supplied with the antifreeze circulating through the second heat medium circulation circuit 77. A heat carrier is supplied. As a result, the LNG and the antifreezing heat medium exchange heat with the LNG cold heat in the vaporizer 15, the LNG is vaporized into natural gas and sent to the steam reformer 20, and the LNG cold heat is transferred to the antifreezing heat medium. It is cooled to a temperature lower than the low temperature T1 of the recovered carbon dioxide gas and returned to the second cooling coil 73 . While flowing through the second cooling coil 73, the cooled antifreeze heat medium cools the dry carbon dioxide gas flowing through the gas passage 74c to the low temperature T1, thereby raising the temperature. The antifreezing heat medium whose temperature has risen flows through the second heat medium circulation circuit 77, the low temperature side 78b of the heat exchanger 78, the first heat medium circulation circuit 76, and the high temperature side 78a of the heat exchanger 78. It exchanges heat with the flowing antifreeze heat medium. As a result, the non-freezing heat medium circulating in the second heat medium circulation circuit 77 is heated to a temperature equal to or higher than the freezing temperature of water and supplied to the high temperature side 15 a of the vaporizer 15 . The non-freezing heat medium circulating in the first heat medium circulation circuit 76 is cooled to near the freezing temperature of water and supplied to the first cooling coil 71 .
 燃焼排ガス予冷装置60で予冷温度T3に予冷された予冷燃焼排ガスは、流入口74aからガス通路74cに流入し、第1冷却コイル71を横切る間に第1熱媒体循環回路76を循環する不凍熱媒体と熱交換して水の凍結温度近傍に冷却され、飽和水蒸気が殆ど凝縮して乾燥炭酸ガスになる。飽和水蒸気が凝縮した大きい水滴はドレンパン75上に落下し、乾燥炭酸ガス中を浮遊する小さい水滴はエリミネーター72で捕捉されてドレンパン75上に落下して集められ、排水口75a、水封79を通って流出する。エリミネーター72を通過した乾燥炭酸ガスは、第2冷却コイル73を横切る間に第2熱媒体循環回路77を循環する不凍熱媒体と熱交換し、低温度T1に冷却され回収炭酸ガスになって流出口74bから流出し、炭酸ガス液化装置66で液化される。このように、LNG気化装置12によれば、予冷燃焼排ガスに含まれる飽和水蒸気を凍らせることなく、予冷燃焼排ガスに含まれる炭酸ガスを水の凍結温度より低い低温度T1に冷却することができる。 The precooled flue gas precooled to the precooling temperature T3 by the flue gas precooling device 60 flows into the gas passage 74c from the inlet 74a and circulates through the first heat medium circulation circuit 76 while traversing the first cooling coil 71. Heat is exchanged with the heat medium and cooled to near the freezing temperature of water, and most of the saturated steam is condensed into dry carbon dioxide gas. Large water droplets condensed with saturated steam fall on the drain pan 75, and small water droplets floating in the dry carbon dioxide gas are caught by the eliminator 72, fall on the drain pan 75, and are collected. flow out. The dry carbon dioxide that has passed through the eliminator 72 exchanges heat with the non-freezing heat medium circulating in the second heat medium circulation circuit 77 while traversing the second cooling coil 73, is cooled to a low temperature T1, and becomes recovered carbon dioxide. It flows out from the outflow port 74b and is liquefied in the carbon dioxide liquefier 66. Thus, according to the LNG vaporizer 12, the carbon dioxide contained in the precooled flue gas can be cooled to a low temperature T1 that is lower than the freezing temperature of water without freezing the saturated steam contained in the precooled flue gas. .
 水蒸気改質装置20の改質器21には、LNG気化装置12から天然ガスおよび水供給装置22から水または水蒸気が供給される。燃焼炉23では、オフガスホルダー53から管路52を通って供給されたオフガスおよびLNG気化装置10から管路19,51を通って供給された天然ガスが、酸素供給装置24から供給された酸素と燃焼反応して改質器21を加熱する。改質器21内では、天然ガスと水蒸気とが間接加熱されて改質触媒下で水蒸気改質反応し、水素と炭酸ガスと一酸化炭素を含む改質ガスを生成する。 The reformer 21 of the steam reformer 20 is supplied with natural gas from the LNG vaporizer 12 and water or steam from the water supply device 22 . In the combustion furnace 23, the offgas supplied from the offgas holder 53 through the pipeline 52 and the natural gas supplied from the LNG vaporizer 10 through the pipelines 19 and 51 are combined with the oxygen supplied from the oxygen supply device 24. Combustion reaction heats the reformer 21 . In the reformer 21, the natural gas and steam are indirectly heated and undergo a steam reforming reaction under the reforming catalyst to produce a reformed gas containing hydrogen, carbon dioxide gas and carbon monoxide.
 改質ガスは、改質ガス冷却装置25で冷却され、COシフト装置30に供給される。COシフト装置30は、改質ガスに含まれる一酸化炭素と水蒸気をCO変成触媒存在下でシフト反応させ、改質ガスを水素と炭酸ガスを含む混合ガスにし混合ガス冷却装置35に送出する。 The reformed gas is cooled by the reformed gas cooling device 25 and supplied to the CO shift device 30 . The CO shift device 30 causes a shift reaction of carbon monoxide and water vapor contained in the reformed gas in the presence of a CO conversion catalyst, converts the reformed gas into a mixed gas containing hydrogen and carbon dioxide gas, and sends the mixed gas to a mixed gas cooling device 35 .
 水素分離装置40は、混合ガス冷却装置35で冷却、除湿された混合ガスを水素ガスとオフガスとに分離し、水素ガスを水素利用装置45に供給する。オフガスは、オフガスホルダー53を介して水蒸気改質装置20の燃焼炉23に供給される。水素分離装置40から送出されるオフガスは脈動を伴うが、オフガスホルダー53に貯留されることによって脈動を緩衝され、燃焼炉23で安定して酸素と燃焼反応することができる。 The hydrogen separator 40 separates the mixed gas cooled and dehumidified by the mixed gas cooling device 35 into hydrogen gas and off-gas, and supplies the hydrogen gas to the hydrogen utilization device 45 . The offgas is supplied to the combustion furnace 23 of the steam reformer 20 via the offgas holder 53 . The off-gas delivered from the hydrogen separation device 40 accompanies pulsation, but the off-gas holder 53 stores the off-gas to dampen the pulsation, so that it can stably undergo a combustion reaction with oxygen in the combustion furnace 23 .
 第1実施形態では、LNGを気化させた天然ガスと水蒸気とを水蒸気改質装置20で水蒸気改質して改質ガスを生成し、改質ガスをシフト反応させて水素ガスと炭酸ガスとの混合ガスにし、混合ガスを水素分離装置40で水素ガスとオフガスとに分離し、水素ガスを水素利用装置45で使用する。オフガスと天然ガスとを燃焼炉23に供給し、酸素供給装置24から供給された酸素で燃焼させて水蒸気改質に必要な熱量を生成している。
 これにより、オフガスに含まれる炭酸ガスと、オフガスに含まれる水素ガスや未改質のメタンガスおよび天然ガスの燃焼によって生じる炭酸ガスとを燃焼炉23から排出される燃焼排ガスに取り纏めることができ、炭酸ガスの効率的な回収が可能になる。燃焼排ガスを燃焼排ガス予冷装置60で予冷し、LNG気化装置12においてLNGとの間でLNG冷熱を熱交換することによって、LNGを天然ガスに気化させるとともに、水素製造で生じた全ての炭酸ガスをLNG冷熱で冷却し回収することができる。さらに、水蒸気改質装置20の燃焼炉23においてオフガスおよび天然ガスを酸素供給装置24から供給される酸素で燃焼させるので、燃焼炉23から排出される燃焼排ガスの成分を炭酸ガスと水蒸気だけにすることができ、炭酸ガスの回収を容易に行うことができる。そして、炭酸ガスが低温で回収されるので、炭酸ガスの液化動力を低減することができる。
In the first embodiment, natural gas obtained by vaporizing LNG and steam are steam-reformed in the steam reformer 20 to generate a reformed gas, and the reformed gas undergoes a shift reaction to produce hydrogen gas and carbon dioxide gas. A mixed gas is formed, the mixed gas is separated into hydrogen gas and off-gas by the hydrogen separator 40 , and the hydrogen gas is used by the hydrogen utilization device 45 . The off-gas and natural gas are supplied to the combustion furnace 23 and burned with oxygen supplied from the oxygen supply device 24 to generate the amount of heat required for steam reforming.
As a result, the carbon dioxide contained in the off-gas and the carbon dioxide generated by the combustion of the hydrogen gas, unreformed methane gas, and natural gas contained in the off-gas can be combined into the flue gas discharged from the combustion furnace 23, Efficient recovery of carbon dioxide becomes possible. By precooling the flue gas in the flue gas precooling device 60 and exchanging the cold heat of LNG with the LNG in the LNG vaporizer 12, the LNG is vaporized into natural gas and all the carbon dioxide generated in hydrogen production is removed. It can be cooled with LNG cold and recovered. Furthermore, since the off-gas and natural gas are combusted in the combustion furnace 23 of the steam reformer 20 with the oxygen supplied from the oxygen supply device 24, the combustion exhaust gas discharged from the combustion furnace 23 consists only of carbon dioxide gas and water vapor. It is possible to easily collect carbon dioxide gas. In addition, since the carbon dioxide gas is recovered at a low temperature, the liquefying power of the carbon dioxide gas can be reduced.
3.第2実施形態の構成および効果
 第2実施形態に係るLNGを活用する炭酸ガス回収式水素製造システム1bは、水を電気分解する水電気分解装置70を併設し、生成された酸素を水蒸気改質装置20の燃焼炉23に供給するようにした点以外は第1実施形態と同じであるので、相違点について説明し、第1実施形態と同じ構成要素には同一の参照番号を付して説明を省略する。
3. Configuration and effects of the second embodiment A carbon dioxide recovery type hydrogen production system 1b that utilizes LNG according to the second embodiment is provided with a water electrolysis device 70 that electrolyzes water, and steam reforms the generated oxygen. Since it is the same as the first embodiment except that it is supplied to the combustion furnace 23 of the device 20, the differences will be explained, and the same reference numerals will be given to the same components as the first embodiment. omitted.
 第2実施形態では、図2に示すように、太陽光発電、風力発電などによる再生可能エネルギー由来電力で水を電気分解して酸素と水素を生成する水電気分解装置70が併設されている。水電気分解装置70は、生成した酸素を酸素供給装置24として水蒸気改質装置20の燃焼炉23に供給し、燃焼炉23に供給された天然ガスおよびオフガスを燃焼させる。 In the second embodiment, as shown in FIG. 2, a water electrolysis device 70 is installed to generate oxygen and hydrogen by electrolyzing water with power derived from renewable energy such as solar power generation and wind power generation. The water electrolysis device 70 supplies the generated oxygen as the oxygen supply device 24 to the combustion furnace 23 of the steam reforming device 20 to burn the natural gas and off-gas supplied to the combustion furnace 23 .
 これにより、第2実施形態は第1実施形態と同様の作用効果を奏するとともに、再生可能エネルギー由来電力71で水を電気分解する水電気分解装置80から水素利用装置45に送出される水素と酸素の両者を有効に活用することができる。 As a result, the second embodiment has the same effects as the first embodiment, and the hydrogen and oxygen that are sent from the water electrolysis device 80 that electrolyzes water with the power 71 derived from renewable energy to the hydrogen utilization device 45 Both can be effectively utilized.
 1a,1b:LNGを活用する炭酸ガス回収式水素製造システム、10:天然ガス供給装置、11:LNG供給装置、12:LNG気化装置、19:管路、20:水蒸気改質装置、21:改質器、22:水供給装置、23:燃焼炉、24:酸素供給装置、25:改質ガス冷却装置、30:COシフト装置、35:混合ガス冷却装置、40:水素分離装置、45:水素利用装置、50:燃料供給回路、51,52:管路、53:オフガスホルダー、60:燃焼排ガス予冷装置、65:炭酸ガス送出装置、66:炭酸ガス液化装置、67炭酸ガス利用装置、70:排ガス冷却装置、71:第1冷却コイル、72:エリミネーター、73:第2冷却コイル、76:第1熱媒体循環回路、77:第2熱媒体循環回路、78:熱交換器。 1a, 1b: carbon dioxide recovery type hydrogen production system utilizing LNG, 10: natural gas supply device, 11: LNG supply device, 12: LNG vaporization device, 19: pipeline, 20: steam reformer, 21: reform Qualityr, 22: Water supply device, 23: Combustion furnace, 24: Oxygen supply device, 25: Reformed gas cooling device, 30: CO shift device, 35: Mixed gas cooling device, 40: Hydrogen separation device, 45: Hydrogen Utilization device 50: Fuel supply circuit 51, 52: Pipe line 53: Off gas holder 60: Combustion exhaust gas precooling device 65: Carbon dioxide gas delivery device 66: Carbon dioxide gas liquefaction device 67 Carbon dioxide gas utilization device 70: Exhaust gas cooling device, 71: first cooling coil, 72: eliminator, 73: second cooling coil, 76: first heat medium circulation circuit, 77: second heat medium circulation circuit, 78: heat exchanger.

Claims (6)

  1.  LNG供給装置から供給されたLNGを天然ガスに気化させて供給する天然ガス供給装置と、
     燃焼炉で燃料と酸素供給装置から供給された酸素とが燃焼反応し燃焼熱で改質器を加熱し、前記改質器に供給された前記天然ガスと水蒸気とを改質触媒存在下で水蒸気改質反応させて改質ガスを生成する水蒸気改質装置と、
     前記水蒸気改質装置に接続され、供給される前記改質ガスを冷却する改質ガス冷却装置と、
     前記改質ガス冷却装置から冷却された前記改質ガスが供給され、前記改質ガスに含まれる一酸化炭素ガスと水蒸気とをCO変成触媒存在下でシフト反応させて水素ガスと炭酸ガスを含む混合ガスを生成するシフト反応装置と、
     前記シフト反応装置に接続され、供給される前記混合ガスを冷却する混合ガス冷却装置と、
     前記混合ガス冷却装置に接続されて供給される前記混合ガスから水素ガスを分離し、分離した前記水素ガスを送出するとともに、オフガスを送出する水素分離装置と、
     前記水素分離装置と前記燃焼炉とを接続し、前記オフガスを前記燃焼炉に前記燃料として供給する燃料供給回路と、
     前記燃料の燃焼により生じた燃焼排ガスが前記燃焼炉から供給され、前記燃焼排ガスを予冷して炭酸ガスと飽和水蒸気を含む予冷燃焼排ガスにする燃焼排ガス予冷装置と、
     前記天然ガス供給装置に設けられ、前記LNGが前記LNG供給装置から供給され、前記予冷燃焼排ガスが前記燃焼排ガス予冷装置から供給され、前記LNGが気化するときに生じるLNG冷熱を前記予冷燃焼排ガスとの間で熱交換することによって、前記LNGを天然ガスに気化させるとともに、前記予冷燃焼排ガスを冷却して前記飽和水蒸気を凝縮させた後に低温度に冷却し回収炭酸ガスにして流出させるLNG気化装置と、
     前記LNG気化装置から流出された前記回収炭酸ガスを送出する炭酸ガス送出装置と、
     を備えたLNGを活用する炭酸ガス回収式水素製造システム。
    a natural gas supply device for vaporizing LNG supplied from the LNG supply device into natural gas and supplying the natural gas;
    In the combustion furnace, the fuel and the oxygen supplied from the oxygen supply device burn and react to heat the reformer with the combustion heat, and the natural gas and steam supplied to the reformer are steamed in the presence of the reforming catalyst. a steam reformer for generating a reformed gas by a reforming reaction;
    a reformed gas cooling device connected to the steam reformer for cooling the reformed gas to be supplied;
    The reformed gas cooled from the reformed gas cooling device is supplied, and carbon monoxide gas and water vapor contained in the reformed gas are subjected to a shift reaction in the presence of a CO conversion catalyst to contain hydrogen gas and carbon dioxide gas. a shift reactor that produces a gas mixture;
    a mixed gas cooling device connected to the shift reactor for cooling the supplied mixed gas;
    A hydrogen separation device that separates hydrogen gas from the mixed gas that is connected to and supplied to the mixed gas cooling device, delivers the separated hydrogen gas, and delivers off-gas;
    a fuel supply circuit connecting the hydrogen separator and the combustion furnace and supplying the offgas to the combustion furnace as the fuel;
    a flue gas precooling device supplied with the flue gas generated by combustion of the fuel from the combustion furnace and precooling the flue gas into a precooled flue gas containing carbon dioxide gas and saturated steam;
    provided in the natural gas supply device, the LNG is supplied from the LNG supply device, the pre-cooled flue gas is supplied from the flue gas pre-cooling device, and the LNG cold generated when the LNG is vaporized is combined with the pre-cooled flue gas. By exchanging heat between the LNG vaporizer, the LNG is vaporized into natural gas, and the precooled flue gas is cooled to condense the saturated steam, and then cooled to a low temperature to be recovered carbon dioxide and discharged. When,
    a carbon dioxide gas delivery device for delivering the recovered carbon dioxide gas discharged from the LNG vaporizer;
    A carbon dioxide recovery type hydrogen production system that utilizes LNG equipped with
  2.  水を再生可能エネルギー由来電力で電気分解して水素と酸素を生成する水電解装置を併設し、
     前記水電解装置を前記酸素供給装置として生成した前記酸素を前記燃焼炉に供給する請求項1に記載のLNGを活用する炭酸ガス回収式水素製造システム。
    We have a water electrolyzer that generates hydrogen and oxygen by electrolyzing water with power derived from renewable energy.
    2. The carbon dioxide gas recovery type hydrogen production system utilizing LNG according to claim 1, wherein said oxygen generated by said water electrolysis device as said oxygen supply device is supplied to said combustion furnace.
  3.  前記燃料供給回路の前記水素分離装置と前記燃焼炉との間に、前記オフガスを貯留するオフガスホルダーを設けた請求項1または2に記載のLNGを活用する炭酸ガス回収式水素製造システム。 The carbon dioxide recovery type hydrogen production system utilizing LNG according to claim 1 or 2, wherein an off-gas holder for storing the off-gas is provided between the hydrogen separation device of the fuel supply circuit and the combustion furnace.
  4.  前記燃料供給回路は、前記天然ガス供給装置と前記燃焼炉とを接続し、前記天然ガスを前記燃焼炉に前記燃料として供給する管路を備える請求項1乃至3のいずれか1項に記載のLNGを活用する炭酸ガス回収式水素製造システム。 4. The fuel supply circuit according to any one of claims 1 to 3, wherein the fuel supply circuit includes a conduit connecting the natural gas supply device and the combustion furnace and supplying the natural gas to the combustion furnace as the fuel. A carbon dioxide recovery type hydrogen production system that utilizes LNG.
  5.  前記炭酸ガス送出装置に、前記低温度の回収炭酸ガスを液化する炭酸ガス液化装置を設けた請求項1乃至4のいずれか1項に記載のLNGを活用する炭酸ガス回収式水素製造システム。 The carbon dioxide gas recovery type hydrogen production system utilizing LNG according to any one of claims 1 to 4, wherein the carbon dioxide gas delivery device is provided with a carbon dioxide gas liquefaction device for liquefying the low-temperature recovered carbon dioxide gas.
  6.  前記LNG気化装置は、気化器と排ガス冷却装置を備え、
     前記気化器は、低温側に前記LNG供給装置からLNGを供給され、高温側に前記排ガス冷却装置に設けられた第2冷却コイルおよび熱交換器を流動する不凍熱媒体が循環され、前記LNGと前記不凍熱媒体との間でLNG冷熱を熱交換させて前記LNGを天然ガスに気化させ、
     前記排ガス冷却装置は、第1冷却コイル、エリミネーターおよび前記第2冷却コイルが一方側から他方側に向かって直列に配置され、前記予冷燃焼排ガスが前記一方側の入口から流入し前記他方側の出口から前記回収炭酸ガスが流出するガス通路と、前記第2冷却コイルと前記熱交換器の低温側と前記気化器の高温側を前記不凍熱媒体が循環する第2熱媒体循環回路と、前記第1冷却コイルと前記熱交換器の高温側を不凍熱媒体が循環する第1熱媒体循環回路と、前記第1冷却コイルおよび前記エリミネーターによって前記予冷燃焼排ガスに含まれる前記飽和水蒸気が凝縮、捕捉された凝縮水を収集して前記ガス通路外に流出させる凝縮水流出部と、を備え、前記予冷燃焼排ガスを前記第1冷却コイルで冷却して前記飽和水蒸気を凝縮させた後に前記第2冷却コイルで低温度に冷却し回収炭酸ガスにして流出させる、請求項1乃至5のいずれか1項に記載のLNGを活用する炭酸ガス回収式水素製造システム。
     
    The LNG vaporizer comprises a vaporizer and an exhaust gas cooler,
    The vaporizer is supplied with LNG from the LNG supply device on the low temperature side, and the non-freezing heat medium flowing through the second cooling coil and the heat exchanger provided in the exhaust gas cooling device is circulated on the high temperature side, and the LNG LNG cold heat is heat exchanged between and the antifreezing heat medium to vaporize the LNG into natural gas,
    The exhaust gas cooling device has a first cooling coil, an eliminator, and a second cooling coil arranged in series from one side to the other side, and the precooled flue gas flows in from the inlet on the one side and exits on the other side. a second heat medium circulation circuit in which the antifreezing heat medium circulates through the second cooling coil, the low temperature side of the heat exchanger, and the high temperature side of the vaporizer; a first cooling coil and a first heat medium circulation circuit in which an antifreezing heat medium circulates through the high temperature side of the heat exchanger; a condensed water outflow part that collects captured condensed water and causes it to flow out of the gas passage, wherein the precooled flue gas is cooled by the first cooling coil to condense the saturated steam, and then the second 6. The carbon dioxide recovery type hydrogen production system utilizing LNG according to any one of claims 1 to 5, wherein the carbon dioxide gas is cooled to a low temperature by a cooling coil and discharged as recovered carbon dioxide gas.
PCT/JP2021/007085 2021-02-25 2021-02-25 Carbon dioxide gas recovery type hydrogen production system utilizing lng WO2022180740A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021525619A JP6951613B1 (en) 2021-02-25 2021-02-25 Carbon dioxide recovery hydrogen production system utilizing LNG
PCT/JP2021/007085 WO2022180740A1 (en) 2021-02-25 2021-02-25 Carbon dioxide gas recovery type hydrogen production system utilizing lng

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007085 WO2022180740A1 (en) 2021-02-25 2021-02-25 Carbon dioxide gas recovery type hydrogen production system utilizing lng

Publications (1)

Publication Number Publication Date
WO2022180740A1 true WO2022180740A1 (en) 2022-09-01

Family

ID=78114181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007085 WO2022180740A1 (en) 2021-02-25 2021-02-25 Carbon dioxide gas recovery type hydrogen production system utilizing lng

Country Status (2)

Country Link
JP (1) JP6951613B1 (en)
WO (1) WO2022180740A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113968573A (en) * 2021-11-29 2022-01-25 大连理工大学盘锦产业技术研究院 Method and system for co-processing hydrogen-containing tail gas of multiple types of hydrogen production devices
JP7297278B1 (en) 2023-01-13 2023-06-26 株式会社 ユーリカ エンジニアリング Green power and carbon-neutral equivalent natural gas production system using BECCS
US11814288B2 (en) 2021-11-18 2023-11-14 8 Rivers Capital, Llc Oxy-fuel heated hydrogen production process
US11859517B2 (en) 2019-06-13 2024-01-02 8 Rivers Capital, Llc Power production with cogeneration of further products
US11891950B2 (en) 2016-11-09 2024-02-06 8 Rivers Capital, Llc Systems and methods for power production with integrated production of hydrogen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102628306B1 (en) * 2022-02-16 2024-01-24 주식회사 아스페 Apparatus for recovering high purity carbon dioxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119491A (en) * 1993-10-27 1995-05-09 Chugoku Electric Power Co Inc:The Lng reformed gas combustion gas turbine composite generating plant
JP2000247604A (en) * 1999-02-25 2000-09-12 Toshiba Corp Hydrogen producing device and method thereof
JP2003081605A (en) * 2001-09-05 2003-03-19 Kawasaki Heavy Ind Ltd Hydrogen producing method accompanying recovery of liquefied co2
US20060137246A1 (en) * 2004-12-27 2006-06-29 Kumar Ravi V System and method for hydrogen production
US20070130957A1 (en) * 2005-12-13 2007-06-14 General Electric Company Systems and methods for power generation and hydrogen production with carbon dioxide isolation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119491A (en) * 1993-10-27 1995-05-09 Chugoku Electric Power Co Inc:The Lng reformed gas combustion gas turbine composite generating plant
JP2000247604A (en) * 1999-02-25 2000-09-12 Toshiba Corp Hydrogen producing device and method thereof
JP2003081605A (en) * 2001-09-05 2003-03-19 Kawasaki Heavy Ind Ltd Hydrogen producing method accompanying recovery of liquefied co2
US20060137246A1 (en) * 2004-12-27 2006-06-29 Kumar Ravi V System and method for hydrogen production
US20070130957A1 (en) * 2005-12-13 2007-06-14 General Electric Company Systems and methods for power generation and hydrogen production with carbon dioxide isolation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891950B2 (en) 2016-11-09 2024-02-06 8 Rivers Capital, Llc Systems and methods for power production with integrated production of hydrogen
US11859517B2 (en) 2019-06-13 2024-01-02 8 Rivers Capital, Llc Power production with cogeneration of further products
US11814288B2 (en) 2021-11-18 2023-11-14 8 Rivers Capital, Llc Oxy-fuel heated hydrogen production process
CN113968573A (en) * 2021-11-29 2022-01-25 大连理工大学盘锦产业技术研究院 Method and system for co-processing hydrogen-containing tail gas of multiple types of hydrogen production devices
CN113968573B (en) * 2021-11-29 2023-07-25 大连理工大学盘锦产业技术研究院 Method and system for cooperatively treating hydrogen-containing tail gas of various hydrogen production devices
JP7297278B1 (en) 2023-01-13 2023-06-26 株式会社 ユーリカ エンジニアリング Green power and carbon-neutral equivalent natural gas production system using BECCS

Also Published As

Publication number Publication date
JP6951613B1 (en) 2021-10-20
JPWO2022180740A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2022180740A1 (en) Carbon dioxide gas recovery type hydrogen production system utilizing lng
JP3670229B2 (en) Method and apparatus for producing hydrogen with liquefied CO2 recovery
JP2021502539A (en) Systems and methods for the production and separation of hydrogen and carbon dioxide
JP5106461B2 (en) Carbon dioxide recovery device
JP2005532241A (en) No / low exhaust energy supply station
EP2889943B1 (en) Fuel cell system using natural gas
WO2019073867A1 (en) Methane producing system
JP5412232B2 (en) Hydrogen separation type hydrogen production system with carbon dioxide separation and recovery equipment
CN109831927B (en) Method and power plant for generating electricity and producing H2 gas comprising a Solid Oxide Fuel Cell (SOFC)
JP4744971B2 (en) Low quality waste heat recovery system
JP4632532B2 (en) Hydrogen production method and system
WO2017110090A1 (en) Fuel cell system
JP5183118B2 (en) Power generation system
JP4135871B2 (en) Apparatus and method for reforming kerosene or light oil using exhaust heat as a heat source
JP6405538B2 (en) Fuel cell system
JPH11111320A (en) Recovery and fixing method for carbon dioxide, nitrogen gas, and argon gas in fuel cell power generation using internal combustion type reformer
WO2014065020A1 (en) Saturator and natural gas reforming system provided with same
JP2003054927A (en) System and method of recovering carbon dioxide
JP5143812B2 (en) Thermoelectric hydrogen supply system
JP2023005023A (en) steam boiler system
JP2007191370A (en) Hydrogen production system
JP2006117468A (en) System and method for reforming liquid fuel
JP2607313B2 (en) Combustion method and combustion apparatus
KR20220033648A (en) Generation system for ship
KR20230161016A (en) Hydrogen production apparatus for fuel cell ship

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021525619

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927842

Country of ref document: EP

Kind code of ref document: A1