WO2022180670A1 - Ru装置、du装置、通信システム、通信方法、及び非一時的なコンピュータ可読媒体 - Google Patents

Ru装置、du装置、通信システム、通信方法、及び非一時的なコンピュータ可読媒体 Download PDF

Info

Publication number
WO2022180670A1
WO2022180670A1 PCT/JP2021/006805 JP2021006805W WO2022180670A1 WO 2022180670 A1 WO2022180670 A1 WO 2022180670A1 JP 2021006805 W JP2021006805 W JP 2021006805W WO 2022180670 A1 WO2022180670 A1 WO 2022180670A1
Authority
WO
WIPO (PCT)
Prior art keywords
packets
entity
statistical information
alarm signal
received
Prior art date
Application number
PCT/JP2021/006805
Other languages
English (en)
French (fr)
Inventor
右京 菱
昌志 中田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2023501703A priority Critical patent/JPWO2022180670A5/ja
Priority to PCT/JP2021/006805 priority patent/WO2022180670A1/ja
Priority to EP21927774.6A priority patent/EP4301027A4/en
Publication of WO2022180670A1 publication Critical patent/WO2022180670A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present disclosure relates to RU devices, DU devices, communication systems, communication methods, and programs.
  • a radio access network has been used in which the baseband section and radio section of a base station are separated and the baseband section and radio section are connected via a fronthaul.
  • O-RAN Open-Radio Access Network
  • O-RAN Open-Radio Access Network
  • O-DU O-DU
  • -RAN Distributed Unit One of the purposes of the O-RAN fronthaul specifications is to facilitate connection between O-DU vendors and O-RUs from different vendors, and to realize multi-vendor radio access networks.
  • Non-Patent Document 1 defines specifications for M (Management)-Plane, which is defined for transmitting management data between O-RU and O-DU. Also, Non-Patent Document 1 discloses that the O-RU aggregates the packets received from the O-DUs and generates statistical information.
  • Non-Patent Document 1 does not disclose a specific method of utilizing statistical information generated by O-DUs or O-RUs. The same can be said for C-RAN (Centralized Radio Access Network) adopted in LTE (Long Term Evolution) defined by 3GPP (3rd Generation Partnership Project).
  • C-RAN Centralized Radio Access Network
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • An object of the present disclosure is to provide an RU device, a DU device, a communication system, a communication method, and a program comprising means for utilizing statistical information of packets generated in the RU device and the DU device that perform functions of separated base stations. to provide.
  • the RU (Remote Unit) device performs processing of layers higher than the layer executed by the RU (Remote Unit) device among the communication functions of the base station divided into a plurality of layers.
  • a receiving unit that receives packets from a DU (Distributed Unit) device to be executed, and an alarm signal is sent to the DU device or a management device that manages a network when statistical information about the received packet satisfies a predetermined criterion. and a transmitter.
  • a DU device receives packets from an RU device that executes processing of a layer lower than the layer executed by the DU device, among the communication functions of the base station divided into a plurality of layers. and a transmitter that transmits an alarm signal to a management device that manages the network when statistical information about the received packet satisfies a predetermined criterion.
  • a communication system transmits and receives packets between an RU device that executes partial layer processing and the RU device.
  • a communication system comprising a DU device that executes processing of a layer higher than the layer executed by the RU device, and a management device that manages a network including the RU device and the DU device, wherein the RU At least one of a device and the DU device sends an alarm signal to the management device when statistical information about the received packet meets a predetermined criterion, and the management device sends the RU sending the alarm signal. Sending said predetermined criteria to at least one of a device and said DU device sending said alarm signal.
  • a communication method among communication functions of a base station divided into a plurality of layers, executes processing of a layer higher than a layer executed by a RU (Remote Unit) device (DU ( Distributed Unit) device, and sends an alarm signal to the DU device or a management device that manages the network when statistical information about the received packet satisfies a predetermined criterion.
  • RU Remote Unit
  • DU Distributed Unit
  • a program among communication functions of a base station divided into a plurality of layers, performs processing of a layer higher than a layer executed by a RU (Remote Unit) device. Unit) device, and causes a computer to send an alarm signal to the DU device or a management device that manages the network when statistical information about the received packet meets predetermined criteria.
  • RU Remote Unit
  • an RU device, a DU device, a communication system, a communication method, and a program that can effectively utilize statistical information of packets generated in the RU device and the DU device that perform functions of separated base stations. can provide.
  • FIG. 1 is a configuration diagram of an RU device according to Embodiment 1;
  • FIG. 1 is a configuration diagram of a DU device according to Embodiment 1;
  • FIG. 1 is a configuration diagram of a communication system according to a second embodiment;
  • FIG. FIG. 11 is a diagram for explaining a delay management method according to the second embodiment;
  • FIG. 10 is a diagram showing a flow of management data setting processing according to the second embodiment;
  • FIG. 10 is a diagram showing the flow of alarm transmission processing according to the second embodiment;
  • FIG. 11 is a configuration diagram of a communication system according to a fourth embodiment;
  • FIG. FIG. 11 is a configuration diagram of a communication system according to a fifth embodiment;
  • FIG. 11 is a configuration diagram of a communication system according to a sixth embodiment;
  • FIG. 2 is a diagram of an RU device and the like according to each embodiment;
  • the RU device may be a computer device operated by a processor executing a program stored in memory.
  • the RU device 10 may execute processing of lower layers among the communication functions of the base station divided into multiple layers.
  • the DU device 20 may execute processing of layers higher than the layer executed by the RU device 10 .
  • the RU device 10 performs wireless communication with communication terminals existing within the communication area formed by the RU device 10 .
  • the communication terminal may be, for example, a smartphone terminal, an IoT (Internet of Things) terminal, or the like.
  • the communication terminal may be a device defined as UE (User Equipment) in 3GPP.
  • the base station may be, for example, an eNB (evolved Node B) defined as a base station supporting LTE (Long Term Evolution) in 3GPP, or a base station supporting so-called 5G.
  • eNB evolved Node B
  • the RU device 10 has a receiver 11 and a transmitter 12 .
  • the receiving unit 11 and the transmitting unit 12 may be software or modules whose processing is executed by a processor executing a program stored in memory.
  • the receiving unit 11 and the transmitting unit 12 may be hardware such as circuits or chips.
  • the receiving unit 11 receives packets from the DU device 20 .
  • the RU device 10 and the DU device 20 may be connected, for example, via a fixed communication network or via a wireless communication network.
  • the packets received by the RU device 10 may be, for example, control data necessary for communication terminals to use mobile networks provided by communication carriers.
  • the packet received by the RU device 10 may be user data addressed to a communication terminal.
  • the packets received by the RU device 10 may be management data used to manage a communication network including the RU device 10 and the DU device 20.
  • the transmission unit 12 transmits an alarm signal to the DU device 20 or the management device that manages the network when the statistical information regarding the received packets meets a predetermined criterion.
  • Statistical information about received packets may be, for example, information that classifies received packets using the number of received packets.
  • the number of received packets is, for example, the number of packets received normally, the number of packets containing errors, the number of packets received at a predetermined timing, the number of packets not received at a predetermined timing, etc. There may be.
  • the predetermined criteria are, for example, the number of packets received normally, the number of packets containing errors, the number of packets received at a predetermined timing, and the number of packets that could not be received at a predetermined timing, relative to the total number of packets received. At least some percentage of the number of packets may be above or below a predetermined threshold.
  • the predetermined criterion may be, for example, the type of packet received.
  • the RU device 10 may receive at least one of information indicating a predetermined criterion and information indicating a predetermined threshold from the DU device 20 or a management device that manages the network.
  • a management device that manages a network may be, for example, a device that manages a network including the DU device 20 and the RU device 10.
  • the management device may be a device that manages a network including an access network including the DU device 20 and the RU device 10 and a core network that manages the access network.
  • the alarm signal may be a signal used to notify an abnormal condition, failure, failure, or the like occurring in the RU device 10 .
  • the alarm signal may be a signal used to notify an abnormal state, failure, failure, etc. occurring on the transmission line between the RU device 10 and the DU device 20 .
  • the alarm signal may be a signal used to notify that at least one of the C-Plane and U-Plane logical connections between the RU device 10 and the DU device 20 is unstable.
  • the transmitter 12 may transmit the alarm signal to the management device via the DU device 20 or may transmit the alarm signal to the management device without the DU device 20 . Further, the transmission unit 12 may transmit the alarm signal to the DU device 20 via the management device, or may transmit the alarm signal to the DU device 20 without the management device. Further, the transmission unit 12 may stop transmission of the alarm signal to the DU device 20 or the management device that manages the network when the statistical information regarding the received packets does not satisfy a predetermined criterion.
  • the DU device 20 may be a computer device operated by a processor executing a program stored in memory.
  • the DU device 20 has a receiver 21 and a transmitter 22 .
  • the receiving unit 21 and the transmitting unit 22 may be software or modules whose processing is executed by a processor executing a program stored in memory.
  • the receiving unit 21 and the transmitting unit 22 may be hardware such as circuits or chips.
  • the receiving unit 21 receives packets from the RU device 10 .
  • the packets received by the DU device 20 may be, for example, control data required for communication terminals to use mobile networks provided by telecommunications carriers. Furthermore, the packet received by the DU device 20 may be user data transmitted from the communication terminal via the RU device 10 . Furthermore, the packets received by the DU device 20 may be management data used to manage a communication network including the RU device 10 and the DU device 20.
  • the transmitting unit 22 transmits an alarm signal to the management device that manages the network when the statistical information about the received packets satisfies a predetermined criterion.
  • Statistical information about received packets is the same as the statistical information in the RU device 10 .
  • the predetermined criteria may also be the same as the predetermined criteria in the RU device 10 .
  • the DU device 20 may receive at least one of information indicating a predetermined criterion and information indicating a predetermined threshold from a management device that manages the network.
  • the RU device 10 can transmit alarm signals generated based on received packets to devices other than the RU device 10 .
  • the administrator who manages the DU device 20 or the administrator who manages the management device receives the alarm signal, thereby causing the RU device 10 or between the RU device 10 and the DU device 20 to It is possible to detect faults, etc. occurring in the transmission line.
  • the administrator who manages the DU device 20 does not need to actively acquire statistical information managed by the RU device 10. There is no need to analyze statistical information directly. Therefore, by using the RU device 10, the management load on the administrator who manages the network including the RU device 10 and the DU device 20 can be reduced.
  • the DU device 20 can also transmit alarm signals to devices other than the DU device 20, like the RU device 10.
  • the administrator who manages the management device detects a failure or the like occurring in the transmission line between the DU device 20 or the RU device 10 and the DU device 20 by receiving the alarm signal. be able to.
  • the administrator who manages the management device does not need to actively acquire the statistical information managed by the DU device 20, and can obtain the statistical information in order to detect failures occurring in the DU device 20 or the like. No need to analyze. Therefore, by using the DU device 20, the management load on the administrator who manages the network including the RU device 10 and the DU device 20 can be reduced.
  • the communication system of FIG. 3 has an O-RU entity 30 and an O-DU entity 40 defined in the O-RAN Alliance.
  • NMS (Network Management System) 50 is a system that manages O-RU entity 30 and O-DU entity 40 .
  • the NMS 50 corresponds to a management device.
  • the NMS 50 may be replaced with an SMO (Service Management and Orchestration System).
  • the O-RU entity 30 corresponds to the RU device 10 .
  • the O-DU entity 40 corresponds to the DU device 20 .
  • the O-RU entity 30 is assumed to have the receiver 11 and transmitter 12 of the RU device 10
  • the O-DU entity 40 is assumed to have the receiver 21 and transmitter 22 of the DU device 20. do.
  • the O-RU entity 30 performs, for example, RF (Radio Frequency) processing and processing related to the Low-PHY layer.
  • the Low-PHY layer for example, FFT (Fast Fourier Transform), iFFT (inverse FFT), digital beamforming, and PRACH (Physical Random Access Channel) extraction may be a layer that performs processing related to .
  • PRACH extraction is, for example, a process in which the O-RU entity 30 extracts or detects the PRACH, which is the first signal transmitted from the UE, when the UE establishes a connection with the O-RU entity 30 .
  • the O-RU entity 30 may be TRP (Transmission Reception Point) or RRH (Radio Remote Head) defined by 3GPP.
  • the O-DU entity 40 performs processing related to the RLC (Radio Link Control) layer, the MAC (Medium Access Control) layer, and the High-PHY layer.
  • the High-PHY layer is, for example, a layer that performs processing related to FEC (Forward Error Correction) encoding, FEC decoding, scrambling, modulation, and demodulation.
  • FEC Forward Error Correction
  • the processing performed in the O-RU entity 30 and the O-DU entity 40 is not limited to what has been described above, and may be modified from what has been described above.
  • the O-RU entity 30 communicates with the O-DU entity 40 via transmission paths 61 and 62 .
  • the transmission path 61 transmits C-Plane data and U-Plane data.
  • the transmission path 62 transmits M-Plane data.
  • C-Plane data, U-Plane data, and M-Plane data may be transmitted as packets.
  • the transmission line 61 and the transmission line 62 may be referred to as a fronthaul (FH: Fronthaul) or a fronthaul interface.
  • the transmission line 61 and the transmission line 62 may require a predetermined frequency band.
  • the NMS 50 is connected with the O-DU entity 40 via the network.
  • the NMS 50 may, for example, set management data in the O-DU entity 40 and further set management data in the O-RU entity 30 via the O-DU entity 40 .
  • Management data may be transmitted to the O-RU entity 30 via the transmission line 62 as M-Plane data.
  • Management data may be configured using the YANG DATA MODEL specified in the O-RAN Alliance.
  • Management data may also be set in the O-RU entity 30 using, for example, o-ran-supervision.yangModule or o-ran-performance-management.yangModule.
  • the management data may be preset in at least one of the O-DU entity 40 and the O-RU entity 30 .
  • C-Plane is a protocol for transferring control signals.
  • U-Plane is a protocol for transferring user data.
  • C-Plane and U-Plane support protocol stacks that transmit signals used in eCPRI (enhanced Common Public Radio Interface) or RoE (Radio over Ethernet) using Ethernet/IP/UDP (User Datagram Protocol). ing.
  • the C-Plane and U-Plane may support a protocol stack that directly uses Ethernet to transmit signals used in eCPRI or RoE.
  • M-Plane is a protocol for transferring supervisory signals used to monitor or maintain equipment.
  • the O-RU entity 30 or O-DU entity 40 measures packets received as C-Plane data or U-Plane data using various counters.
  • Various counters may be, for example, RX_ON_TIME, RX_ON_TIME_C, RX_EARLY, RX_EARLY_C, RX_LATE, RX_LATE_C, and RX_TOTAL.
  • RX_ON_TIME, RX_ON_TIME_C, RX_EARLY, RX_EARLY_C, RX_LATE, RX_LATE_C, and RX_TOTAL are definitions of counters defined as measurement-objects in Rx Window Statistics in the O-RAN Alliance.
  • FIG. 4 shows the transmission of packets from O-DU entity 40 to O-RU entity 30 . Since the method of delay management executed in the O-DU entity 40 is the same as that of the O-RU entity 30, detailed description thereof will be omitted.
  • FIG. 4 shows that the O-RU entity 30 and the O-DU entity 40 manage delay using the same time axis.
  • the O-RU entity 30 and the O-DU entity 40 are performing time synchronization.
  • T1 to T4 indicate times.
  • Time T4 is the timing at which the O-RU entity 30 transmits radio data to the UE. Delay management is performed in the O-RU entity 30 and the O-DU entity 40 in order for the O-RU entity 30 to transmit wireless data at the predetermined time T4.
  • the O-RU entity 30 needs to complete various processes such as iFFT, analog conversion, and beamforming in time for the radio data transmission at time T4.
  • the time from time T3' to time T4 is the time during which the O-RU entity 30 performs various processes such as iFFT, analog conversion, and beamforming. In FIG. 4, the time from time T3' to time T4 is the O-RU processing delay.
  • a reception window is set before time T4, which is the timing of transmitting wireless data, by the time of the O-RU processing delay.
  • a period during which the O-RU entity 30 can normally receive packets is defined as a receive window.
  • the receive window indicates a period before time T3'.
  • the reception window may be a period from time T2 to time T3', which is the timing at which the O-DU entity 40 transmits a packet, or any time from time T2 to time T3' to time T3'. It may be a period.
  • the period from time T2 to time T3 is the transmission delay between the O-DU entity 40 and the O-RU entity 30, and may be referred to as fronthaul delay.
  • Fronthaul is the circuit between O-DU entity 40 and O-RU entity 30 .
  • an optical fiber or the like may be used for the front hole.
  • Standards for fronthaul are defined by the O-RAN Alliance.
  • the period from time T1 to time T2 indicates the O-DU processing delay.
  • the O-DU processing delay is the period during which processing is performed for the O-DU entity 40 to transmit the packet.
  • a predetermined period from time T2 may be defined as a transmission window in the O-DU entity 40 .
  • the send window is the period during which a packet sent from O-DU entity 40 can reach O-RU entity 30 before the receive window at O-RU entity 30 .
  • a reception window is also set in the O-DU entity 40 .
  • O-DU entity 40 can successfully transmit data to other devices by receiving packets sent from O-RU entity 30 in the receive window.
  • RX_ON_TIME, RX_ON_TIME_C, RX_EARLY, RX_EARLY_C, RX_LATE, RX_LATE_C, and RX_TOTAL will be explained.
  • RX_ON_TIME, RX_ON_TIME_C, RX_EARLY, RX_EARLY_C, RX_LATE, RX_LATE_C, and RX_TOTAL may be indicators that the O-RU entity 30 or O-DU entity 40 counts the number of packets.
  • the O-RU entity 30 or O-DU entity 40 counts RX_ON_TIME, RX_ON_TIME_C, RX_EARLY, RX_EARLY_C, RX_LATE, RX_LATE_C, and RX_TOTAL for packets arriving during a predetermined monitoring period. good.
  • the monitoring period may be a period measured by a C/U-plane monitoring period or a C/U-plane Monitoring Timer.
  • the monitoring period may be a configured-cu-monitoring-interval.
  • RX_ON_TIME counts the number of U-Plane data packets that have arrived at the O-RU entity 30 or O-DU entity 40 within the reception window.
  • the number of packets of U-Plane data that arrived within the receive window includes packets with errors such as packets with sequence number errors or corrupted packets.
  • RX_ON_TIME_C counts the number of C-Plane data packets that have arrived at the O-RU entity 30 or O-DU entity 40 within the reception window.
  • the number of packets of C-Plane data that arrived within the receive window includes packets with errors such as packets with sequence number errors or corrupted packets.
  • RX_EARLY counts the number of U-Plane data packets that have arrived at the O-RU entity 30 or O-DU entity 40 before the reception window starts.
  • RX_EARLY_C counts the number of packets of C-Plane data that arrived at the O-RU entity 30 or O-DU entity 40 before the reception window started.
  • RX_LATE counts the number of U-Plane data packets that have arrived at the O-RU entity 30 or O-DU entity 40 after the reception window has ended.
  • RX_LATE_C counts the number of C-Plane data packets arriving at the O-RU entity 30 or O-DU entity 40 after the reception window has ended.
  • RX_TOTAL counts the number of all packets received during a predetermined monitoring period including the receive window. All packets contain C-Plane data and U-Plane data. Additionally, all packets include all packets counted in RX_ON_TIME, RX_ON_TIME_C, RX_EARLY, RX_EARLY_C, RX_LATE, and RX_LATE_C. All packets may also include packets counted in other counters different from RX_ON_TIME, RX_ON_TIME _C, RX_EARLY, RX_EARLY_C, RX_LATE, and RX_LATE_C.
  • the receiver 21 of the O-DU entity 40 receives management data from the NMS 50 (S10).
  • the management data includes, for example, at least one of a packet type to be measured, an anomaly detection method, and a threshold value for notifying an alarm.
  • the packet type to be measured is, for example, measuring packets that are C-Plane data, measuring packets that are U-Plane data, or measuring packets of both C-Plane data and U-Plane data.
  • the management data may be trigger information for the O-RU entity 30 or O-DU entity 40 to send an alarm.
  • An anomaly detection method may be, for example, sending an alarm when the ratio of the number of RX_EARLY or RX_LATE to the total number of RX_ON_TIME, RX_EARLY, and RX_LATE exceeds a threshold. That is, the anomaly detection method may be, for example, sending an alarm when the percentage of packets received outside the reception window exceeds a threshold. Alternatively, an alarm may be sent when the ratio of the number of RX_EARLY or RX_LATE to the number of RX_TOTAL exceeds a threshold. Alternatively, an alarm may be sent when the ratio of the number of RX_EARLY or RX_LATE to the number of RX_ON_TIME exceeds a threshold. The same applies to the number of packets counted using the counter for C-Plane data.
  • the anomaly detection method may be to send an alarm when the ratio of the number of RX_ON_TIME to the total number of RX_ON_TIME, RX_EARLY, and RX_LATE is lower than a threshold.
  • the anomaly detection method may be to send an alarm if the ratio of the number of RX_ON_TIME to the number of RX_TOTAL is lower than a threshold.
  • the anomaly detection method may be to send an alarm when the ratio of the number of RX_ON_TIME to the number of RX_EARLY or RX_LATE is lower than a threshold. The same applies to the number of packets counted using the counter for C-Plane data.
  • the anomaly detection method may be to send an alarm when RX_ON_TIME exceeds the threshold.
  • the anomaly detection method may be to send an alarm when at least one of RX_EARLY and RX_LATE exceeds a threshold.
  • the anomaly detection method may be to send an alarm when at least one of RX_ON_TIME and RX_ON_TIME_C is lower than a threshold or is zero. The same applies to the number of packets counted using the counter for C-Plane data.
  • the threshold for sending an alarm may be a numerical value indicating a percentage, the number of packets, or the number of times. Sending an alarm may be translated as sending an alarm signal or an alarm message.
  • control unit of the O-DU entity 40 determines whether the management data includes the packet type to be measured (S11).
  • the control unit may be, for example, a processor or the like included in the O-DU entity 40 .
  • the processing shown in FIG. 5 may be performed by a processor included in the O-DU entity 40 executing a program stored in memory.
  • control unit of the O-DU entity 40 determines that the management data includes the packet type to be measured, it sets the packet type specified in the management data as the packet to be measured (S12).
  • control unit of the O-DU entity 40 determines that the management data does not contain the packet type to be measured, it sets the packet type defined as the default value as the packet to be measured (S13).
  • the default value may be pre-stored in memory or the like within the O-DU entity 40 .
  • the control unit of the O-DU entity 40 determines whether or not the management data includes an abnormality detection method (S14). When the control unit of the O-DU entity 40 determines that the management data includes an abnormality detection method, it sets the abnormality detection method specified in the management data (S15). When the control unit of the O-DU entity 40 determines that the management data does not include the abnormality detection method, it sets the abnormality detection method defined as the default value (S16). The default value may be pre-stored in memory or the like within the O-DU entity 40 .
  • the control unit of the O-DU entity 40 determines whether or not the management data contains a threshold value for sending an alarm (S17). If the controller of the O-DU entity 40 determines that the management data contains a threshold for sending an alarm, it sets the threshold specified in the management data (S18). If the controller of the O-DU entity 40 determines that the management data does not contain a threshold for sending an alarm, it sets a default threshold (S19). The default value may be pre-stored in memory or the like within the O-DU entity 40 .
  • FIG. 5 the flow of processing when the O-DU entity 40 receives management data from the NMS 50 has been described. Also in this case, the same processing as in FIG. 5 is performed. Therefore, a detailed description of the management data setting process in the O-RU entity 30 will be omitted.
  • the receiver 11 of the O-RU entity 30 receives a C-Plane data packet and a U-Plane data packet from the O-DU entity 40 (S20).
  • the control unit of the O-RU entity 30 generates statistical information on the received packets (S21). Specifically, the control unit of the O-RU entity 30 measures packets using RX_ON_TIME, RX_ON_TIME_C, RX_EARLY, RX_EARLY_C, RX_LATE, RX_LATE_C, and RX_TOTAL. As statistical information, the number of packets measured may be used.
  • the control unit of the O-RU entity 30 may, for example, count packets using all counters, or may measure packets using only the counters that count packets of the set packet type.
  • the control unit of the O-RU entity 30 determines whether or not the statistical information exceeds the preset threshold in the anomaly detection method (S22).
  • the transmitter 12 of the O-RU entity 30 transmits an alarm (S23).
  • the transmitter 12 transmits alarms to the O-DU entity 40 .
  • the transmission unit 12 may set the alarm destination to the NMS 50 and transmit the alarm to the NMS 50 via the O-DU entity 40 .
  • control unit of the O-RU entity 30 determines that the statistical information does not exceed the threshold, it repeats the processing from step S20.
  • the O-DU entity 40 also executes alarm transmission processing similar to that in FIG.
  • the O-DU entity 40 receives packets of C-Plane data and packets of U-Plane data from the O-RU entity 30.
  • the O-DU entity 40 sends an alarm to the NMS 50.
  • FIG. Other processes of the alarm transmission process of the O-DU entity 40 are the same as those of the O-RU entity 30, so detailed description thereof will be omitted.
  • the O-RU entity 30 and the O-DU entity 40 use RX_ON_TIME, RX_ON_TIME_C, RX_EARLY, RX_EARLY_C, RX_LATE, RX_LATE_C, and RX_TOTAL to generate statistical information about received packets.
  • the O-RU entity 30 and the O-DU entity 40 will send an alarm if the statistical information exceeds the threshold in the preset anomaly detection method.
  • the O-RU entity 30 and the O-DU entity 40 transmit alarms to devices other than their own devices.
  • the administrator or the like of the NMS 50 can obtain the statistical information from the O-RU entity 30 or O-DU entity 40 without actively acquiring the statistical information generated in the O-RU entity 30 or O-DU entity 40. can be received. As a result, the management load of the O-RU entity 30 and the O-DU entity 40 on the administrator of the NMS 50 can be reduced.
  • Embodiment 3 Next, statistical information used in the third embodiment will be described.
  • the number of packets is measured using RX_CORRUPT, RX_DUPL, RX_SEQID_ERR, RX_SEQID_ERR_C, or RX_ERR_DROP as statistical information.
  • RX_CORRUPT, RX_DUPL, RX_SEQID_ERR, RX_SEQID_ERR_C, or RX_ERR_DROP are definitions of counters specified in the O-RAN Alliance.
  • RX_CORRUPT counts the number of corrupted packets among those arriving at the O-RU entity 30 or O-DU entity 40 within the reception window.
  • a corrupted packet may be, for example, a packet with an incorrect value set in the packet header or a packet containing a protocol error.
  • packets in which an incorrect value is set in the packet header packets in which an incorrect sequence ID is set may be counted using RX_SEQID_ERR, which will be described later.
  • the number of corrupted packets may be measured for C-Plane data packets, may be measured for U-Plane data packets, and is measured without distinguishing between C-Plane data and U-Plane data. good too.
  • RX_DUPL counts the number of duplicated packets among packets arriving at the O-RU entity 30 or O-DU entity 40 within the reception window.
  • RX_SEQID_ERR counts the number of U-Plane data packets that arrive at the O-RU entity 30 or O-DU entity 40 within the reception window and have an error regarding the sequence ID.
  • An error related to the sequence ID is when an incorrect sequence ID is set in the packet, for example, when the value set in the sequence ID field of the packet header is not consecutive from the sequence ID of the previously received packet. is.
  • RX_SEQID_ERR_C counts the number of C-Plane data packets that have arrived at the O-RU entity 30 or O-DU entity 40 within the reception window and have an error regarding the sequence ID.
  • RX_ERR_DROP indicates the number of packets of C-Plane data or U-Plane data arriving at the O-RU entity 30 or O-DU entity 40 and discarded at the O-RU entity 30 or O-DU entity 40. count.
  • the packets counted in RX_ERR_DROP may be packets arriving within the reception window or packets arriving outside the reception window.
  • the anomaly detection method may be, for example, sending an alarm when the ratio of the number of RX_CORRUPT, RX_DUPL, RX_SEQID_ERR, RX_SEQID_ERR_C, or RX_ERR_DROP to the number of RX_TOTAL exceeds a threshold.
  • the anomaly detection method may be to send an alarm when the ratio of the number of RX_CORRUPT, RX_DUPL, RX_SEQID_ERR, RX_SEQID_ERR_C, or RX_ERR_DROP to the number of RX_ON_TIME exceeds a threshold.
  • the anomaly detection method may be to send an alarm when at least one of RX_CORRUPT, RX_DUPL, RX_SEQID_ERR, RX_SEQID_ERR_C, or RX_ERR_DROP exceeds a threshold.
  • the anomaly detection method may be to send an alarm when packets corresponding to RX_CORRUPT, RX_DUPL, RX_SEQID_ERR, RX_SEQID_ERR_C, or RX_ERR_DROP are continuously measured for the number of times defined as a threshold.
  • the O-RU entity 30 or the O-DU entity 40 can transmit an alarm according to the number of packets containing errors. This makes it possible to reduce the management load of the O-RU entity 30 and the O-DU entity 40 on the administrator of the NMS 50, etc., as in the second embodiment.
  • FIG. 3 shows an example in which only one transmission line 61 exists as a transmission line for transmitting C-Plane data and U-Plane data, FIG. is transmitted through a plurality of transmission paths.
  • transmission lines 61_1 to 61_n (where n is an integer of 2 or more) exists. Furthermore, a transmission line 62 exists as a transmission line for transmitting M-Plane data. In other words, between the O-RU entity 30 and the O-DU entity 40 are a plurality of fronthauls for transmitting C-Plane data and U-Plane data and a fronthaul for transmitting M-Plane data. Hall exists.
  • the transmission line for transmitting M-Plane data may be shared with any one of the transmission lines 61_1 to 61_n for transmitting C-Plane data and U-Plane data. That is, any of the transmission paths 61_1 to 61_n that transmit C-Plane data and U-Plane data may transmit M-Plane data.
  • the O-RU entity 30 or the O-DU entity 40 generates statistical information using at least one of RX_ON_TIME, RX_ON_TIME_C, RX_EARLY, RX_EARLY_C, RX_LATE, RX_LATE_C, and RX_TOTAL for each transmission line, that is, for each fronthaul. may Furthermore, the O-RU entity 30 or the O-DU entity 40 may generate statistical information using at least one of RX_CORRUPT, RX_DUPL, RX_SEQID_ERR, RX_SEQID_ERR_C, and RX_ERR_DROP for each channel.
  • the O-RU entity 30 or the O-DU entity 40 may collect packets transmitted over the transmission paths 61_1 to 61_n and generate statistical information using RX_ON_TIME or the like.
  • the O-RU entity 30 or O-DU entity 40 may implement the anomaly detection method described in Embodiment 2 or 3 for each transmission path and determine whether or not the statistical information exceeds the threshold. .
  • the O-RU entity 30 sends an alarm to the O-DU entity 40 or sends an alarm to the NMS 50 via the O-DU entity 40 if the statistical information exceeds the threshold.
  • the O-DU entity 40 sends an alarm to the NMS 50 if the statistics exceed the threshold.
  • the O-RU entity 30 or the O-DU entity 40 may determine whether or not statistical information generated collectively for packets transmitted on the transmission paths 61_1 to 61_n exceeds a threshold. .
  • the multiple transmission paths used to transmit the C-Plane data and the U-Plane data may be multiple logical transmission paths set in one physical transmission path.
  • a plurality of logical transmission paths identified using port identifiers may be set within one physical transmission path.
  • a logical transmission line may be identified using a pair of port identifiers set in each of the O-RU entity 30 and O-DU entity 40 .
  • eaxc-id is composed of RU_Port_ID, DU_Port_ID, BandSector_ID, and CC_ID.
  • RU_Port_ID is the O-RU entity 30 port identifier and DU_Port_ID is the O-DU entity 40 port identifier.
  • BandSector_ID is a band sector identifier, and CC_ID is a component carrier identifier.
  • the eaxc-id is defined in the O-RAN fronthaul specification.
  • the O-RU entity 30 or O-DU entity 40 implements the anomaly detection method described in Embodiment 2 or 3 for each logical transmission path, and determines whether or not the statistical information exceeds the threshold.
  • the O-RU entity 30 and the O-DU entity 40 are connected to each of a plurality of physically different transmission lines or a plurality of logically different transmission lines as described in the second or third embodiment.
  • An anomaly detection method can be implemented.
  • the O-RU entity 30 or the O-DU entity 40 autonomously transmits abnormal states regarding a plurality of transmission lines to other devices, thereby reducing the management load of the administrator, which increases as the number of transmission lines increases. be able to.
  • the communication system of FIG. 8 has a configuration in which a transmission line 62_2 for transmitting M-Plane data is added between the NMS 50 and the O-RU entity 30 in the communication system of FIG.
  • the O-RU entity 30 transmits the M-Plane data to the O-DU entity 40 via the transmission line 62_1, and the M-Plane data to the NMS 50 via the transmission line 62_2. Transmit data.
  • the O-RU entity 30 transmits an alarm to the NMS 50 without going through the O-DU entity 40.
  • the NMS 50 can receive an alarm from the O-RU entity 30 even when an abnormality occurs in the transmission line between the O-RU entity 30 and the O-DU entity 40 .
  • the administrator can detect abnormalities between the O-RU entity 30 and the O-DU entity 40 at an early stage.
  • a plurality of transmission lines may be set.
  • the communication system of FIG. 9 has a configuration in which an FHM (Fronthaul Multiplexer) 80 is added to the communication system of FIG.
  • the FHM 80 copies the C-Plane data and U-Plane data received from the O-DU entity 40 and transmits them to multiple O-RU entities 30 .
  • the FHM 80 combines the C-Plane data and U-Plane data received from each O-RU entity 30 and transmits the combined data to the O-DU entity 40 .
  • the O-RU entity 30 transmits C-Plane data and U-Plane data to and from the FHM 80 via the transmission path 71_1. 8, the O-RU entity 30 transmits management data to the O-DU entity 40 and NMS 50 via transmission paths 62_1 and 62_2.
  • the O-DU entity 40 transmits C-Plane data and U-Plane data to and from the FHM 80 via the transmission path 71_2. Also, the O-DU entity 40 transmits management data to and from the FHM 80 via the transmission path 72_1. The management data may be transmitted as M-Plane data on the transmission path 72_1.
  • the NMS 50 transmits management data to and from the FHM 80 via the transmission path 72_2. Also, the NMS 50 may transmit management data to and from the O-DU entity 40 without going through the FHM 80, as in FIG.
  • the FHM 80 like the O-RU entity 30 and O-DU entity 40, generates statistical information and performs anomaly detection.
  • the FHM 80 sends an alarm to the NMS 50 or the O-DU entity 40 when it detects an abnormality.
  • the FHM 80 transmits an alarm to the O-DU entity 40 or NMS 50 in a configuration including the FHM 80. This allows the administrator to detect anomalies occurring in the FHM 80 in addition to anomalies occurring in the O-RU entity 30 and O-DU entity 40 .
  • FIG. 10 is a block diagram showing a configuration example of the RU device 10, the DU device 20, the O-RU entity 30, the O-DU entity 40, the NMS 50, and the FHM 80 (hereinafter referred to as the RU device 10, etc.).
  • the RU device 10 etc. includes a network interface 1201 , a processor 1202 and a memory 1203 .
  • Network interface 1201 may be used to communicate with other network nodes.
  • Network interface 1201 may include, for example, an IEEE 802.3 series compliant network interface card (NIC).
  • NIC network interface card
  • the processor 1202 reads and executes software (computer program) from the memory 1203 to perform the processing of the RU device 10 and the like described using the flowcharts in the above embodiments.
  • Processor 1202 may be, for example, a microprocessor, MPU, or CPU.
  • Processor 1202 may include multiple processors.
  • the memory 1203 is composed of a combination of volatile memory and non-volatile memory.
  • Memory 1203 may include storage remotely located from processor 1202 .
  • the processor 1202 may access the memory 1203 via an I/O (Input/Output) interface (not shown).
  • I/O Input/Output
  • memory 1203 is used to store software modules.
  • the processor 1202 can perform the processing of the RU device 10 and the like described in the above embodiments by reading out and executing these software modules from the memory 1203 .
  • each of the processors included in the RU device 10 and the like in the above-described embodiments includes one or more programs containing instruction groups for causing a computer to execute the algorithm described with reference to the drawings. to run.
  • Non-transitory computer readable media include various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media (e.g., flexible discs, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R/W, semiconductor memory (eg mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may also be delivered to the computer on various types of transitory computer readable medium. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer-readable media can deliver the program to the computer via wired channels, such as wires and optical fibers, or wireless channels.
  • a receiving unit that receives packets from a DU (Distributed Unit) device that executes processing of a layer higher than a layer executed by a RU (Remote Unit) device among the communication functions of a base station divided into a plurality of layers; a transmitting unit that transmits an alarm signal to the DU device or a management device that manages the network when statistical information about the received packet satisfies a predetermined criterion.
  • Statistical information about the packet includes: The RU device according to appendix 1, which is information indicating that an abnormality has occurred in communication with the DU device.
  • (Appendix 3) Statistical information about the packet includes: 3. The RU device according to appendix 2, which is information about packets received in a period different from a reception window, which is a period during which the packets transmitted from the DU device can be normally received. (Appendix 4) The transmission unit 3. The RU device according to appendix 3, wherein the alarm signal is transmitted when the number of packets received during a period different from the reception window exceeds a predetermined threshold. (Appendix 5) The transmission unit Supplementary note 3, wherein the alarm signal is transmitted when a ratio of the number of packets received during a period different from the reception window to all packets received during the period including the reception window exceeds a predetermined threshold. RU equipment.
  • (Appendix 6) Statistical information about the packet includes: 3. The RU device of claim 2, which is information about packets containing errors. (Appendix 7) The transmission unit 7. The RU device according to claim 6, wherein the alarm signal is transmitted when the number of packets containing errors or the ratio of the number of packets containing errors exceeds a predetermined threshold. (Appendix 8) The receiving unit 8. The RU device according to any one of the preceding clauses, receiving the predetermined criteria from the DU device or the management device.
  • (Appendix 9) a receiving unit that receives packets from an RU device that executes processing of a layer lower than a layer that is executed by a DU device, among the communication functions of a base station divided into a plurality of layers; a transmitting unit that transmits an alarm signal to a management device that manages a network when statistical information about the received packets meets a predetermined criterion.
  • Statistical information about the packet includes: The DU device according to appendix 9, which is information indicating that an abnormality has occurred in communication with the RU device.
  • (Appendix 11) Statistical information about the packet includes: 11.
  • the DU device which is information about packets received during a period different from a reception window, which is a period during which the packets transmitted from the RU device can be received normally.
  • the transmission unit 12 The transmission unit 12. The DU device according to claim 11, wherein the alarm signal is transmitted when the number of packets received during a period different from the receive window exceeds a predetermined threshold.
  • DU equipment Appendix 14
  • Statistical information about the packet includes: 11.
  • the DU device of claim 10 which is information about packets containing errors.
  • Appendix 15 The transmission unit 15.
  • Appendix 16 The receiving unit 16.
  • the DU device according to any one of clauses 9-15 receiving said predetermined criteria from said management device.
  • Appendix 17 The transmission unit 17.
  • the communication system wherein the information indicates that communication with the DU device is abnormal.
  • Appendix 20 receiving packets from a DU (Distributed Unit) device that performs higher layer processing than a layer performed by a RU (Remote Unit) device among the communication functions of a base station divided into a plurality of layers; A communication method performed in an RU device, wherein an alarm signal is sent to the DU device or a management device that manages a network when statistical information about the received packets meets a predetermined criterion.
  • Appendix 22 receiving packets from a DU (Distributed Unit) device that performs higher layer processing than a layer performed by a RU (Remote Unit) device among the communication functions of a base station divided into a plurality of layers;
  • a program that causes a computer to send an alarm signal to a management device that manages the DU device or network when statistical information about the received packets meets a predetermined criterion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

分離された基地局の機能を実行するRU装置及びDU装置において生成されたパケットの統計情報を有効に活用することができるRU装置を提供することを目的とする。本開示にかかるRU装置(10)は、複数のレイヤに分割された基地局の通信機能のうち、RU(Remote Unit)装置(10)が実行するレイヤよりも上位のレイヤの処理を実行するDU(Distributed Unit)装置(20)からパケットを受信する受信部(11)と、受信したパケットに関する統計情報が所定の基準を満たした場合に、DU装置(20)もしくはネットワークを管理するマネジメント装置へアラーム信号を送信する送信部(12)と、を備える。

Description

RU装置、DU装置、通信システム、通信方法、及び非一時的なコンピュータ可読媒体
 本開示はRU装置、DU装置、通信システム、通信方法、及びプログラムに関する。
 近年、基地局のベースバンド部と無線部とを切り離し、ベースバンド部と無線部とをフロントホールを介して接続する無線アクセスネットワークが用いられている。O-RAN(Open-Radio Access Network)アライアンスにおいて規定されたO-RANフロントホール仕様は、無線部に相当するO-RU(O-RAN Radio Unit)とベースバンド部に相当するO-DU(O-RAN Distributed Unit)との間のフロントホールの仕様を規定している。O-RANフロントホール仕様は、O-DUのベンダと異なるベンダのO-RUとの接続を容易にし、無線アクセスネットワークのマルチベンダ化を実現することを一つの目的としている。
 非特許文献1には、O-RUとO-DUとの間において管理用データを送信するために規定されるM(Management)-Planeに関する仕様が規定されている。また、非特許文献1には、O-RUが、O-DUから受信したパケットを集計して統計情報を生成することが開示されている。
O-RAN.WG4.MP.0-v03.00
 しかし、非特許文献1には、O-DUまたはO-RUが生成した統計情報の具体的な活用方法が開示されていない。この点は、3GPP(3rd Generation Partnership Project)に規定されているLTE(Long Term Evolution)において採用されているC-RAN(Centralized Radio Access Network)においても同様に言える。
 本開示の目的は、分離された基地局の機能を実行するRU装置及びDU装置において生成されたパケットの統計情報を活用する手段を備えるRU装置、DU装置、通信システム、通信方法、及びプログラムを提供することにある。
 本開示の第1の態様にかかるRU(Remote Unit)装置は、複数のレイヤに分割された基地局の通信機能のうち、RU(Remote Unit)装置が実行するレイヤよりも上位のレイヤの処理を実行するDU(Distributed Unit)装置からパケットを受信する受信部と、受信した前記パケットに関する統計情報が所定の基準を満たした場合に、前記DU装置もしくはネットワークを管理するマネジメント装置へアラーム信号を送信する送信部と、を備える。
 本開示の第2の態様にかかるDU装置は、複数のレイヤに分割された基地局の通信機能のうち、DU装置が実行するレイヤよりも下位のレイヤの処理を実行するRU装置からパケットを受信する受信部と、受信した前記パケットに関する統計情報が所定の基準を満たした場合に、ネットワークを管理するマネジメント装置へアラーム信号を送信する送信部と、を備える。
 本開示の第3の態様にかかる通信システムは、複数のレイヤに分割された基地局の通信機能のうち、一部のレイヤ処理を実行するRU装置と、前記RU装置との間においてパケットを送受信し、前記RU装置が実行するレイヤよりも上位のレイヤの処理を実行するDU装置と、前記RU装置及び前記DU装置を含むネットワークを管理するマネジメント装置と、を備える通信システムであって、前記RU装置及び前記DU装置の少なくとも一方は、受信した前記パケットに関する統計情報が所定の基準を満たした場合に、前記マネジメント装置へアラーム信号を送信し、前記マネジメント装置は、前記アラーム信号を送信する前記RU装置、及び前記アラーム信号を送信する前記DU装置、の少なくとも一方へ、前記所定の基準を送信する。
 本開示の第4の態様にかかる通信方法は、複数のレイヤに分割された基地局の通信機能のうち、RU(Remote Unit)装置が実行するレイヤよりも上位のレイヤの処理を実行するDU(Distributed Unit)装置からパケットを受信し、受信した前記パケットに関する統計情報が所定の基準を満たした場合に、前記DU装置もしくはネットワークを管理するマネジメント装置へアラーム信号を送信する。
 本開示の第5の態様にかかるプログラムは、複数のレイヤに分割された基地局の通信機能のうち、RU(Remote Unit)装置が実行するレイヤよりも上位のレイヤの処理を実行するDU(Distributed Unit)装置からパケットを受信し、受信した前記パケットに関する統計情報が所定の基準を満たした場合に、前記DU装置もしくはネットワークを管理するマネジメント装置へアラーム信号を送信することをコンピュータに実行させる。
 本開示により、分離された基地局の機能を実行するRU装置及びDU装置において生成されたパケットの統計情報を有効に活用することができるRU装置、DU装置、通信システム、通信方法、及びプログラムを提供することができる。
実施の形態1にかかるRU装置の構成図である。 実施の形態1にかかるDU装置の構成図である。 実施の形態2にかかる通信システムの構成図である。 実施の形態2にかかる遅延管理の方法を説明する図である。 実施の形態2にかかる管理データの設定処理の流れを示す図である。 実施の形態2にかかるアラーム送信処理の流れを示す図である。 実施の形態4にかかる通信システムの構成図である。 実施の形態5にかかる通信システムの構成図である。 実施の形態6にかかる通信システムの構成図である。 それぞれの実施の形態にかかるRU装置等の図である。
 (実施の形態1)
 以下、図面を参照して本開示の実施の形態について説明する。図1を用いて実施の形態1にかかるRU装置10の構成例について説明する。RU装置は、プロセッサがメモリに格納されたプログラムを実行することによって動作するコンピュータ装置であってもよい。
 RU装置10は、複数のレイヤに分割された基地局の通信機能のうち、より下位のレイヤの処理を実行するものであってもよい。一方、DU装置20は、RU装置10が実行するレイヤよりも上位のレイヤの処理を実行するものであってもよい。RU装置10は、RU装置10が形成する通信エリア内に存在する通信端末と、無線通信を行う。通信端末は、例えば、スマートフォン端末、IoT(Internet of Things)端末等であってもよい。もしくは、通信端末は、3GPPにおいてUE(User Equipment)として規定されている装置であってもよい。基地局は、例えば、3GPPにおいてLTE(Long Term Evolution)をサポートする基地局として既定されているeNB(evolved Node B)であってもよく、いわゆる5Gをサポートする基地局であってもよい。
 RU装置10は、受信部11及び送信部12を有している。受信部11及び送信部12は、プロセッサがメモリに格納されたプログラムを実行することによって処理が実行されるソフトウェアもしくはモジュールであってもよい。または、受信部11及び送信部12は、回路もしくはチップ等のハードウェアであってもよい。
 受信部11は、DU装置20からパケットを受信する。RU装置10とDU装置20とは、例えば、固定通信ネットワークを介して接続してもよく、無線通信ネットワークを介して接続してもよい。RU装置10が受信するパケットは、例えば、通信端末が、通信事業者によって提供されているモバイルネットワークを利用するために必要となる制御データであってもよい。さらに、RU装置10が受信するパケットは、通信端末をあて先とするユーザデータであってもよい。さらに、RU装置10が受信するパケットは、RU装置10及びDU装置20を含む通信ネットワークを管理するために用いられる管理データであってもよい。
 送信部12は、受信したパケットに関する統計情報が所定の基準を満たした場合に、DU装置20もしくはネットワークを管理するマネジメント装置へアラーム信号を送信する。
 受信したパケットに関する統計情報は、例えば、受信したパケットの数を用いて受信したパケットを分類した情報であってもよい。受信したパケットの数とは、例えば、正常に受信したパケットの数、エラーを含むパケットを受信した数、所定のタイミングに受信したパケットの数、所定のタイミングに受信できなかったパケットの数等であってもよい。所定の基準とは、例えば、受信したパケットの総数に対する、正常に受信したパケットの数、エラーを含むパケットを受信した数、所定のタイミングに受信したパケットの数、所定のタイミングに受信できなかったパケットの数の少なくともいずれかの割合が所定の閾値を超えたこと、もしくは下回ったことであってもよい。
また所定の基準とは、例えば、受信したパケットの種類であってもよい。
RU装置10は、DU装置20もしくはネットワークを管理するマネジメント装置から、所定の基準を示す情報および所定の閾値を示す情報の、少なくともいずれかを受信してもよい。
 ネットワークを管理するマネジメント装置は、例えば、DU装置20及びRU装置10を含むネットワークを管理する装置であってもよい。もしくは、マネジメント装置は、DU装置20及びRU装置10を含むアクセスネットワーク、及び、アクセスネットワークを管理するコアネットワークを含むネットワークを管理する装置であってもよい。
 アラーム信号は、RU装置10に生じている異常状態、故障、障害等を通知するために用いられる信号であってもよい。もしくは、アラーム信号は、RU装置10とDU装置20との間の伝送路上に生じている異常状態、故障、障害等を通知するために用いられる信号であってもよい。
もしくはアラーム信号は、RU装置10とDU装置20との間のC-Plane及びU-Planeの少なくともいずれかの論理コネクションが不安定である旨を通知するために用いられる信号であってもよい。
 送信部12は、DU装置20を介してマネジメント装置へアラーム信号を送信してもよく、DU装置20を介すことなくマネジメント装置へアラーム信号を送信してもよい。また、送信部12は、マネジメント装置を介してDU装置20へアラーム信号を送信してもよく、マネジメント装置を介すことなくアラーム信号をDU装置20へ送信してもよい。
また送信部12は、受信したパケットに関する統計情報が所定の基準を満たさない場合に、DU装置20もしくはネットワークを管理するマネジメント装置へのアラーム信号の送信を停止してもよい。
 続いて、図2を用いて実施の形態1にかかるDU装置20の構成例について説明する。DU装置20は、プロセッサがメモリに格納されたプログラムを実行することによって動作するコンピュータ装置であってもよい。
 DU装置20は、受信部21及び送信部22を有している。受信部21及び送信部22は、プロセッサがメモリに格納されたプログラムを実行することによって処理が実行されるソフトウェアもしくはモジュールであってもよい。または、受信部21及び送信部22は、回路もしくはチップ等のハードウェアであってもよい。
 受信部21は、RU装置10からパケットを受信する。DU装置20が受信するパケットは、例えば、通信端末が、通信事業者によって提供されているモバイルネットワークを利用するために必要となる制御データであってもよい。さらに、DU装置20が受信するパケットは、RU装置10を介して通信端末から送信されたユーザデータであってもよい。さらに、DU装置20が受信するパケットは、RU装置10及びDU装置20を含む通信ネットワークを管理するために用いられる管理データであってもよい。
 送信部22は、受信したパケットに関する統計情報が所定の基準を満たした場合に、ネットワークを管理するマネジメント装置へアラーム信号を送信する。受信したパケットに関する統計情報は、RU装置10における統計情報と同様である。
所定の基準についても、RU装置10における所定の基準と同様であってもよい。
DU装置20は、ネットワークを管理するマネジメント装置から、所定の基準を示す情報および所定の閾値を示す情報の、少なくともいずれかを受信してもよい。
 以上説明したように、RU装置10は、受信したパケットに基づいて生成されたアラーム信号を、RU装置10以外の他の装置へ送信することができる。その結果、DU装置20を管理している管理者、もしくは、マネジメント装置を管理している管理者は、アラーム信号を受信することによって、RU装置10、もしくはRU装置10とDU装置20との間の伝送路に発生している障害等を検知することができる。言い換えると、DU装置20を管理している管理者は、RU装置10において管理されている統計情報を能動的に取得する必要が無く、RU装置10等に発生している障害等を検知するために統計情報を分析する必要が無い。そのため、RU装置10を用いることによって、RU装置10及びDU装置20を含むネットワークを管理する管理者の、管理負荷を軽減させることができる。
 さらに、DU装置20も、RU装置10と同様に、アラーム信号をDU装置20以外の他の装置へ送信することができる。その結果、マネジメント装置を管理している管理者は、アラーム信号を受信することによって、DU装置20、もしくはRU装置10とDU装置20との間の伝送路に発生している障害等を検知することができる。マネジメント装置を管理している管理者は、DU装置20において管理されている統計情報を能動的に取得する必要が無く、DU装置20等に発生している障害等を検知するために統計情報を分析する必要が無い。そのため、DU装置20を用いることによって、RU装置10及びDU装置20を含むネットワークを管理する管理者の、管理負荷を軽減させることができる。
 (実施の形態2)
 続いて、図3を用いて実施の形態2にかかる通信システムの構成例について説明する。図3の通信システムは、O-RANアライアンスにおいて規定されたO-RUエンティティ30及びO-DUエンティティ40を有している。さらに、NMS(Network Management System)50は、O-RUエンティティ30及びO-DUエンティティ40を管理するシステムである。NMS50は、マネジメント装置に相当する。NMS50は、SMO(Service Management and Orchestration System)に置き換えられてもよい。O-RUエンティティ30は、RU装置10に相当する。O-DUエンティティ40は、DU装置20に相当する。以下の説明においては、O-RUエンティティ30は、RU装置10の受信部11及び送信部12を有するとし、O-DUエンティティ40は、DU装置20の受信部21及び送信部22を有するとする。
 O-RUエンティティ30は、例えば、RF(Radio Frequency)処理及びLow-PHYレイヤに関する処理を実行する。Low-PHYレイヤは、例えば、FFT(Fast Fourier Transform)、iFFT(inverse FFT)、デジタルビームフォーミング、及び、PRACH(Physical Random Access Channel)抽出(extraction)、に関する処理を実行するレイヤであってもよい。PRACH抽出は、例えば、UEがO-RUエンティティ30と接続を確立する際に、O-RUエンティティ30が、UEから最初に送信される信号であるPRACHを抽出もしくは検出する処理である。O-RUエンティティ30は、3GPPで規定されるTRP(Transmission Reception Point)またはRRH(Radio Remote Head)であってもよい。
 O-DUエンティティ40は、例えば、RLC(Radio Link Control)レイヤ、MAC(Medium Access Control)レイヤ、及びHigh-PHYレイヤに関する処理を実行する。High-PHYレイヤは、例えば、FEC(Forward Error Correction)エンコード、FECデコード、スクランブリング、変調、及び復調に関する処理を実行するレイヤである。O-RUエンティティ30及びO-DUエンティティ40において実行される処理は、上記の内容に制限されず、上記の内容から変更されてもよい。
 O-RUエンティティ30は、伝送路61及び伝送路62を介してO-DUエンティティ40と通信する。伝送路61は、C-Planeデータ及びU-Planeデータを伝送する。また、伝送路62は、M-Planeデータを伝送する。C-Planeデータ、U-Planeデータ、及びM-Planeデータは、パケットとして伝送されてもよい。伝送路61及び伝送路62は、フロントホール(FH:Fronthaul)もしくはフロントホールインタフェースと称されてもよい。また伝送路61及び伝送路62は、所定の周波数帯域を要するものであってもよい。
 NMS50は、ネットワークを介してO-DUエンティティ40と接続している。NMS50は、例えば、O-DUエンティティ40に管理データを設定し、さらに、O-DUエンティティ40を介してO-RUエンティティ30に管理データを設定してもよい。管理データは、M-Planeデータとして、伝送路62を介してO-RUエンティティ30へ送信されてもよい。管理データは、O-RANアライアンスにおいて規定されたYANG DATA MODELを用いて設定されてもよい。また管理データは、例えばo-ran-supervision.yang Module、またはo-ran-performance-management.yang Moduleを用いてO-RUエンティティ30に設定されてもよい。また管理データは、O-DUエンティティ40またはO-RUエンティティ30の少なくともいずれかに、予め設定されていてもよい。
 C-Planeは、制御信号を転送するためのプロトコルである。また、U-Planeは、ユーザデータを転送するためのプロトコルである。C-Plane及びU-Planeでは、eCPRI(ehnanced Common Public Radio Interface)もしくはRoE(Radio over Ethernet)において用いられる信号を、Ethernet/IP/UDP(User Datagram Protocol)を用いて伝送するプロトコルスタックがサポートされている。もしくは、C-Plane及びU-Planeでは、eCPRIもしくはRoEにおいて用いられる信号を、直接Ethernetを用いて伝送するプロトコルスタックがサポートされていてもよい。M-Planeは、装置を監視もしくは保守するために用いられる監視信号を転送するためのプロトコルである。
 次に、O-RUエンティティ30もしくはO-DUエンティティ40が生成する統計情報について説明する。O-RUエンティティ30もしくはO-DUエンティティ40は、C-PlaneデータもしくはU-Planeデータとして受信したパケットを、各種カウンタを用いて計測する。各種カウンタは、例えば、RX_ON_TIME、RX_ON_TIME_C、RX_EARLY、RX_EARLY_C、RX_LATE、RX_LATE_C、及びRX_TOTALであってもよい。RX_ON_TIME、RX_ON_TIME_C、RX_EARLY、RX_EARLY_C、RX_LATE、RX_LATE_C、及びRX_TOTALは、O-RANアライアンスにおいてRx Window Statisticsにおけるmeasurement-objectとして規定されたカウンタの定義である。
 ここで、RX_ON_TIME、RX_ON_TIME_C、RX_EARLY、RX_EARLY_C、RX_LATE、RX_LATE_C、及びRX_TOTALの詳細について説明する前に、図4を用いて、O-RUエンティティ30において実行される遅延管理の方法について説明する。図4は、O-DUエンティティ40からO-RUエンティティ30へパケットを送信することを示している。O-DUエンティティ40において実行される遅延管理の方法については、O-RUエンティティ30と同様であるため詳細な説明を省略する。
 図4は、O-RUエンティティ30及びO-DUエンティティ40が同じ時間軸を用いて遅延管理を行っていることを示している。つまり、O-RUエンティティ30及びO-DUエンティティ40は、時刻同期を行っている。T1~T4は、時刻を示している。
 時刻T4は、O-RUエンティティ30が、無線データをUEへ送信するタイミングである。O-RUエンティティ30が予め定められた時刻T4に無線データを送信するために、O-RUエンティティ30及びO-DUエンティティ40において遅延管理が行われる。O-RUエンティティ30は、時刻T4における無線データの送信に間に合うように、iFFT、アナログ変換、ビームフォーミング等の各種処理を完了する必要がある。時刻T3’から時刻T4までの時間は、O-RUエンティティ30が、iFFT、アナログ変換、ビームフォーミング等の各種処理を実行する時間である。図4においては、時刻T3’から時刻T4までの時間を、O-RU処理遅延としている。
 O-RUエンティティ30には、無線データを送信するタイミングである時刻T4から、O-RU処理遅延の時間分、手前に受信ウィンドウが設定される。O-RUエンティティ30が正常にパケットを受信することができる期間を受信ウィンドウと定義する。つまり、O-RUエンティティ30は、受信ウィンドウにおいてパケットを受信した場合、受信したパケットを、無線データを送信するタイミングである時刻T4に無線データとして送信することができる。受信ウィンドウは、時刻T3’より手前の期間を示している。受信ウィンドウは、O-DUエンティティ40がパケットを送信するタイミングである時刻T2から時刻T3’までの期間であってもよく、時刻T2から時刻T3’までの任意のタイミングから、時刻T3’までの期間であってもよい。
 時刻T2から時刻T3までの期間は、O-DUエンティティ40とO-RUエンティティ30との間における伝送遅延であり、フロントホール遅延と称されてもよい。フロントホールは、O-DUエンティティ40とO-RUエンティティ30との間における回線である。フロントホールには、例えば、光ファイバ等が用いられてもよい。フロントホールに関する規格は、O-RANアライアンスにおいて定められている。
 時刻T1から時刻T2までの期間は、O-DU処理遅延を示している。O-DU処理遅延は、O-DUエンティティ40がパケットを送信するための処理が実行される期間である。時刻T2から所定の期間をO-DUエンティティ40における送信ウィンドウと定めてもよい。送信ウィンドウは、O-DUエンティティ40から送信されるパケットが、O-RUエンティティ30における受信ウィンドウまでにO-RUエンティティ30に到達することが可能な期間である。
 図4においては、O-RUエンティティ30に受信ウィンドウが設定される例について説明したが、O-DUエンティティ40にも、受信ウィンドウが設定される。O-DUエンティティ40は、O-RUエンティティ30から送信されたパケットを受信ウィンドウにて受け取ることによって、他の装置へ正常にデータを送信することができる。
 次に、RX_ON_TIME、RX_ON_TIME_C、RX_EARLY、RX_EARLY_C、RX_LATE、RX_LATE_C、及びRX_TOTALの詳細について説明する。RX_ON_TIME、RX_ON_TIME_C、RX_EARLY、RX_EARLY_C、RX_LATE、RX_LATE_C、及びRX_TOTALは、O-RUエンティティ30もしくはO-DUエンティティ40がパケット数をカウントする指標であってもよい。O-RUエンティティ30もしくはO-DUエンティティ40は、所定の監視期間(monitoring period)の間に到着したパケットを対象に、RX_ON_TIME、RX_ON_TIME_C、RX_EARLY、RX_EARLY_C、RX_LATE、RX_LATE_C、及びRX_TOTALをカウントしてもよい。また監視期間は、C/U-plane monitoring periodまたはC/U-plane Monitoring Timerによって計測される期間であってもよい。さらにまた監視期間は、configured-cu-monitoring-intervalであってもよい。
 RX_ON_TIMEは、受信ウィンドウ内にO-RUエンティティ30もしくはO-DUエンティティ40に到着したU-Planeデータのパケット数をカウントする。受信ウィンドウ内に到着したU-Planeデータのパケット数には、シーケンスナンバーエラーを有するパケット、もしくは、破損(corruption)したパケット等のエラーを有するパケットも含む。
 RX_ON_TIME_Cは、受信ウィンドウ内にO-RUエンティティ30もしくはO-DUエンティティ40に到着したC-Planeデータのパケット数をカウントする。受信ウィンドウ内に到着したC-Planeデータのパケット数には、シーケンスナンバーエラーを有するパケット、もしくは、破損(corruption)したパケット等のエラーを有するパケットも含む。
 RX_EARLYは、受信ウィンドウが開始する前にO-RUエンティティ30もしくはO-DUエンティティ40に到着したU-Planeデータのパケット数をカウントする。RX_EARLY_Cは、受信ウィンドウが開始する前にO-RUエンティティ30もしくはO-DUエンティティ40に到着したC-Planeデータのパケット数をカウントする。
 RX_LATEは、受信ウィンドウが終了した後にO-RUエンティティ30もしくはO-DUエンティティ40に到着したU-Planeデータのパケット数をカウントする。RX_LATE_Cは、受信ウィンドウが終了した後にO-RUエンティティ30もしくはO-DUエンティティ40に到着したC-Planeデータのパケット数をカウントする。
 RX_TOTALは、受信ウィンドウを含む所定の監視期間に受信したすべてのパケットの数をカウントする。すべてのパケットは、C-Planeデータ及びU-Planeデータを含む。さらに、すべてのパケットは、RX_ON_TIME、RX_ON_TIME _C、RX_EARLY、RX_EARLY _C、RX_LATE、及びRX_LATE_Cにおいてカウントされたすべてのパケットを含む。また、すべてのパケットは、RX_ON_TIME、RX_ON_TIME _C、RX_EARLY、RX_EARLY_C、RX_LATE、及びRX_LATE_Cとは異なる他のカウンタにおいてカウントされたパケットを含んでもよい。
 続いて、図5を用いて実施の形態2にかかるO-DUエンティティ40における管理データの設定処理について説明する。はじめに、O-DUエンティティ40の受信部21は、NMS50から管理データを受信する(S10)。管理データは、例えば、計測対象のパケット種別、異常検知方法、及びアラームを通知するための閾値、のうち少なくとも一つが含まれている。計測対象のパケット種別は、例えば、C-Planeデータであるパケットを計測するか、U-Planeデータであるパケットを計測するか、もしくは、C-Planeデータ及びU-Planeデータの両方のパケットを計測するか、を示す情報である。C-Planeデータ及びU-Planeデータの両方のパケットを計測する場合、C-Planeデータ及びU-Planeデータを区別して計測してもよく、C-Planeデータ及びU-Planeデータを区別せずに計測してもよい。管理データは、O-RUエンティティ30またはO-DUエンティティ40がアラームを送信するためのトリガー情報であってもよい。
 異常検知方法は、例えば、RX_ON_TIME、RX_EARLY、及びRX_LATEの合計数に対する、RX_EARLYもしくはRX_LATEの数の割合が、閾値を超えた場合にアラームを送信することであってもよい。すなわち異常検知方法は、例えば、受信ウィンドウの期間外で受信したパケットの割合が、閾値を超えた場合にアラームを送信することであってもよい。もしくは、RX_TOTALの数に対するRX_EARLYもしくはRX_LATEの数の割合が、閾値を超えた場合にアラームを送信することであってもよい。もしくは、RX_ON_TIMEの数に対するRX_EARLYもしくはRX_LATEの数の割合が、閾値を超えた場合にアラームを送信することであってもよい。C-Planeデータに関するカウンタを用いてカウントしたパケット数も、同様である。
 もしくは、異常検知方法は、RX_ON_TIME、RX_EARLY、及びRX_LATEの合計数に対する、RX_ON_TIMEの数の割合が、閾値よりも低い場合に、アラームを送信することであってもよい。もしくは、異常検知方法は、RX_TOTALの数に対するRX_ON_TIMEの数の割合が、閾値よりも低い場合にアラームを送信することであってもよい。もしくは、異常検知方法は、RX_EARLYもしくはRX_LATEの数に対するRX_ON_TIMEの数の割合が、閾値よりも低い場合にアラームを送信することであってもよい。C-Planeデータに関するカウンタを用いてカウントしたパケット数も、同様である。
 もしくは、異常検知方法は、RX_ON_TIMEが閾値を超えた場合にアラームを送信することであってもよい。もしくは、異常検知方法は、RX_EARLY及びRX_LATEの少なくとも一つが、閾値を超えた場合に、アラームを送信することであってもよい。もしくは、異常検知方法は、RX_ON_TIME、RX_ON_TIME_C の少なくともいずれかが閾値よりも低い場合、もしくは0である場合に、アラームを送信することであってもよい。C-Planeデータに関するカウンタを用いてカウントしたパケット数も、同様である。
 もしくは、異常検知方法は、閾値として定められた回数だけ連続して、RX_EARLYもしくはRX_LATEに該当するパケットが計測された場合に、アラームを送信することであってもよい。C-Planeデータに関するカウンタを用いてカウントしたパケット数も、同様である。
 アラームを送信するための閾値は、割合、パケット数、もしくは回数等を示す数値であってもよい。アラームを送信するとは、アラーム信号もしくはアラームメッセージを送信すると言い換えられてもよい。
 次に、O-DUエンティティ40の制御部は、管理データに計測対象のパケット種別が含まれるか否かを判定する(S11)。制御部とは、例えば、O-DUエンティティ40に含まれるプロセッサ等であってもよい。O-DUエンティティ40に含まれるプロセッサがメモリに格納されたプログラムを実行することによって、図5に示されている処理が実行されてもよい。
 O-DUエンティティ40の制御部は、管理データに計測対象のパケット種別が含まれていると判定した場合、管理データにおいて指定されたパケット種別を計測対象のパケットとして設定する(S12)。O-DUエンティティ40の制御部は、管理データに計測対象のパケット種別が含まれていないと判定した場合、デフォルト値として定められていたパケット種別を計測対象のパケットとして設定する(S13)。デフォルト値は、O-DUエンティティ40内のメモリ等に予め格納されていてもよい。
 ステップS12もしくはS13の後に、O-DUエンティティ40の制御部は、管理データに異常検知方法が含まれているか否かを判定する(S14)。O-DUエンティティ40の制御部は、管理データに異常検知方法が含まれていると判定した場合、管理データにおいて指定された異常検知方法を設定する(S15)。O-DUエンティティ40の制御部は、管理データに異常検知方法が含まれていないと判定した場合、デフォルト値として定められていた異常検知方法を設定する(S16)。デフォルト値は、O-DUエンティティ40内のメモリ等に予め格納されていてもよい。
 ステップS15もしくはS16の後に、O-DUエンティティ40の制御部は、管理データに、アラームを送信するための閾値が含まれているか否かを判定する(S17)。O-DUエンティティ40の制御部は、管理データにアラームを送信するための閾値が含まれていると判定した場合、管理データにおいて指定された閾値を設定する(S18)。O-DUエンティティ40の制御部は、管理データにアラームを送信するための閾値が含まれていないと判定した場合、デフォルト値として定められていた閾値を設定する(S19)。デフォルト値は、O-DUエンティティ40内のメモリ等に予め格納されていてもよい。
 図5においては、O-DUエンティティ40がNMS50から管理データを受信した場合の処理の流れについて説明したが、O-RUエンティティ30が、O-DUエンティティ40を介してNMS50から管理データを受信した場合も図5と同様の処理が行われる。そのため、O-RUエンティティ30における管理データの設定処理については、詳細な説明を省略する。
 続いて、図6を用いて実施の形態2にかかるO-RUエンティティ30におけるアラーム送信処理の流れについて送信する。はじめに、O-RUエンティティ30の受信部11は、C-Planeデータのパケット及びU-PlaneデータのパケットをO-DUエンティティ40から受信する(S20)。次に、O-RUエンティティ30の制御部は、受信したパケットに関する統計情報を生成する(S21)。具体的には、O-RUエンティティ30の制御部は、RX_ON_TIME、RX_ON_TIME_C、RX_EARLY、RX_EARLY_C、RX_LATE、RX_LATE_C、及びRX_TOTALを用いたパケットの計測を行う。統計情報として、計測したパケットの数が用いられてもよい。O-RUエンティティ30の制御部は、例えば、すべてのカウンタを用いてパケットをカウントしてもよく、設定されたパケット種別のパケットをカウントするカウンタのみを使用してパケットを計測してもよい。
 次に、O-RUエンティティ30の制御部は、統計情報が、予め設定された異常検知方法における閾値を超えているか否かを判定する(S22)。O-RUエンティティ30の制御部において、統計情報が閾値を超えていると判定された場合、O-RUエンティティ30の送信部12は、アラームを送信する(S23)。例えば、送信部12は、アラームをO-DUエンティティ40へ送信する。もしくは、送信部12は、アラームの宛先をNMS50とし、O-DUエンティティ40を介してNMS50へアラームを送信してもよい。
 O-RUエンティティ30の制御部は、統計情報が閾値を超えていないと判定した場合、ステップS20以降の処理を繰り返す。
 図6においては、O-RUエンティティ30におけるアラーム送信処理の流れについて説明したが、O-DUエンティティ40も図6と同様のアラーム送信処理を実行する。例えば、図6のステップS20において、O-DUエンティティ40は、O-RUエンティティ30からC-Planeデータのパケット及びU-Planeデータのパケットを受信する。また、ステップS23において、O-DUエンティティ40は、NMS50へアラームを送信する。O-DUエンティティ40のアラーム送信処理のその他の処理については、O-RUエンティティ30と同様であるため、詳細な説明を省略する。
 以上説明したように、O-RUエンティティ30及びO-DUエンティティ40は、RX_ON_TIME、RX_ON_TIME_C、RX_EARLY、RX_EARLY_C、RX_LATE、RX_LATE_C、及びRX_TOTALを用いて、受信したパケットに関する統計情報を生成する。さらに、O-RUエンティティ30及びO-DUエンティティ40は、統計情報が予め設定された異常検知方法において閾値を超えている場合には、アラームを送信する。O-RUエンティティ30及びO-DUエンティティ40は、自装置以外の装置へアラームを送信する。そのため、NMS50の管理者等は、能動的にO-RUエンティティ30もしくはO-DUエンティティ40において生成された統計情報を取得しなくても、O-RUエンティティ30もしくはO-DUエンティティ40から統計情報を受信することができる。その結果、NMS50の管理者等におけるO-RUエンティティ30及びO-DUエンティティ40の管理負荷を軽減させることができる。
 (実施の形態3)
 続いて、実施の形態3において用いられる統計情報について説明する。実施の形態3においては、統計情報として、RX_CORRUPT、RX_DUPL、RX_SEQID_ERR、RX_SEQID_ERR_C、もしくはRX_ERR_DROPを用いてパケット数を計測する。RX_CORRUPT、RX_DUPL、RX_SEQID_ERR、RX_SEQID_ERR_C、もしくはRX_ERR_DROPは、O-RANアライアンスにおいて規定されたカウンタの定義である。
 RX_CORRUPTは、受信ウィンドウ内にO-RUエンティティ30もしくはO-DUエンティティ40に到着したパケットのうち、破損したパケットの数をカウントする。破損したパケットとは、例えば、パケットのヘッダに誤った値が設定されているパケットであってもよく、プロトコルエラーを含むパケットであってもよい。パケットのヘッダに誤った値が設定されているパケットのうち、誤ったシーケンスIDが設定されたパケットに関しては、後に説明する、RX_SEQID_ERRを用いてカウントされてもよい。破損したパケットの数は、C-Planeデータのパケットが計測されてもよく、U-Planeデータのパケットが計測されてもよく、C-Planeデータ及びU-Planeデータを区別することなく計測されてもよい。
 RX_DUPLは、受信ウィンドウ内にO-RUエンティティ30もしくはO-DUエンティティ40に到着したパケットのうち、複製されたパケットの数をカウントする。
 RX_SEQID_ERRは、受信ウィンドウ内にO-RUエンティティ30もしくはO-DUエンティティ40に到着したU-Planeデータのパケットのうち、シーケンIDに関するエラーを有するパケットの数をカウントする。シーケンIDに関するエラーは、例えば、パケットヘッダのシーケンスIDフィールドに設定された値が、前回受信したパケットのシーケンスIDから連続した値となっていない場合等、パケットに誤ったシーケンスIDが設定されることである。
 RX_SEQID_ERR_Cは、受信ウィンドウ内にO-RUエンティティ30もしくはO-DUエンティティ40に到着したC-Planeデータのパケットのうち、シーケンIDに関するエラーを有するパケットの数をカウントする。
 RX_ERR_DROPは、O-RUエンティティ30もしくはO-DUエンティティ40に到着したC-PlaneデータもしくはU-Planeデータのパケットのうち、O-RUエンティティ30もしくはO-DUエンティティ40において廃棄されたパケットの数をカウントする。RX_ERR_DROPにおいてカウントされるパケットは、受信ウィンドウ内に到着したパケットであってもよく、受信ウィンドウ外に到着したパケットであってもよい。
 統計情報として、RX_CORRUPT、RX_DUPL、RX_SEQID_ERR、RX_SEQID_ERR_C、もしくはRX_ERR_DROPが用いられる場合の異常検知方法について説明する。この場合、異常検知方法は、例えば、RX_TOTALの数に対する、RX_CORRUPT、RX_DUPL、RX_SEQID_ERR、RX_SEQID_ERR_C、もしくはRX_ERR_DROPの数の割合が、閾値を超えた場合にアラームを送信することであってもよい。
 もしくは、異常検知方法は、RX_ON_TIMEの数に対する、RX_CORRUPT、RX_DUPL、RX_SEQID_ERR、RX_SEQID_ERR_C、もしくはRX_ERR_DROPの数の割合が、閾値を超えた場合にアラームを送信することであってもよい。
 もしくは、異常検知方法は、RX_CORRUPT、RX_DUPL、RX_SEQID_ERR、RX_SEQID_ERR_C、もしくはRX_ERR_DROPの少なくとも一つが、閾値を超えた場合に、アラームを送信することであってもよい。
 もしくは、異常検知方法は、閾値として定められた回数だけ連続して、RX_CORRUPT、RX_DUPL、RX_SEQID_ERR、RX_SEQID_ERR_C、もしくはRX_ERR_DROPに該当するパケットが計測された場合に、アラームを送信することであってもよい。
 以上説明したように、実施の形態3においては、エラーを含むパケットの数に応じて、O-RUエンティティ30もしくはO-DUエンティティ40は、アラームを送信することができる。これにより、実施の形態2と同様に、NMS50の管理者等におけるO-RUエンティティ30及びO-DUエンティティ40の管理負荷を軽減させることができる。
 (実施の形態4)
 続いて、図7を用いて実施の形態4にかかる通信システムの構成例について説明する。図3においては、C-Planeデータ及びU-Planeデータを伝送する伝送路として、伝送路61が一つのみ存在する例を示したが、図7においては、C-Planeデータ及びU-Planeデータが複数の伝送路を介して伝送される構成を示している。
 図7に示すように、O-RUエンティティ30とO-DUエンティティ40との間には、C-Planeデータ及びU-Planeデータを伝送する伝送路として、伝送路61_1~伝送路61_n(nは2以上の整数)が存在する。さらに、M-Planeデータを伝送する伝送路として伝送路62が存在する。言い換えると、O-RUエンティティ30とO-DUエンティティ40との間には、C-Planeデータ及びU-Planeデータを伝送するための複数のフロントホールと、M-Planeデータを伝送するためのフロントホールとが存在する。もしくは、M-Planeデータを伝送する伝送路は、C-Planeデータ及びU-Planeデータを伝送する伝送路61_1~伝送路61_nのいずれかと共用されてもよい。つまり、C-Planeデータ及びU-Planeデータを伝送する伝送路61_1~伝送路61_nのいずれかが、M-Planeデータを伝送してもよい。
 O-RUエンティティ30もしくはO-DUエンティティ40は、伝送路ごと、つまり、フロントホールごとに、RX_ON_TIME、RX_ON_TIME_C、RX_EARLY、RX_EARLY_C、RX_LATE、RX_LATE_C、及びRX_TOTALの少なくとも一つを用いて統計情報を生成してもよい。さらに、O-RUエンティティ30もしくはO-DUエンティティ40は、伝送路ごとに、RX_CORRUPT、RX_DUPL、RX_SEQID_ERR、RX_SEQID_ERR_C、及びRX_ERR_DROPの少なくとも一つを用いて統計情報を生成してもよい。
 または、O-RUエンティティ30もしくはO-DUエンティティ40は、伝送路61_1~伝送路61_nにおいて伝送されるパケットをまとめて、RX_ON_TIME等を用いて統計情報を生成してもよい。
 O-RUエンティティ30もしくはO-DUエンティティ40は、伝送路ごとに、実施の形態2もしくは3において説明した異常検知方法を実施し、統計情報が閾値を超えているか否かを判定してもよい。O-RUエンティティ30は、統計情報が閾値を超えている場合には、アラームをO-DUエンティティ40へ送信する、もしくは、アラームをO-DUエンティティ40を介してNMS50へ送信する。O-DUエンティティ40は、統計情報が閾値を超えている場合には、アラームをNMS50へ送信する。
 もしくは、O-RUエンティティ30またはO-DUエンティティ40は、伝送路61_1~伝送路61_nにおいて伝送されるパケットをまとめて生成された統計情報が、閾値を超えているか否かを判定してもよい。
 図7においては、O-RUエンティティ30とO-DUエンティティ40との間に、C-Planeデータ及びU-Planeデータを伝送するために、物理的に異なる複数の伝送路を用いることについて説明した。ここで、C-Planeデータ及びU-Planeデータを伝送するために用いられる複数の伝送路は、一つの物理的な伝送路に設定される複数の論理的な伝送路であってもよい。例えば、一つの物理的な伝送路内に、ポート識別子を用いて識別される複数の論理的な伝送路が設定されてもよい。例えば、O-RUエンティティ30及びO-DUエンティティ40のそれぞれに設定されるポート識別子のペアを用いて、論理的な伝送路が識別されてもよい。
 また、一つの物理的な伝送路内に、eaxc-id(extended Antenna carrier - identification/identifier)を用いて識別される複数の論理的な伝送路が設定されてもよい。eaxc-idは、RU_Port_ID、DU_Port_ID、BandSector_ID、及びCC_IDから構成される。RU_Port_IDは、O-RUエンティティ30のポート識別子であり、DU_Port_IDは、O-DUエンティティ40のポート識別子である。BandSector_IDは、バンドセクタの識別子であり、CC_IDは、コンポーネントキャリア(Component Carrier)の識別子である。eaxc-idは、O-RANフロントホール仕様において定められている。
 O-RUエンティティ30もしくはO-DUエンティティ40は、論理的な伝送路ごとに、実施の形態2もしくは3において説明した異常検知方法を実施し、統計情報が閾値を超えているか否かを判定してもよい。
 以上説明したように、O-RUエンティティ30及びO-DUエンティティ40は、物理的に異なる複数の伝送路、もしくは、論理的に異なる複数の伝送路ごとに、実施の形態2もしくは3において説明した異常検知方法を実施することができる。複数の伝送路に関する異常状態をO-RUエンティティ30もしくはO-DUエンティティ40が自律的に他の装置へ送信することによって、伝送路が増加すればするほど増加する管理者の管理負荷を軽減することができる。
 (実施の形態5)
 続いて、図8を用いて実施の形態4にかかる通信システムの構成例について説明する。図8の通信システムは、図3の通信システムにおいて、NMS50とO-RUエンティティ30との間に、M-Planeデータを伝送するための伝送路62_2が追加された構成である。つまり、O-RUエンティティ30は、O-DUエンティティ40との間においては、伝送路62_1を介してM-Planeデータを伝送し、NMS50との間においては、伝送路62_2を介してM-Planeデータを伝送する。
 図8に示す通信システムにおいては、O-RUエンティティ30は、O-DUエンティティ40を介することなくNMS50へアラームを送信する。これより、O-RUエンティティ30とO-DUエンティティ40との間の伝送路に異常が発生した場合であっても、NMS50は、O-RUエンティティ30からアラームを受信することができる。その結果、管理者は、O-RUエンティティ30とO-DUエンティティ40との間の異常を早期に検出することができる。
 また、図8の通信システムにおいても、実施の形態4において説明したように、O-RUエンティティ30とO-DUエンティティ40との間において、C-Planeデータ及びU-Planeデータを伝送するために複数の伝送路が設定されてもよい。
 (実施の形態6)
 続いて、図9を用いて実施の形態6にかかる通信システムの構成例について説明する。図9の通信システムは、図8の通信システムに、FHM(Fronthaul Multiplexer)80が追加された構成となっている。FHM80は、O-DUエンティティ40から受信したC-Planeデータ及びU-Planeデータをコピーして複数のO-RUエンティティ30へ送信する。さらに、FHM80は、それぞれのO-RUエンティティ30から受信したC-Planeデータ及びU-Planeデータを結合して、O-DUエンティティ40へ送信する。
 O-RUエンティティ30は、伝送路71_1を介してFHM 80との間においてC-Planeデータ及びU-Planeデータを伝送する。また、図8と同様に、O-RUエンティティ30は、伝送路62_1及び伝送路62_2を介して管理データをO-DUエンティティ40及びNMS50へ送信する。
 O-DUエンティティ40は、伝送路71_2を介してFHM80との間においてC-Planeデータ及びU-Planeデータを伝送する。また、O-DUエンティティ40は、伝送路72_1を介してFHM80との間において管理データを伝送する。伝送路72_1においては、管理データは、M-Planeデータとして伝送されてもよい。
 NMS50は、伝送路72_2を介してFHM80との間において管理データを伝送する。また、NMS50は、FHM80を介することなく、図8と同様に、O-DUエンティティ40との間において管理データを伝送してもよい。
 FHM80は、O-RUエンティティ30及びO-DUエンティティ40と同様に、統計情報を生成し、異常検知を行う。FHM80は、異常を検知した場合に、アラームをNMS50もしくはO-DUエンティティ40へ送信する。
 図9に示す通信システムにおいては、FHM80を含む構成において、FHM80は、アラームをO-DUエンティティ40もしくはNMS50へ送信する。これより、管理者は、O-RUエンティティ30及びO-DUエンティティ40に発生した異常に加えて、FHM80において発生した異常も検出することができる。
 図10は、RU装置10、DU装置20、O-RUエンティティ30、O-DUエンティティ40、NMS50、及びFHM80(以下、RU装置10等とする)の構成例を示すブロック図である。図10を参照すると、RU装置10等は、ネットワークインタフェース1201、プロセッサ1202、及びメモリ1203を含む。ネットワークインタフェース1201は、他のネットワークノードと通信するために使用されてもよい。ネットワークインタフェース1201は、例えば、IEEE 802.3 seriesに準拠したネットワークインタフェースカード(NIC)を含んでもよい。
 プロセッサ1202は、メモリ1203からソフトウェア(コンピュータプログラム)を読み出して実行することで、上述の実施形態においてフローチャートを用いて説明されたRU装置10等の処理を行う。プロセッサ1202は、例えば、マイクロプロセッサ、MPU、又はCPUであってもよい。プロセッサ1202は、複数のプロセッサを含んでもよい。
 メモリ1203は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。メモリ1203は、プロセッサ1202から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1202は、図示されていないI/O(Input/Output)インタフェースを介してメモリ1203にアクセスしてもよい。
 図10の例では、メモリ1203は、ソフトウェアモジュール群を格納するために使用される。プロセッサ1202は、これらのソフトウェアモジュール群をメモリ1203から読み出して実行することで、上述の実施形態において説明されたRU装置10等の処理を行うことができる。
 図10を用いて説明したように、上述の実施形態におけるRU装置10等が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。
 上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 なお、本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 複数のレイヤに分割された基地局の通信機能のうち、RU(Remote Unit)装置が実行するレイヤよりも上位のレイヤの処理を実行するDU(Distributed Unit)装置からパケットを受信する受信部と、
 受信した前記パケットに関する統計情報が所定の基準を満たした場合に、前記DU装置もしくはネットワークを管理するマネジメント装置へアラーム信号を送信する送信部と、を備えるRU装置。
 (付記2)
 前記パケットに関する統計情報は、
 前記DU装置との通信に異常が発生していることを示す情報である、付記1に記載のRU装置。
 (付記3)
 前記パケットに関する統計情報は、
 前記DU装置から送信された前記パケットを正常に受信することができる期間である受信ウィンドウとは異なる期間に受信したパケットに関する情報である、付記2に記載のRU装置。
 (付記4)
 前記送信部は、
 前記受信ウィンドウとは異なる期間に受信したパケットの数が予め定められた閾値を超えた場合に前記アラーム信号を送信する、付記3に記載のRU装置。
 (付記5)
 前記送信部は、
 前記受信ウィンドウを含む期間において受信したすべてのパケットに対する前記受信ウィンドウとは異なる期間に受信したパケットの数の割合が予め定められた閾値を超えた場合に前記アラーム信号を送信する、付記3に記載のRU装置。
 (付記6)
 前記パケットに関する統計情報は、
 エラーを含むパケットに関する情報である、付記2に記載のRU装置。
 (付記7)
 前記送信部は、
 前記エラーを含むパケットの数もしくは前記エラーを含むパケットの数に関する割合が予め定められた閾値を超えた場合に前記アラーム信号を送信する、付記6に記載のRU装置。
 (付記8)
 前記受信部は、
 前記DU装置もしくは前記マネジメント装置から前記所定の基準を受信する、付記1乃至7のいずれか1項に記載のRU装置。
 (付記9)
 複数のレイヤに分割された基地局の通信機能のうち、DU装置が実行するレイヤよりも下位のレイヤの処理を実行するRU装置からパケットを受信する受信部と、
 受信した前記パケットに関する統計情報が所定の基準を満たした場合に、ネットワークを管理するマネジメント装置へアラーム信号を送信する送信部と、を備えるDU装置。
 (付記10)
 前記パケットに関する統計情報は、
 前記RU装置との通信に異常が発生していることを示す情報である、付記9に記載のDU装置。
 (付記11)
 前記パケットに関する統計情報は、
 前記RU装置から送信された前記パケットを正常に受信することができる期間である受信ウィンドウとは異なる期間に受信したパケットに関する情報である、付記10に記載のDU装置。
 (付記12)
 前記送信部は、
 前記受信ウィンドウとは異なる期間に受信したパケットの数が予め定められた閾値を超えた場合に前記アラーム信号を送信する、付記11に記載のDU装置。
 (付記13)
 前記送信部は、
 前記受信ウィンドウを含む期間において受信したすべてのパケットに対する前記受信ウィンドウとは異なる期間に受信したパケットの数の割合が予め定められた閾値を超えた場合に前記アラーム信号を送信する、付記11に記載のDU装置。
 (付記14)
 前記パケットに関する統計情報は、
 エラーを含むパケットに関する情報である、付記10に記載のDU装置。
 (付記15)
 前記送信部は、
 前記エラーを含むパケットの数もしくは前記エラーを含むパケットの数に関する割合が予め定められた閾値を超えた場合に前記アラーム信号を送信する、付記14に記載のDU装置。
 (付記16)
 前記受信部は、
 前記マネジメント装置から前記所定の基準を受信する、付記9乃至15のいずれか1項に記載のDU装置。
 (付記17)
 前記送信部は、
 前記RU装置へ前記所定の基準を送信する、付記9乃至16のいずれか1項に記載のDU装置。
 (付記18)
 複数のレイヤに分割された基地局の通信機能のうち、一部のレイヤ処理を実行するRU装置と、
 前記RU装置との間においてパケットを送受信し、前記RU装置が実行するレイヤよりも上位のレイヤの処理を実行するDU装置と、
 前記RU装置及び前記DU装置を含むネットワークを管理するマネジメント装置と、を備える通信システムであって、
 前記RU装置及び前記DU装置の少なくとも一方は、
 受信した前記パケットに関する統計情報が所定の基準を満たした場合に、前記マネジメント装置へアラーム信号を送信し、
 前記マネジメント装置は、
 前記アラーム信号を送信する前記RU装置、及び前記アラーム信号を送信する前記DU装置、の少なくとも一方へ、前記所定の基準を送信する、通信システム。
 (付記19)
 前記パケットに関する統計情報は、
 前記DU装置との通信に異常が発生していることを示す情報である、付記18に記載の通信システム。
 (付記20)
 複数のレイヤに分割された基地局の通信機能のうち、RU(Remote Unit)装置が実行するレイヤよりも上位のレイヤの処理を実行するDU(Distributed Unit)装置からパケットを受信し、
 受信した前記パケットに関する統計情報が所定の基準を満たした場合に、前記DU装置もしくはネットワークを管理するマネジメント装置へアラーム信号を送信する、RU装置において実行される通信方法。
 (付記21)
 複数のレイヤに分割された基地局の通信機能のうち、DU装置が実行するレイヤよりも下位のレイヤの処理を実行するRU装置からパケットを受信し、
 受信した前記パケットに関する統計情報が所定の基準を満たした場合に、ネットワークを管理するマネジメント装置へアラーム信号を送信する、DU装置において実行される通信方法。
 (付記22)
 複数のレイヤに分割された基地局の通信機能のうち、RU(Remote Unit)装置が実行するレイヤよりも上位のレイヤの処理を実行するDU(Distributed Unit)装置からパケットを受信し、
 受信した前記パケットに関する統計情報が所定の基準を満たした場合に、前記DU装置もしくはネットワークを管理するマネジメント装置へアラーム信号を送信することをコンピュータに実行させるプログラム。
 (付記23)
 複数のレイヤに分割された基地局の通信機能のうち、DU装置が実行するレイヤよりも下位のレイヤの処理を実行するRU装置からパケットを受信し、
 受信した前記パケットに関する統計情報が所定の基準を満たした場合に、ネットワークを管理するマネジメント装置へアラーム信号を送信することをコンピュータに実行させるプログラム。
 なお、本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
 10 RU装置
 11 受信部
 12 送信部
 20 DU装置
 21 受信部
 22 送信部
 30 O-RUエンティティ
 40 O-DUエンティティ
 50 NMS
 61 伝送路
 61_1 伝送路
 61_2 伝送路
 61_n 伝送路
 62 伝送路
 62_1 伝送路
 62_2 伝送路
 71_1 伝送路
 71_2 伝送路
 72_1 伝送路
 72_2 伝送路
 80 FHM

Claims (23)

  1.  複数のレイヤに分割された基地局の通信機能のうち、RU(Remote Unit)装置が実行するレイヤよりも上位のレイヤの処理を実行するDU(Distributed Unit)装置からパケットを受信する受信部と、
     受信した前記パケットに関する統計情報が所定の基準を満たした場合に、前記DU装置もしくはネットワークを管理するマネジメント装置へアラーム信号を送信する送信部と、を備えるRU装置。
  2.  前記パケットに関する統計情報は、
     前記DU装置との通信に異常が発生していることを示す情報である、請求項1に記載のRU装置。
  3.  前記パケットに関する統計情報は、
     前記DU装置から送信された前記パケットを正常に受信することができる期間である受信ウィンドウとは異なる期間に受信したパケットに関する情報である、請求項2に記載のRU装置。
  4.  前記送信部は、
     前記受信ウィンドウとは異なる期間に受信したパケットの数が予め定められた閾値を超えた場合に前記アラーム信号を送信する、請求項3に記載のRU装置。
  5.  前記送信部は、
     前記受信ウィンドウを含む期間において受信したすべてのパケットに対する前記受信ウィンドウとは異なる期間に受信したパケットの数の割合が予め定められた閾値を超えた場合に前記アラーム信号を送信する、請求項3に記載のRU装置。
  6.  前記パケットに関する統計情報は、
     エラーを含むパケットに関する情報である、請求項2に記載のRU装置。
  7.  前記送信部は、
     前記エラーを含むパケットの数もしくは前記エラーを含むパケットの数に関する割合が予め定められた閾値を超えた場合に前記アラーム信号を送信する、請求項6に記載のRU装置。
  8.  前記受信部は、
     前記DU装置もしくは前記マネジメント装置から前記所定の基準を受信する、請求項1乃至7のいずれか1項に記載のRU装置。
  9.  複数のレイヤに分割された基地局の通信機能のうち、DU装置が実行するレイヤよりも下位のレイヤの処理を実行するRU装置からパケットを受信する受信部と、
     受信した前記パケットに関する統計情報が所定の基準を満たした場合に、ネットワークを管理するマネジメント装置へアラーム信号を送信する送信部と、を備えるDU装置。
  10.  前記パケットに関する統計情報は、
     前記RU装置との通信に異常が発生していることを示す情報である、請求項9に記載のDU装置。
  11.  前記パケットに関する統計情報は、
     前記RU装置から送信された前記パケットを正常に受信することができる期間である受信ウィンドウとは異なる期間に受信したパケットに関する情報である、請求項10に記載のDU装置。
  12.  前記送信部は、
     前記受信ウィンドウとは異なる期間に受信したパケットの数が予め定められた閾値を超えた場合に前記アラーム信号を送信する、請求項11に記載のDU装置。
  13.  前記送信部は、
     前記受信ウィンドウを含む期間において受信したすべてのパケットに対する前記受信ウィンドウとは異なる期間に受信したパケットの数の割合が予め定められた閾値を超えた場合に前記アラーム信号を送信する、請求項11に記載のDU装置。
  14.  前記パケットに関する統計情報は、
     エラーを含むパケットに関する情報である、請求項10に記載のDU装置。
  15.  前記送信部は、
     前記エラーを含むパケットの数もしくは前記エラーを含むパケットの数に関する割合が予め定められた閾値を超えた場合に前記アラーム信号を送信する、請求項14に記載のDU装置。
  16.  前記受信部は、
     前記マネジメント装置から前記所定の基準を受信する、請求項9乃至15のいずれか1項に記載のDU装置。
  17.  前記送信部は、
     前記RU装置へ前記所定の基準を送信する、請求項9乃至16のいずれか1項に記載のDU装置。
  18.  複数のレイヤに分割された基地局の通信機能のうち、一部のレイヤ処理を実行するRU装置と、
     前記RU装置との間においてパケットを送受信し、前記RU装置が実行するレイヤよりも上位のレイヤの処理を実行するDU装置と、
     前記RU装置及び前記DU装置を含むネットワークを管理するマネジメント装置と、を備える通信システムであって、
     前記RU装置及び前記DU装置の少なくとも一方は、
     受信した前記パケットに関する統計情報が所定の基準を満たした場合に、前記マネジメント装置へアラーム信号を送信し、
     前記マネジメント装置は、
     前記アラーム信号を送信する前記RU装置、及び前記アラーム信号を送信する前記DU装置、の少なくとも一方へ、前記所定の基準を送信する、通信システム。
  19.  前記パケットに関する統計情報は、
     前記DU装置との通信に異常が発生していることを示す情報である、請求項18に記載の通信システム。
  20.  複数のレイヤに分割された基地局の通信機能のうち、RU(Remote Unit)装置が実行するレイヤよりも上位のレイヤの処理を実行するDU(Distributed Unit)装置からパケットを受信し、
     受信した前記パケットに関する統計情報が所定の基準を満たした場合に、前記DU装置もしくはネットワークを管理するマネジメント装置へアラーム信号を送信する、RU装置において実行される通信方法。
  21.  複数のレイヤに分割された基地局の通信機能のうち、DU装置が実行するレイヤよりも下位のレイヤの処理を実行するRU装置からパケットを受信し、
     受信した前記パケットに関する統計情報が所定の基準を満たした場合に、ネットワークを管理するマネジメント装置へアラーム信号を送信する、DU装置において実行される通信方法。
  22.  複数のレイヤに分割された基地局の通信機能のうち、RU(Remote Unit)装置が実行するレイヤよりも上位のレイヤの処理を実行するDU(Distributed Unit)装置からパケットを受信し、
     受信した前記パケットに関する統計情報が所定の基準を満たした場合に、前記DU装置もしくはネットワークを管理するマネジメント装置へアラーム信号を送信することをコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。
  23.  複数のレイヤに分割された基地局の通信機能のうち、DU装置が実行するレイヤよりも下位のレイヤの処理を実行するRU装置からパケットを受信し、
     受信した前記パケットに関する統計情報が所定の基準を満たした場合に、ネットワークを管理するマネジメント装置へアラーム信号を送信することをコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。
PCT/JP2021/006805 2021-02-24 2021-02-24 Ru装置、du装置、通信システム、通信方法、及び非一時的なコンピュータ可読媒体 WO2022180670A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023501703A JPWO2022180670A5 (ja) 2021-02-24 Ru装置、du装置、及び通信方法
PCT/JP2021/006805 WO2022180670A1 (ja) 2021-02-24 2021-02-24 Ru装置、du装置、通信システム、通信方法、及び非一時的なコンピュータ可読媒体
EP21927774.6A EP4301027A4 (en) 2021-02-24 2021-02-24 REMOTE UNIT DEVICE, DISTRIBUTED UNIT DEVICE, COMMUNICATIONS SYSTEM, COMMUNICATIONS METHOD AND NON-TRANSITIOUS COMPUTER-READABLE MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/006805 WO2022180670A1 (ja) 2021-02-24 2021-02-24 Ru装置、du装置、通信システム、通信方法、及び非一時的なコンピュータ可読媒体

Publications (1)

Publication Number Publication Date
WO2022180670A1 true WO2022180670A1 (ja) 2022-09-01

Family

ID=83047833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006805 WO2022180670A1 (ja) 2021-02-24 2021-02-24 Ru装置、du装置、通信システム、通信方法、及び非一時的なコンピュータ可読媒体

Country Status (2)

Country Link
EP (1) EP4301027A4 (ja)
WO (1) WO2022180670A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062828A1 (ja) * 2022-09-22 2024-03-28 日本電気株式会社 Ru装置、du装置、通信システム、及び通信方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230164596A1 (en) * 2021-11-24 2023-05-25 Sterlite Technologies Limited Alarm log management system and method during failure in o-ran

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110096A (ja) * 2003-10-01 2005-04-21 Matsushita Electric Ind Co Ltd 通信装置および方法
JP2013251795A (ja) * 2012-06-01 2013-12-12 Nec Commun Syst Ltd 中継装置及びデータ中継方法
JP2019176289A (ja) * 2018-03-28 2019-10-10 日本電気株式会社 無線通信装置、無線通信システムおよび無線通信方法
US20190313288A1 (en) * 2016-12-23 2019-10-10 China Mobile Communication Co., Ltd Research Institute Front-haul transport network, data transmission method, apparatus and computer storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110096A (ja) * 2003-10-01 2005-04-21 Matsushita Electric Ind Co Ltd 通信装置および方法
JP2013251795A (ja) * 2012-06-01 2013-12-12 Nec Commun Syst Ltd 中継装置及びデータ中継方法
US20190313288A1 (en) * 2016-12-23 2019-10-10 China Mobile Communication Co., Ltd Research Institute Front-haul transport network, data transmission method, apparatus and computer storage medium
JP2019176289A (ja) * 2018-03-28 2019-10-10 日本電気株式会社 無線通信装置、無線通信システムおよび無線通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4301027A4 *
UMESH, A. ET AL.: "Trends in standardization for open and intelligent wireless access networks- Overview of O-RAN front hall specifications", NTT DOCOMO TECHNICAL JOURNAL, vol. 27, no. 1, 30 April 2019 (2019-04-30), pages 43 - 55, XP055902784 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062828A1 (ja) * 2022-09-22 2024-03-28 日本電気株式会社 Ru装置、du装置、通信システム、及び通信方法

Also Published As

Publication number Publication date
EP4301027A4 (en) 2024-04-17
EP4301027A1 (en) 2024-01-03
JPWO2022180670A1 (ja) 2022-09-01

Similar Documents

Publication Publication Date Title
CN112586026B (zh) 用于nr-u的无线电链路监视和无线电资源管理测量过程
KR102546571B1 (ko) 링크 복구 방법 및 장치
US8005030B2 (en) WLAN diagnostics using traffic stream metrics
US20140254647A1 (en) Systems and methods for using protocol information to trigger waveform analysis
WO2022180670A1 (ja) Ru装置、du装置、通信システム、通信方法、及び非一時的なコンピュータ可読媒体
JP4465360B2 (ja) データが誤って拒否される確率が低減されているデータ伝送方法
WO2019196885A1 (zh) 一种波束恢复的方法及装置
TW201534151A (zh) 端至端傳輸品質之決定
CN111698696B (zh) 数据传输方法及装置
US20180014212A1 (en) Satellite communication device, management device, monitoring system, and monitoring method
US8954057B2 (en) Base station, detection device, communication system and detection method
JP2006352660A (ja) 無線lanシステム、その通信状態検出方法及びその通信状態検出プログラム
US9716739B2 (en) System and method for determining deterioration in call quality between one or more wireless end-users based on codec characteristics
EP3857791B1 (en) Coexistence of reference signals in wireless communication networks
US9432857B2 (en) Wireless communication system and method for controlling wireless communication
US11652682B2 (en) Operations management apparatus, operations management system, and operations management method
WO2015109305A1 (en) Methods and apparatus for signaling enhanced distributed channel access parameters for subsets of wireless devices
US8677195B2 (en) Data transmission method using ACK transmission opportunity in wireless network
CN109428763B (zh) 一种故障测量的方法和装置
EP4197152B1 (en) User equipment for communication over a wireless network and wireless network node for connecting the user equipment to the wireless network
WO2021158311A1 (en) Mac ce update to a detection resource in a radio link monitoring configuration
CN110417435B (zh) 一种频段确定方法以及设备
WO2015091869A1 (en) Distributed saturation detection method for wireless network nodes
US11632824B2 (en) Method for actively verifying whether candidate peer is mesh gate and method for determining primary mesh gate
EP4391667A1 (en) Method for obtaining (or providing) clock synchronization information and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927774

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023501703

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18276369

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021927774

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021927774

Country of ref document: EP

Effective date: 20230925