WO2022180442A1 - Multi-layer composite material with cold effect - Google Patents

Multi-layer composite material with cold effect Download PDF

Info

Publication number
WO2022180442A1
WO2022180442A1 PCT/IB2021/057066 IB2021057066W WO2022180442A1 WO 2022180442 A1 WO2022180442 A1 WO 2022180442A1 IB 2021057066 W IB2021057066 W IB 2021057066W WO 2022180442 A1 WO2022180442 A1 WO 2022180442A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pigments
composite material
cold
multilayer composite
Prior art date
Application number
PCT/IB2021/057066
Other languages
Spanish (es)
French (fr)
Inventor
John Jairo ÁLVAREZ
Dadmar Magaly FUENTES VELASQUEZ
Myzenth JANSEN MENDEZ
Juliana Lasprilla Botero
Jorge Ricardo SANTANA CASTILLO
Original Assignee
Proquinal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proquinal filed Critical Proquinal
Publication of WO2022180442A1 publication Critical patent/WO2022180442A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/02Layered products comprising a layer of paper or cardboard next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/14Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a face layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/06Embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • B32B7/14Interconnection of layers using interposed adhesives or interposed materials with bonding properties applied in spaced arrangements, e.g. in stripes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes

Definitions

  • the development is aimed at the production of multilayer composite materials such as synthetic materials.
  • multilayer composite materials such as synthetic materials.
  • coated textile materials for seat upholstery for example, automobile, motorcycle or yacht seats, furniture, and vehicle interior trim or yacht panels.
  • the energy emitted by the sun interacts with materials in various ways.
  • Some materials can absorb energy in the visible light range of the electromagnetic spectrum and subsequently emit it in the infrared, that is, in the form of heat, while other materials can accumulate energy in the infrared, causing both cases an increase in the temperature of the material. So the energy absorbed or stored and subsequently emitted as heat by the surface of a material is determined by the degree of absorption and reflection of light. Therefore, depending on the color, some materials absorb or store more energy and can get hotter. Dark-colored surfaces generally get hotter than light-colored surfaces when exposed to sunlight, and as a result, light-colored surfaces feel more “cool” or “cooler” to the touch compared to dark surfaces. This effect is clearly seen, for example, in white or light-colored roofs whose surface allows sunlight to be reflected more efficiently, avoiding sudden changes in temperature inside the buildings, allowing houses with lower ceilings to be built.
  • US20100009146 discloses an infrared radiation reflective artificial leather-like material comprising (a) a surface layer of a polyvinyl chloride resin, a mixture of black pigments (perylene black and carbon black) and a plasticizer; (b) a foam layer comprising a white titanium dioxide pigment, a polyvinyl chloride resin and a plasticizer and (c) a substrate layer comprising a polyester fiber textile and a white titanium dioxide pigment .
  • this document proposes a mixture between perylene black and carbon black, so that perylene black (which actually has a greenish tone) absorbs a smaller amount of energy and therefore avoids excessive heating of the material, while the black carbon (always placed in less quantity) fully expresses the black tone of the material.
  • Skai® cool colors PLUS which describes a coating film for exterior use characterized by a three-layer structure equipped with cool color technology (cold pigments) that ensures much less heating under sunlight. direct. These commercial materials promise to reduce heat absorption especially on dark surfaces.
  • US20190009508 discloses a coating film in the form of layers or tiles. Particularly, it discloses a process for coating a textile backing layer, wherein the coating film has a multilayer top layer and a tie layer having multiple layers for bonding to the textile backing layer, wherein the polyurethane tie layer has thermoplastic properties and a thickness between 0.080nm and 0.500mm and is bonded to the top layer.
  • the multilayer top layer is also a polyurethane layer and has one to two layers, with an outer layer and an inner layer, does not have thermoplastic properties, and has an amorphous or predominantly amorphous structure. Also, the multilayer top layer is thinner than the tie layer.
  • US20180072027 discloses a multilayer composite material comprising a layer of textile material; optionally at least one tie layer; a polyurethane layer with capillaries passing through the entire thickness of the polyurethane layer, wherein the textile material layer and the polyurethane layer are bonded to each other directly or by means of a bonding layer.
  • the layer of textile material is in direct contact with the first layer of polyurethane, which in turn is in direct contact with the second layer of polyurethane.
  • the second polyurethane layer and the textile material are the outer surfaces of the multilayer textile composite material.
  • the outer surface of the second layer of polyurethane is patterned with small polyurethane hairs.
  • the second polyurethane layer also has capillaries.
  • these multilayer composite materials are useful for many applications, in some others they have insufficient performance to meet the most demanding requirements.
  • these materials do not allow the development of a wide range of colors and shades, both light and dark, and they are not very versatile in providing different possibilities of surface textures, so there is still a need to develop multilayer composite materials such as textile materials capable of to provide an effective cold touch effect with different colours, shades and textures.
  • the present development proposes a new alternative for coated textile materials, mainly in dark colors, which corresponds to a multilayer composite material useful outdoors or in environments with high solar radiation with the ability to provide a cool effect to the touch due to to a lower absorption and accumulation of solar radiation, which generates a lower surface temperature compared to a conventional material.
  • the technical effects achieved with the composite material multilayer of the present development are achieved thanks to its structure (order and composition of the layers) and the microstructure and specific formulation of the pigments used.
  • the technical characteristics of this development also allow a wide range of colors, tones and textures to be obtained without sacrificing the material's performance against radiation.
  • the material of the present development can also be overprinted without affecting the thermal performance in no more than between 5 °C and 10 °C.
  • the present development is directed to a multilayer composite material comprising a textile component, a multilayer layer, and a tie layer between the multilayer layer and the textile component.
  • the multi-layer top layer comprises a bottom layer, an intermediate layer compacted with cold pigments and a protective outer coating layer.
  • FIG. 1 describes an embodiment of the structure of the multilayer composite material according to what is described in Examples 1, 2, 4 to 7.
  • the material composed of a lower textile component (1), a bonding layer (2) and a multilayer upper layer (3) comprising a foamed or non-foamed lower layer (4); a compact intermediate layer of cold pigments (5) and a protective coating layer (6).
  • FIG. 2 describes an embodiment of the structure of the multilayer composite material according to what is described in Example 3, composed of a lower textile component (1), a bonding layer (2) and an upper multilayer layer (3) comprising a lower layer foamed or non-foamed (4); a compact intermediate layer of cold pigments (5); a protective coating layer (6) and an embossing layer (7).
  • FIG. 3 shows the thermal behavior of two multilayer materials where the cold pigments were processed in two different ways.
  • the short dotted line represents a material in which the cold pigments were processed in a mill of spheres (7170) while the solid line represents a material in which the cold pigments were processed with a three-cylinder mill (7871).
  • FIG. 4 shows the thermal behavior of a black multilayer composite material of the present development (#8711) compared with a commercial reference material that claims to have a cold effect and with a conventional material.
  • the continuous line represents the thermal behavior of the material of the present development
  • the dotted line cuts the behavior of the conventional material
  • the long dotted line represents the behavior of the commercial reference material with cold effect.
  • FIG. 5 shows the thermal behavior of a multilayer material like the one of the present invention (#26948) and a commercial reference material that declares to have a thermal effect.
  • the continuous line represents the commercial reference material and the short dotted line represents the multilayer composite material of the present development.
  • FIG. 6 shows the heating and cooling thermogram of a multilayer material like the one of the present invention (#26948) and a commercial reference material that claims to have a thermal effect.
  • the continuous line represents the commercial reference material and the short dotted line represents the multilayer composite material of the present development.
  • FIG. 7 shows the effect of a stamping layer on the thermal behavior of the multilayer materials of the present development.
  • the solid line represents the thermal behavior of a conventional material
  • the short dotted line represents a multilayer composite material with an embossing layer
  • the long dotted line represents the thermal behavior of a multilayer material without the embossing layer.
  • the development is aimed at multilayer composite materials such as textile materials for coated fabrics which allow these materials to heat up between 20% and 30% less than conventional materials under exposure to solar radiation.
  • the development is aimed at a multilayer composite material that It comprises a lower textile component, a bonding layer and a multi-layered upper layer.
  • a conventional coated textile material in black color reaches a temperature of up to 78 °C after being exposed for 20 min to an intensity of infrared radiation of 250 W (following the ASTM D4803-10 standard), while the material of the present development in the same color reaches a temperature of up to 58 °C under the same test conditions.
  • composite material is understood as multiphase materials formed by the combination of two or more chemically and physically different materials or phases.
  • the combination of materials or phases gives the resulting material the joint characteristics of its components, so that specific properties are obtained that the starting materials do not have. Consequently, the characteristics and properties of composite materials depend on the characteristics of the starting materials and their arrangement (organization) in the composite material.
  • multilayer it refers to a composite material that has two or more layers where each of the layers has different structural characteristics, for example, in terms of components or properties.
  • the multilayer composite material has the physical, mechanical and aesthetic characteristics of all the layers of which it is composed.
  • cold effect is understood as the sensation perceived to the touch of a surface, generated by the reduction in temperature reached by a material when exposed to a source of radiation, including solar radiation and thermal radiation, as a result less absorption and accumulation of said radiation sources.
  • the developed multilayer composite material comprises: a lower textile component (1); a tie layer (2); a multilayer top layer (3); wherein the lower textile component and the upper multi-layer layer are bonded together by the tie layer; wherein the multilayer upper layer comprises: a lower layer (4); a compact intermediate layer with cold pigments (5); and a protective outer coating layer (6); and optionally a print layer (7) located between the compact intermediate layer with cold pigments and the outer layer of protective coating.
  • the lower textile component (1) works as a support, contributing to the mechanical resistance including tension, tearing, elongation and comfort of the material.
  • the lower textile component can be a fabric of natural origin, synthetic or a mixture thereof.
  • synthetic origin it is selected, but not limited, from polyester, recycled polyester, nylon, fiberglass, elastane, biopolymers or mixtures thereof.
  • the lower textile component is of natural origin, it is selected, but not limited to yarns from natural sources, cotton, recycled cotton, bamboo, linen, viscose, coconut fiber, pineapple fiber, wool, or mixtures of the above. It is even possible that, in some embodiments, the lower textile component is a polyester-cotton, polyester-fiberglass, polyester-elastane blend. In a preferred embodiment the lower textile component is 100% polyester, 90% polyester or 80% polyester.
  • a bonding layer (2) is located on the lower textile component layer.
  • the bonding layer functions as a bonding agent that allows the textile component layer and the multi-layer top layer to be held together.
  • the bonding layer has a polymer base and at least one additive.
  • Possible polymer bases are selected from, but are not limited to, polyurethane, acrylic, and polyvinyl chloride (PVC).
  • Additives are selected from, but are not limited to, plasticizers (primary or secondary), stabilizers, antimicrobial agents, flame retardants, rheology modifiers, mineral fillers, and catalysts.
  • the tie layer comprises PVC, primary plasticizers, secondary plasticizers, flame retardants, mineral fillers, and antimicrobial agents.
  • the tie layer comprises PVC, a mineral filler, a primary plasticizer, a secondary plasticizer, a thermal stabilizer, and a microbial agent.
  • the multilayer upper layer (3) provides the comfort and aesthetics of the material.
  • the multilayer top layer allows materials to be obtained with different types of finishes, modifying characteristics such as tonality, stamping, textures and sensation to the touch.
  • the multilayer top layer provides resistance to the material against aging and/or degradation due to thermal, chemical effects or physical wear due to abrasion.
  • the multilayer top layer comprises a foamed or non-foamed bottom layer (4), a compact intermediate layer (5) with cold pigments, and a protective outer coating layer (6).
  • the bond between the three layers of the multilayer top layer is achieved by thermopressure melting processes, taking advantage of the thermoplastic properties of the components of these layers.
  • thermopressure melting processes taking advantage of the thermoplastic properties of the components of these layers.
  • said layers are not fused by thermopressure methods (for example, when the materials do not have thermoplastic properties)
  • Said bonding system is selected from, but not limited to, thermoplastic polymers, thermosetting polymers and elastomers, and optionally additives such as Theological agents, tackifying resins, solvents and catalysts are added.
  • the lower layer (4) has the function of contributing to the comfort of the material, giving it thickness and generating a sensation of padding and softness. In addition, it helps in the performance of the material, for example, making it more resistant to fire.
  • the lower layer is characterized in that it can be a non-foamed (compact) or foamed polymeric film with closed and flexible cells, with the ability to insulate and dissipate heat.
  • the lower layer comprises a foamed polymeric base selected from polyvinyl chloride, silicone, polyurethane, thermoplastic elastomers, a pigment, and at least one additive including swelling agents responsible for producing the material in foam form.
  • the polymeric base is polyvinyl chloride.
  • swelling agents are understood as substances that allow the generation of gases, for example, carbon dioxide, nitrogen or ammonium, which when mixed with polyvinyl chloride create bubbles and reduce the density of the layer.
  • the bottom layer optionally has additives including, but not limited to plasticizers, stabilizers, antimicrobial agents, or Theology modifiers.
  • the lower plastic layer can also understand cold pigments of the NIR system (near-infrared spectral region). Additionally, in another embodiment of the invention, the lower layer may be non-foamed and may also contain cold pigments.
  • cold pigments of the NIR system comprise an inorganic complex of compounds of metallic origin, with the ability to reflect much of the heat that is generated under sun exposure, thanks to its characteristics. , chemical, optical, physical and microstructural.
  • cold pigments are selected from, but not limited to, anatase-type titanium dioxide ( ⁇ O 2 ), di-iron trioxide (FciOfl. spinel cobalt blue aluminum (C0AI 2 O 4 ), iron oxide and chromium (CnOfi.
  • cobalt and titanium green spinel C0 2 T1O 4
  • rutile type titanium dioxide ⁇ O 2
  • antimony and manganese and mixtures thereof in different proportions according to the desired color and tone including variations of natural occurrence or those obtained through artificial synthesis processes.
  • this type of pigments available that could also be used in the materials of this development.
  • a compact intermediate layer with cold pigments (5) provides part of the appearance by providing the color and hue of the material. In addition, it contributes to the resistance to wear generated by exposure to solar radiation, environmental conditions and abrasion wear.
  • the intermediate layer with cold pigments is characterized in that it comprises a polymeric base, plasticizers, cold pigments of the NIR system and at least one additive.
  • the polymer base of the cold-pigmented interlayer is polyvinyl chloride.
  • the cold pigments are of the NIR system.
  • the additives that this layer may include are, but are not limited to, plasticizers, fillers, antimicrobial agents, stabilizers, mineral fillers, rheology modifiers and flame retardant agents.
  • the cold pigment compact intermediate layer comprises polyvinyl chloride, plasticizers, thermal stabilizers, UV stabilizers, mineral fillers and antimicrobial agents.
  • the cold pigments may or may not be carriers.
  • the cold pigments can be conveyed in a plasticizer, a resin plasticized or in a polymeric compound (Master batch).
  • Master batch a resin plasticized or in a polymeric compound
  • it can be added in an extrusion or plastisol system. So that the pigments in solid form can be well wetted and incorporated into the polyvinyl chloride plastisol, it is sometimes necessary to carry out a grinding process that must be done carefully (controlling conditions such as time, grinding mechanism, number of grinding passes and internal pressure in the mill) to disaggregate the pigment particles without affecting the shape, size and individual microstructure of the cold pigments. Any unwanted alteration of the cold pigments could irremediably modify the microstructural characteristics, reducing or even eliminating the ability of the pigment to reflect infrared radiation, and as a consequence, negatively affect the efficiency of the material against exposure to solar radiation.
  • the inventors identified that the sphere system exerts a very aggressive force and destroys the pigment particle, affecting its microstructure to the point of completely damaging the reduction efficiency. temperature of the pigment and, consequently, the developed materials did not present the best performances.
  • the three-cylinder system performs a more regulated mechanical work, which allows the disaggregation of the particles without modifying the size or microstructure of the pigments, so its optical performance or temperature reduction was not affected.
  • a protective outer coating layer (6) that contributes to reducing the stickiness that can be generated on the surface of the multilayer layer, modifying the surface characteristics related to the sensation to the touch such as non-slip, waxy, anti-scratch effects , among others. It also provides resistance to abrasion, chemical treatments (resistance to cleaners and stains), fat extraction and antimicrobial properties.
  • the protective outer coating layer is characterized in that it comprises a polymeric system conveyed in water or an organic solvent system with at least one catalyst.
  • the protective outer coating layer comprises a polymeric base, at least one copolymer and optionally an additive.
  • the polymer base can be an acrylic or polyurethane polymer.
  • the copolymer is selected from, but is not limited to, vinyl polymers, polyurethane or acrylics.
  • Possible outer coating protective layer additives include, but are not limited to, catalysts, defoamers, feel modifiers, matting agents, viscosity regulators, and antimicrobial agents.
  • the multilayer top layer additionally has an embossing layer (7).
  • Said printing layer is located between the compact intermediate layer with cold pigments and the outer layer of protective coating.
  • the print layer comprises at least one polymeric resin, a copolymer, at least one solvent and pigments.
  • the polymeric resin may be an aerifying resin.
  • the copolymer is selected from, but is not limited to, vinyl, polyurethane, or acrylic polymers.
  • Solvents are selected from, but are not limited to, water, organic and inorganic solvents.
  • the pigments used in the printing layer are organic and have a high color-providing property (maximum of 60% of inks in formulations), are lightfast (pass Xenotest, QUV 650 hours, SAEJ 1885 , and ISO 105:B04) and easy to dissolve (in solvents such as: MEK, toluol, isobutyl acetate and butyrate acetate).
  • the process to put the stamping layer can be done by means of an applicator roller, screen printing, direct printing or transfer, among others.
  • the multilayer composite material comprising: a lower textile component that is polyester; a tie layer comprising polyvinyl chloride, plasticizers, heat stabilizers, mineral fillers, and antimicrobial agents; a foamed or non-foamed bottom layer comprising polyvinyl chloride, plasticizers, heat stabilizers, mineral fillers, antimicrobial agents, swelling agents (if foamed), and at least one pigment; a compact intermediate layer with cold pigments comprising polyvinyl chloride, plasticizers, UV light stabilizers, thermal stabilizers, mineral fillers, NIR system cold pigments and antimicrobial agents; and an outer layer of protective lacquer coating comprising a polymeric base dispersed either in aqueous or solvent base and at least one catalyst.
  • the additives are selected from the lists below or any other known to a person of ordinary skill in the art. Additives are optional unless explicitly stated otherwise in each of the layers.
  • Plasticizers fulfill the function of giving softness and flexibility to hard polymers. These can be classified as primary plasticizers based on high molecular weight orthophthalates, trimellitate-based, adipate-based, polyester-based; or as secondary plasticizers, among which are, but are not limited to, plasticizers derived from hydrolyzed vegetable oils, pentanediol derivatives, terephthalate mixtures, paraffin derivatives.
  • Thermal stabilizers protect polymers from the high temperatures to which they are subjected during the different transformation processes (for example, mixing, extrusion, injection, baking, etc.) and during exposure to solar radiation during use, thus avoiding degradation of the physicochemical properties of the polymer.
  • Thermal stabilizers include, but are not limited to metal, organic, tin, calcium and zinc stearate stabilizers.
  • Mineral loads or “fillers” are usually defined as insoluble materials that are normally in powder form and are used to increase volume, obtain or increase certain technical properties and/or modify optical properties. These materials can give many characteristics to the system they are in depending on whether they are active or inactive. Fillers include, but are not limited to, calcium carbonate, dolomite, soda ash, talc, silica, wollastonite, clay, calcium sulfate fibers, mica, glass beads, and alumina trihydrate.
  • Flame retardants are defined as a variety of additives that are added to polymeric materials to prevent fires or slow the spread of fire through them and provide additional escape time. Flame retardants include, but are not limited to, antimony trioxide, zinc borate, aluminum hydroxide, halogens, phosphorous, metal hydrates, and melamine cyanides. Antimicrobial agents are defined as additives that kill microorganisms, stop their growth, hinder or inhibit their reproduction. Microbial agents include, but are not limited to, oxybisphenoxyarsine derivatives, isothiazolone derivatives, halogen and zinc compounds, nanoparticles or silver and/or copper ions, and imidazole salts.
  • Swelling agents or also known as foaming agents, are a type of additives for plastics that seek to produce cellular structures, that is, structures that contain portions of fine cells filled with gas. Thus, changes in density, thermal conductivity and dissipation of acoustic and mechanical energy can be achieved.
  • Blowing agents include, but are not limited to azodicarbonamide, zinc oxide, zinc octoate, potassium/zinc accelerator.
  • Defoamers are surface-active agents that act by means of intermediate surface tensions to destabilize the lacquers and release the air trapped in their mixture.
  • organic defoamers based on mineral oils
  • silicone defoamers that are highly effective at low dosage levels
  • molecular defoamers that offer excellent compatibility with most systems.
  • Rheology modifying agents are defined as additives for plastics that are used to modify the viscosity and improve the processability of polymers during their transformation.
  • Rheology modifying agents include, but are not limited to, silica, pyrrolidone derivatives, epoxidized oils, and surfactants.
  • Pigments are used to modify the appearance of polymers for decorative purposes. They are materials that change the color of the light they reflect or transmit as a result of the selective absorption of light according to its wavelength (which is the determining parameter of color).
  • the pigments may be independently selected from, but not limited to, organic pigments, inorganic pigments, solvent-based pigment preparations, solid pigments, and effect pigments. Some examples thereof are titanium dioxide, iron oxides, organic or inorganic.
  • Surface modifiers or also known as touch modifiers are additive components that allow the development of formulations for coatings that improve and protect the appearance at the interface between the coating or ink and the exterior.
  • Feel-modifying agents include, but are not limited to, silica, wax dispersions, wax emulsions, and micronized wax.
  • Catalysts are substances that favor or accelerate a chemical reaction without intervening directly in it, at the end of the reaction the catalyst remains unchanged.
  • the most used catalysts are those made of platinum, palladium and vanadium or copper and nickel oxides.
  • the multilayer composite material as described above is characterized in that it has a tensile strength between min 121 LbL (warp) and 72 Lbf (weft), an average elongation at break of 67% (warp) and 159% ( weft), a minimum stitch resistance of 12 Lbf (warp) and 8.6 Lbf (weft), a minimum Wyzenbeek abrasion of 150,000 cycles without showing wear on the surface, a light fastness rating greater than 4 without showing significant changes , an HBU (Heat Build Up Index) between 58 °C and 61 °C in products without printing. Additionally, when subjected to an outdoor exposure test (Qlab Llorida Test) it shows no significant changes for up to 180 days of exposure.
  • the multilayer composite material can be obtained through the manufacturing processes of coated fabrics such as: extrusion and calendering, coating transfer, baking and lamination.
  • Example 1 Multilayer composite material with flexible foamed PVC on a laboratory scale (FIG. 1)
  • Tie Layer (2) PVC, DOTP and Chlorinated Paraffin, Tin-Based Thermal Stabilizer, Calcium Carbonate, Silica, Isothiazolone Derivative.
  • Multi-layer top layer (3)
  • Outer layer of protective coating (6) SRT system lacquer (urea formaldehyde, toluene sulfonic acid, and aerifies (methacrylate, polyvinyl chloroacetate, solvents).
  • the compact intermediate layer was applied with cold pigments at a height of 0.21-0.22 mm and pre-dried at 180 °C for 20 s. Subsequently, on the compact intermediate layer with cold pigments, a foamed lower layer was applied at a height of 0.37 mm and pre-dried at 180 °C for 5 s. After the foamed bottom layer was applied, the tie layer, calibrated at 0.43 mm, was applied. Finally, the binding layer was attached to the lower textile layer to enter the oven at 200 °C for 50 s.
  • Example 2 Multilayer composite material with flexible PVC on an industrial scale (F1G.
  • Example 2 It was carried out following a methodology similar to that described in Example 1, where two additional applications were made.
  • an outer layer of protective coating based on acrylic resin dispersed in solvents and a copolymer was applied by means of application rollers over the entire PVC-coated fabric.
  • the PVC-coated fabric and the outer layer of acrylic resin-based protective coating were dried at a temperature between 140 °C and 160 °C and at a speed of 16 m/min.
  • HBU heat builup
  • Example 3 Printed multilayer composite material on an industrial scale (F1G. 2) It was carried out following the methodology described in Example 1, where a printing layer was additionally applied on the intermediate layer of cold pigments (5).
  • a printing layer was additionally applied on the intermediate layer of cold pigments (5).
  • an acrylic resin, a copolymer, solvents and pigments for the preparation of lacquers and inks were applied by means of an applicator roller on the entire PVC-coated fabric and a pre-drying of the surface was carried out.
  • the outer layer of protective coating (6) was applied, which consisted of a polyurethane base and at least one catalyst dispersed in water, by means of application rollers on the entire PVC-coated fabric and the fabric was dried. coated at a temperature of 170 °C and at a speed of 22 m/min.
  • Bond Layer (2) PVC, DOTP and Chlorinated Paraffin, Calcium Carbonate, Silica.
  • Multi-layer top layer (3)
  • Exterior coating protective layer (6) vinyl-acrylic system lacquer (acrylic resin, PVC, solvents).
  • the protective layer of the outer coating was applied by means of an applicator roller over the entire paper and drying was carried out at a temperature of 110 °C for 20 s; Subsequently, on the protective outer coating layer, the compact intermediate layer with cold pigments was applied at a height of 0.21-0.22 mm and pre-dried at a temperature of 180 °C for 20 s. Then, on the compact intermediate layer with cold pigments, the non-foamed lower layer with cold pigments was applied at a height of 0.39 mm and pre-dried at a temperature of 180°C for 15 s. Once the layers were pre-dried, the tie layer was applied, calibrated to a thickness of 0.57 mm. Finally, the binding layer was joined with the lower textile component, and the material was placed in the oven at a temperature of 200 °C for 60 s. One time drying all the material with the intermediate and lower layers with cold pigments and the textile layer, the transfer paper was removed.
  • Lower textile component (1) polyester-fiberglass blend.
  • Bond Layer (2) PVC, DOTP and Chlorinated Paraffin, Calcium Carbonate, Antimony Trioxide, Aluminum Hydroxide, Silica.
  • Multi-layer top layer (3)
  • Non-foamed lower layer with cold pigments (4) PVC, DOTP, triaryl phosphate, tin carboxylate, aliphatic solvent, calcium carbonate, aluminum hydroxide, zinc borate, antimony trioxide, NIR system pigments.
  • Exterior coating protective layer (6) vinyl-acrylic system lacquer (acrylic resin, PVC, solvents).
  • the outer layer of protective coating was applied, by means of an applicator roller over the entire paper, then drying was carried out at a temperature of 110 °C for 20 s.
  • the compact intermediate layer with cold pigments was applied at a height of 0.21-0.22 mm and pre-dried at a temperature of 180 °C for 20 s.
  • the non-foamed lower layer with cold pigments was applied at a height of 0.42 mm and pre-dried at a temperature of 180 °C for 5 s.
  • the tie layer was applied, calibrated at 0.6 mm.
  • the bonding layer was joined with the textile layer and it was taken to the oven at a temperature of 200 °C for 60 s to subsequently remove the transfer paper.
  • Example 6 Flexible PVC multilayer composite material with a lower textile component with a mixture of polyester and cotton yarns (FIG. 1)
  • Lower textile component (1) 65% polyester/35% cotton Tie Layer (2): PVC, DOTP and Chlorinated Paraffin, Aluminum Hydroxide, Antimony Trioxide, Calcium Carbonate, Silica, Isothiazolone Derivative.
  • Multi-layer top layer (3)
  • Outer coating protective layer (6) polyurethane resin lacquer dispersed in water and at least one catalyst.
  • the compact intermediate layer was applied with cold pigments at a height of 0.19 mm, then pre-drying at a temperature of 180 °C for 15 s. Subsequently, on the compact intermediate layer with cold pigments, the lower foamed layer was applied at a height of 0.37 mm and pre-drying at a temperature of 180 °C for 15 s. Once both layers were applied and pre-dried, the tie layer was applied, calibrated at 0.5 mm. Finally, this bonding layer was joined with the textile component and it was taken to the oven at a temperature of 200 °C for 50 s and the transfer paper was removed in order to apply the protective outer coating layer.
  • the outer layer of protective coating was applied to the PVC-coated textile with an application roller over the entire PVC-coated fabric and the PVC-coated fabric was dried at a temperature between 110 °C and l30 °C. C for 50s.
  • Example 7 Flexible PVC multilayer composite material with a nylon textile component (FIG. 1)
  • Tie Layer (2) PVC, DPHP, Adipic Acid Polyester, Calcium Carbonate, Aluminum Hydroxide, Antimony Trioxide, Silica, Isothiazolone Derivative.
  • Multi-layer top layer (3) Lower foamed layer (4): triaryl phosphate, barium-zinc base heat stabilizer, azodicarbonamide, aluminum hydroxide, zinc borate, antimony trioxide, isothiazolone derivative, white pigment.
  • Protective layer of outer coating (6) first application of a layer of outer protective coating based on polyurethane dispersed in water and at least one crosslinking agent, and second application of a layer of outer protective coating based on polyurethane dispersed in solvent.
  • a compact intermediate layer with cold pigments was applied to a transfer paper at a height of 0.32 mm and pre-dried at a temperature of 180 °C for 20 s. Subsequently, the lower foamed layer was applied at a height of 0.67 mm and pre-dried at a temperature of 180 °C for 5 s. After the compact intermediate layer with cold pigments and the foamed lower layer had been applied, the bonding layer calibrated at 0.7 mm was applied. Finally, this layer of adhesive was joined with the textile component and it was taken to the oven at a temperature of 200 °C for 60 s to subsequently remove the transfer paper and continue with the application of the outer layer of protective coating.
  • this process is carried out in two applications.
  • a protective layer of outer coating of polyurethane resin dispersed in solvent was applied by means of an applicator roller over the entire PVC-coated fabric, subsequently a pre-drying of the PVC-coated fabric was carried out at a temperature of 110°C for 40s.
  • a polyurethane base and at least one catalyst dispersed in water were applied by means of application rollers on the entire PVC-coated fabric and the coated fabric was dried at a temperature between 120 °C and 140 °C for 60 s.
  • Example 8 Conditions and equipment to evaluate the radiation performance of multilayer composite materials To measure the thermal behavior of the multilayer composite materials of the present development, in particular of the materials of Examples 9 to 12, under a specific type of heat lamp (simulating sunlight), two methodologies were used:
  • heat build-up can vary due to the structure of the material, the emission, absorbance, and reflectance of the material, the specific pigment system involved, and the way the pigment is formulated to color the surface. surface.
  • this test method provides an estimate of the relative heat build-up between the test material and a reference material under certain defined severe conditions, it is important to note that it does not necessarily accurately predict the performance of materials under actual conditions. of use.
  • the performance of any material depends on air temperature, the angle of incidence of the sun, clouds, wind speed, insulation, installation behind glass, exposure time, among other conditions.
  • the surface temperature rise of each sample exposed to these simulated solar conditions was measured every 2 min for 14 min and recorded with a Fluke Ti450® camera at an emissivity setting of 0.95. Once the time has elapsed heating under simulated solar radiation (14 minutes), the simulator was turned off and the cooling ramp of each sample was evaluated, measuring the surface temperature every 2 minutes for 14 minutes.
  • pigment grinding was carried out using a ball mill system compared to grinding using a three-roll mill.
  • the powdered pigment was mixed with an orthophthalate-type plasticizer and the mixture was left to stand for 7 h in order to wet the pigment particles with the plasticizer. After the wetting time, the mixture was stirred for 20 min in order to disperse the agglomerates generated during wetting and to better homogenize the dispersion.
  • the above mixture was processed twice in a 3mm steel bead mill to ensure good pigment dispersion.
  • the vehicleized cold pigment was subsequently incorporated into the compact intermediate layer of a multilayer material as described in Example 1, using a 2% PVC intermediate layer and identified with the reference #7870.
  • the powdered pigment was also mixed with an orthophthalate-type plasticizer and the mixture was left to stand for 7 h to wet the particles, and after the wetting time, the mixture was stirred for 20 min to disperse the agglomerates. Subsequently, the mixture was processed once in a three-cylinder mill working at low pressure in order to avoid any alteration of the microstructure of the pigment.
  • the cold pigment was incorporated into the compact interlayer of a multilayer material as in Example 1, using a 2% PVC interlayer and the sample was identified as #7871.
  • Example 8 In order to evaluate the thermal performance of the multilayer composite material with cold pigments (NIR system) of the present development, a material like the one in Example 1 (#8744) was manufactured using a black NIR pigment. The manufactured material was compared with a conventional black multilayer material and with a reference material (commercial) also in black that declares to have a cold effect under the effect of simulated solar radiation (Newport Oriel® Sol 3A), as shown described in Example 8.
  • NIR system cold pigments
  • thermograms of FIG. 4 show that the conventional material reaches a temperature up to 10 °C higher than the temperature reached by the material of the present development or the commercial reference material with cold effect after 14 min of exposure.
  • the material of this development presents a slightly better performance than the commercial reference material with cold effect, which demonstrates the qualities of the developed material.
  • Example 1 a sample like the one in Example 1 in black color (#26948) was manufactured and compared with a reference material (commercial) also in black color. and that it claims to have a chilling effect.
  • Table 2 presents the measured and calculated heat accumulation results for the samples coded as #26948 and the reference material.
  • FIG.5 shows the increase in temperature as a function of the time of exposure to the radiation of the lamp.
  • Example 3 a material like the one in Example 3 was manufactured by placing a layer of printed in black with conventional pigments between the outer layer of protective coating and the compact layer with cold pigments (NIR system) in black. This material was compared to a material without the embossing layer and against a conventional material.
  • Example 8 The thermal behavior of the three materials evaluated under the conditions described in Example 8 is shown in FIG. 7.
  • the material with the stamping layer reaches a temperature of approximately 9 °C higher than the material without the stamping layer and in any case lower by at least 5 °C compared to the conventional material.
  • the substitution of conventional pigments for cold pigments could help improve the performance of the printing layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)

Abstract

A multi-layer compound material comprising a lower textile component, a bonding layer and a multi-layer upper layer. Where the multi-layer upper layer comprises a foamed or non-foamed lower layer, a compact intermediate layer with cold pigments and a protective external coating layer. The product obtained is characterised in that it is the complement between design and comfort for materials that require a surface with a good finish and high durability; this enables the use of a wide range of dark shades and colours outdoors and in environments with high solar radiation. The structure of this material enables a reduction in the amount of radiant energy or heat absorbed by this type of material, causing even dark surfaces to feel much cooler to the touch, reducing the temperature by between 15º and 20º when compared with conventional materials.

Description

MATERIAL COMPUESTO MULTICAPA CON EFECTO FRÍO MULTILAYER COMPOSITE MATERIAL WITH COLD EFFECT
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
El desarrollo está dirigido a la producción de materiales compuestos multicapa como materiales sintéticos. Particularmente, en la producción de materiales textiles recubiertos para la tapicería de asientos, por ejemplo, asientos de automóviles, motocicletas o yates, muebles, y molduras interiores de vehículos o paneles de yates. The development is aimed at the production of multilayer composite materials such as synthetic materials. Particularly, in the production of coated textile materials for seat upholstery, for example, automobile, motorcycle or yacht seats, furniture, and vehicle interior trim or yacht panels.
DESCRIPCIÓN DEL ESTADO DE LA TÉCNICA DESCRIPTION OF THE STATE OF THE ART
La energía emitida por el sol interactúa con los materiales de diversas formas. Algunos materiales (por ejemplo, los materiales opacos) pueden absorber energía en el rango de la luz visible del espectro electromagnético y emitirla posteriormente en el infrarrojo, es decir en forma de calor, mientras que otros materiales pueden acumular energía en el infrarrojo provocando en ambos casos un aumento en la temperatura del material. De modo que la energía absorbida o acumulada y posteriormente emitida en forma de calor por la superficie de un material está determinada por el grado de absorción y reflexión de la luz. Por lo tanto, dependiendo del color, algunos materiales absorben o acumulan más energía y pueden calentarse más. Generalmente las superficies de color oscuro se calientan más que las superficies de color claro cuando están expuestas a la luz solar y como consecuencia, las superficies claras proporcionan una sensación más “fresca” o “fría” al tacto en comparación con las superficies oscuras. Este efecto se aprecia claramente, por ejemplo, en los tejados blancos o de colores claros cuya superficie permite reflejar más eficientemente la luz solar evitando cambios bruscos de temperatura en el interior de las construcciones, permitiendo hacer casas con techos de menor altura. The energy emitted by the sun interacts with materials in various ways. Some materials (for example, opaque materials) can absorb energy in the visible light range of the electromagnetic spectrum and subsequently emit it in the infrared, that is, in the form of heat, while other materials can accumulate energy in the infrared, causing both cases an increase in the temperature of the material. So the energy absorbed or stored and subsequently emitted as heat by the surface of a material is determined by the degree of absorption and reflection of light. Therefore, depending on the color, some materials absorb or store more energy and can get hotter. Dark-colored surfaces generally get hotter than light-colored surfaces when exposed to sunlight, and as a result, light-colored surfaces feel more “cool” or “cooler” to the touch compared to dark surfaces. This effect is clearly seen, for example, in white or light-colored roofs whose surface allows sunlight to be reflected more efficiently, avoiding sudden changes in temperature inside the buildings, allowing houses with lower ceilings to be built.
Similarmente, los materiales textiles recubiertos de colores claros absorben menos energía solar, se calientan menos y, por lo tanto, proporcionan una sensación fría al tacto facilitando su uso en la intemperie o en ambientes de alta radiación solar. Sin embargo, este fenómeno ha limitado el uso de materiales textiles recubiertos de colores oscuros en este tipo de condiciones ambientales debido que al calentarse producen una sensación desagradable al tacto e incluso, en condiciones extremas, podrían llegar a producir quemaduras en la piel del usuario. Además, dado que el incremento de la temperatura del material puede ser muy alta, la integridad del material puede verse comprometida alterando su desempeño y reduciendo su vida útil. Para superar estos problemas, en particular para reducir el grado de calentamiento de materiales textiles de color oscuro para ser usados en la intemperie o en ambientes de alta radiación solar, se han desarrollado algunos materiales compuestos multicapa cuya arquitectura permite reducir el calentamiento del material y proporcionar una sensación más fría al tacto. Similarly, light colored coated textile materials absorb less solar energy, heat up less and, therefore, provide a cool sensation to the touch, facilitating their use outdoors or in environments with high solar radiation. However, this phenomenon has limited the use of dark-colored coated textile materials in this type of environmental conditions because, when heated, they produce an unpleasant sensation to the touch and even, in extreme conditions, they could produce burns to the user's skin. In addition, since the temperature rise of the material can be very high, the integrity of the material can be compromised, altering its performance and reducing its useful life. To overcome these problems, in particular to reduce the degree of heating of dark-colored textile materials to be used outdoors or in environments with high solar radiation, some multilayer composite materials have been developed whose architecture makes it possible to reduce the heating of the material and provide a cooler sensation to the touch.
Por ejemplo, US20100009146 divulga un material tipo cuero artificial reflectante de la radiación infrarroja que comprende (a) una capa superficial de una resina de cloruro de polivinilo, una mezcla de pigmentos negros (negro de perileno y carbón negro) y un plastificante; (b) una capa de espuma que comprende un pigmento de dióxido de titanio blanco, una resina de cloruro de polivinilo y un plastificante y (c) una capa de sustrato que comprende un textil de fibra de poliéster y un pigmento de dióxido de titanio blanco. En particular, dado que la capa superficial refleja la luz visible, pero transmite la radiación infrarroja provocando el calentamiento del material, este documento propone una mezcla entre el negro de perileno y el carbón negro, de modo que el negro de perileno (que realmente tiene un tono verdoso) absorba una menor cantidad de energía y por lo tanto evite el calentamiento excesivo del material, mientras el carbón negro (puesto siempre en menor cantidad) expresa completamente el tono negro del material. For example, US20100009146 discloses an infrared radiation reflective artificial leather-like material comprising (a) a surface layer of a polyvinyl chloride resin, a mixture of black pigments (perylene black and carbon black) and a plasticizer; (b) a foam layer comprising a white titanium dioxide pigment, a polyvinyl chloride resin and a plasticizer and (c) a substrate layer comprising a polyester fiber textile and a white titanium dioxide pigment . In particular, since the surface layer reflects visible light, but transmits infrared radiation causing the material to heat up, this document proposes a mixture between perylene black and carbon black, so that perylene black (which actually has a greenish tone) absorbs a smaller amount of energy and therefore avoids excessive heating of the material, while the black carbon (always placed in less quantity) fully expresses the black tone of the material.
Adicionalmente, se encuentran algunas alternativas comerciales como la Skai® cool colors PLUS que describe una película de recubrimiento para uso exterior caracterizada por una estructura de tres capas equipada con tecnología de colores fríos (pigmentos fríos) que asegura un calentamiento mucho menor bajo la luz solar directa. Estos materiales comerciales prometen reducir la absorción de calor especialmente en superficies oscuras. Additionally, there are some commercial alternatives such as Skai® cool colors PLUS, which describes a coating film for exterior use characterized by a three-layer structure equipped with cool color technology (cold pigments) that ensures much less heating under sunlight. direct. These commercial materials promise to reduce heat absorption especially on dark surfaces.
Por otro lado, se han diseñado varios materiales compuestos multicapa cuyas características proporcionan diferentes funcionalidades incluyendo la posibilidad de uso en la intemperie. Por ejemplo, US20190009508 divulga una película de recubrimiento en la forma de capas o losas. Particularmente, divulga un proceso para recubrir una capa de soporte textil, en donde la película de recubrimiento tiene una capa superior multicapa y una capa de unión teniendo múltiples capas para unirse a la capa de soporte textil, en donde la capa de unión de poliuretano tiene propiedades termoplásticas y un grosor entre 0,080 nm y 0,500 mm y está unida a la capa superior. La capa superior multicapa también es una capa de poliuretano y tiene entre una y dos capas, con una capa exterior y una capa interior, no tiene propiedades termoplásticas y tiene estructura amorfa o predominantemente amorfa. Además, la capa superior multicapa es más delgada que la capa de unión. On the other hand, several multilayer composite materials have been designed whose characteristics provide different functionalities, including the possibility of being used outdoors. For example, US20190009508 discloses a coating film in the form of layers or tiles. Particularly, it discloses a process for coating a textile backing layer, wherein the coating film has a multilayer top layer and a tie layer having multiple layers for bonding to the textile backing layer, wherein the polyurethane tie layer has thermoplastic properties and a thickness between 0.080nm and 0.500mm and is bonded to the top layer. The multilayer top layer is also a polyurethane layer and has one to two layers, with an outer layer and an inner layer, does not have thermoplastic properties, and has an amorphous or predominantly amorphous structure. Also, the multilayer top layer is thinner than the tie layer.
Por su parte, US20180072027 divulga un material compuesto multicapas que comprende una capa de material textil; opcionalmente al menos una capa de unión; una capa de poliuretano con capilares pasando a través de todo el espesor de la capa de poliuretano, en donde la capa de material textil y la capa de poliuretano se unen entre sí directamente o mediante una capa de unión. En donde la capa de material textil está en contacto directo con la primera capa de poliuretano la que a su vez está en contacto directo con la segunda capa de poliuretano. La segunda capa de poliuretano y el material textil son las superficies exteriores del material compuesto textil multicapa. La superficie exterior de la segunda capa de poliuretano tiene un patrón con pequeños pelos de poliuretano. La segunda capa de poliuretano también tiene capilares. For its part, US20180072027 discloses a multilayer composite material comprising a layer of textile material; optionally at least one tie layer; a polyurethane layer with capillaries passing through the entire thickness of the polyurethane layer, wherein the textile material layer and the polyurethane layer are bonded to each other directly or by means of a bonding layer. Where the layer of textile material is in direct contact with the first layer of polyurethane, which in turn is in direct contact with the second layer of polyurethane. The second polyurethane layer and the textile material are the outer surfaces of the multilayer textile composite material. The outer surface of the second layer of polyurethane is patterned with small polyurethane hairs. The second polyurethane layer also has capillaries.
Sin embargo, si bien estos materiales compuestos multicapa son útiles para muchas aplicaciones, en algunas otras tienen un desempeño insuficiente para alcanzar los requerimientos más exigentes. En particular, muchos de los materiales desarrollados hasta ahora no proporcionan un efecto frío al tacto y si lo proporcionan, el grado de calentamiento del material sigue siendo demasiado alto o no está plenamente demostrado. Además, estos materiales tampoco permiten el desarrollo de una amplia gama de colores y tonalidades tanto claros como oscuros y tampoco son muy versátiles en proporcionar distintas posibilidades de texturas en superficie, por lo que aún persiste la necesidad de desarrollar materiales compuestos multicapa como materiales textiles capaces de proporcionar un efecto frío al tacto efectivo con diferentes colores, tonos y texturas. However, although these multilayer composite materials are useful for many applications, in some others they have insufficient performance to meet the most demanding requirements. In particular, many of the materials developed so far do not provide a cool touch effect and if they do, the degree of heating of the material is still too high or not fully demonstrated. In addition, these materials do not allow the development of a wide range of colors and shades, both light and dark, and they are not very versatile in providing different possibilities of surface textures, so there is still a need to develop multilayer composite materials such as textile materials capable of to provide an effective cold touch effect with different colours, shades and textures.
Por lo tanto, el presente desarrollo propone una nueva alternativa para materiales textiles recubiertos, principalmente de colores oscuros, que corresponde a un material compuesto multicapa útil en la intemperie o en ambientes de alta radiación solar con la capacidad de proporcionar un efecto frío al tacto debido a una menor absorción y acumulación de la radiación solar lo que genera una menor temperatura de superficie en comparación a un material convencional. Los efectos técnicos logrados con el material compuesto multicapa del presente desarrollo se consiguen gracias a su estructura (orden y composición de las capas) y a la microestructura y formulación específica de los pigmentos empleados. Las características técnicas del presente desarrollo permiten además obtener una amplia gama de colores, tonos y texturas sin sacrificar el desempeño frente a la radiación del material. Inclusive, el material del presente desarrollo también puede ser sobre estampado sin afectar el desempeño térmico en no más de entre de 5 °C a 10 °C. Therefore, the present development proposes a new alternative for coated textile materials, mainly in dark colors, which corresponds to a multilayer composite material useful outdoors or in environments with high solar radiation with the ability to provide a cool effect to the touch due to to a lower absorption and accumulation of solar radiation, which generates a lower surface temperature compared to a conventional material. The technical effects achieved with the composite material multilayer of the present development are achieved thanks to its structure (order and composition of the layers) and the microstructure and specific formulation of the pigments used. The technical characteristics of this development also allow a wide range of colors, tones and textures to be obtained without sacrificing the material's performance against radiation. Including, the material of the present development can also be overprinted without affecting the thermal performance in no more than between 5 °C and 10 °C.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
El presente desarrollo está dirigido a un material compuesto multicapa que comprende un componente textil, una capa multicapa, y una capa de unión entre la capa multicapa y el componente textil. En donde la capa superior multicapa comprende una capa inferior, una capa intermedia compacta con pigmentos fríos y una capa protectora de recubrimiento exterior. The present development is directed to a multilayer composite material comprising a textile component, a multilayer layer, and a tie layer between the multilayer layer and the textile component. Wherein the multi-layer top layer comprises a bottom layer, an intermediate layer compacted with cold pigments and a protective outer coating layer.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La FIG. 1 describe una modalidad de la estructura del material compuesto multicapa de acuerdo con lo descrito en los Ejemplos 1, 2, 4 a 7. En donde el material compuesto por un componente textil inferior (1), una capa de unión (2) y una capa superior multicapa (3) que comprende una capa inferior espumada o no espumada (4); una capa intermedia compacta de pigmentos fríos (5) y una capa de recubrimiento protectora (6). FIG. 1 describes an embodiment of the structure of the multilayer composite material according to what is described in Examples 1, 2, 4 to 7. Where the material composed of a lower textile component (1), a bonding layer (2) and a multilayer upper layer (3) comprising a foamed or non-foamed lower layer (4); a compact intermediate layer of cold pigments (5) and a protective coating layer (6).
La FIG. 2 describe una modalidad de la estructura del material compuesto multicapa de acuerdo con lo descrito en el Ejemplo 3 compuesto por un componente textil inferior (1), una capa de unión (2) y una capa superior multicapa (3) que comprende una capa inferior espumada o no espumada (4); una capa intermedia compacta de pigmentos fríos (5); una capa de recubrimiento protectora (6) y una capa de estampado (7). FIG. 2 describes an embodiment of the structure of the multilayer composite material according to what is described in Example 3, composed of a lower textile component (1), a bonding layer (2) and an upper multilayer layer (3) comprising a lower layer foamed or non-foamed (4); a compact intermediate layer of cold pigments (5); a protective coating layer (6) and an embossing layer (7).
La FIG. 3 muestra el comportamiento térmico de dos materiales multicapa en donde los pigmentos fríos fueron procesados de dos formas distintas. La línea punteada corta representa un material en el que los pigmentos fríos fueron procesados en un molino de esferas (7170) mientras que la línea continua representa un material en el que los pigmentos fríos fueron procesados con un molino tricilíndrico (7871). FIG. 3 shows the thermal behavior of two multilayer materials where the cold pigments were processed in two different ways. The short dotted line represents a material in which the cold pigments were processed in a mill of spheres (7170) while the solid line represents a material in which the cold pigments were processed with a three-cylinder mill (7871).
La FIG. 4 muestra el comportamiento térmico de un material compuesto multicapa de color negro del presente desarrollo (#8711) comparado con un material de referencia comercial que declara tener un efecto frío y con un material convencional. La línea continua representa el comportamiento térmico del material del presente desarrollo, la línea punteada corta el comportamiento del material convencional y la línea punteada larga representa el comportamiento del material de referencia comercial con efecto frío. FIG. 4 shows the thermal behavior of a black multilayer composite material of the present development (#8711) compared with a commercial reference material that claims to have a cold effect and with a conventional material. The continuous line represents the thermal behavior of the material of the present development, the dotted line cuts the behavior of the conventional material and the long dotted line represents the behavior of the commercial reference material with cold effect.
La FIG. 5 muestra el comportamiento térmico de un material multicapa como el de la presente invención (#26948) y un material de referencia comercial que declara tener un efecto térmico. La línea continua representa el material de referencia comercial y la línea punteada corta representa el material compuesto multicapa del presente desarrollo. FIG. 5 shows the thermal behavior of a multilayer material like the one of the present invention (#26948) and a commercial reference material that declares to have a thermal effect. The continuous line represents the commercial reference material and the short dotted line represents the multilayer composite material of the present development.
La FIG. 6 muestra el termograma de calentamiento y enfriamiento de un material multicapa como el de la presente invención (#26948) y un material de referencia comercial que declara tener un efecto térmico. La línea continua representa el material de referencia comercial y la línea punteada corta representa el material compuesto multicapa del presente desarrollo. FIG. 6 shows the heating and cooling thermogram of a multilayer material like the one of the present invention (#26948) and a commercial reference material that claims to have a thermal effect. The continuous line represents the commercial reference material and the short dotted line represents the multilayer composite material of the present development.
La FIG. 7 muestra el efecto de una capa de estampado sobre el comportamiento térmico de los materiales multicapa del presente desarrollo. La línea continua representa el comportamiento térmico de un material convencional, la línea punteada corta representa en material compuesto multicapa con una capa de estampado y la línea punteada larga representa el comportamiento térmico de un material multicapa sin la capa de estampado. FIG. 7 shows the effect of a stamping layer on the thermal behavior of the multilayer materials of the present development. The solid line represents the thermal behavior of a conventional material, the short dotted line represents a multilayer composite material with an embossing layer and the long dotted line represents the thermal behavior of a multilayer material without the embossing layer.
DESCRIPCIÓN DETALLADA DETAILED DESCRIPTION
El desarrollo se dirige a materiales compuestos multicapa como materiales textiles para telas recubiertas el cual permite que bajo la exposición a la radiación solar, estos materiales se calienten entre un 20 % y 30 % menos que los materiales convencionales. Particularmente, el desarrollo está dirigido a un material compuesto multicapa que comprende un componente textil inferior, una capa de unión y una capa superior multicapa. The development is aimed at multilayer composite materials such as textile materials for coated fabrics which allow these materials to heat up between 20% and 30% less than conventional materials under exposure to solar radiation. In particular, the development is aimed at a multilayer composite material that It comprises a lower textile component, a bonding layer and a multi-layered upper layer.
Por ejemplo, un material textil recubierto convencional en color negro alcanza una temperatura de hasta 78 °C luego de ser expuesto por 20 min a una intensidad de radiación infrarroja de 250 W (siguiendo la norma ASTM D4803-10), mientras que el material del presente desarrollo en el mismo color alcanza una temperatura de hasta 58 °C bajo las mismas condiciones de ensayo. For example, a conventional coated textile material in black color reaches a temperature of up to 78 °C after being exposed for 20 min to an intensity of infrared radiation of 250 W (following the ASTM D4803-10 standard), while the material of the present development in the same color reaches a temperature of up to 58 °C under the same test conditions.
Para efectos de la presente invención, se entiende por material compuesto a los materiales multifase formados por la combinación de dos o más materiales o fases química y físicamente diferentes. La combinación de los materiales o fases le otorga al material resultante las características conjuntas de sus componentes, de manera que se obtienen propiedades específicas que no poseen los materiales de partida. En consecuencia, las características y propiedades de los materiales compuestos dependen de las características de los materiales de partida y de la disposición (organización) de los mismos en el material compuesto. For purposes of the present invention, composite material is understood as multiphase materials formed by the combination of two or more chemically and physically different materials or phases. The combination of materials or phases gives the resulting material the joint characteristics of its components, so that specific properties are obtained that the starting materials do not have. Consequently, the characteristics and properties of composite materials depend on the characteristics of the starting materials and their arrangement (organization) in the composite material.
En cuanto al término “multicapa” se refiere a un material compuesto que tiene dos o más capas en donde cada una de las capas tiene diferentes características estructurales, por ejemplo, en términos de componentes o propiedades. El material compuesto multicapa tiene las características físicas, mecánicas y estéticas de todas las capas de las que está compuesto. As for the term "multilayer" it refers to a composite material that has two or more layers where each of the layers has different structural characteristics, for example, in terms of components or properties. The multilayer composite material has the physical, mechanical and aesthetic characteristics of all the layers of which it is composed.
Para efectos del presente desarrollo se entiende por “efecto frío” a la sensación percibida al tacto de una superficie, generada por la reducción de temperatura alcanzada por un material al ser expuesto a una fuente de radiación, incluyendo radiación solar y radiación térmica, como resultado de una menor absorción y acumulación de dichas fuentes de radiación. For the purposes of this development, "cold effect" is understood as the sensation perceived to the touch of a surface, generated by the reduction in temperature reached by a material when exposed to a source of radiation, including solar radiation and thermal radiation, as a result less absorption and accumulation of said radiation sources.
El material compuesto multicapa desarrollado comprende: un componente textil inferior (1); una capa de unión (2); una capa superior multicapa (3); en donde el componente textil inferior y la capa superior multicapa se unen entre sí mediante la capa de unión; en donde la capa superior multicapa comprende: una capa inferior (4); una capa intermedia compacta con pigmentos fríos (5); y una capa protectora de recubrimiento exterior (6); y opcionalmente una capa de estampado (7) ubicada entre la capa intermedia compacta con pigmentos fríos y la capa exterior de recubrimiento protectora. The developed multilayer composite material comprises: a lower textile component (1); a tie layer (2); a multilayer top layer (3); wherein the lower textile component and the upper multi-layer layer are bonded together by the tie layer; wherein the multilayer upper layer comprises: a lower layer (4); a compact intermediate layer with cold pigments (5); and a protective outer coating layer (6); and optionally a print layer (7) located between the compact intermediate layer with cold pigments and the outer layer of protective coating.
El componente textil inferior (1) funciona como soporte, contribuyendo a la resistencia mecánica incluyendo tensión, rasgado, elongación y confort del material. El componente textil inferior puede ser una tela de origen natural, sintético o una mezcla de los mismos. Cuando el componente textil inferior es de origen sintético este se selecciona, pero no se limita, entre poliéster, poliéster reciclado, nylon, fibra de vidrio, elastano, biopolímeros o mezclas de los mismos. Cuando el componente textil inferior es de origen natural este se selecciona, pero no se limita a hilazas de fuentes naturales, algodón, algodón reciclado, bambú, lino, viscosa, fibra de coco, fibra de piña, lana, o mezclas de las anteriores. Incluso es posible que, en algunas modalidades el componente textil inferior sea una mezcla poliéster-algodón, poliéster-fibra de vidrio, poliéster-elastano. En una modalidad preferida el componente textil inferior es poliéster 100 %, poliéster 90 % o poliéster 80 %. The lower textile component (1) works as a support, contributing to the mechanical resistance including tension, tearing, elongation and comfort of the material. The lower textile component can be a fabric of natural origin, synthetic or a mixture thereof. When the lower textile component is of synthetic origin, it is selected, but not limited, from polyester, recycled polyester, nylon, fiberglass, elastane, biopolymers or mixtures thereof. When the lower textile component is of natural origin, it is selected, but not limited to yarns from natural sources, cotton, recycled cotton, bamboo, linen, viscose, coconut fiber, pineapple fiber, wool, or mixtures of the above. It is even possible that, in some embodiments, the lower textile component is a polyester-cotton, polyester-fiberglass, polyester-elastane blend. In a preferred embodiment the lower textile component is 100% polyester, 90% polyester or 80% polyester.
Sobre la capa del componente textil inferior se ubica una capa de unión (2). La capa de unión funciona como un agente de adhesión que permite mantener juntas la capa del componente textil y la capa superior multicapa. La capa de unión tiene una base polimérica y al menos un aditivo. Las posibles bases poliméricas se seleccionan, pero no se limitan a poliuretano, acrílico y cloruro de polivinilo (PVC). Los aditivos se seleccionan, pero no se limitan a plastificantes (primarios o secundarios), estabilizantes, agentes antimicrobianos, agentes retardantes a la llama, modificadores de reología, cargas minerales y catalizadores. En una modalidad del desarrollo, la capa de unión comprende PVC, plastificantes primarios, plastificantes secundarios, agentes retardantes a la llama, cargas minerales y agentes antimicrobianos. En otra modalidad la capa de unión comprende PVC, una carga mineral, un plastificante primario, un plastificante secundario, un estabilizante térmico y un agente microbiano. La capa superior multicapa (3) proporciona el confort y la estética del material. La capa superior multicapa permite obtener materiales con diferentes tipos de acabados modificando características como la tonalidad, estampación, texturas y sensación al tacto. Asimismo, la capa superior multicapa proporciona resistencia del material frente al envejecimiento y/o a la degradación por efectos térmicos, químicos o de desgaste físico por abrasión. La capa superior multicapa comprende una capa inferior (4) espumada o no espumada, una capa intermedia compacta (5) con pigmentos fríos y una capa protectora de recubrimiento exterior (6). A bonding layer (2) is located on the lower textile component layer. The bonding layer functions as a bonding agent that allows the textile component layer and the multi-layer top layer to be held together. The bonding layer has a polymer base and at least one additive. Possible polymer bases are selected from, but are not limited to, polyurethane, acrylic, and polyvinyl chloride (PVC). Additives are selected from, but are not limited to, plasticizers (primary or secondary), stabilizers, antimicrobial agents, flame retardants, rheology modifiers, mineral fillers, and catalysts. In one embodiment, the tie layer comprises PVC, primary plasticizers, secondary plasticizers, flame retardants, mineral fillers, and antimicrobial agents. In another embodiment, the tie layer comprises PVC, a mineral filler, a primary plasticizer, a secondary plasticizer, a thermal stabilizer, and a microbial agent. The multilayer upper layer (3) provides the comfort and aesthetics of the material. The multilayer top layer allows materials to be obtained with different types of finishes, modifying characteristics such as tonality, stamping, textures and sensation to the touch. Likewise, the multilayer top layer provides resistance to the material against aging and/or degradation due to thermal, chemical effects or physical wear due to abrasion. The multilayer top layer comprises a foamed or non-foamed bottom layer (4), a compact intermediate layer (5) with cold pigments, and a protective outer coating layer (6).
En una modalidad del presente desarrollo, la unión entre las tres capas de la capa superior multicapa se logra mediante procesos de fusión por termopresión aprovechando las propiedades termoplásticas de los componentes de estas capas. En otra modalidad, en caso de que dichas capas no se fusionen por métodos de termopresión (por ejemplo, cuando los materiales no tienen propiedades termoplásticas), es necesario incorporar un sistema de unión. Dicho sistema de unión se selecciona entre, pero no se limita a, polímeros termoplásticos, polímeros termoestables y elastómeros, y opcionalmente se les adiciona aditivos como agentes Teológicos, resinas tackificantes, solventes y catalizadores. In one embodiment of the present development, the bond between the three layers of the multilayer top layer is achieved by thermopressure melting processes, taking advantage of the thermoplastic properties of the components of these layers. In another embodiment, in case said layers are not fused by thermopressure methods (for example, when the materials do not have thermoplastic properties), it is necessary to incorporate a bonding system. Said bonding system is selected from, but not limited to, thermoplastic polymers, thermosetting polymers and elastomers, and optionally additives such as Theological agents, tackifying resins, solvents and catalysts are added.
La capa inferior (4) tiene la función de contribuir al confort del material otorgando espesor y generando una sensación de acolchado y suavidad. Además, ayuda en el desempeño del material, por ejemplo, haciéndolo más resistente al fuego. La capa inferior se caracteriza porque puede ser una película polimérica no espumada (compacta) o espumada de celdas cerradas y flexible, con la capacidad de aislar y disipar el calor. En una modalidad la capa inferior comprende una base polimérica espumada seleccionada de cloruro de polivinilo, silicona, poliuretano, elastómeros termoplásticos, un pigmento y al menos un aditivo incluyendo agentes hinchantes responsables de producir el material en forma de espuma. En una modalidad preferida la base polimérica es cloruro de polivinilo. Para efectos del presente desarrollo se entiende por agentes hinchantes a las sustancias que permiten la generación de gases, por ejemplo, dióxido de carbono, nitrógeno o amonio, que al mezclarse con el cloruro de polivinilo para crear burbujas y reducir la densidad de la capa. La capa inferior tiene opcionalmente aditivos que incluyen, pero no se limitan a plastificantes, estabilizantes, agentes antimicrobianos o modificadores de Teología. Opcionalmente la capa inferior de plástico también puede comprender pigmentos fríos del sistema NIR (región espectral del infrarrojo cercano). Adicionalmente, en otra modalidad de la invención, la capa inferior puede no ser espumada y también puede contener pigmentos fríos. The lower layer (4) has the function of contributing to the comfort of the material, giving it thickness and generating a sensation of padding and softness. In addition, it helps in the performance of the material, for example, making it more resistant to fire. The lower layer is characterized in that it can be a non-foamed (compact) or foamed polymeric film with closed and flexible cells, with the ability to insulate and dissipate heat. In one embodiment, the lower layer comprises a foamed polymeric base selected from polyvinyl chloride, silicone, polyurethane, thermoplastic elastomers, a pigment, and at least one additive including swelling agents responsible for producing the material in foam form. In a preferred embodiment the polymeric base is polyvinyl chloride. For the purposes of this development, swelling agents are understood as substances that allow the generation of gases, for example, carbon dioxide, nitrogen or ammonium, which when mixed with polyvinyl chloride create bubbles and reduce the density of the layer. The bottom layer optionally has additives including, but not limited to plasticizers, stabilizers, antimicrobial agents, or Theology modifiers. Optionally the lower plastic layer can also understand cold pigments of the NIR system (near-infrared spectral region). Additionally, in another embodiment of the invention, the lower layer may be non-foamed and may also contain cold pigments.
Para efectos de la presente invención se entiende que los “pigmentos fríos del sistema NIR” comprenden a un complejo inorgánico de compuestos de origen metálicos, con la capacidad de reflejar gran parte del calor que se genera bajo la exposición del sol, gracias a sus características, químicas, ópticas, físicas y microestructurales. Algunos ejemplos de pigmentos fríos se seleccionan entre, pero no se limitan a dióxido de titanio tipo anatasa (ΉO2), trióxido de di-hierro (FciOfl. espinela azul de cobalto y aluminio (C0AI2O4), óxido de hierro y cromo (CnOfi. espinela verde de cobalto y titanio (C02T1O4), dióxido de titanio tipo rutilo (ΉO2), antimonio y manganeso, y mezclas de los mismos en diferentes proporciones de acuerdo con el color y el tono deseado incluyendo las variaciones de ocurrencia natural o aquellas obtenidas mediante procesos de síntesis artificial. Al respecto, es importante señalar que existe una amplia gama de este tipo de pigmentos disponibles que también podrían ser empleados en los materiales del presente desarrollo. For purposes of the present invention, it is understood that the "cold pigments of the NIR system" comprise an inorganic complex of compounds of metallic origin, with the ability to reflect much of the heat that is generated under sun exposure, thanks to its characteristics. , chemical, optical, physical and microstructural. Some examples of cold pigments are selected from, but not limited to, anatase-type titanium dioxide (ΉO 2 ), di-iron trioxide (FciOfl. spinel cobalt blue aluminum (C0AI 2 O 4 ), iron oxide and chromium (CnOfi. cobalt and titanium green spinel (C0 2 T1O 4 ), rutile type titanium dioxide (ΉO 2 ), antimony and manganese, and mixtures thereof in different proportions according to the desired color and tone including variations of natural occurrence or those obtained through artificial synthesis processes.In this regard, it is important to point out that there is a wide range of this type of pigments available that could also be used in the materials of this development.
Una capa intermedia compacta con pigmentos fríos (5) proporciona parte de la apariencia aportando el color y la tonalidad del material. Además, contribuye con la resistencia al desgaste generado por la exposición a la radiación solar, las condiciones ambientales y al desgaste por abrasión. La capa intermedia con pigmentos fríos se caracteriza porque comprende una base polimérica, plastificantes, pigmentos fríos del sistema NIR y al menos un aditivo. En una modalidad preferida, la base polimérica de la capa intermedia con pigmentos fríos es cloruro de polivinilo. En una modalidad preferida los pigmentos fríos son del sistema NIR. Entre los aditivos que puede incluir esta capa se encuentran, pero no se limitan a plastificantes, agentes de relleno, agentes antimicrobianos, estabilizantes, cargas minerales, modificadores de reología y agentes retardantes a la llama. En una modalidad de la invención, la capa intermedia compacta con pigmentos fríos comprende cloruro de polivinilo, plastificantes, estabilizantes térmicos, estabilizantes a los rayos UV, cargas minerales y agentes antimicrobianos. A compact intermediate layer with cold pigments (5) provides part of the appearance by providing the color and hue of the material. In addition, it contributes to the resistance to wear generated by exposure to solar radiation, environmental conditions and abrasion wear. The intermediate layer with cold pigments is characterized in that it comprises a polymeric base, plasticizers, cold pigments of the NIR system and at least one additive. In a preferred embodiment, the polymer base of the cold-pigmented interlayer is polyvinyl chloride. In a preferred embodiment, the cold pigments are of the NIR system. Among the additives that this layer may include are, but are not limited to, plasticizers, fillers, antimicrobial agents, stabilizers, mineral fillers, rheology modifiers and flame retardant agents. In one embodiment of the invention, the cold pigment compact intermediate layer comprises polyvinyl chloride, plasticizers, thermal stabilizers, UV stabilizers, mineral fillers and antimicrobial agents.
Los pigmentos fríos pueden estar o no vehiculizados. En el caso de que los pigmentos fríos estén vehiculizados, estos pueden estar vehiculizados en un plastificante, una resina plastificada o en un compuesto polimérico ( Master batch). Por ejemplo, se puede agregar en un sistema de extrusión o de plastisol. Para que los pigmentos en forma sólida, puedan quedar bien humectados e incorporados en el plastisol de cloruro de polivinilo, en ocasiones es necesario realizar un proceso de molienda que debe hacerse de forma cuidadosa (controlando condiciones tales como tiempo, mecanismo de molienda, número de pasadas de molienda y presión intema en el molino) para desagregar las partículas de pigmento sin afectar la forma, el tamaño y la microestructura individual de los pigmentos fríos. Cualquier alteración no deseada de los pigmentos fríos podría modificar irremediablemente las características microestructurales reduciendo o incluso eliminando la capacidad del pigmento para reflejar la radiación infrarroja, y como consecuencia, afectar de manera negativa la eficiencia del material frente a la exposición a la radiación solar. The cold pigments may or may not be carriers. In the event that the cold pigments are conveyed, they can be conveyed in a plasticizer, a resin plasticized or in a polymeric compound (Master batch). For example, it can be added in an extrusion or plastisol system. So that the pigments in solid form can be well wetted and incorporated into the polyvinyl chloride plastisol, it is sometimes necessary to carry out a grinding process that must be done carefully (controlling conditions such as time, grinding mechanism, number of grinding passes and internal pressure in the mill) to disaggregate the pigment particles without affecting the shape, size and individual microstructure of the cold pigments. Any unwanted alteration of the cold pigments could irremediably modify the microstructural characteristics, reducing or even eliminating the ability of the pigment to reflect infrared radiation, and as a consequence, negatively affect the efficiency of the material against exposure to solar radiation.
Por ejemplo, al comparar la molienda realizada por un sistema de esferas versus un sistema tricilíndrico, los inventores identificaron que el sistema de esferas realiza una fuerza muy agresiva y destruye la partícula de pigmento, afectando su microestructura al punto de dañar completamente la eficiencia de reducción de temperatura del pigmento y, en consecuencia, los materiales desarrollados no presentaron los mejores desempeños. En comparación, el sistema tricilíndrico, realiza un trabajo mecánico más regulado, que permite la desagregación de las partículas sin modificar el tamaño ni la microestructura de los pigmentos por lo que no se vio afectado su desempeño óptico ni de reducción de temperatura. For example, when comparing the grinding performed by a sphere system versus a three-cylinder system, the inventors identified that the sphere system exerts a very aggressive force and destroys the pigment particle, affecting its microstructure to the point of completely damaging the reduction efficiency. temperature of the pigment and, consequently, the developed materials did not present the best performances. In comparison, the three-cylinder system performs a more regulated mechanical work, which allows the disaggregation of the particles without modifying the size or microstructure of the pigments, so its optical performance or temperature reduction was not affected.
Una capa protectora de recubrimiento exterior (6) que contribuye en la disminución de la pegajosidad que se puede generar en la superficie de la capa multicapa, modificando las características de superficie relacionadas con la sensación al tacto tales como efectos antideslizantes, cerosos, anti-rayado, entre otros. Asimismo, proporciona resistencia a la abrasión, a tratamientos químicos (resistencia a limpiadores y manchas), extracción de grasas y propiedades antimicrobianas. La capa protectora de recubrimiento exterior se caracteriza porque comprende un sistema polimérico vehiculizado en agua o un sistema de solvente orgánicos con al menos un catalizador. La capa protectora de recubrimiento exterior comprende una base polimérica, al menos un copolímero y opcionalmente un aditivo. La base polimérica puede ser de un polímero acrílico o de poliuretano. El copolímero se selecciona entre, pero no se limita a polímeros vinílicos, poluretánicos o acrílicos. Entre los posibles aditivos de la capa protectora de recubrimiento exterior se encuentran, pero no se limitan a, catalizadores, antiespumantes, modificadores de tacto, agentes mateantes, reguladores de viscosidad, y agentes antimicrobianos. A protective outer coating layer (6) that contributes to reducing the stickiness that can be generated on the surface of the multilayer layer, modifying the surface characteristics related to the sensation to the touch such as non-slip, waxy, anti-scratch effects , among others. It also provides resistance to abrasion, chemical treatments (resistance to cleaners and stains), fat extraction and antimicrobial properties. The protective outer coating layer is characterized in that it comprises a polymeric system conveyed in water or an organic solvent system with at least one catalyst. The protective outer coating layer comprises a polymeric base, at least one copolymer and optionally an additive. The polymer base can be an acrylic or polyurethane polymer. The copolymer is selected from, but is not limited to, vinyl polymers, polyurethane or acrylics. Possible outer coating protective layer additives include, but are not limited to, catalysts, defoamers, feel modifiers, matting agents, viscosity regulators, and antimicrobial agents.
En una modalidad como la que se representa en la FIG. 2, la capa superior multicapa además tiene una capa de estampado (7). Dicha capa de estampado se encuentra ubicada entre la capa intermedia compacta con pigmentos fríos y la capa exterior de recubrimiento protectora. La capa de estampado comprende al menos una resina polimérica, un copolímero, al menos un solvente y pigmentos. La resina polimérica puede ser una resina aerifica. El copolímero se selecciona entre, pero no se limita a, polímeros vinílicos, poliuretánicos o acrílicos. Los solventes se seleccionan entre, pero no se limitan a, agua, solventes orgánicos e inorgánicos. Particularmente, los pigmentos útiles en la capa de estampado son orgánicos y tienen una alta propiedad de proporcionar color (máximo de 60% de tintas en las formulaciones), son resistentes a la luz (pasan las pruebas de Xenotest, QUV 650 horas, SAEJ 1885, y la ISO 105:B04) y de fácil disolución (en solventes como: MEK, toluol, acetato de isobutilo y acetato de butirato). In an embodiment such as the one shown in FIG. 2, the multilayer top layer additionally has an embossing layer (7). Said printing layer is located between the compact intermediate layer with cold pigments and the outer layer of protective coating. The print layer comprises at least one polymeric resin, a copolymer, at least one solvent and pigments. The polymeric resin may be an aerifying resin. The copolymer is selected from, but is not limited to, vinyl, polyurethane, or acrylic polymers. Solvents are selected from, but are not limited to, water, organic and inorganic solvents. In particular, the pigments used in the printing layer are organic and have a high color-providing property (maximum of 60% of inks in formulations), are lightfast (pass Xenotest, QUV 650 hours, SAEJ 1885 , and ISO 105:B04) and easy to dissolve (in solvents such as: MEK, toluol, isobutyl acetate and butyrate acetate).
El proceso para poner la capa de estampado se puede realizar mediante un rodillo aplicador, serigrafía, impresión directa o transferencia, entre otros. The process to put the stamping layer can be done by means of an applicator roller, screen printing, direct printing or transfer, among others.
En una modalidad, el material compuesto multicapa que comprende: un componente textil inferior que es poliéster; una capa de unión que comprende cloruro de polivinilo, plastificantes, estabilizantes térmicos, cargas minerales y agentes antimicrobianos; una capa inferior espumada o no espumada que comprende cloruro de polivinilo, plastificantes, estabilizantes térmicos, cargas minerales, agentes antimicrobianos, agentes hinchantes (si es espumada), y al menos un pigmento; una capa intermedia compacta con pigmentos fríos que comprende cloruro de polivinilo, plastificantes, estabilizantes a la luz UV, estabilizantes térmicos, cargas minerales, pigmentos fríos del sistema NIR y agentes antimicrobianos; y una capa exterior de recubrimiento protectora de laca que comprende una base polimérica dispersa ya sea en base acuosa o solvente y al menos un catalizador. Los aditivos se seleccionan de las listas a continuación o cualquier otro conocido por una persona medianamente versada en la materia. Los aditivos son opcionales a no ser que se indique explícitamente lo contrario en cada una de las capas. In one embodiment, the multilayer composite material comprising: a lower textile component that is polyester; a tie layer comprising polyvinyl chloride, plasticizers, heat stabilizers, mineral fillers, and antimicrobial agents; a foamed or non-foamed bottom layer comprising polyvinyl chloride, plasticizers, heat stabilizers, mineral fillers, antimicrobial agents, swelling agents (if foamed), and at least one pigment; a compact intermediate layer with cold pigments comprising polyvinyl chloride, plasticizers, UV light stabilizers, thermal stabilizers, mineral fillers, NIR system cold pigments and antimicrobial agents; and an outer layer of protective lacquer coating comprising a polymeric base dispersed either in aqueous or solvent base and at least one catalyst. The additives are selected from the lists below or any other known to a person of ordinary skill in the art. Additives are optional unless explicitly stated otherwise in each of the layers.
Los plastificantes cumplen la función de otorgar suavidad y flexibilidad a polímeros duros. Estos se pueden clasificar como plastificantes primarios a base de ortoftalatos de alto peso molecular, base trimelitatos, base adipatos, base poliéster; o como plastificantes secundarios, entre los que se encuentran, pero no se limitan a, los plastificantes derivados de aceites vegetales hidrolizados, derivados de pentanodiol, mezclas de tereftalatos, derivados de parafinas. Plasticizers fulfill the function of giving softness and flexibility to hard polymers. These can be classified as primary plasticizers based on high molecular weight orthophthalates, trimellitate-based, adipate-based, polyester-based; or as secondary plasticizers, among which are, but are not limited to, plasticizers derived from hydrolyzed vegetable oils, pentanediol derivatives, terephthalate mixtures, paraffin derivatives.
Los estabilizantes térmicos protegen a los polímeros de las elevadas temperaturas a las que es sometido durante los diferentes procesos de transformación (por ejemplo, mezcla, extrusión, inyección, horneado etc.) y durante la exposición a la radiación solar durante el uso, evitando así la degradación de las propiedades fisicoquímicas del polímero. Entre los estabilizantes térmicos se encuentran, pero no se limitan a estabilizantes metálicos, orgánicos, de estaño, estereatos de calcio y zinc. Thermal stabilizers protect polymers from the high temperatures to which they are subjected during the different transformation processes (for example, mixing, extrusion, injection, baking, etc.) and during exposure to solar radiation during use, thus avoiding degradation of the physicochemical properties of the polymer. Thermal stabilizers include, but are not limited to metal, organic, tin, calcium and zinc stearate stabilizers.
Las cargas minerales o “fillers” se definen habitualmente como materiales insolubles que se encuentran normalmente en forma de polvo y se utilizan para aumentar el volumen, obtener o incrementar determinadas propiedades técnicas y/o modificar propiedades ópticas. Estos materiales pueden dar muchas características al sistema en el que se encuentran dependiendo de si están activos o inactivos. Entre los agentes de relleno se encuentran, pero no se limitan a carbonato de calcio, dolomita, carbonato de sodio, talco, sílice, wollastonita, arcilla, fibras de sulfato de calcio, mica, perlas de vidrio y alúmina trihidrato. Mineral loads or "fillers" are usually defined as insoluble materials that are normally in powder form and are used to increase volume, obtain or increase certain technical properties and/or modify optical properties. These materials can give many characteristics to the system they are in depending on whether they are active or inactive. Fillers include, but are not limited to, calcium carbonate, dolomite, soda ash, talc, silica, wollastonite, clay, calcium sulfate fibers, mica, glass beads, and alumina trihydrate.
Los retardantes a la llama se definen como una variedad de aditivos que se añaden a los materiales poliméricos para evitar incendios o disminuir la propagación del fuego a través de ellos y proporcionar un tiempo de escape adicional. Entre los agentes retardantes de llama se encuentran, pero no se limitan a trióxido antimonio, borato de zinc, hidróxido de aluminio, halógenos, fósforo, hidratos metálicos y cianuros de melamina, Los agentes antimicrobianos se definen como aditivos que matan microorganismos, detienen su crecimiento, dificultan o inhiben su reproducción. Entre los agentes microbianos se encuentran, pero no se limitan a derivados de oxybisfenoxiarsina, derivados de isotiazolona, compuestos de halógenos y zinc, nanopartículas o iones de plata y/o cobre, y sales de imidazol. Flame retardants are defined as a variety of additives that are added to polymeric materials to prevent fires or slow the spread of fire through them and provide additional escape time. Flame retardants include, but are not limited to, antimony trioxide, zinc borate, aluminum hydroxide, halogens, phosphorous, metal hydrates, and melamine cyanides. Antimicrobial agents are defined as additives that kill microorganisms, stop their growth, hinder or inhibit their reproduction. Microbial agents include, but are not limited to, oxybisphenoxyarsine derivatives, isothiazolone derivatives, halogen and zinc compounds, nanoparticles or silver and/or copper ions, and imidazole salts.
Los agentes hinchantes o también conocidos como espumantes, son un tipo de aditivos para plásticos que buscan producir estructuras celulares, es decir, estructuras que contienen porciones de celdas finas llenas de gas. Se puede conseguir así modificaciones de densidad, conductividad térmica y disipación de energía acústica y mecánica. Entre los agentes hinchantes se encuentran, pero no se limitan a azodicarbonamida, óxido de zinc, octoato de zinc, acelerante de potasio/zinc. Swelling agents or also known as foaming agents, are a type of additives for plastics that seek to produce cellular structures, that is, structures that contain portions of fine cells filled with gas. Thus, changes in density, thermal conductivity and dissipation of acoustic and mechanical energy can be achieved. Blowing agents include, but are not limited to azodicarbonamide, zinc oxide, zinc octoate, potassium/zinc accelerator.
Los antiespumantes son agentes tensioactivos que actúan por medio de tensiones superficiales intermedias para lograr desestabilizar las lacas y liberar el aire retenido en la mezcla de estas. Dentro de estos tipos de antiespumantes se encuentran los antiespumantes orgánicos (base en aceites minerales) que proporcionan un excelente desempeño y son de bajo costo; los antiespumantes siliconados que son altamente efectivos a bajos niveles de dosificación y por último los antiespumantes moleculares que ofrecen una excelente compatibilidad con la mayoría de los sistemas. Defoamers are surface-active agents that act by means of intermediate surface tensions to destabilize the lacquers and release the air trapped in their mixture. Within these types of defoamers are organic defoamers (based on mineral oils) that provide excellent performance and are low cost; silicone defoamers that are highly effective at low dosage levels and finally molecular defoamers that offer excellent compatibility with most systems.
Los agentes modificadores de reología se definen como aditivos para plásticos que se utilizan para modificar la viscosidad y mejorar la procesabilidad de los polímeros durante su transformación. Entre los agentes modificadores de reología se encuentran, pero no se limitan a, la sílice, derivados de pirrolidona, aceites epoxidados y tensioactivos. Rheology modifying agents are defined as additives for plastics that are used to modify the viscosity and improve the processability of polymers during their transformation. Rheology modifying agents include, but are not limited to, silica, pyrrolidone derivatives, epoxidized oils, and surfactants.
Los pigmentos se utilizan para modificar el aspecto de los polímeros con fines decorativos. Son materiales que cambian el color de la luz que refleja o transmite como resultado de la absorción selectiva de la luz según su longitud de onda (que es el parámetro determinante del color). Los pigmentos pueden seleccionarse independientemente entre, pero sin limitarse a, pigmentos orgánicos, pigmentos inorgánicos, preparaciones de pigmentos a base de disolventes, pigmentos sólidos y pigmentos de efecto. Algunos ejemplos de los mismos son el dióxido de titanio, óxidos de hierro, orgánicos o inorgánicos. Los modificadores de superficies o también conocidos como modificadores de tacto son componentes de aditivos que permiten el desarrollo de fórmulas para recubrimientos que mejoran y protegen la apariencia en la interfase entre el recubrimiento o la tinta y el exterior. Entre los agentes modificadores de tacto se encuentran, pero no se limitan a, la sílice, dispersiones de ceras, emulsiones de cera y cera micronizada. Pigments are used to modify the appearance of polymers for decorative purposes. They are materials that change the color of the light they reflect or transmit as a result of the selective absorption of light according to its wavelength (which is the determining parameter of color). The pigments may be independently selected from, but not limited to, organic pigments, inorganic pigments, solvent-based pigment preparations, solid pigments, and effect pigments. Some examples thereof are titanium dioxide, iron oxides, organic or inorganic. Surface modifiers or also known as touch modifiers are additive components that allow the development of formulations for coatings that improve and protect the appearance at the interface between the coating or ink and the exterior. Feel-modifying agents include, but are not limited to, silica, wax dispersions, wax emulsions, and micronized wax.
Los catalizadores son sustancias que favorecen o aceleran una reacción química sin intervenir directamente en ella, al final de la reacción el catalizador permanece inalterado. Los catalizadores más usados son los constituidos por platino, paladio y vanadio o por óxidos de cobre y de níquel. Catalysts are substances that favor or accelerate a chemical reaction without intervening directly in it, at the end of the reaction the catalyst remains unchanged. The most used catalysts are those made of platinum, palladium and vanadium or copper and nickel oxides.
El material compuesto multicapa de acuerdo con lo descrito anteriormente se caracteriza porque tiene una resistencia a la tensión entre min 121 LbL (urdimbre) y 72 Lbf (trama), una elongación a la ruptura en promedio a 67 % (urdimbre) y 159 % (trama), una resistencia a la puntada mínimo 12 Lbf ( urdimbre) y 8,6 Lbf ( trama), una abrasión Wyzenbeek mínima 150 000 ciclos sin evidenciar desgaste en la superficie, una solidez a la luz calificación mayor a 4 sin evidenciar cambios significativos, un HBU (Heat Buil Up Index) entre 58 °C y 61 °C en productos sin estampación. Adicionalmente, cuando se somete a prueba de exposición al aire libre (Qlab Llorida Test) demuestra no tener cambios significativos hasta por 180 días de exposición. The multilayer composite material as described above is characterized in that it has a tensile strength between min 121 LbL (warp) and 72 Lbf (weft), an average elongation at break of 67% (warp) and 159% ( weft), a minimum stitch resistance of 12 Lbf (warp) and 8.6 Lbf (weft), a minimum Wyzenbeek abrasion of 150,000 cycles without showing wear on the surface, a light fastness rating greater than 4 without showing significant changes , an HBU (Heat Build Up Index) between 58 °C and 61 °C in products without printing. Additionally, when subjected to an outdoor exposure test (Qlab Llorida Test) it shows no significant changes for up to 180 days of exposure.
Dentro de las aplicaciones para materiales multicapa se encuentra: tapicería para muebles línea hogar (exteriores e interiores); tapicería y paneles interiores y exteriores para yates, autos y motos; desarrollo de productos impermeables y toldos. Among the applications for multilayer materials are: upholstery for home furniture (exterior and interior); upholstery and interior and exterior panels for yachts, cars and motorcycles; development of waterproof products and awnings.
El material compuesto multicapa se puede obtener por medio de los procesos de fabricación de telas recubiertas tales como: extrusión y calandrado, transferencia de recubrimiento, horneado y laminación. The multilayer composite material can be obtained through the manufacturing processes of coated fabrics such as: extrusion and calendering, coating transfer, baking and lamination.
Se debe entender que la presente invención no se halla limitada a las modalidades descritas e ilustradas a continuación, pues como será evidente para una persona versada en el arte, existen variaciones y modificaciones posibles que no se apartan del espíritu de la invención, definido por las reivindicaciones. EJEMPLOS It should be understood that the present invention is not limited to the modalities described and illustrated below, since as will be evident to a person skilled in the art, there are possible variations and modifications that do not deviate from the spirit of the invention, defined by the claims. EXAMPLES
Ejemplo 1. Material compuesto multicapa con PVC flexible espumado a escala laboratorio (FIG. 1) Example 1. Multilayer composite material with flexible foamed PVC on a laboratory scale (FIG. 1)
Componente textil inferior (1): 100 % poliéster. Lower textile component (1): 100% polyester.
Capa de unión (2): PVC, DOTP y parafina clorada, estabilizante térmico base estaño, carbonato de calcio, sílice, derivado de isotiazolona. Tie Layer (2): PVC, DOTP and Chlorinated Paraffin, Tin-Based Thermal Stabilizer, Calcium Carbonate, Silica, Isothiazolone Derivative.
Capa superior multicapa (3): Multi-layer top layer (3):
Una capa inferior espumada (4): PVC, DOTP y parafina clorada, carboxilato de estaño, octoato de zinc, azodicarbonamida carbonato de calcio, derivado de isotiazolona, pigmento blanco. A lower foamed layer (4): PVC, DOTP and chlorinated paraffin, tin carboxylate, zinc octoate, calcium carbonate azodicarbonamide, isothiazolone derivative, white pigment.
Capa intermedia compacta con pigmentos fríos (5): PVC, DOTP, benzotriazola, carboxilato de estaño, carbonato de calcio, pigmentos sistema NIR, derivado de isotiazolona, sílice. Compact intermediate layer with cold pigments (5): PVC, DOTP, benzotriazole, tin carboxylate, calcium carbonate, NIR system pigments, isothiazolone derivative, silica.
Capa exterior de recubrimiento protectora (6): laca sistema SRT (urea formaldehido, ácido toluen sulfónico, y aerifica (metacrilato, cloroacetato de polivinilo, solventes). Outer layer of protective coating (6): SRT system lacquer (urea formaldehyde, toluene sulfonic acid, and aerifies (methacrylate, polyvinyl chloroacetate, solvents).
Sobre un papel de transferencia se realizó la aplicación de la capa intermedia compacta con pigmentos fríos a una altura de 0,21-0,22 mm y se pre-secó a 180 °C por 20 s. Posteriormente, sobre la capa intermedia compacta con pigmentos fríos se realizó la aplicación de una capa inferior espumada a una altura de 0,37 mm y se pre-secó a 180 °C por 5 s. Una vez aplicada la capa inferior espumada, se aplicó la capa de unión, calibrada a 0,43 mm. Finalmente, se unió la capa de unión a la capa textil inferior para entrar al homo a 200 °C por 50 s. On a transfer paper, the compact intermediate layer was applied with cold pigments at a height of 0.21-0.22 mm and pre-dried at 180 °C for 20 s. Subsequently, on the compact intermediate layer with cold pigments, a foamed lower layer was applied at a height of 0.37 mm and pre-dried at 180 °C for 5 s. After the foamed bottom layer was applied, the tie layer, calibrated at 0.43 mm, was applied. Finally, the binding layer was attached to the lower textile layer to enter the oven at 200 °C for 50 s.
Una vez secado el material con la capa intermedia compacta con pigmentos fríos, la capa inferior espumada, la capa de unión y la capa textil inferior, se retiró el papel de transferencia para aplicar la capa protectora de recubrimiento exterior sobre la cara expuesta de la capa intermedia compacta con pigmentos fríos. Ejemplo 2. Material compuesto multicapa con PVC flexible a escala industrial (F1G. After the material with the cold pigment compacted middle layer, foamed bottom layer, tie layer, and bottom textile layer had dried, the transfer paper was removed to apply the protective outer coating layer to the exposed face of the layer. intermediate compact with cold pigments. Example 2. Multilayer composite material with flexible PVC on an industrial scale (F1G.
1) 1)
Se llevó a cabo siguiendo una metodología similar a la descrita en el Ejemplo 1 en donde adicionalmente se realizaron dos aplicaciones. En la primera se aplicó una capa exterior de recubrimiento protectora a base de resina acrílica dispersa en solventes y un copolímero por medio de rodillos de aplicación sobre toda la tela recubierta con PVC. Posteriormente, se realizó un secado de la tela recubierta con PVC y la capa exterior de recubrimiento protectora base resina acrílica a una temperatura entre 140 °C y 160 °C y a una velocidad de 16 m/min. It was carried out following a methodology similar to that described in Example 1, where two additional applications were made. In the first, an outer layer of protective coating based on acrylic resin dispersed in solvents and a copolymer was applied by means of application rollers over the entire PVC-coated fabric. Subsequently, the PVC-coated fabric and the outer layer of acrylic resin-based protective coating were dried at a temperature between 140 °C and 160 °C and at a speed of 16 m/min.
Luego, se aplicó una base poliuretánica y un catalizador disperso en formaldehído, por medio de rodillos de aplicación, a una temperatura entre 140 °C y 160 °C y a una velocidad de 16 m/min. Las características mecánicas, de abrasión y limpiabilidad del material obtenido se presentan en la Tabla 1. Then, a polyurethane base and a catalyst dispersed in formaldehyde were applied, by means of application rollers, at a temperature between 140 °C and 160 °C and at a speed of 16 m/min. The mechanical, abrasion and cleanability characteristics of the material obtained are presented in Table 1.
Tabla 1. Características mecánicas, de abrasión y limpiabilidad del material obtenido a partir del Ejemplo 2 Table 1. Mechanical, abrasion and cleanability characteristics of the material obtained from Example 2
Prueba Unidades ValorTest Units Value
Resistencia a la tensión LbF 121 (urdimbre); 72 (trama) Elongación a ruptura % 67 (urdimbre); 159 (trama) Resistencia a la puntada LbF 12 (urdimbre); 8,6 (trama) Abrasión Wyzenbeek # ciclos 100000 ciclos (sin cambios significativos) Tensile strength LbF 121 (warp); 72 (weft) Elongation at break % 67 (warp); 159 (weft) Stitch strength LbF 12 (warp); 8.6 (screen) Wyzenbeek abrasion # cycles 100,000 cycles (no significant change)
Solidez a la luz QUV 650 horas Sin cambios significativos en el color Light fastness QUV 650 hours No significant change in color
Weather o meter 1000 horas Sin cambios significativos en el color (en escala de grises)Weather o meter 1000 hours No significant change in color (grayscale)
HBU ( heat builup) (ASTM °C 59 D4803-10) HBU (heat builup) (ASTM °C 59 D4803-10)
Prueba de exposición al aire 180 días Sin cambios significativos libre (ASTM G47) Air exposure test 180 days No significant changes Free (ASTM G47)
Ejemplo 3. Material compuesto multicapa estampado a escala industrial (F1G. 2) Se llevó a cabo siguiendo la metodología descrita en el Ejemplo 1, en donde adicionalmente se aplicado una capa de estampado sobre la capa intermedia de pigmentos fríos (5). Para la capa de estampado (7) se aplicó una resina acrílica, un copolímero, solventes y pigmentos para la elaboración de lacas y tintas, por medio de un rodillo aplicador sobre toda la tela recubierta con PVC y se realizó un pre-secado de la tela recubierta con aire caliente a una temperatura entre 70 °C y 80 °C a una velocidad de 22 m/min. Posteriormente, se aplicó la capa exterior de recubrimiento protectora (6) que consistió de una base de poliuretano y al menos un catalizador disperso en agua, por medio de rodillos de aplicación sobre toda la tela recubierta de PVC y se realizó el secado de la tela recubierta a una temperatura de 170 °C y a una velocidad de 22 m/min. Example 3. Printed multilayer composite material on an industrial scale (F1G. 2) It was carried out following the methodology described in Example 1, where a printing layer was additionally applied on the intermediate layer of cold pigments (5). For the printing layer (7), an acrylic resin, a copolymer, solvents and pigments for the preparation of lacquers and inks were applied by means of an applicator roller on the entire PVC-coated fabric and a pre-drying of the surface was carried out. fabric coated with hot air at a temperature between 70 °C and 80 °C at a speed of 22 m/min. Subsequently, the outer layer of protective coating (6) was applied, which consisted of a polyurethane base and at least one catalyst dispersed in water, by means of application rollers on the entire PVC-coated fabric and the fabric was dried. coated at a temperature of 170 °C and at a speed of 22 m/min.
Ejemplo 4. Material compuesto multicapa compacto (no espumado) Example 4. Compact multilayer composite material (non-foamed)
Componente textil inferior (1): 100% poliéster. Lower textile component (1): 100% polyester.
Capa de unión (2): PVC, DOTP y parafina clorada, carbonato de calcio, sílice. Bond Layer (2): PVC, DOTP and Chlorinated Paraffin, Calcium Carbonate, Silica.
Capa superior multicapa (3): Multi-layer top layer (3):
Una capa inferior no espumada con pigmentos fríos (4): PVC, DOTP, estabilizante térmico tipo bario-zinc, aceite epoxidado, solvente alifático, carbonato de calcio, pigmentos del sistema NIR. A non-foamed lower layer with cold pigments (4): PVC, DOTP, barium-zinc type thermal stabilizer, epoxidized oil, aliphatic solvent, calcium carbonate, NIR system pigments.
Capa intermedia compacta con pigmentos fríos (5): PVC, DOTP, benzotriazola, carboxilato de estaño, carbonato de calcio, pigmentos sistema NIR. Compact intermediate layer with cold pigments (5): PVC, DOTP, benzotriazole, tin carboxylate, calcium carbonate, NIR system pigments.
Capa protectora de recubrimiento exterior (6): laca sistema vinil-acrílico (resina acrílica, PVC, solventes). Exterior coating protective layer (6): vinyl-acrylic system lacquer (acrylic resin, PVC, solvents).
Sobre un papel de transferencia se realizó la aplicación de la capa protectora de recubrimiento exterior, por medio de un rodillo aplicador sobre todo el papel y se realizó un secado a una temperatura de 110 °C por 20 s; posteriormente, sobre la capa protectora de recubrimiento exterior, se aplicó la capa intermedia compacta con pigmentos fríos a una altura de 0,21-0,22 mm y se pre-secó a una temperatura de 180 °C por 20 s. Luego sobre la capa intermedia compacta con pigmentos fríos se aplicó la capa inferior no espumada con pigmentos fríos a una altura de 0,39 mm y se pre-secó a una temperatura de 180°C por 15 s. Una vez pre-secadas las capas, se aplicó la capa de unión, calibrada a un espesor de 0,57 mm. Finalmente, se unió la capa de unión con el componente textil inferior, y se llevó material al homo a una temperatura de 200 °C por 60 s. Una vez secado todo el material con las capas intermedia e inferior con pigmentos fríos y la capa textil, se retiró el papel de transferencia. On a transfer paper, the protective layer of the outer coating was applied by means of an applicator roller over the entire paper and drying was carried out at a temperature of 110 °C for 20 s; Subsequently, on the protective outer coating layer, the compact intermediate layer with cold pigments was applied at a height of 0.21-0.22 mm and pre-dried at a temperature of 180 °C for 20 s. Then, on the compact intermediate layer with cold pigments, the non-foamed lower layer with cold pigments was applied at a height of 0.39 mm and pre-dried at a temperature of 180°C for 15 s. Once the layers were pre-dried, the tie layer was applied, calibrated to a thickness of 0.57 mm. Finally, the binding layer was joined with the lower textile component, and the material was placed in the oven at a temperature of 200 °C for 60 s. One time drying all the material with the intermediate and lower layers with cold pigments and the textile layer, the transfer paper was removed.
Ejemplo 5. Material compuesto multicapa compacto de PVC con alta resistencia al fuego (FIG. 1) Example 5. Compact multilayer PVC composite material with high fire resistance (FIG. 1)
Componente textil inferior (1): mezcla poliéster-fibra de vidrio. Lower textile component (1): polyester-fiberglass blend.
Capa de unión (2): PVC, DOTP y parafina clorada, carbonato de calcio, trióxido de antimonio, hidróxido de aluminio, sílice. Bond Layer (2): PVC, DOTP and Chlorinated Paraffin, Calcium Carbonate, Antimony Trioxide, Aluminum Hydroxide, Silica.
Capa superior multicapa (3): Multi-layer top layer (3):
Capa inferior no espumada con pigmentos fríos (4): PVC, DOTP, fosfato de triarilo, carboxilato de estaño, solvente alifático, carbonato de calcio, hidróxido de aluminio, borato de zinc, trióxido de antimonio, pigmentos sistema NIR.Non-foamed lower layer with cold pigments (4): PVC, DOTP, triaryl phosphate, tin carboxylate, aliphatic solvent, calcium carbonate, aluminum hydroxide, zinc borate, antimony trioxide, NIR system pigments.
Capa intermedia con pigmentos fríos (5): PVC, DOTP, benzotriazola, carboxilato de estaño, carbonato de calcio, mezcla de sales FR, pigmentos sistema NIR.Intermediate layer with cold pigments (5): PVC, DOTP, benzotriazole, tin carboxylate, calcium carbonate, mixture of FR salts, NIR system pigments.
Capa protectora de recubrimiento exterior (6): laca sistema vinil-acrílica (resina acrílica, PVC, solventes). Exterior coating protective layer (6): vinyl-acrylic system lacquer (acrylic resin, PVC, solvents).
Sobre un papel de transferencia se realizó la aplicación de la capa exterior de recubrimiento protectora, por medio de un rodillo aplicador sobre todo el papel, luego se realizó un secado a una temperatura de 110 °C por 20 s. Posteriormente, sobre la capa exterior de recubrimiento protectora, se aplicó la capa intermedia compacta con pigmentos fríos a una altura de 0,21-0,22 mm y se pre-secó a una temperatura de 180 °C por 20 s. Sobre esa capa intermedia compacta con pigmentos fríos se aplicó la capa inferior no espumada con pigmentos fríos a una altura de 0,42 mm y se pre-secó a una temperatura de 180 °C por 5 s. Una vez pre-secadas ambas capas, se aplicó la capa de unión, calibrada a 0,6 mm. Finalmente, se unió la capa de unión con la capa textil y se llevó al homo a una temperatura de 200 °C por 60 s para posteriormente retirar el papel de transferencia. On a transfer paper, the outer layer of protective coating was applied, by means of an applicator roller over the entire paper, then drying was carried out at a temperature of 110 °C for 20 s. Subsequently, on the outer layer of protective coating, the compact intermediate layer with cold pigments was applied at a height of 0.21-0.22 mm and pre-dried at a temperature of 180 °C for 20 s. On this compact intermediate layer with cold pigments, the non-foamed lower layer with cold pigments was applied at a height of 0.42 mm and pre-dried at a temperature of 180 °C for 5 s. Once both layers had pre-dried, the tie layer was applied, calibrated at 0.6 mm. Finally, the bonding layer was joined with the textile layer and it was taken to the oven at a temperature of 200 °C for 60 s to subsequently remove the transfer paper.
Ejemplo 6. Material compuesto multicapa de PVC flexible con componente textil inferior con mezcla de hilazas de poliéstery algodón (FIG. 1) Example 6. Flexible PVC multilayer composite material with a lower textile component with a mixture of polyester and cotton yarns (FIG. 1)
Componente textil inferior (1): 65 % poliéster/35 % algodón Capa de unión (2): PVC, DOTP y parafina clorada, hidróxido de aluminio, trióxido de antimonio, carbonato de calcio, sílice, derivado de isotiazolona. Lower textile component (1): 65% polyester/35% cotton Tie Layer (2): PVC, DOTP and Chlorinated Paraffin, Aluminum Hydroxide, Antimony Trioxide, Calcium Carbonate, Silica, Isothiazolone Derivative.
Capa superior multicapa (3): Multi-layer top layer (3):
Una capa inferior espumada (4): PVC, DOTP, parafina clorada, fosfato de triarilo, aceite epoxidado carboxilato de estaño, octoato de zinc, azodicarbonamida, carbonato de calcio, borato de zinc, hidróxido de aluminio, óxido de zinc, derivado de isotiazolona, dióxido de titanio. A foamed bottom layer (4): PVC, DOTP, Chlorinated Paraffin, Triaryl Phosphate, Tin Carboxylate Epoxidized Oil, Zinc Octaate, Azodicarbonamide, Calcium Carbonate, Zinc Borate, Aluminum Hydroxide, Zinc Oxide, Isothiazolone Derivative , titanium dioxide.
Capa intermedia compacta con pigmentos fríos (5): PVC, DOTP, parafina clorada, aceite epoxidado, benzotriazola, estabilizante al calor calcio- zinc, carbonato de calcio, hidróxido de aluminio, sales FR, pigmentos sistema NIR, derivado de isotiazolona, sílice. Compact intermediate layer with cold pigments (5): PVC, DOTP, chlorinated paraffin, epoxidized oil, benzotriazole, calcium-zinc heat stabilizer, calcium carbonate, aluminum hydroxide, FR salts, NIR system pigments, isothiazolone derivative, silica.
Capa protectora de recubrimiento exterior (6): laca resina poliuretano dispersa en agua y al menos un catalizador. Outer coating protective layer (6): polyurethane resin lacquer dispersed in water and at least one catalyst.
Sobre un papel de transferencia se aplicó la capa intermedia compacta con pigmentos fríos a una altura de 0, 19 mm, luego se realizó un pre-secado a una temperatura de 180 °C por 15 s. Posteriormente, sobre la capa intermedia compacta con pigmentos fríos se aplicó la capa inferior espumada a una altura de 0,37 mm y se realizó un pre-secado a una temperatura de 180 °C por 15 s. Una vez aplicadas y pre-secadas ambas capas, se aplicó la capa de unión, calibrada a 0,5 mm. Finalmente, se unió esta capa de unión con el componente textil y se llevó al homo a una temperatura de 200 °C por 50 s y se retiró el papel de transferencia con el fin de aplicar la capa protectora de recubrimiento exterior. Para ello, sobre el textil recubierto con PVC se aplicó la capa exterior de recubrimiento protectora con un rodillo de aplicación sobre toda la tela recubierta con PVC y se realizó un secado de la tela recubierta con PVC a una temperatura entre 110 °C y l30 °C durante 50 s. On a transfer paper, the compact intermediate layer was applied with cold pigments at a height of 0.19 mm, then pre-drying at a temperature of 180 °C for 15 s. Subsequently, on the compact intermediate layer with cold pigments, the lower foamed layer was applied at a height of 0.37 mm and pre-drying at a temperature of 180 °C for 15 s. Once both layers were applied and pre-dried, the tie layer was applied, calibrated at 0.5 mm. Finally, this bonding layer was joined with the textile component and it was taken to the oven at a temperature of 200 °C for 50 s and the transfer paper was removed in order to apply the protective outer coating layer. To do this, the outer layer of protective coating was applied to the PVC-coated textile with an application roller over the entire PVC-coated fabric and the PVC-coated fabric was dried at a temperature between 110 °C and l30 °C. C for 50s.
Ejemplo 7. Material compuesto multicapa de PVC flexible con componente textil en nylon (FIG. 1) Example 7. Flexible PVC multilayer composite material with a nylon textile component (FIG. 1)
Componente textil inferior (1): 100 % nylon Lower textile component (1): 100% nylon
Capa de unión (2): PVC, DPHP, poliéster de ácido adípico, carbonato de calcio, hidróxido de aluminio, trióxido de antimonio, sílice, derivado de isotiazolona. Tie Layer (2): PVC, DPHP, Adipic Acid Polyester, Calcium Carbonate, Aluminum Hydroxide, Antimony Trioxide, Silica, Isothiazolone Derivative.
Capa superior multicapa (3): Capa inferior espumada (4): fosfato de triarilo, estabilizante al calor base bario- zinc, azodicarbonamida, hidróxido de aluminio, borato de zinc, trióxido de antimonio, derivado de isotiazolona, pigmento blanco. Multi-layer top layer (3): Lower foamed layer (4): triaryl phosphate, barium-zinc base heat stabilizer, azodicarbonamide, aluminum hydroxide, zinc borate, antimony trioxide, isothiazolone derivative, white pigment.
Capa intermedia compacta con pigmentos fríos (5): PVC, DPHP, benzotriazola, carboxilato de estaño, carbonato de calcio, hidróxido de aluminio, borato de zinc, sales FR, sílice, pigmentos sistema NIR, derivado de isotiazolona. Compact intermediate layer with cold pigments (5): PVC, DPHP, benzotriazole, tin carboxylate, calcium carbonate, aluminum hydroxide, zinc borate, FR salts, silica, NIR system pigments, isothiazolone derivative.
Capa protectora de recubrimiento exterior (6): primera aplicación de una capa de recubrimiento protector exterior base poliuretano disperso en agua y al menos un reticulante, y segunda aplicación de una capa de recubrimiento protector exterior base poliuretano dispersa en solvente. Protective layer of outer coating (6): first application of a layer of outer protective coating based on polyurethane dispersed in water and at least one crosslinking agent, and second application of a layer of outer protective coating based on polyurethane dispersed in solvent.
Sobre un papel de transferencia se aplicó una capa intermedia compacta con pigmentos fríos a una altura de 0,32 mm y se pre-secó a una temperatura de 180 °C por 20 s. Posteriormente, aplicó la capa inferior espumada a una altura de 0,67 mm y se pre-secó a una temperatura de 180 °C por 5 s. Una vez aplicada la capa intermedia compacta con pigmentos fríos y la capa inferior espumada, se aplicó la capa de unión calibrada a 0,7 mm. Finalmente, se unió esta capa de adhesivo con el componente textil y se llevó al homo a una temperatura de 200 °C por 60 s para posteriormente retirar el papel de transferencia y continuar con la aplicación de la capa exterior de recubrimiento protectora. A compact intermediate layer with cold pigments was applied to a transfer paper at a height of 0.32 mm and pre-dried at a temperature of 180 °C for 20 s. Subsequently, the lower foamed layer was applied at a height of 0.67 mm and pre-dried at a temperature of 180 °C for 5 s. After the compact intermediate layer with cold pigments and the foamed lower layer had been applied, the bonding layer calibrated at 0.7 mm was applied. Finally, this layer of adhesive was joined with the textile component and it was taken to the oven at a temperature of 200 °C for 60 s to subsequently remove the transfer paper and continue with the application of the outer layer of protective coating.
Como en los ejemplos anteriores, este proceso se lleva a cabo en dos aplicaciones. En la primera, se aplicó una capa protectora de recubrimiento exterior de resina poliuretano dispersa en solvente, por medio de un rodillo aplicador sobre toda la tela recubierta con PVC, posteriormente se realizó un pre-secado de la tela recubierta con PVC a una temperatura de 110 °C por 40 s. Posteriormente, sobre la aplicación anterior se aplicó una base de poliuretano y al menos un catalizador disperso en agua, por medio de rodillos de aplicación sobre toda la tela recubierta de PVC y se realizó el secado de la tela recubierta a una temperatura entre 120 °C y 140 °C durante 60 s. As in the previous examples, this process is carried out in two applications. In the first, a protective layer of outer coating of polyurethane resin dispersed in solvent was applied by means of an applicator roller over the entire PVC-coated fabric, subsequently a pre-drying of the PVC-coated fabric was carried out at a temperature of 110°C for 40s. Subsequently, on the previous application, a polyurethane base and at least one catalyst dispersed in water were applied by means of application rollers on the entire PVC-coated fabric and the coated fabric was dried at a temperature between 120 °C and 140 °C for 60 s.
Ejemplo 8. Condiciones y equipo para evaluar el desempeño frente a la radiación de los materiales compuestos multicapa Para medir el comportamiento térmico de los materiales compuestos multicapa del presente desarrollo, en particular de los materiales de los Ejemplos 9 a 12, bajo un tipo específico de lámpara de calor (simulando la luz solar) se utilizaron dos metodologías: Example 8. Conditions and equipment to evaluate the radiation performance of multilayer composite materials To measure the thermal behavior of the multilayer composite materials of the present development, in particular of the materials of Examples 9 to 12, under a specific type of heat lamp (simulating sunlight), two methodologies were used:
- ASTM D4803-Predicción de la acumulación de calor en productos de construcción de PVC: Este método de prueba permite medir el aumento de temperatura de una muestra de ensayo en comparación con una muestra de referencia bajo un tipo específico de lámpara de calor (es decir, lámpara de calor reflectante de infrarrojos). Permitiendo predecir la acumulación de calor (HBU) del material frente a la exposición de la radiación solar. Se reprodujo la configuración experimental necesaria de acuerdo con la norma ASTM D4803 para medir el aumento de la temperatura. - ASTM D4803-Prediction of Heat Accumulation in PVC Construction Products: This test method allows measurement of the temperature rise of a test sample compared to a reference sample under a specific type of heat lamp (i.e. , infrared reflective heat lamp). Allowing to predict the accumulation of heat (HBU) of the material against the exposure of solar radiation. The necessary experimental setup was reproduced according to ASTM D4803 to measure temperature rise.
Generalmente, cuanto más oscuro es el producto, más energía se absorbe y mayor es la acumulación de calor. Sin embargo, incluso con el mismo color aparente, la acumulación de calor puede variar debido a la estructura del material, a la emisión, absorbancia y reflectancia del material, al sistema de pigmento específico involucrado y a la forma en como éste se formula para colorear la superficie. Generally, the darker the product, the more energy is absorbed and the greater the heat buildup. However, even with the same apparent color, heat build-up can vary due to the structure of the material, the emission, absorbance, and reflectance of the material, the specific pigment system involved, and the way the pigment is formulated to color the surface. surface.
No obstante, aunque este método de prueba proporciona un estimado de la acumulación de calor relativa entre el material de ensayo y uno de referencia bajo ciertas condiciones severas definidas, es importante señalar que no necesariamente permite predecir con exactitud el desempeño de los materiales bajo condiciones reales de uso. El desempeño de cualquier material depende de la temperatura del aire, el ángulo de incidencia del sol, las nubes, la velocidad del viento, el aislamiento, la instalación detrás de un vidrio, el tiempo de exposición, entre otras condiciones. However, although this test method provides an estimate of the relative heat build-up between the test material and a reference material under certain defined severe conditions, it is important to note that it does not necessarily accurately predict the performance of materials under actual conditions. of use. The performance of any material depends on air temperature, the angle of incidence of the sun, clouds, wind speed, insulation, installation behind glass, exposure time, among other conditions.
Termogramas de simulación de la radiación solar: En este ensayo, las muestras se expusieron bajo condiciones estándar de radiación solar utilizando un simulador solar (Newport Oriel® Sol 3A) utilizando una lámpara de arco de xenón de 450 W en una cama de lana de vidrio. Solar radiation simulation thermograms: In this test, samples were exposed under standard solar radiation conditions using a solar simulator (Newport Oriel® Sol 3A) using a 450 W xenon arc lamp on a bed of glass wool. .
El aumento de temperatura de la superficie de cada muestra expuesta a estas condiciones solares simuladas se midió cada 2 min durante 14 min y se registró con una cámara Fluke Ti450® a un ajuste de emisividad de 0,95. Una vez transcurrido el tiempo de calentamiento bajo la radiación solar simulada (14 minutos), se apagó el simulador y se evaluó la rampa de enfriamiento de cada muestra, midiendo la temperatura superficial cada 2 minutos durante 14 minutos. The surface temperature rise of each sample exposed to these simulated solar conditions was measured every 2 min for 14 min and recorded with a Fluke Ti450® camera at an emissivity setting of 0.95. Once the time has elapsed heating under simulated solar radiation (14 minutes), the simulator was turned off and the cooling ramp of each sample was evaluated, measuring the surface temperature every 2 minutes for 14 minutes.
Ejemplo 9. Procesabilidad de los pigmentos fríos Example 9. Processability of cold pigments
Para evaluar la importancia de la procesabilidad de los pigmentos fríos sobre el comportamiento frente a la radiación del material multicapa, se llevó a cabo la molienda del pigmento utilizando un sistema de molino de esferas en comparación con la molienda utilizando un molino tricilíndrico. To assess the importance of the processability of cold pigments on the radiation behavior of the multilayer material, pigment grinding was carried out using a ball mill system compared to grinding using a three-roll mill.
Sistema de molino de esferas: Ball mill system:
En el primer caso, el pigmento en polvo fue mezclado con un plastificante tipo ortoftalato y la mezcla se dejó en reposo durante 7 h con el fin de humectar las partículas del pigmento con el plastificante. Transcurrido el tiempo de humectación la mezcla se agitó por 20 min con el fin de dispersar los aglomerados generados durante la humectación y para homogeneizar mejor la dispersión. La mezcla anterior se procesó dos veces en un molino de esferas de acero de 3 mm para garantizar una buena dispersión del pigmento. El pigmento frío vehiculizado fue posteriormente incorporado en la capa intermedia compacta de un material multicapa como el descrito en el Ejemplo 1, utilizando una capa intermedia de PVC al 2 % y se lo identificó con la referencia #7870. In the first case, the powdered pigment was mixed with an orthophthalate-type plasticizer and the mixture was left to stand for 7 h in order to wet the pigment particles with the plasticizer. After the wetting time, the mixture was stirred for 20 min in order to disperse the agglomerates generated during wetting and to better homogenize the dispersion. The above mixture was processed twice in a 3mm steel bead mill to ensure good pigment dispersion. The vehicleized cold pigment was subsequently incorporated into the compact intermediate layer of a multilayer material as described in Example 1, using a 2% PVC intermediate layer and identified with the reference #7870.
Molino tricilíndrico: Three cylinder mill:
En el segundo caso, el pigmento en polvo también se mezcló con un plastificante tipo ortoftalato y la mezcla se dejó en reposo durante 7 h para humectar las partículas y transcurrido el tiempo de humectación, la mezcla se agitó por 20 min para dispersar los aglomerados. Posteriormente, la mezcla se procesó por una única vez en un molino tricilíndrico trabajando a baja presión con el objetivo de evitar cualquier alteración de la microestructura del pigmento. El pigmento frío se incorporó en la capa intermedia compacta de un material multicapa como el del Ejemplo 1, utilizando una capa intermedia de PVC al 2 % y la muestra se identificó con la referencia #7871. La evaluación del desempeño frente a la radiación infrarroja de ambos materiales se llevó a cabo en un simulador solar (Newport Oriel® Sol 3A) utilizando una lámpara de arco de xenón de 450 W en una cama de lana de vidrio como se describe en el Ejemplo 8. Los termogramas de calentamiento para los materiales multicapa de las referencias #7870 y #7871 se presentan en la FIG. 3. Los resultados muestran el impacto que tiene sobre el desempeño del material el tipo de procesamiento que se realiza sobre los pigmentos fríos. En particular, la referencia #7870 en la que los pigmentos fueron procesados bajo condiciones más agresivas, el material se calienta poco más de 10 °C en comparación con la referencia #7871 en la que los pigmentos fueron procesados con un trabajo mecánico más regulado analizados en las mismas condiciones. In the second case, the powdered pigment was also mixed with an orthophthalate-type plasticizer and the mixture was left to stand for 7 h to wet the particles, and after the wetting time, the mixture was stirred for 20 min to disperse the agglomerates. Subsequently, the mixture was processed once in a three-cylinder mill working at low pressure in order to avoid any alteration of the microstructure of the pigment. The cold pigment was incorporated into the compact interlayer of a multilayer material as in Example 1, using a 2% PVC interlayer and the sample was identified as #7871. The evaluation of the performance against infrared radiation of both materials was carried out in a solar simulator (Newport Oriel® Sol 3A) using a 450 W xenon arc lamp on a bed of glass wool as described in Example 8. The heating thermograms for the multilayer materials of references #7870 and #7871 are presented in FIG. 3. The results show the impact that the type of processing carried out on the cold pigments has on the performance of the material. In particular, reference #7870 in which the pigments were processed under more aggressive conditions, the material heats up just over 10 °C compared to reference #7871 in which the pigments were processed with a more regulated mechanical work analyzed Under the same conditions.
Ejemplo 10. Comportamiento térmico del material compuesto multicapa Example 10. Thermal behavior of the multilayer composite material
Con el fin de evaluar el desempeño térmico del material compuesto multicapa con pigmentos fríos (sistema NIR) del presente desarrollo, se fabricó un material como el del Ejemplo 1 (#8744) utilizando un pigmento NIR en color negro. El material fabricado se comparó con un material multicapa convencional de color negro y con un material de referencia (comercial) también en color negro que declara tener un efecto frío bajo el efecto de la radiación solar simulada (Newport Oriel® Sol 3A), como se describe en el Ejemplo 8. In order to evaluate the thermal performance of the multilayer composite material with cold pigments (NIR system) of the present development, a material like the one in Example 1 (#8744) was manufactured using a black NIR pigment. The manufactured material was compared with a conventional black multilayer material and with a reference material (commercial) also in black that declares to have a cold effect under the effect of simulated solar radiation (Newport Oriel® Sol 3A), as shown described in Example 8.
Los termogramas de la FIG. 4 muestran que el material convencional alcanza una temperatura hasta 10 °C mayor que la temperatura que alcanzan el material del presente desarrollo o el material de referencia comercial con efecto frío después de 14 min de exposición. De otro lado, el material del presente desarrollo presenta un desempeño ligeramente mejor que el material de referencia comercial con efecto frío, lo que demuestra las cualidades del material desarrollado. The thermograms of FIG. 4 show that the conventional material reaches a temperature up to 10 °C higher than the temperature reached by the material of the present development or the commercial reference material with cold effect after 14 min of exposure. On the other hand, the material of this development presents a slightly better performance than the commercial reference material with cold effect, which demonstrates the qualities of the developed material.
Ejemplo 11. Ensayo comparativo de acumulación de calor Example 11. Comparative test of heat accumulation
Para evaluar la acumulación de calor y en consecuencia el desempeño frente al tacto del material compuesto multicapa, se fabricó una muestra como la del Ejemplo 1 en color negro (#26948) y se comparó con un material de referencia (comercial) también en color negro y que declara tener un efecto frío. En la Tabla 2 se presentan los resultados de acumulación de calor medidos y calculados para las muestras codificada como #26948 y el material de referencia. La FIG.5 se muestra el aumento de temperatura en función del tiempo de exposición a la radiación de la lámpara. To evaluate the accumulation of heat and consequently the performance against the touch of the multilayer composite material, a sample like the one in Example 1 in black color (#26948) was manufactured and compared with a reference material (commercial) also in black color. and that it claims to have a chilling effect. Table 2 presents the measured and calculated heat accumulation results for the samples coded as #26948 and the reference material. FIG.5 shows the increase in temperature as a function of the time of exposure to the radiation of the lamp.
Tabla 2. Resultados obtenidos para el índice de acumulación de calor según ASTM D4803. Table 2. Results obtained for the heat accumulation index according to ASTM D4803.
Temperatura del Temperatura del temperature of the temperature of the
Muestra HBU (°C) material (°C) control negro (°C) Sample HBU (°C) Material (°C) Black Control (°C)
Material multicapa multilayer material
57,1 68,4 60 #26948 Material de 57.1 68.4 60 #26948 Material of
56,9 68,4 60 referencia De esta forma, a partir de la Tabla 2 y FIG. 5, se puede observar que ambas muestras tienen el mismo resultado de índice de acumulación de calor y siguieron la misma curva de aumento de temperatura cuando fueron expuestas a la radiación de la lámpara, siguiendo la ASTM D4803 (Ejemplo 8). Por otro lado, mediante la prueba de simulación de la radicación solar como se describe en el Ejemplo 8, se determinaron la temperatura máxima alcanzada durante 14 min de exposición solar simulada y la rampa de enfriamiento una vez apagado el simulador (FIG. 6) para el material multicapa codificado como #26948 y el material de referencia. Como se observa, a partir de la FIG. 6 se puede verificar que ambas muestras presentan un comportamiento de calentamiento y enfriamiento similar cuando se someten a una prueba de simulación solar. De hecho, ambas muestras presentan la misma temperatura máxima cuando fueron expuestas por 14 minutos al equipo simulador solar. Ejemplo 12. Comportamiento térmico del material compuesto multicapa con una capa adicional de estampación 56.9 68.4 60 reference Thus, from Table 2 and FIG. 5, it can be seen that both samples have the same heat accumulation index result and followed the same temperature increase curve when exposed to lamp radiation, following ASTM D4803 (Example 8). On the other hand, by means of the solar radiation simulation test as described in Example 8, the maximum temperature reached during 14 min of simulated solar exposure and the cooling ramp once the simulator was turned off were determined (FIG. 6) for the multilayer material coded as #26948 and the reference material. As seen, from FIG. 6 it can be verified that both samples present similar heating and cooling behavior when subjected to a solar simulation test. In fact, both samples have the same maximum temperature when they were exposed for 14 minutes to the solar simulator equipment. Example 12. Thermal behavior of the multilayer composite material with an additional stamping layer
Para evaluar el impacto sobre el desempeño del material compuesto multicapa del presente desarrollo, se fabricó un material como el del Ejemplo 3 colocando una capa de estampado en color negro con pigmentos convencionales entre la capa exterior de recubrimiento protectora y la capa compacta con pigmentos fríos (sistema NIR) de color negro. Este material se comparó con un material sin la capa de estampado y contra un material convencional. To evaluate the impact on the performance of the multilayer composite material of the present development, a material like the one in Example 3 was manufactured by placing a layer of printed in black with conventional pigments between the outer layer of protective coating and the compact layer with cold pigments (NIR system) in black. This material was compared to a material without the embossing layer and against a conventional material.
El comportamiento térmico de los tres materiales evaluado bajo las condiciones descritas en el Ejemplo 8 se muestra en la FIG. 7. El material con la capa de estampación alcanza una temperatura de aproximadamente 9 °C mayor al material sin la capa de estampación y en todo caso menor por lo menos 5 °C respecto al material convencional. En este sentido, la sustitución de los pigmentos convencionales por pigmentos fríos podría ayudar a mejorar el desempeño de la capa de estampado. The thermal behavior of the three materials evaluated under the conditions described in Example 8 is shown in FIG. 7. The material with the stamping layer reaches a temperature of approximately 9 °C higher than the material without the stamping layer and in any case lower by at least 5 °C compared to the conventional material. In this sense, the substitution of conventional pigments for cold pigments could help improve the performance of the printing layer.

Claims

REIVINDICACIONES
1. Un material compuesto multicapa que comprende : un componente textil inferior; una capa de unión; una capa superior multicapa; en donde el componente textil inferior y la capa superior multicapa se unen entre sí mediante la capa de unión; en donde la capa superior multicapa comprende: una capa inferior; una capa intermedia compacta con pigmentos fríos y una capa protectora de recubrimiento exterior. 1. A multilayer composite material comprising: a lower textile component; a tie layer; a multilayer top layer; wherein the lower textile component and the upper multi-layer layer are bonded together by the tie layer; wherein the multilayer top layer comprises: a bottom layer; a compact middle layer with cold pigments and a protective outer coating layer.
2. El material compuesto multicapa de acuerdo con la Reivindicación 1, en donde la capa superior multicapa además comprende una capa de estampado ubicada entre la capa intermedia compacta con pigmentos fríos y la capa protectora de recubrimiento exterior. 2. The multilayer composite material according to Claim 1, wherein the multilayer top layer further comprises an embossing layer located between the cold-pigmented compact intermediate layer and the protective outer coating layer.
3. El material compuesto multicapa de acuerdo con la Reivindicación 1, en donde el componente textil inferior se selecciona de algodón, poliéster, nailon, mezcla de poliéster y algodón y otras hilazas de fuentes naturales. 3. The multilayer composite material according to Claim 1, wherein the lower textile component is selected from cotton, polyester, nylon, cotton-polyester blend and other yarns from natural sources.
4. El material compuesto multicapa de acuerdo con la Reivindicación 3, en donde el componente textil inferior es 100 % poliéster. 4. The multilayer composite material according to Claim 3, wherein the lower textile component is 100% polyester.
5. El material compuesto multicapa de acuerdo con la Reivindicación 1, en donde la capa de unión comprende una base polimérica seleccionada entre poliuretano, acrílico o cloruro de polivinilo y un aditivo. 5. The multilayer composite material according to Claim 1, wherein the bonding layer comprises a polymeric base selected from polyurethane, acrylic or polyvinyl chloride and an additive.
6. El material compuesto multicapa de acuerdo con la Reivindicación 1, en donde en la capa superior multicapa, la capa inferior es espumada o no espumada. 6. The multilayer composite material according to Claim 1, wherein in the upper multilayer layer, the lower layer is foamed or non-foamed.
7. El material compuesto multicapa de acuerdo con la Reivindicación 1, en donde la capa intermedia compacta con pigmentos fríos comprende una base polimérica de cloruro de polivinilo, plastificantes, pigmentos fríos y un aditivo. 7. The multilayer composite material according to Claim 1, wherein the compact intermediate layer with cold pigments comprises a polyvinyl chloride polymeric base, plasticizers, cold pigments and an additive.
8. El material compuesto multicapa de acuerdo con la Reivindicación 1, en donde los pigmentos fríos se seleccionan entre dióxido de titanio tipo anatasa (TiCh), trióxido de di-hierro (FeiCh)- espinela azul de cobalto y aluminio (C0AI2O4), óxido de hierro y cromo (CnCri)- espinela verde de cobalto y titanio (C02T1O4), dióxido de titanio tipo rutilo (T1O2), antimonio y manganeso. 8. The multilayer composite material according to Claim 1, wherein the cold pigments are selected from anatase-type titanium dioxide (TiCh), di-iron trioxide (FeiCh)- cobalt blue spinel and aluminum (C0AI2O4), oxide iron and chromium (CnCri)- cobalt green spinel and titanium (C02T1O4), rutile type titanium dioxide (T1O2), antimony and manganese.
9. El material compuesto multicapa de acuerdo con la Reivindicación 1, en donde la capa protectora de recubrimiento exterior comprende una base polimérica de un polímero acrílico o de poliuretano, un copolímero, un catalizador y opcionalmente un aditivo. 9. The multilayer composite material according to Claim 1, wherein the protective outer coating layer comprises a polymeric base of an acrylic or polyurethane polymer, a copolymer, a catalyst and optionally an additive.
10. El material compuesto multicapa de acuerdo con la Reivindicación 2, en donde la capa de estampado comprende al menos una resina polimérica, un copolímero, un solvente y pigmentos. 10. The multilayer composite material according to Claim 2, wherein the print layer comprises at least one polymeric resin, a copolymer, a solvent and pigments.
11. El material compuesto multicapa de acuerdo con la Reivindicación 2, en donde la capa de estampado comprende un pigmento orgánico vehiculizado en una resina acrílica y un solvente. 11. The multilayer composite material according to Claim 2, wherein the print layer comprises an organic pigment carried in an acrylic resin and a solvent.
12. El material compuesto multicapa de acuerdo con la Reivindicación 1 que comprende: un componente textil inferior que es 100 % pobéster; una capa de unión que comprende cloruro de polivinilo, dioctil tereftalato, parafma clorada, carboxilato de estaño, cargas minerales y derivado de isotiazolona; una capa inferior espumada que comprende cloruro de polivinilo, dioctil tereftalato y parafma clorada, carboxilato de estaño, cargas minerales, derivado de isotiazola, azodicarbonamida, y al menos un pigmento; una capa intermedia compacta con pigmentos fríos que comprende cloruro de polivinilo, dioctiltereftalato, benzotriazola, carboxilato de estaño, rellenos minerales, pigmentos fríos NIR y derivado de isotriazola; una capa protectora de recubrimiento exterior que comprende una base polimérica dispersa en base acuosa o solvente y al menos un catalizador. 12. The multilayer composite material according to Claim 1 comprising: a lower textile component that is 100% polyester; a tie layer comprising polyvinyl chloride, dioctyl terephthalate, chlorinated paraffin, tin carboxylate, mineral fillers, and isothiazolone derivative; a lower foamed layer comprising polyvinyl chloride, dioctyl terephthalate and chlorinated paraffin, tin carboxylate, mineral fillers, isothiazole derivative, azodicarbonamide, and at least one pigment; a compact intermediate layer with cold pigments comprising polyvinyl chloride, dioctyl terephthalate, benzotriazole, tin carboxylate, mineral fillers, NIR cold pigments and isotriazole derivative; a protective outer coating layer comprising a polymeric base dispersed in aqueous or solvent base and at least one catalyst.
PCT/IB2021/057066 2021-02-26 2021-08-02 Multi-layer composite material with cold effect WO2022180442A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2021/0002728A CO2021002728A1 (en) 2021-02-26 2021-02-26 Multilayer composite material with cold effect
CONC2021/0002728 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022180442A1 true WO2022180442A1 (en) 2022-09-01

Family

ID=82942284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/057066 WO2022180442A1 (en) 2021-02-26 2021-08-02 Multi-layer composite material with cold effect

Country Status (2)

Country Link
CO (1) CO2021002728A1 (en)
WO (1) WO2022180442A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101243829B1 (en) * 2012-09-25 2013-03-20 우림매스틱공업주식회사 Energy-saving insulation waterproofing and passive composite insulation waterproofing method that laminates the insulation film waterproof composition and urethane foam insulation
JP2016196151A (en) * 2015-04-06 2016-11-24 凸版印刷株式会社 Decorative sheet and decorative laminate
CN110777543A (en) * 2019-11-06 2020-02-11 宁波瑞凌新能源科技有限公司 Radiation refrigeration functional layer, radiation refrigeration fabric and preparation method thereof
AU2019236674B1 (en) * 2019-07-05 2020-08-20 Ningbo Radi-Cool Advanced Energy Technologies Co., Ltd. Radiative cooling functional coating material and application thereof
EP3744517A1 (en) * 2019-05-31 2020-12-02 Ningbo Radi-Cool Advanced Energy Technologies Co., Ltd. Composite radiative cooling film, composite radiative cooling film assembly and application thereof
AU2020217350A1 (en) * 2019-11-06 2021-05-20 Ningbo Radi-Cool Advanced Energy Technologies Co., Ltd. Radiative cooling fabrics and products

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101243829B1 (en) * 2012-09-25 2013-03-20 우림매스틱공업주식회사 Energy-saving insulation waterproofing and passive composite insulation waterproofing method that laminates the insulation film waterproof composition and urethane foam insulation
JP2016196151A (en) * 2015-04-06 2016-11-24 凸版印刷株式会社 Decorative sheet and decorative laminate
EP3744517A1 (en) * 2019-05-31 2020-12-02 Ningbo Radi-Cool Advanced Energy Technologies Co., Ltd. Composite radiative cooling film, composite radiative cooling film assembly and application thereof
AU2019236674B1 (en) * 2019-07-05 2020-08-20 Ningbo Radi-Cool Advanced Energy Technologies Co., Ltd. Radiative cooling functional coating material and application thereof
CN110777543A (en) * 2019-11-06 2020-02-11 宁波瑞凌新能源科技有限公司 Radiation refrigeration functional layer, radiation refrigeration fabric and preparation method thereof
AU2020217350A1 (en) * 2019-11-06 2021-05-20 Ningbo Radi-Cool Advanced Energy Technologies Co., Ltd. Radiative cooling fabrics and products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOUMYA S., KUMAR S. NISHANTH, MOHAMED A. PEER, ANANTHAKUMAR S.: "Silanated nano ZnO hybrid embedded PMMA polymer coatings on cotton fabrics for near-IR reflective, antifungal cool-textilestcite", NEW JOURNAL OF CHEMISTRY, vol. 40, no. 8, 2016, pages 7210 - 7221, XP055964630, DOI: 10.1039/c6nj00353b *

Also Published As

Publication number Publication date
CO2021002728A1 (en) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2020233027A1 (en) Coating composite material and manufacturing method therefor
CN103114447B (en) Environment-friendly PVC (Polyvinyl Chloride) coating reflective fabric
JP5279437B2 (en) Flooring
JPWO2007145083A1 (en) Dark sheet-like material having light reflection performance in the near infrared region
CN101115805A (en) Dark, flat element having low heat conductivity, reduced density and low solar absorption
CN100569508C (en) Color sheet with light-shielding property
MXPA06010729A (en) Fire resistant composite material and fabrics made therefrom.
JP5360656B2 (en) Heat shielding daylighting film material and manufacturing method thereof
JP2014040035A (en) Heat control sheet
KR100831425B1 (en) Thermochromic floor mat and manufacturing method thereof
US9487947B2 (en) Decorative laminated plate
JP4882144B2 (en) Wallpaper manufacturing method
WO2022180442A1 (en) Multi-layer composite material with cold effect
KR102360827B1 (en) High-performance heat shield paint and Paint constructing method using the same
JP6232628B2 (en) Noncombustible film material
JP2012184529A (en) Wallpaper
JP6212822B2 (en) Thermal barrier film material with excellent daylighting
KR20100009425A (en) Blackout screen and manufacturing method thereof
CN102444214B (en) Enhanced reflective EPE thermal insulating building material
JP4170481B2 (en) Decorative sheet
JP2000211049A (en) Foamed decorative material
JP5049195B2 (en) Colored sheet-like material having light reflection performance in the near infrared region
JP5167017B2 (en) Temperature control floor sheet
JP2016222135A (en) Vehicle interior component and skin material for vehicle interior component
JP4515267B2 (en) Method for producing foamed polyvinyl chloride wallpaper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927755

Country of ref document: EP

Kind code of ref document: A1