WO2022179227A1 - 扫地机的回充对准方法、装置及扫地机 - Google Patents

扫地机的回充对准方法、装置及扫地机 Download PDF

Info

Publication number
WO2022179227A1
WO2022179227A1 PCT/CN2021/134521 CN2021134521W WO2022179227A1 WO 2022179227 A1 WO2022179227 A1 WO 2022179227A1 CN 2021134521 W CN2021134521 W CN 2021134521W WO 2022179227 A1 WO2022179227 A1 WO 2022179227A1
Authority
WO
WIPO (PCT)
Prior art keywords
sweeper
charging base
relative position
position information
laser
Prior art date
Application number
PCT/CN2021/134521
Other languages
English (en)
French (fr)
Inventor
胡利萍
张路
喻强
路远
王兆光
Original Assignee
美智纵横科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美智纵横科技有限责任公司 filed Critical 美智纵横科技有限责任公司
Publication of WO2022179227A1 publication Critical patent/WO2022179227A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4091Storing or parking devices, arrangements therefor; Means allowing transport of the machine when it is not being used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure is based on a Chinese patent application with an application number of 202110202815.8 and an application date of February 23, 2021, and claims the priority of the Chinese patent application, the entire contents of which are hereby incorporated by reference into the present application.
  • the present disclosure relates to the field of smart home technology, and in particular, to a method and device for recharging and aligning a sweeper, and the sweeper.
  • the sweeping robot When the sweeping robot detects that the power is insufficient or the cleaning is completed, it will automatically search for the charging base and enter the charging state. In this process, according to the distance of the charging base, it can be divided into long-distance recharging and short-distance recharging.
  • the infrared sensor-based recharging method For short-range recharging, there are currently two main methods: the infrared sensor-based recharging method and the lidar-based recharging method. Both of these two methods have the problem of deviation in alignment between the electrodes of the sweeper and the charging base.
  • the cleaning robot needs to be accurately located during recharging.
  • the alignment accuracy requirements are also getting higher and higher.
  • the embodiments of the present disclosure are expected to provide a method and device for recharging and alignment of a sweeper, and a sweeper.
  • an embodiment of the present disclosure provides a method for recharging and aligning a sweeper, including:
  • the sweeper performs the recharging action
  • first relative position information to the first edge of the charging base and second relative position information to the second edge of the charging base are determined; the first edge and the second edge of the charging base respectively perpendicular to the ground;
  • the relative position information of the target is determined based on the first relative position information and the second relative position information, and the posture of the sweeper is adjusted according to the relative position information of the target, so that the sweeper and the charging stand are connected to each other. position alignment.
  • the method before the laser detection device set based on the sweeper acquires laser data, the method further includes:
  • the control is moved toward the charging base, and when the distance from the charging base reaches a preset threshold, the laser detection device is activated.
  • the sweeper includes a ranging device
  • the control moves toward the charging base, and when the distance from the control to the charging base reaches a preset threshold, the laser detection device is activated, including:
  • the laser detection device Based on the distance between the distance measuring device and the charging base, when the distance reaches a preset threshold, the laser detection device is activated.
  • the method before the laser detection device set based on the sweeper acquires laser data, the method further includes:
  • the acquisition of laser data based on the laser detection device set by the sweeper includes:
  • the control is directed to move away from the charging base, and when the distance from the moving base to the charging base reaches a preset threshold, the laser detection device set based on the sweeper acquires laser data.
  • the first relative position information indicates a first angle between the first edge of the charging stand and the central axis of the sweeper; the second relative position information indicates the A second angle between the second edge of the charging base and the central axis of the sweeper.
  • the laser detection device includes a first line laser sensor and a second line laser sensor
  • the determining, according to the laser data, the first relative position information with the first edge of the charging base and the second relative position information with the second edge of the charging base including:
  • the first angle is determined according to the first laser data obtained by the first line laser sensor, and the second angle is determined according to the second laser data obtained by the second line laser sensor;
  • the determining the relative position information of the target based on the first relative position information and the second relative position information, and adjusting the pose of the sweeper according to the relative position information of the target includes:
  • a target angle is determined based on the first angle and the second angle, and the posture of the sweeper is adjusted according to the target angle.
  • an embodiment of the present disclosure further provides a recharging alignment device for a sweeper, including:
  • An execution module configured to perform a recharging action
  • an acquisition module configured to acquire laser data based on the laser detection device set by the sweeper
  • a position determination module configured to determine first relative position information with the first edge of the charging base and second relative position information with the second edge of the charging base according to the laser data obtained by the acquisition module; the The first edge and the second edge of the charging base are respectively perpendicular to the ground;
  • a pose adjustment module configured to determine target relative position information based on the first relative position information and the second relative position information obtained by the position determination module, and adjust the relative position information of the sweeper according to the target relative position information. pose, so that the sweeper is aligned with the position of the charging base.
  • the apparatus further includes:
  • the first control module is configured to control movement toward the charging base, and activate the laser detection device when the distance from the moving base to the charging base reaches a preset threshold.
  • the sweeper includes a ranging device; the first control module includes:
  • a first control submodule configured to control movement toward the charging base
  • a second control sub-module configured to obtain the distance from the charging stand based on the distance measuring device, and start the laser detection device when the distance reaches a preset threshold.
  • the apparatus further includes:
  • a second control module configured to control movement toward the charging base, and activate the laser detection device when moving to contact with the charging base
  • the acquisition module includes:
  • the third control sub-module is configured to control the movement in a direction away from the charging base, and when the distance from the moving base to the charging base reaches a preset threshold, obtain laser data based on the laser detection device set by the sweeper.
  • the first relative position information obtained by the position determination module represents a first angle between the first edge of the charging stand and the central axis of the sweeper; the position The second relative position information obtained by the determination module represents a second angle between the second edge of the charging base and the central axis of the sweeper.
  • the laser detection device includes a first line laser sensor and a second line laser sensor
  • the location determination module includes:
  • a first processing sub-module configured to determine the first angle according to the first laser data obtained by the first line laser sensor, and to determine the second angle according to the second laser data obtained by the second line laser sensor angle;
  • the pose adjustment module includes:
  • the second processing sub-module is configured to determine a target angle based on the first angle and the second angle obtained by the first processing sub-module, and adjust the pose of the sweeper according to the target angle.
  • an embodiment of the present disclosure further provides a sweeping machine, the sweeping machine including the above-mentioned recharging alignment device for the sweeping machine.
  • an embodiment of the present disclosure further provides an electronic device, including: a processor and a memory for storing a computer program that can be executed on the processor; wherein, the processor is used for running the computer program when , and perform the steps of the above-mentioned method for recharging and aligning the sweeper.
  • an embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored, characterized in that, when the computer program is executed by a processor, the steps of the above-mentioned method for recharging and aligning the sweeper are implemented. .
  • the embodiments of the present disclosure provide a method and device for recharging and alignment of a sweeper, and the sweeper.
  • Laser data are obtained by setting a laser detection device on the sweeper, edge features of a charging stand are determined according to the laser data, and sweeping is determined according to the edge features.
  • the relative position between the machine and the charging base can be adjusted according to the relative position of the sweeper to achieve high-precision alignment of the electrodes of the sweeper and the charging base, which is convenient for the subsequent use of the charging base to realize functions such as rag cleaning and dust collection.
  • FIG. 1(a) and FIG. 1(b) are schematic diagrams of misalignment and alignment states between the sweeper and the charging base according to the embodiment of the present disclosure, respectively;
  • FIG. 2 is a schematic flowchart 1 of a method for recharging and aligning a sweeper according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of aligning the sweeper and the charging stand according to an embodiment of the disclosure
  • FIG. 4 is a second schematic flowchart of a method for recharging and aligning a sweeper according to an embodiment of the present disclosure
  • FIG. 5 is a third schematic flowchart of a method for recharging and aligning a sweeper according to an embodiment of the present disclosure
  • FIG. 6 is a fourth schematic flowchart of a method for recharging and aligning a sweeper according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of an alignment scene between a sweeper and a charging stand according to an embodiment of the disclosure.
  • FIG. 8 is an example diagram of laser data collected by a first line laser sensor and a second line laser sensor according to an embodiment of the present disclosure
  • FIG. 9 is a first structural schematic diagram of a recharging alignment device for a sweeper according to an embodiment of the disclosure.
  • FIG. 10 is a second structural schematic diagram of a recharging alignment device for a sweeper according to an embodiment of the disclosure.
  • FIG. 11 is a third structural schematic diagram of a recharging alignment device for a sweeper according to an embodiment of the disclosure.
  • FIG. 12 is a fourth schematic structural diagram of a recharging alignment device for a sweeper according to an embodiment of the disclosure.
  • FIG. 13 is a schematic diagram of a hardware structure of an electronic device according to an embodiment of the disclosure.
  • the electrode of the sweeper and the electrode of the charging base are often in contact but the positions are not aligned.
  • part (a) in Figure 1 shows a schematic diagram of the misalignment of the electrode of the sweeper and the electrode of the charging base
  • Figure 1 Part (b) in the middle shows a schematic diagram of the alignment state of the electrode of the sweeper and the electrode of the charging base.
  • the longitudinal central axis passing through the electrode of the sweeping machine and the longitudinal central axis passing through the electrode of the charging base are on the same straight line . If the recharging method based on lidar is used, although the recharging accuracy is higher than that of the infrared method, there is still a considerable deviation when aligning at close range. As the composite function of the charging stand becomes more and more powerful, the alignment accuracy of the sweeper during recharging becomes more and more important.
  • FIG. 2 is a schematic flowchart 1 of a method for recharging and aligning a sweeper according to an embodiment of the present disclosure, as shown in FIG. 2 , including:
  • Step 100 the sweeper performs a recharging action.
  • the recharging action is performed. Specifically, in the process of performing the recharging action, the sweeper receives the signal transmitted by the signal transmitter arranged on the charging base, locates the charging base according to the received signal, and plans the return according to the current position of the sweeper and the position of the charging base. Charging path, control the sweeper to move to the charging base according to the recharging path. It should be noted that, the embodiment of the present disclosure does not limit the specific implementation manner of the sweeper performing the recharging action process, and any method that can realize the recharging of the sweeper is included in the protection scope of the present disclosure.
  • Step 101 Acquire laser data based on the laser detection device provided by the sweeper.
  • the laser detection device can use a line laser sensor, or other laser detection devices that can provide accurate angle and distance information, such as lidar.
  • the laser detection device is arranged in front of the sweeper or in other directions of the sweeper. It can be understood that the laser detection device is arranged at any position on the sweeper that can perform barrier-free detection, but it should be determined that the laser detection device and the The relative positional relationship of the electrodes of the sweeping machine ensures that after the position of the electrodes of the charging base is determined by the laser detection device, the alignment of the electrodes of the sweeping machine and the electrodes of the charging base can be realized according to the relative positional relationship.
  • the laser detection device may be an independent laser detection device, or a combined laser detection device composed of multiple independent laser detection devices.
  • Step 102 Determine the first relative position information with the first edge of the charging base and the second relative position information with the second edge of the charging base according to the laser data; the first edge of the charging base and the The second edges are respectively perpendicular to the ground.
  • the laser detection device in this embodiment can use a line laser sensor.
  • the charging electrode and the line laser sensor both installed in front of the sweeper please refer to FIG.
  • the sweeper 10 On the central axis of the sweeper 10 (as shown by the dotted line of the sweeper 10 in FIG. 3 ), when the electrodes of the sweeper 10 are aligned with the electrodes of the charging base 20 , the sweeper 10 is in the center of the first edge 21 and the second edge 22 Location.
  • the first edge 21 and the second edge 22 may also be other distinctive feature lines on the charging base 20 that can reflect the electrode positions of the charging base, such as special treatment of concave-convex shapes on the surface of the charging base 20, which is implemented in this disclosure. Examples are not limited.
  • first edge 21 and the second edge 22 of the charging stand 20 are the two edges on both sides that are perpendicular to the ground, respectively, to ensure that when the laser detection device detects the charging stand 20, it can accurately identify the first edge 21 and the Laser data at the second edge 22 .
  • the line laser sensor emits laser beams to form the laser surface 11, and the laser beams with different emission angles are reflected by the target and return to the line laser sensor, which can be determined according to the time length and the speed of light between the time when the laser is emitted and the time when the emitted light is received. Propagation distances of laser beams of different emission angles, whereby the laser data may include emission angles and/or propagation distances of laser beams.
  • the laser detection device obtains the laser data reflected by the charging base 20 , and further determines the relationship between the sweeper 10 and the laser detection device. First relative position information of the first edge 21 of the charging base 20, and second relative position information to the second edge 22 of the charging base.
  • the first relative position information represents a first angle between the first edge of the charging stand and the central axis of the sweeper; the second relative position information represents a second angle of the charging stand. The second angle of the edge to the central axis of the sweeper.
  • the first relative position information and the second relative position information can be represented by the emission angle ⁇ 1 of the corresponding laser beam at the first edge 21 and the emission angle ⁇ 2 of the corresponding laser beam at the second edge 22
  • the center point of the laser beam emitted by the line laser sensor is located on the central axis of the sweeper 10, and the laser emission angle at the center point is ⁇ 0 , so the first relative position information can be directly passed through
  • the first angle ⁇ 1
  • is represented, and the second relative position information is represented by the second angle ⁇ 2
  • Step 103 Determine the relative position information of the target based on the first relative position information and the second relative position information, and adjust the posture of the sweeper according to the relative position information of the target, so that the sweeper and the Align the position of the charging base.
  • the target relative position information determines the target relative position information of the sweeper 10 and the charging base 20 when the sweeper 10 and the charging base 20 are aligned, according to the target relative position
  • the information adjusts the posture of the sweeper so that the sweeper 10 and the charging base 20 are aligned.
  • the target relative position information can be represented by the first angle ⁇ 1 and the second angle ⁇ 1.
  • the difference value of the angle ⁇ 2 is represented, so that the posture of the sweeper 10 is adjusted according to the difference between the first angle ⁇ 1 and the second angle ⁇ 2; if the first angle ⁇ 1 and the second angle If the difference between ⁇ 2 is 0 or the absolute value of the difference is less than or equal to the preset threshold, it can indicate that the sweeper and the charging stand are aligned; if the first angle ⁇ 1 and the second angle ⁇ If the absolute value of the difference of ⁇ 2 is greater than the preset threshold, it can indicate that the sweeper and the charging base are not aligned, and the posture of the sweeper needs to be adjusted according to the difference, so as to realize the difference between the sweeper and the charging base. alignment.
  • the second relative position information ⁇ 2 can be considered to be a maximum value value to ensure proper implementation of the disclosed embodiments.
  • the preliminary alignment of the line laser sensor and the electrode of the charging base 20 may be performed first, and then according to The relative positional relationship between the line laser sensor and the electrodes of the sweeper 10 controls the rotation of the sweeper 10 , so as to realize the alignment of the electrodes of the sweeper 10 and the electrodes of the charging base 20 .
  • the first edge 21 and the second edge 22 of the charging base 20 and the central axis of the sweeper 10 are obtained by conversion or
  • the first relative position information and the second relative position information of the electrodes are obtained, and then step 103 is performed.
  • the sweeper performs a recharging action; laser data is acquired based on a laser detection device set on the sweeper; and according to the laser data, a first edge with a charging base is determined.
  • the first relative position information of , and the second relative position information with the second edge of the charging base; the first edge and the second edge of the charging base are respectively perpendicular to the ground; based on the first relative position information and The second relative position information determines the relative position information of the target, and adjusts the posture of the sweeper according to the relative position information of the target.
  • the edge feature of the charging base is determined by laser data, and then the relative position between the sweeper and the charging base is determined according to the edge feature, so as to adjust the posture of the sweeper according to the relative position, so as to realize the connection between the sweeper and the charging base. Align the position of the charging base. The situation where the electrodes of the sweeper and the charging base are in contact but not aligned is solved, and the embodiment of the present disclosure has high recharge and alignment accuracy, which facilitates subsequent use of the charging base to realize functions such as cleaning with a rag and collecting dust.
  • FIG. 4 is a second schematic flowchart of a method for recharging and aligning a sweeper according to an embodiment of the present disclosure, as shown in FIG. 4 , including:
  • Step 200 the sweeper performs a recharging action
  • Step 201 control the movement towards the charging stand, when the distance from the moving to the charging stand reaches a preset threshold, start the laser detection device provided by the sweeper;
  • Step 202 acquiring laser data based on the laser detection device
  • Step 203 Determine the first relative position information with the first edge of the charging base and the second relative position information with the second edge of the charging base according to the laser data; the first relative position information of the charging base The edge and the second edge are respectively perpendicular to the ground;
  • Step 204 Determine relative position information of the target based on the first relative position information and the second relative position information, and adjust the posture of the sweeper according to the relative position information of the target, so that the sweeper and the Align the position of the charging base.
  • step 202 to step 204 may refer to step 101 to step 103, which will not be repeated here.
  • the ranging distance of the laser detection device when the ranging distance of the laser detection device is limited, it may be only about 20 centimeters or less. In order to avoid useless work, it is necessary to judge the startup condition of the laser detection device.
  • the sweeper after the sweeper performs the recharging action, firstly, the sweeper is controlled to move toward the charging base according to the recharging route, and when the distance between the sweeper and the charging base reaches a preset threshold, the laser detection is started. device.
  • the sweeper can obtain the distance between the sweeper and the charging stand by using devices or algorithms with ranging functions, such as laser radar, ultrasonic ranging, map-based path planning, visual recognition, etc.
  • the sweeper includes a ranging device
  • the step 201 includes:
  • the laser detection device Based on the distance between the distance measuring device and the charging base, when the distance reaches a preset threshold, the laser detection device is activated.
  • the preset threshold may be determined according to the detection range of the laser detection device. For example, referring to FIG. 3 , the preset threshold may be determined according to the detection range of the laser surface 11 .
  • the laser detection device before acquiring laser data based on the laser detection device set on the sweeper, it is controlled to move toward the charging base.
  • the laser detection device is activated, which reduces unnecessary power consumption and improves the accuracy of identifying the charging stand.
  • FIG. 5 is a third schematic flowchart of a method for recharging and aligning a sweeper according to an embodiment of the present disclosure, as shown in FIG. 5 , including:
  • Step 300 the sweeper performs a recharging action
  • Step 301 controlling the movement toward the charging base, and when moving to contact with the charging base, activate the laser detection device provided by the sweeper;
  • Step 302 Control the direction to move away from the charging base, and obtain laser data based on the laser detection device when the distance between the moving and the charging base reaches a preset threshold;
  • Step 303 Determine the first relative position information with the first edge of the charging base and the second relative position information with the second edge of the charging base according to the laser data; the first relative position information of the charging base The edge and the second edge are respectively perpendicular to the ground;
  • Step 304 Determine target relative position information based on the first relative position information and the second relative position information, and adjust the posture of the sweeper according to the target relative position information, so that the sweeper and the Align the position of the charging base.
  • step 303 to step 304 may refer to step 102 to step 103, which will not be repeated here.
  • the sweeper may not have the ranging function.
  • the sweeper based on the infrared sensor recharge method the infrared sensor does not output the distance value of the target.
  • the sweeper can be turned on when it contacts the charging base.
  • Laser detection device That is, in step 301, firstly, the sweeper is controlled to move toward the charging base according to the recharging route, and when the sweeper is moved to contact with the charging base, the laser detection device is activated.
  • step 301 if it is determined that the sweeper electrodes have been aligned with the charging base electrodes after the sweeper contacts the charging base, there is no need to execute the operation. Steps 302 to 304 follow. If the electrodes of the sweeper and the charging base are not aligned, step 302 is executed, that is, the sweeper is controlled to move away from the charging base, and when the distance between the sweeper and the charging base reaches When the threshold is preset, laser data is acquired based on the laser detection device.
  • the approximate distance between the sweeper and the charging base can be determined according to the moving speed and moving time of the sweeper. distance.
  • the preset threshold can be determined according to the detection range of the laser detection device, and of course, a minimum value can also be set, so that the laser data is acquired based on the laser detection device soon after the laser detection device is turned on.
  • FIG. 6 is a fourth schematic flowchart of a method for recharging and aligning a sweeper according to an embodiment of the present disclosure.
  • the laser detection device provided on the sweeper includes a first line laser sensor and a second line laser sensor, as shown in FIG. 6 .
  • the method includes:
  • Step 400 the sweeper performs a recharging action.
  • Step 401 Acquire first laser data based on the first line laser sensor, and acquire second laser data based on the second line laser sensor.
  • FIG. 7 is a schematic diagram of an alignment scene between a sweeper and a charging stand according to an embodiment of the disclosure.
  • the sweeper 30 is provided with a first line laser sensor and a second line laser sensor.
  • the The first line laser sensor and the second line laser sensor are symmetrically installed on both sides of the central axis of the sweeper 30 .
  • the laser beam emitted by the first line laser sensor forms the first laser surface 31
  • the laser beam emitted by the second line laser sensor forms the second laser surface 32 .
  • the range of the first laser surface 31 and the second laser surface 32 is 80-95 millimeters (mm), the closest distance between the two laser surfaces is 12 mm, and the outermost laser surface is The vertical distance from the sweeper 30 is not less than 15mm.
  • the first line laser sensor and the second line laser sensor can also be installed on other positions of the sweeper 30, but the first laser surface 31 and the second laser surface should be guaranteed 32 can cover the edge of the surface of the charging base 20 (at least the electrodes of the charging base 20).
  • the laser detection device provided on the sweeper may not be limited to the above two line laser sensors.
  • FIG. 8 is an example diagram of the data collected by the first line laser sensor and the second line laser sensor when the sweeper 30 moves to the vicinity of the charging base 20 according to the recharging path (for example, the range determined by the range of the line laser sensor), please refer to FIG. 8 .
  • the first laser data is acquired based on the first line laser sensor, as shown in part (a) of FIG. 8
  • the second laser data is acquired based on the second line laser sensor, as shown in part (b) of FIG. 8 .
  • the abscissa represents the serial number of the laser beam emitted by the line laser sensor, which reflects the emission angle of the laser beam
  • the ordinate represents the measured distance value of the laser beam.
  • Each coordinate point in the figure represents the ranging value obtained after the laser beam of the corresponding serial number is reflected by the target.
  • Step 402 according to the first laser data, determine the first angle between the first edge of the charging base and the central axis of the sweeper, and according to the second laser data, determine the second edge of the charging base and the The second angle of the central axis of the sweeper; the first edge and the second edge of the charging base are respectively perpendicular to the ground.
  • the line laser sensor is turned on after judging the distance between the sweeper 30 and the charging base 20 , or the sweeper 30 is controlled to be in contact with the charging base 20 according to the recharging path, and then withdraw for a certain distance and then turn on.
  • a line laser sensor is used to avoid interference to ensure accurate identification of the first edge 21 and the second edge 22 of the charging base 20 .
  • the first edge 21 and the center axis of the sweeper 30 are determined according to the angle A and the angle B.
  • Step 403 Determine a target angle based on the first angle and the second angle, and adjust the posture of the sweeper according to the target angle, so as to align the sweeper with the charging stand.
  • the target angle may be represented by the difference between the first angle ⁇ 1 and the second angle ⁇ 2 , so that according to the first angle ⁇ 1
  • the difference between the first angle ⁇ 1 and the second angle ⁇ 2 adjusts the posture of the sweeper 30 to complete the position alignment; if the difference between the first angle ⁇ 1 and the second angle ⁇ 2 is 0 or the absolute value of the difference If the value is less than or equal to the preset threshold, it can indicate that the sweeper and the charging stand are aligned; if the absolute value of the difference between the first angle ⁇ 1 and the second angle ⁇ 2 is greater than the preset threshold, it can indicate that the sweeper If there is misalignment between the machine and the charging base, the posture of the sweeper needs to be adjusted according to the difference to achieve the alignment between the sweeper and the charging base.
  • the size of the first angle ⁇ 1 is smaller than the size of the second angle ⁇ 2 , or the size of the first angle ⁇ 1 is smaller than the size of the second angle ⁇ 2 and the first angle ⁇ 1
  • the absolute value of the difference between the angle ⁇ 1 and the second angle ⁇ 2 is greater than the preset threshold, please refer to FIG.
  • the recharging alignment method of the sweeper provided by the embodiment of the present disclosure solves the problem that the range of the line laser sensor is insufficient to cover the surface of the charging base by setting two line laser sensors to detect the first edge and the second edge of the charging base respectively. At the same time, the realization difficulty of the method is reduced, and the recharging alignment accuracy is high.
  • FIG. 9 is a first structural schematic diagram of a recharge alignment device for a sweeper according to an embodiment of the disclosure.
  • the recharge alignment device 500 for the sweeper includes:
  • An execution module 501 configured to execute a recharging action
  • an acquisition module 502 configured to acquire laser data based on a laser detection device set by the sweeper
  • a position determination module 503 configured to determine first relative position information with the first edge of the charging base and second relative position information with the second edge of the charging base according to the laser data obtained by the acquisition module 502;
  • the first edge and the second edge of the charging stand are respectively perpendicular to the ground;
  • a pose adjustment module 504 configured to determine target relative position information based on the first relative position information and the second relative position information obtained by the position determination module 503, and adjust the sweeping according to the target relative position information position and posture of the machine, so that the sweeper is aligned with the position of the charging base.
  • the recharging alignment device 500 of the sweeper further includes:
  • the first control module 505 is configured to control movement toward the charging base, and start the laser detection device when the distance from the moving base to the charging base reaches a preset threshold.
  • the sweeper further includes a ranging device.
  • the first control module 505 includes:
  • a first control sub-module 5051 configured to control movement toward the charging base
  • a second control sub-module 5052 configured to obtain the distance from the charging stand based on the distance measuring device, and start the laser detection device when the distance reaches a preset threshold.
  • the recharging alignment device 500 of the sweeper further includes:
  • the second control module 506 is configured to control movement toward the charging base, and activate the laser detection device when it moves to contact the charging base;
  • the obtaining module 502 includes:
  • the third control sub-module 5021 is configured to control the movement in a direction away from the charging base, and when the distance from the moving base to the charging base reaches a preset threshold, obtain laser data based on the laser detection device set by the sweeper .
  • the laser detection device provided by the sweeper includes a first line laser sensor and a second line laser sensor.
  • the position determination module 503 in the recharge alignment device 500 of the sweeper includes:
  • the first processing sub-module 5031 is configured to determine the first angle between the first edge of the charging base and the central axis of the sweeper according to the first laser data obtained by the first line laser sensor, and according to the The second laser data obtained by the second line laser sensor determines the second angle between the second edge of the charging base and the central axis of the sweeper;
  • the pose adjustment module 504 includes:
  • the second processing sub-module 5041 is configured to determine a target angle based on the first angle and the second angle obtained by the first processing sub-module 5031, and adjust the posture of the sweeper according to the target angle.
  • the recharging alignment device 500 of the sweeper can be applied to the sweeper.
  • the execution module 501, the acquisition module 502, the position determination module 503, the pose adjustment module 504 and the sub-modules in each module in the device can be controlled by, for example, a central processing unit (CPU, Central Processing Unit), digital Signal processor (DSP, Digital Signal Processor), microcontroller unit (MCU, Microcontroller Unit) or programmable gate array (FPGA, Field-Programmable Gate Array) implementation.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • MCU Microcontroller Unit
  • FPGA Field-Programmable Gate Array
  • the recharge alignment device for the sweeper provided in the above embodiment performs recharge alignment
  • only the division of the above program modules is used as an example for illustration.
  • the above processing can be allocated by Different program modules are completed, that is, the internal structure of the device is divided into different program modules, so as to complete all or part of the above-described processing.
  • the recharging alignment device of the sweeper provided in the above embodiment and the recharging and alignment method of the sweeper belong to the same concept, and the specific implementation process is detailed in the method embodiment, which will not be repeated here.
  • FIG. 13 is a schematic diagram of the hardware structure of an electronic device according to an embodiment of the disclosure.
  • the electronic device 900 includes: a laser detection device (not shown in FIG. 13 ), at least one processor 901 and a memory 902 .
  • the various components in electronic device 900 are coupled together by bus system 903 .
  • bus system 903 is used to realize the connection and communication between these components.
  • the bus system 903 also includes a power bus, a control bus and a status signal bus.
  • the various buses are labeled as bus system 903 in FIG. 13 .
  • the memory 902 may be either volatile memory or non-volatile memory, and may include both volatile and non-volatile memory.
  • the non-volatile memory can be a read-only memory (ROM, Read Only Memory), a programmable read-only memory (PROM, Programmable Read-Only Memory), an erasable programmable read-only memory (EPROM, Erasable Programmable Read-only memory) Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), Magnetic Random Access Memory (FRAM, ferromagnetic random access memory), Flash Memory (Flash Memory), Magnetic Surface Memory , CD-ROM, or CD-ROM (Compact Disc Read-Only Memory); magnetic surface memory can be disk memory or tape memory.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Type Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus Random Access Memory
  • the memory 702 described in the embodiments of the present disclosure is intended to include, but not be limited to, these and any other suitable types of memory.
  • the memory 902 in the embodiment of the present disclosure is used to store various types of data to support the operation of the electronic device 900 .
  • Examples of such data include: any computer program used to operate on the electronic device 900, such as a sweeper's recharge alignment control program.
  • the methods disclosed in the above embodiments of the present disclosure may be applied to the processor 901 or implemented by the processor 901 .
  • the processor 901 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above-mentioned method may be completed by an integrated logic circuit of hardware in the processor 901 or an instruction in the form of software.
  • the above-mentioned processor 901 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the processor 901 may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in combination with the embodiments of the present disclosure can be directly embodied as being executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 902, and the processor 901 reads the information in the memory 902, and completes the steps of the foregoing method in combination with its hardware.
  • the electronic device 900 may be implemented by one or more of Application Specific Integrated Circuit (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD) , Complex Programmable Logic Device), Field Programmable Gate Array (FPGA, Field-Programmable Gate Array), general-purpose processor, controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic Element implementation for performing the aforementioned method.
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • MCU microcontroller
  • Microcontroller Micro Controller Unit
  • Microprocessor Microprocessor
  • an embodiment of the present disclosure further provides a computer-readable storage medium, such as a memory 902 including a computer program, and the computer program can be executed by the processor 901 of the electronic device 900 to complete the steps of the foregoing method .
  • the computer-readable storage medium can be memory such as FRAM, ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM; it can also be various devices including one or any combination of the above memories.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling, or direct coupling, or communication connection between the components shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be electrical, mechanical or other forms. of.
  • the unit described above as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, it may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present disclosure may be all integrated into one processing module, or each unit may be separately used as a unit, or two or more units may be integrated into one unit; the above integration
  • the unit can be implemented either in the form of hardware or in the form of hardware plus software functional units.
  • the aforementioned program can be stored in a computer-readable storage medium, and when the program is executed, execute Including the steps of the above method embodiment; and the aforementioned storage medium includes: a mobile storage device, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk and other various A medium on which program code can be stored.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk and other various A medium on which program code can be stored.

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种扫地机的回充对准方法、装置及扫地机。方法包括:扫地机执行回充动作(100);基于扫地机设置的激光探测装置获取激光数据(101);根据激光数据,确定与充电座的第一边缘的第一相对位置信息,以及与充电座的第二边缘的第二相对位置信息;充电座的第一边缘和第二边缘分别与地面垂直(102);基于第一相对位置信息和第二相对位置信息确定目标相对位置信息,按照目标相对位置信息调整扫地机的位姿,以使扫地机与充电座的位置对准(103)。回充对准方法的回充对准精度高,便于后续利用充电座实现抹布清洗、集尘等功能。

Description

扫地机的回充对准方法、装置及扫地机
相关申请的交叉引用
本公开基于申请号为202110202815.8、申请日为2021年2月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本公开涉及智能家居技术领域,尤其涉及一种扫地机的回充对准方法、装置及扫地机。
背景技术
扫地机器人在工作中检测到电量不足或者清扫完成时,会自动寻找充电座,并进入充电状态。在此过程中,依据充电座的远近可以分为远距离回充和近距离回充。
对于近距离回充,目前主要包括以下两种方式:基于红外传感器的回充方式和基于激光雷达的回充方式。这两种方式均存在扫地机与充电座电极之间对准存在偏差的问题。
随着充电座的复合功能越来越强大,比如集成自动清洗抹布的充电基站,具备集尘功能的充电基站等,由于需要准确定位抹布位置以及集尘口位置,因此在回充时对扫地机器人的对准精确度要求也越来越高。
发明内容
有鉴于此,本公开实施例期望提供一种扫地机的回充对准方法、装置及扫地机。
为达到上述目的,本公开实施例的技术方案是这样实现的:
第一方面,本公开实施例提供一种扫地机的回充对准方法,包括:
扫地机执行回充动作;
基于所述扫地机设置的激光探测装置获取激光数据;
根据所述激光数据,确定与充电座的第一边缘的第一相对位置信息,以及与充电座的第二边缘的第二相对位置信息;所述充电座的第一边缘和所述第二边缘分别与地面垂直;
基于所述第一相对位置信息和所述第二相对位置信息确定目标相对位置信息,按照所述目标相对位置信息调整所述扫地机的位姿,以使所述扫地机与所述充电座的位置对准。
在本公开的一些可选实施例中,所述基于所述扫地机设置的激光探测装置获取激光数据之前,所述方法还包括:
控制朝向所述充电座方向移动,当移动至与所述充电座之间的距离达到预设阈值时,启动所述激光探测装置。
在本公开的一些可选实施例中,所述扫地机包括测距装置;
所述控制朝向所述充电座方向移动,当移动至与所述充电座之间的距离达到预设阈值时,启动所述激光探测装置,包括:
控制朝向所述充电座方向移动;
基于所述测距装置获取与所述充电座之间的距离,当所述距离达到预设阈值时,启动所述激光探测装置。
在本公开的一些可选实施例中,所述基于所述扫地机设置的激光探测装置获取激光数据之前,所述方法还包括:
控制朝向所述充电座方向移动,当移动至与所述充电座接触时,启动所述激光探测装置;
所述基于所述扫地机设置的激光探测装置获取激光数据,包括:
控制朝向远离所述充电座方向移动,当移动至与所述充电座之间的距离达到预设阈值时,基于所述扫地机设置的激光探测装置获取激光数据。
在本公开的一些可选实施例中,所述第一相对位置信息表示所述充电座的第一边缘与所述扫地机的中心轴线的第一角度;所述第二相对位置信息表示所 述充电座的第二边缘与所述扫地机的中心轴线的第二角度。
在本公开的一些可选实施例中,所述激光探测装置包括第一线激光传感器和第二线激光传感器;
所述根据所述激光数据,确定与充电座的第一边缘的第一相对位置信息,以及与充电座的第二边缘的第二相对位置信息,包括:
根据所述第一线激光传感器获取的第一激光数据,确定所述第一角度,以及根据所述第二线激光传感器获取的第二激光数据,确定所述第二角度;
所述基于所述第一相对位置信息和所述第二相对位置信息确定目标相对位置信息,按照所述目标相对位置信息调整所述扫地机的位姿,包括:
基于所述第一角度和所述第二角度确定目标角度,按照所述目标角度调整所述扫地机的位姿。
第二方面,本公开实施例还提供一种扫地机的回充对准装置,包括:
执行模块,配置为执行回充动作;
获取模块,配置为基于所述扫地机设置的激光探测装置获取激光数据;
位置确定模块,配置为根据所述获取模块得到的所述激光数据,确定与充电座的第一边缘的第一相对位置信息,以及与充电座的第二边缘的第二相对位置信息;所述充电座的第一边缘和所述第二边缘分别与地面垂直;
以及位姿调整模块,配置为基于所述位置确定模块得到的所述第一相对位置信息和所述第二相对位置信息确定目标相对位置信息,按照所述目标相对位置信息调整所述扫地机的位姿,以使所述扫地机与所述充电座的位置对准。
在本公开的一些可选实施例中,所述装置还包括:
第一控制模块,配置为控制朝向所述充电座方向移动,当移动至与所述充电座之间的距离达到预设阈值时,启动所述激光探测装置。
在本公开的一些可选实施例中,所述扫地机包括测距装置;所述第一控制模块包括:
第一控制子模块,配置为控制朝向所述充电座方向移动;
以及第二控制子模块,配置为基于所述测距装置获取与所述充电座之间的 距离,当所述距离达到预设阈值时,启动所述激光探测装置。
在本公开的一些可选实施例中,所述装置还包括:
第二控制模块,配置为控制朝向所述充电座方向移动,当移动至与所述充电座接触时,启动所述激光探测装置;
相应的,所述获取模块包括:
第三控制子模块,配置为控制朝向远离所述充电座方向移动,当移动至与所述充电座之间的距离达到预设阈值时,基于所述扫地机设置的激光探测装置获取激光数据。
在本公开的一些可选实施例中,所述位置确定模块得到的所述第一相对位置信息表示所述充电座的第一边缘与所述扫地机的中心轴线的第一角度;所述位置确定模块得到的所述第二相对位置信息表示所述充电座的第二边缘与所述扫地机的中心轴线的第二角度。
在本公开的一些可选实施例中,所述激光探测装置包括第一线激光传感器和第二线激光传感器;
所述位置确定模块包括:
第一处理子模块,配置为根据所述第一线激光传感器获取的第一激光数据,确定所述第一角度,以及根据所述第二线激光传感器获取的第二激光数据,确定所述第二角度;
所述位姿调整模块包括:
第二处理子模块,配置为基于所述第一处理子模块得到的所述第一角度和所述第二角度确定目标角度,按照所述目标角度调整所述扫地机的位姿。
第三方面,本公开实施例还提供一种扫地机,所述扫地机包括上述扫地机的回充对准装置。
第四方面,本公开实施例还提供一种电子设备,包括:处理器和用于存储能够在所述处理器上运行的计算机程序的存储器;其中,所述处理器用于运行所述计算机程序时,执行上述扫地机的回充对准方法的步骤。
第五方面,本公开实施例还提供一种计算机可读存储介质,其上存储有计 算机程序,其特征在于,所述计算机程序被处理器执行时实现上述扫地机的回充对准方法的步骤。
本公开实施例提供了一种扫地机的回充对准方法、装置及扫地机,通过扫地机上设置激光探测装置获得激光数据,根据激光数据确定充电座的边缘特征,进而根据该边缘特征确定扫地机与充电座之间的相对位置,从而根据该相对位置调整扫地机的位姿,实现扫地机电极与充电座电极的高精度对准,便于后续利用充电座实现抹布清洗、集尘等功能。
附图说明
图1(a)和图1(b)分别为本公开实施例的扫地机与充电座之间未对准和对准状态的示意图;
图2为本公开实施例的扫地机的回充对准方法的流程示意图一;
图3为本公开实施例的扫地机与充电座进行对准的结构示意图;
图4为本公开实施例的扫地机的回充对准方法的流程示意图二;
图5为本公开实施例的扫地机的回充对准方法的流程示意图三;
图6为本公开实施例的扫地机的回充对准方法的流程示意图四;
图7为本公开实施例的一种扫地机与充电座之间的对准场景示意图;
图8为本公开实施例的第一线激光传感器和第二线激光传感器采集的激光数据的示例图;
图9为本公开实施例的扫地机的回充对准装置的结构示意图一;
图10为本公开实施例的扫地机的回充对准装置的结构示意图二;
图11为本公开实施例的扫地机的回充对准装置的结构示意图三;
图12为本公开实施例的扫地机的回充对准装置的结构示意图四;
图13为本公开实施例的一种电子设备的硬件结构示意图。
具体实施方式
以下结合说明书附图及具体实施例对本公开的技术方案做进一步的详细阐 述。
对于扫地机的近距离回充,若采用基于红外传感器的回充方式,红外传感器的光场角度较大,且一般通过结构件来限制红外光的发射角度,导致光场角度精度低,回充对准时常出现扫地机电极和充电座电极接触但位置并未对准的情况,例如,图1中(a)部分示出的是扫地机电极与充电座电极未对准状态的示意图,图1中(b)部分示出的是扫地机电极与充电座电极对准状态的示意图,其中,对准状态下,经过扫地机电极的纵向中心轴与经过充电座电极的纵向中心轴位于同一直线上。若采用基于激光雷达的回充方式,虽然回充精度较红外方式高,但在近处对准时仍存在不小的偏差。随着充电座的复合功能越来越强大,扫地机在回充时的对准精度也越来越重要。
图2为本公开实施例的扫地机的回充对准方法的流程示意图一,如图2所示,包括:
步骤100、扫地机执行回充动作。
示例性的,扫地机工作过程中,当检测到剩余电量低于电量阈值或者完成清扫任务时,执行回充动作。具体地,扫地机在执行回充动作过程中,接收设置在充电座上的信号发射器所发射的信号,根据接收到的信号定位充电座,根据扫地机当前的位置和充电座的位置规划回充路径,控制扫地机按照回充路径移动到充电座。需要说明的是,本公开实施例对扫地机执行回充动作过程的具体实现方式不作限定,凡是能够实现扫地机回充的方式均包含在本公开的保护范围内。
步骤101、基于所述扫地机设置的激光探测装置获取激光数据。
激光探测装置可以采用线激光传感器,或者其他能够提供准确角度和距离信息的激光探测装置,例如激光雷达。所述激光探测装置设置在扫地机的正前方或者扫地机的其他方位上,可以理解,所述激光探测装置设置在扫地机上能够进行无障碍探测的任意位置,但应当确定所述激光探测装置与扫地机电极的相对位置关系,以保证利用所述激光探测装置确定充电座电极位置后,可根据所述相对位置关系实现扫地机电极和充电座电极的对准。
需要说明的是,所述激光探测装置可以是一个独立的激光探测装置,也可以是由多个独立激光探测装置组成的组合激光探测装置。
步骤102、根据所述激光数据,确定与充电座的第一边缘的第一相对位置信息,以及与充电座的第二边缘的第二相对位置信息;所述充电座的第一边缘和所述第二边缘分别与地面垂直。
示例性的,本实施例的激光探测装置可采用线激光传感器,以充电电极和所述线激光传感器均设置在扫地机正前方为例,请参考图3,线激光传感器和充电电极均安装在扫地机10的中心轴线上(如图3中扫地机10的虚线所示),扫地机10的电极与充电座20的电极对准时,扫地机10处于第一边缘21和第二边缘22的中央位置。当然,所述第一边缘21和所述第二边缘22也可以是充电座20上其他能够反映充电座电极位置的显著特征线,比如在充电座20表面进行凹凸形状的特殊处理,本公开实施例不做限定。
需要说明的是,充电座20的第一边缘21和第二边缘22是分别与地面垂直的两侧边缘,以保证在激光探测装置探测到充电座20时能够准确识别出表示第一边缘21和第二边缘22处的激光数据。
所述线激光传感器发射激光束形成激光面11,不同发射角度的激光束经目标反射后回到线激光传感器,根据激光的发出时刻和接收到的发射光的时刻之间的时长和光速可确定不同发射角度的激光束的传播距离,由此,所述激光数据可以包括激光束的发射角和/或传播距离。当充电座20进入激光探测装置的视场角范围(即图3中激光面11所示的范围)时,所述激光探测装置得到由充电座20反射的激光数据,进一步确定扫地机10与所述充电座20的第一边缘21的第一相对位置信息,以及与所述充电座的第二边缘22的第二相对位置信息。
在一实施例中,所述第一相对位置信息表示所述充电座的第一边缘与所述扫地机的中心轴线的第一角度;所述第二相对位置信息表示所述充电座的第二边缘与所述扫地机的中心轴线的第二角度。
具体地,所述第一相对位置信息、所述第二相对位置信息可以通过第一边 缘21处对应的激光束的发射角θ 1以及第二边缘22处对应的激光束的发射角θ 2表示,比如,所述线激光传感器发射的激光束中心点位于所述扫地机10的中心轴线上,且所述中心点处的激光发射角为θ 0,由此,第一相对位置信息可直接通过第一角度△θ 1=0-θ 1|表示,第二相对位置信息则通过第二角度△θ 2=0-θ 2|表示。
步骤103、基于所述第一相对位置信息和所述第二相对位置信息确定目标相对位置信息,按照所述目标相对位置信息调整所述扫地机的位姿,以使所述扫地机与所述充电座的位置对准。
示例性的,基于所述第一相对位置信息和所述第二相对位置信息,确定扫地机10和充电座20对准时扫地机10和充电座20的目标相对位置信息,按照所述目标相对位置信息调整所述扫地机的位姿,以使所述扫地机10与所述充电座20的位置对准。例如,所述第一相对位置信息通过第一角度△θ 1表示、所述第二相对位置信息通过第二角度△θ 2表示时,目标相对位置信息可通过第一角度△θ 1和第二角度△θ 2的差值表示,从而根据所述第一角度△θ 1和第二角度△θ 2的差值调整扫地机10的位姿;若所述第一角度△θ 1和第二角度△θ 2的差值为0或者所述差值的绝对值小于等于预设阈值,则可表示扫地机和充电座之间已对准;若所述第一角度△θ 1和第二角度△θ 2的差值的绝对值大于预设阈值,则可表示扫地机和充电座之间未对准,需要按照该差值对扫地机的位姿进行调整,从而实现扫地机和充电座之间的对准。
在一实施例中,当所述第一角度△θ 1小于所述第二角度△θ 2时,或者所述第一角度△θ 1小于所述第二角度△θ 2且所述第一角度△θ 1和第二角度△θ 2的差值的绝对值大于预设阈值时,请参考图3,表明所述扫地机10偏左,则控制所述扫地机10向右转动,直到所述第一角度△θ 1和第二角度△θ 2的差值为0或者所述差值的绝对值小于等于预设阈值;当所述第一角度△θ 1大于所述第二角度△θ 2时,或者所述第一角度△θ 1大于所述第二角度△θ 2且所述第一角度△θ 1和第二角度△θ 2的差值的绝对值大于预设阈值时,表明所述扫地机10偏右,则控制所述扫地机 10向左转动,直到所述第一角度△θ 1和第二角度△θ 2的差值为0或者所述差值的绝对值小于等于预设阈值。另外,应当理解,当线激光传感器仅探测到充电座20的其中一个边缘时,比如仅获取到第一边缘21反射的激光数据,此时可认为第二相对位置信息△θ 2为一极大值,以保证正确实施本公开实施例。
在另一些实施例中,当所述线激光传感器与扫地机10的电极之间存在相对位置关系时,可以先实现所述线激光传感器与充电座20的电极所在区域的初步对准,再根据所述线激光传感器与所述扫地机10的电极的相对位置关系控制所述扫地机10转动,从而实现扫地机10的电极和充电座20的电极的对准。或者,首先根据所述线激光传感器与扫地机10的电极之间的相对位置关系、所述激光数据,换算得到充电座20的第一边缘21、第二边缘22与扫地机10的中心轴线或者电极的所述第一相对位置信息和所述第二相对位置信息,然后执行步骤103。
本公开实施例提供的扫地机的回充对准方法,扫地机执行回充动作;基于所述扫地机设置的激光探测装置获取激光数据;根据所述激光数据,确定与充电座的第一边缘的第一相对位置信息,以及与充电座的第二边缘的第二相对位置信息;所述充电座的第一边缘和所述第二边缘分别与地面垂直;基于所述第一相对位置信息和所述第二相对位置信息确定目标相对位置信息,按照所述目标相对位置信息调整所述扫地机的位姿。本实施例通过激光数据确定充电座的边缘特征,进而根据该边缘特征确定扫地机与充电座之间的相对位置,从而根据该相对位置调整扫地机的位姿,以实现所述扫地机与所述充电座的位置对准。解决了扫地机与充电座电极接触但未对准的情况,本公开实施例回充对准精度高,便于后续利用充电座实现抹布清洗、集尘等功能。
基于上述实施例,图4为本公开实施例的扫地机的回充对准方法的流程示意图二,如图4所示,包括:
步骤200、扫地机执行回充动作;
步骤201、控制朝向充电座方向移动,当移动至与所述充电座之间的距离 达到预设阈值时,启动所述扫地机设置的激光探测装置;
步骤202、基于所述激光探测装置获取激光数据;
步骤203、根据所述激光数据,确定与所述充电座的第一边缘的第一相对位置信息,以及与所述充电座的第二边缘的第二相对位置信息;所述充电座的第一边缘和所述第二边缘分别与地面垂直;
步骤204、基于所述第一相对位置信息和所述第二相对位置信息确定目标相对位置信息,按照所述目标相对位置信息调整所述扫地机的位姿,以使所述扫地机与所述充电座的位置对准。
其中,步骤202至步骤204的具体过程可参照步骤101至步骤103,这里不再赘述。
在本实施例中,在激光探测装置的测距距离有限的情况下,可能只有20厘米左右或者更短,为避免无用功需对激光探测装置的启动条件进行判断。步骤201中,当扫地机执行回充动作后,首先控制扫地机按照回充路线朝向充电座方向移动,当扫地机移动至与所述充电座之间的距离达到预设阈值时,启动激光探测装置。其中,扫地机可利用激光雷达、超声波测距、基于地图的路径规划、视觉识别等等具有测距功能的装置或算法,获取所述扫地机至所述充电座之间的距离。
在一实施例中,所述扫地机包括测距装置,所述步骤201包括:
控制朝向所述充电座方向移动;
基于所述测距装置获取与所述充电座之间的距离,当所述距离达到预设阈值时,启动所述激光探测装置。
其中,所述预设阈值可根据所述激光探测装置的探测范围确定,例如,请参考图3,根据所述激光面11的探测范围确定。
本实施例提供的扫地机的回充对准方法,在基于所述扫地机设置的激光探测装置获取激光数据之前,控制朝向充电座方向移动,当移动至与所述充电座之间的距离达到预设阈值时,启动所述激光探测装置,减少了不必要的功率消耗,同时也提高了对充电座进行识别的准确度。
基于上述实施例,图5为本公开实施例的扫地机的回充对准方法的流程示意图三,如图5所示,包括:
步骤300、扫地机执行回充动作;
步骤301、控制朝向充电座方向移动,当移动至与所述充电座接触时,启动所述扫地机设置的激光探测装置;
步骤302、控制朝向远离所述充电座方向移动,当移动至与所述充电座之间的距离达到预设阈值时,基于所述激光探测装置获取激光数据;
步骤303、根据所述激光数据,确定与所述充电座的第一边缘的第一相对位置信息,以及与所述充电座的第二边缘的第二相对位置信息;所述充电座的第一边缘和所述第二边缘分别与地面垂直;
步骤304、基于所述第一相对位置信息和所述第二相对位置信息确定目标相对位置信息,按照所述目标相对位置信息调整所述扫地机的位姿,以使所述扫地机与所述充电座的位置对准。
其中,步骤303至步骤304的具体过程可参照步骤102至步骤103,这里不再赘述。
相关技术中,扫地机可能并不具备测距功能,例如基于红外传感器的回充方式的扫地机,红外传感器并不输出目标的距离值,此时,可在扫地机与充电座接触时即开启激光探测装置。即步骤301中,首先控制扫地机按照回充路线朝向充电座方向移动,当移动至所述扫地机与所述充电座接触时,启动激光探测装置。
需要说明的是,本实施例中的扫地机不设置测距装置,在步骤301中若所述扫地机与所述充电座接触后判断扫地机电极已与充电座电极实现对准,则无需执行后续步骤302至步骤304。若扫地机电极与充电座电极并未对准,则执行步骤302,即控制所述扫地机朝向远离所述充电座方向移动,当移动至所述扫地机与所述充电座之间的距离达到预设阈值时,基于所述激光探测装置获取激光数据。
一些实施例中,由于扫地机不具备测距功能,在控制所述扫地机朝向远离 所述充电座方向移动时,可根据所述扫地机的移动速度和移动时间判断与所述充电座的大致距离。此情况下,所述预设阈值可根据激光探测装置的探测范围确定,当然,也可设置一极小值,使得开启所述激光探测装置后不久即基于所述激光探测装置获取激光数据。
基于上述实施例,图6为本公开实施例的扫地机的回充对准方法的流程示意图四,所述扫地机上设置的激光探测装置包括第一线激光传感器和第二线激光传感器,如图6所示,所述方法包括:
步骤400、扫地机执行回充动作。
步骤401、基于所述第一线激光传感器获取第一激光数据,以及基于所述第二线激光传感器获取第二激光数据。
图7为本公开实施例的一种扫地机与充电座之间的对准场景示意图,请参考图7,扫地机30设置有第一线激光传感器和第二线激光传感器,可选的,所述第一线激光传感器和所述第二线激光传感器对称安装在所述扫地机30的中心轴线的两侧。其中,第一线激光传感器发射的激光束形成第一激光面31,第二线激光传感器发射的激光束形成第二激光面32。
作为一种可选的实施方式,所述第一激光面31和所述第二激光面32的量程为80-95毫米(mm),两个激光面的最近距离为12mm,且激光面最外侧距离扫地机30的垂直距离不小于15mm。需要说明的是,所述第一线激光传感器和所述第二线激光传感器也可安装在所述扫地机30的其他位置上,但应当保证所述第一激光面31与所述第二激光面32能够覆盖所述充电座20(至少所述充电座20的电极)的表面边缘。当然,在其他实施例中,扫地机上设置的激光探测装置可不限于上述两个线激光传感器。
图8为扫地机30按照回充路径移动至充电座20附近(比如由线激光传感器的量程确定的范围)时第一线激光传感器和第二线激光传感器采集的数据示例图,请参考图8,基于所述第一线激光传感器获取第一激光数据,如图8中(a)部分所示,基于所述第二线激光传感器获取第二激光数据,如图8中(b)部分所示。其中,横坐标表示线激光传感器所发射激光束的序号,反映了激光 束的发射角度;纵坐标表示激光束测量距离值。图中每一坐标点表示对应序号的激光束经目标反射后得到的测距值。
步骤402、根据所述第一激光数据,确定充电座的第一边缘与所述扫地机的中心轴线的第一角度,以及根据所述第二激光数据,确定充电座的第二边缘与所述扫地机的中心轴线的第二角度;所述充电座的第一边缘和所述第二边缘分别与地面垂直。
由图8可知,当线激光传感器发射的激光束直接照射到地面后返回的测距值最大;当线激光传感器发射的激光束经充电座20表面反射后,返回的测距值较小;同时,采集到的激光数据中在充电座20的边缘处具有较大斜率或者明显断层,由此可以确定所述充电座20的第一边缘21对应的第一线激光传感器的激光发射角A(图8中箭头所示),以及所述充电座20的第二边缘22对应的第二线激光传感器的激光发射角B。
在一些实施例中,也可参考前述实施例,通过判断扫地机30与充电座20的距离后开启线激光传感器,或者按照回充路径控制扫地机30与充电座20接触后退出一段距离再开启线激光传感器,从而避开干扰,以保证对充电座20的第一边缘21和第二边缘22的准确识别。
接着,基于所述第一线激光传感器与所述第二线激光传感器在扫地机30上的安装位置,根据所述角A和角B确定所述第一边缘21与扫地机30的中心轴线的第一角度α 1,以及所述第二边缘22与扫地机30的中心轴线的第二角度α 2
步骤403、基于所述第一角度和所述第二角度确定目标角度,按照所述目标角度调整所述扫地机的位姿,以使所述扫地机与所述充电座的位置对准。
可选的,基于所述第一角度α 1和所述第二角度α 2,目标角度可通过第一角度α 1和第二角度α 2的差值表示,从而按照所述第一角度α 1和第二角度α 2的差值调整所述扫地机30的位姿以完成位置对准;若所述第一角度α 1和第二角度α 2的差值为0或者所述差值的绝对值小于等于预设阈值,则可表示扫地机和充电座 之间已对准;若所述第一角度α 1和第二角度α 2的差值的绝对值大于预设阈值,则可表示扫地机和充电座之间未对准,需要按照该差值对扫地机的位姿进行调整,以实现扫地机和充电座之间的对准。
具体地,当所述第一角度α 1的大小小于所述第二角度α 2的大小时,或者所述第一角度α 1的大小小于所述第二角度α 2的大小且所述第一角度α 1和第二角度α 2的差值的绝对值大于预设阈值时,请参考图7,表明所述扫地机30偏左,则控制所述扫地机30向右转动,直到所述第一角度α 1和第二角度α 2的差值为0或者所述差值的绝对值小于等于预设阈值;当所述第一角度α 1的大小大于所述第二角度α 2的大小时,或者所述第一角度α 1的大小大于所述第二角度α 2的大小且所述第一角度α 1和第二角度α 2的差值的绝对值大于预设阈值时,表明所述扫地机30偏右,则控制所述扫地机30向左转动,直到所述第一角度α 1和第二角度α 2的差值为0或者所述差值的绝对值小于等于预设阈值。
本公开实施例提供的扫地机的回充对准方法,通过设置两个线激光传感器分别探测充电座的第一边缘和第二边缘,解决了线激光传感器量程不足难以覆盖充电座表面的问题,同时降低了方法实现难度,且回充对准精度高。
图9为本公开实施例的扫地机的回充对准装置的结构示意图一,如图9所示,所述扫地机的回充对准装置500包括:
执行模块501,配置为执行回充动作;
获取模块502,配置为基于所述扫地机设置的激光探测装置获取激光数据;
位置确定模块503,配置为根据所述获取模块502得到的所述激光数据,确定与充电座的第一边缘的第一相对位置信息,以及与充电座的第二边缘的第二相对位置信息;所述充电座的第一边缘和所述第二边缘分别与地面垂直;
以及位姿调整模块504,配置为基于所述位置确定模块503得到的所述第一相对位置信息和所述第二相对位置信息确定目标相对位置信息,按照所述目标相对位置信息调整所述扫地机的位姿,以使所述扫地机与所述充电座的位置对准。
在一些可选实施例中,如图10所示,扫地机的回充对准装置500还包括:
第一控制模块505,配置为控制朝向所述充电座方向移动,当移动至与所述充电座之间的距离达到预设阈值时,启动所述激光探测装置。
可选的,所述扫地机还包括测距装置。具体地,所述第一控制模块505包括:
第一控制子模块5051,配置为控制朝向所述充电座方向移动;
以及第二控制子模块5052,配置为基于所述测距装置获取与所述充电座之间的距离,当所述距离达到预设阈值时,启动所述激光探测装置。
在一些可选实施例中,如图11所示,扫地机的回充对准装置500还包括:
第二控制模块506,配置为控制朝向所述充电座方向移动,当移动至与所述充电座接触时,启动所述激光探测装置;
相应的,所述获取模块502包括:
第三控制子模块5021,配置为控制朝向远离所述充电座方向移动,当移动至与所述充电座之间的距离达到预设阈值时,基于所述扫地机设置的激光探测装置获取激光数据。
在一些可选实施例中,扫地机设置的激光探测装置包括第一线激光传感器和第二线激光传感器,如图12所示,扫地机的回充对准装置500中的位置确定模块503包括:
第一处理子模块5031,配置为根据所述第一线激光传感器获取的第一激光数据,确定所述充电座的第一边缘与所述扫地机的中心轴线的第一角度,以及根据所述第二线激光传感器获取的第二激光数据,确定所述充电座的第二边缘与所述扫地机的中心轴线的第二角度;
所述位姿调整模块504包括:
第二处理子模块5041,配置为基于所述第一处理子模块5031得到的所述第一角度和所述第二角度确定目标角度,按照所述目标角度调整所述扫地机的位姿。
本公开实施例中,所述扫地机的回充对准装置500可应用于扫地机中。所 述装置中的执行模块501、获取模块502、位置确定模块503和位姿调整模块504以及各模块中的子模块,在实际应用中均可由例如中央处理器(CPU,Central Processing Unit)、数字信号处理器(DSP,Digital Signal Processor)、微控制单元(MCU,Microcontroller Unit)或可编程门阵列(FPGA,Field-Programmable Gate Array)实现。
需要说明的是:上述实施例提供的扫地机的回充对准装置在进行回充对准时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的扫地机的回充对准装置与扫地机的回充对准方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本公开实施例还提供了一种电子设备,所述电子设备可以是扫地机。图13为本公开实施例的一种电子设备的硬件结构示意图,如图13所示,电子设备900包括:激光探测装置(图13中未示出)、至少一个处理器901和存储器902。电子设备900中的各个组件通过总线系统903耦合在一起。可理解,总线系统903用于实现这些组件之间的连接通信。总线系统903除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图13中将各种总线都标为总线系统903。
可以理解,存储器902可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取 存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本公开实施例描述的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
本公开实施例中的存储器902用于存储各种类型的数据以支持电子设备900的操作。这些数据的示例包括:用于在电子设备900上操作的任何计算机程序,如扫地机的回充对准控制程序。
上述本公开实施例揭示的方法可以应用于处理器901中,或者由处理器901实现。处理器901可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器901中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器901可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器901可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器902,处理器901读取存储器902中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备900可以被一个或多个应用专用集成电路 (ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
在示例性实施例中,本公开实施例还提供了一种计算机可读存储介质,例如包括计算机程序的存储器902,上述计算机程序可由电子设备900的处理器901执行,以完成前述方法所述步骤。计算机可读存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器;也可以是包括上述存储器之一或任意组合的各种设备。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本公开各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上 述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种扫地机的回充对准方法,所述方法包括:
    扫地机执行回充动作;
    基于所述扫地机设置的激光探测装置获取激光数据;
    根据所述激光数据,确定与充电座的第一边缘的第一相对位置信息,以及与充电座的第二边缘的第二相对位置信息;所述充电座的第一边缘和所述第二边缘分别与地面垂直;
    基于所述第一相对位置信息和所述第二相对位置信息确定目标相对位置信息,按照所述目标相对位置信息调整所述扫地机的位姿,以使所述扫地机与所述充电座的位置对准。
  2. 根据权利要求1所述的扫地机的回充对准方法,其中,所述基于所述扫地机设置的激光探测装置获取激光数据之前,所述方法还包括:
    控制朝向所述充电座方向移动,当移动至与所述充电座之间的距离达到预设阈值时,启动所述激光探测装置。
  3. 根据权利要求2所述的扫地机的回充对准方法,其中,所述扫地机包括测距装置;
    所述控制朝向所述充电座方向移动,当移动至与所述充电座之间的距离达到预设阈值时,启动所述激光探测装置,包括:
    控制朝向所述充电座方向移动;
    基于所述测距装置获取与所述充电座之间的距离,当所述距离达到预设阈值时,启动所述激光探测装置。
  4. 根据权利要求1所述的扫地机的回充对准方法,其中,所述基于所述扫地机设置的激光探测装置获取激光数据之前,所述方法还包括:
    控制朝向所述充电座方向移动,当移动至与所述充电座接触时,启动所述激光探测装置;
    所述基于所述扫地机设置的激光探测装置获取激光数据,包括:
    控制朝向远离所述充电座方向移动,当移动至与所述充电座之间的距离达到预设阈值时,基于所述扫地机设置的激光探测装置获取激光数据。
  5. 根据权利要求1-4任一项所述的扫地机的回充对准方法,其中,所述第一相对位置信息表示所述充电座的第一边缘与所述扫地机的中心轴线的第一角度;所述第二相对位置信息表示所述充电座的第二边缘与所述扫地机的中心轴线的第二角度。
  6. 根据权利要求5所述的扫地机的回充对准方法,其中,所述激光探测装置包括第一线激光传感器和第二线激光传感器;
    所述根据所述激光数据,确定与充电座的第一边缘的第一相对位置信息,以及与充电座的第二边缘的第二相对位置信息,包括:
    根据所述第一线激光传感器获取的第一激光数据,确定所述第一角度,以及根据所述第二线激光传感器获取的第二激光数据,确定所述第二角度;
    所述基于所述第一相对位置信息和所述第二相对位置信息确定目标相对位置信息,按照所述目标相对位置信息调整所述扫地机的位姿,包括:
    基于所述第一角度和所述第二角度确定目标角度,按照所述目标角度调整所述扫地机的位姿。
  7. 一种扫地机的回充对准装置,所述装置包括:
    执行模块,配置为执行回充动作;
    获取模块,配置为基于所述扫地机设置的激光探测装置获取激光数据;
    位置确定模块,配置为根据所述获取模块得到的所述激光数据,确定与充电座的第一边缘的第一相对位置信息,以及与充电座的第二边缘的第二相对位置信息;所述充电座的第一边缘和所述第二边缘分别与地面垂直;
    以及位姿调整模块,配置为基于所述位置确定模块得到的所述第一相对位置信息和所述第二相对位置信息确定目标相对位置信息,按照所述目标相对位置信息调整所述扫地机的位姿,以使所述扫地机与所述充电座的位置对准。
  8. 根据权利要求7所述的扫地机的回充对准装置,其中,所述装置还包括:
    第一控制模块,配置为控制朝向所述充电座方向移动,当移动至与所述充 电座之间的距离达到预设阈值时,启动所述激光探测装置。
  9. 根据权利要求8所述的扫地机的回充对准装置,其中,所述扫地机包括测距装置;所述第一控制模块包括:
    第一控制子模块,配置为控制朝向所述充电座方向移动;
    以及第二控制子模块,配置为基于所述测距装置获取与所述充电座之间的距离,当所述距离达到预设阈值时,启动所述激光探测装置。
  10. 根据权利要求7所述的扫地机的回充对准装置,其中,所述装置还包括:
    第二控制模块,配置为控制朝向所述充电座方向移动,当移动至与所述充电座接触时,启动所述激光探测装置;
    相应的,所述获取模块包括:
    第三控制子模块,配置为控制朝向远离所述充电座方向移动,当移动至与所述充电座之间的距离达到预设阈值时,基于所述扫地机设置的激光探测装置获取激光数据。
  11. 根据权利要求7-10任一项所述的扫地机的回充对准装置,其中,所述位置确定模块得到的所述第一相对位置信息表示所述充电座的第一边缘与所述扫地机的中心轴线的第一角度;所述位置确定模块得到的所述第二相对位置信息表示所述充电座的第二边缘与所述扫地机的中心轴线的第二角度。
  12. 根据权利要求11所述的扫地机的回充对准装置,其中,所述激光探测装置包括第一线激光传感器和第二线激光传感器;
    所述位置确定模块包括:
    第一处理子模块,配置为根据所述第一线激光传感器获取的第一激光数据,确定所述第一角度,以及根据所述第二线激光传感器获取的第二激光数据,确定所述第二角度;
    所述位姿调整模块包括:
    第二处理子模块,配置为基于所述第一处理子模块得到的所述第一角度和所述第二角度确定目标角度,按照所述目标角度调整所述扫地机的位姿。
  13. 一种扫地机,所述扫地机包括权利要求7至12任一项所述的装置。
  14. 一种电子设备,包括:处理器和用于存储能够在所述处理器上运行的计算机程序的存储器;
    其中,所述处理器用于运行所述计算机程序时,执行权利要求1至6任一项所述方法的步骤。
  15. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至6任一项所述方法的步骤。
PCT/CN2021/134521 2021-02-23 2021-11-30 扫地机的回充对准方法、装置及扫地机 WO2022179227A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110202815.8 2021-02-23
CN202110202815.8A CN112826377A (zh) 2021-02-23 2021-02-23 扫地机的回充对准方法、装置及扫地机

Publications (1)

Publication Number Publication Date
WO2022179227A1 true WO2022179227A1 (zh) 2022-09-01

Family

ID=75932902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134521 WO2022179227A1 (zh) 2021-02-23 2021-11-30 扫地机的回充对准方法、装置及扫地机

Country Status (2)

Country Link
CN (1) CN112826377A (zh)
WO (1) WO2022179227A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112826377A (zh) * 2021-02-23 2021-05-25 美智纵横科技有限责任公司 扫地机的回充对准方法、装置及扫地机
CN113675923B (zh) * 2021-08-23 2023-08-08 追觅创新科技(苏州)有限公司 充电方法、充电装置及机器人

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462869A (zh) * 2017-06-27 2017-12-12 深圳市优必选科技有限公司 机器人回充的对准方法及机器人、系统和存储介质
CN109066899A (zh) * 2018-09-14 2018-12-21 江苏美的清洁电器股份有限公司 充电设备的位置调整方法、电子设备和存储介质
CN109648602A (zh) * 2018-09-11 2019-04-19 深圳优地科技有限公司 自动充电方法、装置及终端设备
CN110597249A (zh) * 2019-08-23 2019-12-20 深圳市优必选科技股份有限公司 一种机器人及其回充定位方法和装置
CN110893085A (zh) * 2018-09-11 2020-03-20 原相科技股份有限公司 清洁机器人及其充电路径决定方法
US10698411B1 (en) * 2016-12-13 2020-06-30 AI Incorporated Recharge station for mobile robot
CN111481112A (zh) * 2019-01-29 2020-08-04 北京奇虎科技有限公司 扫地机的回充对准方法、装置及扫地机
CN112826377A (zh) * 2021-02-23 2021-05-25 美智纵横科技有限责任公司 扫地机的回充对准方法、装置及扫地机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10698411B1 (en) * 2016-12-13 2020-06-30 AI Incorporated Recharge station for mobile robot
CN107462869A (zh) * 2017-06-27 2017-12-12 深圳市优必选科技有限公司 机器人回充的对准方法及机器人、系统和存储介质
CN109648602A (zh) * 2018-09-11 2019-04-19 深圳优地科技有限公司 自动充电方法、装置及终端设备
CN110893085A (zh) * 2018-09-11 2020-03-20 原相科技股份有限公司 清洁机器人及其充电路径决定方法
CN109066899A (zh) * 2018-09-14 2018-12-21 江苏美的清洁电器股份有限公司 充电设备的位置调整方法、电子设备和存储介质
CN111481112A (zh) * 2019-01-29 2020-08-04 北京奇虎科技有限公司 扫地机的回充对准方法、装置及扫地机
CN110597249A (zh) * 2019-08-23 2019-12-20 深圳市优必选科技股份有限公司 一种机器人及其回充定位方法和装置
CN112826377A (zh) * 2021-02-23 2021-05-25 美智纵横科技有限责任公司 扫地机的回充对准方法、装置及扫地机

Also Published As

Publication number Publication date
CN112826377A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
WO2022179227A1 (zh) 扫地机的回充对准方法、装置及扫地机
CN107765688B (zh) 一种自主移动机器人及其自动对接的控制方法和装置
JP2501010B2 (ja) 移動ロボットの誘導装置
US11977390B2 (en) Method for straight edge detection by robot and method for reference wall edge selection by cleaning robot
CN112130158B (zh) 对象距离测量装置和方法
US20100076599A1 (en) Manually driven determination of a region of interest (roi) or a path of interest (poi) for a robotic device
US20220184811A1 (en) Method and system for initialization diagnosis of mobile robot
WO2019012770A1 (ja) 撮像装置及びモニタリング装置
CN111258320A (zh) 一种机器人避障的方法及装置、机器人、可读存储介质
CN111694358B (zh) 运送机器人的控制方法、装置、运送机器人和存储介质
US20200401825A1 (en) Object detection device, object detection method, and storage medium
CN112051844A (zh) 自移动机器人及其控制方法
CN112698643A (zh) 机器人对接充电装置的方法、系统、机器人及计算机存储介质
CN110940974B (zh) 物体检测装置
KR20090078959A (ko) 이동체의 위치 추정 장치 및 그 방법
JP2802502B2 (ja) 自走車の操向位置検出装置およびそのための基準点検出装置
WO2021184747A1 (zh) 控制方法、装置以及存储介质
JP2017204062A (ja) 自律搬送システム
JP4745150B2 (ja) 移動ロボット
JP2018189494A (ja) 走査型距離測定装置
CN114777761A (zh) 清洁机及地图构建方法
KR100738887B1 (ko) 이동로봇의 주행 방법과 그를 이용한 이동로봇
JP2002122670A (ja) 車間距離計測方法
JP4051883B2 (ja) 無人車位置計測方式
JP2012113765A (ja) 移動体システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927651

Country of ref document: EP

Kind code of ref document: A1